
Visual Studio Tools for Office: Using Visual Basic 2005 with Excel, Word, Outlook, and InfoPath
By Eric Carter, Eric Lippert
...
Publisher: Addison Wesley Professional
Pub Date: April 26, 2006
Print ISBN-10: 0-321-41175-7
Print ISBN-13: 978-0-321-41175-4
Pages: 1120

Table of Contents | Index

"With the application development community so focused on the Smart Client revolution, a book that covers VSTO
from A to Z is both important and necessary. This book lives up to big expectations. It is thorough, has tons of
example code, and covers Office programming in general termstopics that can be foreign to the seasoned .NET
developer who has focused on ASP.NET applications for years. Congratulations to Eric Lippert and Eric Carter for such
a valuable work!" Tim Huckaby, CEO, InterKnowlogy, Microsoft regional director

"This book covers in a clear and concise way all of the ins and outs of programming with Visual Studio Tools for
Office. Given the authors' exhaustive experiences with this subject, you can't get a more authoritative description of
VSTO than this book!" Paul Vick, technical lead, Visual Basic .NET, Microsoft Corporation

"Eric and Eric really get it. Professional programmers will love the rich power of Visual Studio and .NET, along with the
ability to tap into Office programmability. This book walks you through programming Excel, Word, InfoPath, and
Outlook solutions." Vernon W. Hui, test lead, Microsoft Corporation

"This book is an in-depth, expert, and definitive guide to programming using Visual Studio Tools for Office 2005. It is
a must-have book for anyone doing Office development." Siew Moi Khor, programmer/writer, Microsoft Corporation

"We don't buy technical books for light reading. We buy them as a resource for developing a solution. This book is an
excellent resource for someone getting started with Smart Client development. For example, it is common to hear a
comment along the lines of, 'It is easy to manipulate the Task Pane in Office 2003 using VSTO 2005,' but until you
see something like the example at the start of Chapter 15, it is hard to put 'easy' into perspective. This is a thorough
book that covers everything from calling Office applications from your application, to building applications that are
Smart Documents. It allows the traditional Windows developer to really leverage the power of Office 2003." Bill
Sheldon, principal engineer, InterKnowlogy, MVP

"Eric Carter and Eric Lippert have been the driving force behind Office development and Visual Studio Tools for Office
2005. The depth of their knowledge and understanding of VSTO and Office is evident in this book. Professional
developers architecting enterprise solutions using VSTO 2005 and Office System 2003 now have a new weapon in
their technical arsenal." Paul Stubbs, program manager, Microsoft Corporation

"This book is both a learning tool and a reference book, with a richness of tables containing object model objects and
their properties, methods, and events. I would recommend it to anyone considering doing Office development using
the .NET framework, especially people interested in VSTO programming." Rufus Littlefield, software design
engineer/tester, Microsoft Corporation

Visual Studio Tools for Office is both the first and the definitive book on VSTO 2005 programming, written by the
inventors of the technology. VSTO is a set of tools that allows professional developers to use the full power of Visual
Studio .NET and the .NET Framework to put code behind Excel 2003, Word 2003, Outlook 2003, and InfoPath 2003.

VSTO provides functionality never before available to the Office developer: data binding and data/view separation,
design-time views of Excel and Word documents inside Visual Studio, rich support for Windows Forms controls in a
document, the ability to create custom Office task panes, server-side programming support against Office, and much
more.

Carter and Lippert cover their subject matter with deft insight into the needs of .NET developers learning VSTO. This
book

Explains the architecture of Microsoft Office programming and introduces the object models

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Teaches the three basic patterns of Office solutions: Office automation executables, Office add-ins, and code
behind a document

Explores the ways of customizing Excel, Word, Outlook, and InfoPath, and plumbs the depths of programming
with their events and object models

Introduces the VSTO programming model

Teaches how to use Windows Forms in VSTO and how to work with the Actions Pane

Delves into VSTO data programming and server data scenarios

Explores .NET code security and VSTO deployment

Advanced material covers working with XML in Word and Excel, developing COM add-ins for Word and Excel, and
creating Outlook add-ins with VSTO.

The complete code samples are available on the book's Web page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual Studio Tools for Office: Using Visual Basic 2005 with Excel, Word, Outlook, and InfoPath
By Eric Carter, Eric Lippert
...
Publisher: Addison Wesley Professional
Pub Date: April 26, 2006
Print ISBN-10: 0-321-41175-7
Print ISBN-13: 978-0-321-41175-4
Pages: 1120

Table of Contents | Index

 Copyright

 Praise for Visual Studio Tools for Office

 Microsoft .NET Development Series

 Foreword

 Preface

 Acknowledgments

 About the Authors

 Part I: An Introduction to VSTO

 Chapter 1. An Introduction to Office Programming

 Why Office Programming?

 Office Object Models

 Properties, Methods, and Events

 The Office Primary Interop Assemblies (PIAs)

 Conclusion

 Chapter 2. Introduction to Office Solutions

 The Three Basic Patterns of Office Solutions

 Office Automation Executables

 Office Add-Ins

 Code Behind a Document

 Conclusion

 Part II: Office Programming in .NET

 Chapter 3. Programming Excel

 Ways to Customize Excel

 Programming User-Defined Functions

 Introduction to the Excel Object Model

 Conclusion

 Chapter 4. Working with Excel Events

 Events in the Excel Object Model

 Events in Visual Studio 2005 Tools for Office

 Conclusion

 Chapter 5. Working with Excel Objects

 Working with the Application Object

 Working with the Workbooks Collection

 Working with the Workbook Object

 Working with the Worksheets, Charts, and Sheets Collections

 Working with Document Properties

 Working with the Windows Collections

 Working with the Window Object

 Working with the Names Collection and Name Object

 Working with the Worksheet Object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Working with the Range Object

 Special Excel Issues

 Conclusion

 Chapter 6. Programming Word

 Ways to Customize Word

 Programming Research Services

 Introduction to the Word Object Model

 Conclusion

 Chapter 7. Working with Word Events

 Events in the Word Object Model

 Events in Visual Studio Tools for Office

 Conclusion

 Chapter 8. Working with Word Objects

 Working with the Application Object

 Working with the Dialog Object

 Working with Windows

 Working with Templates

 Working with Documents

 Working with a Document

 Working with the Range Object

 Working with Bookmarks

 Working with Tables

 Conclusion

 Chapter 9. Programming Outlook

 Ways to Customize Outlook

 Custom Property Pages

 Introduction to the Outlook Object Model

 Introduction to the Collaboration Data Objects

 Conclusion

 Chapter 10. Working with Outlook Events

 Events in the Outlook Object Model

 ApplicationLevel Events

 Outlook Item Events

 Other Events

 Conclusion

 Chapter 11. Working with Outlook Objects

 Working with the Application Object

 Working with the Explorers and Inspectors Collections

 Working with the Explorer Object

 Working with the Inspector Object

 Working with the NameSpace Object

 Working with the MAPIFolder Object

 Working with the Items Collection

 Properties and Methods Common to Outlook Items

 Outlook Issues

 Conclusion

 Chapter 12. Introduction to InfoPath

 What Is InfoPath?

 Getting Started

 Form Security

 Programming InfoPath

 Data Source Events

 Form Events, Properties, and Methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Form Events, Properties, and Methods

 Conclusion

 Part III: Office Programming in VSTO

 Chapter 13. The VSTO Programming Model

 The VSTO Programming Model

 VSTO Extensions to Word and Excel Objects

 Dynamic Controls

 VSTO Extensions to the Word and Excel Object Models

 Conclusion

 Chapter 14. Using Windows Forms in VSTO

 Introduction

 Adding Windows Forms Controls to Your Document

 Writing Code Behind a Control

 The Windows Forms Control Hosting Architecture

 Properties Merged from OLEObject or OLEControl

 Adding Controls at Runtime

 Conclusion

 Chapter 15. Working with the Actions Pane

 Introduction to the Actions Pane

 Working with the ActionsPane Control

 Conclusion

 Chapter 16. Working with Smart Tags in VSTO

 Introduction to Smart Tags

 Creating Document-Level Smart Tags with VSTO

 Creating Application-Level Smart Tags

 Creating an Application-Level Smart Tag Class Library in Visual Studio

 Creating a Recognizer Class

 Creating an Action Class

 Registering and Trusting an Application-Level Smart Tag Class Library

 Running and Testing the Application-Level Smart Tag

 Debugging an Application-Level Smart Tag

 Conclusion

 Chapter 17. VSTO Data Programming

 Creating a Data-Bound Customized Spreadsheet with VSTO

 Creating a Data-Bound Customized Word Document with VSTO

 Datasets, Adapters, and Sources

 Another Technique for Creating Data-Bound Spreadsheets

 Caching Data in the Data Island

 Advanced ADO.NET Data Binding: Looking Behind the Scenes

 Binding-Related Extensions to Host Items and Host Controls

 Conclusion

 Chapter 18. Server Data Scenarios

 Populating a Document with Data on the Server

 Using ServerDocument and ASP.NET

 An Alternative Approach: Create a Custom Handler

 A Handy Client-Side ServerDocument Utility

 The ServerDocument Object Model

 Conclusion

 Chapter 19. .NET Code Security

 Code-Access Security Versus Role-Based Security

 Code-Access Security in .NET

 Publisher Certificates

 Trusting the Document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Conclusion

 Chapter 20. Deployment

 VSTO Prerequisites

 Deploying to an Intranet Shared Directory or Web Site

 Local Machine Deployment Without a Deployment Manifest

 Editing Manifests

 Creating Setup Packages

 Conclusion

 Part IV: Advanced Office Programming

 Chapter 21. Working with XML in Excel

 Introduction to Excel's XML Features

 Introduction to XML Schema Creation in Visual Studio

 An End-to-End Scenario

 Advanced XML Features in Excel

 Excel-Friendly XML Schemas

 VSTO Support for Excel Schema Mapping

 Conclusion

 Chapter 22. Working with XML in Word

 Introduction to Word's XML Features

 An End-to-End Scenario: Creating a Schema and Mapping It into a Word Document

 Exporting the Mapped XML in the Document to an XML Data File

 Importing an XML Data File into the Mapped Document

 The XML Options Dialog Box

 VSTO Support for Word Schema Mapping

 VSTO Support for the WordML File Format

 Conclusion

 Chapter 23. Developing COM AddIns for Word and Excel

 Introduction to AddIns

 Scenarios for Using AddIns

 How a COM AddIn Is Registered

 Implementing IDTExtensibility2

 Writing a COM AddIn Using Visual Studio

 The Pitfalls of mscoree.dll

 COM Interop and regasm.exe

 Shimming: A Solution to the Problems with mscoree.dll

 Conclusion

 Chapter 24. Creating Outlook AddIns with VSTO

 Moving Away from COM AddIns

 Creating an Outlook AddIn in VSTO

 Conclusion

 Bibsrc Bibliography

 Security

 Office Programming

 Data Programming

 Forms Programming

 Infrastructure

 Index

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Copyright
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries and is used under license from Microsoft.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which
may include electronic versions and/or custom covers and content particular to your business, training goals, marketing
focus, and branding interests. For more information, please contact:

 U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the U.S., please contact:

 International Sales
 international@pearsoned.com

Visit us on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data:

Carter, Eric.
 Visual studio tools for Office : using Visual Basic 2005 with Excel, Word, Outlook, and InfoPath / Eric
Carter, Eric Lippert.
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-321-41175-7 (pbk. : alk. paper)
 1. Microsoft Visual BASIC. 2. BASIC (Computer program language) 3. Microsoft Visual Studio.
4. Microsoft Office. I. Lippert, Eric. II. Title.

 QA76.73.B3C345 2006
 005.13'3dc22 2006001141

Copyright © 2006 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

 Pearson Education, Inc.
 Rights and Contracts Department
 75 Arlington Street, Suite 300
 Boston, MA 02116
 Fax: (617) 848-7047

Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts. First printing, April 2006

Dedication
To my wife, Tamsyn, and our children Jason, Hayley, Camilla, Rand, and Elizabeth.

E. C.

To Leah Lippert, for embarking with me on a fabulous adventure. And to David Lippert, who taught me
to expect the unexpected along the way.

E. L.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Praise for Visual Studio Tools for Office
"With the application development community so focused on the Smart Client revolution, a book that
covers VSTO from A to Z is both important and necessary. This book lives up to big expectations. It is
thorough, has tons of example code, and covers Office programming in general termstopics that can be
foreign to the seasoned .NET developer who has focused on ASP.NET applications for years.
Congratulations to Eric Lippert and Eric Carter for such a valuable work!"

Tim Huckaby, CEO, InterKnowlogy, Microsoft regional director

"This book covers in a clear and concise way all of the ins and outs of programming with Visual Studio
Tools for Office. Given the authors' exhaustive experiences with this subject, you can't get a more
authoritative description of VSTO than this book!"

Paul Vick, technical lead, Visual Basic .NET, Microsoft Corporation

"Eric and Eric really get it. Professional programmers will love the rich power of Visual Studio and .NET,
along with the ability to tap into Office programmability. This book walks you through programming
Excel, Word, InfoPath, and Outlook solutions."

Vernon W. Hui, test lead, Microsoft Corporation

"This book is an in-depth, expert, and definitive guide to programming using Visual Studio Tools for
Office 2005. It is a must-have book for anyone doing Office development."

Siew Moi Khor, programmer/writer, Microsoft Corporation

"We don't buy technical books for light reading; we buy them as a resource for developing a solution.
This book is an excellent resource for someone getting started with Smart Client development. For
example, it is common to hear a comment along the lines of, 'It is easy to manipulate the Task Pane in
Office 2003 using VSTO 2005,' but until you see something like the example at the start of Chapter 15,
it is hard to put 'easy' into perspective. This is a thorough book that covers everything from calling
Office applications from your application, to building applications that are Smart Documents. It allows
the traditional Windows developer to really leverage the power of Office 2003."

Bill Sheldon, principal engineer, InterKnowlogy, MVP

"Eric Carter and Eric Lippert have been the driving force behind Office development and Visual Studio
Tools for Office 2005. The depth of their knowledge and understanding of VSTO and Office is evident in
this book. Professional developers architecting enterprise solutions using VSTO 2005 and Office System
2003 now have a new weapon in their technical arsenal."

Paul Stubbs, program manager, Microsoft Corporation

"This book is both a learning tool and a reference book, with a richness of tables containing object
model objects and their properties, methods, and events. I would recommend it to anyone considering
doing Office development using the .NET framework, especially people interested in VSTO
programming."

Rufus Littlefield, software design engineer/tester, Microsoft Corporation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Microsoft .NET Development Series
John Montgomery, Series Advisor

Don Box, Series Advisor

Martin Heller, Series Editor

The Microsoft .NET Development Series is supported and developed by the leaders and experts of Microsoft
development technologies including Microsoft architects and DevelopMentor instructors. The books in this series provide
a core resource of information and understanding every developer needs in order to write effective applications and
managed code. Learn from the leaders how to maximize your use of the .NET Framework and its programming
languages.

Titles in the Series
Brad Abrams, .NET Framework Standard Library Annotated Reference Volume 1: Base Class Library and Extended
Numerics Library, 0-321-15489-4

Brad Abrams and Tamara Abrams, .NET Framework Standard Library Annotated Reference, Volume 2: Networking
Library, Reflection Library, and XML Library, 0-321-19445-4

Keith Ballinger, .NET Web Services: Architecture and Implementation, 0-321-11359-4

Bob Beauchemin, Niels Berglund, Dan Sullivan, A First Look at SQL Server 2005 for Developers, 0-321-18059-3

Don Box with Chris Sells, Essential .NET, Volume 1: The Common Language Runtime, 0-201-73411-7

Keith Brown, The .NET Developer's Guide to Windows Security, 0-321-22835-9

Eric Carter and Eric Lippert, Visual Studio Tools for Office: Using C# with Excel, Word, Outlook, and InfoPath, 0-321-
33488-4

Eric Carter and Eric Lippert, Visual Studio Tools for Office: Using Visual Basic 2005 with Excel, Word, Outlook, and
InfoPath, 0-321-41175-7

Mahesh Chand, Graphics Programming with GDI+, 0-321-16077-0

Krzysztof Cwalina and Brad Abrams, Framework Design Guidelines: Conventions, Idioms, and Patterns for Reusable
.NET Libraries, 0-321-24675-6

Anders Hejlsberg, Scott Wiltamuth, Peter Golde, The C# Programming Language, 0-321-15491-6

Alex Homer, Dave Sussman, Mark Fussell, ADO.NET and System.Xml v. 2.0The Beta Version, 0-321-24712-4

Alex Homer, Dave Sussman, Rob Howard, ASP.NET v. 2.0The Beta Version, 0-321-25727-8

James S. Miller and Susann Ragsdale, The Common Language Infrastructure Annotated Standard, 0-321-15493-2

Christian Nagel, Enterprise Services with the .NET Framework: Developing Distributed Business Solutions with .NET
Enterprise Services, 0-321-24673-X

Brian Noyes, Data Binding with Windows Forms 2.0: Programming Smart Client Data Applications with .NET, 0-321-
26892-X

Fritz Onion, Essential ASP.NET with Examples in C#, 0-201-76040-1

Fritz Onion, Essential ASP.NET with Examples in Visual Basic .NET, 0-201-76039-8

Ted Pattison and Dr. Joe Hummel, Building Applications and Components with Visual Basic .NET, 0-201-73495-8

Dr. Neil Roodyn, eXtreme .NET: Introducing eXtreme Programming Techniques to .NET Developers, 0-321-30363-6

Chris Sells, Windows Forms Programming in C#, 0-321-11620-8

Chris Sells and Justin Gehtland, Windows Forms Programming in Visual Basic .NET, 0-321-12519-3

Paul Vick, The Visual Basic .NET Programming Language, 0-321-16951-4

Damien Watkins, Mark Hammond, Brad Abrams, Programming in the .NET Environment, 0-201-77018-0

Shawn Wildermuth, Pragmatic ADO.NET: Data Access for the Internet World, 0-201-74568-2

Paul Yao and David Durant, .NET Compact Framework Programming with C#, 0-321-17403-8

Paul Yao and David Durant, .NET Compact Framework Programming with Visual Basic .NET, 0-321-17404-6

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Paul Yao and David Durant, .NET Compact Framework Programming with Visual Basic .NET, 0-321-17404-6

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Foreword
IT'S WITH SOME amount of trepidation that I faced the challenge of composing a foreword to this particular book. Let's
face it: The names on the cover inspire some amount of awe. It's humbling to know that one's words will introduce
what one believes to be the seminal work on a given topic, and believe me, I'm relatively sure this book will meet that
lofty goal. When approached with the invitation to grace the front matter of the book, my first response was to wonder
what I could possibly addcouldn't they find some luminary at Microsoft to write the foreword? It seems, however, that
an outside voice adds some credence to the proceedings, so, dear reader, I speak meekly in the presence of greatness.

First, a little about me (it's the last chance I'm going to get in this short piece): I've been lurking about, programming
Office in its various guises, for more than ten years. I've written a lot about the wondersand gotchasof Office
development, and survived the glory years surrounding Office 2000, when it looked like Office might finally make a
successful, integrated development platform. Around 2001, it became clear that no matter how hard I and like-minded
folks wanted Office to become a respected development standard, it just wasn't going to make it with VBA as the
programming language.

With the release of Visual Studio Tools for Office 2003, it finally looked like we'd made some progress: No longer
relegated to the 1990s, Office developers could embrace .NET and all its goodness, taking advantage of managed code,
code-access security, xcopy deployment, and all the rest that .NET supplied. I loved this product, but it never really
reached critical mass with the developer community. Most likely, the fact that you could only use COM-based controls
on documents, and the fact that the product supplied no design-time experience at all, made it a slow starter.

Around that time, I very clearly remember sitting down at some Microsoft event and meeting Eric Carter. I didn't really
know who he was at the time (and he certainly didn't know anything about me), but he seemed nice enough, and we
chatted for several hours about Office development in general and about VSTO specifically. Only later did I learn that he
was high up in the development side of the product. (I spent hours worrying that I'd said something really stupid while
we were chatting. Hope not....) We began a long correspondence, in which I've more often than not made it clear that
I've got a lot to learn about how .NET and Office interact. I've spent many hours learning from Eric Carter's blog, and
Eric Lippert's blog is just as meaty. If you are spending time doing Office development, make sure you drop by both:

http://blogs.msdn.com/ericlippert/

http://blogs.msdn.com/eric_carter/

I spent some hours perusing a draft copy of this book and, in each chapter, attempted to find some trick, some little
nugget, that I had figured out on my own but that didn't appear in the book. I figured that if I was going to write the
foreword for the book, I should add something. The result: I was simply unable to find anything missing. Oh, I'm sure
you'll find some little tidbit you've figured out that doesn't appear here, but in my reading of it, I wasn't able to. I
thought for sure I'd catch them on something but, alas, I failed. (And, I suppose, that's a good thing, right?) Every time
I thought I had them in a missing trick, there is was, right there in print. What that means is that you'll have the best
possible reference book at your fingertips. Of course, you need to get your expectations set correctly: It's simply not
possible, even in a 60-page chapter, to describe the entirety of the Excel or Word object model. But E&E have done an
excellent job of pointing out the bits that make the biggest impact on .NET development.

If you're reading this foreword before purchasing the book, just do it. Buy the thing. If you've already bought it, why
are you reading this? Get to the heart of the matterskip ahead, and get going. You can always read this stuff later.
There's a considerable hill ahead of you, and it's worth the climb. Office development using managed code has hit new
strides with the release of Visual Studio 2005. I can't wait to take advantage of this book to build great applications.

Ken Getz, senior consultant
MCW Technologies

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Preface
IN 2002, THE first release of Visual Studio .NET and the .NET Framework was nearing completion. A few of us at
Microsoft realized that Office programming was going to miss the .NET wave unless we did something about it.

What had come before was Visual Basic for Applications (VBA), a simple development environment integrated into all
the Office applications. Each Office application had a rich object model that was accessed via a technology known as
COM. Millions of developers identified themselves as "Office developers" and used VBA and the Office COM object
models to do everything from automating repetitive tasks to creating complete business solutions that leveraged the
rich features and user interface of Office. These developers realized that their users were spending their days in Office.
By building solutions that ran inside Office, they not only made their users happy, but also were able to create solutions
that did more and cost less by reusing functionality already available in the Office applications.

Unfortunately, because of some limitations of VBA, Office programming was starting to get a bad rap. Solutions
developed in VBA by small workgroups or individuals would gain momentum, and a professional developer would have
to take them over and start supporting them. To a professional developer, the VBA environment felt simple and limited,
and of course, it enforced a single language: Visual Basic. VBA embedded code in every customized document, which
made it hard to fix bugs and update solutions because a bug would get replicated in documents across the enterprise.
Security weaknesses in the VBA model led to a rash of worms and macro viruses that made enterprises turn VBA off.

Visual Studio .NET and the .NET Framework provided a way to address all these problems. A huge opportunity existed
to not only combine the richness of the new .NET Framework and developer tools with the powerful platform that Office
has always provided for developers, but also solve the problems that were plaguing VBA. The result of this realization
was Visual Studio Tools for Office (VSTO).

The first version of VSTO was simple, but it accomplished the key goal of letting professional developers use the full
power of Visual Studio .NET and the .NET Framework to put code behind Excel 2003 and Word 2003 documents and
templates. It let professional developers develop Office solutions in Visual Basic 2005 and C#. It solved the problem of
embedded code by linking a document to a .NET assembly instead of embedding the .NET assembly in the document. It
also introduced a new security model that used .NET code-access security to prevent worms and macro viruses.

The second version of VSTO, known as VSTO 2005the version of VSTO covered by this bookis even more ambitious. It
brings with it functionality never before available to the Office developer, such as data binding and data/view
separation, design-time views of Excel and Word documents inside Visual Studio, rich support for Windows Forms
controls in the document, the ability to create custom Office task panes, server-side programming support against
Officeand that's just scratching the surface. Although the primary target of VSTO is the professional developer, that
does not mean that building an Office solution with VSTO is rocket science. VSTO makes it possible to create very rich
applications with just a few lines of code.

This book tries to put into one place all the information you need to succeed using VSTO to program against Word
2003, Excel 2003, Outlook 2003, and InfoPath 2003. It introduces the Office object models and covers the most
commonly used objects in those object models. In addition, this book will help you avoid some pitfalls that result from
the COM origins of the Office object models. (Complete Visual Basic 2005 code samples are available on the book's Web
page at www.awprofessional.com/title/0321411757.)

This book also provides an insider view of all the rich features of VSTO. We participated in the design and
implementation of many of these features. We can, therefore, speak from the unique perspective of living and breathing
VSTO for the past three years. Programming Office using VSTO is powerful and fun. We hope you enjoy using VSTO as
much as we enjoyed writing about it and creating it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Acknowledgments
THOUGH ONLY TWO names are on the cover, no book of this magnitude gets written without the efforts of many
dedicated individuals.

Eric Carter would like to thank his entire family for the patience they showed while "Dad" was working on his book:
Jason, Hayley, Camilla, Rand, and Elizabeth. Extreme thanks are due to his wife, Tamsyn, who was ever supportive and
kept everything together somehow during this effort.

Eric Lippert would like to thank his excellent wife, Leah, for her support and tremendous patience over the many
months that it took to put the book together.

Many thanks to everyone at Addison-Wesley who made this book possible. Joan Murray and Jessica D'Amico provided
expertise, guidance, encouragement, and feedback through every step of the process. Stephane Nakib cajoled us for
years to get a book proposal together. Thanks are also due to the production and marketing teams at Addison-Wesley,
especially Julie Nahil, Marie McKinley, and Curt Johnson.

A huge thank you to everyone at Microsoft who over the past three years contributed to Visual Studio Tools for Office.
Many people from different disciplinesdesign, development, education, evangelism, management, marketing, and
testingdedicated their passion and energy toward bringing Office development into the managed-code world. We could
not have written this book without the efforts of all of them. One could not ask for a better group of people to have as
colleagues.

A considerable number of industry experts gave the VSTO team valuable feedback over the years. Many thanks to
everyone who came so far to give so much of their time and expertise by participating in software design reviews and
using early versions of the product. Their suggestions made VSTO a better product than the one we originally
envisioned.

We especially thank Andrew Clinick and Hagen Green for their important contributions to this book.

We also thank Robert Green for his assistance in converting listings from the C# book to Visual Basic 2005.

Many thanks to our technical reviewers, whose always-constructive criticism was a huge help. They helped us remove a
huge number of errors from the text; those that remain are our own. Thank you, Rufus Littlefield, Siew Moi Khor,
Stephen Styrchak, Paul Vick, Paul Stubbs, Kathleen McGrath, Misha Shneerson, Mohit Gupta, and Vernon Hui. Finally,
we'd also like to thank KD Hallman, Ken Getz, Mike Hernandez, BJ Holtgrewe, and Martin Heller for their ongoing insight
and support.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

About the Authors
Eric Carter is development manager of the Visual Studio Tools for Office (VSTO) team at Microsoft. He helped invent,
design, and implement many of the features that are in VSTO today. Previously at Microsoft, he worked on Visual
Studio for Applications, the Visual Studio Macros IDE, and Visual Basic for Applications for Office 2000 and Office 2003.

Eric Lippert's primary focus during his nine years at Microsoft has been on improving the lives of developers by
designing and implementing useful programming languages and development tools. He has worked on the Windows
Scripting family of technologies, Visual Studio Tools for Office, and, most recently, the new Language Integrated Query
features of C# 3.0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part I: An Introduction to VSTO
The first part of this book introduces the Office object models and the Office primary interop assemblies
(PIAs). You also learn how to use Visual Studio to build automation executables, add-ins, and code
behind the document using features of Visual Studio 2005 Tools for Office (VSTO).

Chapter 1, "An Introduction to Office Programming," introduces the Office object models and
examines their basic structure. The chapter describes how to work with objects, collections, and
enumerationsthe basic types found in all Office object models. You also learn how to use
properties, methods, and events exposed by objects and collections in the Office object models.
Chapter 1 also introduces the PIAs, which expose the Office object models to .NET code, and
describes how to use and reference Office PIAs in a VSTO project.

Chapter 2, "Introduction to Office Solutions," covers the main ways Office applications are
customized and extended. The chapter describes the various kinds of Office solutions you can
create using VSTO.

The Other Parts of This Book

Part II: Office Programming in .NET

Part II covers the Office object models in more depth. Chapters 3 through 5 cover Excel, Chapters 6
through 8 cover Word, Chapters 9 through 11 cover Outlook, and Chapter 12 covers InfoPath. There is
also some discussion in these chapters about application-specific features and issues. Chapter 3, for
example, talks about how to build custom formulas in .NET for Excel. Chapter 5 discusses the Excel-
specific "locale" issue in some detail. You can select which chapters of Part II to read. If you are
interested only in Excel development, you can read Chapters 3 through 5 and then skip to Part III of
this book.

Part III: Office Programming in VSTO

Part III, comprised of Chapters 13 through 20, describes the features that Visual Studio 2005 Tools for
Office brings to Office development. Part III describes all the features of VSTO, including using Windows
Forms controls in Excel and Word documents, using data binding against Office objects, building Smart
Tags, and adding Windows Forms controls to Office's task pane.

Part IV: Advanced Office Programming

Finally, Part IV covers advanced programming topics. Chapters 21 and 22 talk about working with XML
in Excel and Word with VSTO. Chapter 23 covers how to build managed COM add-ins for Word and
Excel. Chapter 24 describes how to develop Outlook add-ins in VSTO.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1. An Introduction to Office Programming

Why Office Programming?

Office Object Models

Properties, Methods, and Events

The Office Primary Interop Assemblies (PIAs)

Conclusion

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Why Office Programming?
The family of Office 2003 applications covered by this bookExcel 2003, Word 2003, Outlook 2003, and InfoPath
2003represents an attractive platform on which to build solutions. You can customize and extend applications by
developing solutions against their object models. By building a solution using the Office System, you can reuse some of
the most feature-rich and popular applications available. A solution that analyzes or displays data can take advantage of
the formatting, charting, calculation, and analysis features of Excel. A solution that creates documents can use the
capability of Word to generate, format, and print documents. A solution that manipulates business information can
present it in an Outlook folder or in an InfoPath form. It is far better to reuse the applications that you already know
than to build these features from scratch.

Information workers use the Office environment on a daily basis. A solution built using Office can become a seamless
part of that environment. Too frequently, users must go to a Web page or some other corporate application to get data
that they want to cut and paste into an Excel workbook or a Word document anyway. Many users want to use Outlook
as their business information portal. By integrating a solution with Office, you enable users to get the information they
need without having to switch to another application.

Office Programming and the Professional Developer

Historically, most Office programming has been done via Visual Basic for Applications (VBA) and the macro recording
features built into some Office applications. Users would record a macro to automate a repetitive task within an Office
application. Sometimes, the code created by recording a macro would be further modified using VBA and turned into
more complicated departmental solutionsoften by users who were not trained as programmers and whose primary job
was not programming. These solutions would sometimes make their way up the corporate food chain and get taken
over by professional developers and turned into business solutions.

Unfortunately, VBA and its focus on macro recording sometimes resulted in Office solutions that were too limited for
corporate and professional developers. It can be difficult for professional developers to make a VBA solution scale to an
entire enterprise. VBA solutions were difficult to update after they were deployed. Often, the professional developer
wanted to use a language other than VBA to continue to grow the solution. The ease of use of VBA, although a boon to
users who were just getting started with coding, felt limiting to the professional developer who desired a richer
programming environment.

Why .NET for Office?

The .NET Framework and its associated class libraries, technologies, and languages address many of the concerns that
professional developers had with Office development. Today's Office development can be done using Visual Studio
2005, which is a rich programming environment for professional developers. Developers can use .NET languages such
as Visual Basic 2005 or C#. The primary interop assemblies (PIAs) allow .NET code to call the unmanaged object
models that Office applications expose. The rich .NET class libraries enable developers to build Office solutions using
technologies such as Windows Forms to show user interface (UI) and Web Services to connect to corporate data
servers.

Why Visual Studio Tools for Office?

Visual Studio 2005 Tools for Office (VSTO) adds .NET support for Word, Excel, Outlook, and InfoPath programming to
Visual Studio. VSTO turns the Word or Excel document being programmed against into a .NET class, replete with data
binding support, controls that can be coded against much like a Windows Forms control, and other .NET features. It
makes integrating .NET code into Outlook easy. It enables developers to put .NET code behind InfoPath forms.
Developers can even program against key Office objects without having to traverse the entire Office object model.

How .NET Is It?

This book discusses many new .NET ways of programming against Office applications. Some aspects of Office
programming remain awkward using .NET, however. Most of these awkward areas are attributable to the fact that the
Office object models were designed to work with a technology called COM. Although .NET code can talk to the Office
object models via PIAs, the object models sometimes do not feel very .NET-friendly. Furthermore, the Office object
models do not always follow the naming conventions or design patterns of classes that were designed for .NET.

In the future, many of the Office object models will likely be redesigned for .NET, and the object models will feel
friendlier to a .NET developer. For now, developers must live in a transitional period in which some aspects of Office
programming feel like they were designed for .NET and other aspects do not. This book discusses some of the most
difficult problems developers encounter when using .NET with Office and how to work around these problems.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Visual Basic Advantage

This edition of the book focuses on using the Visual Basic 2005 language to program against Office. Visual Basic is a
much easier language to use for Office development than the C# language. The Visual Basic language and the Office
object models "grew up" together over the years, and as a result, the Visual Basic language deals much more easily
with features of the Office object models, like optional parameters and loose typing, than C# does. If you compare the
Visual Basic edition of this book with the C# edition, you will often find the code samples are simpler than the C#
samples because of the way Visual Basic simplifies calling the Office object models.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Office Object Models
Almost all Office programming involves writing code that uses the object model of an Office application. The object
model is the set of objects provided by the Office application that running code can use to control the Office application.
The object model of each Office application is organized hierarchically, with the object called Application forming the
root of the hierarchy. From the Application object, other objects that make up the object model of the Office application
can be accessed.

As an example of how object model objects are related in the object model hierarchy, Figure 1.1 shows some of the
most important objects in the Word object model. The root object is the Application object. Also shown in this diagram
are some other objects, including Documents, Document, Paragraphs, and Paragraph. The Application object and
Documents object are related because the Documents object is returned via a property on the Application object. Other
objects are not directly accessible from the root Application object but are accessible by traversing a path. The
Paragraphs object, for example, is accessed by traversing the path from Application to Documents to Document to
Paragraphs. Figure 1.2 shows a similar diagram for some major objects in the Excel object model hierarchy.

Figure 1.1. Hierarchy in the Word object model.

Figure 1.2. Hierarchy in the Excel object model.

Objects

Each Office application's object model consists of many objects that you can use to control the Office application. Word
has 248 distinct objects; Excel has 196; and Outlook has 67. Objects tend to correspond to features and concepts in the
application itself. Word, for example, has objects such as Document, Bookmark, and Paragraphall of which correspond
to features of Word. Excel has objects such as Workbook, Worksheet, Font, Hyperlink, Chart, and Seriesall of which
correspond to features of Excel. As you might suppose, the most important and most used objects in the object models
are the ones that correspond to the application itself; the document; and key elements in a document, such as a range
of text in Word. Most solutions use these key objects and only a small number of other objects in the object models.
Table 1.1 lists some of the key objects in Word, Excel, and Outlook, along with brief descriptions of what these objects
do.

Table 1.1. Key Office Object Model Objects
Object Name What It Does

All Office Applications

Application The root object of the object model. Provides properties that return other

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application The root object of the object model. Provides properties that return other
objects in the object model. Provides methods and properties to set
application-wide settings. Raises application-level events.

CommandBars Enables the developer to add, delete, and modify tool-bars, buttons, menus,
and menu items.

Window Enables the developer to position windows and modify window-specific
settings. In Outlook, the objects that perform this function are the Explorer
and Inspector objects.

Word Objects

Document Represents the Word document. Is the root object of the content-specific
part of the Word object model. Raises document-level events.

Paragraph Enables the developer to access a paragraph in a Word document.

Range Enables the developer to access and modify a range of text in a Word
document. Provides methods and properties to set the text, set the
formatting of the text, and perform other operations on the range of text.

Excel Objects

Workbook Represents the Excel workbook. Is the root object of the content-specific
part of the Excel object model. Raises workbook-level events.

Worksheet Enables the developer to work with a worksheet within an Excel workbook.

Range Enables the developer to access and modify a cell or range of cells in an
Excel workbook. Provides methods and properties to set the cell value,
change the formatting, and perform other operations on the range of cells.

Outlook Objects

MAPIFolder Represents a folder within Outlook that can contain various Outlook items,
such as MailItem, ContactItem, and so on, as well as other folders. Raises
events at the folder level for selected actions that occur to the folder or
items in the folder.

MailItem Represents a mail item within Outlook. Provides methods and properties to
access the subject and message body of the mail, along with the recipient
and other information. Raises events when selected actions occur that
involve the mail item.

ContactItem Represents a contact within Outlook. Provides methods and properties to
access the information in the contact. Raises events when selected actions
occur that involve the contact.

AppointmentItem Represents an appointment within Outlook. Provides methods and properties
to access the information in the appointment. Raises events when selected
actions occur that involve the appointment.

Where objects in an Office object model start to differ from typical .NET classes is that the vast majority of object model
objects are not creatable or "New-able." In most Office object models, the number of objects that can be created by
using the New keyword is on the order of one to five objects. In most Office solutions, New will never be used to create
an Office object; instead, an already-created Office object, typically the root Application object, is passed to the
solution.

Because most Office object model objects cannot be created directly, they are instead accessed via the object model
hierarchy. Listing 1.1, for example, shows how to get a Worksheet object in Excel starting from the Application object.
This code is a bit of a long-winded way to navigate the hierarchy because it declares a variable to store each object as it
traverses the hierarchy. The code assumes that the root Excel Application object has been passed to the code and
assigned to a variable named app. The code gets the Worksheets object, which is of type Sheets. It also uses Visual
Basic's CType function to cast the Object returned from the Worksheets collection as a Worksheet, which is necessary
because the Worksheets collection is a collection of Object for reasons described in Chapter 3, "Programming Excel."

Listing 1.1. Navigating from the Application Object to a Worksheet in Excel

Dim myWorkbooks As Excel.Workbooks = app.Workbooks
Dim myWorkbook As Excel.Workbook = myWorkbooks.Item(1)
Dim myWorksheets As Excel.Sheets = myWorkbook.Worksheets
Dim myWorksheet As Excel.Worksheet
myWorksheet = CType(myWorksheets.Item(1), Excel.Worksheet)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

myWorksheet = CType(myWorksheets.Item(1), Excel.Worksheet)

If the code does not need to cache each object model object in a variable as it goes but needs only to get a Worksheet
object, a more efficient way to write this code is as follows:

Dim myWorksheet As Excel.Worksheet
myWorksheet = CType(app.Workbooks.Item(1).Worksheets.Item(1), _
 Excel.Worksheet)

Collections

Paragraphs and Documents are examples of a type of object called a collection. A collection is a specialized object that
represents a group of objects. Typically, a collection is named so that its name is the plural of the type of the object it
contains. The Documents collection object, for example, is a collection of Document objects. Some collection objects
may be collections of other types, such as String.

Collections typically have a standard set of properties and methods. A collection has a Count property, which returns
the number of objects in the collection. A collection also has an Item property, which takes a parameter, typically a
number, to specify the index of the desired object in the collection. The Item property is typically the default property of
the collection. (Default properties are described later in this chapter.) A collection may have other properties and
methods in addition to these standard properties and methods.

Listing 1.2 shows iteration over a collection using the Count property of the collection and the Item method of the
collection. Although this is not the preferred way of iterating over a collection (you typically use For Each instead), it does
illustrate two key points. First, collections in Office object models are almost always 1-based, meaning that they start at
index 1 rather than index 0. Second, the parameter passed to the Item property is often passed as an Object, so you can
specify either a numeric index as an Integer or the name of the object within the collection as a String.

Listing 1.2. Iterating over a Collection Using the Count Property and the Item
Property with Either an Integer or a String Index

Dim myWorkbooks As Excel.Workbooks = app.Workbooks

Dim workbookCount As Integer = myWorkbooks.Count
For i As Integer = 1 To workbookCount
 ' Get the workbook by its integer index
 Dim myWorkbook As Excel.Workbook = myWorkbooks.Item(i)

 ' Get the workbook by its string index
 Dim workbookName As String = myWorkbook.Name

 Dim myWorkbook2 As Excel.Workbook = _
 myWorkbooks.Item(workbookName)
 MsgBox(String.Format("Workbook {0}", myWorkbook2.Name))
Next

If you were to look at the definition for the Workbooks collection's Item property, you would see that it takes an Object
parameter. Even though the Item property takes an Object parameter, we pass an Integer value or a String value to it in
Listing 1.2. This works because Visual Basic can automatically convert a value type such as an Integer to an Object when
you pass the value type to a method that takes an Object. This automatic conversion is called boxing. Visual Basic
automatically creates an Object instance known as a box to put the value type into when passing it to the method.

The preferred way of iterating over a collection is using the For Each syntax of Visual Basic, as shown in Listing 1.3.

Listing 1.3. Iterating over a Collection Using For Each

Dim myWorkbooks As Excel.Workbooks = app.Workbooks

For Each workbook As Excel.Workbook In myWorkbooks
 MsgBox(String.Format("Workbook {0}", workbook.Name))
Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Advanced Topic

Sometimes, you may want to iterate over a collection and delete objects from the collection by calling a
Delete method on each object as you go. This is a risky practice, because behavior of a collection in the
Office object models is sometimes undefined if you are deleting items from it as you iterate over it.
Instead, as you iterate over the Office object model collection, add the objects you want to delete to a
.NET collection you have created, such as a list or an array. After you have iterated over the Office object
model collection and added all the objects you want to delete to your collection, iterate over your
collection, and call the Delete method on each object. Listing 1.4 illustrates this technique.

Listing 1.4. Using a Secondary Collection When Deleting Objects

Dim myWorkbook As Excel.Workbook = app.ActiveWorkbook
Dim myCollection As New Collections.Generic.List(Of Excel.Name)

For Each name As Excel.Name In myWorkbook.Names
 myCollection.Add(name)
Next

For Each name As Excel.Name In myCollection
 name.Delete()
Next

Enumerations

An enumeration is a type defined in an object model that represents a fixed set of possible values. The Word object
model contains 252 enumerations; Excel, 195; and Outlook, 55.

As an example of an enumeration, Word's object model contains an enumeration called WdWindowState. WdWindowState is
an enumeration that has three possible values: wdWindowStateNormal, wdWindowStateMaximize, or wdWindowStateMinimize. These
are constants you can use directly in your code when testing for a value. Each value corresponds to an integer value.
(wdWindowStateNormal, for example, is equivalent to 0.) It is considered bad programming style, however, to make
comparisons to the integer values rather than the constant names themselves because it makes the code less readable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Properties, Methods, and Events
Objects in an Office application's object model are .NET classes that have properties, methods, and events that can be
accessed by solution code. An object in the object model is required to have at least one property, method, or event.
Most of the objects in an Office application's object model have several properties, a few methods, and no events. The
most important objects in the object model, such as Application and Document, are typically much more complex and
have a much larger number of properties and methods as well as events. Word's Application object, for example, has
about 100 properties, 60 methods, and 20 events. Table 1.2 lists some of the properties, methods, and events of the
Word Application object to give a sense of the types of functionality an object model object provides.

Table 1.2. Selected Properties, Methods, and Events from Word's
Application Object

Name What It Does

Properties
ActiveDocument Returns a Document object for the active documentthe document that is

currently being edited by the user.

ActivePrinter Gets and sets the default printer.

Caption Gets and sets the caption text for the application windowtypically, this is set
to "Microsoft Word."

Documents Returns a Documents collection that represents the collection of open Word
documents.

Methods
Activate Brings Word to the front of other windows and makes it the active window.

NewWindow Creates a new Word window that shows the same document as the active
window and returns a Window object model object representing that new
window.

Quit Closes Word.

Events
DocumentBeforeClose An event that is raised before a document is closed. The Document object

for the document being closed is passed as a parameter to the event along
with a Boolean Cancel parameter. If the code handling the event sets the Cancel
parameter to true, the document will not be closed.

DocumentOpen An event that is raised when a document is opened. The Document object
for the document being opened is passed as a parameter to the event.

WindowActivate An event that is raised when a Word window is activated by the user,
typically by clicking an inactive window, thereby making it active. The
Document object for the document being activated is passed as a parameter
to the event along with a Window object for the window that was activated
(because two windows could be showing the same document).

In Office object models, properties predominate, followed by methods and trailed distantly by events. Figure 1.3 shows
the distribution of properties, methods, and events in the Word, Excel, and Outlook object models. A couple of general
statements can be made about the Office object models as shown by Figure 1.3. The Excel object model is the biggest
of the Office object models in terms of total number of properties, methods, and events, followed closely by Word.
Word has a very small number of events. We can also say that there are many more properties in Office object models
than methods.

Figure 1.3. Distribution of properties, methods, and events in the Word, Excel, and
Outlook object models.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Outlook object models.

Properties

Properties are simple methods that allow you to read or write particular named values associated with an object. Word's
Application object, for example, has a property called CapsLock, which returns a Boolean value. If the Caps Lock is on, it
will return true; if the Caps Lock is off, it will return False. Listing 1.5 shows some code that examines this property. The
code assumes that the root Application object of the Word object model has already been assigned to a variable called
app.

Listing 1.5. A Property That Returns a Value Type: The Boolean CapsLock Property
on Word's Application Object

If app.CapsLock Then
 MsgBox("CapsLock is on")
Else
 MsgBox("CapsLock is off")
End If

Another thing to note about the CapsLock property is that it is a read-only property. That is to say, you cannot write
code that sets the CapsLock property to False; you can only get the value of the CapsLock property. Within the Office
object model, many properties are read-only. If you try to set a read-only property to some value, an error will occur
when you compile your code.

The CapsLock property returns a Boolean value. It is also possible for a property to return an enumeration. Listing 1.6
shows some code that uses the WindowState property to determine whether Word's window is maximized, minimized,
or normal. This code uses Visual Basic's Select Case statement to evaluate the WindowState property and compare its
value with the three possible enumerated value constants. Notice that when you specify enumerated values in Visual
Basic, you must specify both the enumerated type name and the enumerated value. If you used just wdWindowStateNormal
rather than Word.WdWindowState.wdWindowStateNormal, the code would not compile.

Listing 1.6. A Property That Returns an Enumeration: The WindowState Property
on Word's Application Object

Select Case app.WindowState
 Case Word.WdWindowState.wdWindowStateMaximize
 MsgBox("Maximized")
 Case Word.WdWindowState.wdWindowStateMinimize
 MsgBox("Minimized")
 Case Word.WdWindowState.wdWindowStateNormal
 MsgBox("Normal")
End Select

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Select

Properties can also return other object model objects. Word's Application object, for example, has a property called
ActiveDocument that returns the active documentthe one the user is currently editing. The ActiveDocument property
returns another object in the Word object model called Document. Document in turn also has properties, methods, and
events. Listing 1.7 shows code that examines the ActiveDocument property and then displays the Name property of the
Document object.

Listing 1.7. A Property That Returns Another Object Model Object: The
ActiveDocument Property on Word's Application Object

Dim myDocument As Word.Document = app.ActiveDocument
MsgBox(myDocument.Name)

What happens if there is no active documentif Word is running, for example, but no documents are open? In the case of
the ActiveDocument property, it throws an exception. So a safer version of the preceding code would catch the
exception and report that no active document was found. Listing 1.8 shows this safer version. An even better approach
is to check the Count property of the Application object's Documents collection to see whether any documents are open
before accessing the ActiveDocument property.

Listing 1.8. A Property That Might Throw an Exception: The ActiveDocument
Property on Word's Application Object

Dim myDocument As Word.Document
Try
 myDocument = app.ActiveDocument
 MsgBox(myDocument.Name)
Catch ex As Exception
 MsgBox(String.Format("No active document: {0}", ex.Message)
End Try

Object models sometimes behave differently in an error case in which the object you are asking for is not available or
does not make sense in a particular context. The property can return a Nothing value. The way to determine whether an
object model property will throw an exception or return a Nothing value is to consult the object model documentation for
the property in question. Excel's Application object uses this pattern for its ActiveWorkbook property. If no Excel
workbook is open, it returns Nothing instead of throwing an exception. Listing 1.9 shows how to write code that handles
this pattern of behavior.

Listing 1.9. A Property That Might Return Nothing: The ActiveWorkbook Property
on Excel's Application Object

Dim myWorkbook As Excel.Workbook = app.ActiveWorkbook

If myWorkbook Is Nothing Then
 MsgBox("No active workbook")
Else
 MsgBox(myWorkbook.Name)
End If

Parameterized Properties

The properties examined so far are parameterless. Some properties, however, require parameters. Word's Application
object, for example, has a property called FileDialog that returns a FileDialog object. The FileDialog property takes an
enumeration parameter of type MsoFileDialogType, which is used to pick which FileDialog is returned. Its possible values
are msoFileDialogOpen, msoFileDialogSaveAs, msoFileDialogFilePicker, and msoFileDialogFolderPicker.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The code in Listing 1.10 uses the FileDialog property and passes msoFileDialogFilePicker as a parameter to specify the type
of FileDialog object to be returned. Then it calls a method on the returned FileDialog object to show the dialog box.

Listing 1.10. A Parameterized Property That Takes an Enumeration Parameter and
Returns an Object Model Object: The FileDialog Property on Word's Application
Object

Dim dialog As Office.FileDialog
dialog = app.FileDialog(Office.MsoFileDialogType. _
 msoFileDialogFilePicker)
dialog.Show()

The Office object models also have properties that have optional parameters. Optional parameters are parameters that
can be omitted, and the Office application will fill in a default value for the parameter. Optional parameters are typically
of type Object because of how optional parameters are passed to the underlying COM API. In Visual Basic you can omit
optional parameters, or you can specify some optional parameters and omit others. To omit a particular optional
parameter, you just leave the parameter out. Given a property on app called SomeProp that takes three optional Integer
parameters named A, B, and C, you can call it in any of these ways:

app.SomeProp 'omit all optional parameters
app.SomeProp(5) 'omit second and third parameters
app.SomeProp(, 8) 'omit first and third parameters
app.SomeProp(, ,12) 'omit first and second parameters
app.SomeProp(, 13, 7) 'omit first optional parameter
app.SomeProp(11, ,25) 'omit second optional parameter
app.SomeProp(44, 6) 'omit third optional parameter
app.SomeProp(12, 19, 31) 'specify all optional parameters

It is also possible to use the name of the parameter to specify the optional parameters you wish to supply. Remember
that the names of the three optional Integer parameters in our example are A, B, and C. You can call SomeProp in any of
the ways shown below. When using the name of the parameter, the parameters can be specified in any order.

app.SomeProp(C:=10) 'specify the third parameter named C
app.SomeProp(B:=4, A:=15) 'specify the parameters B and A
app.SomeProp(A:=1, C:=4, B:=11) 'specify all optional parameters

Finally, you can mix the ordered-parameter and named-parameter approaches:

app.SomeProp(5, C:=10) 'specify first and C parameters

Listing 1.11 shows an example of calling a parameterized property called Range, which is found on Excel's Application
object. Calling the Range property on Excel's Application object returns the Range object in the active workbook as
specified by the parameters passed to the property. The Range property takes two parameters. The first parameter is
required, and the second parameter is optional. If you want to specify a single cell, you just pass the first parameter. If
you want to specify multiple cells, you have to specify the top-left cell in the first parameter and the bottom-right cell in
the second parameter.

Listing 1.11. A Parameterized Property with an Optional Parameter: The Range
Property on Excel's Application Object

' Omit the optional second parameter
Dim myRange As Excel.Range = app.Range("A1")

' Specify the optional second parameter
Dim myRange2 As Excel.Range = app.Range("A1", "B2")

Properties Common to Most Objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because all the object model objects have Object as their base class, you will always find the methods GetType,
GetHashCode, Equals, and ToString on every object model object. You will also often find a property called Application
that will return the Application object associated with the object. This is provided as a quick way to get back to the root
of the object model. Many objects have a property called Creator, which gives you a code indicating which application
the object was created in. Finally, you will often find a Parent property that returns the object that is the parent in the
object model hierarchy.

Default Parameterized Properties

Earlier in this chapter, we presented this code as a simple way of navigating the object hierarchy of Excel to get a
Worksheet object:

Dim myWorksheet As Excel.Worksheet
myWorksheet = CType(app.Workbooks.Item(1).Worksheets.Item(1), _
 Excel.Worksheet)

There is an even simpler way to write this code. It can be rewritten like this:

Dim myWorksheet As Excel.Worksheet
myWorksheet = CType(app.Workbooks(1).Worksheets(1), _
 Excel.Worksheet)

In this more efficient example, the code uses a feature of Visual Basic called default properties that makes the code a
little simpler. Many collections and even some objects in the Office object models have a parameterized property
designated as the default property. The most common use of a default property is with a collection such as Workbooks
or Worksheets where the default property is the Item property of the collection, which takes a parameter specifying
which item in the collection you want returned. A default property must have at least one parameter. Default properties
allow the code to omit specifying the Item property and instead just pass the parameters. When the property name is
omitted in this way, Visual Basic will call the default property with the specified parameters. Therefore, these two lines
of code are equivalent. In the first line, the Item property is explicitly called. In the second line, the Item property is
implicitly called, as Item is the default property specified by the object that Visual Basic uses when it is omitted.

app.Workbooks.Item(1).Worksheets.Item(1)
app.Workbooks(1).Worksheets(1)

You can inspect an object or collection using the object browser of Visual Studio to determine whether it has a default
property. The default property always has the special name of "_Default" and is an alias to the parameterized property of
the object that has been marked as the default property.

Methods

A method is typically more complex than a property and represents a "verb" on the object that causes something to
happen. It may or may not have a return value and is more likely to have parameters than a property.

The simplest form of a method has no return type and no parameters. Listing 1.12 shows the use of the Activate
method from Word's Application object. This method activates the Word application, making its window the active
window (the equivalent of clicking the Word window in the taskbar to activate it).

Listing 1.12. A Method with No Parameters and No Return Type: The Activate
Method on Word's Application Object

MsgBox("Activating the Word window.")

app.Activate()

Methods may also have parameters and no return type. Listing 1.13 shows an example of this kind of method. The
ChangeFileOpenDirectory method takes a String that is the name of the directory you want Word to default to when the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ChangeFileOpenDirectory method takes a String that is the name of the directory you want Word to default to when the
Open dialog box is shown. For a method this simple, you might wonder why a property was not used instead; you can
imagine Word's having a FileOpenDirectory property, for example. In this case, the ChangeFileOpenDirectory changes
the default open directory only temporarilyfor the lifetime of the current Word session. When you exit Word and then
restart Word, the default will no longer be what you set with this method. Perhaps for this reason, this functionality was
exposed via a method rather than a property. A second reason why object models sometimes use a simple method
such as this rather than a property is because some values exposed in an object model are "write-only"that is, they can
be set but cannot be read. It is common to create a read-only property but not common to create a write-only property.
So when a write-only property is needed, a simple method is often used instead.

Listing 1.13. A Method with Parameters and No Return Type: The
ChangeFileOpenDirectory Method on Word's Application Object

app.ChangeFileOpenDirectory("c:\temp")

MsgBox("Will open out of temp for this session.")

Methods can have no parameters and a return type. Listing 1.14 shows an example of this kind of method. The
DefaultWebOptions method returns the DefaultWebOptions object, which is then used to set options for Word's Web
features. In this case, DefaultWebOptions really should have been implemented as a read-only property as opposed to
a method.

Listing 1.14. A Method with No Parameters and a Return Type: The
DefaultWebOptions Method on Word's Application Object

Dim options As Word.DefaultWebOptions = app.DefaultWebOptions()

MsgBox(String.Format("Pixels per inch is {0}.", _
 options.PixelsPerInch))

Methods can have parameters and a return type. Listing 1.15 shows an example of this kind of method. The
CentimetersToPoints method takes a centimeter value and converts it to points, which it returns as the return value of
the method. Points is a unit often used by Word when specifying spacing in the document.

Listing 1.15. A Method with Parameters and a Return Type: The
CentimetersToPoints Method on Word's Application Object

Dim centimeters As Single = 15.0

Dim points As Single = app.CentimetersToPoints(centimeters)

MsgBox(String.Format("{0} centimeters is {1} points.", _
 centimeters, points))

Methods can also have optional parameters. Optional parameters do not need to be specified directly to call the
method. You can omit any parameters you do not want to specify. Listing 1.16 shows a method called CheckSpelling in
Excel that has optional parameters. Listing 1.16 illustrates the syntax you use to omit parameters you do not want to
specify. The CheckSpelling method takes a required Stringthe word you want to check the spelling ofalong with two
optional parameters. The first optional parameter enables you to pick a custom dictionary to check the spelling against.
The second optional parameter enables you to tell the spell checker to ignore words in all uppercasesuch as an
acronym. In Listing 1.16, we check a phrase without specifying any of the optional parameters; we omit the optional
parameters. We also check a second phrase that has an acronym in all uppercase, so we omit the first optional
parameter because we do not want to use a custom dictionary, but we specify the second optional parameter to be true
so the spell checker will ignore the words in all uppercase.

Listing 1.16. A Method with Optional Parameters and a Return Type: The
CheckSpelling Method on Excel's Application Object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CheckSpelling Method on Excel's Application Object

Dim phrase1 As String = "Thes is spelled correctly."
Dim phrase2 As String = "This is spelled correctly AFAIK."

Dim isCorrect1 As Boolean = app.CheckSpelling(phrase1)
Dim isCorrect2 As Boolean = app.CheckSpelling(phrase2, , True)

Events

You have now read about the use of properties and methods in some detail; these are both ways that your code
controls the Office application. Events are the way the Office application talks back to your code and enables you to run
additional code in response to some condition that occurred in the Office application.

In the Office object models, there are far fewer events than there are methods and properties. There are 36 events in
Word and 84 in Excel, for example. Some of these events are duplicated on different objects. When the user opens a
Word document, both the Application object and the newly created Document object raise Open events. If you wanted
to handle all Open events on all documents, you would handle the Open event on the Application object. If you had
code associated with a particular document, you would handle the Open event on the corresponding Document object.

In most of the Office object models, events are raised by a handful of objects. The only objects that raise events in the
Word object model are Application, Document, and OLEControl. The only objects that raise events in the Excel object
model are Application, Workbook, Worksheet, Chart, OLEObject, and QueryTable. Outlook is a bit of an exception:
About half of the objects in the Outlook object model raise events. Most of these objects raise the same set of events,
however, making the total number of unique events small in Outlook as well.

Table 1.3 shows all the events raised by Excel's Application object. This table represents almost all the events raised by
Excel, because events prefaced by Sheet are duplicated on Excel's Worksheet object, and events prefaced by Workbook
are duplicated on Excel's Workbook object. The only difference in these duplicated events is that the Application-level
Sheet and Workbook events pass a parameter of type Sheet or Workbook to indicate which worksheet or workbook
raised the event. Events raised by a Workbook object or Sheet object do not have to pass the Sheet or Workbook
parameter, because it is implicitly determined from which Workbook or Sheet object you are handling events for.

Table 1.3. Events Raised by Excel's Application Object
Event Name When It Is Raised

NewWorkbook When a new workbook is created

SheetActivate When any worksheet is activated

SheetBeforeDoubleClick When any worksheet is double-clicked

SheetBeforeRightClick When any worksheet is right-clicked

SheetCalculate After any worksheet is recalculated

SheetChange When cells in any worksheet are changed by the user

SheetDeactivate When any worksheet is deactivated

SheetFollowHyperlink When the user clicks a hyperlink in any worksheet

SheetPivotTableUpdate After the sheet of a PivotTable report has been updated

SheetSelectionChange When the selection changes on any worksheet

WindowActivate When any workbook window is activated

WindowDeactivate When any workbook window is deactivated

WindowResize When any workbook window is resized

WorkbookActivate When any workbook is activated

WorkbookAddinInstall When any workbook is installed as an add-in

WorkbookAddinUninstall When any workbook is uninstalled as an add-in

WorkbookAfterXmlExport After data in a workbook is exported as an XML data file

WorkbookAfterXmlImport After data in a workbook is imported from an XML data file

WorkbookBeforeClose Before any workbook is closed

WorkbookBeforePrint Before any workbook is printed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WorkbookBeforeSave Before any workbook is saved

WorkbookBeforeXmlExport Before data in any workbook is exported as an XML data file

WorkbookBeforeXmlImport Before data in any workbook is imported from an XML data file

WorkbookDeactivate When any workbook window is deactivated

WorkbookNewSheet When a new worksheet is created in any workbook

WorkbookOpen When any workbook is opened

WorkbookPivotTableCloseConnection After a PivotTable report connection has been closed

WorkbookPivotTableOpenConnection After a PivotTable report connection has been opened

WorkbookSync When a workbook that is part of a document workspace is synchronized with
a copy on the server

Declarative Event Handling

Visual Basic provides two ways to handle events. The first way is to handle an event declaratively. Consider the Excel
Application object, which has the events described in Table 1.3. By declaring an instance of the Excel Application object
using the WithEvents keyword, you tell the Visual Basic compiler that it is an object that can raise events:

Public WithEvents app As Excel.Application

When you have declared the Excel Application object as an object that can raise events, you can declare a method that
handles an event raised by the Excel application object. To handle the events raised by Office object models, you must
first declare a handler method in your code that matches the signature expected by the event being raised. The
WindowActivate event raised by the Application object in Excel expects a handler method to match this signature:

Event WindowActivate(_
 ByVal Wb As Excel.Workbook, _
 ByVal Wn As Excel.Window)

To handle this event, you must declare a handler method in your code that matches the expected signature. Below, we
declare a method called app_WindowActivate that handles the WindowActivate event. Note that the Event keyword shown in
the signature above is omitted in our handler method because we are not defining a new event typejust implementing
an existing one defined by the Office object model. The declaration includes a Handles clause that gives the name of the
object instance raising the event (app) and the event that is being handled (WindowActivate).

Private Sub app_WindowActivate(ByVal Wb As Excel.Workbook, _
 ByVal Wn As Excel.Window) Handles app.WindowActivate

 MsgBox("The window " & Wn.Caption & " was just activated.")

End Sub

The one piece we are missing is some code to set the app object to an instance of the Excel Application object. Listing
1.17 shows a VSTO customization that puts it all together. VSTO provides code items where you can write code that
accesses member variables that are connected to objects in the Office object model. VSTO raises the Sheet1_Startup event
automatically. We have added some code to this event handler to set the app member variable we have declared, using
the WithEvents keyword to an instance of the Excel Application object. In this case, the code uses a property in the base
class of Sheet1 called Application to get an instance of the Excel Application object. With app set to an instance of the
Excel Application object, the event handler app_WindowActivate is called whenever a window is activated within Excel.

Listing 1.17. A VSTO Customization That Handles the Excel Application Object's
WindowActivate Event

Public Class Sheet1

 Public WithEvents app As Excel.Application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Public WithEvents app As Excel.Application

 Private Sub app_WindowActivate(ByVal Wb As Excel.Workbook, _
 ByVal Wn As Excel.Window) Handles app.WindowActivate

 MsgBox("The window " & Wn.Caption & " was just activated.")

 End Sub

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 End Sub

End Class

Visual Studio helps make this process simpler by generating the event handler method for you automatically. When you
declare a member variable such as app with the WithEvents keyword, Visual Studio lists that variable in the left drop-
down list above the code-editing window, as shown in Figure 1.4.

Figure 1.4. Selecting a member variable declared using WithEvents.

[View full size image]

When you have selected app in the left drop-down list, drop down the list on the right to pick the event you want to
handle. In Figure 1.5, all events raised by the app variable are displayed, and we select the WindowActivate event as the
event we want to handle.

Figure 1.5. Selecting an event to handle for a member variable declared using
WithEvents.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you select the WindowActivate event, Visual Studio will automatically generate a handler for that event, or if a
handler has already been created, it will move the cursor to that handler. This greatly simplifies the process of writing
handlers for events.

Advanced Topic: Handling Events Dynamically

There is a second way to handle events when declarative event handling falls short. You may want to
handle an event for a short time and then unregister your event handler so it does not get called again.
Although it is not possible to do this declaratively, it is possible to do it dynamically using Visual Basic's
AddHandler and RemoveHandler statements.

The AddHandler and RemoveHandler statements are passed the event to be handled and the event handler
method that will handle the event. The AddressOf keyword is used when specifying the event handler
method. The following code uses AddHandler to add dynamically the event handler MyWindowActivateHandler to
handle the app object's WindowActivate event:

AddHandler app.WindowActivate, _
 AddressOf Me.MyWindowActivateHandler

At some point later in the execution of the code, you can use the RemoveHandler statement to remove the
event handler method from handling the event by using an almost-identical syntax:

RemoveHandler app.WindowActivate, _
 AddressOf Me.MyWindowActivateHandler

As with dynamic event handlers, the event handler signature must match the expected signature of the
event. The Handles keyword, however, is not used in the event handler signature when you are handling
events dynamically. So the dynamic event handler for the WindowActivate event looks like the
declarative event handler but omits the Handles clause:

Private Sub app_WindowActivate(ByVal Wb As Excel.Workbook, _
 ByVal Wn As Excel.Window)

 MsgBox("The window " & Wn.Caption & " was just activated.")

End Sub

Listing 1.18 shows a complete implementation of dynamic event handling in a simple VSTO
customization class. The code declares an app variable as in Listing 1.17 but does not use the WithEvents
keyword. Sheet1_Startup is called automatically when the VSTO customization class starts up. In the
Sheet1_Startup method, we set app to an instance of the Excel Application object as before. Then the
AddHandler statement dynamically adds the event handler method MyWindowActivateHandler to handle the
WindowActivate event raised by the app variable. In the event handler, after displaying a message box
showing the name of the window that was activated, the RemoveHandler statement dynamically removes
the event handler from handling future WindowActivate events.

Listing 1.18. A VSTO Customization That Dynamically Adds and Removes
an Event Handler for the Excel Application Object's WindowActivate
Event

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Event

Public Class Sheet1

 Public app As Excel.Application

 Private Sub MyWindowActivateHandler(ByVal Wb As _
 Excel.Workbook, ByVal Wn As Excel.Window)

 MsgBox("The window " & Wn.Caption & " was just activated.")
 RemoveHandler app.WindowActivate, _
 AddressOf Me.MyWindowActivateHandler

 End Sub

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application
 AddHandler app.WindowActivate, _
 AddressOf Me.MyWindowActivateHandler

 End Sub

End Class

The "My Button Stopped Working" Issue

One issue commonly encountered when dynamically handling Office events in .NET is known as the "my
button stopped working" issue. A developer will write some code to handle a Click event raised by a
CommandBarButton in the Office toolbar object model. This code will sometimes work temporarily but
then stop. The user will click the button, but the Click event appears to have stopped working.

The cause of this issue is connecting an event handler method to an object whose lifetime does not
match the desired lifetime of the event. This typically occurs when the object to which you are
connecting an event handler goes out of scope or gets set to Nothing so that it gets garbage collected.
Listing 1.19 shows an example of code that makes this mistake. In this case, an event handler called
btn_Click is connected to a newly created CommandBarButton called btn. btn is declared as a local variable,
however, so as soon as the ConnectEvents function exits and garbage collection occurs, btn gets
garbage-collected, and the event connected to btn is not called.

The complete explanation of this behavior has to do with btn being associated with something called a
Runtime Callable Wrapper (RCW), which is described in Chapter 24, "Creating Outlook Add-Ins with
VSTO." Without going into too much depth, btn holds on to an RCW that is necessary for the event to
propagate from the unmanaged Office COM object to the managed event handler. When btn goes out of
scope and is garbage-collected, the reference count on the RCW goes down, and the RCW is
disposedthereby breaking the event connection.

Listing 1.19. A Class That Fails to Handle the CommandBarButton Click
Event

Imports Excel = Microsoft.Office.Interop.Excel
Imports Office = Microsoft.Office.Core

Class SampleListener
 Private app As Excel.Application

 Public Sub New(ByVal application As Excel.Application)
 app = application
 End Sub

 ' This appears to connect to the Click event but
 ' will fail because btn is not put in a more permanent
 ' variable.
 Public Sub ConnectEvents()
 Dim bar As Office.CommandBar = app.CommandBars("Standard")

 Dim btn As Office.CommandBarButton = bar.Controls.Add(1)

 If btn IsNot Nothing Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If btn IsNot Nothing Then
 btn.Caption = "My Button"
 btn.Tag = "SampleListener.btn"
 AddHandler btn.Click, AddressOf Me.btn_Click
 End If
 End Sub

 ' The Click event will never reach this handler.
 Public Sub btn_Click(ByVal ctrl As Office.CommandBarButton, _
 ByRef cancelDefault As Boolean)

 MessageBox.Show("Button was clicked")
 End Sub

End Class

Listing 1.20 shows a second example of a failed event listener class that is attempting to connect to
Outlook's NewInspector event, which is raised by Outlook's Inspectors object. This event is raised
whenever an inspector window opens (a window where you are viewing or editing an Outlook item). This
code will also fail to handle any events. In this case, it is more subtle because the event handler is
connected to the Inspectors object, which is temporarily created in the line of code that begins with
app.Inspectors. Because the Inspectors object returned by app.Inspectors is not stored in a permanent
variable, the temporarily created Inspectors object is garbage-collected, and the event connected to it
will never get called.

Listing 1.20. A Class That Fails to Handle the Outlook Inspectors
Object's NewInspectorEvent

[View full width]
Imports Outlook = Microsoft.Office.Interop.Outlook

Class SampleListener
 Private app As Outlook.Application

 Public Sub New(ByVal application As Outlook.Application)
 app = application
 End Sub

 ' This will appear to connect to the NewInspector event, but
 ' will fail because Inspectors is not put in a more permanent
 ' variable.
 Public Sub ConnectEvents()
 AddHandler app.Inspectors.NewInspector, _
 AddressOf Me.MyNewInspectorHandler
 End Sub

 ' The NewInspector event will never reach this handler.
 Public Sub MyNewInspectorHandler(ByVal inspector As Outlook

.Inspector)
 MessageBox.Show("New inspector.")
 End Sub
End Class

The fix for this issue is to declare a variable whose lifetime matches the lifetime of your event handler
and set it to the Office object for which you are handling the event. Listing 1.21 shows a rewritten class
that successfully listens to the CommandBarButton Click event. This class works because instead of using
the method-scoped variable btn, it uses a class-scoped member variable called myBtn. This ensures that
the event handler will be connected for the lifetime of the instance when ConnectEvents is called.

Listing 1.21. A Class That Succeeds in Handling the CommandBarButton
Click Event Because It Stores the CommandBarButton Object in a Class
Member Variable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Member Variable

Imports Excel = Microsoft.Office.Interop.Excel
Imports Office = Microsoft.Office.Core

Class SampleListener
 Private app As Excel.Application
 Private myBtn As Office.CommandBarButton

 Public Sub New(ByVal application As Excel.Application)
 app = application
 End Sub

 Public Sub ConnectEvents()
 Dim bar As Office.CommandBar = app.CommandBars("Standard")

 myBtn = bar.Controls.Add(1)

 If myBtn IsNot Nothing Then
 myBtn.Caption = "My Button"
 myBtn.Tag = "SampleListener.btn"
 AddHandler myBtn.Click, AddressOf Me.myBtn_Click
 End If
 End Sub

 Public Sub myBtn_Click(ByVal ctrl As Office.CommandBarButton, _
 ByRef cancelDefault As Boolean)

 MessageBox.Show("Button was clicked")
 End Sub

End Class

Listing 1.22 shows a similar fix for our failed Outlook example. Here, we declare a class-level variable
called myInspectors that we assign to app.Inspectors. This ensures that our event handler will be connected
for the lifetime of the instance when ConnectEvents is called because the lifetime of myInspectors now
matches the lifetime of the instance.

Listing 1.22. A Class That Succeeds in Handling the Outlook Inspectors
Object's NewInspector Event Because It Stores the Inspectors Object in
a Class Member Variable

Imports Outlook = Microsoft.Office.Interop.Outlook

Class SampleListener
 Private app As Outlook.Application
 Private myInspectors As Outlook.Inspectors

 Public Sub New(ByVal application As Outlook.Application)
 app = application
 End Sub

 Public Sub ConnectEvents()
 myInspectors = app.Inspectors
 AddHandler myInspectors.NewInspector, _
 AddressOf Me.MyNewInspectorHandler
 End Sub

 Public Sub MyNewInspectorHandler(_
 ByVal inspector As Outlook.Inspector)
 MessageBox.Show("New inspector.")
 End Sub
End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Office Primary Interop Assemblies (PIAs)
Before learning any more about how to build Office solutions, you need to understand in more detail the managed
assemblies that you use to talk to the Office object model in .NET. The managed assemblies used to talk to Office are
called the Office primary interop assemblies (PIAs).

As mentioned previously, when you are talking to an Office object model in .NET, you talk to it through a .NET
technology called COM interop. The Office object models are all written in unmanaged code (C and C++) that exposes
COM interfaces. To talk to these COM interfaces from managed code (C# or Visual Basic), you talk via a wrapper that
allows managed code to interoperate with the unmanaged COM interfaces of Office. This wrapper is a set of .NET
classes compiled into an assembly called a PIA.

The word primary is used when describing these assemblies because they are the Office-approved wrappers for talking
to the Office object models. This designation is needed because you could create your own wrapper for the Office COM
object models by using a tool provided with .NET called TLBIMP. A wrapper you create on your own is called an interop
assembly (IA) rather than a primary interop assembly. Even though you might be tempted to go play with TLBIMP and
build your own interop assemblies, you should never use anything other than the Office-provided interop assemblies to
do Office development. If every developer created his or her own sets of wrappers for Office development, no Office
solution could interoperate with anyone else's solution; each interop wrapper class of, say, Worksheet created by each
developer would be considered a distinct type. Even though the interop assembly I created has a Worksheet object, and
the interop assembly you created has a Worksheet object, I cannot pass you my Worksheet object, and you cannot
pass me your Worksheet object. We both need to be using the same interop assembly: the primary interop assembly.

A second reason to not build your own interop assemblies is that Office has made special fixes to the PIAs to make
them work better when doing Office development. If you generate your own, you are likely to run into issues that are
fixed in the PIAs.

Installing the PIAs

The Office 2003 PIAs are available through the Office 2003 installer. The Office 2003 PIAs are also available as a
Microsoft Windows Installer package that you can redistribute with your application. To install the Office 2003 PIAs
through the Office 2003 Installer, when you do a setup, check the Choose Advanced Customization of Applications
check box in the first step of the Office 2003 Setup Wizard. Then, in the tree control that appears in the next screen of
the wizard, you will see a .NET Programmability Support node under each application for which PIAs are available, as
shown in Figure 1.6. Click each of these .NET programmability support nodes, and make sure that you set Run from My
Computer. Also, under the Office Tools node in the tree, you might want to turn on Microsoft Forms 2.0 .NET
Programmability Support and Smart Tag .NET Programmability support. A second method of getting the Office 2003
PIAs is to do a Complete install of Office 2003; all the .NET programmability support will be turned on for you
automatically.

Figure 1.6. Installing the Office 2003 PIAs.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Office PIAs get installed to the Global Assembly Cache (GAC). The GAC is usually in the Assembly subdirectory of
the Windows directory.

A number of Office PIAs are available; Table 1.4 lists some of the most common ones. One PIA listed here that is of
note is the Office.dll PIA, which is where common types that are shared between the Office applications (such as
CommandBar) are found.

Table 1.4. Common Office PIAs
Description Assembly Name Namespace

Microsoft
Excel 11.0
Object
Library

Microsoft.Office.Interop.Excel.dll Microsoft.Office.Interop. Excel
(Typically aliased to Excel namespace
using Import)

Microsoft
Graph 11.0
Object
Library

Microsoft.Office.Interop.Graph.dll Microsoft.Office.Interop.Graph
(Typically aliased to Graph
namespace using Import)

Microsoft
Office 11.0
Object
Library

Office.dll Microsoft.Office.Core (Typically
aliased to Office namespace using
Import)

Microsoft
Outlook
11.0 Object
Library

Microsoft.Office.Interop.Outlook.dll Microsoft.Office.Interop.Outlook
(Typically aliased to Outlook
namespace using Import)

Microsoft
SmartTags
2.0 Type
Library

Microsoft.Office.Interop.SmartTag.dll Microsoft.Office.Interop.SmartTag
(Typically aliased to SmartTag
namespace using Import)

Microsoft
Word 11.0
Object
Library

Microsoft.Office.Interop.Word.dll Microsoft.Office.Interop.Word
(Typically aliased to Word
namespace using Import)

Referencing the PIAs

Adding a reference to a PIA is not necessary for most VSTO projects because the reference is automatically added for
you. The console application examples in this book, such as the ones that automate Excel, can be typed into a Visual
Studio console project and compiled, but you must first add a reference to the necessary PIA. To add a reference, right-
click the project node in the Visual Studio Solution Explorer, as shown in Figure 1.7. Choose Add Reference from the
menu that pops up when you right-click the project node.

Figure 1.7. Adding a reference to a project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1.7. Adding a reference to a project.

Choose the COM tab of the Add Reference dialog box that appears, as shown in Figure 1.8. The COM references are
listed by component name, which matches the Description column in Table 1.4. So to add a reference to the Excel PIA,
you choose the Microsoft Excel 11.0 Object Library and click the OK button to add the Excel 2003 PIA reference to your
project, as shown in Figure 1.8.

Figure 1.8. The Add Reference dialog box.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note in Figure 1.8 that the Path column in the COM tab of the Add References dialog box displays the path to the COM
library that the PIA wraps. The Microsoft Excel 11.0 Object Library, for example, points to the location on your machine
of the excel.exe executable. When you select these references and close the dialog box, you can examine the properties
of the actual references that were added by expanding the References folder in the project, right-clicking the references
that you added, and choosing Properties. You will see that Visual Studio figures out the PIA managed object in the GAC
that corresponds to the COM object you selected. In this case, you will not get a reference to the excel.exe executable
but instead to the Microsoft.Office.Interop.Excel.dll in the GAC.

Finally, note that even though you did not explicitly add a reference to the Microsoft Office 11.0 Object Library
(office.dll), a reference is added for you. This is because the Excel 11.0 Object Library uses types from the Microsoft
Office 11.0 Object Library. Visual Studio detects this and adds the required Office PIA to your project references
automatically.

Advanced Topic: Browsing the PIAs

When you look at the PIA you have referenced in the object browser in Visual Studio with Show Hidden
Types and Members turned on, you might find yourself very confused. The object browser shows many
helper objects that are created as part of the interop wrapper. Consider, for example, what .NET Interop
does to the seemingly simple Excel Application object. It turns it into a multiple-headed (8 heads, to be
exact; 36 if you count each delegate individually) monster. All of the following are public types that you
see in the browser related to the Excel Application object:

Interfaces

_Application

AppEvents

AppEvents_Event

Application

IAppEvents

Delegates

AppEvents_*EventHandler (29 of them)

Classes

AppEvents_SinkHelper (AppEvents)

ApplicationClass (_Application, Application, AppEvents_Event)

This pattern repeats for Chart, OLEObject, QueryTable, Worksheet, and Workbook.

Let's try to untangle this mess by working our way backward from the original COM definition of the
Excel Application object. The COM coclass for the Application object looks like this: It has two interfaces,
a primary interface called _Application and an event interface called AppEvents. You can think of a
coclass as something that defines the interfaces that a COM class implements.

coclass Application {
 [default] interface _Application;
 [default, source] dispinterface AppEvents;
 };

TLBIMP (which is used to process the COM type library for Excel and make the PIA) directly imports the
_Application and AppEvents interfaces, so this explains where two of the eight types come from. But the
AppEvents interface is not very useful; it seems like an artifact of the TLBIMP conversion in some ways.
It has to be processed further to create another interface described later in this chapter, called
AppEvents_Event, to be of any use.

When TLBIMP processes the COM coclass, it creates a .NET class called ApplicationClass, which is named

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When TLBIMP processes the COM coclass, it creates a .NET class called ApplicationClass, which is named
by taking the coclass name and appending Class. It also creates a .NET interface with the same name as
the coclass called Application for our example. If you look at Application in the browser, it has no
properties and methods of its own, but it derives from the other two interfaces associated with the
coclass: _Application and AppEvents_Event.

We have not yet explained where the AppEvents_Event interface comes from. When TLBIMP processes
the AppEvents event interface on the coclass, it creates several helper types. First, it creates
AppEvents_Event, which looks like AppEvents but with events and delegate types replacing the methods
in AppEvents. It also creates delegates named AppEvents_*EventHandler, where * is the method name
for each method on the original AppEvents interface. Finally, it creates an AppEvents_SinkHelper, which
can be ignored.

That leaves only the IAppEvents interface unexplained. TLBIMP imports this interface directly because it
is a public type in the Excel type library. You can ignore this also. This is effectively a duplicate of
AppEvents, except that AppEvents is declared as a dispinterface in the type library, and IAppEvents is
declared as a dual interface type.

So which of these do you really use? Basically, you should use in your code only the Application interface
(which derives from _Application and AppEvents_Events) and the delegates. You can usually pretend that
the others do not exist. The one exception to this rule is when a method and event name collide, as
described earlier in this chapter. To disambiguate between a method and an event, you must cast to the
_Application interface when you want to call the method or the AppEvents_Event interface when you
want to connect to the event. Table 1.5 presents a summary.

Table 1.5. Interfaces, Delegates, and Events Associated with the
Application Object in Excel

Name Description

Interfaces
_Application Direct import from type library. (Ignore. Typically, you do not use this

directly unless a method and event name collide; Application interface
derives from this.)

AppEvents Direct import from type library. (Ignoreartifact that is not used in real
coding.)

AppEvents_Event Created while processing the AppEvents event interface (Ignore. Typically,
you do not use this directly unless a method and event name collide;
Application interface derives from this.)

Application Created while processing the Application coclass. (Use this interface.)

IAppEvents Dual interface version of AppEvents in the type library (Ignoreartifact that
is not used in real coding.)

Delegates
AppEvents_*EventHandler
(29 of them)

Created while processing the AppEvents event interface. (Use these. You
use these when declaring delegates to handle events.)

Classes
AppEvents_SinkHelper Created while processing the AppEvents event interface (Ignore.)

ApplicationClass Created while processing the Application coclass (Ignore. This is used
behind the scenes to make it look like you can "New" an Application
interface.)

The Application interface that is created by TLBIMP for the coclass behaves in an interesting way. You
can write code that makes it look like you are creating an instance of the Application interface, which we
all know is impossible:

Dim myApp As New Excel.Application

Really, this is syntactical sugar that is using the ApplicationClass behind the scenes (the Application
interface is attributed to associate it with the ApplicationClass) to create an Excel Application object and
return the appropriate interface.

Finally, we mentioned earlier that this pattern repeats for Chart, OLEObject, QueryTable, Worksheet, and
Workbook. The mapping to Chart is straightforward; replace Application with Chart and AppEvents with
ChartEvents, and you'll get the general idea. Worksheet is a bit different. Its coclass looks like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ChartEvents, and you'll get the general idea. Worksheet is a bit different. Its coclass looks like this:

coclass Worksheet {
 [default] interface _Worksheet;
 [default, source] dispinterface DocEvents;
 };

So for Worksheet, replace Application with Worksheet but replace AppEvents with DocEventsyielding
DocEvents_*EventHandler as the delegates for WorkSheet events.

QueryTable is even weirder. Its coclass looks like this:

coclass QueryTable {
 [default] dispinterface _QueryTable;
 [default, source] dispinterface RefreshEvents;
 };

So for QueryTable, replace Application with QueryTable and replace AppEvents with
RefreshEventsyielding RefreshEvents_*EventHandler as the delegates for QueryTable events.

Dummy Methods

When you look at the Excel PIA in the object browser in Visual Studio with Show Hidden Types and
Members turned on, you might notice a slew of methods with the text Dummy in them. There's even an
interface called IDummy.

No, this is not Excel's way of insulting your intelligence. Everything with Dummy in it is a test method
that actually has a legitimate purpose and more descriptive names in Microsoft's internal "debug" version
of Excel. Application.Dummy6, for example, is called Application.DebugMemory in the debug version of
Excel. Each method was renamed Dummy in the retail version of Excel. All 508 of these Dummy methods
actually do something in debug Excel, but in the retail version of Excel, they do nothing except raise an
error when called.

Excel has marked these as "hidden," but the C# object browser shows hidden methods by default. When
you view the PIA in the C# object browser, you will see these Dummy methods. If you create a Visual
Basic project, the Visual Basic object browser will hide methods and properties with this attribute.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter introduced the Office object models and examined the basic structure followed by object models. You
learned how to work with objects, collections, and enumerationsthe basic types found in any object model. You also
learned how to use properties, methods, and events exposed by objects and collections in the Office object models.

This chapter introduced the Office primary interop assemblies that expose the Office object models to .NET code. You
learned how to use and reference Office PIAs in a Visual Studio project. This chapter also described what you can ignore
when viewing the PIA in the object browser.

The next chapter begins examining the basic patterns of development used in Office programming and provides
examples of each.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2. Introduction to Office Solutions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Three Basic Patterns of Office Solutions
Now that you understand the basic pattern of the Office object models, this chapter explains how developers pattern
and build their Office solutions. Most solutions built using Office follow one of three patterns:

Office automation executable

Office add-in

Code behind an Office document

An automation executable is a program separate from Office that controls and automates an Office application. An
automation executable can be created with development tools such as Visual Studio. A typical example is a stand-alone
console application or Windows Forms application that starts an Office application and then automates it to perform
some task. To start a solution built this way, the user of the solution starts the automation executable, which in turn
starts the Office application. Unlike the other two patterns, the automation code does not run in the Office process but
runs in its own process and talks cross-process to the Office process being automated.

An add-in is a class in an assembly (DLL) that Office loads and creates when needed. An add-in runs in process with the
Office application instead of requiring its own process separate from the Office application process. To start a solution
built this way, the user of the solution starts the Office application associated with the add-in. Office detects registered
add-ins on startup and loads them. An add-in can customize an Office application in the same ways that code behind a
document can. Code behind a document, however, unloads when the document associated with the code is closed; an
add-in can remain loaded throughout the lifetime of the Office application.

The code-behind pattern was popularized by Visual Basic for Applications (VBA)the development environment included
with Office that enables the developer to write Visual Basic code against the object model of a particular Office
application and associate that code with a particular document or template. A document can be associated with C# or
Visual Basic code behind using VSTO. To start a solution built this way, the user of the solution opens a document that
has code behind it or creates a new document from a template that has code behind it. The code behind the document
will customize the Office application in some way while the document is open. Code behind the document might add
menu items that are present only when the document is open, for example, or associate code with events that occur
while the document is open.

We discuss two advanced patterns later in this book. The server document pattern involves running code on a server to
manipulate data stored in an Office document without starting the Office application. VSTO makes this scenario possible
through a feature called cached data. Chapter 18, "Server Data Scenarios," discusses this pattern. The XML and XSLT
pattern is similar to the server document pattern and involves writing code to generate Word or Excel documents in
WordprocessingML or SpreadsheetML format without starting the Office application. You can also generate these
formats by applying an XSLT transform to some XML data. Chapter 21, "Working with XML in Excel," and Chapter 22,
"Working with XML in Word," discuss these scenarios.

Hosted Code

The add-in and code-behind patterns are sometimes called hosted code, which means that your code runs in the same
process as the Office application.

Discovery of Hosted Code

For code to run in the Office application process, the Office application must be able to discover your code, load the
code into its process space, and run your code. Office add-ins are registered in the Windows registry so that Office can
find and start them. Using the registry seems a little non-.NET, but this is necessary because Office 2003 talks to add-
ins as though they were COM objects through COM interop.

The code behind a document pattern does not require a registry entry. Instead, code is associated with a document by
adding some special properties to the document file. Office reads these properties when the document opens and then
Office loads the code associated with the document.

Context Provided to Hosted Code

It is critical that your hosted code get context; it needs to get the Application object or Document object for the Office
application into which it is loading. COM add-ins are provided with context through an interface implemented by the
add-in class. Outlook add-ins in VSTO are provided with context through a class created in the project that represents
the application being customized. Code behind a document in VSTO is provided with context through a class created in
the project that represents the document being customized.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the project that represents the document being customized.

Entry Point for Hosted Code

At startup, Office calls into an entry point where your code can run for the first time and register for events that might
occur later in the session. For a COM add-in, this entry point is the OnConnection method of the IDTExtensibility2
interface implemented by the COM add-in. For a VSTO Outlook add-in and VSTO code behind a document, this entry
point is the Startup event handler.

How Code Gets Run After Startup

After hosted code starts up, code continues to run in one or more of the following ways.

Code Runs in Response to Events Raised by Office

The most common way that code runs after startup is in response to events that occur in the Office application. Office
raises events when a document opens or a cell in a spreadsheet changes, for example. Listing 1.17 in Chapter 1 shows
a simple class that listens to the WindowActivate event that Excel's Application object raises. Typically, you will connect
event listeners declaratively by using the WithEvents keyword to specify a member variable that raises events and the
Handles keyword to tell Visual Basic that a particular method handles a particular event.

Interface Methods Called on Objects Provided to Office

Objects such as the startup class for a COM add-in implement an interface called IDTExtensibility2 that has methods
that Office calls during the run of the Office application. If the user turns off the COM add-in, for example, Office calls
the OnDisconnection method on the IDTExtensibility2 interface implemented by the COM add-in. In this way, additional
code runs after the initial entry point has run.

Events Raised on Code Behind Classes

The classes generated in VSTO projects that represent the customized application or document handle the Startup and
Shutdown events. After the constructor of the class executes, Office raises the Startup event. When the document is
about to be closed, Office raises the Shutdown event.

How Code Gets Unloaded

Your code gets unloaded in a number of ways, depending on the development pattern you are using. If you are using
the automation-executable pattern, your code unloads when the automation executable you have written exits. If you
are using the add-in pattern, your code unloads when the Office application exits or when the user turns off the add-in
via an add-in management dialog box. If you are using the code-behind pattern, your code unloads when the document
associated with your code is closed.

In the hosted patterns of running code, there is some method that is called or event that is raised notifying you that
you are about to be unloaded. For COM add-ins, Office calls the OnDisconnection method. For VSTO code behind
documents and Outlook add-ins, Office raises the Shutdown event before your code is unloaded.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Office Automation Executables
This section considers each of these three patterns of Office solutions in more detail. Office solutions that use the
automation-executable pattern start an Office application in a very straightforward manner: by creating a new instance
of the Application object associated with the Office application. Because the automation executable controls the Office
application, the automation executable runs code at startup and any time thereafter when executing control returns to
the automation executable.

When an automation executable uses New to create an Application object, the automation executable controls the
lifetime of the application by holding the created Application object in a variable. The Office application determines
whether it can shut down by determining the reference count or number of clients that are using its Application object.

In Listing 2.1, as soon as New is used to create the myExcelApp variable, Excel starts and adds one to its count of clients
that it knows are holding a reference to Excel's Application object. When the myExcelApp variable goes out of scope (when
Main exits), .NET garbage collection releases the object, and Excel is notified that the console application no longer
needs Excel's Application object. This causes Excel's count of clients holding a reference to Excel's Application object to
go to zero, and Excel exits because no clients are using Excel anymore.

When you create an Office application by creating a new instance of the Application object, the application starts up
without showing its window, which proves useful because you can automate the application without distracting the user
by popping up windows. If you need to show the application window, you can set the Visible property of the Application
object to TRue. If you make the main window visible, the user controls the lifetime of the application. In Excel, the
application will not exit until the user quits the application and your variable holding the Excel Application object is
garbage-collected. Word behaves differently; the application exits when the user quits the application even if a variable
is still holding an instance of the Word Application object.

Listing 2.1 sets the status bar of Excel to say "Hello World" and opens a new blank workbook in Excel by calling the Add
method of Excel's Workbooks collection. Chapters 3 through 5"Programming Excel," "Working with Excel Events", and
"Working with Excel Objects", respectivelycover the Excel object model in more detail.

Listing 2.1. Automation of Excel via a Console Application

Imports Excel = Microsoft.Office.Interop.Excel

Module Module1

 Private exitXL As Boolean = False
 Dim WithEvents myExcelApp As Excel.Application

 Sub Main()

 myExcelApp = New Excel.Application
 myExcelApp.Visible = True
 myExcelApp.StatusBar = "Hello World"
 myExcelApp.Workbooks.Add()

 While exitXL = False
 System.Windows.Forms.Application.DoEvents()
 End While

 End Sub

 Private Sub myExcelApp_SheetBeforeDoubleClick(ByVal sheet _
 As Object, ByVal target As Excel.Range, ByRef cancel _
 As Boolean) Handles myExcelApp.SheetBeforeDoubleClick

 exitXL = True

 End Sub

End Module

Listing 2.1 also illustrates how an automation executable can yield time back to the Office application. A reference to
the System.Windows.Forms assembly must be added to the project. After event handlers are connected,
System.Windows.Forms.Application.DoEvents() is called in a loop to allow the Excel application to run normally. If the user
double-clicks a cell, Office yields time back to the event handler in the automation executable. In the handler for the
Double-Click event, the static variable exitXL is set to TRue, which will cause the loop calling DoEvents to exit and the
automation executable to exit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

automation executable to exit.

You can see the lifetime management of Excel in action by running the automation executable in Listing 2.1 and exiting
Excel without double-clicking a cell. Excel will continue to run in a hidden state, waiting for the console application to
release its reference to Excel's Application object.

Creating a Console Application That Automates Word

This section walks you through the creation of a simple console application that automates Word to create a table
specified in wiki text format. A wiki is a kind of online encyclopedia that users can contribute to. For an example, see
www.officewiki.net for a wiki that documents the Office primary interop assemblies (PIAs). Wikis use simple, easy-to-
edit text files that any visitor to the wiki can edit without having to know HTML. These text files have simple
representations of even complex elements such as tables. Our console application will read a simple text file that
specifies a table in wiki text format. Then it will automate Word to create a Word table that matches the text file
specification.

In the wiki text format, a table that looks like Table 2.1 is specified by the text in Listing 2.2.

Table 2.1. A Simple Table Showing the Properties and Methods of
Word's Add-In Object

Property or Method Name Return Type

Property Application Application

Property Autoload Boolean

Property Compiled Boolean

Property Creator Int32

Method Delete Void

Property Index Int32

Property Installed Boolean

Property Name String

Property Parent Object

Property Path String

Listing 2.2. A Wiki Text Representation of Table 2.1

	Property or Method		Name		Return Type	
	Property		Application		Application	
	Property		Autoload		Boolean	
	Property		Compiled		Boolean	
	Property		Creator		Int32	
	Method		Delete		Void	
	Property		Index		Int32	
	Property		Installed		Boolean	
	Property		Name		String	
	Property		Parent		Object	
	Property		Path		String	

We will use Visual Studio 2005 to create a console application. After launching Visual Studio, choose New Project from
the File menu. The New Project dialog box shows a variety of project types. Choose the Visual Basic node from the list
of project types, and choose the Windows node under the Visual Basic node. This is slightly counterintuitive because an
Office node is available, too, but the Office node shows only VSTO code behind document projects and the VSTO
Outlook add-in project.

After you choose the Windows node, you will see in the window to the right the available templates. Choose the Console
Application template. Name your project and then click the OK button to create your project. In Figure 2.1, we have
created a console application called WordWiki. Note that the New Project dialog box can have a different appearance
from the one shown in Figure 2.1, depending on the profile you are using. In this book, we assume that you are using
the Visual Basic Development Settings profile. You can change your profile by choosing Import and Export Settings from
the Tools menu.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the Tools menu.

Figure 2.1. Creating a console application from the New Project dialog box.

[View full size image]

When you click the OK button, Visual Studio creates a console application project for you. Visual Studio displays the
contents of the project in the Solution Explorer window, as shown in Figure 2.2.

Figure 2.2. The console application project WordWiki shown in Solution Explorer.

By default, a newly created console application references the assemblies System, System.Data, and System.Xml. We
also need to add a reference to the Word 2003 PIA. We do this by right-clicking the project node in Solution Explorer
and choosing Add Reference from the pop-up menu that appears. This shows the Add Reference dialog box in Figure
2.3. Click the COM tab; choose the Microsoft Word 11.0 Object Library to add a reference to the Word 2003 PIA; and
then click the OK button.

Figure 2.3. Adding a reference to the Microsoft Word 2003 PIA.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual Studio adds the reference to the Word 2003 PIA (Microsoft.Office.Interop.Word.dll) and adds additional
references to the Visual Basic for Applications Extensibility PIA (Microsoft.Vbe.Interop.dll) and the Office 11.0 Object
Library PIA (office.dll), as shown in Figure 2.4. These additional PIAs are ones that the Word PIA depends on.
Microsoft.Vbe.Interop.dll is the PIA for the object model associated with the VBA editor integrated into Office. Office.dll
is the PIA for common functionality shared by all the Office applications, such as the object model for the toolbars and
menus.

Figure 2.4. When you add the Word 2003 PIA, dependent PIA references are
automatically added to the project.

[View full size image]

Now that the proper references have been added to the console application, let's start writing code. Double-click
Module1.vb in the Solution Explorer window to edit the main source-code file for the console application. Add the
following three Imports directives so that you can more easily use types from the Word PIA and the Office 11.0 Object
Library PIA, as well as classes in the System.IO namespace. The Office 11.0 Object Library PIA has its types in the
Microsoft.Office.Core namespace. The Word PIA has its types in the Microsoft.Office.Interop.Word namespace.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Microsoft.Office.Core namespace. The Word PIA has its types in the Microsoft.Office.Interop.Word namespace.

Imports Office = Microsoft.Office.Core
Imports Word = Microsoft.Office.Interop.Word
Imports System.IO

We alias some of these namespaces so we do not have to type the entire namespace, such as Microsoft.Office.Interop.Word,
every time we want to declare a Word object. With the alias in place, we can type just Word to specify the namespace.
We keep an alias namespace in place for Word and Office instead of typing Imports Microsoft.Office.Interop.Word and importing
all the types into global scope. This is because Word and Office define hundreds of types, and we do not want all these
type names potentially colliding with types we define in our code or with other referenced types. Also, for the purposes
of this book, the code is clearer when it says Word.Application rather than Application, so you know what namespace the
Application type is coming from.

We are ready to write some code that automates Word to create a table after reading a text input file in the wiki table
format. Listing 2.3 (on page 58) shows the entire listing of our program. Rather than explain every line of code in that
listing, we focus on the lines of code that automate Word. We assume that the reader has some knowledge of how to
read a text file in .NET and parse a string via the Split method. We briefly touch on some objects in the Word object
model here, but Chapters 6 through 8"Programming Word," "Working with Word Events," and "Working with Word
Objects," respectivelycover the Word object model in much more detail.

The first thing we do in Listing 2.3 is declare a new instance of the Word application object by adding this line of code to
the Main method of our program class:

Dim theApplication As New Word.Application

Although Word.Application is an interface, we are allowed to create a new instance of this interface because the
compiler knows that the Word.Application interface is associated with a COM object that it knows how to start. When
Word starts in response to an automation executable creating a new instance of its Application object, it starts without
showing any windows. You can automate Word in this invisible state when you want to automate Word without
confusing the user by bringing up the Word window. For this example, we want to make Word show its main window,
and we do so by adding this line of code:

theApplication.Visible = True

Next, we want to create a new, empty Word document into which we will generate our table. We do this by calling the
Add method on the Documents collection returned by Word's Application object. The Add method takes four optional
parameters that we want to omit. The code calls the Add method and omits all four optional parameters:

Dim theDocument As Word.Document = theApplication.Documents.Add()

With a document created, we want to read the input text file specified by the command-line argument passed to our
console application. We want to parse that text file to calculate the number of columns and rows. When we know the
number of columns and rows, we use the following line of code to get a Range object from the Document object. When
we omit the optional parameters, the Range method will return a range that includes the entire text of the document.

Dim range As Word.Range = theDocument.Range()

Then we use our Range object to add a table by calling the Add method of the Tables collection returned by the Range
object. We pass the Range object again as the first parameter to the Add method to specify that we want to replace the
entire contents of the document with the table. We also specify the number of rows and columns we want:

Dim table As Word.Table = range.Tables.Add(range, _
| rowCount, columnCount)

The Table object has a Cell method that takes a row and column, and returns a Cell object. The Cell object has a Range
property that returns a Range object for the cell in question that we can use to set the text and formatting of the cell.
The code that sets the cells for a row of the table is shown here. Note that as in most of the Office object models, the
indices are 1-based, meaning that they start with 1 as the minimum value rather than being 0-based and starting with
0 as the minimum value:

For columnIndex = 1 To columnCount
 Dim cell As Word.Cell = table.Cell(rowIndex, columnIndex)
 cell.Range.Text = splitRow(columnIndex)
Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next

Code to set the formatting of the table as shown below sets the table to size to fit contents and bolds the header row.
We use the Row object returned by table.Rows(1), which alsohas a Range property that returns a Range object for the row
in question. Also, we encounter code that sets the first row of the table to be bolded. One would expect to be able to
write the code table.Rows(1).Range.Bold = True, but Word's object model expects an Integer value (0 for false and 1 for true)
rather than a Boolean. The Bold property doesn't return a Boolean because the range of text could be all bold, all not bold,
or partially bold. Word uses the enumerated constant WdConstants.WdUndefined to specify the partially bold case.

' Format table
table.Rows(1).Range.Bold = 1
table.AutoFitBehavior(Word.WdAutoFitBehavior.wdAutoFitContent)

Finally, some code at the end of the program forces Word to quit without saving changes:

theApplication.Quit(False);

If you do not write this code, Word will stay running even after the console application exits. When you show the Word
window by setting the Application object's Visible property to TRue, Word puts the lifetime of the application in the hands
of the end user rather than the automating program. So even when the automation executable exits, Word continues
running. To force Word to exit, you must call the Quit method on Word's Application object. If this program didn't make
the Word window visiblefor example, it created the document with the table and then saved it to a file without showing
the Word windowit would not have to call Quit, because Word would exit when the program exited and released all its
references to the Word objects.

To run the console application in Listing 2.3, you must create a text file that contains the text in Listing 2.2. Then pass
the name of the text file as a command-line argument to the console application. You can set up the debugger to do
this by right-clicking the WordWiki project in Solution Explorer and choosing Properties. Then click the Debug tab and
set the Command Line Arguments field to the name of your text file.

Listing 2.3. The Complete WordWiki Implementation

Imports System.Collections.Generic
Imports System.Text
Imports System.IO
Imports Office = Microsoft.Office.Core
Imports Word = Microsoft.Office.Interop.Word

Module Module1
 Sub Main(ByVal args As String())

 Dim theApplication As New Word.Application
 theApplication.Visible = True
 Dim theDocument As Word.Document
 theDocument = theApplication.Documents.Add()

 Dim reader As TextReader
 reader = New System.IO.StreamReader(args(0))

 Dim separators(1) As String
 separators(0) = "||"
 Dim rowCount As Integer = 0
 Dim columnCount As Integer = 0

 ' Read rows and calculate number of rows and columns
 Dim rowList As New System.Collections.Generic.List(Of String)
 Dim row As String = reader.ReadLine()
 While row IsNot Nothing
 rowCount += 1
 rowList.Add(row)

 ' If this is the first row,
 ' calculate the number of columns
 If rowCount = 1 Then
 Dim splitHeaderRow As String() = _
 row.Split(separators, StringSplitOptions.None)

 ' Ignore the first and last separator
 columnCount = splitHeaderRow.Length - 2
 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 row = reader.ReadLine()
 End While

 ' Create a table
 Dim range As Word.Range = theDocument.Range()
 Dim table As Word.Table = range.Tables.Add(range, _
 rowCount, columnCount)

 ' Populate table
 Dim columnIndex As Integer = 1
 Dim rowIndex As Integer = 1

 For Each r As String In rowList
 Dim splitRow As String() = r.Split(separators, _
 StringSplitOptions.None)

 For columnIndex = 1 To columnCount
 Dim cell As Word.Cell = table.Cell(rowIndex, columnIndex)
 cell.Range.Text = splitRow(columnIndex)
 Next
 rowIndex += 1
 Next

 ' Format table
 table.Rows(1).Range.Bold = 1
 table.AutoFitBehavior(_
 Word.WdAutoFitBehavior.wdAutoFitContent)

 ' Wait for input from the command line before exiting
 System.Console.WriteLine("Table complete.")
 System.Console.ReadLine()

 ' Quit without saving changes
 theApplication.Quit(False)
 End Sub
End Module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Office Add-Ins
The second pattern used in Office development is the add-in pattern. This book covers several types of Office add-ins.
These include VSTO add-ins for Outlook, COM add-ins for Excel and Word, and automation add-ins for Excel:

VSTO add-ins for Outlook This new VSTO feature makes it extremely easy to create an add-in for Outlook
2003. The model is the most ".NET" of all the add-in models and is very similar to the VSTO code-behind model
for documents. Chapter 24, "Creating Outlook Add-Ins with VSTO," describes this model in detail.

COM add-ins for Excel and Word A Visual Basic class in a class library project can implement the
IDTExtensibility2 interface and register in the registry as a COM object and COM add-in. Through COM interop,
Office creates the Visual Basic class and talks to it. Chapter 23, "Developing COM Add-Ins for Word and Excel,"
describes the creation of COM add-ins and some issues that make COM add-in development problematic.

Automation add-ins for Excel These managed classes expose public functions that Excel can use in formulas.
The Visual Basic class must register in the registry as a COM object. Through COM interop, Excel can create an
automation add-in and use its public methods in formulas. Automation add-ins and their use in Excel formulas
are discussed in Chapter 3, "Programming Excel."

This book does not discuss some Office add-in technologies. Smart Documents add-ins are not discussed because VSTO
provides a much easier way of accessing Smart Document functionality, albeit at the document or template level rather
than at the application level. For more information on VSTO's support for Smart Documents, see Chapter 15, "Working
with the Actions Pane."

Creating an Outlook Add-In in VSTO

To create an Outlook add-in project in VSTO, choose Project from the New submenu of the File menu in Visual Studio.
Select the Visual Basic node from the list of project types, and select the Office node under the Visual Basic node. The
Outlook add-in project appears in the list of templates. Type a name for your new Outlook add-in project; pick a
location for the project; then click the OK button as shown in Figure 2.5.

Figure 2.5. Creating a new Outlook add-in project.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSTO creates a project with references to the Outlook 2003 PIA, the core Office PIA, and other needed references, as
shown in Figure 2.6. VSTO also creates a setup project for the Outlook add-in. In the main project, VSTO adds a project
item to the project called ThisApplication.vb. This project item contains a Visual Basic class that you will add to when
implementing your Outlook add-in.

Figure 2.6. The Outlook add-in project in Solution Explorer.

If you double-click the ThisApplication.vb project item, you will see the code shown in Listing 2.4. There is a simple
Startup and Shutdown event handler where you can write code that executes on the startup and shutdown of the add-
in. The ThisApplication class derives from an aggregate of the Outlook Application object. This allows you to access
properties and methods of the Outlook Application object by writing code such as Me.Inspectors.Count in the ThisApplication
class.

Listing 2.4. The Initial Code in the ThisApplication Class in an Outlook Add-In
Project

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 End Sub

 Private Sub ThisApplication_Shutdown(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Shutdown

 End Sub

End Class

Looking at Listing 2.4, you might wonder how such a simple class is connected and run. VSTO uses partial classes,
which are a new feature of .NET that enables you to define part of a class in one file and another part of a class in a
second file and then compile them together as one class. VSTO uses this feature to hide from you some additional
generated code associated with the ThisApplication class to reduce the complexity of the class where you write your
code. The final ThisApplication class is compiled from the partial class in Listing 2.4 and additional code in a partial class
generated by VSTO that is hidden from you.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We are going to add to the code in Listing 2.4 to create an add-in that will solve an annoying problem: people replying
inadvertently to an e-mail sent out to a mailing alias that contains a large number of people. Unless you have "Vice
President" in your title, you probably do not want to be sending e-mail to more than, say, 25 people at any given time.
We are going to create an add-in that will warn you if you do this and give you the "This is a potentially career-limiting
move. Are you sure you want to send this e-mail to 25,000 people?" message.

Outlook's Application object has an ItemSend event that is raised whenever a user sends an e-mail. We will add an
event handler for the ItemSend event, as shown in Listing 2.5, declared with the handles clause Handles Me.ItemSend.
Because the ThisApplication class derives from an aggregate of Outlook's Application object, we can write the code
Me.ItemSend because ItemSend is an event raised by the ThisApplication base class. The ItemSend event handler takes
an Object parameter called item, which is the Outlook item being sent. Because item could be any of a number of things,
such as a meeting request or an e-mail message, item is passed as an Object rather than as a specific type. The
ItemSend event handler also has a Boolean parameter passed by reference, called cancel, that can be set to true to
prevent the Outlook item from being sent.

In our ItemSend event handler, we need to check to see whether the item parameter that is passed as an Object is
actually an e-mail. The easiest way to achieve this is to use the TypeOf and Is keywords to determine whether the item
parameter is an Outlook.MailItem. If the item is an Outlook.MailItem, we use CType to cast the item parameter to an
Outlook.MailItem. Then we can iterate through the Recipients collection on the MailItem object and check to see
whether we are sending to any recipient lists that include more than 25 people. Each Recipient object in the Recipients
collection has an AddressEntry property that returns an AddressEntry object. The AddressEntry object has a Members
property that returns a collection that we can check the count of. If we find the count to be more than 25, we will show
a dialog box and ask the user whether she really wants to send the mail. If the user clicks the No button, we will set the
cancel parameter of the ItemSend event to TRue to cancel the sending of career-limiting e-mail.

Listing 2.5. A VSTO Outlook Add-In That Handles the ItemSend Event and Checks
for More Than 25 Recipients

Imports Outlook = Microsoft.Office.Interop.Outlook

Public Class ThisApplication
 Private Sub ThisApplication_ItemSend(ByVal item As Object, _
 ByRef cancel As Boolean) Handles Me.ItemSend

 Dim myItem As Outlook.MailItem

 If TypeOf item Is Outlook.MailItem Then
 myItem = CType(item, Outlook.MailItem)
 For Each recip As Outlook.Recipient In myItem.Recipients
 If recip.AddressEntry.Members.Count > 25 Then
 ' Ask the user if she really wants to send this e-mail
 Dim message As String
 message = "Send mail to {0} with {1} people?"
 Dim caption As String = "More than 25 recipients"
 Dim buttons As MessageBoxButtons
 buttons = MessageBoxButtons.YesNo
 Dim result As DialogResult

 result = MessageBox.Show(String.Format(message, _
 recip.AddressEntry.Name, _
 recip.AddressEntry.Members.Count), _
 caption, buttons)

 If result = DialogResult.No Then
 cancel = True
 Exit For
 End If
 End If
 Next
 End If

 End Sub
End Class

When you run the project with the code shown in Listing 2.4, Outlook launches, and the add-in loads. Try sending a
mail to an alias that includes more than 25 people; you might want to go offline first, in case you mistyped the code. If
everything works right, the add-in will display a dialog box warning you that you are sending an e-mail to more than 25
people, and you will be able to cancel the sending of the e-mail. Exit Outlook to end your debugging session.

Chapter 24, "Creating Outlook Add-Ins with VSTO," discusses VSTO Outlook add-ins in more detail. Chapters 9 through
11"Programming Outlook," "Working with Outlook Events," and "Working with Outlook Objects," respectivelydiscuss the
Outlook object model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Outlook object model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Code Behind a Document
VSTO supports code behind a document by requiring that the developer use classes generated in a VSTO project that
have preconnected context and preconnected events. These classes are sometimes called code-behind classes because
they are code associated with a particular document or worksheet. In Word, there is one code-behind class
corresponding to the document. In Excel, there are multiple code-behind classesone for the workbook and one for each
worksheet or chart sheet in the workbook.

The first time your code runs in a VSTO code-behind-the-document project is when Office raises the Startup event
handled by any of the code-behind classes created for you. VSTO provides context via the base class of the code-behind
class you are writing code in. A VSTO code-behind class customizing an Excel worksheet derives from a base class that
aggregates all the methods, properties, and events of an Excel worksheet. This enables you to write code such as this
in the Startup method of a worksheet class:

MsgBox(String.Format("{0} is the sheet name", Me.Name))

By using Me.Name, you are referring to the Name property of the Excel Worksheet object inherited from the base class.
Listing 2.6 shows a VSTO code-behind class for an Excel Worksheet. VSTO code-behind document classes also use
partial classes to hide some additional code generated by VSTO.

Listing 2.6. A VSTO Excel Workbook Customization

Imports Excel = Microsoft.Office.Interop.Excel
Imports Office = Microsoft.Office.Core

Public Class Sheet1
 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 ' Initial entry point.
 ' This code gets run first when the code behind is created
 ' The context is implicit in the Sheet1 class
 MsgBox("Code behind the document running.")
 MsgBox(String.Format("{0} is the sheet name.", Me.Name))

 End Sub

End Class

In this section, we create some simple code behind a document in Excel using VSTO. First, start VSTO, and choose File
> New > Project. As you have seen previously, navigate to the Office node under the Visual Basic root.

We will create an Excel workbook project using Visual Basic as shown in Figure 2.7. If you already have a workbook
that you want to add VSTO customization code behind, you can specify its location in the dialog box shown in Figure 2.8
that appears after you click OK in the New Project dialog box. This time, we will start from scratch, creating a new,
blank workbook.

Figure 2.7. Using the New Project dialog box to create an Excel Workbook project.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.8. Selecting the workbook to associate with your code behind.

After we have created the project, the design view appears, as shown in Figure 2.9.

Figure 2.9. The design view for VSTO Excel code behind.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice a few interesting things in Figure 2.9. First, Excel is running inside Visual Studio 2005 as a designer, just the
same as a Windows Forms designer would when developing a Windows Forms project.

Second, look at the menu bar shown in Figure 2.10. VSTO merges the Visual Studio menus (Build, Debug, and so on)
and the Excel menu items (Format, Data, and so on). Menu items that appear in both Visual Studio and Excel (Tools, for
example) merge by adding a submenu to the Visual Studio menu, such as Microsoft Office Excel Tools, that can be
selected to show the Excel Tools menu.

Figure 2.10. The merging of Visual Studio and Excel menus.

Third, notice in Figure 2.9 that the toolbox contains a new category: Excel Controls. When designing a document using

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Third, notice in Figure 2.9 that the toolbox contains a new category: Excel Controls. When designing a document using
Visual Studio, you can create named ranges and list objects using the Excel menu items familiar to Excel users or the
toolbox idiom familiar to Visual Studio users.

Fourth, notice that the Properties window shows the properties of the selected objectin this case, Sheet1. You can use
the Properties window to edit properties of Excel's objects the same way that you would edit properties of controls and
forms in a Windows Forms project.

Fifth, notice that the Solution Explorer has four classes in it already. Each underlying Excel Worksheet and Workbook
object is represented by a .NET class that you can extend and customize. As you make changes to the document in the
designer, the code behind updates automatically. Drag a list object from the toolbox onto the Sheet1 designer, for
example, and draw it to be ten rows by four columns, as shown in Figure 2.11.

Figure 2.11. Creating a list object in the designer.

[View full size image]

As you can see from the Properties window, the designer has chosen a default name for the new list object. We could
edit it, but in this example, we will keep the default name List1.

Let's take a look at the code behind this worksheet and make some simple changes to it. Right-click Sheet1.vb in
Solution Explorer, and choose View Code. We are going to briefly illustrate two VSTO features: support for the
Document Actions pane and list object data binding. We will declare a Windows Forms button as a member variable of
the class and call it myButton. In the Startup event handler, we will show that button in the Document Actions task pane
of Excel by adding it to the ActionsPane's Controls collection. Doing so will cause Excel to show the Document Actions
task pane and display our button. We will also handle the Click event of the button, and when the button is clicked, we
will data-bind our list object to a randomly generated DataTable. Listing 2.7 shows this code.

Listing 2.7. A VSTO Customization That Adds a Control to the Document Actions
Task Pane and Data-Binds a ListObject Control to a DataTable

Imports Excel = Microsoft.Office.Interop.Excel
Imports Office = Microsoft.Office.Core

Public Class Sheet1
 Private WithEvents myButton As New Button
 Private table As DataTable

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 myButton.Text = "Databind!"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 myButton.Text = "Databind!"
 Globals.ThisWorkbook.ActionsPane.Controls.Add(myButton)

 End Sub

 Private Sub myButton_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles myButton.Click

 List1.DataSource = Nothing
 table = New DataTable
 Dim r As New Random

 For i As Integer = 0 To 3
 table.Columns.Add("Col" & i.ToString())
 Next

 For j As Integer = 0 To 19
 table.Rows.Add(r.NextDouble(), r.NextDouble(), _
 r.NextDouble(), r.NextDouble())
 Next

 List1.DataSource = table

 End Sub
End Class

Build and run the code, and sure enough, Excel starts; the Startup event is raised for the sheet; and the button is
added to the actions pane. Click the button, and a random DataTable is generated and bound to the list object, as
shown in Figure 2.12. Exit Excel to end your debugging session.

Figure 2.12. The result of running Listing 2.7 and clicking the button we added to
the Document Actions task pane.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We have briefly illustrated VSTO's support for the Document Actions task pane and the ability to bind data that VSTO
adds to Excel's list object. For more information on VSTO's support for the Document Actions task pane, see Chapter
15, "Working with the Actions Pane." For more information on VSTO's support for data binding, see Chapter 17, "VSTO
Data Programming."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter introduced the three basic patterns of Office solutions: an automation executable, an add-in, and code
behind a document. The chapter also introduced how to build solutions following these three basic patterns using Visual
Studio 2005 and Visual Studio 2005 Tools for Office.

Now that you know how to create a basic automation-executable, add-in, and code-behind-the-document solution, you
will use these skills in the next chapters as the focus turns to specific functionality of Excel, Word, Outlook, and InfoPath
that you can use in your solutions.

This chapter has served only as an introduction to add-ins and code behind documents. Chapter 24, "Creating Outlook
Add-Ins with VSTO," covers VSTO add-ins for Outlook. Chapter 23, "Developing COM Add-Ins for Word and Excel,"
covers COM add-ins for Word and Excel. Chapter 3, "Programming Excel," covers automation add-ins for Excel.
Chapters 13 through 17"The VSTO Programming Model," "Using Windows Forms in VSTO," "Working with the Actions
Pane," "Working with Smart Tags in VSTO," and "VSTO Data Programming," respectivelycover the code-behind-
document model of VSTO in detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part II: Office Programming in .NET
The first two chapters of this book introduced Office object models and the Office primary interop
assemblies (PIAs). You have also seen how to use Visual Studio to build console applications, add-ins,
and code behind the document using features of VSTO. The second part of this book covers the Office
object models in more depth. If you are interested only in Excel development, read Chapters 3 through
5. If you are interested only in Word development, read Chapters 6 through 8. If you are interested
only in Outlook development, read Chapters 10 through 11. If you are interested only in InfoPath
development, read Chapter 12.

Chapter 3,"Programming Excel," shows how you can customize Excel and, in particular, how you
can create custom formulas for Excel.

Chapter 4, "Working with Excel Events," covers the events that Excel raises that your code can
handle.

Chapter 5, "Working with Excel Objects," covers the object model of Excel in some detail,
focusing on the most commonly used objects, properties, and methods.

Chapter 6, "Programming Word," shows how you can customize Word, and in particular, how
you can create research services for Word and other Office applications.

Chapter 7, "Working with Word Events," covers the events that Word raises that your code can
handle.

Chapter 8, "Working with Word Objects," covers the object model of Word in some detail,
focusing on the most commonly used objects, properties, and methods.

Chapter 9, "Programming Outlook," shows how you can customize Outlook and, in particular,
how you can create custom property pages for Outlook.

Chapter 10, "Working with Outlook Events," covers the events that Outlook raises that your
code can handle.

Chapter 11, "Working with Outlook Objects," covers the object model of Outlook in some detail,
focusing on the most commonly used objects, properties, and methods.

Chapter 12, "Introduction to InfoPath," explores how to build InfoPath forms that use Visual
Basic code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3. Programming Excel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ways to Customize Excel
Excel is the application most frequently programmed against in the Office family. Excel has a very rich object model,
with 196 objects that combined have more than 4,500 properties and methods. It supports several models for
integrating your code, including add-ins and code-behind documents. Most of these models were originally designed to
allow the integration of COM components written in Visual Basic 6, Visual Basic for Applications (VBA), C, or C++.
Through COM interop, however, managed objects written in C# or Visual Basic can masquerade as COM objects and
participate in most of these models. This chapter briefly considers several of the ways that you can integrate your code
with Excel and refers you to other chapters that discuss these approaches in more depth. This chapter also explores
building user-defined functions for Excel and introduces the Excel object model.

Automation Executable

As mentioned in Chapter 2, "Introduction to Office Solutions," the simplest way to integrate with Excel is to start Excel
from a console application or Windows Forms application and automate it from that external program. Chapter 2
provides a sample of an automation executable that automates Word.

COM Add-Ins

Excel can load a COM add-in that is a DLL that contains a class that implements IDTExtensibility2. The class that
implements IDTExtensibility2 must be registered in the registry so that it can be discovered and talked to like other
COM add-ins that extend Excel.

A COM add-in is typically written to add application-level functionalityfunctionality that is available to any workbook
opened by Excel. You might write a COM add-in that adds a menu item to convert a currency in the selected Excel
worksheet cell to another currency based on current exchange rates, for example.

Excel has a COM Add-Ins dialog box that enables users to turn COM add-ins on and off. Note that the dialog box that
you access by choosing Add-Ins from the Tools menu is not the COM Add-Ins dialog box. That dialog box is used to turn
on and off automation add-ins and XLA add-ins, which are discussed later in this chapter. To access the COM Add-Ins
dialog box, you must perform the following steps:

1. Right-click a menu or toolbar in Excel, and choose Customize from the pop-up menu; or from the Tools menu,
choose Customize. The Customize dialog box displays.

2. Click the Commands tab of the Customize dialog box.

3. Choose Tools from the list of Categories.

4. Scroll down the list of commands until you see a command that says COM Add-Ins.

5. Drag the COM Add-Ins command and drop it on a toolbar.

6. Close the Customize dialog box.

After completing these steps, click the COM Add-Ins toolbar button you added to a toolbar. Figure 3.1 shows the COM
Add-Ins dialog box.

Figure 3.1. The COM Add-Ins dialog box in Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can add COM add-ins by using the Add button and remove them by using the Remove button. Typically, you will
not have your users use this dialog box to manage COM add-ins. Instead, you will install and remove a COM add-in by
manipulating registry settings with the installer you create for your COM add-in.

Excel discovers the installed COM add-ins by reading from the registry. You can view the registry on your computer by
going to the Windows Start menu and choosing Run. In the Run dialog box, type regedit for the program to run and then
click the OK button. Excel looks for COM add-ins in the registry keys under HKEY_CURRENT_USER\Software\Microsoft\
Office\Excel\Addins. Excel also looks for COM add-ins in the registry keys under
HKEY_LOCAL_MACHINE\Software\Microsoft\Office\ Excel\Addins. COM add-ins registered under HKEY_LOCAL_MACHINE
are not shown in the COM Add-Ins dialog box and cannot be turned on or off by users. It is recommended that you do
not register your COM add-in under HKEY_LOCAL_MACHINE because it hides the COM add-in from the user.

COM add-ins are discussed in detail in Chapter 23, "Developing COM Add-Ins for Word and Excel."

Automation Add-Ins

Automation add-ins are classes registered in the registry as COM objects that expose public functions that can be used
in Excel formulas. Automation add-ins that have been installed are shown in the Add-Ins dialog box, which you can
display by choosing Add-Ins from the Tools menu. This chapter examines automation add-ins in more detail during the
discussion of how to create user-defined Excel functions for use in Excel formulas.

Visual Studio Tools for Office Code Behind

VSTO enables you to put C# or Visual Basic code behind Excel templates and workbooks. VSTO was designed from the
ground up for C# and Visual Basicso this model is the most ".NET" of all the models used to customize Excel. This
model is used when you want to customize the behavior of a particular workbook or a particular set of workbooks
created from a common template. You might create a template for an expense-reporting workbook that is used
whenever anyone in your company creates an expense report, for example. This template can add commands and
functionality that are always available when the workbook created with it is opened.

VSTO's support for code behind a workbook is discussed in detail in Part III of this book.

Smart Documents and XML Expansion Packs

Smart Documents are another way to associate your code with an Excel template or workbook. Smart Documents rely
on attaching an XML schema to a workbook or template and associating your code with that schema. The combination
of the schema and associated code is called an XML Expansion Pack. An XML Expansion Pack can be associated with an
Excel workbook by choosing Data > XML > XML Expansion Packs. Figure 3.2 shows the XML Expansion Packs dialog
box.

Figure 3.2. The XML Expansion Packs dialog box in Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When an XML Expansion Pack is attached to a workbook, Excel loads the associated code and runs it while that
workbook is opened. Smart Document solutions can create a custom user interface in the Document Actions task pane.
You can view the task pane in Excel by choosing Task Pane from the View menu. Figure 3.3 shows a custom Document
Actions task pane in Excel.

Figure 3.3. A custom Document Actions task pane in Excel.

It is possible to write Smart Document solutions "from scratch" in C# or Visual Basic. This book does not cover this
approach. Instead, this book focuses on the VSTO approach, which was designed to make Smart Document
development much easier and to allow you to create a custom Document Actions task pane by using Windows Forms.
Chapter 15, "Working with the Actions Pane," discusses this capability in more detail.

Smart Tags

Smart Tags enable displaying a pop-up menu that contains actions relevant for a recognized piece of text in a
workbook. You can control the text that Excel recognizes and the actions that are made available for that text by
creating a Smart Tag DLL or by using VSTO code behind a document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

creating a Smart Tag DLL or by using VSTO code behind a document.

A Smart Tag DLL contains two types of components that are used by Excel: a recognizer and associated actions. A
recognizer determines what text in the workbook is recognized as a Smart Tag. An action corresponds to a menu
command displayed in the pop-up menu.

A recognizer could tell Excel to recognize stock-ticker symbols (such as the MSFT stock symbol) and display a set of
actions that can be taken for that symbol: buy, sell, get the latest price, get history, and so on. A "get history" action,
for example, could launch a Web browser to show a stock-history Web page for the stock symbol that was recognized.

When a recognizer recognizes some text, Excel displays a little triangle in the bottom-right corner of the associated cell.
If the user hovers over the cell, a pop-up menu icon appears next to the cell; the user can click this icon to drop down a
menu of actions for the recognized piece of text. Figure 3.4 shows an example menu. When an action is selected, Excel
calls back into the associated action to execute your code.

Figure 3.4. Smart Tags in Excel.

Smart Tags are managed from the Smart Tags tab of the AutoCorrect dialog box, as shown in Figure 3.5. You can
display the Smart Tags tab by choosing AutoCorrect Options from the Tools menu. Here, the user can turn on and off
individual recognizers, as well as control other options relating to how Smart Tags display in the workbook.

Figure 3.5. The Smart Tags tab of the AutoCorrect dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSTO provides a simple model for creating a Smart Tag that works at the workbook or template level. Chapter 16,
"Working with Smart Tags in VSTO," describes the VSTO model for working with Smart Tags in more detail.

It is possible to write Smart Tag recognizer and action classes in a DLL that work at the application level, but it is much
more complex than the VSTO model. Chapter 16 also describes that approach.

XLA Add-Ins

Also available in the Add-Ins dialog box (shown by selecting Add-Ins from the Tools menu) are XLA add-ins. An XLA
add-in starts life as a workbook that has VBA code behind it. The developer can then save the workbook as an XLA or
Excel add-in file by choosing Save As from the File menu and selecting XLA as the file format. An XLA file acts as an
application-level add-in in the form of an invisible workbook that stays open for the lifetime of Excel. Although it is
possible to save a workbook customized with VSTO as an XLA file, many of the features of VSTO do not work when the
workbook is converted to an XLA file. Some of the features that do not work include VSTO's support for the Document
Actions task pane and for Smart Tags. For this reason, Microsoft does not support or recommend saving a workbook
customized with VSTO as an XLA file. Therefore, this book does not cover the topic further.

Server-Generated Documents

VSTO enables you to write code on the server that populates an Excel workbook with data without starting Excel on the
server. You might create an ASP.NET page that reads some data out of a database and then puts it in an Excel
workbook and returns that workbook to the client of the Web page. VSTO provides a class called ServerDocument that
makes it easy to do this. You can also use the XML file formats of Office to generate Excel documents in XML formats on
the server, but this procedure is much more complex. In addition, the Excel XML file format is lossy, meaning that you
cannot represent everything in an Excel spreadsheet in the Excel XML format. For this reason, we prefer the
ServerDocument approach when generating documents on the server over the Excel XML file format.

Chapter 18, "Server Data Scenarios," describes generating documents on the server with ServerDocument.

Research Services

Excel has a Research task pane that enables you to enter a search term and search various sources for that term.
Figure 3.6 shows the Research task pane.

Figure 3.6. The Research task pane.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Excel enables developers to write a special Web service called a research service that implements a set of Web methods
defined by Excel. A research service can be registered with Excel and used in Office's Research task pane. You might
write a research service that searches for a search term in a company database, for example.

Chapter 6, "Programming Word," discusses creating a research service in more detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming User-Defined Functions
Excel enables the creation of user-defined functions that can be used in Excel formulas. A developer must create a
special kind of DLL called an XLL. Excel also allows you to write custom functions in VBA that can be used in Excel
formulas. Unfortunately, Excel does not support or recommend writing an XLL that uses managed code.

Building a Managed Automation Add-In That Provides User-Defined Functions

Fortunately, there is an easier way to create a user-defined function that does not require you to create an XLL. Excel
2003 supports a customization technology called an automation add-in that can easily be created in C# or Visual Basic.

First, launch Visual Studio, and create a new Visual Basic class library project. Name the project AutomationAddin. In
the Class1.vb file created for you in the new project, enter the code shown in Listing 3.1. This code defines a class
called MyFunctions that implements a function called MultiplyNTimes. We will use this function as a custom formula. Our class
also implements RegisterFunction and UnregisterFunction, which are attributed with the ComRegisterFunction attribute and
ComUnregisterFunction attribute, respectively. The RegisterFunction will be called when the assembly is registered for COM
interop. The UnregisterFunction will be called when the assembly is unregistered for COM interop. These functions put a
necessary key in the registry that allows Excel to know that this class can be used as an automation add-in.

Listing 3.1. A Visual Basic Class Called MyFunctions That Exposes a User-Defined
Function MultiplyNTimes

Imports System
Imports System.Runtime.InteropServices
Imports Microsoft.Win32

<ClassInterface(ClassInterfaceType.AutoDual), ComVisible(True)> _
Public Class MyFunctions

 Public Function MultiplyNTimes(ByVal number1 As Double, _
 ByVal number2 As Double, ByVal timesToMultiply As Double) _
 As Double

 Dim result As Double = number1
 For i As Double = 0 To timesToMultiply
 result = result * number2
 Next

 Return result
 End Function

 <ComRegisterFunctionAttribute()> _
 Public Shared Sub RegisterFunction(ByVal type As Type)
 Registry.ClassesRoot.CreateSubKey(GetSubKeyName(type))
 End Sub
 <ComUnregisterFunctionAttribute()> _
 Public Shared Sub UnregisterFunction(ByVal type As Type)
 Registry.ClassesRoot.DeleteSubKey(GetSubKeyName(type), False)
 End Sub

 Private Shared Function GetSubKeyName(ByVal type As Type) _
 As String
 Dim s As New System.Text.StringBuilder()

 s.Append("CLSID\{")
 s.Append(type.GUID.ToString().ToUpper())
 s.Append("}\Programmable")

 Return s.ToString()
 End Function

End Class

With this code written, you need to modify the project so that it will automatically register this class for COM interop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With this code written, you need to modify the project so that it will automatically register this class for COM interop
when it is built. First, show the properties for the project by right-clicking the project node in Solution Explorer and
choosing Properties. In the properties designer that appears, click the Build tab, and check the Register for COM Interop
check box, as shown in Figure 3.7. Then choose Build Solution from the Build menu to build the class library project.
Your actions will result in your class library project's being built as well as registered in the registry as an automation
add-in. Now Excel will be able to see your Visual Basic class and use it.

Figure 3.7. Setting Build options to register for COM interop.

[View full size image]

Using Your Managed Automation Add-In in Excel

Launch Excel, and choose Add-Ins from the Tools menu to display the Add-Ins dialog box. In the Add-Ins dialog box,
click the Automation button. You can find the class you created by looking for AutomationAddin.MyFunctions in the list of
automation servers, as shown in Figure 3.8.

Figure 3.8. Selecting AutomationAddin.MyFunctions from the Automation Servers
dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

By clicking OK in this dialog box, you add the AutomationAddin.MyFunctions class to the list of installed automation add-ins,
as shown in Figure 3.9. You may get an error message about Excel's not being able to find mscoree.dll. If you get this
message, be sure to click the No button; otherwise, Excel removes your add-in from the list of installed automation
add-ins.

Figure 3.9. AutomationAddin.MyFunctions is now installed.

Now try to use the function MultiplyNTimes in an Excel formula. First, create a simple spreadsheet that has a number, a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now try to use the function MultiplyNTimes in an Excel formula. First, create a simple spreadsheet that has a number, a
second number to multiply the first by, and a third number for how many times you want to multiply the first number
by the second number. Figure 3.10 shows the spreadsheet.

Figure 3.10. A simple spreadsheet to test the custom formula in.

Click an empty cell in the workbook below the numbers and then click the Insert Function button (the button with the
"fx" label) in the formula bar. In the dialog box of available formulas, drop down the Or Select a Category drop-down
list, and choose AutomationAddin.MyFunctions. Then click the MultiplyNTimes function, as shown in Figure 3.11.

Figure 3.11. Picking MultiplyNTimes from the Insert Function dialog box.

When you click the OK button, Excel pops up a dialog box to help select function arguments from cells in the
spreadsheet, as shown in Figure 3.12.

Figure 3.12. Setting the function arguments.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3.12. Setting the function arguments.

After you have selected function arguments from the appropriate cells, click OK to create the final spreadsheet, shown
in Figure 3.13, with the custom formula in cell C5.

Figure 3.13. The final spreadsheet.

Creating Additional User-Defined Functions

You might experiment with other functions that could be used in an Excel formula. Listing 3.2 shows several other
functions you could add to your MyFunctions class, for example. To use Listing 3.2, you must add a reference to the Excel
11.0 Object Library and also add the code Imports Excel = Microsoft.Office.Interop.Excel to the top of your class file. Note in
particular that when you declare a parameter as an object, Excel passes you a Range object. Also note how optional
parameters are supported by the AddNumbers function. When a parameter is omitted, System.Type.Missing is passed as the
value of the parameter.

Listing 3.2. Additional User-Defined Function That Could Be Added to the
MyFunctions Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MyFunctions Class

Public Function GetStars(ByVal number As Double) As String
 Dim s As New System.Text.StringBuilder()
 s.Append("*", number)
 Return s.ToString()
End Function
Public Function AddNumbers(ByVal number1 As Object, _
 Optional ByVal number2 As Object = Nothing, _
 Optional ByVal number3 As Object = Nothing) As Double

 Dim result As Double = number1

 If number2 <> System.Type.Missing Then
 Dim r2 As Excel.Range = number2
 Dim d2 As Double = Convert.ToDouble(r2.Value2)
 result += d2
 End If

 If number3 <> System.Type.Missing Then
 Dim r3 As Excel.Range = number3
 Dim d3 As Double = Convert.ToDouble(r3.Value2)
 result += d3
 End If

 Return result

End Function

Public Function CalculateArea(ByVal range As Object) As Double
 If TypeOf range Is Excel.Range Then
 Dim r As Excel.Range = CType(range, Excel.Range)
 Return Convert.ToDouble(r.Width) + Convert.ToDouble(r.Height)
 End If
End Function

Public Function NumberOfCells(ByVal range As Object) As Double
 If TypeOf range Is Excel.Range Then
 Dim r As Excel.Range = CType(range, Excel.Range)
 Return r.Cells.Count
 End If
End Function

Public Function ToUpperCase(ByVal input As String) As String
 Return input.ToUpper()
End Function

Debugging User-Defined Functions in a Managed Automation Add-In

You can debug a Visual Basic class library project that is acting as an automation add-in by setting Excel to be the
program your class library project starts when you debug. Show the properties for the project by right-clicking the
project node in Solution Explorer and choosing Properties. In the properties designer that appears, click the Debug tab,
and click the Start external program radio button. In the Start External Program text box, type the full path to
excel.exe, as shown in Figure 3.14. Now set a breakpoint on one of your user functions, press F5, and use the function
in the spreadsheet. The debugger will stop in the implementation of your user function where the breakpoint was set.

Figure 3.14. Setting Debug options to start Excel.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deploying Managed Automation Add-Ins

To deploy an automation add-in, right-click the solution node in Solution Explorer, and choose New Project from the
Add menu. In the Add New Project dialog box, choose Setup Project from Other Project Types\Setup and Deployment in
the Project Types tree.

Right-click the added setup project in Solution Explorer, and choose Project Output from the Add menu. In the Add
Project Output Group dialog box, choose the AutomationAddin project, and select Primary Output, as shown in Figure
3.15.

Figure 3.15. Adding the Primary output of the Automation Addin project to the
setup project.

Because we told the project to register our managed object for COM interop, the setup project should already be set up

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because we told the project to register our managed object for COM interop, the setup project should already be set up
correctly to register the managed object for COM interop at install time, too. To verify this, click the Primary output
from AutomationAddin node in the setup project. In the Properties window for the primary output (our Visual Basic
DLL), make sure that Register is set to vsdrpCOM.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction to the Excel Object Model
Regardless of the approach you choose to integrate your code with Excel, you will eventually need to talk to the Excel
object model to get things done. It is impossible to describe the Excel object model completely in this book, but we try
to make you familiar with the most important objects in the Excel object model and show some of the most frequently
used methods, properties, and events of these objects.

The first step in learning the Excel object model is getting an idea of the basic structure of the object model hierarchy.
Figure 3.16 shows the most critical objects in the Excel object model and their hierarchical relationship.

Figure 3.16. The basic hierarchy of the Excel object model.

A Workbook object has a collection called Sheets. The Sheets collection can contain objects of type Worksheet or Chart.
A Chart is sometimes called a chart sheet because it covers the entire area that a worksheet would cover. You can
insert a chart sheet into a workbook by right-clicking the worksheet tabs in the bottom-left corner of the Excel
workbook and choosing Insert. Figure 3.17 shows the dialog box that appears. Note that two additional objects are in
the Sheets collection: MS Excel 4.0 macro sheets and MS Excel 5.0 dialog sheets. If you insert a macro sheet or dialog
sheet into an Excel workbook, it is treated as a special kind of worksheet; no special object model type corresponds to a
macro sheet or a dialog sheet.

Figure 3.17. Inserting various kinds of sheets into an Excel Workbook.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because a workbook can contain these various kinds of objects, Excel provides several collections off the Workbook
object. The Worksheets collection contains just the Worksheet objects in the workbook. The Charts collection contains
just the chart sheets in the workbook. The Sheets collection is a mixed collection of both. The Sheets collection returns
members of the collection as type Object; you must cast the returned object to a Worksheet or Chart. In this book, when
we talk about an object that could be either a Worksheet or a Chart, we refer to it as a sheet.

Figure 3.18 shows a more complete hierarchy tree with the major objects associated with the objects in Figure 3.16.
This starts to give you an idea of the extensive hierarchy of objects that is the Excel object model, especially when you
realize that this diagram shows fewer than half of the objects available. The objects shown in gray are coming from the
Microsoft.Office.Core namespace, which is associated with the Microsoft Office 11.0 PIA (office.dll). These objects are
shared by all the Office applications.

Figure 3.18. A more detailed hierarchy of some major objects in the Excel object
model.

[View full size image]

Figure 3.19 shows the object hierarchy associated with Range, a very important object in Excel that represents a range
of cells you want to work with in your code. We used the Range object in Listing 3.2

Figure 3.19. A more detailed hierarchy of objects associated with Range in the
Excel object model.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3.20 shows the object hierarchy associated with Shape. A Shape represents things that float on the worksheet
that are not cells, such as embedded buttons, drawings, and comment bubbles.

Figure 3.20. A more detailed hierarchy of objects associated with Shape in the
Excel object model.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter introduced the various ways you can integrate your code into Excel. The chapter described how to build
automation add-ins to create user-defined functions for Excel. You also learned the basic hierarchy of the Excel object
model. Chapter 4, "Working with Excel Events," discusses the events in the Excel object model. Chapter 5, "Working
with Excel Objects," covers the most important objects in the Excel object model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4. Working with Excel Events

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Events in the Excel Object Model
Understanding the events in the Excel object model is critical because this is often the primary way that your code is
run. This chapter examines all the events in the Excel object model, when they are raised, and the type of code you
might associate with these events.

Many of the events in the Excel object model are repeated on the Application, Workbook, and Worksheet objects. This
repetition allows you to decide whether you want to handle the event for all workbooks, for a particular workbook, or
for a particular worksheet. If you want to know when any worksheet in any open workbook is double-clicked, for
example, you would handle the Application object's SheetBeforeDoubleClick event. If you want to know when any
worksheet in a particular workbook is double-clicked, you would handle the SheetBeforeDoubleClick event on that
Workbook object. If you want to know when one particular sheet is double-clicked, you would handle the
BeforeDoubleClick event on that Worksheet object. When an event is repeated on the Application, Workbook, and
Worksheet object, it typically is raised first on Worksheet, then on Workbook, and finally on Application.

New Workbook and Worksheet Events

Excel's Application object raises a NewWorkbook event when a new, blank workbook is created. This event is not raised
when a new workbook is created from a template or an existing document. Excel also raises events when new
worksheets are created in a particular workbook. Similarly, these events are raised only when a user creates a new
worksheet. They are never raised on subsequent opens of the workbook.

This discussion focuses on the various ways in which new workbook and worksheet events are raised:

Application.NewWorkbook is raised when a new, blank workbook is created. Excel passes the new Workbook
object as a parameter to this event.

Note

NewWorkbook is the name of both a method and an event on the Workbook object. Because of this
collision, you will have to use the CType operator to cast the Workbook object to the
WorkbookEvents_Event interface when adding an event handler dynamically using the AddHandler
statement as shown in Listing 4.1. If you are adding an event handler declaratively, using WithEvents
and Handles, you do not have to worry about this issue.

Application.WorkbookNewSheet is raised when a new sheet is created in any open workbook. Excel passes
the Workbook object that the new sheet was created in as a parameter to this event. It also passes the new
sheet object. Because a workbook can contain both worksheets and chart sheets, the new sheet object is
passed as an Object. Then you can cast it to either a Worksheet or a Chart.

Workbook.NewSheet is raised on a workbook that has a new sheet created in it. Excel passes the new sheet
object as a parameter to this event. The new sheet object is passed as an Object that you can cast to either a
Worksheet or a Chart.

Listing 4.1 shows a console application that handles the Application object's NewWorkbook and WorkbookNewSheet
events. It also creates a new workbook and handles the NewSheet event for that workbook. The console application
handles the Close event for the workbook, so when you close the workbook, the console application will exit and Excel
will quit. Listing 4.1 shows several other common techniques. For the sheets passed as Object, we use the CType operator
to cast the Object to a Worksheet or a Chart. Also, we handle the NewWorkbook event dynamically by using AddHandler,
which forces us to cast app to an Excel.AppEvents_Event interface to distinguish between the method called
NewWorkbook and the event called NewWorkbook. You can avoid this issue if you handle the NewWorkbook event
declaratively (using WithEvents and Handles) rather than using the AddHandler statement.

Listing 4.1. A Console Application That Handles New Workbook and Worksheet
Events

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Events

Imports Excel = Microsoft.Office.Interop.Excel
Imports System.Windows.Forms

Module Module1

 Private WithEvents app As Excel.Application
 Private WithEvents workbook As Excel.Workbook
 Private exitXL As Boolean = False

 Sub Main()
 app = New Excel.Application()
 app.Visible = True

 ' We cast to AppEvents_Event when adding an event handler
 ' dynamically using AddHandler because NewWorkbook
 ' is the name of both a property and an event.
 AddHandler CType(app, Excel.AppEvents_Event).NewWorkbook, _
 AddressOf App_NewWorkbook

 workbook = app.Workbooks.Add()

 While exitXL = False
 System.Windows.Forms.Application.DoEvents()
 End While

 app.Quit()
 End Sub
 Private Sub App_NewWorkbook(ByVal workbook As Excel.Workbook)
 Console.WriteLine(String.Format(_
 "Application.NewWorkbook({0})", workbook.Name))
 End Sub

 Private Sub App_WorkbookNewSheet(ByVal workbook As _
 Excel.Workbook, ByVal sheet As Object) _
 Handles app.WorkbookNewSheet

 If TypeOf sheet Is Excel.Worksheet Then
 Dim worksheet As Excel.Worksheet
 worksheet = CType(sheet, Excel.Worksheet)
 Console.WriteLine(String.Format(_
 "Application.WorkbookNewSheet({0},{1})", _
 workbook.Name, worksheet.Name))
 End If

 If TypeOf sheet Is Excel.Chart Then
 Dim chart As Excel.Chart = CType(sheet, Excel.Chart)
 Console.WriteLine(String.Format(_
 "Application.WorkbookNewSheet({0},{1})", _
 workbook.Name, chart.Name))
 End If

 End Sub

 Private Sub Workbook_NewSheet(ByVal sheet As Object) _
 Handles workbook.NewSheet

 If TypeOf sheet Is Excel.Worksheet Then
 Dim worksheet As Excel.Worksheet
 worksheet = CType(sheet, Excel.Worksheet)
 Console.WriteLine(String.Format(_
 "Workbook.NewSheet({0})", worksheet.Name))
 End If

 If TypeOf sheet Is Excel.Chart Then
 Dim chart As Excel.Chart = CType(sheet, Excel.Chart)
 Console.WriteLine(String.Format(_
 "Workbook.NewSheet({0})", chart.Name))
 End If

 End Sub

 Private Sub Workbook_BeforeClose(ByRef cancel As Boolean) _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub Workbook_BeforeClose(ByRef cancel As Boolean) _
 Handles workbook.BeforeClose

 exitXL = True

 End Sub

End Module

As you consider the code in Listing 4.1, you might wonder how you will ever remember the syntax of complicated lines
of code such as this one:

Private Sub App_WorkbookNewSheet(ByVal workbook _
 As Excel.Workbook, ByVal sheet As Object) _
 Handles app.WorkbookNewSheet

Fortunately, Visual Studio 2005 helps by generating this code for you. When you have declared the app member variable
as having events by using the WithEvents keyword, Visual Studio will display the app variable in the left drop-down list of
the code editor. Select app from the left drop-down list; then select the event that is raised by app that you want to
handle from the right drop-down listin this case, WorkbookNewSheet (see Figure 4.1). When you select the event you
want to handle, Visual Studio generates the event handler method automatically.

Figure 4.1. Visual Studio generates event handler code for you if you use the left
and right drop-down lists in the code editor.

[View full size image]

If you are using VSTO, you can also use the Properties window to add event handlers to your workbook or worksheet
classes. Double-click the project item for your workbook class (typically called ThisWorkbook.vb) or one of your
worksheet classes (typically called Sheet1.vb, Sheet2.vb, and so on). Make sure that the Properties window is visible; if
it is not, choose Properties Window from the View menu. Make sure that the workbook class (typically called
ThisWorkbook) or a worksheet class (typically called Sheet1, Sheet2, and so on) is selected in the combo box at the top
of the Properties window. Then click the lightning-bolt icon to show events associated with the workbook or worksheet.
Type the name of the method you want to use as an event handler in the edit box to the right of the event you want to
handle.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

handle.

Activation and Deactivation Events

Sixteen events in the Excel object model are raised when various objects are activated or deactivated. An object is
considered activated when its window receives focus or it is made the selected or active object. Worksheets, for
example, are activated and deactivated when you switch from one worksheet to another within a workbook. Clicking the
tab for Sheet3 in a workbook that has Sheet1 selected raises a Deactivate event for Sheet1 (it is losing focus) and an
Activate event for Sheet3 (it is getting focus). You can activate/deactive chart sheets in the same manner. Doing so
raises Activate and Deactivate events on the Chart object corresponding to the chart sheet that was activated or
deactivated.

You can also activate/deactivate worksheets. Consider the case where you have the workbooks Book1 and Book2 open
at the same time. If you are editing Book1, and you switch from Book1 to Book2 by choosing Book2 from the Window
menu, the Deactivate event for Book1 is raised, and the Activate event for Book2 is raised.

Windows are other examples of objects that are activated and deactivated. A workbook can have more than one
window open that is showing the workbook. Consider the case where you have the workbook Book1 opened. If you
choose New Window from the Window menu, two windows will open in Excel viewing Book1. One window has the
caption Book1:1, and the other window has the caption Book1:2. As you switch between Book1:1 and Book1:2, the
WindowActivate event is raised for the workbook. Switching between Book1:1 and Book1:2 does not raise the
Workbook Activate or Deactivate event, because Book1 remains the active workbook.

Note that Activate and Deactivate events are not raised when you switch to an application other than Excel and then
switch back to Excel. You might expect that if you had Excel and Word open side by side on your monitor, switching
focus by clicking from Excel to Word would raise Deactivate events inside Excel. This is not the case. Excel does not
consider switching to another application to be a deactivation of any of its workbooks, sheets, or windows.

The discussion now turns to the various ways in which Activate and Deactivate events are raised:

Application.WorkbookActivate is raised whenever a workbook is activated within Excel. Excel passes the
Workbook object that was activated as a parameter to this event.

Workbook.Activate is raised on a particular workbook that is activated. No parameter is passed to this event
because the activated workbook is the Workbook object raising the event.

Note

Activate is the name of both a method and an event on the Workbook object. Because of this
collision, you will have to use the CType operator to cast the Workbook object to the
WorkbookEvents_Event interface when adding an event handler dynamically using the AddHandler
statement as shown in Listing 4.1. If you are adding an event handler declaratively using WithEvents
and Handles, you do not have to worry about this issue.

Application.WorkbookDeactivate is raised whenever any workbook is deactivated within Excel. Excel passes
the Workbook object that was deactivated as a parameter to this event.

Workbook.Deactivate is raised on a particular workbook that is deactivated. No parameter is passed to this
event because the deactivated workbook is the Workbook object raising the event.

Application.SheetActivate is raised whenever a worksheet is activated within Excel. Excel passes the sheet
object that was activated as a parameter to this event. Because a workbook can contain both worksheets and
chart sheets, the activated sheet is passed as an Object. Then you can cast it to either a Worksheet or a Chart.

Workbook.SheetActivate is raised on a workbook that has a sheet that was activated. Excel passes the sheet
object that was activated as a parameter to this event. Because a workbook can contain both worksheets and
chart sheets, the activated sheet is passed as an Object. Then you can cast it to either a Worksheet or a Chart.

Worksheet.Activate and Chart.Activate are raised on an activated worksheet or chart sheet. No parameter
is passed to these events because the activated sheet is the Worksheet or Chart object raising this event.

Note

Activate is the name of both a method and an event on the Worksheet and the Chart object.
Because of this collision, you will have to use the CType operator to cast the Worksheet object to the
DocEvents_Event interface and cast the Chart object to the ChartEvents_Events interface when
adding an event handler dynamically using the AddHandler statement. If you are adding an event
handler declaratively using WithEvents and Handles, you do not have to worry about this issue.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

handler declaratively using WithEvents and Handles, you do not have to worry about this issue.

It is strange that the interface you cast the Worksheet object to is called DocEvents_Event. This is
due to the way the primary interop assemblies (PIAs) are generated; the event interface on the
COM object Worksheet was called DocEvents rather than WorksheetEvents. The same
inconsistency occurs with the Application object; it has an event interface called AppEvents rather
than ApplicationEvents.

Application.SheetDeactivate is raised whenever any worksheet is deactivated within Excel. Excel passes the
sheet object that was deactivated as a parameter to this event. Because a workbook can contain both
worksheets and chart sheets, the deactivated sheet is passed as an Object. Then you can cast it to either a
Worksheet or a Chart.

Workbook.SheetDeactivate is raised on a workbook that has a sheet that was deactivated. Excel passes the
sheet object that was deactivated as a parameter to this event. Because a workbook can contain both
worksheets and chart sheets, the deactivated sheet is passed as an Object. Then you can cast it to either a
Worksheet or a Chart.

Worksheet.Deactivate and Chart.Deactivate are raised on a deactivated worksheet or chart sheet. No
parameters are passed to these events because the deactivated sheet is the Worksheet or Chart object raising
this event.

Application.WindowActivate is raised whenever a window is activated within Excel. Excel passes the
Workbook object corresponding to the window that was activated as a parameter to this event. Excel also
passes the Window object that was activated.

Workbook.WindowActivate is raised on a workbook that has a window that was activated. Excel passes the
Window object that was activated as a parameter to this event.

Application.WindowDeactivate is raised whenever a window is deactivated within Excel. Excel passes the
Workbook object corresponding to the window that was deactivated as a parameter to this event. Excel also
passes the Window object that was deactivated.

Workbook.WindowDeactivate is raised on a workbook that has a window that was deactivated. Excel passes
the Window object that was deactivated as a parameter to this event.

Listing 4.2 shows a class that handles all these events. It is passed an Excel Application object to its constructor. The
constructor creates a new workbook and gets the first sheet in the workbook. Then it creates a chart sheet. It handles
events raised on the Application object, as well as the created workbook, the first worksheet in the workbook, and the
chart sheet that it adds to the workbook. Because several events pass as a parameter a sheet as an Object, a helper
method called ReportEventWithSheetParameter is used to determine the type of sheet passed and to display a message to the
console.

Listing 4.2. A Class That Handles Activation and Deactivation Events

Imports Excel = Microsoft.Office.Interop.Excel

Public Class TestEventHandler

 Private WithEvents app As Excel.Application
 Private WithEvents workbook As Excel.Workbook
 Private WithEvents worksheet As Excel.Worksheet
 Private WithEvents chart As Excel.Chart

 Public Sub New(ByVal application As Excel.Application)
 Me.app = application
 workbook = application.Workbooks.Add()
 worksheet = workbook.Worksheets(1)
 chart = workbook.Charts.Add
 End Sub

 Private Sub ReportEventWithSheetParameter(_
 ByVal eventName As String, ByVal sheet As Object)

 If TypeOf sheet Is Excel.Worksheet Then
 Dim worksheet As Excel.Worksheet
 worksheet = CType(sheet, Excel.Worksheet)
 Console.WriteLine(String.Format("{0} ({1})", _
 eventName, worksheet.Name))
 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If TypeOf sheet Is Excel.Chart Then
 Dim chart As Excel.Chart = CType(sheet, Excel.Chart)
 Console.WriteLine(String.Format("{0} ({1})", _
 eventName, chart.Name))
 End If

 End Sub

 Private Sub App_WorkbookActivate(_
 ByVal workbook As Excel.Workbook) _
 Handles app.WorkbookActivate

 Console.WriteLine(String.Format(_
 "Application.WorkbookActivate({0})", _
 workbook.Name))

 End Sub

 Private Sub Workbook_Activate() Handles workbook.Activate
 Console.WriteLine("Workbook.Activate()")
 End Sub

 Private Sub App_WorkbookDeactivate(_
 ByVal workbook As Excel.Workbook) _
 Handles app.WorkbookDeactivate

 Console.WriteLine(String.Format(_
 "Application.WorkbookDeactivate({0})", _
 workbook.Name))

 End Sub

 Private Sub Workbook_Deactivate() Handles workbook.Deactivate
 Console.WriteLine("Workbook.Deactivate()")
 End Sub

 Private Sub App_SheetActivate(ByVal sheet As Object) _
 Handles app.SheetActivate

 ReportEventWithSheetParameter("Application.SheetActivate", _
 sheet)

 End Sub

 Private Sub Workbook_SheetActivate(ByVal sheet As Object) _
 Handles workbook.SheetActivate

 ReportEventWithSheetParameter("Workbook.SheetActivate", _
 sheet)

 End Sub

 Private Sub Worksheet_Activate() Handles worksheet.Activate
 Console.WriteLine("Worksheet.Activate()")
 End Sub

 Private Sub Chart_Activate() Handles chart.Activate
 Console.WriteLine("Chart.Activate()")
 End Sub

 Private Sub App_SheetDeactivate(ByVal sheet As Object) _
 Handles app.SheetDeactivate

 ReportEventWithSheetParameter(_
 "Application.SheetDeactivate", sheet)

 End Sub

 Private Sub Workbook_SheetDeactivate(ByVal sheet As Object) _
 Handles workbook.SheetDeactivate

 ReportEventWithSheetParameter(_
 "Workbook.SheetDeactivate", sheet)

 End Sub

 Private Sub Worksheet_Deactivate() Handles worksheet.Deactivate
 Console.WriteLine("Worksheet.Deactivate()")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Console.WriteLine("Worksheet.Deactivate()")
 End Sub

 Private Sub Chart_Deactivate() Handles chart.Deactivate
 Console.WriteLine("Chart.Deactivate()")
 End Sub

 Private Sub App_WindowActivate(_
 ByVal workbook As Excel.Workbook, _
 ByVal window As Excel.Window) _
 Handles app.WindowActivate

 Console.WriteLine(String.Format(_
 "Application.WindowActivate({0}, {1})", _
 workbook.Name, window.Caption))

 End Sub

 Private Sub Workbook_WindowActivate(_
 ByVal window As Excel.Window) _
 Handles workbook.WindowActivate

 Console.WriteLine(String.Format(_
 "Workbook.WindowActivate({0})", _
 window.Caption))

 End Sub

 Private Sub App_WindowDeactivate(_
 ByVal workbook As Excel.Workbook, _
 ByVal window As Excel.Window) _
 Handles app.WindowDeactivate

 Console.WriteLine(String.Format(_
 "Application.WindowDeactivate({0}, {1})", _
 workbook.Name, window.Caption))

 End Sub

 Private Sub Workbook_WindowDeactivate(_
 ByVal window As Excel.Window) _
 Handles workbook.WindowDeactivate

 Console.WriteLine(String.Format(_
 "Application.WindowActivate({1})", _
 window.Caption))

 End Sub

End Class

DoubleClick and RightClick Events

Several events are raised when a worksheet or a chart sheet is double-clicked or right-clicked (clicked with the right
mouse button). Double-click events occur when you double-click in the center of a cell in a worksheet or on a chart
sheet. If you double-click the border of the cell, no events are raised. If you double-click column headers or row
headers, no events are raised. If you double-click objects in a worksheet (Shape objects in the object model), such as
an embedded chart, no events are raised. After you double-click a cell in Excel, Excel enters editing mode for that cell;
a cursor displays in the cell, allowing you to type in the cell. If you double-click a cell in editing mode, no events are
raised.

The right-click events occur when you right-click a cell in a worksheet or on a chart sheet. A right-click event is also
raised when you right-click column headers or row headers. If you right-click objects in a worksheet, such as an
embedded chart, no events are raised.

The right-click and double-click events for a chart sheet do not raise events on the Application and Workbook objects.
Instead, BeforeDoubleClick and BeforeRightClick events are raised directly on the Chart object.

All the right-click and double-click events have "Before" in their names. This is because Excel is raising these events
before Excel does its default behaviors for double-click and right-clickfor example, displaying a context menu or going
into edit mode for the cell you double-clicked. All these events have a Boolean parameter that is passed by a reference
called cancel, which allows you to cancel Excel's default behavior for the double-click or right-click that occurred by
setting the cancel parameter to true.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Many of the right-click and double-click events pass a Range object as a parameter. A Range object represents a range
of cells; it can represent a single cell or multiple cells. If you select several cells and then rightclick the selected cells,
for example, a Range object is passed to the right-click event that represents the selected cells.

Double-click and right-click events are raised in various ways, as follows:

Application.SheetBeforeDoubleClick is raised whenever any cell in any worksheet within Excel is double-
clicked. Excel passes as an Object the Worksheet that was double-clicked, a Range for the range of cells that was
double-clicked, and a Boolean cancel parameter passed by reference. The cancel parameter can be set to true by
your event handler to prevent Excel from executing its default double-click behavior. This is a case where it
really does not make sense that Worksheet is passed as Object because a Chart is never passed. You will always
have to cast the Object to a Worksheet.

Workbook.SheetBeforeDoubleClick is raised on a workbook that has a cell in a worksheet that was double-
clicked. Excel passes the same parameters as the Application-level SheetBeforeDoubleClick.

Worksheet.BeforeDoubleClick is raised on a worksheet that is double-clicked. Excel passes a Range for the
range of cells that was double-clicked and a Boolean cancel parameter passed by reference. The cancel parameter
can be set to TRue by your event handler to prevent Excel from executing its default double-click behavior.

Chart.BeforeDoubleClick is raised on a chart sheet that is double-clicked. Excel passes as Integer an elementID
and two parameters called arg1 and arg2. The combination of these three parameters allows you to determine
what element of the chart was double-clicked. Excel also passes a Boolean cancel parameter by reference. The
cancel parameter can be set to TRue by your event handler to prevent Excel from executing its default double-
click behavior.

Application.SheetBeforeRightClick is raised whenever any cell in any worksheet within Excel is right-clicked.
Excel passes as an Object the Worksheet that was right-clicked, a Range for the range of cells that was right-
clicked, and a Boolean cancel parameter passed by reference. The cancel parameter can be set to true by your event
handler to prevent Excel from executing its default right-click behavior. This is a case where it really does not
make sense that Worksheet is passed as an Object because a Chart is never passed. You will always have to cast
the Object to a Worksheet.

Workbook.SheetBeforeRightClick is raised on a workbook that has a cell in a worksheet that was right-
clicked. Excel passes the same parameters as the Application-level SheetBeforeRightClick.

Worksheet.BeforeRightClick is raised on a worksheet that is right-clicked. Excel passes a Range for the
range of cells that was right-clicked and a Boolean cancel parameter passed by reference. The cancel parameter can
be set to true by your event handler to prevent Excel from executing its default right-click behavior.

Chart.BeforeRightClick is raised on a chart sheet that is right-clicked. Strangely enough, Excel does not pass
any of the parameters that it passes to the Chart.BeforeDoubleClickEvent. Excel does pass a Boolean cancel
parameter by reference. The cancel parameter can be set to true by your event handler to prevent Excel from
executing its default right-click behavior.

Listing 4.3 shows a VSTO Workbook class that handles all these events. This code assumes that you have added a chart
sheet to the workbook and that this chart sheet is called Chart1. In VSTO, you do not have to keep a reference to the
Workbook object or to the Worksheet or Chart objects when handling events raised by these objects because they are
already being kept by the project items generated in the VSTO project. You do need to keep a reference to the
Application object when handling events raised by the Application object because it is not being kept anywhere in the
VSTO project.

The ThisWorkbook class generated by VSTO derives from a class that has all the members of Excel's Workbook object, so
we can add workbook event handlers by adding code that refers to Me, as shown in Listing 4.3. We can get an
Application object by using Me.Application because Application is a property of Workbook. Because the returned application
object is not being held as a reference by any other code, we must declare a class member variable to hold on to this
Application object so that our events handlers will work. Chapter 1, "An Introduction to Office Programming," discusses
this issue in more detail.

To get to the chart and the worksheet that are in our VSTO project, we use VSTO's Globals object, which lets us get to
the classes Chart1 and Sheet1 that are declared in other project items. We do not have to hold these objects in class
member variables because they have lifetimes that match the lifetime of the VSTO code behind.

We also declare two helper functions in Listing 4.3. One casts the sheet that is passed as an Object to a Worksheet and
returns the name of the worksheet. The other gets the address of the Range that is passed to many of the events as
the target parameter.

All the handlers for the right-click events set the Boolean cancel parameter that is passed by reference to TRue. This will
make it so that Excel will not perform its default behavior on right-click, which typically is to pop up a menu.

Note also that the code uses dynamic event handling to handle the events raised by Sheet1; the AddHandler statement is
used to connect these event handlers. This illustrates dynamic event handling, but the code could just as easily been
written using declarative event handling.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 4.3. A VSTO Workbook Customization That Handles Double-Click and Right-
Click Events

Imports Excel = Microsoft.Office.Interop.Excel
Imports Office = Microsoft.Office.Core

Public Class ThisWorkbook

 Private WithEvents app As Excel.Application

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 AddHandler Globals.Sheet1.BeforeDoubleClick, _
 AddressOf Sheet1_BeforeDoubleClick
 AddHandler Globals.Chart1.BeforeDoubleClick, _
 AddressOf Chart1_BeforeDoubleClick
 AddHandler Globals.Sheet1.BeforeRightClick, _
 AddressOf Sheet1_BeforeRightClick
 AddHandler Globals.Chart1.BeforeRightClick, _
 AddressOf Chart1_BeforeRightClick

 End Sub
 Private Function RangeAddress(ByVal target As Excel.Range) _
 As String
 Return target.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1)
 End Function

 Private Function SheetName(ByVal sheet As Object) As String
 If TypeOf sheet Is Excel.Worksheet Then
 Dim worksheet As Excel.Worksheet
 worksheet = CType(sheet, Excel.Worksheet)
 Return worksheet.Name
 Else
 Return String.Empty
 End If
 End Function

 Private Sub App_SheetBeforeDoubleClick(_
 ByVal sheet As Object, _
 ByVal target As Excel.Range, ByRef cancel As Boolean) _
 Handles app.SheetBeforeDoubleClick

 MsgBox(String.Format(_
 "Application.SheetBeforeDoubleClick({0},{1})", _
 SheetName(sheet), RangeAddress(target)))

 End Sub

 Private Sub ThisWorkbook_SheetBeforeDoubleClick(_
 ByVal sheet As Object, ByVal target As Excel.Range, _
 ByRef cancel As Boolean) Handles Me.SheetBeforeDoubleClick

 MsgBox(String.Format(_
 "Workbook.SheetBeforeDoubleClick({0}, {1})", _
 SheetName(sheet), RangeAddress(target)))

 End Sub

 Private Sub Sheet1_BeforeDoubleClick(_
 ByVal target As Excel.Range, _
 ByRef cancel As Boolean)

 MsgBox(String.Format(_
 "Worksheet.SheetBeforeDoubleClick({0})", _
 RangeAddress(target)))

 End Sub

 Private Sub Chart1_BeforeDoubleClick(_
 ByVal elementID As Integer, _
 ByVal arg1 As Integer, _
 ByVal arg2 As Integer, ByRef cancel As Boolean)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal arg2 As Integer, ByRef cancel As Boolean)

 MsgBox(String.Format(_
 "Chart.SheetBeforeDoubleClick({0}, {1}, {2})", _
 elementID, arg1, arg2))

 End Sub

 Private Sub App_SheetBeforeRightClick(_
 ByVal sheet As Object, _
 ByVal target As Excel.Range, ByRef cancel As Boolean) _
 Handles app.SheetBeforeRightClick

 MsgBox(String.Format(_
 "Application.SheetBeforeRightClick({0},{1})", _
 SheetName(sheet), RangeAddress(target)))
 cancel = True

 End Sub

 Private Sub ThisWorkbook_SheetBeforeRightClick(_
 ByVal sheet As Object, ByVal target As Excel.Range, _
 ByRef cancel As Boolean) Handles Me.SheetBeforeRightClick

 MsgBox(String.Format(_
 "Workbook.SheetBeforeRightClick({0},{1})", _
 SheetName(sheet), RangeAddress(target)))
 cancel = True

 End Sub

 Private Sub Sheet1_BeforeRightClick(_
 ByVal target As Excel.Range, _
 ByRef cancel As Boolean)

 MsgBox(String.Format(_
 "Worksheet.SheetBeforeRightClick({0})", _
 RangeAddress(target)))
 cancel = True
 End Sub

 Private Sub Chart1_BeforeRightClick(ByRef cancel As Boolean)
 MsgBox("Chart.SheetBeforeRightClick()")
 cancel = True
 End Sub

End Class

Cancelable Events and Event Bubbling

Listing 4.3 raises an interesting question: What happens when multiple objects handle an event such as
BeforeRightClick at multiple levels? Listing 4.3 handles the BeforeRightClick event at the Worksheet, Workbook, and
Application levels. Excel first raises the event at the Worksheet level for all code that has registered for the Worksheet-
level event. Remember that other add-ins could be loaded in Excel handling Worksheetlevel events as well. Your code
might get the Worksheet.BeforeRightClick event first, followed by some other add-in that also is handling the
Worksheet.BeforeRightClick event. When multiple add-ins handle the same event on the same object, you cannot rely
on any determinate order for which will get the event first. Therefore, do not write your code to rely on any particular
ordering.

After events are raised at the Worksheet level, they are raised at the Workbook level and finally at the Application level.
For a cancelable event, even if one event handler sets the cancel parameter to true, the events will continue to be raised
to other event handlers. So even though the code in Listing 4.3 sets the cancel parameter to true in Sheet1_BeforeRightClick,
Excel will continue to raise events on other handlers of the worksheet BeforeRightClick and then handlers of the
Workbook.SheetBeforeRightClick, followed by handlers of the Application.SheetBeforeRightClick.

Another thing you should know about cancelable events is that you can check the incoming cancel parameter in your
event handler to see what the last event handler set it to. So in the Sheet1_BeforeRightClick handler, the incoming cancel
parameter would be False, assuming that no other code is handling the event. In the ThisWorkbook_SheetBeforeRightClick
handler, the incoming cancel parameter would be true because the last handler, Sheet1_BeforeRightClick, set it to true. This
means that as an event bubbles through multiple handlers, each subsequent handler can override what the previous
handlers did with respect to canceling the default right-click behavior in this example. Application-level handlers get the
final sayalthough if multiple Application-level handlers exist for the same event, whether the event gets canceled is
indeterminate, because no rules dictate which of multiple Applicationlevel event handlers gets an event first or last.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Calculate Events

Four events are raised when formulas in the worksheet are recalculated. The worksheet is recalculated whenever you
change a cell that affects a formula referring to that cell or when you add or modify a formula:

Application.SheetCalculate is raised whenever any sheet within Excel is recalculated. Excel passes the sheet
as an Object that was recalculated as a parameter to this event. The sheet object can be cast to a Worksheet or
a Chart.

Workbook.SheetCalculate is raised on a workbook that has a sheet that was recalculated. Excel passes the
sheet as an Object that was recalculated as a parameter to this event. The sheet object can be cast to a
Worksheet or a Chart.

Worksheet.Calculate is raised on a worksheet that was recalculated.

Note

Calculate is the name of both a method and an event on the Worksheet object. Because of this
collision, you will have to use the CType operator to cast the Worksheet object to the
DocEvents_Event interface when adding an event handler dynamically using the AddHandler
statement. If you are adding an event handler declaratively using WithEvents and Handles, you do not
have to worry about this issue.

Chart.Calculate is raised on a chart sheet that was updated because data it referenced changed. This event
does not occur until the chart is forced to redrawso if the chart is not currently visible because it is not selected
or displayed in its own window, the event will not be raised until the chart is visible.

Listing 4.4 shows a console application that handles all the calculation events. The console application creates a new
workbook, gets the first worksheet in the workbook, and creates a chart in the workbook. The console application also
handles the Close event for the created workbook to cause the console application to exit when the workbook is closed.
To get Excel to raise worksheet and workbook Calculate events, add some values and formulas to the first worksheet in
the workbook. To raise the Chart object's Calculate event, you can right-click the chart sheet that you are handling the
event for, and choose Source Data from the pop-up menu. Then click the button to the right of the Data Range text
box, switch to the first worksheet, and select a range of values for the chart sheet to display. When you change those
values and switch back to the chart sheet, the Chart's Calculate event will be raised.

Listing 4.4. A Console Application That Handles Calculate Events

Imports System.Windows.Forms
Imports Excel = Microsoft.Office.Interop.Excel

Module Module1

 Private WithEvents app As Excel.Application
 Private WithEvents workbook As Excel.Workbook
 Private WithEvents worksheet As Excel.Worksheet
 Private WithEvents chart As Excel.Chart
 Private exitXL As Boolean = False

 Sub Main()
 app = New Excel.Application
 app.Visible = True

 workbook = app.Workbooks.Add()
 worksheet = workbook.Sheets(1)
 chart = workbook.Charts.Add()

 While exitXL = False
 System.Windows.Forms.Application.DoEvents()
 End While

 app.Quit()
 End Sub

 Private Sub Workbook_BeforeClose(ByRef cancel As Boolean) _
 Handles workbook.BeforeClose

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 exitXL = True

 End Sub

Private Function SheetName(ByVal sheet As Object) As String
 If TypeOf sheet Is Excel.Worksheet Then
 Dim worksheet As Excel.Worksheet
 worksheet = CType(sheet, Excel.Worksheet)
 Return worksheet.Name
 End If

 If TypeOf sheet Is Excel.Chart Then
 Dim chart As Excel.Chart = CType(sheet, Excel.Chart)
 Return chart.Name
 End If

 Return String.Empty
 End Function

 Private Sub App_SheetCalculate(ByVal sheet As Object) _
 Handles app.SheetCalculate

 Console.WriteLine(String.Format(_
 "Application.SheetCalculate({0})", SheetName(sheet)))
 End Sub

 Private Sub Workbook_SheetCalculate(ByVal sheet As Object) _
 Handles workbook.SheetCalculate

 Console.WriteLine(String.Format(_
 "Workbook.SheetCalculate({0})", SheetName(sheet)))

 End Sub

 Private Sub Worksheet_Calculate() Handles worksheet.Calculate
 Console.WriteLine("Worksheet.Calculate()")

 End Sub

 Private Sub Chart_Calculate() Handles chart.Calculate
 Console.WriteLine("Chart.Calculate()")
 End Sub

End Module

Change Events

Excel raises several events when a cell or range of cells is changed in a worksheet. The cells must be changed by a user
editing the cell for change events to be raised. Change events can also be raised when a cell is linked to external data
and is changed as a result of refreshing the cell from the external data. Change events are not raised when a cell is
changed because of a recalculation. They are not raised when the user changes the formatting of the cell without
changing the value of the cell. When a user is editing a cell and is in cell-edit mode, the change events are not raised
until the user exits cell-edit mode by leaving that cell or pressing the Enter key:

Application.SheetChange is raised when a cell or range of cells in any workbook is changed by the user or
updated from external data. Excel passes the sheet as an Object where the change occurred as a parameter to
this event. You can always cast the sheet parameter to a Worksheet because the Change event is not raised for
chart sheets. Excel also passes a Range as a parameter for the range of cells that was changed.

Workbook.SheetChange is raised on a workbook when a cell or range of cells in that workbook is changed by
the user or updated from external data. Excel passes the sheet as an Object where the change occurred as a
parameter to this event. You can always cast the sheet parameter to a Worksheet because the Change event is
not raised for chart sheets. Excel also passes a Range as a parameter for the range of cells that was changed.

Worksheet.Change is raised on a worksheet when a cell or range of cells in that worksheet is changed by the
user or updated from external data. Excel passes a Range as a parameter for the range of cells that was
changed.

Listing 4.5 shows a class that handles all the Change events. It is passed an Excel Application object to its constructor.
The constructor creates a new workbook and gets the first worksheet in the workbook. It handles events raised on the
Application object, the workbook, and the first worksheet in the workbook.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application object, the workbook, and the first worksheet in the workbook.

Listing 4.5. A Class That Handles Change Events

Imports Excel = Microsoft.Office.Interop.Excel

Public Class ChangeEventHandler

 Private WithEvents app As Excel.Application
 Private WithEvents workbook As Excel.Workbook
 Private WithEvents worksheet As Excel.Worksheet

Public Sub New(ByVal application As Excel.Application)
 Me.app = application
 workbook = app.Workbooks.Add()
 worksheet = workbook.Worksheets(1)
 End Sub

 ' Change events only pass worksheets, never charts.
 Private Function SheetName(ByVal sheet As Object) As String
 If TypeOf sheet Is Excel.Worksheet Then
 Dim worksheet As Excel.Worksheet
 worksheet = CType(sheet, Excel.Worksheet)
 Return worksheet.Name
 End If
 End Function

 Private Function RangeAddress(_
 ByVal target As Excel.Range) As String
 Return target.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1)
 End Function

 Private Sub App_SheetChange(ByVal sheet As Object, _
 ByVal target As Excel.Range) Handles app.SheetChange

 Console.WriteLine(String.Format(_
 "Application.SheetChange({0},{1})", _
 SheetName(sheet), RangeAddress(target)))

 End Sub

 Private Sub Workbook_SheetChange(ByVal sheet As Object, _
 ByVal target As Excel.Range) Handles workbook.SheetChange

 Console.WriteLine(String.Format(_
 "Workbook.SheetChange({0},{1})", _
 SheetName(sheet), RangeAddress(target)))

 End Sub

 Private Sub Worksheet_Change(ByVal target As Excel.Range) _
 Handles worksheet.Change

 Console.WriteLine(String.Format("Worksheet.Change({0})",_
 RangeAddress(target)))

 End Sub

End Class

Follow Hyperlink Events

Excel raises several events when a hyperlink in a cell is clicked. You might think this event is not very interesting, but
you can use it as a simple way to invoke an action in your customization. The trick is to create a hyperlink that does
nothing and then handle the FollowHyperlink event and execute your action in that event handler.

To create a hyperlink that does nothing, right-click the cell where you want to put your hyperlink, and choose Hyperlink.
For our example, we select cell C3. In the dialog box that appears, click the Place in This Document icon on the left side
of the dialog box (see Figure 4.2). In the Type the Cell Reference text box, type C3 or the reference of the cell to which

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of the dialog box (see Figure 4.2). In the Type the Cell Reference text box, type C3 or the reference of the cell to which
you are adding a hyperlink. The logic behind doing this is that Excel will select the cell that C3 is linked to after the
hyperlink is clicked and after your event handler runs. If you select a cell other than the cell the user clicked, the
selection will move, which is confusing. So we effectively link the cell to itself, creating a do-nothing link. In the Text to
Display text box, type the name of your commandthe name you want displayed in the cell. In this example, we name
the command Print.

Figure 4.2. The Insert Hyperlink dialog box.

[View full size image]

The following events are raised when a hyperlink is clicked:

Application.SheetFollowHyperlink is raised when a hyperlink is clicked in any workbook open in Excel. Excel
passes a Hyperlink object as a parameter to this event. The Hyperlink object gives you information about the
hyperlink that was clicked.

Workbook.SheetFollowHyperlink is raised on a workbook when a hyperlink is clicked in that workbook. Excel
passes a Hyperlink object as a parameter to this event. The Hyperlink object gives you information about the
hyperlink that was clicked.

Worksheet.FollowHyperlink is raised on a worksheet when a hyperlink is clicked in that worksheet. Excel
passes a Hyperlink object as a parameter to this event. The Hyperlink object gives you information about the
hyperlink that was clicked.

Listing 4.6 shows a VSTO customization class for the workbook project item. This class assumes a workbook that has a
Print hyperlink in it, created as shown in Figure 4.2 The customization does nothing in the handlers of the Application or
Workbook-level hyperlink events but log to the console window. The Worksheet-level handler detects that a hyperlink
named Print was clicked and invokes the PrintOut method on the Workbook object to print the workbook.

Listing 4.6. A VSTO Workbook Customization That Handles Hyperlink Events

Imports Excel = Microsoft.Office.Interop.Excel
Imports Office = Microsoft.Office.Core

Public Class ThisWorkbook

 Private WithEvents app As Excel.Application

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 AddHandler Globals.Sheet1.FollowHyperlink, _
 AddressOf Sheet_FollowHyperlink

 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

 Private Function SheetName(ByVal sheet As Object) As String
 If TypeOf sheet Is Excel.Worksheet Then
 Dim worksheet As Excel.Worksheet
 worksheet = CType(sheet, Excel.Worksheet)
 Return worksheet.Name
 Else
 Return String.Empty
 End If
 End Function

 Private Sub App_SheetFollowHyperlink(ByVal sheet As Object, _
 ByVal target As Excel.Hyperlink) _
 Handles app.SheetFollowHyperlink

 MsgBox(String.Format(_
 "Application.SheetFollowHyperlink({0},{1})", _
 SheetName(sheet), target.Name))

 End Sub

 Private Sub Workbook_SheetFollowHyperlink(_
 ByVal sheet As Object, _
 ByVal target As Excel.Hyperlink) _
 Handles Me.SheetFollowHyperlink

 MsgBox(String.Format(_
 "Workbook.SheetFollowHyperlink({0},{1})", _
 SheetName(sheet), target.Name))

 End Sub

 Private Sub Sheet_FollowHyperlink(_
 ByVal target As Excel.Hyperlink)
 If target.Name = "Print" Then
 Me.PrintOut()
 End If
 End Sub

End Class

Selection Change Events

Selection change events occur when the selected cell or cells change or, in the case of the Chart. Select event, when
the selected chart element within a chart sheet changes:

Application.SheetSelectionChange is raised whenever the selected cell or cells in any worksheet within Excel
change. Excel passes the sheet upon which the selection changed to the event handler. The event handler's
parameter is typed as Object, however, so it must be cast to a Worksheet if you want to use the properties or
methods of the Worksheet. You are guaranteed to be able to cast the argument to Worksheet because the
SheetSelectionChange event is not raised when selection changes on a Chart. Excel also passes the range of
cells that is the new selection.

Workbook.SheetSelectionChange is raised on a Workbook whenever the selected cell or cells in that
workbook change. Excel passes as an Object the sheet where the selection changed. You can always cast the
sheet object to a Worksheet because this event is not raised for selection changes on a chart sheet. Excel also
passes a Range for the range of cells that is the new selection.

Worksheet.SelectionChange is raised on a Worksheet whenever the selected cell or cells in that worksheet
change. Excel passes a Range for the range of cells that is the new selection.

Chart.Select is raised on a Chart when the selected element within that chart sheet changes. Excel passes as
Integer an elementID and two parameters called arg1 and arg2. The combination of these three parameters allows
you to determine what element of the chart was selected.

Note

Select is the name of both a method and an event on the Chart object. Because of this collision, you will
have to use the CType operator to cast the Chart object to the ChartEvents_Events interface when adding
an event handler dynamically using the AddHandler statement. If you are adding an event handler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

an event handler dynamically using the AddHandler statement. If you are adding an event handler
declaratively using WithEvents and Handles, you do not have to worry about this issue.

WindowResize Events

The WindowResize events are raised when a workbook window is resized. These events are raised only if the workbook
window is not maximized to fill Excel's outer application window (see Figure 4.3). Events are raised if you resize a
nonmaximized workbook window or minimize the workbook window. No resize events occur when you resize and
minimize the outer Excel application window.

Figure 4.3. Window Resize events are raised only if the workbook window is not
maximized to fill the application window.

Two events are raised when a window is resized. One event is raised on the Application object, and the other, on the
Workbook object:

Application.WindowResize is raised when any nonmaximized workbook window is resized or minimized.
Excel passes the Window object corresponding to the window that was resized or minimized as a parameter to
this event. Excel also passes the Workbook object that was affected as a parameter to this event.

Workbook.WindowResize is raised on a Workbook when a nonmaximized window associated with that
workbook is resized or minimized. Excel passes the Window that was resized or minimized as a parameter to
this event.

Add-In Install and Uninstall Events

You can save a workbook in a special add-in format (XLA file) by selecting Save As from the File menu and then picking
Microsoft Office Excel Add-in as the desired format. The workbook will then be saved to the Application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Microsoft Office Excel Add-in as the desired format. The workbook will then be saved to the Application
Data\Microsoft\AddIns directory, located in the user's document and settings directory. It will appear in the list of
available add-ins that displays when you choose Add-Ins from the Tools menu. When you click the check box to enable
the add-in, the workbook loads in a hidden state, and the Application.AddinInstall event is raised. When the user clicks
the check box to disable the add-in, the Application.AddinUninstall event is raised.

Although theoretically you can save a workbook customized by VSTO as an XLA file, Microsoft does not support this
scenario because many VSTO features, such as support for the Document Actions task pane and Smart Tags, do not
work when a workbook is saved as an XLA file.

XML Import and Export Events

Excel supports the import and export of custom XML data files by allowing you to take an XML schema and map it to
cells in a workbook. Then you can export or import those cells to an XML data file that conforms to the mapped schema.
Excel raises events on the Application and Workbook objects before and after an XML file is imported or exported,
allowing the developer to customize and control this feature further. Chapter 21, "Working with XML in Excel," discusses
in detail the XML-mapping features of Excel.

Before Close Events

Excel raises events before a workbook is closed. These events give your code a chance to prevent the closing of the
workbook. Excel passes a Boolean cancel parameter to the event. If your event handler sets the cancel parameter to true,
the pending close of the workbook is canceled, and the workbook remains open.

These events cannot be used to determine whether the workbook is actually going to close. Another event handler
might run after your event handlerfor example, an event handler in another add-inand that event handler might set the
cancel parameter to true, preventing the closing of the workbook. Furthermore, if the user has changed the workbook and
is prompted to save changes when the workbook is closed, the user can click the Cancel button, causing the workbook
to remain open.

If you need to run code only when the workbook is actually going to close, VSTO provides a Shutdown event that is not
raised until all other event handlers and the user have allowed the close of the workbook:

Application.WorkbookBeforeClose is raised before any workbook is closed, giving the event handler the
chance to prevent the closing of the workbook. Excel passes the Workbook object that is about to be closed.
Excel also passes by reference a Boolean cancel parameter. The cancel parameter can be set to true by your event
handler to prevent Excel from closing the workbook.

Workbook.BeforeClose is raised on a workbook that is about to be closed, giving the event handler a chance
to prevent the closing of the workbook. Excel passes by reference a Boolean cancel parameter. The cancel
parameter can be set to TRue by your event handler to prevent Excel from closing the workbook.

Before Print Events

Excel raises events before a workbook is printed. These events are raised when the user chooses Print or Print Preview
from the File menu or clicks the Print toolbar button. Excel passes a Boolean cancel parameter to the event. If your event
handler sets the cancel parameter to TRue, the pending print of the workbook will be canceled and the Print dialog box or
Print Preview view will not be shown. You might want to do this because you want to replace Excel's default printing
behavior with some custom printing behavior of your own.

These events cannot be used to determine whether the workbook is actually going to be printed. Another event handler
might run after your event handler and prevent the printing of the workbook. The user can also click the Cancel button
in the Print dialog box to stop the printing.

Two events are raised before a workbook is printed. One event is raised on the Application object, and the other on the
Workbook object:

Application.WorkbookBeforePrint is raised before any workbook is printed or print previewed, giving the
event handler a chance to change the workbook before it is printed or change the default print behavior. Excel
passes as a parameter the Workbook that is about to be printed. Excel also passes by reference a Boolean cancel
parameter. The cancel parameter can be set to true by your event handler to prevent Excel from performing its
default print behavior.

Workbook.BeforePrint is raised on a workbook that is about to be printed or print previewed, giving the
event handler a chance to change the workbook before it is printed or change the default print behavior. Excel
passes by reference a Boolean cancel parameter. The cancel parameter can be set to TRue by your event handler to
prevent performing its default print behavior.

Before Save Events

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Excel raises cancelable events before a workbook is saved, allowing you to perform some custom action before the
document is saved. These events are raised when the user chooses Save, Save As, or Save As Web Page commands.
They are also raised when the user closes a workbook that has been modified and chooses to save when prompted.
Excel passes a Boolean cancel parameter to the event. If your event handler sets the cancel parameter to TRue, the save will
be cancelled and the Save dialog box will not be shown. You might want to do this because you want to replace Excel's
default saving behavior with some custom saving behavior of your own.

These events cannot be used to determine whether the workbook is actually going to be saved. Another event handler
might run after your event handler and prevent the save of the workbook. The user can also press Cancel in the Save
dialog box to stop the save of the workbook.

Application.WorkbookBeforeSave is raised before any workbook is saved, giving the event handler a chance
to prevent or override the saving of the workbook. Excel passes as a parameter the Workbook that is about to
be saved. Excel also passes a Boolean saveAsUI parameter that tells the event handler whether Save or Save As
was selected. Excel also passes by reference a Boolean cancel parameter. The cancel parameter can be set to TRue
by your event handler to prevent Excel from performing its default save behavior.

Workbook.BeforeSave is raised on a workbook that is about to be saved, giving the event handler a chance
to prevent or override the saving of the workbook. Excel passes a Boolean saveAsUI parameter that tells the event
handler whether Save or Save As was selected. Excel passes by reference a Boolean cancel parameter. The cancel
parameter can be set to TRue by your event handler to prevent Excel from performing its default save behavior.

Open Events

Excel raises events when a workbook is opened or when a new workbook is created from a template or an existing
document. If a new, blank workbook is created, the Application.WorkbookNew event is raised:

Application.WorkbookOpen is raised when any workbook is opened. Excel passes the Workbook that is
opened as a parameter to this event. This event is not raised when a new, blank workbook is created. The
Application.WorkbookNew event is raised instead.

Workbook.Open is raised on a workbook when it is opened.

Listing 4.7 shows a console application that handles the BeforeClose, BeforePrint, BeforeSave, and Open events. It sets
the cancel parameter to true in the BeforeSave and BeforePrint handlers to prevent the saving and printing of the
workbook.

Listing 4.7. A Console Application That Handles Close, Print, Save, and Open
Events

Imports System.Windows.Forms
Imports Excel = Microsoft.Office.Interop.Excel

Module Module1

 Private WithEvents app As Excel.Application
 Private WithEvents workbook As Excel.Workbook
 Private exitXL As Boolean = False

 Sub Main()
 app = New Excel.Application
 app.Visible = True
 workbook = app.Workbooks.Add()

 While exitXL = False
 System.Windows.Forms.Application.DoEvents()
 End While

 app.Quit()
 End Sub

 Private Sub App_WorkbookBeforeClose(_
 ByVal workbook As Excel.Workbook, ByRef cancel As Boolean) _
 Handles app.WorkbookBeforeClose

 Console.WriteLine(String.Format(_
 "Application.WorkbookBeforeClose({0})", workbook.Name))

 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub Workbook_BeforeClose(ByRef cancel As Boolean) _
 Handles workbook.BeforeClose

 Console.WriteLine("Workbook.BeforeClose()")
 exitXL = True

 End Sub

 Private Sub App_WorkbookBeforePrint(_
 ByVal workbook As Excel.Workbook, ByRef cancel As Boolean) _
 Handles app.WorkbookBeforeprint

 Console.WriteLine(String.Format(_
 "Application.WorkbookBeforePrint({0})", _
 workbook.Name))
 cancel = True ' Don't allow printing

 End Sub

 Private Sub Workbook_BeforePrint(ByRef cancel As Boolean) _
 Handles workbook.BeforePrint

 Console.WriteLine("Workbook.BeforePrint()")
 cancel = True ' Don't allow printing

 End Sub

 Private Sub App_WorkbookBeforeSave(_
 ByVal workbook As Excel.Workbook, _
 ByVal saveAsUI As Boolean, _
 ByRef cancel As Boolean) Handles app.WorkbookBeforeSave

 Console.WriteLine(String.Format(_
 "Application.WorkbookBeforeSave({0},{1})", _
 workbook.Name, saveAsUI))
 cancel = True ' Don't allow saving

 End Sub

 Private Sub Workbook_BeforeSave(_
 ByVal saveAsUI As Boolean, _
 ByRef cancel As Boolean) Handles workbook.BeforeSave

 Console.WriteLine(String.Format(_
 "Workbook.BeforeSave({0})", saveAsUI))
 cancel = True ' Don't allow saving

 End Sub

 Private Sub App_WorkbookOpen(_
 ByVal workbook As Excel.Workbook) _
 Handles app.WorkbookOpen

 Console.WriteLine(String.Format(_
 "Application.WorkbookOpen({0})", workbook.Name))

 End Sub

End Module

Toolbar and Menu Events

A common way to run your code is by adding a custom toolbar button or menu item to Excel and handling the click
event raised by that button or menu item. Both a toolbar and a menu bar are represented by the same object in the
Office object modelan object called CommandBar. Figure 4.4 shows the hierarchy of CommandBarrelated objects. The
Application object has a collection of CommandBars that represent the main menu bar and all the available toolbars in
Excel. You can see all the available toolbars in Excel by choosing Customize from the Tools menu.

Figure 4.4. The hierarchy of CommandBar objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4.4. The hierarchy of CommandBar objects.

You make the CommandBar objects available to your application by adding a reference to the Microsoft Office 11.0
Object Library PIA (office.dll). The CommandBar objects are located in the Microsoft.Office.Core namespace.

A CommandBar has a collection of CommandBarControls that contains objects of type CommandBarControl. A
CommandBarControl can often be cast to a CommandBarButton, CommandBarPopup, or CommandBarComboBox. It is
also possible to have a CommandBarControl that cannot be cast to one of these other typesfor example, it is just a
CommandBarControl and cannot be cast to a CommandBarButton, CommandBarPopup, or CommandBarComboxBox.

Listing 4.8 shows some code that iterates over all the CommandBars available in Excel. The code displays the name or
caption of each CommandBar and associated CommandBarControls. When Listing 4.8 gets to a CommandBarControl, it
first checks whether it is a CommandBarButton, a CommandBarComboBox, or a CommandBarPopup and then casts to
the corresponding object. If the CommandBarControl is not any of these object types, the code uses the
CommandBarControl properties. Note that a CommandBarPopup has a Controls property that returns a
CommandBarControls collection. Our code uses recursion to iterate the CommandBarControls collection associated with
a CommandBarPopup control.

Listing 4.8. A Console Application That Iterates over All the CommandBars and
CommandBarControls in Excel

Imports Excel = Microsoft.Office.Interop.Excel
Imports Office = Microsoft.Office.Core
Imports System.Text

Module Module1

 Private WithEvents app As Excel.Application

 Sub Main()
 app = New Excel.Application()
 Dim bars As Office.CommandBars = app.CommandBars

 For Each bar As Office.CommandBar In bars
 Console.WriteLine(String.Format(_
 "CommandBar: {0}", bar.Name))
 DisplayControls(bar.Controls, 1)
 Next

 Console.ReadLine()
 End Sub

 Private Sub DisplayControls(_
 ByVal ctls As Office.CommandBarControls, _
 ByVal indentNumber As Integer)

 Dim sb As New System.Text.StringBuilder()
 sb.Append(" ", indentNumber)

 For Each ctl As Office.CommandBarControl In ctls
 If TypeOf ctl Is Office.CommandBarButton Then
 Dim btn As Office.CommandBarButton
 btn = CType(ctl, Office.CommandBarButton)
 sb.Append("CommandBarButton: ")
 sb.Append(btn.Caption)
 Console.WriteLine(sb.ToString())

 ElseIf TypeOf ctl Is Office.CommandBarComboBox Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ElseIf TypeOf ctl Is Office.CommandBarComboBox Then
 Dim box As Office.CommandBarComboBox
 box = CType(ctl, Office.CommandBarComboBox)
 sb.Append("CommandBarComboBox: ")
 sb.Append(box.Caption)
 Console.WriteLine(sb.ToString())

 ElseIf TypeOf ctl Is Office.CommandBarComboBox Then
 Dim pop As Office.CommandBarPopup
 pop = CType(ctl, Office.CommandBarPopup)
 DisplayControls(pop.Controls, indentNumber + 1)

 Else
 sb.Append("CommandBarControl: ")
 sb.Append(ctl.Caption)
 Console.WriteLine(sb.ToString())
 End If
 Next

 End Sub

End Module

Excel raises several events on CommandBar, CommandBarButton, and CommandBarComboBox objects:

CommandBar.OnUpdate is raised when any change occurs to a CommandBar or associated
CommandBarControls. This event is raised frequently and can even raise when selection changes in Excel.
Handling this event could slow Excel, so you should handle this event with caution.

CommandBarButton.Click is raised on a CommandBarButton that is clicked. Excel passes the
CommandBarButton that was clicked as a parameter to this event. It also passes by reference a Boolean
cancelDefault parameter. The cancelDefault parameter can be set to true by your event handler to prevent Excel from
executing the default action associated with the button. You could handle this event for an existing button such
as the Print button, for example. By setting cancelDefault to true, you can prevent Excel from doing its default print
behavior when the user clicks the button and replace that behavior with your own.

CommandBarComboBox.Change is raised on a CommandBarComboBox that had its text value changedeither
because the user chose an option from the drop-down list or because the user typed a new value directly into
the combo box. Excel passes the CommandBarComboBox that changed as a parameter to this event.

Listing 4.9 shows a console application that creates a CommandBar, a CommandBarButton, and a
CommandBarComboBox. It handles the CommandBarButton.Click event to exit the application. It also displays changes
made to the CommandBarComboBox in the console window. The CommandBar, CommandBarButton, and
CommandBarComboBox are added temporarily; Excel will delete them automatically when the application exits. This is
done by passing true to the Temporary parameter of the CommandBarControls.Add method.

Listing 4.9. A Console Application That Adds a CommandBar and a
CommandBarButton

Imports Office = Microsoft.Office.Core
Imports Excel = Microsoft.Office.Interop.Excel

Module Module1

 Private WithEvents app As Excel.Application
 Private close As Boolean = False
 Private WithEvents btn As Office.CommandBarButton
 Private WithEvents box As Office.CommandBarComboBox

 Sub Main()
 app = New Excel.Application()
 app.Visible = True

 Dim bars As Office.CommandBars = app.CommandBars
 Dim bar As Office.CommandBar = bars.Add(_
 "My Custom Bar", Temporary:=True)
 bar.Visible = True

 btn = bar.Controls.Add(_
 Office.MsoControlType.msoControlButton, Temporary:=True)
 btn.Caption = "Stop Console Application"
 btn.Tag = "ConsoleApplication.btn"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 btn.Tag = "ConsoleApplication.btn"
 btn.Style = Office.MsoButtonStyle.msoButtonCaption

 box = bar.Controls.Add(_
 Office.MsoControlType.msoControlComboBox, Temporary:=True)
 box.AddItem("Choice 1", 1)
 box.AddItem("Choice 2", 2)
 box.AddItem("Choice 3", 3)
 box.Tag = "ConsoleApplication.box"

 While close = False
 System.Windows.Forms.Application.DoEvents()
 End While
 End Sub

 Private Sub Btn_Click(ByVal ctrl As Office.CommandBarButton, _
 ByRef cancelDefault As Boolean) Handles btn.Click

 close = True

 End Sub

 Private Sub Box_Change(_
 ByVal ctrl As Office.CommandBarComboBox) _
 Handles box.Change

 Console.WriteLine("Selected " & ctrl.Text)

 End Sub

End Module

Additional Events

Several other, less commonly used events in the Excel object model are listed in Table 4.1. Figure 4.5 shows the
envelope UI that is referred to in this table.

Table 4.1. Additional Excel Events
Events Description

Application.SheetPivotTableUpdate Raised when a sheet of a Pivot Table report
has been updated

Workbook.SheetPivotTableUpdate

Worksheet.PivotTableUpdate
Application.WorkbookPivotTableCloseConnection Raised when a PivotTable report connection is

closed

Workbook.PivotTableCloseConnection
Application.WorkbookPivotTableOpenConnection Raised when a PivotTable report connection is

opened

Workbook.PivotTableOpenConnection
Application.WorkbookSync Raised when a workbook that is part of a

document workspace is synchronized with the
server

Workbook.Sync
Chart.DragOver Raised when a range of cells is dragged over a

chart

Chart.DragPlot Raised when a range of cells is dragged and
dropped on a chart

Chart.MouseDown Raised when the user clicks the mouse button
while the cursor is over a chart

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chart.MouseMove Raised when the user moves the mouse cursor
within the bounds of a chart

Chart.MouseUp Raised when the user releases the mouse
button while the cursor is over a chart

Chart.Resize Raised when the chart is resized

Chart.SeriesChange Raised when the user changes the data being
displayed by the chart

MsoEnvelop.EnvelopeShow Raised when the envelope UI is shown inside
Excel (see Figure 4.5)

MsoEnvelope.EnvelopeHide Raised when the envelope UI is hidden (see
Figure 4.5)

OLEObject.GotFocus Raised when an OLEObjectan embedded
ActiveX control OLE objectgets focus

OLEObject.LostFocus Raised when an OLEObjectan embedded
ActiveX control OLE objectloses focus

QueryTable.AfterRefresh Raised after a QueryTable is refreshed

QueryTable.BeforeRefresh Raised before a QueryTable is refreshed

Figure 4.5. The envelope UI inside Excel.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Events in Visual Studio 2005 Tools for Office
Several events are found in Visual Studio 2005 Tools for Office objects that are not found when using the Excel PIA
alone. Table 4.2 lists these events. Almost all these events are events from the Excel PIA that are raised again on
different objects. In the Excel PIA, for example, there is no BeforeDoubleClick event on a Range object; in fact, there
are no events on the Range object at all. In VSTO, the two objects that VSTO defines that represent a Range
(NamedRange and XMLMappedRange) have a BeforeDoubleClick event. VSTO adds the BeforeDoubleClick event to
these objects and raises the event whenever the Worksheet.BeforeDoubleClick event is raised and passed a Range
object that matches the given NamedRange or XMLMappedRange object.

Table 4.2. Events That Are Added in VSTO
Events Raised Again From

NamedRange Object (Aggregates Range)

BeforeDoubleClick Worksheet.BeforeDoubleClick

BeforeRightClick Worksheet.BeforeRightClick

Change Worksheet.Change

SelectionChange Worksheet.SelectionChange

Selected Worksheet.SelectionChange

Deselected Worksheet.SelectionChange

XmlMappedRange Object (Aggregates Range)

BeforeDoubleClick Worksheet.BeforeDoubleClick

BeforeRightClick Worksheet.BeforeRightClick

Change Worksheet.Change

SelectionChange Worksheet.SelectionChange

Selected Worksheet.SelectionChange

Deselected Worksheet.SelectionChange

Workbook

New Application.NewWorkbook

Startup New event raised by VSTO

Shutdown New event raised by VSTO

ChartSheet (Aggregates Chart)

Startup New eventraised by VSTO

Shutdown New event raised by VSTO

Worksheet

Startup New event raised by VSTO

Shutdown New event raised by VSTO

ListObject

BeforeAddDataBoundRow New event raised by VSTO

BeforeDoubleClick Worksheet.BeforeDoubleClick

BeforeRightClick Worksheet.BeforeRightClick

Change Worksheet.Change

DataBindingFailure New event raised by VSTO

DataMemberChanged New event raised by VSTO

DataSourceChanged New event raised by VSTO

Deselected Worksheet.SelectionChange

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deselected Worksheet.SelectionChange

ErrorAddDataBoundRow New event raised by VSTO

OriginalDataRestored New event raised by VSTO

Selected Worksheet.SelectionChange

SelectedIndexChanged New event raised by VSTO

SelectionChange Worksheet.SelectionChange

Another case where VSTO changes events is in the naming of the Activate event and the Select event on the Worksheet
object. Both of these event names conflict with method names on Worksheet. To prevent this conflict, VSTO renames
these events ActivateEvent and SelectEvent.

There are also some new events, such as the Startup and Shutdown events, raised on VSTO project host items such as
Workbook, Worksheet, and ChartSheet. ListObject also has several new events that are raised when a ListObject is data
bound.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter examined the various events raised by objects in the Excel object model. The chapter also introduced
some of the major objects in the Excel object model, such as Application, Workbook, and Document. You also learned
the additional events that are raised by VSTO objects in Excel.

Chapter 5, "Working with Excel Objects," discusses in more detail how to use the major objects in the Excel object
model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5. Working with Excel Objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Application Object
This chapter covers some of the major objects in the Excel object model, starting with the Application object. The major
objects in the Excel object model have many methods and properties, and it is beyond the scope of this book to
describe these objects completely. Instead, this chapter focuses on the most commonly used methods and properties.

The Application object has the largest number of methods, properties, and events of any object in the Excel object
model. The Application object is also the root object in the Excel object model hierarchy. You can access all the other
objects in the object model by starting at the Application object and accessing its properties and the properties of
objects it returns. The Application object also has a number of useful application-level settings.

Controlling Excel's Screen Updating Behavior

When your code is performing a set of changes to a workbook, you may want to set the ScreenUpdating property to
False to prevent Excel from updating the screen while your code runs. Setting it back to TRue will refresh the screen and
allow Excel to continue updating the screen.

Beyond the cosmetic benefit of not forcing the user to watch Excel change cells while your code runs, the
ScreenUpdating property proves very useful for speeding up your code. Repainting the screen after each operation can
be quite costly. Be sure to set this property back to true when your code is finished; otherwise, the user will be left with
an Excel that does not paint. As you will see below, a try-Finally block is a handy way to ensure that the property is reset
even if an exception is thrown.

An even better convention to follow than just setting the ScreenUpdating property back to true is to save the value of
the ScreenUpdating property before you change it and set it back to that value when you are done. An important thing
to remember when doing Office development is that your code is not going to be the only code running inside a
particular Office application. Add-ins might be running, as well as other code behind other documents, and so on. You
need to think about how your code might affect other code also running inside Excel.

As an example, another add-in might be running a long operation of its own, and that add-in might have set the
ScreenUpdating property to False to accelerate that operation. That add-in does an operation that triggers an event that
is handled by your code. If your code sets the ScreenUpdating property to False, does something, and then sets the
ScreenUpdating property to true when it is done, you have defeated the add-in's attempt to accelerate its own long
operation because you have turned screen updating back on. If instead you store the value of ScreenUpdating before
you set it to False and later set ScreenUpdating back to its original value, you coexist better with the other code running
inside Excel.

Listing 5.1 shows an example of using the ScreenUpdating property with VSTO.

Note

Because it is important that you set ScreenUpdating back to its original value after your code runs, you
should use Visual Basic's support for exception handling to ensure that even if an exception occurs in your
code, ScreenUpdating will be set back to its original value.

Visual Basic supports TRy, Catch, and Finally blocks to deal with exceptions. You should put the code to set
ScreenUpdating back to its original value in your Finally block because this code will run both when an
exception occurs and when no exception occurs.

Listing 5.1. A VSTO Customization That Sets the ScreenUpdating Property

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim oldScreenUpdatingSetting As Boolean
 oldScreenUpdatingSetting = Me.Application.ScreenUpdating

 Try
 Me.Application.ScreenUpdating = False
 Dim r As Random = New Random()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim r As Random = New Random()

 Dim i As Integer
 For i = 1 To 1000
 Dim address As String = String.Format("A{0}", i)
 Dim xlRange As Excel.Range = Range(address)
 xlRange.Value2 = r.Next()
 Next
 Finally
 Me.Application.ScreenUpdating = oldScreenUpdatingSetting
 End Try

 End Sub

End Class

Controlling the Dialog Boxes and Alerts That Excel Displays

Occasionally, the code you write will cause Excel to display dialog boxes prompting the user to make a decision or
alerting the user that something is about to occur. If you find this happening while a section of your code runs, you
might want to prevent these dialog boxes from being displayed.

You can set the DisplayAlerts property to False to prevent Excel from displaying dialog boxes and messages when your
code is running. Setting this property to False causes Excel to choose the default response to any dialog boxes or
messages that might be shown. Be sure to get the original value of this property and set the property back to its
original value after your code runs. Use try, Catch, and Finally blocks to ensure that you always set the property back to its
original value, as shown in Listing 5.1.

Changing the Mouse Pointer

During a large operation, you might want to change the appearance of Excel's mouse pointer to an hourglass to let
users know that they are waiting for something to complete. The Cursor property is a property of type XlMousePointer that
allows you to change the appearance of Excel's mouse pointer. It can be set to the following values: xlDefault, xlIBeam,
xlNorthwestArrow, and xlWait.

Be sure to get the original value of Cursor before changing it and set it back to its original value using TRy, Catch, and
Finally blocks. Listing 5.2 shows the use of the Cursor property.

Listing 5.2. A VSTO Customization That Sets the Cursor Property

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim originalCursor As Excel.XlMousePointer
 originalCursor = Me.Application.Cursor

 Try
 Me.Application.Cursor = Excel.XlMousePointer.xlWait
 Dim r As Random = New Random()
 Dim i As Integer
 For i = 1 To 2000
 Dim address As String = String.Format("A{0}", i)
 Dim xlRange As Excel.Range = Me.Range(address)
 xlRange.Value2 = r.Next()
 Next
 Finally
 Me.Application.Cursor = originalCursor
 End Try

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Displaying a Message in Excel's Status Bar

StatusBar is a property that allows you to set the message displayed in Excel's status bar, located in the bottom-left
corner of the Excel window. You can set the StatusBar property to a String representing the message you want to display
in the status bar. You can also set StatusBar to False to display Excel's default status bar message. If Excel is displaying
the default status bar message, the StatusBar property returns a False value.

As with the other application properties in this section, you want to save the original value of the StatusBar property
before changing it, and be sure to set it back to its original value using try, Catch, and Finally blocks. Remember to save
the value of the StatusBar property to an Object variable because it can return a String or a Boolean value. Listing 5.3
shows an example.

Listing 5.3. A VSTO Customization That Uses the StatusBar Property to Show
Progress

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim oldValue As Object = Me.Application.StatusBar

 Try
 Dim r As Random = New Random()
 Dim i As Integer
 For i = 1 To 2000
 Dim address As String = String.Format("A{0}", i)
 Dim xlRange As Excel.Range = Me.Range(address)
 xlRange.Value2 = r.Next()
 Dim status As String = String.Format(_
 "Updating {0} of 2000...", i)
 Me.Application.StatusBar = status
 Next
 Finally
 Me.Application.StatusBar = oldValue
 End Try

 End Sub

End Class

A Property You Should Never Use

Excel provides a property called EnableEvents that can be set to False to prevent Excel from raising any of its events.
Although you might be tempted to use this property, don't do it. Think again about the fact that your code is almost
never going to be running by itself in Excel. Other developers will be creating add-ins and code behind documents that
will also be running inside Excel. By setting this property to False, you effectively break all the other code that is loaded
inside Excel until you set it back to TRue.

The problem that this property is trying to fix is the problem of your code calling a method that in turn raises an event
on your code. You might not want that event to be raised because you called the method; therefore, you do not want
your code to be notified of something it already knows.

Your code might call a method such as Close on Workbook that will cause Excel to raise the BeforeClose event, for
example. If you want to prevent your BeforeClose event handler from running in this case, you have several options
that are better than using EnableEvents. The first option is to stop listening to the BeforeClose event before you call the
Close method. A second option is to create a guard variable that you can set before you call Close. Your event handler
for BeforeClose can check that guard variable and return immediately if the guard variable is set.

Controlling the Editing Experience in Excel

Excel provides a number of properties that you can use to control the editing experience. To understand the part of the
Excel editing experience that these properties control, launch an instance of Excel, and create a blank worksheet. Click
a cell in that worksheet, and type a number. Notice that Excel lets you type in the cell or in the formula bar at the top
of the window. You can move the insertion point inside the cell to edit the contents of the cell further. When you press
the Enter key after editing the cell, Excel moves to the next cell down. (Your editing settings might differ, but this
explanation represents the default behavior of Excel 2003.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

explanation represents the default behavior of Excel 2003.)

Excel enables you to control whether the contents of the cell can be edited directly inside the cell through the Edit
Directly in Cell option in the Edit tab of the Options dialog box. The EditDirectlyInCell property lets you change this
setting in your code. Setting this property to False makes it so the user can edit the contents of a cell only using the
formula bar.

When you press Enter after editing a cell, Excel typically moves to the cell below the cell you were editing. You can
control this behavior in the Edit tab of the Options dialog box. The MoveAfterReturn property and
MoveAfterReturnDirection property enable you to control this behavior in your code. By setting MoveAfterReturn to true,
you tell Excel to change the selected cell after the user presses Enter. MoveAfterReturnDirection controls the cell Excel
moves to after the user presses Enter if MoveAfterReturn is set to true. MoveAfterReturnDirection can be set to a
member of the XlDirection enumeration: xlDown, xlToLeft, xlToRight, or xlUp.

Controlling the Look of Excel

You can control the look of Excel through the properties listed in Table 5.1.

Table 5.1. Properties That Control Elements of the Excel User Interface
Property Name Type What It Does

DisplayFormulaBar Boolean Controls whether Excel displays the formula bar.

DisplayFullScreen Boolean Shows Excel in full-screen mode.

DisplayScrollBars Boolean Controls whether Excel displays the horizontal and
vertical scroll bars for workbooks.

DisplayStatusBar Boolean Controls whether Excel displays the status bar in the
bottom-left corner of the Excel window.

Height Double Sets the height in pixels of the main Excel window when
WindowState is set to XlWindowState.xlNormal.

Left Double Sets the left position in pixels of the main Excel window
when WindowState is set to XlWindowState.xlNormal.

ShowToolTips Boolean Controls whether Excel shows tooltips for toolbar
buttons.

ShowWindowsInTaskbar Boolean Controls whether Excel shows open Excel windows with
one taskbar button in the Windows taskbar for each open
window.

Top Double Sets the top position in pixels of the main Excel window
when WindowState is set to XlWindowState.xlNormal.

Visible Boolean Sets whether the Excel application window is visible.

Width Double Sets the width in pixels of the main Excel window when
WindowState is set to XlWindowState.xlNormal.

WindowState XlWindow-State Sets whether the main Excel window is minimized
(xlMinimized), maximized (xlMaximized), or normal (xlNormal).
The Width, Height, Top, and Left settings work only
when WindowState is set to XlWindowState.xlNormal.

Controlling File and Printer Settings

You can configure the behavior when a new, blank workbook is created through the SheetsInNewWorkbook property.
This property takes an Integer value for the number of blank worksheets that should be created in a new workbook. The
default is three blank worksheets. As with most of these settings, you can also set this property in the General tab of
Excel's Options dialog box.

The DefaultFilePath property corresponds to the default file location setting in the General tab of Excel's Options dialog
box. You can set this to a String representing the file path that you want Excel to use by default when opening and
saving files.

You can set the default file format you want Excel to use when saving files by using the DefaultSaveFormat property.
This property is of type XlFileFormatan enumeration that has values for the various file formats Excel supports. To save
Excel files by default in Excel 5 format, for example, you set this property to xlExcel5.

Another useful property when dealing with files is the RecentFiles property, which returns a collection of strings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Another useful property when dealing with files is the RecentFiles property, which returns a collection of strings
containing the names of all the recently opened files.

Properties That Return Active or Selected Objects

The Application object has a number of properties that return active objectsobjects representing things that are active
or selected within Excel. Table 5.2 shows some of these properties.

Table 5.2. Application Properties That Return Active Objects
Property Name Type What It Does

ActiveCell Range Returns the top-left cell of the active selection in the
active window. If there isn't a worksheet with an active
cell, or if no workbooks are open, this property throws
an exception.

ActiveChart Chart Returns the active chart sheet. If no chart sheet is
active, this property returns Nothing.

ActiveSheet Object Returns the active worksheet or a chart sheet. The Object
returned can be cast to either a Worksheet or a Chart.

ActiveWindow Window Returns the active Window. If no windows are open, this
property returns Nothing.

ActiveWorkbook Workbook Returns the workbook that is associated with the active
window. If no workbooks are open, this property returns
Nothing.

Charts Sheets Returns all the chart sheets in the active workbook. If no
workbooks are open, this property returns Nothing.

Names Names Returns all the names associated with the active
workbook.

Selection Object Returns the current selection in the active window. This
can return a Range when cells are selected. If other
elements are selected (such as a chart or an autoshape),
it can return other types. You can use the Is TypeOf
operators in Visual Basic to determine the returned type.

Sheets Sheets Returns all the sheets in the active workbook. This
collection can contain both worksheets and chart sheets.
Objects returned from this collection can be cast to
either a Worksheet or a Chart.

Properties That Return Important Collections

The Application object is the root object of the object model and has properties that return several important
collections. The Workbooks property returns the collection of open workbooks in Excel. The Windows property returns a
collection representing the open windows in Excel. Both the Workbooks and Windows collections are discussed in more
detail later in this chapter.

Controlling the Calculation of Workbooks

Excel provides a number of settings and methods that correspond to some of the options in the Calculation tab of the
Options dialog box. The Application object provides a Calculation property of type XlCalculation that you can use to set
Excel's calculation behavior. By default, Calculation is set to automatic calculation or xlCalculationAutomatic. You can also set
Calculation to xlCalculationSemiautomatic, which means to calculate all dependent formulas except data tables. Finally,
Calculation can be set to xlCalculationManual, which means that Excel recalculates the workbook only when the user or your
code forces a calculation.

If you have set Calculation to xlCalculationManual or xlCalculationSemiautomatic, you can force a complete recalculation of all
open workbooks with the Calculate method. Using manual calculation may be another way to speed your code if you
are updating a large number of cells that are referred to by formulas. As with other application-level properties, you
should restore the original value of the property in a Finally block, as shown earlier in this chapter.

Using Built-In Excel Functions in Your Code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The WorksheetFunction property returns a WorksheetFunction object that enables you to call the built-in Excel formulas
from your code. It provides access to more than 180 formulas. Listing 5.4 illustrates three of them.

Listing 5.4. A VSTO Customization That Uses the WorksheetFunction Object

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim func As Excel.WorksheetFunction
 func = Me.Application.WorksheetFunction
 Dim result As Double = func.Acos(0.1)
 Dim result2 As Double = func.Atan2(0.1, 0.2)
 Dim result3 As Double = func.Atanh(0.1)

 End Sub

End Class

Selecting and Activating a Range of Cells

Goto is a method that causes Excel to select a range of cells and activate the workbook associated with that range of
cells. It takes an optional Object parameter that can be either a String containing a cell reference (in "Sheet1!R1C1" format)
or a Range object. We talk more about cell reference formats such as "Sheet1!R1C1" in the section "Working with the
Range Object" later in this chapter. It also takes an optional Object parameter that can be set to true to tell Excel to scroll
the window so that the selection is at the top-left corner of the window. Listing 5.5 shows some examples of calling the
Goto method.

Listing 5.5. A VSTO Customization That Uses the Goto Method

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim app As Excel.Application = Me.Application

 app.Goto("R3C3")
 app.Goto("Sheet2!R10C5", True)
 app.Goto(Me.Range("A1"), True)
 app.Goto(Me.Range("A1", "B2"), True)

 End Sub

End Class

Spell Checking

Excel provides a method called CheckSpelling that you can use to check the spelling of a single word. It takes a
required String parameter containing the word to check. It also takes an optional Object parameter that can be set to a
String for the filename of the custom dictionary to use. Finally, it takes an optional Object parameter that can be set to true
to ignore uppercase words when spell checking. CheckSpelling returns False if the word passed to it is misspelled. Listing
5.6 shows an example of calling the CheckSpelling method.

Listing 5.6. A VSTO Customization That Uses the CheckSpelling Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 5.6. A VSTO Customization That Uses the CheckSpelling Method

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim app As Excel.Application = Me.Application

 If Not app.CheckSpelling("funtastic") Then
 MsgBox("Funtastic was not spelled correctly.")
 End If

 If Not app.CheckSpelling("fantastic") Then
 MsgBox("Fantastic was not spelled correctly.")
 End If

 If Not app.CheckSpelling("FUNTASTIC", _
 IgnoreUppercase:=True) Then
 MsgBox("FUNTASTIC was not spelled correctly.")
 End If

 End Sub

End Class

Sending a Workbook in E-Mail

Excel provides a simple way to send a workbook as an e-mail message using three methods called MailLogon,
Workbook.SendMail, and MailLogoff. MailLogon logs on to the mail system and takes the username as a String, the user's
password as a String, and whether to download new mail immediately as a Boolean. It is also important to check the
MailSession property to make sure that a mail session is not already established. If MailSession is not Nothing, you do
not need to call the MailLogon method. Workbook's SendMail method takes the recipients as a required String if there is
only one recipient or as an array of strings if there are multiple recipients. It also takes a subject for the message as a
String and whether to request a read receipt as a Boolean. Listing 5.7 shows a simple example that mails a workbook.

Listing 5.7. A VSTO Customization That Mails a Workbook

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim app As Excel.Application = Me.Application

 If app.MailSession Is Nothing Then
 app.MailLogon("DOMAIN\JOHN", "JOHN")
 End If
 Me.SendMail("bar@domain.com", "Test message")
 app.MailLogoff()

 End Sub

End Class

Quitting Excel

You can use the Quit method to exit Excel. If any unsaved workbooks are open, Excel prompts the user to save each
unsaved workbook. You can suppress the prompts by setting the DisplayAlerts property to False, which causes Excel to
quit without saving workbooks. You can also check the Workbook.Saved property on each workbook and call
Workbook.Save to save each unsaved workbook. Remember that when users are prompted to save, they get a dialog
box that looks like the one shown in Figure 5.1. If the user clicks the Cancel button, or if any code is running that
handles the BeforeClose event and sets the cancel parameter to TRue, Excel will not quit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.1. Excel prompts when you call Quit and a workbook needs to be saved.

Undo in Excel

Excel has an Undo method that can be used to undo the last few actions taken by the user. Excel does not support
undoing actions taken by your code, however. As soon as your code touches the object model, Excel clears the undo
history, and it does not add to the undo history any of the actions your code performs.

Sending Keyboard Commands to Excel

Excel provides a method called SendKeys that you can use as a last resort when you cannot find a way to accomplish a
command through the object model but know how to accomplish it through a keyboard command. It takes the keys you
want to send to the application as a string and a Wait parameter that, if set to true, causes Excel to wait for the
keystrokes to be processed by Excel before returning control to your code. You can specify modifier keys like Alt, Ctrl,
and Shift by prefacing the keystroke you want to send with another character. To send an Alt+T key command, for
example, you call SendKeys("%t") because % is the symbol SendKeys recognizes as Alt. The symbol SendKeys recognizes
as Ctrl is ^, and Shift is +. In addition, special strings correspond to keys such as the down arrow. To send a down-
arrow keystroke to Excel, you call SendKeys("{DOWN}"). Table 5.3 lists the other special strings that correspond to common
keys.

Table 5.3. Codes Used by SendKeys
Key Key Code

Backspace {BACKSPACE} or {BS}

Break {BREAK}

Caps Lock {CAPSLOCK}

Clear {CLEAR}

Delete or Del {DELETE} or {DEL}

Down arrow {DOWN}

End {END}

Enter ~ (tilde)

Enter (numeric keypad) {ENTER}

Esc {ESCAPE} or {ESC}

F1 through F15 {F1} through {F15}

Help {HELP}

Home {HOME}

Ins {INSERT}

Left arrow {LEFT}

Num Lock {NUMLOCK}

Page Down {PGDN}

Page Up {PGUP}

Return {RETURN}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Right arrow {RIGHT}

Scroll Lock {SCROLLLOCK}

Tab {TAB}

Up arrow {UP}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Workbooks Collection
The Workbooks collection, available from the Application object's Workbooks property, contains a collection of the
Workbook objects that are open in the application. It also has methods used to manage open workbooks, create new
workbooks, and open existing workbook files.

Iterating over the Open Workbooks

Collections implement a special method called GetEnumerator that allows them to be iterated over. You never have to
call the GetEnumerator method directly because the For Each keyword in Visual Basic uses this method to iterate over a
collection of Workbooks. See Listing 5.8 for an example of using For Each.

Listing 5.8. A VSTO Customization That Iterates over the Workbooks Collection
Using For Each

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim workbooks As Excel.Workbooks = Me.Application.Workbooks
 For Each workbook As Excel.Workbook In workbooks
 MsgBox(workbook.Name)
 Next

 End Sub

End Class

Accessing a Workbook in the Workbooks Collection

To access a Workbook in the Workbooks collection, you use the Item property, which returns a Workbook object. The
Item property has an Index parameter that is of type Object. You can pass an Integer representing the 1-based index of
the Workbook in the collection you want to access. (Almost all collections in the Office object models are 1-based.)

Alternatively, you can pass a String representing the name of the Workbook you want to access. The name for a
workbook is the name of the file, if it has been saved (for example, "Book1.xls"). If the workbook has not yet been saved,
it will be the temporary name that Excel creates for a new workbooktypically, Book1, with no file extension.

Because Item is the default property of a collection, you can omit actually writing out the property name Item and
instead just pass the Index parameter; you can write code like workbooks(1) instead of workbooks.Item(1). Listing 5.9 shows
an example of calling Item with both kinds of indexing and omitting writing the property name Item by using the default
property feature of Visual Basic.

Listing 5.9. A VSTO Customization That Gets a Workbook Using Item (the Default
Property) with an Integer and String Index

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup
 Dim workbooks As Excel.Workbooks = Me.Application.Workbooks
 If workbooks.Count > 0 Then
 ' Get the first workbook in the collection (1-based)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Get the first workbook in the collection (1-based)
 Dim wb As Excel.Workbook = workbooks(1)
 MsgBox(wb.Name)

 ' Get the same workbook by passing name of workbook
 Dim wb2 As Excel.Workbook = workbooks(wb.Name)
 MsgBox(wb2.Name)
 End If

 End Sub

End Class

You can also use the Workbooks collection's Count property to determine the number of open workbooks. You should
check the Count property before accessing a workbook by index to make sure your index is within the bounds of the
collection.

Creating a New Workbook

To create a new workbook, you can use the Workbooks collection's Add method. The Add method returns the newly
created Workbook object. It takes as an optional parameter an Object that can be set to a String specifying the filename
of an existing workbook to use as a template. Alternatively, you can pass a member of the XlWBATemplate enumeration
(xlWBATChart or xlWBATWorksheet) to specify that Excel should create a workbook with a single chart sheet or a single
worksheet. If you omit the parameter, Excel will create a new, blank workbook with the number of worksheets specified
by Application.SheetsInNewWorkbook property. Listing 5.10 shows several ways to create a new workbook.

Listing 5.10. A VSTO Customization That Creates New Workbooks Using
Workbooks.Add

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim workbooks As Excel.Workbooks = Me.Application.Workbooks

 ' Create a new workbook using mytemplate.xls as a template
 Dim workbook1 As Excel.Workbook = workbooks.Add("c:\mytemplate.xls")
 ' Create a new workbook with one chart sheet
 Dim workbook2 As Excel.Workbook
 workbook2 = workbooks.Add(Excel.XlWBATemplate.xlWBATChart)

 ' Set default number of new sheets to create in a
 ' new blank workbook to 10
 Me.Application.SheetsInNewWorkbook = 10

 ' Create a blank workbook with 10 worksheets
 Dim workbook3 As Excel.Workbook = workbooks.Add()

 End Sub

End Class

Opening an Existing Workbook

To open an existing workbook, you can use the Workbooks collection's Open method, which returns the opened
Workbook object. Open has one required parameter: a String representing the filename of the workbook to open. It also
has 14 optional parameters, which you can omit if you do not want to use any of them. Listing 5.11 shows the simplest
possible way of calling the Open method.

Listing 5.11. A VSTO Customization That Opens a Workbook Using the
Workbooks.Open Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Workbooks.Open Method

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim workbook As Excel.Workbook
 Workbook = Me.Application.Workbooks.Open("c:\myworkbook.xls")
 MsgBox(workbook.Name)

 End Sub

End Class

Closing All the Open Workbooks

Excel provides a Close method on the Workbooks collection to close all the open workbooks. The user is prompted to
save any unsaved workbooks unless Application.DisplayAlerts is set to False. As with Application.Quit, you cannot be
guaranteed that all the workbooks will actually be closed, because the user can click the Cancel button when prompted
to save a workbook, and other event handlers that are loaded in Excel from other add-ins can handle the BeforeClose
event and set the cancel parameter to true.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Workbook Object
The Workbook object represents an open workbook in Excel. The workbook has a Name property that returns the name
of the workbook as a String (for example, "book1.xls"). If the workbook has not yet been saved, this property returns the
temporary name of the documenttypically, Book1. This name can be passed to the Item property on the Workbooks
collection to access the workbook by name from that collection. Workbook also has a FullName property that returns
the full filename of the workbook if the workbook has been saved (for example, "c:\my documents\book1.xls"). For a new,
unsaved workbook, it returns the default name Excel gave the workbook, such as Book1.

Properties That Return Active or Selected Objects

The Workbook object has a number of properties that return active objectsobjects representing things that are selected
within the Excel workbook. Table 5.4 shows two of these properties.

Table 5.4. Workbook Properties That Return Active Objects
Property Name Type What It Does

ActiveChart Chart Returns the selected chart sheet in the workbook. If the
selected sheet is not a chart sheet, this property returns
Nothing.

ActiveSheet Object Returns the selected sheet in the workbook, which can
be either a worksheet or a chart sheet. You can cast this
to either a Worksheet or a Chart.

Properties That Return Important Collections

The Workbook object has a number of properties that return collections that you will frequently use. Table 5.5 shows
some of these properties.

Table 5.5. Workbook Properties That Return Important
Collections

Property Name Type What It Does

Charts Charts Returns the Charts collection, which contains all the
chart sheets in the workbook. The Charts collection has
methods and properties to access a particular chart or to
add a new chart sheet.

Sheets Sheets Returns the Sheets collection, which contains all the
sheets in the workbook (both worksheets and chart
sheets). The Sheets collection has methods and
properties to access a particular sheet or to add a new
sheet.

Windows Windows Returns the Windows collection, which contains all the
open windows that are showing the workbook. The
Windows collection has methods and properties to
arrange and access windows.

Worksheets Sheets Returns the Worksheets collection, which contains all the
worksheets in the workbook in a Sheets collection. The
Worksheets collection has methods and properties to
access a particular worksheet or to add a new
worksheet.

Accessing Document Properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Workbook has a BuiltinDocumentProperties property that returns an Object that can be cast to a
Microsoft.Office.Core.DocumentProperties collection representing the built-in document properties associated with the
workbook. These are the properties that you see when you choose Properties from the File menu and click the
Summary tab, including properties such as Title, Subject, Author, and Company. Table 5.6 shows the names of the
built-in document properties associated with a workbook.

Table 5.6. The Names of the Built-In Document Properties in Excel
Application name Last print date Number of pages

Author Last save time Number of paragraphs

Category Manager Number of slides

Comments Number of bytes Number of words

Company Number of characters Revision number

Creation date Number of characters (with spaces) Security

Format Number of hidden slides Subject

Hyperlink base Number of lines Template

Keywords Number of multimedia clips Title

Last author Number of notes Total editing time

Workbook also has a CustomDocumentProperties that returns an Object that can be cast to a
Microsoft.Office.Core.DocumentProperties collection representing any custom document properties associated with the
workbook. These are the custom properties that you see when you choose Properties from the File menu and click the
Custom tab. Custom properties can be created by your code and used to store name-and-value pairs in the workbook.
The DocumentProperties collection is discussed in more detail in the section "Working with Document Properties" later
in this chapter.

Saving an Excel Workbook

The Workbook object has a number of properties and methods that are used to save a workbook, detect whether a
workbook has been saved, and get the path and filename of a workbook.

The Saved property returns a Boolean value that tells you whether the latest changes to the workbook have been saved.
If closing the document will cause Excel to prompt the user to save, the Saved property will return False. If the user
creates a new, blank workbook and does not modify it, the Saved property will return true until the user or your code
makes a change to the document. You can set the Saved property to true to prevent a workbook from being saved, but
be careful: Any changes made in that document may be lost because the user will not be prompted to save when the
document is closed.

A more common use of the Saved property is to try to keep the state of the Saved property the same as before your
code ran. Your code might set or create some custom document properties, but if the user does not make any changes
to the document while it is open, you might not want the user to be prompted to save. Your code can get the value of
the Saved property, make the changes to the document properties, and then set the value of Saved back to the value
before your code changed the workbook. This way, the changes your code made will be saved only if the user makes an
additional change to the document that requires a save. Listing 5.12 shows this approach.

Listing 5.12. A VSTO Customization That Manipulates Document Properties
Without Affecting the Saved Property

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim oldSaved As Boolean = Me.Saved

 Try
 Dim props As Office.DocumentProperties
 Props = Me.BuiltinDocumentProperties
 props("Author").Value = "Mark Twain"
 Finally
 Me.Saved = oldSaved

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Me.Saved = oldSaved
 End Try

 End Sub

End Class

To save a workbook, you can use the Save method. If the workbook has already been saved, Excel just overwrites the
file from the previous save. If the workbook is newly created and has not been saved yet, Excel tries to create a
filename (such as "Book2.xls" if the new workbook was called Book2) and save it to the default file path set by
Application.DefaultFilePath.

If you want to specify a filename to save the workbook to, you must use the SaveAs method. SaveAs takes the
filename as a String parameter. It also takes a number of optional parameters that you can omit.

If you want to save a copy of the workbook, use the SaveCopyAs method, and pass it the copy's filename as a String
parameter. SaveCopyAs creates a backup copy of the workbook. It does not affect the filename or save location of the
workbook it is called on.

You can also save the workbook while closing it by using the Close method. If you omit all the optional parameters, the
user will be prompted to save the workbook if it has been changed since it was created or opened. If you pass False to
the SaveChanges parameter, it will close the workbook without saving changes. If you set the SaveChanges parameter to true
and pass a filename as a String for the Filename parameter, it will save the workbook to the filename you specified.

Several additional properties are used to access the filename and location of the workbook, as shown in Table 5.7.

Table 5.7. Workbook Properties That Return Filename and Path
Information

Property Name Type What It Does

FullName String Returns the full name of the workbook, including the
path. For a saved workbook, it returns the full filename
of the workbook. For a new, unsaved workbook, it
returns the default name Excel gave the workbook, such
as Book1.

FullName-URLEncoded String Returns as a URL-encoded string the full name of the
workbook, including the path.

Path String Returns the full path to the workbook (for example,
"C:\Documents and Settings\Eric Carter\My Documents"). If the
workbook has not yet been saved, this property returns
an empty string.

Name String Returns the name of the workbook (for example,
"book1.xls"). If the workbook has not yet been saved, this
property returns the temporary name of the
documenttypically, Book1. This can be passed to Item on
the Workbooks collection to access this workbook.

Table 5.8 shows a number of other properties related to saving.

Table 5.8. Workbook Properties Related to Saving an Excel Workbook
Property Name Type What It Does

CreateBackup Boolean Sets whether a backup is created when the workbook is saved.

EnableAutoRecover Boolean Sets whether the autosave feature of Excel is enabled. If enabled,
Excel saves the workbook on a timed interval so that if Excel
should crash or the system should fail, a backed-up file is
available.

FileFormat XlFileFormat Returns the file format this workbook is saved as.

ReadOnly Boolean Returns true if the file was opened as read-only.

Naming Ranges of Cells

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Excel enables you to associate a name (a String identifier) with any range of cells. You can define a name for a range of
cells by writing code or by using the Define Name dialog box that is shown when you choose Insert > Name > Define.
You can also select a cell or range of cells you want to associate a name with and then type the name in the Name Box
to the left of the formula bar, as shown in Figure 5.2. When you type the name in the Name Box, you need to press the
Enter key after typing to set the name.

Figure 5.2. Naming a range of cells myCells using the Name Box.

The Names property returns the Names collection, which you can use to access any ranges you have named within the
workbook. The Names collection also enables you to create new named ranges. The Names collection is discussed in
more detail in the section "Working with the Names Collection and Name Object" later in this chapter.

When Excel Is Embedded in Another Application

CommandBars, Container, and IsInPlace are properties used when the workbook is opened inside another application,
such as Internet Explorer or Word. IsInPlace is a property that returns a Boolean value that tells you whether the
workbook has been opened inside another application. The CommandBars property returns the
Microsoft.Office.Core.CommandBars collection that is used when a document is in place. The Container property returns
an Object that can be used to access the object model of the containing application.

Creating and Activating Windows

The Workbook class has a NewWindow method that you can use to create a new window on the workbook. Although
you might expect the way to create new windows to involve calling Add on the Windows collection, it does not. The only
way to create a new window is to use this method.

There is also an Activate method that activates the workbook by making the first window associated with the workbook
the active window. You can activate a window other than the first window associated with the workbook by using the
Windows collection and the Window object. For more information on the Windows and Window objects, see the section
"Working with the Window Object" later in this chapter.

Printing a Workbook

The PrintOut method prints the workbook. It takes eight optional parameters, as shown in Table 5.9.

Table 5.9. The Optional Parameters of the PrintOut Method
Parameter Name Type What It Does

From Object Sets the page number at which to start printing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To Object Sets the last page number to print

Copies Object Sets how many copies to print

Preview Object Set to TRue to show print preview

ActivePrinter Object Set to a String representing the printer to print to

PrintToFile Object Set to true to print to a file

Collate Object Set to true to collate multiple copies

PrintToFileName Object Set to a String representing the file name to print to if
PrintToFile is set to true

Protecting a Workbook

Excel enables you to protect two things at the workbook level: the order of the worksheets in a workbook, and the size
and positioning of the windows associated with a workbook. The Protect method takes three optional parameters:
Password, Structure, and Windows. Password is an optional parameter that you can pass a String for the password for the
workbook. Structure is an optional parameter that can be set to true to protect the sheet order so that the user cannot
rearrange the order of the sheets in the workbook.

Windows is an optional parameter that can be set to true to protect the windows associated with the workbook from being
moved or resized. You could have two "tiled" windows showing a workbook, for example; locking them prevents the
user from moving them from the tiled positions. (See the section "Arranging Windows" later in this chapter for more
information about tiling windows.)

Although all these parameters are optional, workbook protection does not really do anything unless you set the Structure
or Windows parameter to true. If you want to protect cells in the workbook from being edited, you must use the
Worksheet.Protect method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Worksheets, Charts, and Sheets Collections
The Worksheets, Charts, and Sheets collections are very similar, so this section covers them together. They differ
mainly in whether they contain worksheets (Worksheets), chart sheets (Charts), or both (Sheets). In this section, as in
the rest of the chapter, we use the word sheet to refer to either a chart sheet or a worksheet.

Iterating over the Open Sheets

These collections have a GetEnumerator method that allows them to be iterated over using a For Each loop in Visual
Basic, as shown in Listing 5.13.

Listing 5.13. A VSTO Customization That Iterates over the Worksheets, Charts, and
Sheets Collections

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim app As Excel.Application = Me.Application
 Me.Charts.Add()

 Dim sheet As Excel.Worksheet
 For Each sheet In Me.Worksheets
 MsgBox(String.Format("Worksheet {0}", sheet.Name))
 Next

 Dim chart As Excel.Chart
 For Each chart In Me.Charts
 MsgBox(String.Format("Chart {0}", chart.Name))
 Next

 Dim objSheet As Object
 For Each objSheet In Me.Sheets
 If TypeOf (objSheet) Is Excel.Worksheet Then
 MsgBox(String.Format("Worksheet {0}", objSheet.Name))
 End If
 If TypeOf (objSheet) Is Excel.Chart Then
 MsgBox(String.Format("Chart {0}", objSheet.Name))
 Next End If

 End Sub

End Class

Accessing a Sheet in the Collection

To access a sheet in the Worksheets, Charts, and Sheets collections, you use a property called Item, which returns an
Object. You need to cast the returned Object to a Worksheet or Chart. Objects returned from the Worksheets collection
can always be cast to Worksheet. Objects returned from the Charts collection can always be cast to Chart. Objects
returned from the Sheets collection should be tested using the TypeOf operator to determine whether the Object returned
is a Worksheet or a Chart. It can then be cast to a Worksheet or a Chart.

The Item property takes an Index parameter of type Object. You can pass a String representing the name of the worksheet
or chart sheet, or you can pass a 1-based index into the collection. You can check how many items are in a given
collection by using the Count property.

Adding a Worksheet or Chart Sheet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To add a worksheet or chart sheet to a workbook, you use the Add method. The Add method on the Sheets and
Worksheets collection takes four optional parameters of type Object: Before, After, Count, and Type. The Charts collection
Add method takes only the first three parameters.

The Before parameter can be set to a Worksheet or Chart representing the sheet before which the new sheet is to be
added. The After parameter can be set to the Worksheet or Chart representing the sheet after which the new sheet is to
be added. The Count parameter can be set to the number of new sheets you want to add. The Type parameter is set to
XlSheetType.xlWorksheet to add a worksheet or XlSheetType.xlChart to add a chart sheet. Note that if you try to use xlChart as the
Type parameter when using Worksheets.Add, Excel will throw an exception because Worksheets is a collection of only
Worksheet objects. You can specify either Before or After, but not both parameters. If you omit the Before and After
parameters, Excel adds the new sheet after all the existing sheets.

Listing 5.14 shows several ways of using the Add method on the various collections.

Listing 5.14. A VSTO Customization That Uses the Add Method on the Charts,
Sheets, and Worksheets Collections

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim chart1 As Excel.Chart = Me.Charts.Add()
 Dim chart2 As Excel.Chart
 chart2 = Me.Sheets.Add(Type:=Excel.XlSheetType.xlChart)
 Dim sheet1 As Excel.Worksheet
 sheet1 = Me.Sheets.Add(chart1, Count:=3)
 Dim sheet2 As Excel.Worksheet
 sheet2 = Me.Worksheets.Add(After:=chart2)

 End Sub

End Class

Copying a Sheet

You can make a copy of a sheet by using the Copy method, which takes two optional parameters: Before and After. You
can specify either Before or After, but not both parameters.

The Before parameter can be set to a Worksheet or Chart representing the sheet before which the sheet should be
copied to. The After parameter can be set to a Worksheet or Chart representing the sheet after which the new sheet
should be copied to. If you omit the Before and After parameters, Excel creates a new workbook and copies the sheet to
the new workbook.

Moving a Sheet

The Move method moves the sheet to a different location in the workbook (that is, it moves the sheet to a different tab
location in the worksheet tabs) and has two optional parameters: Before and After. You can specify either Before or After,
but not both parameters. If you omit both parameters, Excel creates a new workbook and moves the sheet to the new
workbook.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with Document Properties
The DocumentProperties collection and DocumentProperty object are located in the Microsoft Office 11.0 Object Library
(office.dll), which contains objects shared by all the Office applications. These objects are in the Microsoft.Office.Core
namespace and typically are brought into your code in an Office namespace alias as shown here:

Imports Office = Microsoft.Office.Core

Iterating over the DocumentProperties Collection

Listing 5.15 shows an example of iterating over the DocumentProperties collection returned by
Workbook.CustomDocumentProperties and Workbook.BuiltInDocumentProperties.

Listing 5.15. A VSTO Customization That Iterates over DocumentProperties
Collection

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim builtinProps As Office.DocumentProperties
 builtinProps = Me.BuiltinDocumentProperties
 Dim customProps As Office.DocumentProperties
 customProps = Me.CustomDocumentProperties

 Dim builtinProp As Office.DocumentProperty
 For Each builtinProp In builtinProps
 Try
 MsgBox(String.Format("{0} {1}", _
 builtinProp.Name, builtinProp.Value))
 Catch
 MsgBox(String.Format("{0} has not been set.", _
 builtinProp.Name))
 End Try

 Next

 Dim customProp As Office.DocumentProperty
 For Each customProp In customProps
 Try
 MsgBox(String.Format("{0} {1}", _
 customProp.Name, customProp.Value))
 Catch
 MsgBox(String.Format("{0} has not been set.", _
 customProp.Name))
 End Try
 Next

 End Sub

End Class

Accessing a DocumentProperty in the DocumentProperties Collection

To access a DocumentProperty in a DocumentProperties collection, you use the Visual Basic indexing syntax
docProperties(Object), which returns a DocumentProperty object. This syntax is actually calling the default property Item on
the DocumentProperties collection. The indexer takes an Index parameter of type Object. You can pass an Integer
representing the 1-based index of the DocumentProperty in the collection you want to access. Alternatively, you can
pass a String representing the name of the DocumentProperty you want to access. As with other collections, the Count
property returns how many DocumentProperty objects are in the collection.

A DocumentProperty object has a Name property that returns a String containing the name of the property. It also has a
Value property of type Object that returns the value of the property. You can check the type Value by using the Type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Value property of type Object that returns the value of the property. You can check the type Value by using the Type
property, which returns a member of the MsoDocProperties enumeration: msoPropertyTypeBoolean, msoPropertyTypeDate,
msoPropertyTypeFloat, msoPropertyTypeNumber, or msoPropertyTypeString.

Listing 5.16 shows how a DocumentProperty is accessed.

Listing 5.16. A VSTO Customization That Accesses a DocumentProperty Using an
Indexer

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim builtinProps As Office.DocumentProperties
 builtinProps = Me.BuiltinDocumentProperties
 Dim authorProp As Office.DocumentProperty

 authorProp = builtinProps("Author")
 MsgBox(String.Format("Property {0} is {1}", _
 authorProp.Name, authorProp.Value))

 Dim thirdProp As Office.DocumentProperty = builtinProps(3)
 MsgBox(String.Format("Property {0} is {1}", _
 thirdProp.Name, thirdProp.Value))

 End Sub

End Class

Adding a DocumentProperty

You can add a custom DocumentProperty using the Add method. The Add method takes the parameters shown in Table
5.10.

Table 5.10. Parameters for the DocumentProperties Collection's Add Method
Parameter Name Type What It Does

Name String Sets the name of the new DocumentProperty.

LinkToContent Boolean Sets whether the property is linked to the contents of the
container document.

Type optional Object Sets the data type of the property. Can be one of the following
MsoDocProperties enumerated values: msoPropertyTypeBoolean,
msoPropertyTypeDate, msoPropertyTypeFloat, msoPropertyTypeNumber, or
msoPropertyTypeString.

Value optional Object Sets the value of the property if LinkToContent is False.

LinkSource optional Object Sets the source of the linked property if LinkToContent is TRue.

Listing 5.17 shows an example of adding a custom DocumentProperty of type msoPropertyTypeString. Note that Excel will let
you set the value to a long string, but it will truncate it to 255 characters. Fortunately, VSTO provides developers a way
to store larger amounts of data in a document through a feature called cached data. For more information on the
cached-data feature of VSTO, see Chapter 18, "Server Data Scenarios."

Listing 5.17. A VSTO Customization That Adds a Custom DocumentProperty

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 5.17. A VSTO Customization That Adds a Custom DocumentProperty

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim props As Office.DocumentProperties
 props = Me.CustomDocumentProperties
 Dim prop As Office.DocumentProperty
 prop = props.Add("My Property", False, _
 Office.MsoDocProperties.msoPropertyTypeString, "My Value")

 MsgBox(String.Format("Property {0} has value {1}.", _
 prop.Name, prop.Value))

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Windows Collections
The Application.Windows property returns a Windows collection that lets you iterate and access all the windows that are
open in Excel. Similarly, the Workbook.Windows property lets you access windows that are associated with a particular
workbook. These collections provide methods to arrange the open windows. Windows collections do not have a method
to add a new window. Instead, you must call the Workbook.NewWindow method.

Iterating over the Open Windows

The Windows collection has a GetEnumerator method that allows it to be iterated over using a For Each loop in Visual
Basic, as shown in Listing 5.18.

Listing 5.18. A VSTO Customization That Iterates over the Windows Collection

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim workbooks As Excel.Workbooks = Me.Application.Workbooks
 Dim workbook1 As Excel.Workbook = workbooks.Add()
 Dim workbook2 As Excel.Workbook = workbooks.Add()

 Dim i As Integer
 For i = 1 To 10
 workbook1.NewWindow()
 workbook2.NewWindow()
 Next

 Dim window As Excel.Window
 For Each window In workbook1.Windows
 MsgBox(String.Format("Workbook1 Window: {0}", _
 window.Caption))
 Next

 For Each window In Me.Application.Windows
 MsgBox(String.Format("Application Window: {0}", _
 window.Caption))
 Next

 End Sub

End Class

Accessing a Window in the Collection

To access a Window in the Windows collection, you use a property called Item, which returns a Window. The Item
property takes an Index parameter that is of type Object. You can pass a String representing the caption of the Window, or
you can pass a 1-based index into the Windows collection. You can check how many items are in a given collection by
using the Count property. Listing 5.19 shows both getting a window by passing in a 1-based index and by passing in the
caption of the window. In the first use of Item, Item is specified explicitly (windows.Item(1)). In the second use, Item is
omitted, as it is the default property of the Windows collection and Visual Basic knows how to call it if it is omitted
(windows(caption)). Either usagespecifying Item explicitly or omitting Item and letting Visual Basic call it as the default
property of the collectionis acceptable.

Listing 5.19. A VSTO Customization That Gets a Window from the Windows
Collection Using Item

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Collection Using Item

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim caption As String = ""
 Dim windows As Excel.Windows = Me.Windows

 If windows.Count >= 1 Then
 Dim window As Excel.Window = windows.Item(1)
 caption = window.Caption
 MsgBox(caption)
 End If

 If Not String.IsNullOrEmpty(caption) Then
 Dim window2 As Excel.Window = windows(caption)
 Dim caption2 As String = window2.Caption
 MsgBox(caption2)
 End If

 End Sub

End Class

Arranging Windows

Excel has various ways of arranging windows and synchronizing those windows so that when one window scrolls, the
others scroll as well. The Arrange method lets you arrange a collection of windows as tiled, horizontal, vertical, or
cascaded. This method also lets you synchronize two or more windows that are showing the same workbook so that
when one window scrolls, the other windows scroll the same amount. Table 5.11 shows the optional parameters passed
to the Arrange method.

Table 5.11. Optional Parameters for the Arrange Method
Property Name Type What It Does

ArrangeStyle XlArrangeStyle Sets the style to use when arranging the windows:
xlArrangeStyleCascade, xlArrangeStyleTiled, xlArrange-StyleHorizontal,
xlArrange-StyleVertical.

ActiveWorkbook Boolean If set to true, arranges the windows only for the active
workbook. If set to False, arranges all open windows.

SyncHorizontal Object If set to true, when one window associated with a
workbook scrolls horizontally, the other windows
associated with the workbook also scroll.

SyncVertical Object If set to true, when one window associated with a
workbook scrolls vertically, the other windows associated
with the workbook also scroll.

The CompareSideBySideWith method allows you to synchronize the scrolling of two windows showing the same
workbook or two windows showing different workbooks. This method takes a String that represents the caption of the
window to compare the active window with. The window you want to compare with the active window must be a
member of the Windows collection you are usingso to be safe, you should use the Application.Windows collection
because it contains all open windows.

As Listing 5.20 shows, it is important to activate the workbook whose windows you want to arrange. If you do not do
this, the windows of the active workbook will be arranged, rather than those of the workbook associated with the
Windows collection.

Listing 5.20. A VSTO Customization That Arranges and Synchronizes Windows

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 5.20. A VSTO Customization That Arranges and Synchronizes Windows

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim workbooks As Excel.Workbooks = Me.Application.Workbooks
 Dim workbook1 As Excel.Workbook = workbooks.Add()
 Dim workbook2 As Excel.Workbook = workbooks.Add()
 Dim workbook1Window As Excel.Window = workbook1.NewWindow()
 workbook2.NewWindow()

 workbook1.Activate()
 workbook1.Windows.Arrange(_
 Excel.XlArrangeStyle.xlArrangeStyleTiled, True, True, True)
 MsgBox(String.Format(_
 "Workbook {0} has its windows arranged tiled.", _
 workbook1.Name))

 workbook2.Activate()
 Me.Application.Windows.CompareSideBySideWith(_
 workbook1Window.Caption)
 MsgBox(String.Format(_
 "The windows {0} and {1} are synchronized", _
 Me.Application.ActiveWindow.Caption, _
 workbook1Window.Caption))

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Window Object
The Window object represents an Excel window. You can use the Window object to position a window associated with a
workbook. You can also use the Window object to set display settings for a workbook, such as whether to display
gridlines and headings.

Positioning a Window

The Window object lets you position and change the way Excel displays a workbook within a window. Window has a
WindowState property of type XlWindowState that can be used to set the window to xlMaximized, xlMinimized, or xlNormal.

When the WindowState is set to xlNormal, you can position the window using the Left, Top, Width, and Height properties.
These properties are Double values that represent points, not screen pixels. You can use the Window's
PointsToScreenPixelsX and PointsToScreenPixelsY methods to convert points to pixels.

Display Settings Associated with a Window

A number of additional properties allow you to control the display of a window. Table 5.12 lists some of the most
commonly used ones.

Table 5.12. Window Properties That Control the Display of a Window
Property Name Type What It Does

DisplayGridline Boolean If set to False, Excel won't display gridlines around cells.

DisplayHeadings Boolean If set to False, Excel won't display the row and column
headers.

DisplayHorizontalScrollBar Boolean If set to False, Excel won't display the horizontal scroll
bar.

DisplayVerticalScrollBar Boolean If set to False, Excel won't display the vertical scroll bar.

DisplayWorkbookTabs Boolean If set to False, Excel won't display the tabs to allow the
user to switch to another worksheet.

EnableResize Boolean If set to False, Excel won't let the user resize the window
when WindowState is set to xlNormal.

GridlineColor Integer Set to the color of the gridlines. Add a reference to your
project to System. Drawing.dll, and use the System.
Drawing.ColorTranslator.ToOle method to generate a
color Excel understands from a .NET color.

ScrollColumn Integer Sets the left column that the window should scroll to.

ScrollRow Integer Sets the top row that the window should scroll to.

SplitColumn Double Sets the column number where the window will be split
into vertical panes.

SplitRow Double Sets the row number where the window will be split into
horizontal panes.

Visible Boolean Sets whether the window is visible.

Zoom Object Zooms the window; set to 100 to zoom to 100%, 200 to
zoom to 200%, and so on.

Listing 5.21 shows an example of using many of these properties. Note that we add a reference to System.Drawing.dll
so that we can use the ColorTranslator object to set the GridlineColor property. The ColorTranslator object provides a
method called ToOle, which takes a System.Drawing color and converts it to an Ole color formatthe kind of color format
that Office methods and properties that take colors expect.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 5.21. A VSTO Customization That Controls the Display Options for a
Window

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim win As Excel.Window = Me.NewWindow()

 win.WindowState = Excel.XlWindowState.xlNormal
 win.Width = 200
 win.Height = 200
 win.Top = 8
 win.Left = 8
 win.DisplayGridlines = True
 win.DisplayHeadings = False
 win.DisplayHorizontalScrollBar = False
 win.DisplayVerticalScrollBar = False
 win.DisplayWorkbookTabs = False
 win.EnableResize = False

 win.GridlineColor = System.Drawing.ColorTranslator.ToOle(_
 System.Drawing.Color.Blue)

 win.ScrollColumn = 10
 win.ScrollRow = 20
 win.Visible = True
 win.Zoom = 150

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Names Collection and Name Object
The Names collection represents a set of ranges in the workbook that have been given names so that the range can be
accessed by a name in a formula or by your code accessing the Names collection. The user can create and edit names
using the Name Box, as shown in Figure 5.2, or by using the Name menu in the Insert menu. Also, names are
sometimes created automatically by features of Excel. When the user defines a custom print area, for example, Excel
creates a named range with the name Print_Area.

Iterating over the Names Collection

The Names collection has a GetEnumerator method that allows it to be iterated over using a For Each loop in Visual Basic.
The following snippet iterates the Names collection associated with a workbook and displays the name of each Name
object, as well as the address of the range it refers to in standard format (for example, "=Sheet1!A5"):

 For Each name As Excel.Name in workbook.Names
 Console.WriteLine(String.Format(_
 "{0} refers to {1}", name.Name, name.RefersTo))
 Next

Accessing a Name in the Names Collection

To access a Name in the Names collection, you use a method called Item, which takes three optional parameters, as
shown in Table 5.13.

Table 5.13. Optional Parameters for the Item Method
Parameter Name Type What It Does

Index Object Pass the name of the Name or the index of the Name in
the Names collection.

IndexLocal Object Pass the localized name of the Name. A localized name
typically exists when an Excel feature has created the
name.

RefersTo Object Pass the standard format refers to address (=Sheet1!A5)
to get back the Name object that refers to that address.

Listing 5.22 shows some code that creates a Name and then accesses it in several ways. It creates the Name by using
the Add method that takes the name to be used for the Name object and the standard format address string (such as
"=Sheet1!A5") that the newly created name will refer to.

Listing 5.22. A VSTO Customization That Creates a Name Object and Accesses It

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim names As Excel.Names = Me.Names
 names.Add("MyName", "=Sheet1!A5")

 Dim name1 As Excel.Name
 name1 = names.Item(RefersTo:="=Sheet1!A5")
 MsgBox(String.Format(_
 "Name: {0} RefersTo: {1} RefersToR1C1: {2} Count: {3}", _
 name1.Name, name1.RefersTo, name1.RefersToR1C1, _
 name1.RefersToRange.Cells.Count))

 Dim name2 As Excel.Name = names.Item("MyName")
 MsgBox(String.Format(_

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox(String.Format(_
 "Name: {0} RefersTo: {1} RefersToR1C1: {2} Count: {3}", _
 name2.Name, name2.RefersTo, name2.RefersToR1C1, _
 name2.RefersToRange.Cells.Count))

 End Sub

End Class

The Name Object

Given a Name object, you commonly will use several properties. The Name returns the name as a String. The RefersTo
property returns the standard format address as a String that the Name refers to. The RefersToR1C1 returns the "rows
and columns" format address as a String (such as "=Sheet1!R26C9") that the Name refers to. Most important, the
RefersToRange property returns an Excel Range object representing the range of cells that the name was assigned to.

To hide the name from the Define Name dialog box and the Name Box drop-down list, you can set the Visible property
to False. To delete a Name, use the Delete method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Worksheet Object
The Worksheet object represents a worksheet inside an Excel workbook. The Worksheet has a Name property that
returns the name of the worksheet (for example, "Sheet1").

Worksheet Management

The Worksheet object has an Index property that gives a 1-based tab position for the worksheet in the tabbed
worksheet tabs shown at the bottom-left corner of a workbook window. You can move a worksheet to a different tab
position by using the Move method. The Move method takes two optional parameters: a Before parameter that you can
pass the sheet you want to move the worksheet before, and an After parameter that you can pass the sheet that you
want to come after the moved worksheet. If you omit both optional parameters, Excel creates a new workbook and
moves the worksheet to the new workbook.

It is also possible to make a copy of a worksheet using the Copy method. Like the Move method, it takes two optional
parameters: Before and After parameters, which specify where the copied worksheet should go relative to other sheets.
You can specify either Before or After, but not both parameters. If you omit both optional parameters, Excel creates a new
workbook and copies the worksheet to the new workbook.

To activate a particular worksheet, use the Activate method. This method activates the sheet by making the first
window associated with the worksheet the active window. It also selects the tab corresponding to the worksheet and
displays that worksheet in the active window.

The equivalent of right-clicking a worksheet tab and choosing Delete from the pop-up menu is provided by the Delete
method. When you use this method, Excel shows a warning dialog box. You can prevent this warning dialog box from
appearing by using the Application object's DisplayAlerts property, which is discussed in the section "Controlling the
Dialog Boxes and Alerts That Excel Displays" earlier in this chapter.

You can use the Visible property to hide a worksheet so that its tab is not shown. The Visible property is of type
XlSheetVisibility and can be set to xlSheetVisible, xlSheetHidden, and the xlSheetVeryHidden. The last value hides the worksheet so
that it can be shown again only by setting the Visible property to xlSheetVisible. Setting the Visible property to xlSheetHidden
hides the sheet, but the user can still unhide the sheet by going to the Format menu and choosing Sheet and then
Unhide.

Sometimes a sheet is hidden using the Visible property so that the sheet can be used to store additional data that an
application uses in a "scratch" worksheet that the user will not see. A better way to do this is provided by VSTO's
cached-data feature, described in Chapter 18, "Server Data Scenarios." It has the added benefit that you can
manipulate your hidden data in the Excel spreadsheet without starting Excel. This lets you prefill an Excel worksheet
with custom data on the server.

Note that a workbook must contain at least one visible worksheet, so when using the Delete method and the Visible
property, you must keep this restriction in mind. If your code tries to hide or delete the last visible sheet in a workbook,
an exception is thrown.

Listing 5.23 illustrates the usage of several of these properties and methods.

Listing 5.23. A VSTO Customization That Works with the Worksheets Collection

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim sheetA as Excel.Worksheet = Me.Worksheets.Add()
 sheetA.Name = "SheetA"
 Dim sheetB As Excel.Worksheet = Me.Worksheets.Add()
 sheetB.Name = "SheetB"
 Dim sheetC As Excel.Worksheet = Me.Worksheets.Add()
 sheetC.Name = "SheetC"

 ' Tab indexes
 Dim msg As String = "{0} is at tab index {1}"
 MsgBox(String.Format(msg, sheetA.Name, sheetA.Index))
 MsgBox(String.Format(msg, sheetB.Name, sheetB.Index))
 MsgBox(String.Format(msg, sheetC.Name, sheetC.Index))

 sheetC.Move(sheetA)
 MsgBox("Moved SheetC in front of SheetA")

 ' Tab indexes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Tab indexes
 MsgBox(String.Format(msg, sheetA.Name, sheetA.Index))
 MsgBox(String.Format(msg, sheetB.Name, sheetB.Index))
 MsgBox(String.Format(msg, sheetC.Name, sheetC.Index))

 sheetB.Copy(sheetA)

 Dim sheetD As Excel.Worksheet
 sheetD = Me.Worksheets(sheetA.Index - 1)
 CType(sheetA, Excel._Worksheet).Activate()
 MsgBox(String.Format(_
 "Copied SheetB to create {0} at tab index {1}", _
 sheetD.Name, sheetD.Index))

 sheetD.Delete()
 sheetA.Visible = Excel.XlSheetVisibility.xlSheetHidden
 MsgBox("Deleted SheetD and hid SheetA.")

 End Sub

End Class

Working with Names

As previously discussed, you can define named ranges at the workbook level by using Workbook.Names. You can also
define named ranges that are scoped to a particular worksheet by using the Names property associated with a
Worksheet object. The Names property returns a Names collection with only the names that are scoped to the
Worksheet. For more information on the Names collection, see the section "Working with the Names Collection and
Name Object" earlier in this chapter.

Working with Worksheet Custom Properties

You can add to the worksheet custom properties that have names and values. Custom properties are a convenient way
to associate additional hidden information with a worksheet that you do not want to put in a cell. Custom properties are
not shown anywhere in the Excel user interface, unlike the document properties associated with a workbook. Custom
properties at the worksheet level do not have the 256-character limit that document properties have for their value.
You can store much larger chunks of data in a worksheet custom property.

The CustomProperties property returns a collection of custom properties associated with the worksheet. You can add a
custom property by using the CustomProperties collection's Add method and passing a String for the name of the custom
property you want to create and an Object for the value you want to associate with the custom property. To get to a
particular custom property, use the CustomProperties.Item property, and pass the index of the property you want to
get. Unfortunately, the Item property takes only a 1-based index, not the name of a custom property you have added.
Therefore, you must iterate over the collection and check each returned CustomProperty object's Name property to
determine whether you have found the custom property you want. Listing 5.24 shows an example of creating a custom
property and then accessing it again.

Listing 5.24. A VSTO Customization That Accesses Custom DocumentProperty
Objects

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim sheet As Excel.Worksheet = Me.Worksheets.Add()

 ' Add a custom property
 Dim props As Excel.CustomProperties = sheet.CustomProperties
 props.Add("myProperty", "Some random value")
 props.Add("otherProperty", 1)

 ' Now, enumerate the collection to find myProperty again.
 Dim prop As Excel.CustomProperty
 For Each prop In props
 If prop.Name = "myProperty" Then
 MsgBox(String.Format(_
 "{0} property is set to {1}.", prop.Name, prop.Value))
 Exit For
 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End If
 Next

 End Sub

End Class

If you are using VSTO to associate code with a workbook, it usually is better to use cached data rather than custom
properties. The cached-data feature lets you put data sets and any XML serializable type into a data island in the
document. This data island can also be accessed on the server without starting Excel. For more information on the
cached-data feature of VSTO, see Chapter 18, "Server Data Scenarios."

Protecting a Worksheet

The Protect method protects the worksheet so that users cannot modify the worksheet. When a worksheet is protected
using the Protect method, all the cells in the workbook are automatically locked. The Protect method corresponds to the
Protect Sheet dialog box, shown in Figure 5.3. You can access this dialog box by choosing Tools > Protection > Protect
Sheet.

Figure 5.3. The Protect Sheet dialog box.

A number of optional parameters passed to the Protect method control exactly what can be modified, as shown in Table
5.14. Many of these options correspond to the checked list shown in Figure 5.3.

Table 5.14. Optional Parameters for the Protect Method
Parameter Name Type What It Does

Password Object You can pass the password as a String that you want to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Password You can pass the password as a String that you want to
use to protect the document. You must pass this same
password to the Unprotect method when you want to
unprotect the document (or type the password when you
choose to unprotect the document using Excel's
protection menu in the Tools menu). If you omit this
parameter, the worksheet can be unprotected without
requiring a password.

DrawingObjects Object Pass true to protect any shapes that are in the worksheet.
The default value is False.

Contents Object Pass true to protect the values of cells that have been
locked (Range.Locked is true) and are not in the
AllowEditRange collection (Range.AllowEdit is False). The
default value is TRue.

Scenarios Object Pass TRue to prevent scenarios from being edited. The
default value is true.

UserInterfaceOnly Object Pass true to apply the protection settings to the actions
taken by the user using the user interface. Pass False to
protect the worksheet from code that tries to modify the
worksheet. The default is False. When the workbook is
saved and closed, and then reopened later, Excel sets
protection back to apply to both user interface and code.
You must run some code each time the workbook opens
to set this option back to true if you want your code
always to be able to modify protected objects.

AllowFormatting-Cells Object Pass TRue to allow the user to format cells in the
worksheet. The default value is False.

AllowFormatting-Columns Object Pass true to allow users to format columns in the
worksheet. The default value is False.

AllowFormatting-Rows Object Pass true to allow users to format rows in the worksheet.
The default value is False.

AllowInserting-Columns Object Pass true to allow users to insert columns into the
worksheet. The default value is False.

AllowInserting-Rows Object Pass TRue to allow users to insert rows into the
worksheet. The default value is False.

AllowInserting-Hyperlinks Object Pass true to allow the user to insert hyperlinks into the
worksheet. The default value is False.

AllowDeleting-Columns Object Pass true to allow the user to delete columns from the
worksheet. The default value is False. If you pass true, the
user can delete only a column that has no locked cells.
(Range.Locked for all the cells in the column is False.)

AllowDeleting-Rows Object Pass true to allow the user to delete rows from the
worksheet. The default value is False. If you pass true, the
user can delete only a row that has no locked cells in it.
(Range.Locked for all the cells in the row is False.)

AllowSorting Object Pass true to allow the user to sort in the worksheet. The
default value is False. If you pass TRue, the user can sort
only a range of cells that has no locked cells in it
(Range.Locked is False) or that has cells that have been
added to the AllowEditRanges collection (Range.AllowEdit
is TRue).

AllowFiltering Object Pass TRue to allow the user to modify filters in the
worksheet. The default value is False.

AllowUsingPivot-Tables Object Pass true to allow the user to use pivot table reports in
the worksheet. The default value is False.

You have two ways to exclude certain ranges of cells from being locked when the worksheet is protected. The first way
is to add exclusions to protection using the AllowEditRanges collection that is returned from
Worksheet.Protection.AllowEditRanges. The AllowEditRanges collection corresponds to the Allow Users to Edit Ranges
dialog box, shown in Figure 5.4. You can access this dialog box by choosing Tools > Protection > Allow Users to Edit
Ranges.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.4. The Allow Users to Edit Ranges dialog box.

Exclusions you make using the AllowEditRanges collection must be made before you use the Protect method to protect
the worksheet. After you have protected the worksheet, no changes can be made to the AllowEditRanges collection until
you unprotect the worksheet again. Exclusions you make in this way can be given a title and will display in the Allow
Users to Edit Range dialog box. A Range that is excluded from protection in this way will return true from its
Range.AllowEdit property. Listing 5.25 shows a VSTO customization that creates two exclusions to protection using
AllowEditRanges and then protects the worksheet using the Protect method.

Listing 5.25. A VSTO Customization That Adds Exclusions to Protection Using
AllowEditRanges

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim sheet As Excel.Worksheet = Me.Worksheets.Add()
 Dim allowEdits As Excel.AllowEditRanges
 allowEdits = sheet.Protection.AllowEditRanges()
 allowEdits.Add("Editable Cell", sheet.Range("A1"))
 sheet.Protect()

 Dim protectedRange As Excel.Range = sheet.Range("A2")
 MsgBox(String.Format(_
 "A2's Locked is set to {0}", protectedRange.Locked))
 MsgBox(String.Format(_
 "A2's AllowEdit is set to {0}", protectedRange.AllowEdit))

 Try
 protectedRange.Value2 = "Should fail"
 Catch ex As Exception
 MsgBox(ex.Message)
 End Try

 Try
 allowEdits.Add("This should fail", sheet.Range("A2"))
 Catch ex As Exception
 ' You can't add to the AllowEditRanges collection
 ' when the worksheet is protected
 MsgBox(ex.Message)
 End Try

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim allowEditRange As Excel.Range = sheet.Range("A1")
 MsgBox(String.Format(_
 "A1's Locked is set to {0}", allowEditRange.Locked))
 MsgBox(String.Format(_
 "A1's AllowEdit is set to {0}", allowEditRange.AllowEdit))

 allowEditRange.Value2 = "Should succeed"

 End Sub

End Class

The second way to exclude certain ranges of cells from being locked when the worksheet is protected is to use the
Range.Locked property. Cells you exclude in this way do not show up in the Allow Users to Edit Ranges dialog box.
Listing 5.26 shows adding exclusions to protection using the Range.Locked property.

Listing 5.26. A VSTO Customization That Adds Exclusions to Protection Using
Range.Locked

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim sheet As Excel.Worksheet = Me.Worksheets.Add()
 Dim range1 As Excel.Range = sheet.Range("A2")
 range1.Locked = False
 sheet.Protect()

 MsgBox(String.Format("A2's Locked is set to {0}", _
 range1.Locked))
 MsgBox(String.Format("A2's AllowEdit is set to {0}", _
 range1.AllowEdit))

 range1.Value2 = "Should succeed"

 End Sub

End Class

After a worksheet is protected, a number of properties let you examine the protection settings of the document and
further modify protection options, as shown in Table 5.15.

Table 5.15. Properties That Let You Examine and Further Modify Document
Protection

Property Name Type What It Does

EnableAutoFilter Boolean If set to False, Excel won't display the AutoFilter arrows
when the worksheet is protected.

EnableOutlining Boolean If set to False, Excel won't display outlining symbols when
the worksheet is protected.

EnablePivotTable Boolean If set to False, Excel won't display the pivot table controls
and commands when the worksheet is protected.

EnableSelection XlEnable-Selection If set to xlNoSelection, Excel won't allow anything to be
selected on a protected worksheet. If set to xlUnlocked,
Excel will allow only unlocked cells (Range.Locked is set
to False) to be selected. If set to xlNoRestrictions, any cell on
a protected worksheet can be selected.

ProtectContents Boolean Read-only property that returns False if locked cells can
be edited in the worksheet.

ProtectDrawing Boolean Read-only property that returns False if Objects shapes in
the worksheet can be edited.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Protection Protection Returns a Protection object that has read-only properties
corresponding to most of the optional parameters passed
to the Protect method.

Protection.Allow-
EditRanges

AllowEditRanges Returns an AllowEditRanges collection that lets you work
with the ranges that users are allowed to edit.

ProtectionMode Boolean Read-only property that returns true if the worksheet is
protected.

ProtectScenarios Boolean Read-only property that returns False if scenarios in the
worksheet can be edited.

Working with OLEObjects

In addition to containing cells, a worksheet can contain embedded objects from other programs (such as an embedded
Word document) and ActiveX controls. To work with these objects, you can use the OLEObjects method on the
Worksheet object. The OLEObjects method takes an optional Index parameter of type Object that you can pass the name
of the OLEObject or the 1-based index of the OLEObject in the collection. The OLEObjects method also doubles as a way
to get to the OLEObjects collection, which can be quite confusing. If you pass it a String that represents as a name or a
1-based index as an Integer, it returns the specified OLEObject. If you omit the optional parameter, it returns the
OLEObjects collection.

Any time you add an OLEObject to a worksheet, Excel also includes that object in the Shapes collection that is returned
from the Shapes property on the Worksheet object. To get to the properties unique to an OLEObject, you use the
Shape.OLEFormat property.

It is possible to write Visual Basic code that adds ActiveX controls to a worksheet and talks to them through casting
OLEObject.Object or Shape.OLEFormat.Object to the appropriate type. You have to add a reference in your Visual Basic
project for the COM library associated with the ActiveX control you want to use. Doing so causes Visual Studio to
generate an interop assembly and add it to your project. Alternatively, if a primary interop assembly (PIA) is registered
for the COM library, Visual Studio automatically adds a reference to the pregenerated PIA. Then you can cast
OLEObject.Object or Shape.OLEFormat.Object to the correct type added by Visual Studio for the COM library object
corresponding to the ActiveX control.

VSTO enables you to add Windows Forms controls to the worksheeta much more powerful and .NET-centric way of
working with controls. For this reason, we do not consider using ActiveX controls in any more detail in this book. For
more information on VSTO's support for Windows Forms controls, see Chapter 14, "Using Windows Forms in VSTO."

Working with Shapes

The Shapes property returns a Shapes collectiona collection of Shape objects. A Shape object represents various
objects that can be inserted into an Excel spreadsheet, including a drawing, an AutoShape, WordArt, an embedded
object or ActiveX control, or a picture.

The Shapes collection has a Count property to determine how many shapes are in the Worksheet. It also has an Item
method that takes a 1-based index to get a particular Shape out of the collection. You can also enumerate over the
Shapes collection using For Each.

Several methods on the Shapes collection let you add various objects that can be represented as a Shape. These
methods include AddCallout, AddConnector, AddCurve, AddDiagram, AddLabel, AddLine, AddOLEObject, AddPicture,
AddPolyline, AddShape, AddTextbox, and AddTextEffect.

The Shape object has properties and methods to position the Shape on the worksheet. It also has properties and
methods that let you format and modify the Shape object. Some of the objects returned by properties on the Shape
object are shown in Figure 3.20 in Chapter 3, "Programming Excel."

Working with ChartObjects

In this book, we have used the phrase chart sheet when referring to a chart that is a sheet in the workbook. Figure 5.5
shows the last step of the Chart Wizard that is shown when you insert a new chart. Excel enables you to insert a chart
as a new sheetwhat we have called a chart sheetand it allows you to add a chart as an object in a sheet. The object
model calls a chart that is added as an object in a sheet a ChartObject.

Figure 5.5. The Chart Location step of the Chart Wizard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.5. The Chart Location step of the Chart Wizard.

What complicates the matter is that the object in the object model for a chart sheet is a Chart, but a ChartObject also
has a property that returns a Chart. A ChartObject has its own set of properties that control the placement of the chart
in a worksheet. But the properties and methods to manipulate the chart contents are found on the Chart object
returned by the ChartObject.Chart property.

To work with ChartObjects, you can use the ChartObjects method on the Worksheet object. The ChartObjects method
takes an optional Index parameter of type Object that you can pass the name of the ChartObject or the 1-based index of
the ChartObject in the collection. The ChartObjects method also doubles as a way to get to the ChartObjects collection,
which can be quite confusing. If you pass it a String that represents as a name or a 1-based index, it returns the
specified ChartObject. If you omit the optional parameter, it returns the ChartObjects collection.

To add a ChartObject to a worksheet, you use the ChartObjects.Add method, which takes Left, Top, Width, and Height as
Double values in points. Any time you add a ChartObject to a worksheet, Excel also includes that object in the Shapes
collection that is returned from the Shapes property on the Worksheet object.

Working with Lists

Excel 2003 introduced the ability to create a list from a range of cells. Just select a range of cells, right-click the
selection, and choose Create List. A list has column headers with drop-down options that make it easy for the user to
sort and apply filters to the data in the list. It has a totals row that can automatically sum and perform other operations
on a column of data. It has an insert row, marked with an asterisk at the bottom of the list, that allows users to add
rows to the list. Figure 5.6 shows an example of a list in Excel.

Figure 5.6. A list in Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can access the lists in a worksheet by using the ListObjects property. The ListObjects property returns the
ListObjects collection. The ListObjects collection has a Count property to determine how many lists are in the
Worksheet. It also has an Item property that takes a 1-based index or the name of the list object as a String to get a
ListObject object out of the collection. You can also enumerate over the ListObjects collection using For Each.

Table 5.16 shows some of the most commonly used properties for the ListObject object. You will read more about
ListObject in the discussion of VSTO's support for data in Chapter 17, "VSTO Data Programming."

Table 5.16. Key Properties of ListObject
Property Name Type What It Does

DataBodyRange Range Returns a Range representing the cells containing the
datathe cells between the headers and the insert row.

HeaderRowRange Range Returns a Range representing the header cells.

InsertRowRange Range Returns a Range representing the cells in the insert row.

ShowAutoFilter Boolean If set to False, the drop-down filtering and sorting lists
associated with the column headers won't be shown.

ShowTotals Boolean If set to False, the totals row won't be shown.

TotalsRowRange Range Returns a Range representing the cells in the totals row.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Range Object
The Range object represents a range of cells in a spreadsheet. A range can contain one cell, multiple contiguous cells,
and even multiple discontiguous cells. You can select multiple discontiguous cells by holding down the Ctrl key as you
select in Excel.

Getting a Range Object for a Particular Cell or Range of Cells

Excel provides a variety of ways to get a Range object. The Range object is the object you use when you want to work
with a cell or range of cells in an Excel worksheet. Two ways to get a Range object were mentioned in the description of
the Application object earlier in this chapter. Application.ActiveCell returns the top-left cell of the active selection in the
active window. Application.Selection returns an Object that represents the active selection in the active window. If the
active selection is a range of cells, you can cast Application.Selection to a Range object. If something else is selected in
the active window, such as a shape or a chart, Application.Selection returns that selected object instead.

Worksheet also provides several ways to get a Range object. The Worksheet.Range property is the most common way
to get a Range object from a Worksheet. This property takes a required Object parameter to which you can pass a String.
It has a second optional parameter to which you can pass a second String. The strings you pass are in what is called A1-
style reference format. The easiest way to explain the A1-style reference format is to give several examples.

The reference A1 specifies the cell at row 1, column A. The reference D22 specifies the cell at row 22, column D. The
reference AA11 specifies the cell at row 11, column AA (column 27).

The reference A1 also refers to the cell at row 1, column A. If you use $ signs in an A1-style reference, they are
ignored.

You can use the range operator (:) to specify a range of cells where the first A1-style reference is the top-left corner of
the range, followed by a colon operator, followed by a second A1-style reference for the bottom-right corner of the
range. The reference A1:B1 refers to the two cells at row 1, column A, and at row 1, column B. The reference A1:AA11
refers to all 297 cells in the block whose top-left corner is at row 1, column A and whose bottom-right corner is at row
11, column AA (column 27).

You can use the union operator (,) to specify multiple cells that could be discontiguous. The reference A1,C4, for
example, specifies a range of two cells where the first cell is at row 1, column A, and the second cell is at row 4, column
C. Users can select discontiguous ranges of cells by holding down the Ctrl key as they select various cells. The reference
A1,C4,C8,C10 is another valid A1-style reference that specifies four different cells.

The intersection operator (a space) lets you specify the intersection of cells. The reference A1:A10 A5:A15, for example,
resolves to the intersecting six cells starting at row 5, column A, and ending at row 10, column A. The reference A1:A10
A5:A15 A5 resolves to the single cell at row 5, column A.

You can also use any names you have defined in the worksheet in your A1-style reference. Suppose that you defined a
named range called foo that refers to the cell A1. Some valid A1-style references using your name would include foo:A2,
which refers to the cells at row 1, column A, and at row 2, column A. The reference foo,A5:A6 refers to the cells at row 1,
column A; row 5, column A; and row 6, column A.

As mentioned earlier, the Range property takes a second optional parameter to which you can pass a second A1-style
reference string. The first parameter and the second parameter are effectively combined using the range operator. So
the range that Range returns when you call Range("A1", "A2") is equivalent to the range you get when you call
Range("A1:A2").

A second way to get a Range object is to use the Worksheet.Cells property, which returns a Range for all the cells in the
worksheet. Then you can use the same Range property on the returned Range object and pass A1-style references to
select cells in the same way you do using Range from the Worksheet object. So Cells.Range("A1:A2") is equivalent to
Range("A1:A2"). A more common use of the Cells property is to use it in conjunction with Range's Item property, which
takes a row index and an optional column index. Using Item is a way to get to a particular cell without using the A1-
style reference. So Cells.Item(1,1) is equivalent to Range("A1").

Another way to get a Range object is by using the Worksheet.Rows or Worksheet.Columns properties. These return a
Range that acts differently from other Range objects. If you take the Range returned by Columns and display the count
of cells in the range, for example, it returns 256the number of columns. But if you call the Select method on the
returned Range, Excel selects all 16,772,216 cells in the worksheet. The easiest way to think of the ranges returned by
Rows and Columns is that they behave similarly to how column and row headings behave in Excel.

Listing 5.27 shows several examples of using the Range property and the Cells, Rows, and Columns properties. We use
the Value property of Range to set every cell in the range to the string value specified. Figure 5.7 shows the result of
running the program in Listing 5.27.

Listing 5.27. A VSTO Customization That Gets Range Objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 5.27. A VSTO Customization That Gets Range Objects

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim r1 As Excel.Range = Me.Range("A1")
 r1.Value = "r1"
 Dim r2 As Excel.Range = Me.Range("B7:C9")
 r2.Value = "r2"
 Dim r3 As Excel.Range = Me.Range("C1,C3,C5")
 r3.Value = "r3"
 Dim r4 As Excel.Range = Me.Range("A1:A10 A5:A15")
 r4.Value = "r4"
 Dim r5 As Excel.Range = Me.Range("F4", "G8")
 r5.Value = "r5"
 Dim r6 As Excel.Range = Me.Rows.Item(12)
 r6.Value = "r6"
 Dim r7 As Excel.Range = Me.Rows.Item(5)
 r7.Value = "r7"

 End Sub

Figure 5.7. Result of running Listing 5.27.

Working with Addresses

Given a Range object, you often need to determine what cells it refers to. The Address property returns an address for
the range in either A1 style or R1C1 style. You have already learned about A1-style references. R1C1-style references
support all the same operators as discussed with A1-style references (colon for range, comma for union, and space for
intersection). R1C1-style references have row and column numbers prefaced by R and C, respectively. So cell A4 in
R1C1 style would be R4C1. Figure 5.8 shows a range that consists of three areas that we consider in this section.

Figure 5.8. A range with three discontiguous areas.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The address for the range in Figure 5.8 is shown here in A1 style and in R1C1 style:

A15:F28,H3:J9,L1
R15C1:R28C6,R3C8:R9C10,R1C12

Another option when getting an address is whether to get an external reference or a local reference. The addresses we
have already shown for Figure 5.8 are local references. An external reference includes the name of the workbook and
sheet where the range is. Here is the range in Figure 5.8 expressed as an external reference in A1 style and R1C1
style:

[Book1]Sheet1!A15:F28,H3:J9,L1
[Book1]Sheet1!R15C1:R28C6,R3C8:R9C10,R1C12

For our example, the workbook we created the range in was not saved. When we save it as Book1.xls, the addresses
look like this:

[Book1.xls]Sheet1!A15:F28,H3:J9,L1
[Book1.xls]Sheet1!R15C1:R28C6,R3C8:R9C10,R1C12

Another option when getting an address is whether to use an absolute address or a relative one. The addresses we
have already considered have been absolute. The same addresses in relative format (relative to cell A1) look like this:

R[14]C:R[27]C[5],R[2]C[7]:R[8]C[9],RC[11]
A15:F28,H3:J9,L1

For an R1C1-style address, you can also specify the cell you want your address to be relative to. If we get an R1C1-
style for our range in Figure 5.4 relative to cell B2, we get the following result:

R[13]C[-1]:R[26]C[4],R[1]C[6]:R[7]C[8],R[-1]C[10]

The Address property takes five optional parameters that control the way the reference is returned, as described in
Table 5.17.

Table 5.17. Optional Parameters for Address
Parameter Name Type What It Does

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RowAbsolute Object Pass true to return the row part of the address as an
absolute reference (A1). If you pass False, the row
reference will not be absolute ($A1). The default is true.

ColumnAbsolute Object Pass true to return the column part of the address as an
absolute reference (A1). If you pass False, the column
reference will not be absolute (A$1). The default is true.

ReferenceStyle XlReference-Style Pass xlA1 to return an A1-style reference. Pass xlR1C1 to
return an R1C1-style reference.

External Object Pass true to return an external reference. The default is
False.

RelativeTo Object Pass a Range object representing the cell that you want
an R1C1-style reference to be relative to. Has no effect
when used with A1-style references.

Listing 5.28 shows several examples of using Address with our example range.

Listing 5.28. A VSTO Customization That Uses Address

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim range1 As Excel.Range
 range1 = Me.Range("A15:F28,H3:J9,L1")

 Dim sb As System.Text.StringBuilder
 sb = New System.Text.StringBuilder()

 sb.AppendLine("A1Style Addresses:")
 sb.AppendFormat("Default: {0}" & vbCrLf, _
 range1.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1))
 sb.AppendFormat("Relative rows: {0}" & vbCrLf, _
 range1.Address(False, _
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1))
 sb.AppendFormat("Row & Column Relative: {0}" & vbCrLf, _
 range1.Address(False, False, _
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1))
 sb.AppendFormat("External: {0}" & vbCrLf, _
 range1.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1, _
 External:=True))

 sb.AppendLine()
 sb.AppendLine("R1C1-Style Addresses:")
 sb.AppendFormat("Default: {0}" & vbCrLf, _
 range1.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlR1C1))
 sb.AppendFormat(_
 "Row & Column Relative to C5: {0}" & vbCrLf, _
 range1.Address(False, False, _
 ReferenceStyle:=Excel.XlReferenceStyle.xlR1C1, _
 RelativeTo:=Me.Range("C5")))
 sb.AppendFormat("External: {0}", _
 range1.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlR1C1, _
 External:=True))

 MsgBox(sb.ToString())

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating New Ranges Using Operators

We have discussed several "operators" that can be used in address strings, including the union operator (a comma) and
the intersection operator (a space). You can also apply these operators through the Application.Union and
Application.Intersection methods.

It is also possible to take a Range and get a new Range that is offset from it by some number of rows and columns by
using the Offset property. This method takes a row-and-column value to offset the given range by and returns the
newly offset range. So calling Offset(5, 5) on the example range in Figure 5.8 returns a range with this A1-style address:

"F20:K33,M8:O14,Q6"

Listing 5.29 shows an example of using these operators. Note that Union and Intersection take a lot of optional
parameters, allowing you to union or intersect more than just two ranges.

Listing 5.29. A VSTO Customization That Uses Union, Intersection, and Offset

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim app As Excel.Application = Me.Application

 Dim range1 As Excel.Range = Me.Range("A15:F28")
 Dim range2 As Excel.Range = Me.Range("H3:J9")
 Dim range3 As Excel.Range = Me.Range("L1")
 Dim range4 As Excel.Range = Me.Range("A11:G30")

 Dim rangeUnion As Excel.Range
 rangeUnion = app.Union(range1, range2, range3)
 Dim rangeIntersection As Excel.Range
 rangeIntersection = app.Intersect(range1, range4)
 Dim rangeOffset As Excel.Range = rangeUnion.Offset(5, 5)

 MsgBox(String.Format("Union: {0}", _
 rangeUnion.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1)))
 MsgBox(String.Format("Intersection: {0}", _
 rangeIntersection.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1)))
 MsgBox(String.Format("Offset: {0}", _
 rangeOffset.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1)))

 End Sub

End Class

Working with Areas

When there are multiple discontiguous ranges of cells in one Range, each discontiguous range is called an area. If there
are multiple discontiguous areas in the Range, use the Areas property to access the each area (as a Range) via the
Areas collection. The Areas collection has an Areas.Count property and an Areas.Item property that takes an Integer
parameter representing the 1-based index into the array. Listing 5.30 shows an example of iterating over our example
range (which has three areas) and printing the address of each area.

Listing 5.30. A VSTO Customization That Works with Areas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 5.30. A VSTO Customization That Works with Areas

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim range1 As Excel.Range
 range1 = Me.Range("A15:F28,H3:J9,L1")
 MsgBox(String.Format(_
 "There are {0} areas", range1.Areas.Count))

 Dim area As Excel.Range
 For Each area In range1.Areas
 MsgBox(String.Format("Area address is {0}", _
 area.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1)))
 Next

 End Sub

End Class

Working with Cells

The Count property returns the number of cells in a given Range. You can get to a specific single-cell Range within a
Range by using the Item property. The Item property takes a required row index and an optional column index. The
column index can be omitted when the range is a one-dimensional array of cells because it has cells from only one
column or one row; in this case, the parameter called RowIndex really acts like an array index. If the Range has multiple
areas, you must get the area you want to work with first; otherwise, Item returns cells out of only the first area in the
Range.

Listing 5.31 shows an example of using Item.

Listing 5.31. A VSTO Customization That Uses Item

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim range1 As Excel.Range = Me.Range("A15:F28")

 Dim rowCount As Integer = range1.Rows.Count
 Dim columnCount As Integer = range1.Columns.Count
 Dim i As Integer
 Dim j As Integer

 For i = 1 To rowCount
 For j = 1 To columnCount
 Dim cell As Excel.Range = range1.Item(i, j)
 Dim address As String = cell.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1)
 cell.Value2 = String.Format("Item({0},{1})", i, j)
 Next
 Next

 End Sub

End Class

Working with Rows and Columns

Given a Range object, you can determine the row and column numbers of the top-left corner of its first area using the
Row and Column properties. The row and column numbers are returned as Integer values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Row and Column properties. The row and column numbers are returned as Integer values.

You can also determine the total number of rows and columns in the first area using the Rows and Columns properties.
These properties return special ranges that you can think of as corresponding to the row or column headers associated
with the range. When we get Rows.Count from our example range in Figure 5.8, it returns 14, and Columns.Count
returns 6. This makes sense because the first area in our selection (A15:F28) spans 6 columns and 14 rows.

To get the row-and-column position of the bottom-right corner of the first area, you can use the rather awkward
expressions shown in Listing 5.32. Listing 5.32 also illustrates the use of Item, which takes the row-and-column index
(relative to the top of the given range) and returns the cell (as a Range) at that row-and-column index. When you get a
Rows or a Columns range, these ranges are one-dimensional; hence, the parameter called RowIndex acts like an array
index in this case.

Listing 5.32. A VSTO Customization That Gets Row and Column Positions

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim range1 As Excel.Range = Me.Range(_
 "A15:F28,H3:J9,L1")
 Dim area As Excel.Range = range1.Areas.Item(1)

 Dim topLeftColumn As Integer = area.Column
 Dim topLeftRow As Integer = area.Row
 Dim bottomRightColumn As Integer = _
 area.Columns.Item(area.Columns.Count).Column()
 Dim bottomRightRow As Integer = _
 area.Rows.Item(area.Rows.Count).Row()

 MsgBox(String.Format(_
 "Area Top Left Column {0} and Row {1}", _
 topLeftColumn, topLeftRow))
 MsgBox(String.Format(_
 "Area Bottom Right Column {0} and Row {1}", _
 bottomRightColumn, bottomRightRow))

 MsgBox(String.Format(_
 "Total Rows in Area = {0}", area.Rows.Count))
 MsgBox(String.Format("Total Columns in Area = {0}", _
 area.Columns.Count))

 End Sub

End Class

Working with Regions

The CurrentRegion property returns a Range that is expanded to include all cells up to a blank row and blank column.
This expanded Range is called a region. So, for example, you might have a Range that includes several cells in a table.
To get a Range that encompasses the entire table (assuming that the table is bordered by blank rows and columns),
you would use the CurrentRegion property on the smaller Range to return the entire table.

The End property works against the region associated with a Range. The End property takes a member of the XlDirection
enumeration: xlDown, xlUp, xlToLeft, or xlToRight. This property, when passed xlUp, returns the top-most cell in the region in
the same column as the top-left cell of the Range. When passed xlDown, it returns the bottom-most cell in the region in
the same column as the top-left cell of the Range. When passed xlToLeft, it returns the left-most cell in the region in the
same row as the top-left cell of the Range. And when passed xlToRight, it returns the rightmost cell in the region in the
same row as the top-left cell of the Range.

Selecting a Range

You can make a range the current selection using the Select method on a Range. Remember that calling Select changes
the user's current selection, which is not a very nice thing to do without good reason. In some cases, however, you
want to draw the user's attention to something, and in those cases, selecting a Range is reasonable to do.

Editing the Values in a Range

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Two methods are typically used to get and set the values in a range. The first way is to use the property Value. The
second way is to use the property Value2. Value2 and Value differ in that the Value2 property returns cells that are
currency or dates as a Double value. Also, Value takes an optional parameter of type XlRangeValueDataType. If you pass
XlRangeValueData.xlRangeValueDefault, you will get back an Object representing the value of the cell for a single cell Range. For
both Value2 and Value, if the Range contains multiple cells, you will get back an array of objects corresponding to the
cells in the Range.

Listing 5.33 shows several examples of using Value2, including an example of passing an array of values to Value2.
Setting the values of the cells in a Range all at once via an array is more efficient than making multiple calls to set each
cell individually.

Listing 5.33. A VSTO Customization That Uses Value2

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim range1 As Excel.Range = Me.Range("A15:F28")
 range1.Value2 = "Test"

 Dim rowCount As Integer = range1.Rows.Count
 Dim columnCount As Integer = range1.Columns.Count

 Dim array(,) As Object
 array = New Object(rowCount, columnCount) {}

 Dim i As Integer
 For i = 0 To rowCount - 1
 Dim j As Integer
 For j = 0 To columnCount - 1
 array(i, j) = i * j
 Next
 Next
 range1.Value2 = array

 End Sub

End Class

Copying, Clearing, and Deleting Ranges

Excel provides a number of methods to copy, clear, and delete a Range. The Copy method takes a Destination parameter
that you can pass the destination of the copied range. The Clear method clears the content and formatting of the cells
in the range. ClearContents clears just the values of the cells in the range, and ClearFormats clears just the formatting.
The Delete method deletes the range of cells and takes as a parameter the direction in which to shift cells to replace
deleted cells. The direction is passed as a member of the XlDeleteShiftDirection enumeration: xlShiftToLeft or xlShiftUp.

Finding Text in a Range

The Find method allows you to find text in a Range and return the cell within the Range where the text is found. The
Find method corresponds to the Find and Replace dialog box, shown in Figure 5.9. If you omit parameters when calling
the Find method, it uses whatever settings were set by the user the last time the Find and Replace dialog box was used.
Furthermore, when you specify the parameters, the settings you specified appear in the Find dialog box the next time
the user opens it.

Figure 5.9. The Find and Replace dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.9. The Find and Replace dialog box.

The Find method takes a number of parameters, described in Table 5.18. Find returns a Range object if it succeeds and
Nothing if it fails to find anything. You can find the next cell that matches your find criteria by using the FindNext method.
FindNext takes an optional After parameter to which you need to pass the last found Range to ensure that you do not
just keep finding the same cell over and over again. Listing 5.34 shows an example of using the Find and FindNext
method where we search for any cells containing the character "2" and bold those cells.

Table 5.18. Parameters for the Find Method
Parameter Name Type What It Does

What Object Pass the data to search for as a required String.

After Object Pass a single cell after which you want the search to
begin as a Range. The default is the top-left cell if this is
omitted.

LookIn Object Pass the type to search.

LookAt XlLookAt Pass xlWhole to match the whole cell contents, xlPart to
match parts of the cell contents.

SearchOrder XlSearchOrder Pass xlByRows to search by rows, xlByColumns to search by
columns.

SearchDirection XlSearchDirection Pass xlNext to search forward, xlPrevious to search
backward.

MatchCase Object Pass true to match case.

MatchByte Object Pass true to have double-byte characters match only
double-byte characters.

SearchFormat Object Set to TRue if you want the search to respect the
FindFormat options. You can change the FindFormat
options by using the Application.FindFormat.

Listing 5.34. A VSTO Customization That Uses Find and FindNext

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim range1 As Excel.Range = Me.Range("A15:F28")

 Dim rowCount As Integer = range1.Rows.Count
 Dim columnCount As Integer = range1.Columns.Count
 Dim array(,) As Object = New Object(rowCount, columnCount) {}
 Dim i As Integer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim i As Integer
 Dim j As Integer
 For i = 0 To rowCount - 1
 For j = 0 To columnCount - 1
 array(i, j) = i * j
 Next
 Next
 range1.Value2 = array

 Dim foundRange As Excel.Range = range1.Find("2", _
 range1.Item(1, 1), LookAt:=Excel.XlLookAt.xlPart, _
 SearchDirection:=Excel.XlSearchDirection.xlNext)

 While foundRange IsNot Nothing
 foundRange.Font.Bold = True
 foundRange = range1.FindNext(foundRange)
 End While

 End Sub

End Class

Formatting a Range of Cells

Excel provides several methods and properties to format a range of cells. Among the most useful is the NumberFormat
property, which you can set to format strings corresponding to the strings in the Custom category of the Format Cells
dialog box. You can set NumberFormat to General to set no specific number format, for example. Setting
NumberFormat to m/d/yyyy sets a date format, and 0% sets the format to a percentage format. When using
NumberFormat, be sure to consider the locale issue discussed in the section "Special Excel Issues" later in this chapter
if you are building a console application or an add-in, because reading and setting this string can cause problems when
running in different locales. If you are using a VSTO Excel Workbook or Template project you do not have to worry
about the locale issue.

The Font property returns a Font object that can be used to set the Font to various sizes and styles. Listing 5.34
showed an example of the Font object used to bold the font of a cell.

Excel also enables you to create styles associated with a Workbook and apply those styles to a Range. You can create
styles using Workbook.Styles. Listing 5.35 shows an example of creating a style and applying it to a Range.

Listing 5.35. A VSTO Customization That Creates and Applies Styles

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim range1 As Excel.Range = Me.Range("A15:F28")
 range1.Value2 = "Hello"

 Dim style As Excel.Style
 style = Globals.ThisWorkbook.Styles.Add("My Style")
 style.Font.Bold = True
 style.Borders.LineStyle = Excel.XlLineStyle.xlDash
 style.Borders.ColorIndex = 3
 style.NumberFormat = "General"

 range1.Style = "My Style"

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Special Excel Issues
You need to be aware of several special considerations when using the Excel object model with .NET. This section
examines two of the most important: working with multiple locales and working with Excel dates.

The Excel Locale Issue for Automation Executables and COM Add-Ins

When you program against the Excel object model using managed code in an automation executable or a COM add-in,
Excel methods and properties can behave differently, depending on the locale of the current thread. Note that this
problem does not occur in code-behind-the-document solutions built with VSTO. If you want to set a formula for a
Range, for example, and you are in the French locale, Excel requires you to use the localized French formula names and
formatting:

sheet.Range("A1").Formula = "=SOMME(3; 4)"

This behavior differs from Visual Basic for Applications (VBA) and VSTO code-behind solutions that work independently
of locale. VBA and VSTO always tell Excel that the locale is U.S. English (locale ID 1033). In VBA and VSTO code-behind
solutions, you do not have to think about locale when talking to Excel. You can write this code and have it work even in
a French locale:

sheet.Range("A1").Formula = "=SUM(3, 4)"

When managed code calls into the Excel object model, it tells Excel the locale it is running under (the locale of the
current thread), which causes Excel to expect that you will provide formulas and other values in the localized format of
that locale. Excel will also return formulas and other values in the localized format of that locale. Excel expects localized
strings for such things as date formats, NumberFormat strings associated with a Range, color names associated with
NumberFormat strings, and formula names.

Using DateTime for Dates

As an example of the badness that can ensue if you do not think about this issue, consider what the following code
does:

sheet.Range("A1").Value2 = "03/11/02"

Depending on the locale of the current thread, Excel may interpret this value as March 11, 2002; November 3, 2002; or
November 2, 2003.

For dates, you have a clear workaround. Do not pass dates as literal strings to Excel. Instead, construct a date using
the System.DateTime object, and pass it to Excel using DateTime's ToOADate method, as shown in Listing 5.36. The
ToOADate method converts a DateTime to an OLE Automation date, which is the kind of date format that the Excel
object model expects.

Listing 5.36. A VSTO Customization That Passes a Date Properly to Excel

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim range1 As Excel.Range = Me.Range("A1")
 ' March 11, 2002
 Dim date1 As System.DateTime
 date1 = New System.DateTime(2002, 3, 11)

 range1.Value2 = date1.ToOADate()

 End Sub

End Class

Switching the Thread Locale to English and Back

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You might think that a solution to the problems associated with setting or getting Range.NumberFormat and
Range.Formula is to save the locale of the thread; temporarily switch the locale of the thread to English (locale ID
1033); execute code that sets or gets a locale-affected property, such as NumberFormat or Formula; and then switch
back to the saved locale. This approach is not recommended because it affects other add-ins that will not be expecting
the locale switch.

Consider the following example. Your add-in is running on a French machine. Your add-in switches the locale to 1033
and sets a formula value. Another add-in is handling the Change event and displays a dialog box. That dialog box
displays in English rather than French. So by changing the thread locale, you have changed the behavior of another
add-in and have been a bad Office citizen in general.

Using Reflection to Work Around the Locale Issue

The recommended workaround for COM add-ins or automation executables encountering the locale issue (when they
access properties affected by the current locale, such as the NumberFormat or Formula property) is to access these
properties via reflection. Reflection enables you to specify an English locale to Excel and write code that will work
regardless of the current thread locale. Listing 5.37 illustrates how to use reflection to set the NumberFormat and
Formula properties.

Listing 5.37. Using Reflection to Work Around the Locale Issue in Excel

Imports Excel = Microsoft.Office.Interop.Excel

Module Module1

 Sub Main()

 Dim application As Excel.Application
 application = New Excel.Application()
 application.Visible = True

 Dim workbook As Excel.Workbook = application.Workbooks.Add()
 Dim sheet As Excel.Worksheet = workbook.Worksheets.Add()
 Dim range1 As Excel.Range = sheet.Range("A1")

 ' Set Formula in English (US) using reflection
 GetType(Excel.Range).InvokeMember("Formula", _
 System.Reflection.BindingFlags.Public Or _
 System.Reflection.BindingFlags.Instance Or _
 System.Reflection.BindingFlags.SetProperty, _
 Nothing, range1, New Object() {"=SUM(12, 34)"}, _
 System.Globalization.CultureInfo.GetCultureInfo(1033))

 ' Set NumberFormat in English (US) using reflection
 GetType(Excel.Range).InvokeMember("NumberFormat", _
 System.Reflection.BindingFlags.Public Or _
 System.Reflection.BindingFlags.Instance Or _
 System.Reflection.BindingFlags.SetProperty, _
 Nothing, range1, _
 New Object() {"General"}, _
 System.Globalization.CultureInfo.GetCultureInfo(1033))

 End Sub

End Module

Old Format or Invalid Type Library Error

A second issue that further complicates the Excel locale issue is that you can get an "Old format or invalid type library"
error when using the Excel object model in an English Excel installation on a machine where the locale is set to a non-
English locale. Excel is looking for a file called xllex.dll in Program Files\Microsoft Office\OFFICE11\1033 and cannot find
it. The solution to this problem is to install the xllex.dll file or to install the MUI language packs for Office. You can also
make a copy of excel.exe, rename it xllex.dll, and copy it to the 1033 directory.

VSTO and the Excel Locale Issue

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSTO code-behind-the-document solutions solve the Excel locale issue by using a transparent proxy object that sits
between you and the Excel object model. This proxy always tells Excel that the locale is U.S. English (locale ID 1033),
which effectively makes VSTO match VBA behavior. If you are using VSTO code-behind-the-document solutions, the
Excel locale issue is solved for you, and you do not have to worry about it further. If you are building a managed COM
add-in for Excel or an automation executable, the issue still exists.

There are some caveats to VSTO's solution to the Excel locale issue. The VSTO transparent proxy can slow your code
slightly. It also causes Excel objects to display slightly differently when inspected in the debugger. Finally, if you
compare a proxied Excel object such as Application with an unproxied Application object using the Equals operator, the
objects will not evaluate to be equal.

If you want to bypass VSTO's transparent proxy for a particular object, you can use the
Microsoft.Office.Tools.Excel.ExcelLocale1033Proxy.Unwrap method and pass the Excel object that you want to bypass
the proxy for. This method removes the proxy and returns the raw PIA object, which exposes you once again to the
locale issue. You can also set the assembly-level attribute ExcelLocale1033 in a VSTO project's AssemblyInfo.vb file to
False to turn the transparent proxy off for the entire Excel solution. To do this, you must show hidden files in Solution
Explorer by clicking the Show Hidden Files button at the top of the Solution Explorer window. Then expand the My
Project folder, and double-click the AssemblyInfo.vb file. At the bottom of this file, you will find the ExcelLocale1033
attribute. Change the value of this attribute from TRue to False.

If you navigate to objects from another PIA and then navigate back to the Excel PIA, you can lose the transparent
proxy. If you get a CommandBar object from the Microsoft.Office.Core PIA namespace from the
Application.CommandBars collection, for example, and then use the CommandBar.Application property to get back to
the Excel Application object, you have lost the proxy, and the locale issue will occur again.

Finally, if you create a new instance of Excel from a Word VSTO code-behind solution, you are talking directly to the
Excel PIA with no transparent proxy object, and the locale issue will continue to be in effect.

Converting Excel Dates to DateTime

Excel can represent dates in either of two formats: the 1900 format or the 1904 format. The 1900 format is based on a
system where, when converted to a number, it represents the number of elapsed days since January 1, 1900. The 1904
format is based on a system where, when converted to a number, it represents the number of elapsed days since
January 1, 1904. The 1904 format was introduced by early Macintosh computers because of a problem with the 1900
format that we describe later. You can determine which format a workbook is using by checking the
Workbook.Date1904 property, which returns TRue if the workbook is using the 1904 format.

If an Excel workbook is using the 1904 format, and you convert a date from that workbook into a DateTime directly,
you will get the wrong value. The date will be off by four years and two leap days, because DateTime is expecting the
1900 format, where the value of the Excel date represented by a number is the number of elapsed days since January
1, 1900not January 1, 1904. So this code would give a bad DateTime if you are using the 1904 format in your
workbook.

Dim excelDate As Object = myRange.Value
Dim possiblyBadDateIfExcelIsIn1904Mode As DateTime = _
 CType(excelDate, DateTime)

To get a 1904-format date into a DateTime format, you must add to the 1904-format date four years and two leap days
(to make up for the fact that the 1904 has its zero in 1904 rather than 1900). So if you write this code instead, and use
the function ConvertExcelDateToDate in Listing 5.38, you will get the right result if you use the 1904 date system.

Dim excelDate As Object = myRange.Value
Dim goodDate As DateTime = ConvertDateToExcelDate(excelDate)

Listing 5.38. Converting Excel Dates to DateTime and Back Again

Private ReadOnly march1st1900 As DateTime
march1st1900 = New DateTime(1900, 3, 1)
Private ReadOnly december31st1899 As DateTime = _
 New DateTime(1899, 12, 31)
Private ReadOnly january1st1904 As DateTime
january1st1904 = New DateTime(1904, 1, 1)
Private ReadOnly date1904adjustment As TimeSpan = _
 New TimeSpan(4 * 365 + 2, 0, 0, 0, 0)
Private ReadOnly before1stMarchAdjustment As TimeSpan = _
 New TimeSpan(1, 0, 0, 0)
Private isDate1904 As Boolean = ActiveWorkbook.Date1904

Private Function ConvertDateToExcelDate(_

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Function ConvertDateToExcelDate(_
 ByVal date1 As DateTime) As Object

 Dim languageSettings As Office.LanguageSettings = _
 Application.LanguageSettings
 Dim lcid As Integer = _
 languageSettings.LanguageID(_
 Office.MsoAppLanguageID.msoLanguageIDUI)
 Dim officeUICulture As Globalization.CultureInfo = _
 New Globalization.CultureInfo(lcid)
 Dim dateFormatProvider As Globalization.DateTimeFormatInfo
 dateFormatProvider = officeUICulture.DateTimeFormat()
 Dim dateFormat As String
 dateFormat = dateFormatProvider.ShortDatePattern

 If isDate1904 = True Then
 If date1 >= january1st1904 Then
 Return date1 - date1904adjustment
 Else
 Return date1.ToString(dateFormat, dateFormatProvider)
 End If
 End If

 If date1 >= march1st1900 Then
 Return date1
 End If

 If (date1 < march1st1900 And _
 date1 > december31st1899) Then
 Return date1 - before1stMarchAdjustment
 End If

 Return date1.ToString(dateFormat, dateFormatProvider)
End Function

Private Function ConvertExcelDateToDate(_
 ByVal excelDate As Object) _
 As DateTime

 Dim date1 As DateTime = CType(excelDate, DateTime)

 If isDate1904 Then
 Return date1 + date1904adjustment
 End If

 If date1 < march1st1900 Then
 Return date1 + before1stMarchAdjustment
 End If

 Return date1
End Function

Listing 5.38 also has a correction for 1900-format dates. It turns out that when Lotus 1-2-3 was written, the
programmers incorrectly thought that 1900 was a leap year. When Microsoft wrote Excel, Microsoft wanted to make
sure it kept compatibility with existing Lotus 1-2-3 spreadsheets by making it so that Excel calculated the number of
days elapsed since December 31, 1899, rather than January 1, 1900. When DateTime was written, its creators did not
try to back up to December 31, 1899; they calculated from January 1, 1900. So to get an Excel date in 1900 format
that is before March 1, 1900, into a DateTime properly, you have to add one day.

Finally, Excel cannot represent days before January 1, 1900, when in 1900 format, or days before January 1, 1904,
when in 1904 format. Therefore, when you are converting a DateTime to an Excel date, you have to pass a string
rather than a number representing the datebecause these dates cannot be represented as dates in Excel (only as
strings).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter explored some of the most important objects in the Excel object model. We use many of these objects in
the Excel examples in subsequent chapters. We also consider some additional Excel object model objects used to work
with XML in Excel in Chapter 21, "Working with XML in Excel."

This chapter described these objects as defined by the PIAs for Excel. You should be aware that VSTO extends some of
these objects (Workbook, Worksheet, Range, Chart, ChartObject, and ListObject) to add some functionality, such as
data binding support. Part III of this book examines those extensions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6. Programming Word

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ways to Customize Word
Word has a very rich object model that consists of 248 objects that combined have more than 4,200 properties and
methods. Word also supports several models for integrating your code, including add-ins and code behind documents.
Most of these models were originally designed to allow the integration of COM components written in Visual Basic 6,
Visual Basic for Applications (VBA), C, or C++. Through COM interop, however, managed objects written in C# or Visual
Basic can masquerade as COM objects and participate in most of these models. This chapter briefly considers several of
the ways that you can integrate your code with Word and refers you to other chapters that discuss these approaches in
more depth. This chapter also explores building research services and introduces the Word object model.

Automation Executable

As mentioned in Chapter 2, "Introduction to Office Solutions," the simplest way to integrate with Word is to start Word
from a console application or Windows Forms application and automate it from that external program. Chapter 2
provides a sample of an automation executable that automates Word.

COM Add-Ins

Word can load add-insin particular, COM add-ins. A COM add-in is a DLL that contains a class that implements
IDExtensibility2. The class that implements IDExtensibility2 must be registered in the registry so that it looks like a
COM object to Word. A COM add-in typically is written to add application-level functionalityfunctionality that is available
to any document opened by Word.

Word has a COM Add-Ins dialog box that enables users to turn COM add-ins on and off. To access the COM Add-Ins
dialog box, you must perform the following steps:

1. Right-click a menu or toolbar in Word, and choose Customize from the pop-up menu, or from the Tools menu,
choose Customize. The Customize dialog box displays.

2. Click the Commands tab of the Customize dialog box.

3. Choose Tools from the list of Categories.

4. Scroll down the list of commands until you see a command that says COM Add-Ins.

5. Drag the COM Add-Ins command, and drop it on a toolbar.

6. Close the Customize dialog box.

After you complete these steps, click the COM Add-Ins toolbar button you added to a toolbar. Figure 6.1 shows the COM
Add-Ins dialog box.

Figure 6.1. The COM Add-Ins dialog box in Word.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can add COM add-ins by using the Add button and remove them by using the Remove button. Typically, you will
not have your users use this dialog box to manage COM add-ins. Instead, you will install and remove a COM add-in by
manipulating registry settings with the installer you create for your COM add-in.

Word discovers the installed COM add-ins by reading from the registry. You can view the registry on your computer by
going to the Windows Start menu and choosing Run. In the Run dialog box, type regedit for the program to run and then
click the OK button. Word looks for COM add-ins in the registry keys under HKEY_CURRENT_USER\Software\Microsoft\
Office\Word\Addins. Word also looks for COM add-ins in the registry keys under
HKEY_LOCAL_MACHINE\Software\Microsoft\Office\Word\ Addins. COM add-ins registered under HKEY_LOCAL_MACHINE
are not shown in the COM Add-Ins dialog box and cannot be turned on or off by users. It is recommended you do not
register your COM add-in under HKEY_LOCAL_MACHINE because it hides the COM add-in from the user.

COM add-ins are discussed in detail in Chapter 23, "Developing COM Add-Ins for Word and Excel."

Visual Studio Tools for Office Code Behind

VSTO enables you to put C# or Visual Basic code behind Word templates and documents. VSTO was designed from the
ground up for C# and Visual Basicso this model is the most ".NET" of all the models used to customize Word. You use
this model when you want to customize the behavior of a particular document or a particular set of documents created
from a common template. You might want to create a template that is used whenever anyone in your company creates
an invoice, for example. This template can add commands and functionality that are always available when the
document created with it is opened.

Note that Word templates in VSTO do not behave the same way that templates behave in VBA. In VBA, both the code
associated with the template and the code associated with the document run concurrently. In VSTO, the code
associated with the template is associated with the document when a new document is created, and only the code
associated with the document runs.

VSTO's support for code behind a document is discussed in detail in Part III of this book.

Smart Documents and XML Expansion Packs

Smart Documents are another way to associate your code with a Word template or document. Smart Documents rely
on attaching an XML schema to a document or template and associating your code with that schema. The combination
of the schema and associated code is called an XML Expansion Pack. An XML Expansion Pack can be associated with a
Word document by choosing Templates and Add-Ins from the Tools menu and clicking the XML Expansion Packs tab of
the Templates and Add-Ins dialog box, shown in Figure 6.2.

Figure 6.2. The XML Expansion Packs tab of the Templates and Add-Ins dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When an XML Expansion Pack is attached to a document, Word loads the associated code and runs it while that
document is opened. Smart-document solutions can create a custom user interface in the Document Actions task pane
that can be brought up in Word by choosing Task Pane from the View menu.

It is possible to write smart-document solutions from scratch in C# or Visual Basic. This book does not cover this
approach. Instead, this book focuses on the VSTO approach, which was designed to make smart-document
development much easier and allow you to create a custom Document Actions task pane using Windows Forms. Chapter
15, "Working with the Actions Pane," discusses this capability in more detail.

Smart Tags

Smart Tags enable the display of a pop-up menu containing actions relevant to a recognized piece of text in a
document. You can control the text that Word recognizes and the actions that are made available for that text by
creating a Smart Tag DLL or by using VSTO code behind a document.

A Smart Tag DLL contains two types of components that Word uses: a recognizer and associated actions. A recognizer
determines what text in the document is recognized as a Smart Tag. An action corresponds to a menu command
displayed in the pop-up menu.

You could create a recognizer that tells Word to recognize stock-ticker symbols (such as the MSFT stock symbol) and
display a set of actions that can be taken for that symbol: buy, sell, get the latest price, get history, and so on. A "get
history" action, for example, could launch a Web browser to show a stock-history Web page for the stock symbol that
was recognized.

When a recognizer recognizes some text, Word displays red-dotted underlining below the recognized text, as shown in
Figure 6.3. If the user hovers over the text, a pop-up menu icon appears next to the text; the user can click this icon to
drop down a menu of actions for the recognized piece of text. Figure 6.4 shows an example menu. When an action is
selected, Word calls back into the associated action to execute your code.

Figure 6.3. Some recognized text.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6.4. Dropping down the Smart Tags menu.

Smart Tags are managed from the Smart Tags tab of the AutoCorrect dialog box, shown in Figure 6.5. To display the
Smart Tags tab, you choose AutoCorrect Options from the Tools menu. Here, the user can turn on and off individual
recognizers, as well as control other options relating to how Smart Tags display in the document.

Figure 6.5. The Smart Tags tab of the AutoCorrect dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSTO provides a simple model for creating a Smart Tag that works at the workbook or template level. Chapter 16,
"Working with Smart Tags in VSTO," describes the VSTO model for working with Smart Tags in more detail.

It is possible to write Smart Tag recognizer and action classes in a DLL that works at the application level, but it is much
more complex than the VSTO model. Chapter 16 also describes that approach.

Server-Generated Documents

VSTO enables you to write code on the server to populate a Word document with data without starting Word on the
server. You might create an ASP.NET page that reads some data out of a database, for example, and then puts it in a
Word document and returns that document to the client of the Web page. VSTO provides a class called ServerDocument
that makes it easy to do this. Chapter 18, "Server Data Scenarios," describes generating documents on the server using
the ServerDocument class.

You can also use the XML file formats of Office to generate Word documents in XML formats on the server, but this is
much more complex. Chapter 22, "Working with XML in Word," discusses VSTO support for this scenario.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Research Services
This section examines how to build research services for Word and other Office applications. Word has a task pane
called Research that enables you to enter a search term and search various sources for that term. Figure 6.6 shows the
Research task pane.

Figure 6.6. The Research task pane.

Office enables developers to write a special Web service called a research service that implements two Web methods
defined by Office: Registration and Query. Both Web methods take a String and return a String. A research service can be
registered with Office and used in Office's Research task pane. You might write a research service that searches for the
search term in a corporate database, for example.

Although the signatures of the two Web methods you must declare are simple, the actual implementation of these
methods is somewhat complex, because Word has four separate XML schemas that must be used for the request
passed to Registration, the response returned by Registration, the request passed to Query, and the response returned
by Query.

The simplest way to build research services is to use the Research Service Development Extras Toolkit for Office, which
is available for download at www.microsoft.com/downloads/details.aspx?FamilyID=8b0a4427-9cfd-493e-82a7-
16f8d88ebdc7. This toolkit provides helper classes to assist in parsing the requests and forming responses. Note that
this example uses Visual Studio 2003 because the Research Service Development Toolkit was not available for Visual
Studio 2005 at the time of this writing.

Getting Started with Research Services

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After you have downloaded and installed the Research Service Development Extras Toolkit, launch Visual Studio 2003,
and choose New Project from the File menu to display the New Project dialog box. Select Visual Basic Projects in the
Project Types list, and click the Research Service Wrapper icon in the Templates window, as shown in Figure 6.7.

Figure 6.7. Selecting the Research Service Wrapper project.

[View full size image]

When you click OK, a wizard appears, which prompts you for the information needed to create your research service, as
shown in Figure 6.8. The first step of the wizard prompts you for provider information and an ID for the provider. You
can think of a provider as being like a Web site that potentially provides multiple services. ACME Corporation, for
example, might provide a number of different research services. You can click the New Guid button to generate a
unique ID for the provider automatically.

Figure 6.8. Step 1 of the ASP.NET Research Services Wizard.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6.9 shows Step 2 of the wizard. Here, you specify the name of the service and a description of the service, and
you assign the service a category from a list of categories that are predefined by Office. You also must have a unique
ID for your service.

Figure 6.9. Step 2 of the ASP.NET Research Services Wizard.

[View full size image]

Step 3 of the wizard prompts you as to whether you require licensing for your research service. We respond No to this
step for this example. Step 4 lets you specify an OleDB data provider, a SqlDB data provider, or no data provider. We
choose no data provider. Finally, when you click the Finish button in Step 5, the research service project is created for
you.

A Simple Research Service

The wizard has created a project for our Author Information research service. Within the project is a file called
ResearchService.asmx.vb. Edit this file to produce the result shown in Listing 6.1. If the user searches for the string
"Eric Carter" or "Eric Lippert," the service will send back information listing all the authors of this book.

Listing 6.1. The ResearchService.asmx.vb File

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 6.1. The ResearchService.asmx.vb File

Imports System
Imports Microsoft.Samples.Office.ResearchService
Imports Microsoft.Samples.Office.ResearchService.Registration
Imports Microsoft.Samples.Office.ResearchService.Query

Public Class ResearchService
 Inherits ResearchWebService

 Public Overloads Overrides Function Registration(_
 ByVal request As RegistrationRequest) _
 As RegistrationResponse

 Return New RegistrationResponse

 End Function

 Public Overloads Overrides Function Query(_
 ByVal request As QueryRequest) As QueryResponse

 Dim response As New QueryResponse
 If request.QueryText = "Eric Carter" Or _
 request.QueryText = "Eric Lippert" Then

 Dim responseWriter As New DocumentResponseWriter
 responseWriter.WriteItem("Eric Carter", _
 "One of the authors of this book, " & _
 "a Lead Developer at Microsoft Corporation.")
 responseWriter.WriteItem("Eric Lippert", _
 "One of the authors of this book, " & _
 "a Developer at Microsoft Corporation.")
 response.WriteResponse(responseWriter)
 End If
 Return response

 End Function

End Class

Registering the Research Service with Word

After building the project, the next step is to register it with Word. First, launch Word. Then bring up Word's Research
task pane by choosing Task Pane from the View menu. Drop down the available task panes from the pop-up menu at
the top of the task pane, and choose Research. At the bottom of the Research task pane is some text that says
Research Options. Click that text to get the Research Options dialog box. Then click the Add Services button. The dialog
box shown in Figure 6.10 appears. In this dialog box, type the address to the Web service .asmx file; then click the Add
button.

Figure 6.10. Word's Add Services dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you click the Add button, Word displays a dialog box announcing the provider of the research service, as shown in
Figure 6.11.

Figure 6.11. Word's Provider dialog box.

Clicking Continue brings up a dialog box showing details about the research service, shown in Figure 6.12. Click Install
to install the research service.

Figure 6.12. Research Service confirmation dialog box.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Clicking Install returns you to the Research Options dialog box, which now has our Author Information research site
installed in the Research Sites category, as shown in Figure 6.13. Click OK to continue.

Figure 6.13. Research Options dialog box.

[View full size image]

Using the Research Service

Now you can type the text Eric Carter in the Research task pane, drop down the list of sites to search, and select All
Research Sites. Click the green arrow button to search. The research service is contacted, and the response displays in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Research Sites. Click the green arrow button to search. The research service is contacted, and the response displays in
the task pane, as shown in Figure 6.14. An alternate way to search for text is to type it in the document, select it, and
then click it while holding down the Alt key.

Figure 6.14. The Research task pane shows results from the new Author
Information research service.

More Research Service Resources

This has been a brief introduction to how to get started creating a research service in Visual Basic using Visual Studio.
You can do many more things with research services, including returning richer results with hyperlinks and images. For
more information about creating research services, search http://msdn.microsoft.com for the phrase "research
services."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction to the Word Object Model
Regardless of the approach you choose to integrate your code with Word, you eventually will need to talk to the Word
object model to get things done. It is impossible to describe the Word object model completely in this book, but we try
to make you familiar with the most important objects in the Word object model and show some of the most frequently
used methods, properties, and events on these objects.

The first step in learning the Word object model is getting an idea of the basic structure of the object model hierarchy.
Figure 6.15 shows the most critical objects in the Word object model and their hierarchical relationship.

Figure 6.15. The basic hierarchy of the Word object model.

The Application object is used to access application-level settings and options. It also is the root object of the object
model and provides access to the other objects in the object model. Figure 6.16 shows some of the object model
objects associated with the Application object.

Figure 6.16. Objects associated with Word's Application object.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Document object represents a Word document. Figure 6.17 shows some of the object model objects associated
with the Document object.

Figure 6.17. Objects associated with Word's Document object.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Range object represents a range of text within a document. Figure 6.18 shows some of the object model objects
associated with the Range object.

Figure 6.18. Objects associated with Word's Range object.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Shape object represents a figure, chart, picture, or other object that is embedded in a Word document. Figure 6.19
shows some of the object model objects associated with the Shape object.

Figure 6.19. Objects associated with Word's Shape object.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
The chapter introduced the various ways you can integrate your code into Word. The chapter described how to build
research services for Word and for other Office applications. You also learned the basic hierarchy of the Word object
model. Chapter 7, "Working with Word Events," discusses the events in the Word object model. Chapter 8, "Working
with Word Objects," covers the most important objects in the Word object model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7. Working with Word Events
Events in the Word Object Model

Events in Visual Studio Tools for Office

Conclusion

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Events in the Word Object Model
Understanding the events in the Word object model is critical, because this is often the primary way that your code is
run. This chapter covers all the events in the Word object model, when they are raised, and the type of code you might
associate with these events.

Some of the events in the Word object model are repeated on the Application and Document objects. This repetition
allows you to decide whether you want to handle the event for all documents or for a particular document. If you want
to know when any document is closed, for example, you would handle the Application object's DocumentBeforeClose
event. If you want to know when a particular document is closed, you would handle the Close event on a particular
Document object. When an event is repeated on the Application and Document object, it is raised first on the Document
object and then on the Application object.

Advanced Topic: Why Are There Multiple Application and Document

Event Interfaces?

When you work with the Word Object model, you will quickly notice multiple public interfaces, classes,
and delegates that contain the text "ApplicationEvents" and "DocumentEvents":

ApplicationEvents Interface

ApplicationEvents_Event Interface

ApplicationEvents_SinkHelper class

ApplicationEvents2 Interface

ApplicationsEvents2_Event Interface

ApplicationEvents2_* Delegates

ApplicationEvents2_SinkHelper class

ApplicationEvents3 Interface

ApplicationsEvents3_Event Interface

ApplicationEvents3_* Delegates

ApplicationEvents3_SinkHelper class

ApplicationEvents4 Interface

ApplicationsEvents4_Event Interface

ApplicationEvents4_* Delegates

ApplicationEvents4_SinkHelper class

DocumentEvents Interface

DocumentEvents_Event Interface

DocumentEvents_* Delegates

DocumentEvents_SinkHelper class

DocumentEvents2 Interface

DocumentEvents2_Event Interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DocumentEvents2_* Delegates

DocumentEvents2_SinkHelper class

The only items from this list that you should ever use in your code are the ones in bold:
ApplicationEvents4_Event interface, the ApplicationEvents4_* delegates, the DocumentEvents2_Event
interface, and the DocumentEvents2_* delegates. You should use the ApplicationEvents4_Event interface
and the DocumentEvents2_Event interface only when you have to cast an object declared as Application
or Document to the corresponding event interface because a method name and event name collide. An
example of this is the Document object that has both a Close method and a Close event. To distinguish
between the two, you will have to cast the Document object to the DocumentEvents2_Event interface
when you want to handle the Close event.

The reason for the other items in this list is partially explained in Chapter 1, "An Introduction to Office
Programming." This explanation, however, covers only the existence of the SinkHelper class and why
there are both an ApplicationEvents/DocumentEvents interface and an
ApplicationEvents_Event/DocumentEvents_Event interface. The reason why there are multiple numbered
event interfaces goes back to the original COM implementation of the Word object model.

The Word Application and Document COM objects are defined by the IDL definition shown in Listing 7.1.
Note that the Application object has four event interfaces and Document has two. ApplicationEvents4 is
the default event interface for Word's Application object, and DocumentEvents2 is the default event
interface for Word's Document object. ApplicationEvents, ApplicationEvents2, ApplicationEvents3, and
DocumentEvents are supported for legacy purposes. Word had to keep these older interfaces in place for
backward-compatibility reasons because older versions of Word used these interfaces.

Listing 7.1. The IDL Definition of Word's Application and Document
Objects

[
 uuid(000209FF-0000-0000-C000-000000000046),
]
coclass Application {
 [default] interface _Application;
 [source] dispinterface ApplicationEvents;
 [source] dispinterface ApplicationEvents2;
 [source] dispinterface ApplicationEvents3;
 [default, source] dispinterface ApplicationEvents4;
};
[
 uuid(00020906-0000-0000-C000-000000000046),
]
coclass Document {
 [default] interface _Document;
 [source] dispinterface DocumentEvents;
 [default, source] dispinterface DocumentEvents2;
};

Visual Studio Generation of Event Handlers

As you consider some of the code in this chapter, you might wonder how you will ever remember the syntax of
complicated lines of code such as this one:

Private Sub App_DocumentBeforeClose(_
 ByVal document As Word.Document, _
 ByRef cancel As Boolean) _
 Handles app.DocumentBeforeClose

Fortunately, Visual Studio 2005 helps by generating this code for you. When you have declared the app member variable
as having events by using the WithEvents keyword, Visual Studio displays the app variable in the left drop-down list of the
code editor. Select app from the left drop-down list; then select the event that is raised by app that you want to handle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

code editor. Select app from the left drop-down list; then select the event that is raised by app that you want to handle
from the right drop-down listin this case, DocumentBeforeClose (see Figure 7.1). When you select the event you want
to handle, Visual Studio generates the event handler method automatically.

Figure 7.1. Visual Studio generates event handler code for you if you use the left
and right drop-down lists in the code editor.

[View full size image]

If you are using VSTO, you can also use the Properties window to add event handlers to your document class. Double-
click the project item for your document class. Make sure the Properties window is visible; if it is not, choose Properties
Window from the View menu. Make sure that the document class (typically called ThisDocument) is selected in the
combo box at the top of the Properties window. Then click the lightning-bolt icon to show events associated with the
document. Type the name of the method you want to use as an event handler in the edit box to the right of the event
you want to handle.

Figure 7.2. shows the Properties window and an event handler we have added by typing the text ThisDocument_New in
the edit box next to the New event. This will cause the New event to be handled by a method called ThisDocument_New
in the document class. If the method does not already exist, Visual Studio will add the method for you.

Figure 7.2. Adding a document event handler using the Properties window in
VSTO.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Startup and Shutdown Events

Several events are raised when the application is started and shut down. The Word Application object has a Startup
event that is raised when the application starts and before any documents are loaded. This event is marked as
"restricted" in the COM object model, however, and probably should not be used. The only kind of customization that
can handle this event is an add-in. The event is raised before documents are loaded and before an automation
executable can establish an event handler. Even add-ins do not need to use this event because they already implement
OnConnection, which serves the same purpose. Our recommendation is that you not use the Application object's
Startup event.

For VSTO customizations, we recommend that you use the Startup and Shutdown events raised by VSTO on a
document project item. Startup is raised when the document is opened or created from a template. Shutdown is raised
when the document is closed. In the project item created for you by VSTO, these events are already connected for you,
as shown in Listing 7.2.

Listing 7.2. A VSTO Customization That Handles the Startup and Shutdown Events

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 End Sub

 Private Sub ThisDocument_Shutdown(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Shutdown

 End Sub

End Class

Word raises the Quit event when the application shuts down. Listing 7.3 shows an example of handling the Quit event.

Note

Quit is the name of both a method and an event on Word's Application object. Because of this collision, you
will have to use the CType operator to cast the Application object to the ApplicationEvents4_Event interface
when adding an event handler dynamically using the AddHandler statement. If you are adding an event
handler declaratively using With Events and Handles as in Listing 7.3, you do not have to worry about this
issue.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 7.3. A VSTO Customization That Handles the Quit Event

Public Class ThisDocument

 Private WithEvents app As Word.Application

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 End Sub

 Private Sub App_Quit() Handles app.Quit
 MsgBox("Quit Event Raised")
 End Sub

End Class

New and Open Document Events

Word raises a NewDocument event on the Application object and a New event on a Document object when a new
document is created by the user either as a blank document or from a template or existing document. These events are
never raised on subsequent opens of the document. Word also raises a DocumentOpen event on the Application object
and an Open event on a Document object when an existing document is opened:

Application.NewDocument is raised whenever a document is created. Word passes the Document that was
created as a parameter to this event.

Document.New is raised on a template or a new blank document. So, for example, when a document is
created from a template, you can handle the New event to set up the document for the first time. For
subsequent opens of the document, you can handle the Open event or the Startup event raised by VSTO.

Application.DocumentOpen is raised whenever an existing document is opened. Word passes the Document
that was opened as a parameter to this event.

Document.Open is raised on an existing document when it is opened.

Listing 7.4 shows a VSTO customization that handles the Application object's NewDocument event and puts into the
footer of every new document created in Word the date the document was created and the name of the user who
created the document. It also handles the Application object's DocumentOpen event to put into the header of an
existing document that is opened the date the document was opened and the name of the user who opened the
document.

Listing 7.4. A VSTO Customization That Handles the Application Object's
NewDocument and DocumentOpen Events

Public Class ThisDocument

 Private WithEvents app As Word.Application

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 End Sub

 Private Sub App_NewDocument(ByVal document As Word.Document) _
 Handles app.NewDocument

 MsgBox(String.Format("NewDocument event on {0}", _
 document.Name))

 Dim range1 As Word.Range = document.Sections(1).Footers(_
 Word.WdHeaderFooterIndex.wdHeaderFooterPrimary).Range
 range1.Text = String.Format("Created on {0} by {1}.", _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 range1.Text = String.Format("Created on {0} by {1}.", _
 System.DateTime.Now, app.UserName)

 End Sub
 Private Sub App_DocumentOpen(ByVal document As Word.Document) _
 Handles app.DocumentOpen

 MsgBox(String.Format("DocumentOpen event on {0}", _
 document.Name))

 Dim range2 As Word.Range = document.Sections(1).Headers(_
 Word.WdHeaderFooterIndex.wdHeaderFooterPrimary).Range
 range2.Text = String.Format("Last opened on {0} by {1}.",_
 System.DateTime.Now, app.UserName)

 End Sub

End Class

Listing 7.5 shows VSTO code behind a template that handles the Document object's New event to display the time in
the footer when the document is created from a template. It also handles the Document object's Open event to put into
the header the date and user who last opened the document each time the document is opened.

To understand this listing, it is important to understand how Word templates work in VSTO. You should write handlers
for the Document object's New event only in a template project. When a user creates a new document from that
template, the code associated with the template will be associated with the newly created document, and the New
event will be raised on the newly created document.

Also note that because the New event conflicts with the New keyword in Visual Basic, the Handles clause puts the New
event in square brackets so the compiler knows that New is being used as an event name rather than a keyword.

Listing 7.5. A VSTO Customization That Handles the Document Object's New and
Open Events

Public Class ThisDocument

 Private Sub ThisDocument_New() Handles Me.[New]
 MsgBox("New event")

 Dim range1 As Word.Range = Me.Sections(1).Footers(_
 Word.WdHeaderFooterIndex.wdHeaderFooterPrimary).Range
 range1.Text = String.Format("Created on {0} by {1}.", _
 System.DateTime.Now, Me.Application.UserName)
 End Sub
 Private Sub ThisDocument_Open() Handles Me.Open
 MsgBox("Open event")

 Dim range2 As Word.Range = Me.Sections(1).Headers(_
 Word.WdHeaderFooterIndex.wdHeaderFooterPrimary).Range
 range2.Text = String.Format("Opened on {0} by {1}.", _
 System.DateTime.Now, Me.Application.UserName)
 End Sub

End Class

Document Close Events

Word raises events when a document is closed. The DocumentBeforeClose event is raised on the Application object
before the document closes, which allows the handler to cancel the closing of the document. The Close event raised on
the Document object does not allow canceling the closing of the document.

Unfortunately, the Close event is raised even in cases where the document is not really going to close. The event is
raised before a dialog box is shown to the user prompting the user to save the document. Users are asked whether they
want to save with a Yes, No, and Cancel button. If the user selects Cancel, the document remains open even though a
Close event was raised. It is also possible for another add-in to handle the DocumentBeforeClose event and cancel the
close of the document. For this reason, it is better to use VSTO's Shutdown event on the document, which is not raised
until after the user and any handlers of the DocumentBeforeClose event have been given a chance to cancel the closing
of the document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of the document.

The following events are raised when documents are about to be closed:

Application.DocumentBeforeClose is raised before a document is closed. Word passes the Document that is
about to close as a parameter to this event. It also passes by reference a Boolean cancel parameter. The cancel
parameter can be set to true by your event handler to prevent Word from closing the document.

Document.Close is raised when a document is about to be closed. As discussed earlier, however, the user can
still cancel the closing of the document, so you cannot trust this event to tell you whether the document is
going to close. Use VSTO's Shutdown event instead.

Note

Close is the name of both a method and an event on Word's Document object. Because of this collision,
you will have to use the CType operator to cast the Document object to the DocumentEvents2_Event
interface when adding an event handler dynamically using the AddHandler statement. If you are adding an
event handler declaratively using WithEvents and Handles, you do not have to worry about this issue.

Listing 7.6 shows a VSTO customization that handles the Application object's DocumentBeforeClose event and the
Document object's Close event. In the handler of the DocumentBeforeClose event, the code checks to see whether the
document contains any spelling errors. If it does, a dialog box displays the number of spelling errors, and the user is
told to correct them before closing the document. The cancel parameter is set to TRue to prevent the document from
closing. Another thing to try when running this code is to click the Cancel button when you are prompted to save and
then observe that the Document object's Close event fires in this case.

Listing 7.6. A VSTO Customization That Handles the Application Object's
DocumentBeforeClose Event and the Document Object's Close Event

Public Class ThisDocument

 Private WithEvents app As Word.Application
 Private WithEvents doc As Word.Document

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application
 doc = app.Documents.Add()
 doc.Range.Text = "Lawts uf spellin errers!"

 End Sub

 Private Sub Doc_Close() Handles doc.Close
 MsgBox("Thanks for fixing the spelling errors.")
 End Sub

 Private Sub App_DocumentBeforeClose(_
 ByVal document As Word.Document, _
 ByRef cancel As Boolean) Handles app.DocumentBeforeClose
 Dim spellingErrors As Integer = document.SpellingErrors.Count
 If spellingErrors > 0 Then
 MsgBox(String.Format(_
 "There are still {0} spelling errors.", _
 spellingErrors))
 cancel = True
 End If

 End Sub

End Class

Document Save Events

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Word raises the DocumentBeforeSave event on the Application object before any document is saved. Word passes the
Document that is about to be saved as a parameter to this event. It also passes by reference a Boolean saveAsUI
parameter and a Boolean cancel parameter. If you set saveAsUI to true, the Save As dialog box displays for the document. If
you set the cancel parameter to true, the save will be canceled. Often, this event is handled to implement a custom save
routine You might cancel the DocumentBeforeSave event but call the SaveAs method on Document to enforce a
particular file format, for example.

Note that the DocumentBeforeSave event is also raised when Word does an AutoSave on a document. You should be
careful that you test your code to make sure that it works properly when AutoSave is triggered.

Listing 7.7 shows a VSTO customization that handles the DocumentBeforeSave event. If the document contains any
spelling errors, the event handler cancels the save by setting the cancel parameter to true. It also sets the saveAsUI
parameter to true to force a Save As dialog box to be shown for every save. When the DocumentBeforeSave event is
triggered for an AutoSave, the dialog box shown in Figure 7.3 displays.

Figure 7.3. The message displayed by Word when an automatic save is canceled.

Listing 7.7. A VSTO Customization That Handles the Application Object's
DocumentBeforeSave Event

Public Class ThisDocument

 Private WithEvents app As Word.Application

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 End Sub

 Private Sub App_DocumentBeforeSave(_
 ByVal document As Word.Document, _
 ByRef saveAsUI As Boolean, ByRef cancel As Boolean) _
 Handles app.DocumentBeforeSave

 saveAsUI = True

 If document.SpellingErrors.Count > 0 Then
 MsgBox(_
 "You shouldn't save a document with spelling errors.")
 cancel = True
 End If

 End Sub

End Class

Document Activation Events

Word raises several events on the Application object when the active document changes. One such event is the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Word raises several events on the Application object when the active document changes. One such event is the
DocumentChange event. The name DocumentChange makes you think that maybe this event will tell you when the
contents of the document change; unfortunately, Word does not have a general event that tells you this.

The active document changes when you create a new document; the new document becomes the active document. The
active document changes when you open an existing document; the document you opened becomes the active
document. The active document changes when you switch between open documents by clicking a document that is not
active or by selecting a document using the Window menu or the Windows taskbar.

It is also possible to have multiple windows viewing the same documentbecause the user chose New Window from the
Window menu, for example. Word raises an event called WindowActivate that tells you when a particular window
becomes the active window and an event called WindowDeactivate when a particular window is deactivated. Unlike in
Excel, switching to another application causes Word's WindowDeactivate event to be raised, and switching back to Word
causes the WindowActivate event to be raised.

The following events are raised when windows are activated and deactivated:

Application.DocumentChange is raised when the active document changes (not when the contents of the
document change). Word passes no parameters to this event. To determine the new active document, you must
use the Application object's ActiveDocument property.

Application.WindowActivate is raised when a Word window is activated. This can occur when the user
switches between windows within Word or when the user switches to another application and then switches
back to Word. Word passes the Document associated with the window that was activated as a parameter to this
event. Word also passes the Window that was activated as a parameter to this event.

Application.WindowDeactivate is raised when a Word window is deactivated. This can occur when the user
switches between windows within Word or when the user switches to another application. Word passes the
Document associated with the window that was deactivated as a parameter to this event. Word also passes the
Window that was deactivated as a parameter to this event.

Listing 7.8 shows a VSTO customization that handles the DocumentChange, WindowActivate, and WindowDeactivate
events and displays a message box when these events are raised.

Listing 7.8. A VSTO Customization That Handles the Application Object's
WindowActivate, WindowDeactivate, and DocumentChange Events

Public Class ThisDocument

 Private WithEvents app As Word.Application

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 End Sub

 Private Sub App_WindowActivate(_
 ByVal document As Word.Document, _
 ByVal window As Word.Window) Handles app.WindowActivate

 MsgBox(String.Format("Window {0} was activated.", _
 window.Caption))

 End Sub

 Private Sub App_WindowDeactivate(_
 ByVal document As Word.Document, _
 ByVal window As Word.Window) Handles app.WindowDeactivate

 MsgBox(String.Format("Window {0} was deactivated.", _
 window.Caption))

 End Sub

 Private Sub App_DocumentChange() Handles app.DocumentChange
 MsgBox(String.Format("The active document is now {0}.",_
 app.ActiveDocument.Name))
 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document Print Events

Word raises a DocumentBeforePrint event on the Application object before a document is printed. Word passes the
Document that is about to be printed as a parameter to this event. It also passes by reference a Boolean cancel
parameter. If you set the cancel parameter to true, the default printing of the document will be canceled. Often, this
event is handled to implement a custom print routine. You might cancel Word's default print behavior and use the
PrintOut method on Document to enforce a certain print format, for example.

Listing 7.9 shows a VSTO customization that handles the DocumentBeforePrint event to enforce some custom print
settings. It forces two copies to be printed and collation to be turned on when the user prints the document.

Listing 7.9. A VSTO Customization That Handles the Application Object's
DocumentBeforePrint Event

Public Class ThisDocument

 Private WithEvents app As Word.Application

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 End Sub

 Private Sub app_DocumentBeforePrint(_
 ByVal document As Word.Document, _
 ByRef cancel As Boolean) Handles app.DocumentBeforePrint

 ' Print 2 copies and collate.
 document.PrintOut(Copies:=2, Collate:=True)

 ' Cancel because we printed already
 ' and don't want Word to print again.
 cancel = True

 End Sub

End Class

Mouse Events

Word raises events when the user right-clicks or double-clicks the document area of a window. If the user right-clicks or
double-clicks in area of the window such as the ruler or the scroll bar, no events are raised.

The following events are raised when double-clicks or right-clicks occur:

Application.WindowBeforeDoubleClick is raised when the document area of a window is double-clicked.
Word passes the selection that was double-clicked. This can be a range of text or other objects in the document
such as a shape. Word also passes by reference a Boolean cancel parameter. The cancel parameter can be set to
TRue by your event handler to prevent Word from performing the default action associated with a double-click.

Application.WindowBeforeRightClick is raised when the document area of a window is right-clicked. Word
passes the selection that was right-clicked. This can be a range of text or other objects in the document such as
a shape. Word also passes by reference a Boolean cancel parameter. The cancel parameter can be set to true by
your event handler to prevent Word from performing the default action associated with a right-click.

Listing 7.10 shows a VSTO customization that handles the WindowBeforeDoubleClick and WindowBeforeRightClick
events. When the document is double-clicked, this application sets the selected range of text to be all caps. The range
of text that is selected depends on where the user double-clicked. If the user double-clicks a word, the selection
changes to be the word. If the user triple-clicks, the selection changes to be a paragraph. If the user double-clicks the
page margin, the selection changes to be the line next to where the user double-clicked.

When a range of text is right-clicked, this customization sets the range of text to be title case. Finally, if you double-
click a shape in the document, the color is set to dark red. We also set cancel to true to prevent the shape Properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

click a shape in the document, the color is set to dark red. We also set cancel to true to prevent the shape Properties
dialog box from being shown when a shape is double-clicked and to prevent the right-click menu from appearing when
a range of text is right-clicked.

Listing 7.10. A VSTO Customization That Handles the Application Object's
WindowBeforeDoubleClick and WindowBeforeRightClick Events

Public Class ThisDocument

 Private WithEvents app As Word.Application

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 End Sub
 Private Sub App_WindowBeforeRightClick(_
 ByVal selection As Word.Selection, ByRef cancel As Boolean) _
 Handles app.WindowBeforeRightClick

 If selection.Type = Word.WdSelectionType.wdSelectionNormal _
 Then
 selection.Range.Case = Word.WdCharacterCase.wdTitleWord
 cancel = True
 End If

 End Sub

 Private Sub App_WindowBeforeDoubleClick(_
 ByVal selection As Word.Selection, _
 ByRef cancel As Boolean) _
 Handles app.WindowBeforeDoubleClick

 If selection.Type = Word.WdSelectionType.wdSelectionNormal _
 Then
 selection.Range.Case = Word.WdCharacterCase.wdUpperCase
 ElseIf selection.Type = _
 Word.WdSelectionType.wdSelectionShape Then
 selection.ShapeRange.Fill.ForeColor.RGB = 3000
 cancel = True
 End If

 End Sub

End Class

Selection Events

Word raises several events when the selection changes in the active document:

Application.WindowSelectionChange is raised when the selection in a document changes. This event is also
raised when the location of the insertion point changes within the document because of clicking with the mouse
or moving via navigation keys (such as Page Up and Page Down). This event is not raised when the insertion
point is moved as a result of typing new text in the document. Word passes a Selection object representing the
new selection as a parameter to this event. If only the insertion point has moved, and no range of text is
selected, the Selection object will be passed as a one-character-long Range object containing the character
after the current location of the insertion point, and the Type property of the Selection object will return
WdSelectionType.wdSelectionIP.

Application.XMLSelectionChange is raised when the selected XML element changes in a document with XML
mappings. Chapter 22, "Working with XML in Word," discusses using XML mappings in Word. Word passes the
new Selection object as a parameter to this event. It also passes the old XMLNode object that was selected
previously and the XMLNode object that is now selected. It also passes a reason for the selection change of type
WdXMLSelectionChange, which can be wdXMLSelectionChangeReasonDelete, wdXMLSelectionChangeReasonInsert, or
wdXMLSelectionChangeReasonMove.

Listing 7.11 shows a VSTO customization that uses the Range.Start and Range.End properties to display the start and
end locations of the selection. The code first checks whether the selection type is wdSelectionIP or wdSelectionNormal. It also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

end locations of the selection. The code first checks whether the selection type is wdSelectionIP or wdSelectionNormal. It also
prints the selection type using a helpful feature of Visual Studio; when you use the ToString method associated with an
enumerated type, it displays the string name of the enumeration instead of just displaying a number.

Listing 7.11. A VSTO Customization That Handles the Application Object's
WindowSelectionChange Event

Public Class ThisDocument

 Private WithEvents app As Word.Application

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 End Sub

 Private Sub App_WindowSelectionChange(_
 ByVal selection As Word.Selection) Handles app.WindowSelectionChange

 Dim selType As Word.WdSelectionType = selection.Type
 MsgBox(String.Format("Selection type is {0}.", _
 selType.ToString()))
 If selType = Word.WdSelectionType.wdSelectionIP Or _
 selType = Word.WdSelectionType.wdSelectionNormal Then
 MsgBox(String.Format("Start is {0} and End is {1}.", _
 selection.Range.Start, selection.Range.End))
 End If

 End Sub

End Class

Window Sizing Events

Word raises a WindowSize event on the Application object when a window associated with a document is resized. Once
again, the behavior of this event is different from the window-sizing event in Excel. The WindowSize event in Word is
raised even when the document window is maximized to fill the Word application window and the Word application
window is resized. The event is not raised for the Word application window when it is resized and no documents are
open.

Word passes the Document object associated with the window that was resized as a parameter to this event. Word also
passes the Window object for the window that was resized.

XML Events

Word raises several events when XML elements have been mapped into the document using the XML Structure feature
of Word. You have already learned about the Application object's XMLSelectionChange that is raised when the selection
changes from one XML element to another. Chapter 22, "Working with XML in Word," considers Word's XML features in
more detail.

The following events are raised as part of the XML Structure feature of Word:

Application.XMLValidationError is raised when the XML in the document is not valid when compared with the
schema associated with the document. Word passes the XMLNode object corresponding to the invalid element
as a parameter to this event.

Document.XMLAfterInsert is raised after the user adds a new XML element to the document. If multiple XML
elements are added at the same time, the event will be raised for each element that was added. Word passes
the XMLNode object for the newly added element as a parameter to this event. It also passes a Boolean inUndoRedo
parameter that indicates whether the XML element was added because undo or redo was invoked.

Document.XMLBeforeDelete is raised when the user deletes an XML element from the document. If multiple
XML elements are removed at the same time, the event will be raised for each element that was removed.
Word passes a Range object representing the range of text that was deleted. If an element was deleted without
any text being deleted, the Range will be passed as Nothing. Word also passes the XMLNode object that was
deleted and a Boolean inUndoRedo parameter that indicates whether the XML element was deleted because undo or

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

deleted and a Boolean inUndoRedo parameter that indicates whether the XML element was deleted because undo or
redo was invoked.

Sync Events

Word raises the Document object's Sync event when a local document is synchronized with a copy on the server using
Word's document workspace feature. Word passes a parameter of type MsoSyncEventType that gives additional information
on the status of the document synchronization.

E-Postage Events

Word supports a feature called electronic postage, which enables you to create an envelope or label with printed
postage that is printed on an envelope or package along with the address. Figure 7.4 shows the Envelopes and Labels
dialog box, which has an Add Electronic Postage check box and an E-Postage Properties button that are used to
configure electronic postage. Word provides three events to allow third parties to create an e-postage add-in:
EPostageInsert, EPostageInsertEx, and EPostagePropertyDialog. An e-postage add-in is distinguished from other Word
add-ins by a special registry key. There can be only one active e-postage add-in installed in Word. This book does not
consider these events further because it is unlikely that you will ever need to create your own electronic postage add-
in. You can read more about e-postage add-ins by downloading the e-postage SDK at http://support.microsoft.com/?
kbid=304095.

Figure 7.4. The Envelopes and Labels dialog box with electronic postage options.

[View full size image]

Mail Merge Events

Word raises eight events associated with the mail merge feature. To understand these events, you must first
understand how mail merge works and when and why each of these events is raised.

The user starts a mail merge by choosing Tools > Letters and Mailings > Mail Merge. This causes the Application
object's MailMergeWizardStateChange event to be raised, notifying us that we are moving from Step 0 to Step 1 of the
Mail Merge Wizard. Then the Mail Merge task pane shown in Figure 7.5 displays. The Mail Merge task pane is a wizard
that can move back and forth through six steps. Whenever we move from step to step, the
MailMergeWizardStateChange event is raised. When we close the document, the MailMergeWizardStateChange event is
raised, moving from Step 6 back to Step 0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

raised, moving from Step 6 back to Step 0.

Figure 7.5. Step 1 of the Mail Merge Wizard.

Step 2 is not shown here; it prompts us as to whether we want to start from the current document or from a template
or existing document on disk. In Step 2, we will choose to use the current document. When we get to Step 3 of the Mail
Merge Wizard, we are prompted to select a data source for the mail merge. Figure 7.6 shows Step 3.

Figure 7.6. Step 3 of the Mail Merge Wizard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We choose Use an Existing List and click the Browse link to locate an Access database we have previously created called
Authors.mdb. Figure 7.7 shows the dialog box for picking a data source.

Figure 7.7. Selecting a data source.

[View full size image]

After we select the data source and click Open, the Application object's MailMergeDataSourceLoad event is raised. This
event lets us know that a data source has been chosen, and now we can examine the data source through the object
model. After the MergeDataSourceLoad event has been raised, the Mail Merge Recipients dialog box appears, as shown
in Figure 7.8. This dialog box shows each record in the data source and lets you further control which records you want
to use for the mail merge.

Figure 7.8. The Mail Merge Recipients dialog box.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Mail Merge Recipients dialog box has a button called Validate. When clicked, this button raises the Application
object's DataSourceValidate event. It raises this event only for the special e-postage add-in described earlier in this
chapter, however.

Step 4 of the Mail Merge Wizard lets you insert address blocks, greeting blocks, and other fields into the body of your
document. Step 5 lets you preview the final look of your document when Word loads the data from your data source
into the blocks you have defined.

Step 6 displays two actions you can take to complete the mail merge. The first is to print the generated letters. The
second is to create a new document and insert each letter into the new document. You can also specify a third action by
writing a line of code such as the following before Step 6 of the wizard is shown:

document.MailMerge.ShowSendToCustom = "My Custom Action..."

The MailMerge object's ShowSendToCustom property takes a String value and allows you to add a third custom action
defined by your code to do at the end of a mail merge. When the user clicks this custom action, the Application object's
MailMergeWizardSendToCustom event is raised. Figure 7.9 shows Step 6 of the Mail Merge Wizard with a custom action
called My Custom Action.

Figure 7.9. Step 6 of the Mail Merge Wizard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When the user chooses Print or Edit Individual Letters, the Application object's MailMergeBeforeMerge event is raised.
Word passes the start record and the end record that will be merged as Integer parameters. The default is to merge all
the records. When all the records are going to be merged, Word passes 1 for the start record and 16 for the end record.
Word also passes by reference a Booleancancel parameter. If you set the cancel parameter to true, the mail merge will be
canceled.

After the MailMergeBeforeMerge event is raised, Word shows a dialog box letting the user change the records to merge,
as shown in Figure 7.10. Unfortunately, if the user changes the records to be merged, Word does not raise the
MailMergeBeforeMerge event again. The next time the user does a mail merge, the user's last selection in the dialog
box will be reflected in the parameters passed to MailMergeBeforeMerge.

Figure 7.10. Selecting the records to merge.

When the user clicks the OK button in the dialog box shown in Figure 7.10, the mail merge begins in earnest. Before
Word merges a record from the data source to create a letter, it first raises the Application object's
MailMergeBeforeRecordMerge event; then it creates the letter from the record and raises the Application object's
MailMergeAfterRecordMerge event when the letter for the record has been generated. This sequence of
MailMergeBeforeRecordMerge followed by MailMergeAfterRecordMerge repeats for each record that is going to be
merged. When all the records have been merged, Word raises the Application object's MailMergeAfterMerge event and
passes the newly created Document object as a parameter if the user chose Edit Individual Letters in Figure 7.9. If the
user chose Print, Nothing will be passed for the newly created document.

Listing 7.12 shows a VSTO customization that handles all the mail merge events.

Listing 7.12. A VSTO Customization That Handles Mail Merge Events

Public Class ThisDocument

 Private WithEvents app As Word.Application

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 ' Set ShowSendToCustom so that a custom command
 ' can raise the MailMergeWizardSendToCustom event

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' can raise the MailMergeWizardSendToCustom event
 Me.MailMerge.ShowSendToCustom = "My Custom Command"

 End Sub

 Private Sub App_MailMergeAfterMerge(_
 ByVal document As Word.Document, _
 ByVal documentResult As Word.Document) _
 Handles app.MailMergeAfterMerge

 MsgBox(String.Format("MailMergeAfterMerge: Source = {0}, _
 Result = {1}", document.Name, documentResult.Name))

 End Sub

 Private Sub App_MailMergeAfterRecordMerge(_
 ByVal document As Word.Document) _
 Handles app.MailMergeAfterRecordMerge

 MsgBox(String.Format("MailMergeAfterRecordMerge for {0}",_
 document.Name))

 End Sub

 Private Sub App_MailMergeBeforeMerge(_
 ByVal document As Word.Document, _
 ByVal startRecord As Integer, _
 ByVal endRecord As Integer, ByRef cancel As Boolean) _
 Handles app.MailMergeBeforeMerge

 MsgBox(String.Format("MailMergeBeforeMerge for {0}", _
 document.Name))

 ' Word passes -16 as the EndRecord if the user
 ' chose to merge all records.
 If endRecord = -16 Then
 endRecord = document.MailMerge.DataSource.RecordCount
 End If
 MsgBox(String.Format("Merging record {0} to record {1}.",_
 startRecord, endRecord))

 End Sub

 Private Sub App_MailMergeBeforeRecordMerge(_
 ByVal document As Word.Document, ByRef cancel As Boolean) _
 Handles app.MailMergeBeforeRecordMerge

 MsgBox(String.Format(_
 "MailMergeBeforeRecordMerge for {0}.", _
 document.Name))

 End Sub

 Private Sub App_MailMergeDataSourceLoad(_
 ByVal document As Word.Document) Handles app.MailMergeDataSourceLoad

 MsgBox(String.Format("MailMergeDataSourceLoad for {0}.",_
 document.Name))
 MsgBox(String.Format("The data source is {0}.", _
 document.MailMerge.DataSource.Name))

 End Sub

 ' This event won't fire except for an e-postage add-in
 Private Sub App_MailMergeDataSourceValidate(_
 ByVal document As Word.Document, ByRef handled As Boolean) _
 Handles app.MailMergeDataSourceValidate

 MsgBox(String.Format(_
 "MailMergeDataSourceValidate for {0}.", _
 document.Name))

 End Sub

 Private Sub App_MailMergeWizardSendToCustom(_
 ByVal document As Word.Document) _
 Handles app.MailMergeWizardSendToCustom

 MsgBox(String.Format(_

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox(String.Format(_
 "MailMergeWizardSendToCustom for {0}.", _
 document.Name))

 End Sub

 Private Sub App_MailMergeWizardStateChange(_
 ByVal document As Word.Document, _
 ByRef fromState As Integer, _
 ByRef toState As Integer, ByRef handled As Boolean) _
 Handles app.MailMergeWizardStateChange
 MsgBox(String.Format(_
 "MailMergeWizardStateChange for {0}.", _
 document.Name))

 End Sub

End Class

CommandBar Events

A common way to run your code is to add a custom toolbar button or menu item to Word and handle the click event
raised by that button or menu item. Word uses the same object model as Excel to add toolbar buttons and menu items.
Chapter 4, "Working with Excel Events," discusses this model in more detail.

One difference between Excel and Word is that Word can save an added toolbar or menu item in a template or a
document. The default location that a new toolbar or menu item is saved to is the Normal template (normal.dot). You
can specify that the new toolbar or menu item be associated with another template or with a document by using the
Application object's CustomizationContext property. The CustomizationContext property takes an Object that is either a
Template object or a Document object. Subsequent calls to add toolbars or buttons (a CommandBarButton, for
example) will be saved in the template or document you set using the CustomizationContext property.

Listing 7.13 shows a listing similar to the Excel example in Listing 4.9 in Chapter 4, with two significant differences.
First, we use the CustomizationContext property to make it so the toolbar we add will be associated with a particular
document. Second, we pass true as the last parameter to the various Add methods so that the CommandBar,
CommandBarButton, and CommandBarComboBox are added permanently rather than temporarily.

Listing 7.13. A VSTO Customization That Adds a Custom CommandBar

Public Class ThisDocument

 Private WithEvents app As Word.Application
 Private WithEvents btn As Office.CommandBarButton
 Private WithEvents box As Office.CommandBarComboBox

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 ' Store the new command bar in this document.
 app.CustomizationContext = app.ActiveDocument

 Dim bars As Office.CommandBars = Me.CommandBars
 Dim bar As Office.CommandBar = bars.Add("My Custom Bar",_
 Temporary:=True)
 bar.Visible = True

 btn = bar.Controls.Add(_
 Office.MsoControlType.msoControlButton, _
 Temporary:=True)
 btn.Caption = "Display Message"
 btn.Tag = "WordDocument1.btn"
 btn.Style = Office.MsoButtonStyle.msoButtonCaption

 box = bar.Controls.Add(_
 Office.MsoControlType.msoControlComboBox, _
 Temporary:=True)
 box.Tag = "WordDocument1.box"
 box.AddItem("Choice 1", 1)
 box.AddItem("Choice 2", 2)
 box.AddItem("Choice 3", 3)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 box.AddItem("Choice 3", 3)

 End Sub

 Private Sub Btn_Click(ByVal ctrl As Office.CommandBarButton, _
 ByRef cancelDefault As Boolean) Handles btn.Click

 MsgBox("You clicked the button.")

 End Sub

 Private Sub Box_Change(_
 ByVal ctrl As Office.CommandBarComboBox) _
 Handles box.Change

 MsgBox(String.Format("You selected {0}.", ctrl.Text))

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Events in Visual Studio Tools for Office
Several events are found on VSTO objects that are not found when using the Word primary interop assembly (PIA)
alone. Table 7.1 lists these events. Almost all events are from the Word PIA that are raised again on different objects.
In the Word PIA, there is no BeforeSave event on the Document, for example, but there is a DocumentBeforeSave
event on the Application object that passes as a parameter the Document that is about to be saved. VSTO adds a
BeforeSave event to the Document object for Word. The Document object's BeforeSave event is raised whenever the
Application object's DocumentBeforeSave event is raised with the given Document object as a parameter.

Table 7.1. Events That Are Added in VSTOEvents
Events Raised Again From

Document Object
ActivateEvent Application.WindowActivate

BeforeClose Application.DocumentBeforeClose

BeforeDoubleClick Application.WindowBeforeDoubleClick

BeforePrint Application.DocumentBeforePrint

BeforeRightClick Application.WindowBeforeRightClick

BeforeSave Application.DocumentBeforeSave

CloseEvent Renamed Document.Close event to prevent
collisions

Deactivate Application.WindowDeactivate

MailMergeAfterMerge Application.MailMergeAfterMerge

MailMergeAfterRecordMerge Application.MailMergeAfterRecordMerge

MailMergeBeforeMerge Application.MailMergeBeforeMerge

MailMergeBeforeRecordMerge Application.MailMergeBeforeRecordMerge

MailMergeDataSourceLoad Application.MailMergeDataSourceLoad

MailMergeWizardSendToCustom Application.MailMergeWizardSendToCustom

MailMergeWizardStateChange Application.MailMergeWizardStateChange

SelectionChange Application.WindowSelectionChange

Startup New event raised by VSTO

Shutdown New event raised by VSTO

SyncEvent Renamed Document.Sync event to prevent
collisions

WindowSize Application.WindowSize

Bookmark Object
BeforeDoubleClick Application.WindowBeforeDoubleClick

BeforeRightClick Application.WindowBeforeRightClick

Deselected Application.WindowSelectionChange

Selected Application.WindowSelectionChange

SelectionChange Application.WindowSelectionChange

XMLNode Object
AfterInsert Document.XMLAfterInsert

BeforeDelete Document.XMLBeforeDelete

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ContextEnter Application.XMLSelectionChange

ContextLeave Application.XMLSelectionChange

Deselect Application.WindowSelectionChange

Select Application.WindowSelectionChange

ValidationError Application.XMLValidationError

XMLNodes Object
AfterInsert Document.XMLAfterInsert

BeforeDelete Document.XMLBeforeDelete

ContextEnter Application.XMLSelectionChange

ContextLeave Application.XMLSelectionChange

Deselect Application.WindowSelectionChange

Select Application.WindowSelectionChange

ValidationError Application.XMLValidationError

Another case where VSTO changes events is in the naming of the Close event and the Sync event on the Document
object. Both of these event names conflict with method names on Document. To avoid this conflict, VSTO renames
these events CloseEvent and SyncEvent.

VSTO adds events to some objects that have no events at all in the Word PIA. These objects include Bookmark,
XMLNode, and XMLNodes. Table 7.1 lists the events added to these objects. You can determine what a particular event
does by reading the documentation for the event from which it is raised again.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter covered the various events raised by objects in the Word object model. The chapter also examined how
VSTO adds some new events to Word objects. Chapter 8, "Working with Word Objects," discusses in more detail the
most important objects in the Word object model and how to use them in your code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8. Working with Word Objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Application Object
This chapter examines some of the major objects in the Word object model, starting with the Application object. Many
of the objects in the Word object model are very large, and it is beyond the scope of this book to describe these objects
completely. Instead, this discussion focuses on the most commonly used methods and properties associated with these
objects.

This chapter describes these objects as defined by the primary interop assemblies (PIAs) for Word. You should be aware
that VSTO extends some of these objects (Document, Bookmark, XMLNodes, and XMLNode) to add some functionality,
such as data binding support. Part III of this book, starting with Chapter 13, "The VSTO Programming Model," covers
those extensions.

The Application object is the largest object in the Word object model. The Application object is also the root object in
the Word object model hierarchy. You can access all the other objects in the object model by starting at the Application
object and accessing its properties and the properties of the objects it returns. The Application object also has a number
of application-level settings that prove useful when automating Word.

Controlling Word's Screen Updating Behavior

When your code is performing a set of changes to a document, you might want to set the Application object's
ScreenUpdating property to False to prevent Word from updating the screen while your code runs. Turning off screen
updating can also improve the performance of a long operation. Setting the property back to true refreshes the screen
and allows Word to continue updating the screen.

When changing an application-level property such as ScreenUpdating, always save the value of the property before you
change it, and set it back to that value when you have finished. Doing so is important because your code will almost
never be running by itself inside the Word process; it will usually run alongside other code loaded into the Word
process. Another add-in might be running a long operation on the document, for example, and that add-in might have
set the ScreenUpdating property to False to accelerate that operation. That add-in might change the document in some
way that triggers an event handled by your code. If your event handler sets the ScreenUpdating property to False and
then sets it back to true when you have finished, you have defeated the add-in's attempt to accelerate its own long
operation. If instead you save the value of ScreenUpdating before you change it, set ScreenUpdating to False, and then
set ScreenUpdating back to its original value, your code will coexist better with other code running inside Word.

The best way to do this is to use Visual Basic's support for exception handling to ensure that even if an exception occurs
in your code, the application-level property you are changing will be set back to its original value. You should put the
code to set the application-level property back to its original value in a Finally block because this code will run both when
no exception occurs and when an exception occurs. Listing 8.1 shows an example of saving the state of the
ScreenUpdating property, setting the property to False, and then restoring the original value of the property in a Finally
block.

Listing 8.1. A VSTO Customization That Uses the ScreenUpdating Property

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup
 Dim app As Word.Application = Me.Application
 Dim oldScreenUpdateSetting As Boolean = app.ScreenUpdating
 Dim range As Word.Range = Me.Range

 Try
 app.ScreenUpdating = False
 Dim r As New Random()
 Dim i As Integer

 For i = 1 To 1000
 range.Text = range.Text + r.NextDouble().ToString()
 If i Mod 333 = 0 Then
 app.ScreenRefresh()
 End If
 Next
 Finally
 app.ScreenUpdating = oldScreenUpdateSetting
 End Try

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

In addition to the ScreenUpdating property, Word's Application object has a ScreenRefresh method. You can call this
method to force a refresh of the screentypically, during an operation when you have set ScreenUpdating to False. You
might do the first few steps of an operation, for example, refresh the screen to show the user the new state of the
document, perform additional steps, and refresh the screen again.

Controlling the Dialog Boxes and Alerts That Word Displays

Occasionally, the code you write will cause Word to display dialog boxes prompting the user to make a decision or
alerting the user that something is about to occur. If you find this happening in a section of your code, you might want
to prevent these dialog boxes from being displayed so that your code can run without requiring intervention from the
user.

You can set the DisplayAlerts property to a member of the WdAlertLevel enumeration. If set to wdAlertsNone, this prevents
Word from displaying dialog boxes and messages when your code is running and causes Word to choose the default
response to any dialog boxes or messages that might display. You can also set the property to wdAlertsMessageBox to let
Word display only message boxes and not alerts. Setting the property to wdAlertsAll restores Word's default behavior.

Be sure to get the original value of this property, and set the property back to its original value after your code runs.
Use try and Finally blocks to ensure that you set the property back to its original value even when an exception occurs.

Changing the Mouse Pointer

During a long operation, you might want to change the appearance of Word's mouse pointer to an hourglass to let users
know that they are waiting for some operation to complete. Word's Application object has a System property that
returns a System object. The System object has a Cursor property of type WdCursorType that enables you to change the
appearance of Word's mouse pointer. You can set it to the following values: wdCursorIBeam, wdCursorNormal,
wdCursorNorthwestArrow, or wdCursorWait. Listing 8.2 shows the use of the Cursor property.

Listing 8.2. A VSTO Customization That Sets the Cursor Property

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles Me.Startup

 Dim app As Word.Application = Me.Application
 Dim oldCursor As Word.WdCursorType = app.System.Cursor
 Dim range As Word.Range = Me.Range

 Try
 app.System.Cursor = Word.WdCursorType.wdCursorWait

 Dim r As Random = New Random()
 Dim i As Integer
 For i = 1 To 1000
 range.Text = range.Text + r.NextDouble().ToString()
 Next
 Finally
 app.System.Cursor = oldCursor
 End Try

 End Sub

End Class

Displaying a Message in Word's Status Bar or Window Caption

Word lets you set a custom message in the Word status bar, which is at the bottom-left corner of Word's window.
StatusBar is a property that can be set to a String value representing the message you want to display in Word's status
bar. Unlike most of the other properties in this section, you cannot save the original value of the StatusBar property
and set it back after you have changed it. StatusBar is a write-only property and cannot be read.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and set it back after you have changed it. StatusBar is a write-only property and cannot be read.

You can control the text shown in Word's window caption using the Caption property. Caption is a property that can be
set to a String value representing the text you want to display in Word's window caption.

Listing 8.3 shows an example of setting the StatusBar property to inform the user of the progress of a long operation.
The operation has 1,000 steps, and after every 100 steps, the code appends an additional period (.) to the status-bar
message to indicate to the user that the operation is still in progress.

Listing 8.3. A VSTO Customization That Sets the StatusBar Property

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim app As Word.Application = Me.Application
 Dim status As String = "Creating Document..."
 app.StatusBar = status

 Dim range As Word.Range = Me.Range

 Try
 app.System.Cursor = Word.WdCursorType.wdCursorWait

 Dim r As Random = New Random()
 Dim i As Integer
 For i = 1 To 1000
 range.Text = range.Text + r.NextDouble().ToString()
 If i Mod 100 = 0 Then
 status &= "."
 app.StatusBar = status
 End If
 Next
 Finally
 app.StatusBar = String.Empty
 End Try

 End Sub

End Class

Controlling the Look of Word

Word enables you to control the Word user interface through other properties, such as those listed in Table 8.1. Listing
8.4 shows code behind a VSTO Word document that sets many of these properties.

Table 8.1. Properties That Control Elements of the Word
User Interface

Property Name Type What It Does

DisplayAutoCompleteTips Boolean Controls whether Word displays
autocomplete tips for
completing words, phrases, and
dates as you type.

DisplayRecentFiles Boolean Controls whether Word displays
recently open files in the File
menu. You can control how
many files Word displays by
using the RecentFiles object
associated with the Application
object and setting the
RecentFiles object's Maximum
property to a number between 0
and 9.

DisplayScreenTips Boolean Controls whether Word displays

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DisplayScreenTips Controls whether Word displays
pop-up tooltips for text having
comments, for footnotes and
end notes, and for hyperlinked
text.

DisplayScrollBars Boolean Controls whether Word displays
the horizontal and vertical scroll
bars for all open documents.

DisplayStatusBar Boolean Controls whether Word displays
the status bar for the active
document. The value of this
property can change when the
active document changes.

Height Integer Sets the height in points of the
main Word window when
WindowState is set to
wdWindowStateNormal.

Left Integer Sets the left position in points of
the main Word window when
WindowState is set to
wdWindowStateNormal.

ShowWindowsInTaskbar Boolean Sets whether Word creates a
window and taskbar button for
each open document (TRue),
which is also called SDI mode,
or uses one window that
contains all open document
windows (False), which is also
called MDI mode.

Top Integer Sets the top position in points of
the main Word window when
WindowState is set to
wdWindowStateNormal.

Visible Boolean Sets whether the Word
application window is visible.

Width Integer Sets the width in points of the
main Word window when
WindowState is set to
WdWindowState.wdWindowStateNormal.

WindowState WdWindowState Sets whether the main Word
window is minimized
(wdWindowStateMinimize),
maximized
(wdWindowStateMaximize), or
normal (wdWindowStateNormal).
The Width, Height, Left, and Top
settings have an effect only
when WindowState is set to
wdWindowStateNormal.

Listing 8.4. A VSTO Customization and Helper Function That Modifies the Word
User Interface

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim app As Word.Application = Me.Application

 app.DisplayAutoCompleteTips = GetBool("Autocomplete tips?")
 app.DisplayRecentFiles = GetBool("Display recent files?")
 app.DisplayScreenTips = GetBool("Display screen tips?")
 app.DisplayScrollBars = GetBool("Display scroll bars?")
 app.DisplayStatusBar = _
 GetBool("Display status bar for active document?")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 GetBool("Display status bar for active document?")

 app.ShowWindowsInTaskbar = GetBool("Multiple windows?")
 app.Visible = GetBool("Visible application window?")

 app.WindowState = Word.WdWindowState.wdWindowStateNormal
 app.Width = 200
 app.Height = 300
 app.Top = 50
 app.Left = 100

 End Sub

 Private Function GetBool(ByVal message As String) As Boolean
 Return MsgBox(message, MsgBoxStyle.YesNo, _
 "Word UI Demo") = MsgBoxResult.Yes
 End Function

Properties That Return Active or Selected Objects

The Application object has a number of properties that return active objectsobjects representing things that are active
or selected within Word. Table 8.2 shows some of these properties. Listing 8.5 shows code behind a VSTO Word
document that examines these properties.

Table 8.2. Application Properties That Return Active Objects
Property Name Type What It Does

ActiveDocument Document Returns the active Documentthe document that has
focus within Word. If there are no open documents, an
exception is thrown.

ActivePrinter String Returns a String for the active printer (for example,
"EpsonStylus COLOR 860 ESC/P 2 on LPT1:").

ActiveWindow Window Returns the active Window. If no windows are open, an
exception is thrown.

NormalTemplate Template Returns a Template object representing the Normal
template (normal.dot).

Selection Selection Returns a Selection object that represents the current
selection or insertion point in the document.

Listing 8.5. A VSTO Customization and Helper Function That Examines Active
Objects

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim app As Word.Application = Me.Application

 ShowItem("ActiveDocument", app.ActiveDocument.Name)
 ShowItem("ActivePrinter", app.ActivePrinter)
 ShowItem("ActiveWindow", app.ActiveWindow.Caption)
 ShowItem("NormalTemplate", app.NormalTemplate.Name)
 ShowItem("Selection", app.Selection.Start.ToString())

 End Sub

 Private Sub ShowItem(ByVal name As String, _
 ByVal status As String)
 MsgBox(status, MsgBoxStyle.OkOnly, name)
 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

Properties That Return Important Collections

The Application object has a number of properties that return collections you will use frequently. Table 8.3 shows
several of these properties. Listing 8.6 shows code behind a VSTO Word document that gets the count of these
collections and the first item out of each collection.

Table 8.3. Application Properties That Return Important Collections
Property Name Type What It Does

CommandBars CommandBars Returns the CommandBars collection, which lets you
modify or add to Word's toolbars and menus. Changes
made to toolbars and menus are saved in a template or
in a document; use the CustomizationContext property
to set where changes are stored.

Dialogs Dialogs Returns the Dialogs collection, which lets you access the
built-in Word dialog boxes (of which there are more than
240). You can show a particular dialog box using this
collection.

Documents Documents Returns the Documents collection, which contains all the
documents open in Word.

FontNames FontNames Returns the FontNames collection, which contains all the
fonts that are installed and available for use.

KeyBindings KeyBindings Returns the KeyBindings collection, which lets you
examine, modify, and add key shortcuts that are
assigned to Word commands.

RecentFiles RecentFiles Returns the RecentFiles collection, which lets you
examine and reopen any of the nine most recently
opened files.

TaskPanes TaskPanes Returns the TaskPanes collection, which allows you to
show or detect which of the 14 built-in task panes are
visible.

Templates Templates Returns the Templates collection, which lets you examine
the installed templates and their properties.

Windows Windows Returns the Windows collection, which represents the
windows open in Word.

Listing 8.6. A VSTO Customization and Helper Function That Examines Collections

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim app As Word.Application = Me.Application

 Show(String.Format("There are {0} command bars.", _
 app.CommandBars.Count))

 Show(String.Format("CommandBar 1 is {0}.", app.CommandBars(1).Name))
 Show(String.Format("There are {0} dialog boxes.", _
 app.Dialogs.Count))

 Show("Click OK to invoke the About dialog...")
 app.Dialogs(Word.WdWordDialog.wdDialogHelpAbout).Show()

 Show(String.Format("There are {0} open documents.", _
 app.Documents.Count))

 Dim doc As Word.Document = app.Documents.Item(1)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim doc As Word.Document = app.Documents.Item(1)

 Show(String.Format("Document 1 is {0}.", doc.Name))
 Show(String.Format("There are {0} fonts.", _
 app.FontNames.Count))
 Show(String.Format("FontName 1 is {0}.", app.FontNames(1)))
 Show(String.Format("There are {0} key bindings.", _
 app.KeyBindings.Count))

 If app.KeyBindings.Count > 0 Then
 Show(String.Format("KeyBinding 1 is {0}.", _
 app.KeyBindings(1).Command))
 End If

 Show(String.Format("There are {0} recent files.", _
 app.RecentFiles.Count))

 Show(String.Format("RecentFile 1 is {0}.", _
 app.RecentFiles(1).Name))
 Show(String.Format("There are {0} task panes.", _
 app.TaskPanes.Count))

 Show("Click OK to activate the help task pane.")

 app.TaskPanes(_
 Word.WdTaskPanes.wdTaskPaneHelp).Visible = True

 Show(String.Format("There are {0} templates.", _
 app.Templates.Count))
 Show(String.Format("Template 1 is {0}.", _
 app.Templates.Item(1).FullName))

 Show(String.Format("There are {0} windows.", _
 app.Windows.Count))
 Show(String.Format("Window 1 is {0}.", _
 app.Windows.Item(1).Caption))

 End Sub

 Private Sub Show(ByVal text As String)
 MsgBox(text, MsgBoxStyle.OkOnly, "Active Objects")
 End Sub

End Class

Navigating a Document

The Browser property returns the Browser object, which gives you access to the same functionality available in the
browser control that is shown directly below Word's vertical scroll bar, as shown in Figure 8.1.

Figure 8.1. Word's browser control.

To use the Browser object, first set the Browser object's Target property to a member of the WdBrowseTarget
enumeration, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

enumeration, as shown here:

wdBrowseComment

wdBrowseEdit

wdBrowseEndnote

wdBrowseField

wdBrowseFind

wdBrowseFootnote

wdBrowseGoTo

wdBrowseGraphic

wdBrowseHeading

wdBrowsePage

wdBrowseSection

wdBrowseTable

Then use the Browser object's Next and Previous methods to navigate from element to element. Listing 8.7 shows an
example of this.

Listing 8.7. A VSTO Customization That Uses the Browser Object

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 ' Generate some random text in the document.
 Dim r As Word.Range = Range()
 Dim builder As New System.Text.StringBuilder()
 Dim rand As New Random()

 Dim i As Integer
 For i = 0 To 1000
 builder.Append(rand.NextDouble().ToString())
 builder.Append(vbCrLf)
 Next
 r.Text = builder.ToString()

 ' Browse by page
 Application.Browser.Target = Word.WdBrowseTarget.wdBrowsePage
 Dim j As Integer
 For j = 0 To 10
 Application.Browser.Next()
 Application.Selection.Text = String.Format(_
 "<<<<<< PAGE {0} >>>>>>" & vbCrLf, j)
 Next

 End Sub

End Class

Note that using this approach also changes the selection in the document, which you often do not want to do. Later in
this chapter, you learn about the Range object and the various ways you manipulate text with the Range object without
changing the selection. The Range object's Goto, GotoNext, and GotoPrevious methods provide the same kind of
navigation control that the Browser object provides, without changing the selection.

Working with Word's Options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Options property provides access to options you might set via the Options dialog box. The Options property returns
an Options object that has more than 200 properties you can set.

Listing 8.8 shows an example that gets and then prompts the user to decide whether to change several of the
properties on the Options object. The properties set are options from the Save tab of Word's Options dialog box. Listing
8.8 also shows the Save tab in the Options dialog box after prompting the user to change options associated with that
tab.

Listing 8.8. A VSTO Customization That Uses the Options Object and Shows a Built-
In Dialog Box

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim o As Word.Options = Application.Options
 o.CreateBackup = DisplayAndSet(_
 "Always create backup copy", o.CreateBackup)
 o.AllowFastSave = DisplayAndSet(_
 "Allow fast saves", o.AllowFastSave)
 o.BackgroundSave = DisplayAndSet(_
 "Allow background saves", o.BackgroundSave)
 o.SavePropertiesPrompt = DisplayAndSet(_
 "Prompt for document properties", o.SavePropertiesPrompt)
 o.SaveNormalPrompt = DisplayAndSet(_
 "Prompt to save Normal template", o.SaveNormalPrompt)

 Application.Dialogs(_
 Word.WdWordDialog.wdDialogToolsOptionsSave).Show()

 End Sub

 Private Function DisplayAndSet(ByVal settingName As String, _
 ByVal settingValue As Boolean) As Boolean

 Dim title As String = "Options Demo"
 Dim checkState As String = "unchecked."
 Dim action As String = "check"

 If settingValue Then
 checkState = "checked."
 action = "uncheck"
 End If

 Dim message As String = String.Format(_
 "{0} is {1}." & vbCrLf & _
 "Do you want to {2} it?", settingName, checkState, action)
 Dim r As MsgBoxResult = MsgBox(message, _
 MsgBoxStyle.YesNo, title)
 If r = MsgBoxResult.Yes Then
 Return Not settingValue
 Else
 Return settingValue
 End If

 End Function

End Class

Working with the New and Getting Started Document Task Panes

The NewDocument property returns a NewFile object that lets you customize the New Document and Getting Started
task panes. The NewFile object is a shared object in the office.dll PIA that defines types in the Microsoft.Office.Core
namespace. The NewFile object is also used by Excel because it shares the same task-pane infrastructure. To get to the
NewFile object in Excel, use the Excel Application object's NewWorkbook property.

In four sections of the New Document task pane, you can add your own documents, templates, or Web addresses.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In four sections of the New Document task pane, you can add your own documents, templates, or Web addresses.
These four sections are the New section, the Templates section, the Recently Used Templates section, and the Other
Files section. Figure 8.2 shows the New Document task pane and these four sections. You can also add your own
document, template, or Web address to the Open section of the Getting Started task pane.

Figure 8.2. The New Document task pane.

The NewDocument property returns a NewFile object that has two methods of interest: Add and Remove. These
methods take a filename as a String, a member of the Office.MsoFileNewSection enumeration to specify the section you want
to add or remove from, the display name as a String that you want displayed in the task pane, and the action to take
when the user clicks the link in the task pane.

The action is specified using a member of the Office.MsoFileNewAction enumeration. Possible actions include msoOpenFile,
which opens the document or URL using Internet Explorer; msoCreateNewFile, which creates a new document based on the
existing document or template; and msoEditFile, which opens an existing document for editing in Word.

Listing 8.9 shows some code that adds a document or hyperlink to each of the four sections in the New Document task
pane. It also adds a document to the Getting Started task pane. To show the New Document task pane, the code uses
an unusual technique: It finds the command bar control for the File > New command (which has an ID of 18) and
executes that command. This is done because the New Document task pane cannot be shown in any other way; it is not
accessible through the TaskPanes object, as you would expect.

The code in Listing 8.9 also handles the Document object's BeforeClose event to remove the added commands from the
task pane. As you see in Chapter 7, "Working with Word Events," the BeforeClose event can be raised multiple times for
the same document if the user cancels the save or closing of the document or if other BeforeClose event handlers
cancel the close. In this case, even if the code in the BeforeClose event runs multiple times, the calls to
NewFile.Remove do not raise any exceptions if the item you are trying to remove does not exist.

Listing 8.9. A VSTO Customization That Adds Links to the New Document Task
Pane

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Pane

Public Class ThisDocument

 Private app As Word.Application

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 Dim Newfile As Office.NewFile = app.NewDocument

 Newfile.Add("c:\foo.doc", _
 Office.MsoFileNewSection.msoNew, _
 "msoNew msoEdit", _
 Office.MsoFileNewAction.msoEditFile)

 Newfile.Add("c:\foo.doc", _
 Office.MsoFileNewSection.msoNewfromTemplate, _
 "msoNewFromTemplate msoCreateNewFile", _
 Office.MsoFileNewAction.msoCreateNewFile)

 Newfile.Add("c:\foo.doc", _
 Office.MsoFileNewSection.msoNewfromExistingFile, _
 "msoNewFromExistingFile msoCreateNewFile", _
 Office.MsoFileNewAction.msoCreateNewFile)

 Newfile.Add("http://www.microsoft.com", _
 Office.MsoFileNewSection.msoBottomSection, _
 "msoBottomSection msoOpenFile", _
 Office.MsoFileNewAction.msoOpenFile)

 Newfile.Add("c:\foo.doc", _
 Office.MsoFileNewSection.msoOpenDocument, _
 "msoOpenDocument msoEdit", _
 Office.MsoFileNewAction.msoEditFile)

 ' Execute the "New" command found
 ' in the File menu to show
 ' the new document task pane.
 Application.CommandBars.FindControl(1, 18).Execute()

 End Sub
 Private Sub ThisDocument_BeforeClose(ByVal sender As Object, _
 ByVal e As System.ComponentModel.CancelEventArgs) _
 Handles Me.BeforeClose

 Dim NewFile As Office.NewFile = app.NewDocument

 NewFile.Remove("c:\foo.doc", _
 Office.MsoFileNewSection.msoNew, _
 "msoNew msoEdit", _
 Office.MsoFileNewAction.msoEditFile)

 NewFile.Remove("c:\foo.doc", _
 Office.MsoFileNewSection.msoNewfromTemplate, _
 "msoNewFromTemplate msoCreateNewFile", _
 Office.MsoFileNewAction.msoCreateNewFile)

 NewFile.Remove("c:\foo.doc", _
 Office.MsoFileNewSection.msoNewfromExistingFile, _
 "msoNewFromExistingFile msoCreateNewFile", _
 Office.MsoFileNewAction.msoCreateNewFile)

 NewFile.Remove("http://www.microsoft.com", _
 Office.MsoFileNewSection.msoBottomSection, _
 "msoBottomSection msoOpenFile", _
 Office.MsoFileNewAction.msoOpenFile)

 NewFile.Remove("c:\foo.doc", _
 Office.MsoFileNewSection.msoOpenDocument, _
 "msoOpenDocument msoEdit", _
 Office.MsoFileNewAction.msoEditFile)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Office.MsoFileNewAction.msoEditFile)

 End Sub

End Class

Working with the File Save Format Options

The DefaultSaveFormat property enables you to change the default format that Word saves in when the user creates a
new document and then saves it. Setting DefaultSaveFormat to "Text" will cause Word to save new files in text-only
format; for example, setting DefaultSaveFormat to an empty string will cause Word to save in the default file format.

You can also specify that one of the installed file converters be used as the default save format. The FileConverters
property returns a collection of available file converters that save in formats such as Works format. Each FileConverter
object in the FileConverters collection has a ClassName property that returns a String. You can set the
DefaultSaveFormat property to the String returned by the ClassName property of the FileConverter you want to use as
the default save format. The Works 6.0 & 7.0 FileConverter object has a ClassName property that returns "wks632".
Setting DefaultSaveFormat to "wks632" will make Works 6.0 & 7.0 the default save format.

Working with File Dialog Boxes

Word provides several properties and methods that enable you to change the directory that the Open and Save dialog
boxes default to. The ChangeFileOpenDirectory method takes a String parameter that is the new path that you want the
Open and Save dialog boxes to default to. A change made using this method lasts only until the user exits the
application or ChangeFileOpenDirectory is called again during the run of the application.

To change permanently the directory that the Open and Save dialog boxes default to, you can use the Options object's
DefaultFilePath property. Prompt the user if you change a setting like this permanently. Users usually do not appreciate
it when programs change their settings without asking their permission first.

If you need to display a customized File dialog box, you can use the FileDialog property, which returns a FileDialog
object you can customize and show to the user. The FileDialog property takes a required parameter of type
Office.MsoFileDialogType, which can be one of the following enumerated values: msoFileDialogOpen, msoFileDialogSaveAs,
msoFileDialogFilePicker, or msoFileDialogFolderPicker.

Listing 8.10 shows an example that gets a FileDialog of type msoFileDialogFilePicker and modifies it to let the user select
files from the desktop to copy to his C:\ directory. There are several things to observe in this example. First, the
FileDialog object has several properties that enable you to customize the dialog box, including AllowMultiSelect,
ButtonName, InitialFileName, InitialView, and Title.

Listing 8.10 also illustrates that showing the FileDialog using the Show method does not perform any Word action, such
as opening files, when the user clicks the default button. Instead, it returns an Integer value that is 1 if the user clicked
the default button and 0 if the user clicked the Cancel button. If the user clicks the default button, and Show returns a
1, the code iterates over the FileDialog's SelectedItems collection to get the files that the user selected to copy.

Listing 8.10. A VSTO Customization That Modifies Word's File Dialog Box

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim f As Office.FileDialog = Application.FileDialog(_
 Office.MsoFileDialogType.msoFileDialogFilePicker)

 f.AllowMultiSelect = True
 f.ButtonName = "Copy to C:\"
 f.InitialFileName = System.Environment.GetFolderPath(_
 Environment.SpecialFolder.Desktop)
 f.InitialView = _
 Office.MsoFileDialogView.msoFileDialogViewList
 f.Title = "Select files to copy to c:\"

 Dim result As Integer = f.Show()
 If result = -1 Then
 For Each s As String In f.SelectedItems
 Dim fileName As New System.IO.FileInfo(s)
 System.IO.File.Copy(fileName.FullName, _
 "c:\" + fileName.Name)
 Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Next
 End If

 End Sub

End Class

User Information

Word's Application object has several properties that return user information, including UserName, UserAddress, and
UserInitials. These String properties return the user information the user entered when installing the product. The user
can also edit this information by going to Word's Options dialog box and editing the fields in the User Information tab.

Checking Grammar and Spelling

Word provides some application-level methods that enable you to use Word's grammar and spelling engine to check
arbitrary strings. CheckGrammar is a method that takes a String and returns a Boolean value. It returns true if the string is
deemed grammatically correct by Word's grammar checker and False if it is not. CheckSpelling is a method that takes a
String and returns true if the string is spelled correctly and False if the string is not spelled correctly.

The GetSpellingSuggestions method can take a single word that is misspelled and suggest possible correct spellings for
the word. It takes a required String that is the word to check. It also takes a number of optional parameters. It returns a
SpellingSuggestions collection that contains possible correct spellings.

Listing 8.11 shows a VSTO customization that uses these application-level grammar and spelling-checking functions.

Listing 8.11. A VSTO Customization That Checks Grammar and Spelling

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim badString As String = "This are grammatically incorrect."
 Dim goodString As String = "This is grammatically correct."
 Dim badString2 As String = "I cain't spel."
 Dim goodString2 As String = "I can spell."
 Dim singleWord As String = "spel"

 MsgBox(String.Format("{0}" & vbCrLf & _
 "CheckGrammar returns {1}.", _
 badString, Application.CheckGrammar(badString)))
 MsgBox(String.Format("{0}" & vbCrLf & _
 "CheckGrammar returns {1}.", _
 goodString, Application.CheckGrammar(goodString)))

 MsgBox(SpellingHelper(badString2))
 MsgBox(SpellingHelper(goodString2))

 MsgBox(String.Format(_
 "Getting spelling suggestions for {0}.", _
 singleWord))

 Dim suggestions As Word.SpellingSuggestions = _
 Application.GetSpellingSuggestions(singleWord)
 For Each s As Word.SpellingSuggestion In suggestions
 MsgBox(s.Name)
 Next
 End Sub

 Private Function SpellingHelper(ByVal phrase As String) _
 As String
 Dim correctSpelling As Boolean
 correctSpelling = Application.CheckSpelling(phrase)
 If correctSpelling Then
 Return String.Format("{0} is spelled correctly.", phrase)
 Else
 Return String.Format(_
 "{0} is spelled incorrectly.", phrase)
 End If
 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Function

End Class

Exiting Word

The Quit method can be used to exit Word. If any unsaved documents are open, Word prompts the user to save each
unsaved document. When users are prompted to save, they get a dialog box that has a Cancel button. If the user clicks
Cancel, or if any code is running that is handling the Application.DocumentBeforeClose event sets the cancel parameter
to true, Word does not quit.

Setting the DisplayAlerts property to wdAlertsNone will not suppress Word's prompting the user to save. Fortunately, the
Quit method takes three optional parameters that can control whether Word prompts the user to save. The first
optional parameter, called SaveChanges, is of type Object and can be passed a member of the WdSaveOptions enumeration:
wdDoNotSaveChanges, wdPromptToSaveChanges, or wdSaveChanges. The second optional parameter, called OriginalFormat, is of type
Object and can be passed a member of the WdOriginalFormat enumeration: wdOriginalDocumentFormat, wdPromptUser, or
wdWordDocument. This parameter controls Word's behavior when saving a changed document whose original format was
not Word document format. The final optional parameter is called RouteDocument and is of type Object. Passing true for this
parameter routes the document to the next recipient if a routing slip is attached.

Listing 8.12 shows a VSTO application that calls Quit without saving changes.

Listing 8.12. A VSTO Customization That Calls Quit

Public Class ThisDocument

 Private app As Word.Application

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 Range.Text = "Sample text"

 app.Quit(False)

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Dialog Object
This chapter has briefly considered the Dialogs collection returned by the Application object's Dialogs property. You
have also learned about the FileDialog object. Now you learn in more detail how you can use and display Word's built-in
dialog boxes by using the Dialog object.

Showing the Dialog Box and Letting Word Execute Actions

After you have a Dialog object, typically by using the Dialog collection's index operator, you can show the dialog box in
a variety of ways. The simplest way to show the dialog box associated with a Dialog object is to call the Show method,
which displays the dialog box and lets Word execute any action the user takes in the dialog box. The Show method has
an optional TimeOut parameter of type Object that takes the number of milliseconds Word will wait before closing the
dialog box automatically. If you omit the parameter, Word waits until the user closes the dialog box.

The Show method returns an Integer value that tells you what button the user chose to close the dialog box. If the return
value is 1, the user clicked the OK button. If the return value is 2, the user clicked the Close button. If the return value
is 0, the user clicked the Cancel button.

Selecting the Tab on a Dialog Box

For tabbed dialog boxes, such as Options, the Dialog object provides a DefaultTab property of type WdWordDialogTab. The
DefaultTab property can be set before showing the dialog box to ensure that the dialog box comes up with a particular
tab selected. WdWordDialogType is an enumeration that contains values for the various tabs in Word's built-in dialog boxes.

Showing the Dialog Box and Preventing Word from Executing Actions

Sometimes you will want to show a dialog box without letting Word actually execute the action associated with the
dialog box. You might want to show the Print dialog box but execute your own custom actions when the user clicks OK
in the dialog box, for example.

The Dialog object has a Display method that will show the dialog box while preventing Word from executing the action
associated with the dialog box. Just as with the Show method, the Display method takes an optional TimeOut parameter
of type Object and returns an Integer value that tells you which button the user clicked to close the dialog box.

After you use the Display method to show a dialog box, you can use the Execute method to apply the action the user
took in the dialog box that was shown using the Display method. As an example (one that would likely annoy a Word
user), you might show the Print dialog box and detect that a user clicked OK. But then you might prompt again to ask
whether the user is sure she wants to print. If the user clicks Yes, you would call the Execute method on the dialog box
to print the document, as shown in Listing 8.13.

Listing 8.13. A VSTO Customization That Uses Display and Execute to Confirm
Printing

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Range.InsertAfter("Test text")

 Dim d As Word.Dialog = Application.Dialogs(_
 Word.WdWordDialog.wdDialogFilePrint)

 Dim result As Integer = d.Display()
 If result = -1 Then
 Dim r As MsgBoxResult
 r = MsgBox("Are you sure you want to print?", _
 MsgBoxStyle.YesNoCancel, "Annoying confirmation")

 If r = MsgBoxResult.Yes Then
 d.Execute()
 End If
 End If

 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

Getting and Setting Fields in a Dialog Box

It is possible to prefill fields in a dialog box before showing it and to get fields from a dialog box after showing it.
Unfortunately, it is rather difficult and inconsistent in availability, and it relies on some obscure functionality that
originated from the original programming language for Word, called Word Basic.

The Dialog object you are working with may have several late-bound properties that can be get and set. A late-bound
property does not appear in the type definition for the Dialog object, so it cannot be seen using IntelliSense. Therefore,
in Visual Basic 2005 a late-bound property can be called directly, but you won't get help from Visual Studio's statement-
completion feature when writing the code, as it can't be determined until runtime whether a given property exists.

The available late-bound properties change depending on the type of dialog box that you got from the Dialogs
collection. So when you get a wdDialogXMLOptions dialog box, it will have one set of late-bound properties, and when you
get a wdDialogFilePrint dialog box, it will have a different set of late-bound properties.

Determining what the late-bound property names are for a particular dialog box involves some searching in older Word
Basic help files. To get the Word Basic help files, search the Web for "wrdbasic.exe" to find an installer from Microsoft
that installs Word Basic help. After you have installed the Word Basic help file, you can try to find a Word Basic function
in the help file that corresponds to the dialog box you are using.

The Word Basic function typically is named as a concatenation of the menu name and command name. The Word Basic
function for the Print dialog box in the File menu, for example, is FilePrint. By looking in the Word Basic help file for the
FilePrint method, you will find that it has 14 parameters. Table 8.4 shows some of the late-bound properties
documented in the Word Basic help file for the FilePrint (and, hence, the Print dialog box).

Table 8.4. Some Late-Bound Properties Associated with the Print
Dialog Box

Property Name Type What It Does

Range Selected Integer
values

If 1, prints the selection. If 2, prints the current page. If
3, prints the range of pages specified by From and To. If
4, prints the range of pages specified by Pages.

NumCopies Integer The number of copies to print.

Pages String The page numbers and page ranges to print, such as "1-
10, 15", which would print pages 1 through 10 and page
15.

For newer dialog boxes that were not around in Word 95 and are not listed in the Word Basic help file, you can try to
figure out how to get to a particular dialog-box option by trial and error. In the XML Options dialog box, for example,
which is new to Word 2003 (WdWordDialog.wdDialogXMLOptions), you can determine some of the properties by writing
reflection code to try to invoke names that seem reasonable based on the names of the controls in the dialog box. If the
code fails, you know that you guessed the wrong property name. If the code succeeds, you have found a property
name. In this way, you would discover that AutomaticValidation, IgnoreMixedContent, ShowAdvancedXMLErrors, and
ShowPlaceholderText are some of the properties associated with the XML Options dialog box. At this point, however,
you are really out there on your own. A search on the Web for "ShowAdvancedXMLErrors," for example, returned no
hits; you might be the first person and the last person in the world to use this late-bound property.

Listing 8.14 shows a VSTO customization that prepopulates the Print dialog box with a page range and number of
copies to print. It sets and gets the late-bound properties Range, NumCopies, and Pages on the Dialog object. The code
in Listing 8.14 will display the Print dialog box without allowing Word to execute any actions. The user can change
values in the dialog box. The code shows the values of Range, NumCopies, and Pages after the dialog box has been
displayed.

Listing 8.14. A VSTO Customization That Accesses Late-Bound Properties on a
Dialog Box

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Create 20 pages
 Dim r As Word.Range = Range()

 Dim i As Integer
 For i = 1 To 20
 r.InsertBreak(Word.WdBreakType.wdPageBreak)
 Next

 Dim d As Word.Dialog = Application.Dialogs(_
 Word.WdWordDialog.wdDialogFilePrint)

 ' Set late-bound properties
 d.Range = 4
 d.NumCopies = 2
 d.Pages = "1-10, 15"

 Dim result As Integer = d.Display()

 ' Get late-bound properties
 MsgBox(String.Format("Range is {0}.", d.Range))
 MsgBox(String.Format("NumCopies is {0}.", d.NumCopies))
 MsgBox(String.Format("Pages is {0}.", d.Pages))

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with Windows
The Application object has several properties that are used to control Word's windows. We have already considered
several properties, including Width, Height, WindowState, Top, Left, Windows, ActiveWindow, and
ShowWindowsInTaskBar.

Word provides some additional methods on the Application object that prove useful for managing windows. The
Application object's Activate method is used to make Word the active application when another application has focus.
The Application object's Move method is used to move the active window when the WindowState is set to
wdWindowStateNormal and takes Top and Left parameters in pixels. The Application object's Resize method is used to resize
the active window when the WindowState is set to wdWindowStateNormal and takes Width and Height parameters in pixels.

Creating New Windows

The Application object's NewWindow method creates a new window for the active document and returns the newly
created Window. This is the equivalent of choosing New Window from the Window menu.

You can also create a new window using the Windows collection's Add method. This method takes an optional Window
parameter by reference, which tells Word which document to create a new Window for. If you omit the Window
parameter, Word will create a new window for the active document.

Iterating over the Open Windows

The Windows collection returned by the Windows property of the Application object has a GetEnumerator method that
allows it to be iterated over using a For Each loop in Visual Basic 2005, as shown in Listing 8.15.

Listing 8.15. A VSTO Customization That Iterates over the Open Windows

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup
 ' Create 20 windows
 Dim i As Integer
 For i = 0 To 20
 Application.NewWindow()
 Next

 For Each w As Word.Window In Application.Windows
 MsgBox(w.Caption)
 Next

 End Sub

End Class

Accessing a Window in the Collection

To access a Window in the Windows collection, you use a parameterized property called Item, which returns a Window.
The Item property takes an Index parameter by reference that is of type Object. You can pass a String representing the
caption of the Window, or you can pass a 1-based index into the Windows collection. You can check how many items
are in a given collection by using the Count property. Listing 8.16 shows both getting a window using a 1-based index
and using the caption of a window. Because Item is also the default property for a collection, you can omit Item and
instead pass the parameter, as shown in line of code app.Windows(stringIndex).

Listing 8.16. A VSTO Customization That Uses Item to Get a Window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 8.16. A VSTO Customization That Uses Item to Get a Window

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim app As Word.Application = Me.Application

 ' Create some windows
 app.NewWindow()
 app.NewWindow()
 Dim stringIndex As String = app.NewWindow().Caption

 MsgBox(String.Format("There are {0} windows.", _
 app.Windows.Count))
 Dim w As Word.Window = app.Windows.Item(1)
 MsgBox(w.Caption)
 Dim w2 As Word.Window = app.Windows(stringIndex)
 MsgBox(w2.Caption)

 End Sub

End Class

Arranging Windows

Word has various ways of arranging windows and synchronizing those windows so that when one window scrolls, other
windows scroll as well. The Arrange method enables you to arrange a collection of windows and is the equivalent of
selecting Arrange All from the Windows menu. This method takes an optional Object parameter by reference that can be
passed a member of the WdArrangeStyle enumeration: wdIcons or wdTiled. Passing wdTiled makes sense only when you have
put Word into MDI mode by setting the Application object's ShowWindowsInTaskbar to False. You also have to set the
WindowState of each Window object to wdWindowStateMinimize if Arrange is to do anything when passed wdTiled.

The CompareSideBySideWith method enables you to synchronize the scrolling of two windows showing two different
documents. This method is the equivalent of choosing Compare Side by Side With from the Window menu when you
have multiple documents open in Word. The CompareSideBySideWith method takes a Document parameter that is the
document you want to compare with the active document. To change the active document before you call this method,
you can use the Document object's Activate method.

After you have established side-by-side mode, you can control it further by calling the ResetSideBySideWith method,
which takes a Document parameter that is the document you want to reset side by side with against the active
document. The SyncScrollingSideBySide property tells you whether you are in side-by-side mode and lets you disable
the synchronization of scrolling temporarily. The BreakSideBySide method turns side-by-side mode off.

Listing 8.17 shows an example of first arranging two document windows and then establishing side-by-side mode.

Listing 8.17. A VSTO Customization That Uses the Arrange and
CompareSideBySideWith Methods

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 ' Create a second document
 Dim doc2 As Word.Document = Application.Documents.Add()

 Dim r1 As Word.Range = Me.Range
 Dim r2 As Word.Range = doc2.Range

 ' Fill both documents with random text
 Dim rand As New Random()
 Dim i As Integer
 For i = 0 To 1000
 Dim randomNumber As String = rand.NextDouble().ToString()
 r1.InsertAfter(randomNumber & vbCrLf)
 r2.InsertAfter(randomNumber & vbCrLf)
 Next

 ' Arrange windows

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Arrange windows
 Application.Windows.Arrange()
 MsgBox("Windows are tiled.")

 ' Activate this document and synchronize with doc2
 Me.Activate()

 Application.Windows.CompareSideBySideWith(doc2)
 MsgBox("Windows are in side by side mode.")

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with Templates
The Templates property on the Application object returns the Templates collection. The Templates collection provides
you access to the templates available in Word. As in most other collections in Word, you can use For Each to iterate over
each Template in the Templates collection. You can also use the Templates collection's Item property to get to a
particular template in the collection, passing a String for the name of the template or an Integer for the 1-based index into
the collection.

You can also get to a Template object by using the Application object's NormalTemplate property, which returns a
Template object for normal.dotthe global template that is always open and associated with a document when you have
not specified a different template. If you have a Document object and you want to determine what template is
associated with it, you can use the Document object's AttachedTemplate. When you get the value of AttachedTemplate,
it returns an Object that you can cast to a Template object. When you set the value of AttachedTemplate, you can pass
either a Template object or a String containing the filename of the template.

The Template object's OpenAsDocument method enables you to open a template as a document and edit it. The Name
property is a String property that returns the name of the template, such as "Template.dot". FullName is a String property
that returns the complete filename of the template, such as "c:\mytemplates\Template.dot". Path is a String property that
returns the folder the template is in, such as "c:\my templates".

The Template object's Type property returns a member of the WdTemplateType enumeration that designates the type of
the template. A template can be one of three types. Figure 8.3 shows the Templates and Add-ins dialog box, which
illustrates two of the three types. A template can be attached to a document; in this case, the template AWtemplate.dot
is attached to the active document. A template attached to a document has a type of wdAttachedTemplate. The Templates
collection will contain an attached template only while the document the template is attached to is opened. When the
document associated with the template is closed, the Template object attached to that document will no longer be in
the Templates collection (unless, of course, it is attached to another document that is still open).

Figure 8.3. The Templates and Add-ins dialog box, showing the attached template
and global templates.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A template can also be installed as a global template or add-in. In Figure 8.3, the template SnagIt Add-in.dot is a global
add-in template. A global template has a type of wdGlobalTemplate. Templates installed in this way are often acting as a
simple add-in, providing toolbars or additional menu commands to Word. A template of this type will always be in the
Templates collection until it is uninstalled or removed using the Templates and Add-ins dialog box.

The third type of template is not shown in this dialog box. The normal.dot template is always open in Word and is of
type wdNormalTemplate. This template is always present in the Templates collection.

The Templates collection does not have an Add method. Templates are added indirectly through actions you take with
other objects. Setting the Document's AttachedTemplate property to change the template attached to a document, for
example, adds the template to the Templates collection if it is not already there. Opening a document that has an
attached template not already in the Templates collection adds the attached template to the Templates collection.
Templates with type wdAttachedTemplate are removed from the Templates collection when all documents that are using the
attached template are closed. You can also add templates of type wdGlobalTemplate to the Templates collection using the
Add method of the AddIns collection.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with Documents
The Documents collection, available from the Application object's Documents property, contains a collection of
Document objects open in Word. It also has methods used to access a Document in the collection, create a new
document, open an existing document, close all the documents, and save all the documents.

Iterating over the Open Documents

The Documents collection can be iterated over using a For Each loop in Visual Basic 2005. Listing 8.18 shows a simple
example of iterating over the open documents in Word and printing the name of each document to the console.

Listing 8.18. Iterating over the Documents Collection Using For Each

For Each doc As Word.Document In Application.Documents
 Console.WriteLine(doc.Name)
Next

Accessing a Document in the Documents Collection

To access a Document in the Documents collection, you use the Item property, which returns a Document object. The
Item property has an Index parameter passed by reference that is of type Object. You can pass an Integer representing the
1-based index of the document in the collection you want to access.

Alternatively, you can pass a String representing the name of the document you want to access. The name you pass for
a document is the full name of the file, if it has been saved (for example, "c:\Documents and Settings\John\Desktop\Doc1.doc"). If
the document has not yet been saved, the name to pass is the temporary name that Word creates for a new document.
This temporary name is typically something like Document1, with no file extension. Listing 8.19 shows an example of
calling Item with a 1-based index and a String index.

Listing 8.19. A VSTO Customization That Uses Item to Get a Document

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 ' Add 5 documents
 Dim i As Integer
 For i = 0 To 5
 Application.Documents.Add()
 Next

 ' Iterate over the open documents using For Each
 For Each doc As Word.Document In Application.Documents
 MsgBox(doc.Name)
 Next

 ' Get a document by 1-based index.
 Dim index As Integer = 2
 Dim doc1 As Word.Document = Application.Documents.Item(index)
 MsgBox(String.Format("The document at index {0} is {1}.", _
 index, doc1.FullName))

 ' Get a document by full name
 Dim doc2 As Word.Document = Application.Documents.Item(index)
 MsgBox(String.Format(_
 "The document at string index {0} is {1}.", _
 doc1.FullName, doc2.FullName))

 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

You can also use the Count property to determine the number of open documents. You should check the Count property
before accessing a document by index.

Creating a New Document

To create a new document, you can use the Documents collection's Add method. The Add method returns the newly
created Document object. It takes four optional by reference parameters of type Object, as described in Table 8.5.

Table 8.5. Optional Parameters for the Documents Collection's Add
Method

Parameter
Name What It Does

Template Pass the short name of the template to be used (for example, "mytemplate.dot")
if the template is in the Templates collection. If the template is not in the
Templates collection, pass the full filename to the template (for example,
"c:\mytemplates\template1.dot"). If you omit this parameter, Word uses the
Normal template.

NewTemplate Pass the Boolean value TRue if the document should be opened as a template.
The default is False.

DocumentType Pass a member of the WdNewDocumentType enumeration: wdNewBlankDocument,
wdNewEmailMessage, wdNewFrameset, or wdNewWebPage. The default is
wdNewBlankDocument.

Visible Pass the Boolean value true if the document should be opened in a visible
window. The default is true.

Opening an Existing Document

To open an existing document, use the Documents collection's Open method, which returns the opened Document
object. The Open method takes one required Object parameter, to which you pass the String representing the filename to
open. The Open method also takes 15 optional by reference parameters of type Object, as described in Table 8.6.

Table 8.6. Optional Parameters for the Documents Collection's Open
Method

Parameter Name What It Does

ConfirmConversions Pass true to display the Convert File dialog box if the filename
passed to Open is not in Microsoft Word format.

ReadOnly Pass TRue to open the document as read-only. If the
document is already set to read-only on disk, passing False will
not affect the read-only status of the document. The default is
False.

AddToRecentFiles Pass true to add the filename to the list of recently used files
in the File menu. The default is TRue.

PasswordDocument Pass a String representing the password for opening the
document if the document is password-protected.

PasswordTemplate Pass a String representing the password for opening the
template if the template is password-protected.

Revert If the document you are opening with the Open method is
already open in Word, pass true to discard any unsaved
changes in the already-open document. Pass False to activate
the already-open document.

WritePasswordDocument Pass a String representing the password for saving changes to
the document if the document is password-protected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WritePasswordTemplate Pass a String representing the password for saving changes to
the template if the template is password-protected.

Format Pass a member of the WdOpenFormat enumeration specifying
the file conversion to be used when opening the document.

Encoding Pass a member of the Office.MsoEncoding enumeration specifying
the code page or character set to be used when you open the
document.

Visible Pass true to open the document in a visible window. The
default is true.

OpenConflictDocument Pass true to open the conflict file for a document that has
offline conflicts.

OpenAndRepair Pass true to try to repair a corrupted document.

DocumentDirection Pass a member of the WdDocumentDirection enumeration
specifying the horizontal flow of text in the opened document.

NoEncodingDialog Pass true to prevent Word from displaying the Encoding dialog
box if the text encoding of the document cannot be
determined.

Listing 8.20 shows the simplest possible way to call the Open method to open a document.

Listing 8.20. A VSTO Customization That Uses the Open Method to Open a
Document

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim doc As Word.Document = Application.Documents.Open("c:\test.doc")
 MsgBox(String.Format("Just opened {0}.", doc.Name))

 End Sub

End Class

Closing All Open Documents

The Close method on the Documents collection closes all the open documents in Word. It takes three optional
parameters of type Object by reference. The first optional parameter, called SaveChanges, is of type Object and can be
passed a member of the WdSaveOptions enumeration: wdDoNotSaveChanges, wdPromptToSaveChanges, or wdSaveChanges. The
second optional parameter, called OriginalFormat, is of type Object and can be passed a member of the WdOriginalFormat
enumeration. The second parameter controls Word's behavior when saving a changed document whose original format
was not Word document format. This parameter can be passed wdOriginalDocumentFormat, wdPromptUser, or wdWordDocument.
The final optional parameter is called RouteDocument and is of type Object. Passing true for this parameter routes the
document to the next recipient if a routing slip is attached.

It is also possible to close an individual document using the Document object's Close method, as discussed later in this
chapter. You have already learned how to use the Application object's Quit method as a third way to close all open
documents and quit Word. The Quit method takes the same parameters as Documents.Close and Document.Close.

Saving All Open Documents

The Save method on the Documents collection saves all the open documents in Word. It takes two optional parameters.
The first optional parameter, called NoPrompt, is of type Object and can be set to true to have Word automatically save all
open documents without prompting the user. The second optional parameter, called OriginalFormat, is of type Object and
can be passed a member of the WdOriginalFormat enumeration. The second parameter controls Word's behavior when
saving a changed document whose original format was not Word document format.

It is also possible to save an individual document using the Document object's Save or SaveAs method, as discussed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It is also possible to save an individual document using the Document object's Save or SaveAs method, as discussed
later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with a Document
The Document object represents an open document in Word. The Document object has a Name property that returns a
String representing the name of the document (for example, "doc1.doc"). If the document has not yet been saved, this
property returns the temporary name of the documenttypically, something like Document1.

Document also has a FullName property that returns a String representing the full filename of the document if the
document has been saved. Once again, if the document has not been saved, this property returns the temporary name
of the document, such as Document1. The FullName of the document can be passed to the Item property of the
Documents collection to access the document by name from that collection. The Path property returns a String
representing the path to the folder where the document is stored. A document with FullName "c:\mydocuments\doc1.doc"
returns "c:\mydocuments" for the Path property, for example. If the document has not yet been saved, the Path returns an
empty string.

The Type property is of type WdDocumentType and can be used to determine whether the document is a Word document
or a Word template file. A Word document returns the enumerated value wdTypeDocument. A template returns the value
wdTypeTemplate.

Preserving the Dirty State of a Document

Saved is a Boolean property that tells you whether a document needs to be saved. A document that has not been
changed, such as a new document that has not been typed in yet or a document that has been opened but not edited,
returns TRue for Saved. A document that has been changed returns False until the user or code saves the document and
thereby resets the Saved property to true. A document that has been changed but not saved is often referred to as a
dirty document.

You can also set the value of the Saved property so that a change made by your code does not dirty the document. You
might make a change through code to a document, for example, but you do not want to save the change made by your
code unless the user makes some additional change to the document. This is often desirable because when users open
a document and do not edit it, they are confused when they are prompted to save because code associated with the
document changed the state of the document in some way. You can get the value of the Saved property, make the
change to the document, and then set the value of Saved back, as shown in Listing 8.21.

Listing 8.21. A VSTO Customization That Preserves the Dirty State of the
Document by Using the Saved Property

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim oldSaved As Boolean = Me.Saved

 Try
 Dim props As Office.DocumentProperties = _
 Me.CustomDocumentProperties

 Dim prop As Office.DocumentProperty = props.Add(_
 "My Property", False, _
 Office.MsoDocProperties.msoPropertyTypeString, _
 "My Value")
 Finally
 Me.Saved = oldSaved
 End Try

 End Sub

End Class

Closing and Saving a Document

The Close method enables you to close a document. The Close method takes three optional Object parameters passed by
reference. The first optional parameter, called SaveChanges, is of type Object and can be passed a member of the
WdSaveOptions enumeration: wdDoNotSaveChanges, wdPromptToSaveChanges, or wdSaveChanges. The second optional parameter,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WdSaveOptions enumeration: wdDoNotSaveChanges, wdPromptToSaveChanges, or wdSaveChanges. The second optional parameter,
called OriginalFormat, is of type Object and can be passed a member of the WdOriginalFormat enumeration. The second
parameter controls Word's behavior when saving a changed document whose original format was not Word document
format. This parameter can be passed wdOriginalDocumentFormat, wdPromptUser, or wdWordDocument. The final optional
parameter is called RouteDocument and is of type Object. Passing true for this parameter routes the document to the next
recipient if a routing slip is attached.

The Save method saves the document and does the same thing that choosing Save from the File menu would do. If the
document has already been saved, it saves the document to the location it was last saved to. If the document has not
yet been saved, it brings up the Save As dialog box so that the user can select a place to save the document.

The SaveAs method takes 16 optional Object parameters passed by reference. It gives you full control over the filename
to save to, as well as the file format and several other options. Table 8.7 lists the optional parameters of type Object that
are passed by reference to the SaveAs method.

Table 8.7. Optional Parameters for the Document Object's SaveAs
Method

Parameter Name What It Does

FileName Pass a String representing the filename to use for the
document. The default is the current FullName of the
document.

FileFormat Pass a member of the WdSaveFormat enumeration to
specify the file format to save as.

LockComments Pass TRue to lock the document for comments. The
default is False.

Password Pass the password for opening the document as a String.

AddToRecentFiles Pass true to add the filename to the list of recently used
files in the File menu. The default is true.

WritePassword Pass the password for saving changes to the document
as a String.

ReadOnlyRecommended Pass true to have Word always suggest that the document
be opened as read-only. The default is False.

EmbedTrueTypeFonts Pass true to save TrueType fonts in the document. If
omitted, Word will use the value of
Document.EmbedTrueTypeFonts.

SaveNativePictureFormat Pass true to save pictures imported from the Mac in their
Windows version.

SaveFormsData Pass true to save the data entered by the user entered in
a form as a data record.

SaveAsAOCELetter Pass true to save the document as an AOCE letter if the
document has an attached mailer.

Encoding Pass a member of the Office.MsoEncoding enumeration
specifying the code page or character set to be used
when you save the document.

InsertLineBreaks If the document is saved in a text format (for example,
you passed WdSaveFormat.wdFormatText to the FileFormat
parameter), pass TRue to insert line breaks at the end of
each line of text.

AllowSubstitutions If the document is saved in a text format, pass TRue to
convert some symbols with text that looks similar.
Replace the symbol © with (c), for example.

LineEnding If the document is saved in a text format, pass a
member of the WdLineEndingType enumeration to specify
the way Word marks line and paragraph breaks.

AddBiDiMarks If you pass true, Word adds control characters to the file
to preserve the bidirectional layout of the document.

Working with Windows Associated with a Document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A particular document can have one or more windows associated with it. Even when a document is opened with False
passed to the Visible parameter of the Documents collection's Open method, it still has a window associated with it, albeit
a window whose Visible property is False. When a document has multiple windows associated with it, you can use the
Windows property to return the collection of windows associated with that document. You can determine which of the
windows will have the focus when the document is active by using the ActiveWindow property. To activate a particular
document and make its ActiveWindow the one with focus, use the Activate method.

Changing the Template Attached to a Document

A document always has a template associated with it. By default, the template is the Normal template (normal.dot),
also available from the Application object's NormalTemplate property. A document might be associated with some other
template, usually because it was created from a particular template.

If you have a Document object and you want to determine what template is associated with it, you can use the
AttachedTemplate property. When you get the value of AttachedTemplate, it returns an Object that you can cast to a
Template object. When you set the value of AttachedTemplate, you can pass either a Template object or a String
containing the filename of the template.

Important Collections Associated with Both Document and Range

The Document and Range objects share a number of properties that return collections you will frequently use. Rather
than consider these properties both in this section and in the section on Range later in this chapter, we cover both of
them here only. Table 8.8 shows these properties associated with both Range and Document that return important
collection objects.

Table 8.8. Properties Associated with Both Document and Range
That Return Important Collections

Property Name Type What It Does

Bookmarks Bookmarks Returns the Bookmarks collection. Bookmarks can be
used to mark certain areas of a document and then
return easily to those areas of the document. Bookmarks
are discussed in more detail in the section "Working with
Bookmarks" later in this chapter.

Characters Characters Returns the Characters collection, which enables you to
work with a Document or Range at the level of an
individual character. The Characters collection returns
one-character-long Range objects.

Comments Comments Returns the Comments collection, which enables you to
access comments made by reviewers in the Document or
Range.

Endnotes Endnotes Returns the Endnotes collection, which enables you to
access the endnotes associated with a Document or
Range.

Fields Fields Returns the Fields collection, which enables you to
access the fields used in a Document or Range.

Footnotes Footnotes Returns the Footnotes collection, which enables you to
access the footnotes used in a Document or Range.

Hyperlinks Hyperlinks Returns the Hyperlinks collection, which enables you to
access hyperlinks in a Document or Range.

InlineShapes InlineShapes Returns the InlineShapes collection, which enables you
to access an InlineShape (an InlineShape can include a
drawing, an ActiveX control, and many other types of
objects enumerated in the Office.MsoShapeType
enumeration) that has been inserted inline with the text
in a Document or Range.

Paragraphs Paragraphs Returns the Paragraphs collection, which enables you to
access individual Paragraph objects associated with the
Document or Range.

Revisions Revisions Returns the Revisions collection, which enables you to
access a Revision made in the Document or Range.

Sections Sections Returns the Sections collection, which enables you to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sections Sections Returns the Sections collection, which enables you to
access a Section within the Document or Range. A new
Section can be added using the Break command from
the Insert menu.

Sentences Sentences Returns the Sentences collection, which enables you to
work with a Document or Range at the level of an
individual sentence. The Sentences collection returns a
Range object for each sentence.

Tables Tables Returns the Tables collection, which enables you to
access a Table within the Document or Range.

Words Words Returns the Words collection, which enables you to work
with a Document or Range at the level of an individual
word. The Words collection returns a Range object for
each word.

Note that the Characters, Sentences, and Words collections are special collections that return Range objects when you
iterate over them. Listing 8.22 shows a VSTO customization that uses these collections, as well as the Paragraphs
collection. It creates a document with some text in it and then a second document to output information about the first
document.

Listing 8.22. A VSTO Customization That Uses the Characters, Paragraphs,
Sentences, and Words Collections

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup
 Dim r As Word.Range = Me.Range()
 r.Text = "Whether I shall turn out to be the hero " & _
 "of my own life, or whether that station will be " & _
 "held by anybody else, these pages must show. To " & _
 "begin my life with the beginning of my life, I " & _
 "record that I was born (as I have been informed " & _
 "and believe) on a Friday, at twelve o'clock at " & _
 "night. It was remarked that the clock began " & _
 "to strike, and I began to cry, simultaneously."

 Dim reportDoc As Word.Document
 reportDoc = Me.Application.Documents.Add()
 Dim report As Word.Range = reportDoc.Range
 report.InsertAfter(_
 String.Format("There are {0} paragraphs." & _
 vbCrLf, _
 Me.Paragraphs.Count))

 For Each paragraph As Word.Paragraph In Me.Paragraphs
 report.InsertAfter(String.Format("{0}\" & vbCrLf, _
 paragraph.Range.Text))
 Next

 report.InsertAfter(String.Format(_
 "There are {0} sentences." & _
 vbCrLf, Me.Sentences.Count))

 For Each sentence As Word.Range In Me.Sentences
 report.InsertAfter(String.Format(_
 "{0}" & vbCrLf, sentence.Text))
 Next

 report.InsertAfter(String.Format(_
 "There are {0} words." & vbCrLf, _
 Me.Words.Count))

 For Each word As Word.Range In Me.Words
 report.InsertAfter(String.Format(_
 "{0}" & vbCrLf, word.Text))
 Next

 report.InsertAfter(String.Format(_
 "There are {0} characters." & _
 vbCrLf, Me.Characters.Count))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 vbCrLf, Me.Characters.Count))

 For Each character As Word.Range In Me.Characters
 report.InsertAfter(String.Format(_
 "{0}" & vbCrLf, character.Text))
 Next

 End Sub

End Class

Important Collections Associated with Document Only

Some properties return collections associated only with Document, not with Range. Table 8.9 shows several of these
properties.

Table 8.9. Properties Associated with Document That Return
Important Collections

Property Name Type What It Does

CommandBars CommandBars Returns the CommandBars collection. The CommandBars
collection is used to add new toolbars, buttons, and
menus to Word.

Shapes Shapes Returns the Shapes collection. The Shapes collection
contains Shape objects (a Shape can include a drawing,
an ActiveX control, and many other types of objects
enumerated in the Office.MsoShapeType enumeration) that
are not inline with text but are free floating in the
document.

StoryRanges StoryRanges Returns the StoryRanges collection. The StoryRanges
collection provides a way to access ranges of text that
are not part of the main body of the document, including
headers, footers, footnotes, and so on. The StoryRanges
collection's Item property is passed a member of the
enumeration WdStoryType.

Versions Versions Returns information about the different versions of the
document if the document is being checked in and out of
a workspace.

Working with Document Properties

Document has a BuiltinDocumentProperties property that returns an Object that can be cast using CType to an
Office.DocumentProperties collection representing the built-in document properties associated with the document.
These are the properties that you see when you choose Properties from the File menu and click the Summary tab.
These include properties such as Title, Subject, Author, and Company. Table 8.10 shows the names of all the document
properties associated with a document.

Table 8.10. The Names of the Built-In Document Properties in Word
Application Name Last print date Number of pages

Author Last save time Number of paragraphs

Category Manager Number of slides

Comments Number of bytes Number of words

Company Number of characters Revision number

Creation date Number of characters (with spaces) Security

Format Number of hidden slides Subject

Hyperlink base Number of lines Template

Keywords Number of multimedia clips Title

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Keywords Number of multimedia clips Title

Last author Number of notes Total editing time

Document also has a CustomDocumentProperties property that returns an Object that can be cast to an
Office.DocumentProperties collection representing any custom document properties associated with the document.
These are the custom properties that you see when you choose Properties from the File menu and click the Custom tab.
Custom properties can be created by your code and used to store name-and-value pairs in the document.

The DocumentProperties collection and DocumentProperty object are located in the Microsoft Office 11.0 Object Library
(office.dll), which contains objects shared by all the Office applications. These objects are in the Microsoft.Office.Core
namespace and typically are brought into Office projects in an Office namespace as shown here:

Imports Office = Microsoft.Office.Core

Listing 8.23 shows an example of iterating over the DocumentProperties collection returned by the
CustomDocumentProperties and BuiltInDocumentProperties properties. We get the value of the built-in properties in a
try/Catch block because some built-in properties throw exceptions when their values are accessed.

Listing 8.23. A VSTO Customization That Iterates over DocumentProperties
Collections

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim cProps As Office.DocumentProperties = _
 Me.CustomDocumentProperties

 Dim bProps As Office.DocumentProperties = _
 Me.BuiltInDocumentProperties

 Dim doc As Word.Document = Me.Application.Documents.Add()
 Dim range As Word.Range = doc.Range

 range.InsertAfter(_
 "Built-in Document Properties" & vbCrLf & vbCrLf)

 For Each bProp As Office.DocumentProperty In bProps
 Dim name As String = bProp.Name
 Dim value As Object = Nothing
 Try
 value = bProp.Value
 Catch ex As Exception
 value = ex.Message
 End Try

 range.InsertAfter(String.Format("{0} - {1}" & _
 vbCrLf, name, value))

 Next

 range.InsertAfter(_
 "Custom Document Properties" & vbCrLf & vbCrLf)

 For Each cProp As Office.DocumentProperty In cProps
 range.InsertAfter(String.Format("{0} - {1}" & _
 vbCrLf, cProp.Name, cProp.Value))
 Next

 End Sub

End Class

To access a DocumentProperty in a DocumentProperties collection, you use the indexing syntax (docProperties(Object)),
which returns a DocumentProperty object. The indexer takes an Index parameter of type Object. You can pass an Integer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

which returns a DocumentProperty object. The indexer takes an Index parameter of type Object. You can pass an Integer
representing the 1-based index of the DocumentProperty in the collection you want to access. Alternatively, you can
pass a String representing the name of the DocumentProperty you want to access. As with other collections, the Count
property returns how many DocumentProperty objects are in the collection.

A DocumentProperty object has a Name property that returns a String containing the name of the property. It also has a
Value property of type Object that returns the value of the property. You can check what the type is of Value by using the
Type property that returns a member of the Office.MsoDocProperties enumeration: msoPropertyTypeBoolean, msoPropertyTypeDate,
msoPropertyTypeFloat, msoPropertyTypeNumber, or msoPropertyTypeString.

Listing 8.24 shows how a DocumentProperty is accessed.

Listing 8.24. A VSTO Customization That Accesses a DocumentProperty Using an
Indexer

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim bProps As Office.DocumentProperties = _
 Me.BuiltInDocumentProperties

 Dim author As Office.DocumentProperty = bProps("Author")
 MessageBox.Show(String.Format(_
 "Property {0} is set to {1}.", _
 author.Name, author.Value))

 Dim third As Office.DocumentProperty = bProps(3)
 MessageBox.Show(String.Format(_
 "Property {0} is set to {1}.", _
 third.Name, third.Value))

 End Sub

End Class

You can add a custom DocumentProperty to a DocumentProperties collection by using the Add method. The Add method
takes the parameters shown in Table 8.11.

Table 8.11. The DocumentProperties Collection's Add Method
Parameters

Parameter
Name Type What It Does

Name String Sets the name of the new property.

LinkToContent Boolean Sets whether the property is linked to the contents of
the container document.

Type optional Object Sets the data type of the property. Can be one of the
following Office.MsoDocProperties enumerated values:
msoPropertyTypeBoolean, msoPropertyTypeDate,
msoPropertyTypeFloat, msoPropertyTypeNumber, or
msoPropertyTypeString.

Value optional Object Sets the value of the property if LinkToContent is False.

LinkSource optional Object Sets the source of the linked property if LinkToContent is
TRue.

Listing 8.25 shows an example of adding a custom DocumentProperty of type msoPropertyTypeString. Note that Word will
let you set the value to a long String, but it will truncate that value to 255 characters. Fortunately, VSTO enables
developers to store larger amounts of data in a document through a feature called cached data. For more information
on the cached-data feature of VSTO, see Chapter 18, "Server Data Scenarios."

Listing 8.25. A VSTO Customization That Adds a Custom DocumentProperty

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 8.25. A VSTO Customization That Adds a Custom DocumentProperty

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim props As Office.DocumentProperties
 props = Me.CustomDocumentProperties
 Dim prop As Office.DocumentProperty
 Prop = props.Add("My Property", _
 False, Office.MsoDocProperties.msoPropertyTypeString, _
 "My Value")

 MsgBox(String.Format("Property {0} is set to {1}.", _
 prop.Name, prop.Value))

 End Sub

End Class

Checking Spelling and Grammar in Documents and Ranges

You can control the grammar checking in a Document or Range by using the following methods and properties.
GrammarChecked is a Boolean property that returns TRue if the grammar in the document or range has been checked. If
the grammar has not yet been checked, you can force a grammar check by calling the CheckGrammar method. You can
control whether Word shows the grammatical errors in the document by setting the ShowGrammaticalErrors property to
TRue or False. The GrammaticalErrors property returns a ProofreadingErrors collection, which is a collection of Range
objects containing the ranges of grammatically incorrect text.

A similar set of methods and properties exists for checking spelling. SpellingChecked is a Boolean property that returns
true if the spelling in the document or range has been checked. If the spelling has not yet been checked, you can force a
spelling check by calling the CheckSpelling method. The CheckSpelling takes 12 optional Object parameters passed by
reference that you can omit unless you want to specify additional custom dictionaries to check the spelling against.

You can control whether Word shows the spelling errors in the document by setting the ShowSpellingErrors property to
true or False. The SpellingErrors property returns a ProofreadingErrors collection, which is a collection of Range objects
containing the ranges of incorrectly spelled text.

Listing 8.26 shows an example that uses many of these properties and methods.

Listing 8.26. A VSTO Customization That Checks Grammar and Spelling

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Me.Range.Text = "This are a test of the emegency " & _
 "broadcastin system."

 If Not Me.GrammarChecked Then
 Me.CheckGrammar()
 End If

 If Not Me.SpellingChecked Then
 Me.CheckSpelling()
 End If

 Me.ShowGrammaticalErrors = True
 Me.ShowSpellingErrors = True

 For Each range1 As Word.Range In Me.GrammaticalErrors
 MsgBox(String.Format(_
 "Grammatical error: {0}", range1.Text))
 Next

 For Each range2 As Word.Range In Me.SpellingErrors
 MsgBox(String.Format(_
 "Spelling error: {0}", range2.Text))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "Spelling error: {0}", range2.Text))
 Next

 End Sub

End Class

Printing a Document

The Document object has a PageSetup property that returns a PageSetup object that has several properties for
configuring the printing of a document. The PrintOut method can be used to print a document. It has 18 optional Object
parameters passed by reference. Table 8.12 lists some of the most commonly used optional parameters for PrintOut.

Table 8.12. Some of the Optional Parameters for PrintOut
Parameter
Name What It Does

Background Pass TRue to have PrintOut return immediately and let the code continue
while Word prints in the background.

Range Pass a member of the WdPrintOutRange enumeration: wdPrintAllDocument,
wdPrintCurrentPage, wdPrintFromTo, wdPrintRangeOfPages, or wdPrintSelection.

OutputFileName Pass the full filename of the file you want to print to when PrintToFile is
passed TRue.

From Pass the starting page number to print from when Range is set to
wdPrintFromTo.

To Pass the ending page number to print to when Range is set to wdPrintFromTo.

Copies Pass the number of copies to print.

Pages When Range is set to wdPrintRangeOfPages, pass a String representing the page
numbers and page ranges to print (for example, "1-5, 15").

PageType Pass a member of the WdPrintOutPages enumeration: wdPrintAllPages,
wdPrintEvenPagesOnly, or wdPrintOddPagesOnly.

PrintToFile Pass true to print to a file. Used in conjunction with the OutputFileName
parameter.

Collate Pass true to collate.

Listing 8.27 shows a simple example that sets some page-margin options using the PageSetup property and then calls
PrintOut specifying that two copies be printed.

Listing 8.27. A VSTO Customization That Uses the PrintOut Method

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Me.Range.Text = "This is a test of printing."

 ' Margins are specified in points.
 PageSetup.LeftMargin = 72.0F
 PageSetup.RightMargin = 72.0F
 Me.PrintOut(Copies:=2)

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with Document Protection

Document protection enables you to protect a Word document so the document can be edited only in certain ways by
certain people. Document protection in Word works on the principle of exclusions; you first protect the whole document
as read-only and then mark certain areas of the document as exclusions. This allows your users to edit only the parts of
the document that you specify as exclusions.

Figure 8.4 shows the Protect Document task pane that is shown when you choose Protect Document from the Tools
menu. The Allow Only This Type of Editing in the Document check box has been checked, and the drop-down list has
been set to not allow any changes. You can optionally allow users to make comments in the document, fill out forms, or
make tracked changes to the document.

Figure 8.4. The Protect Document task pane.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Given a basic protection level for the document, you can then add some exceptions by selecting the parts of the
document that should be editable and checking either a Groups or Individuals check box to allow that group or
individual to edit the selection. Word always provides an Everyone group, but you can add groups and individuals by
clicking the More Users link in the task pane. Clicking this link brings up a dialog box that lets you enter a Windows
username (DOMAIN\username), Windows user group (DOMAIN\usergroup), or e-mail address.

After you have selected the parts of the document you want to be exceptions and checked the check box next to the
groups or individuals you want to be able to edit those parts of the document, click the Yes, Start Enforcing Protection
button to protect the document to bring up the Start Enforcing Protection dialog box, shown in Figure 8.5. Word
prompts you for an optional password if you want to require a password to remove the document protection. Word can
also use user authentication to protect and encrypt the document to protect it further.

Figure 8.5. The Start Enforcing Protection dialog box.

With protection enforced, Word highlights the area of the document that you are allowed to edit based on the exception
set for the document. Figure 8.6 shows a document that has been protected but has the first sentence as an editing
exception for the Everyone group. Word highlights the regions that you are allowed to edit in the document and
provides a task pane for navigating between regions you are allowed to edit.

Figure 8.6. A document with protection enforced but with an exception to allow
editing of the first sentence.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document-protection settings apply to code that is talking to the Word object model, too. If the user is not allowed to
edit any sentence but the first sentence, code is also restricted to being able to change only the first sentence. If you
run code that tries to change protected parts of the document, an exception is raised.

Word provides several properties and methods that enable you to protect the document programmatically and examine
protection settings, as listed in Table 8.13.

Table 8.13. Properties and Methods Used with Document Protection
Name Type What It Does

ProtectionType WdProtectionType Returns the protection type for the document:
wdAllowOnlyComments, wdAllowOnlyFormFields, wdAllowOnlyReading,
wdAllowOnlyRevisions, or wdNoProtection.

Permission Permission The Permission object lets you work with IRM
(Information Rights Management) permissions. This type
of protection via IRM permissions is more secure than
simple document protection because it involves more
validation of identity and encryption of the document.

Protect(...) The Protect method lets you apply protection
programmatically.

Unprotect(...) The Unprotect method lets you remove protection
programmatically.

Range.Editors Editors Given a Range that is an exclusion, Range.Editors will
return an Editors collection, which lets you inspect the
groups and individuals allowed to edit that Range.

Working with Password Protection

In addition to a password that may be associated with document protection, a Word document can have a password
that must be entered to open the document. It can also have a second password associated with it that must be
entered to modify or write to the document. These passwords can be set by choosing the Tools menu in the Save As
dialog box and picking Security Options. Figure 8.7 shows the Security dialog box.

Figure 8.7. The Security dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8.7. The Security dialog box.

The Document object's HasPassword property returns TRue if the document has been protected with a password that
must be entered to open the document. The Password property is a write-only property that can be set to a String value
representing the password for the document. Word also has the notion of a password to allow the user to modify or
write to the document. If the WriteReserved property returns true, the document has been protected with a password
that must be entered to modify or write to the document. The WritePassword property is a write-only property that can
be set to a String value representing the write and modify password for the document.

Undo and Redo

Unlike Excel, Word adds the changes you make with your code to the undo stack. You can undo and redo actions your
code or a user has taken using the Document object's Undo and Redo methods. Both methods take by reference an
optional object parameter that you can set to the number of undo steps or redo steps you want to take. The UndoClear
method clears the undo stack, making it so the user can neither undo nor redo any recent actions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Range Object
The Range object in the Word object model is the primary way to interact with the content of the document. A Range
represents a range of contiguous text and provides a way to interact with that range of text, along with any additional
elements that are contained in that range of text, such as tables, shapes, lists, and bookmarks. You can get and use as
many Range objects as you need in your code.

Working with a Range does not change the selection in the document unless you use Range's Select method, which will
make the Range you have defined the active selection. If you are interested in working with the active selection, you
can use the Selection object, which shares many properties and methods with the Range object.

A Range has a start and end that are specified in units of characters in the document and include characters that do not
print, such as the carriage returns between paragraphs. A Range whose start and end are the same is sometimes called
a collapsed Range and can be thought of as the equivalent of an insertion point at a particular location in the document.

Word also has the concept of a story, which is the part of the document that the Range comes from. Most commonly,
you work with the main text story, which is the main body of the document. You might also want to get to other text
elements in the document, such as headers, footers, comments, footnotes, and endnotes. These other text elements
are different stories from the main text story.

Getting a Range

You have several ways to get a Range. We have already considered several document-level collections, such as
Sentences, Words, and Characters, that return Range objects. The most common way to get a Range is to use the
Range method on the Document object. The Range method takes two optional Object parameters passed by reference: a
Start and an End position. You can pass an Integer value to Start and End representing the start and end position of the
Range you want to get within the document. If you omit the Start parameter, the parameter defaults to 0, which is the
first position in the document. If you omit the End parameter, it defaults to the last position in the document.

Listing 8.28 shows an example of getting a Range object using the Document object's Range method. The Range
retrieved has a start index of 0 and an end index of 9. As Figure 8.8 shows, the retrieved Range includes nonprinting
paragraph marks.

Listing 8.28. A VSTO Customization That Works with a Range Object

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim r As Word.Range = Me.Range
 r.Text = "This" & vbCrLf & "is" & vbCrLf & _
 "a" & vbCrLf & "test."

 Dim r2 As Word.Range = Me.Range(0, 9)
 r2.Select()

 Dim result As String = r2.Text
 MsgBox(result.Length.ToString())
 MsgBox(r2.Text)

 End Sub

End Class

Figure 8.8. The result of running Listing 8.28: a range of length 9, including
nonprinting paragraph characters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

nonprinting paragraph characters.

Another way to get a Range is to use the Document object's StoryRanges collection. The StoryRanges collection enables
you to get a Range that is not part of the main document, such as a Range within headers, footers, or endnotes. This
collection has an index operator that takes a member of the WdStoryType enumeration that specifies what StoryRange
you want to access. Listing 8.29 shows some code that iterates over the StoryRanges in the document and displays the
type of each StoryRange.

Listing 8.29. A VSTO Customization That Iterates over the StoryRanges in the
Document

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim mainTextStory As Word.Range = Me.StoryRanges(_
 Word.WdStoryType.wdMainTextStory)

 For Each range As Word.Range In Me.StoryRanges
 MsgBox(String.Format("Story range {0} has length {1}.", _
 range.StoryType.ToString(), range.StoryLength))
 Next

 End Sub

End Class

Another way to a get a Range is to get it from the current selection. The Application object's Selection property returns
the active selection in the active document as a Selection object. The Selection object has a Range property that
returns a Range object that you can work with without affecting the selection (unless you change the Range in some
way that forces the selection to reset, such as by replacing the text in the selection). Before getting a Range from a
Selection object, verify that the Selection contains a valid Range by checking the Selection object's Type property. The
user could have selected a shape in the document, for example, in which case the Range would not be applicable when
retrieved from Selection.Range. Listing 8.30 shows an example that checks the Selection.Type property before using
Selection.Range. It also checks whether Selection is Nothing, which is a bit of overkill for this example. This case would
arise only if no documents are open.

Listing 8.30. A VSTO Customization That Gets a Range Object from a Selection
Object

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup
 Dim s As Word.Selection = Me.Application.Selection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim s As Word.Selection = Me.Application.Selection
 If s IsNot Nothing Then
 If s.Type = Word.WdSelectionType.wdSelectionNormal Then
 Dim r As Word.Range = s.Range
 MsgBox(r.Text)
 End If
 End If

 End Sub

End Class

Identifying a Range

A Range has several properties to help identify it. The Start and End property return the start and end character index
of the Range. The Document property returns the document object the Range is associated with. The StoryType
property returns a member of the WdStoryType enumeration identifying the StoryRange with which the Range is
associated.

The Information property takes a parameter of type WdInformation and returns information as an Object about the Range
depending on the enumerated value that is passed to the method. Listing 8.31 shows an example of getting the
information associated with a range. If you call the Information property on a Range with an enumerated type that is
not applicable, Information will return 1 as a return value.

Listing 8.31. A VSTO Customization That Gets Information About a Range

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim r As Word.Range = Me.Range
 r.Text = "This" & vbCrLf & "is" & vbCrLf & "a" & _
 vbCrLf & "test."

 Dim r2 As Word.Range = Me.Range(0, 9)
 r2.InsertAfter(vbCrLf)
 Dim i As Integer
 For i = 1 To 27
 GetInfo(r2, i)
 Next
 End Sub

 Private Sub GetInfo(ByVal r As Word.Range, _
 ByVal info As Word.WdInformation)

 Dim result As String = String.Format(_
 "Range.Information({0}) returns {1}." & vbCrLf, _
 info.ToString(), r.Information(info))
 r.InsertAfter(result)

 End Sub

End Class

Changing a Range

Given a Range object, a number of properties and methods enable you to change what a Range refers to. A simple way
to modify a Range object is to set the values of the Start and End properties. In addition, you can use several methods
to change the Range in other ways.

The Expand method expands a Range so that it encompasses the units of the enumeration WdUnits: wdCharacter, wdWord,
wdSentence, wdParagraph, wdSection, wdStory, wdCell, wdColumn, wdRow, or wdTable. The Expand method takes a range that only
partially covers one of these units and expands it so that the range includes the unit specified.

Consider Figure 8.9, for example. For this figure and subsequent figures, we have turned on Word's formatting marks

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Consider Figure 8.9, for example. For this figure and subsequent figures, we have turned on Word's formatting marks
(Tools > Options > View > Formatting Marks > All) so that you can see clearly the spaces and any paragraph marks in
the text. The original Range is shown in white text on a black background. The expanded Range after calling Expand
with wdWord is shown by the larger border. The original Range contained only e quithe last part of the word The and the
first part of the word quick. Calling Expand with wdWord expands the range so that it covers complete words. The
expanded Range after calling Expand contains The quick as well as the space after the word quick.

Figure 8.9. Result of calling Expand(WdUnits.wdWord) on a Range.

Figure 8.10 shows another example where only three characters of a word are selected. Calling Expand with wdWord
expands the Range so that it covers the complete word quick as well as the space after the word quick.

Figure 8.10. Result of calling Expand(WdUnits.wdWord) on a Range.

Note that calling Expand repeatedly on a Range passing wdWord does not expand the Range to cover additional words.
After a Range no longer contains any partial words, calling Expand with wdWord has no effect. It also follows that a
Range that does not start or end with any partial words to start with will not be changed when you call Expand and pass
wdWord. This applies to the other members of the WdUnits enumeration. When a Range does not contain any partial
sentences, for example, calling Expand with wdSentence has no effect.

Figure 8.11 shows an example of calling Expand passing wdSentence. The original Range contains parts of two sentences.
The result of calling Expand is that two complete sentences are made part of the Range.

Figure 8.11. Result of calling Expand(WdUnits.wdSentence) on a Range.

Figure 8.12 shows another example of calling Expand passing wdSentence. The original Range contains just dog.
Expanding the Range adds the rest of the sentence plus the spaces after the sentence.

Figure 8.12. Result of calling Expand(WdUnits.wdSentence) on a Range.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8.12. Result of calling Expand(WdUnits.wdSentence) on a Range.

The Expand method can change both the start and the end of a Range. The EndOf method works in a similar way to the
Expand method but changes only the end of a Range. The EndOf method takes by reference two optional parameters of
type Object: Unit and Extend. The Unit parameter can be passed a member of the WdUnits enumeration. The Extend
parameter can be passed a member of the WdMovementType enumeration: wdMove or wdExtend. If you pass wdExtend, the
EndOf method acts like the Expand method would if it were not allowed to change the start of a Range. Figure 8.13
shows an example of calling EndOf passing wdWord and wdExtend. It expands the Range to cover the partial word at the
end of the Range but does not expand to cover the partial word at the beginning of the Range.

Figure 8.13. Result of calling EndOf(WdUnits.wdWord, WdMovementType.wdExtend) on a
Range.

If you pass wdMove for the second parameter (which is the default if you omit the parameter), EndOf returns a Range
whose start and end is equaleffectively returning you an insertion point at the end of the expansion. Figure 8.14 shows
a Range that partially covers two words initially. Calling EndOf on this Range and passing wdMove for the second
parameter yields a Range whose start and end is 10at the end of the second word.

Figure 8.14. Result of calling EndOf(WdUnits.wdWord, WdMovementType.wdMove) on a
Range.

The StartOf method works like the EndOf method but changes only the start of the range. The StartOf method takes by
reference two optional parameters of type Object: Unit and Extend. The Unit parameter can be passed a member of the
WdUnits enumeration. The Extend parameter can be passed a member of the WdMovementType enumeration: wdMove or
wdExtend. If you pass wdExtend, the StartOf method acts like the Expand method would if it were not allowed to change
the end of a range. Figure 8.15 shows an example of calling StartOf passing wdWord and wdExtend. It expands the Range
to cover the partial word at the beginning of the Range but does not expand to cover the partial word at the end of the
Range.

Figure 8.15. Result of calling StartOf(WdUnits.wdWord, WdMovementType.wdExtend) on a
Range.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As with EndOf, the StartOf method when passed wdMove for the second parameter returns a Range whose start and end
is equaleffectively returning you an insertion point at the beginning of the expansion. Figure 8.16 shows a Range
containing a word at the end of a sentence. Calling StartOf and passing wdSentence and wdMove yields a Range where start
and end are 0effectively an insertion point at the beginning of the sentence.

Figure 8.16. Result of calling StartOf(WdUnits.wdSentence, WdMovementType.wdMove) on a
Range.

Moving a Range

The Move method can be called repeatedly to move a Range by WdUnits through the document. It does not expand the
Range but instead moves the Range, creating a Range whose start and end are equal. The Move method takes by
reference optional Unit and Count parameters of type Object. For Unit, you pass the member of the WdUnits enumeration
that you want to move by. The default value of Unit is wdCharacter. For Count, you pass a positive or negative Integer
specifying how many units you want to move forward or backward. The Move method returns the number of units by
which the Range was moved or returns 0 if the Range was not moved.

Figure 8.17 shows an example of calling Move passing wdWord and 1. Figure 8.18 shows an example of calling Move
passing wdWord and 1. In the first case, the Range moves to the start of the next word. In the latter case, the Range
moves to the beginning of the partially selected word.

Figure 8.17. Result of calling Move(WdUnits.wdWord, 1) on a Range containing h from
The.

Figure 8.18. Result of calling Move(WdUnits.wdWord, -1) on a Range containing h from
The.

The Next method works like Move when passed a positive count. Instead of modifying the Range directly, it returns a
new Range that would be the result after calling Move. The Previous method works like Move when passed a negative
count and also returns a new Range instead of modifying the existing Range. In the case where the Move method would
have returned 0 because the Move was not possible, Next and Previous returns Nothing.

The MoveUntil method takes a required Object by reference parameter to which you can pass a String containing the
characters that you want to find. It takes a second optional Object parameter by reference to which you can pass the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

characters that you want to find. It takes a second optional Object parameter by reference to which you can pass the
number of characters after the Range to search. If MoveUntil cannot find a specified character within the number of
characters you pass, it will not change the Range. You can pass a negative number of characters to search the
characters before the range. You can also pass to the second optional Object parameter the constant WdConstants.wdForward
or WdConstants.wdBackward to specify to search forward or backward without specifying a limit on the number of characters
to search.

Figure 8.19 shows the result of calling MoveUntil passing "abc" as the String and WdConstants.wdForward for the second
parameter. It searches forward until it finds character a, b, or c. The first of those it finds is the c in the word quick. It
sets the start and end of the Range to 7.

Figure 8.19. Result of calling MoveUntil("abc", WdConstants.wdForward) on a Range
containing h from The.

Range has a MoveStart and MoveUntilStart method that work like Move and MoveUntil but affect only the start position
of the Range unless the start is moved forward to a position beyond the end, in which case Start and End are set to the
same value. Similarly, Range has a MoveEnd and MoveUntilEnd method that work like Move and MoveUntil but affect
only the end position of the Range.

The SetRange method takes a Start and End parameter as an Integer to set the start and end position of the Range in
characters. Using the SetRange is the equivalent of setting the Start and End properties on Range.

Ranges and Stories

Given a Range, you can expand the range to include the full story associated with the Range using the WholeStory
method. Some stories are split into multiple linked text elements in a document (text-box stories can be linked, and
header and footer stories can be linked), so calling WholeStory cannot give you each of the multiple linked text
elements. For these cases, you can use the NextStoryRange property to get the next linked story of the same type.

Navigating a Range

Earlier in this chapter you read about the Browser object, which lets you access the same functionality that is available
in the browser control shown in Figure 8.1. The Browser object enables you to go easily to the next element of a
particular type in a document, such as the next bookmark, comment, or field. The Browser object affects the selection
in the document, however, which is often undesirable.

To go to the next element of a particular type without affecting the selection, you can use the GoTo method of the
Range object. GoTo does not affect the Range object it is called on but instead returns a new Range object that
represents the resulting Range after calling GoTo. The GoTo method takes by reference four optional Object parameters.
The first parameter, the What parameter, can be passed a member of the WdGoToItem enumeration:

wdGoToBookmark

wdGoToComment

wdGoToEndnote

wdGoToEquation

wdGoToField

wdGoToFootnote

wdGoToGrammaticalError

wdGoToGraphic

wdGoToHeading

wdGoToLine

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

wdGoToObject

wdGoToPage

wdGoToPercent

wdGoToProofreadingError

wdGoToRevision

wdGoToSection

wdGoToTable

The second parameter, the Which parameter, can be passed a member of the WdGoToDirection enumeration: wdGoToAbsolute,
wdGoToFirst, wdGoToLast, wdGoToNext, wdGoToPrevious, or wdGoToRelative. The wdGoToAbsolute value can be used to go to the nth
item of the type specified by the What parameter.

The third parameter, the Count parameter, is passed the number of the item to get and is affected by the second
parameter. If What is passed wdGoToLine and Count is passed 1, for example, depending on the Which parameter, GoTo
could go to the next line after the Range (wdGoToNext), the first line in the document (wdGoToAbsolute), or the line previous
to the current Range (wdGoToPrevious).

The fourth parameter, the Name parameter, can be passed a name if the What argument specifies an element identifiable
by name: wdGoToBookmark, wdGoToComment, or wdGoToField.

GoToNext and GoToPrevious are simpler versions of the GoTo method that take only the What parameter and go to the
next or previous instance of the type of object specified by the What parameter.

Listing 8.32 shows an example of using the GoTo method on a Range to navigate the pages in a document and display
the first sentence on each page. We also use Information to get the page count and Expand to expand the collapsed
Range returned by GoTo to include the first sentence on the page.

Listing 8.32. A VSTO Customization That Uses the GoTo Method

Public Class This Document

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 ' Generate some random text in the document.
 Dim r As Word.Range = Range()
 Dim builder As New System.Text.StringBuilder()
 Dim rand As New Random()

 Dim i As Integer
 For i = 0 To 200
 builder.AppendLine(rand.NextDouble().ToString())
 Next
 r.Text = builder.ToString()

 Dim maxPage As Integer = _
 r.Information(Word.WdInformation.wdNumberOfPagesInDocument)

 ' GoTo to navigate the pages
 Dim page As Integer
 For page = 1 To maxPage
 Dim r2 As Word.Range = r.GoTo(Word.WdGoToItem.wdGoToPage, _
 Word.WdGoToDirection.wdGoToAbsolute, page)

 r2.Expand(Word.WdUnits.wdSentence)
 MsgBox(String.Format(_
 "First sentence is {0} starting at position {1}.", _
 r2.Text, r2.Start))
 Next

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Collapsing a Range

We have already mentioned several times the concept of a collapsed Rangea Range whose start and end is equal. The
Collapse method takes a Range and collapses it. It takes by reference an optional parameter Direction of type Object. You
can pass a member of the WdCollapseDirection enumeration: wdCollapseEnd, which makes Start equal to End, or wdCollapseStart,
which makes End equal to Start. If you omit the Direction parameter, the default is wdCollapseStart.

Getting Text from a Range

The Text property returns a String containing the text in the Range. The behavior of the Text property can be changed
by using the TextRetrievalMode property, which returns a TextRetrievalMode object. Setting the TextRetrievalMode
object's IncludeFieldCodes property to TRue makes it so the Text property returns field codes. The default is the setting
of the Field Codes check box in the View tab of the Options dialog box.

Setting the TextRetrievalMode object's IncludeHiddenText property to true makes it so the Text property returns hidden
text in the document. The default is the setting of the Hidden Text check box in the View tab of the Options dialog box.

The TextRetrievalMode object's ViewType property can also affect what the Text property returns. The ViewType
property can be set to a member of the WdViewType enumeration: wdMasterView, wdNormalView, wdOutlineView, wdPrintPreview,
wdPrintView, wdReadingView, or wdWebView. When set to wdOutlineView, for example, Text returns only the text visible in outline
view.

Listing 8.33 shows the creation of some text in a document that includes a field and some hidden text. Then the Text
property is used in several ways, showing the effect of changing TextRetrievalMode settings.

Listing 8.33. A VSTO Customization That Modifies TextRetrievalMode Settings

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 ' Generate some random text in the document.
 Dim r As Word.Range = Range()
 r.Text = "Hello "

 ' Add a field
 r.Collapse(Word.WdCollapseDirection.wdCollapseEnd)
 r.Fields.Add(r, Word.WdFieldType.wdFieldDate)

 ' Hide some text
 r.SetRange(1, 2)
 r.Font.Hidden = 1

 r = Range()
 r.TextRetrievalMode.IncludeFieldCodes = False
 r.TextRetrievalMode.IncludeHiddenText = False
 MsgBox(r.Text)

 r.TextRetrievalMode.IncludeFieldCodes = True
 MsgBox(r.Text)

 r.TextRetrievalMode.IncludeHiddenText = True
 MsgBox(r.Text)

 End Sub

End Class

Setting the Text in a Range

Setting the Text property to a string value is the most basic way to set text in a Range. Setting the Text property
replaces the text in the Range with the string value and changes the end of the Range so the start and end cover the
length of the new string. If the Range is collapsed, setting the Text property does not replace any existing text, but it
inserts the new string at the location of the Range and changes the end of the Range so that the start and end cover
the length of the new string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the length of the new string.

Setting the Text property only changes the characters of the Range, not the formatting. If you have one Range
formatted a particular way and a second Range you want to copy both the text of the first Range and its formatting to,
you can use the FormattedText property, which takes a Range. Listing 8.34 shows an example of using the
FormattedText property to take one Range that is formatted and to set the text and formatting of a second Range to
the first.

Listing 8.34. A VSTO Customization That Uses FormattedText to Set Text and
Formatting

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim r As Word.Range = Range()
 r.Text = "Hello Hello Happy"
 r = Range(0, 5)
 r.Bold = 1
 Dim r2 As Word.Range = Range(12, 17)
 r2.FormattedText = r

 End Sub

End Class

Each time you set the Text property, it replaces the existing Range and changes the end of the Range so that the start
and end cover the new string. The InsertAfter method lets you add text immediately after the Range without replacing
the existing Range. The InsertAfter method takes a String for the text you want to insert after the Range. InsertAfter
changes the end of the Range so that the start and end cover the old Range and the string you have added after the
Range.

The InsertBefore method lets you add text immediately before the Range without replacing the existing Range. The
InsertBefore method takes a String for the text you want to insert before the Range. InsertBefore changes the end of the
Range so that the start and end cover the old Range and the string you have added before the Range.

Inserting Nonprinting Characters and Breaks

You have several ways to insert nonprinting characters, such as tabs and paragraph marks. A simple way is to use
constants provided for you by Visual Basic 2005. In a string, you can specify a tab with the constant vbTab. You can
specify a paragraph mark (a new line) by using vbCrLf. Listing 8.35 shows some examples of using these constants to
insert nonprinting characters. Figure 8.20 shows the result of running Listing 8.35 with nonprinting characters showing.

Listing 8.35. A VSTO Customization That Uses Visual Basic Constants and the Text
Property

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim r As Word.Range = Range()
 r.Text = "Item" & vbTab & "Name" & vbCrLf
 r.InsertAfter("111" & vbTab & "1/4"" pipe" & vbCrLf)
 r.InsertAfter("112" & vbTab & "1/2"" pipe" & vbCrLf)
 r.InsertAfter(vbCrLf & vbCrLf)
 r.InsertAfter("File path: c:\\Temp\\Doc1.doc")

 End Sub

End Class

Figure 8.20. Result of running Listing 8.35.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8.20. Result of running Listing 8.35.

It is also possible to insert paragraphs using the InsertParagraph method. The InsertParagraph method inserts a new
paragraph at the start position of the Range, replacing the current Range. It changes the Range so that it covers the
start position and the newly inserted paragraph mark. InsertParagraph is the equivalent of setting the Text property to
vbCrLf. InsertParagraphBefore inserts a new paragraph at the start position of the Range and changes the end of the
Range to expand it to cover the old Range and the newly inserted paragraph mark. InsertParagraphBefore is the
equivalent of calling the InsertBefore method and passing vbCrLf. InsertParagraphAfter is the equivalent of calling the
InsertAfter method and passing vbCrLf.

Figure 8.21 shows some additional kinds of breaks that a user can insert into a document using the Break command
from the Insert menu. These types of breaks can be inserted programmatically using Range's InsertBreak method. The
InsertBreak method takes by reference an optional parameter of type Object to which you can pass a member of the
WdBreakType enumeration. The members of the WdBreakType enumeration correspond to the breaks in Figure 8.21:
wdPageBreak, wdColumnBreak, wdTextWrappingBreak, wdSectionBreakNextPage, wdSectionBreakContinuous, wdSectionBreakEvenPage, and
wdSectionBreakOddPage. InsertBreak works like setting the Text property would; the current Range is replaced with the
break, or if the Range is collapsed, the break is inserted at the position of the Range.

Figure 8.21. The Break dialog box.

Working with Formatting

The Font property returns a Font object that controls font settings for the Range. Many of the properties associated with
Font, such as the Bold property, that you would expect to be of type Boolean are instead of type Integer. This is because a
particular Range could be all bold, partially bold, or not bold, for example. If the Range is partially bold, it returns
WdConstants.wdUndefined. If the Range is not bold, it returns a 0. If the Range is all bold, it returns a 1. This is another
example where the COM implementation of the Word object model peeks through, because 1 corresponds to a true

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

example where the COM implementation of the Word object model peeks through, because 1 corresponds to a true
value in COM object models. This can cause confusion, because the Boolean value for TRue in .NET when cast to an
integer is 1, not 1. So when checking the value of these properties, remember to not make the mistake of comparing to
1 or the Boolean value of true cast to an Integer because this will cause your code to fail to detect the state properly.
Instead, always compare to 0 or the Boolean value of False cast to an Integer.

Table 8.14 lists several of the most frequently used properties associated with the Font object.

Table 8.14. Frequently Used Properties Associated with the Font
Object

Property Name Type What It Does

AllCaps Integer Set to 1 to format the font as all capital letters

Bold Integer Set to 1 to format the font as bold

Color WdColor Set to a member of the WdColor enumeration to set the
color of the font

ColorIndex WdColorIndex Set to a member of the WdColorIndex enumeration to set
the color of the font

Hidden Integer Set to 1 to hide the text of the Range

Italic Integer Set to 1 to format the font as italic

Name String Set to a String representing the name of the font

Size Single Set to a size in points

SmallCaps Integer Set to 1 to format the font as small caps

Underline WdUnderline Set to a member of the WdUnderline enumeration to set
the underline format of the font

Another way to set the formatting of a Range is to use the Style property. The Style property takes by reference an
Object parameter. You can pass a String representing the name of the style you want to use to format the Range.

Listing 8.36 shows some formatting of a Range using Font properties and the Style property. Figure 8.22 shows the
document created by Listing 8.36.

Listing 8.36. A VSTO Customization That Formats a Range

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim r As Word.Range = Range()
 r.Text = "Item" & vbTab & "Name" & vbCrLf
 r.Font.Name = "Verdana"
 r.Font.Size = 20.0F

 r.Collapse(Word.WdCollapseDirection.wdCollapseEnd)
 r.InsertAfter("111" & vbTab & "1/4"" pipe" & vbCrLf)
 r.HighlightColorIndex = Word.WdColorIndex.wdGray25
 r.Italic = -1
 r.Font.Size = 10.0F
 r.Font.Name = "Times New Roman"

 r.Collapse(Word.WdCollapseDirection.wdCollapseEnd)
 r.InsertAfter("112" & vbTab & "1/2"" pipe" & vbCrLf)
 r.Shading.BackgroundPatternColor = Word.WdColor.wdColorBlack
 r.Font.Color = Word.WdColor.wdColorWhite
 r.Font.Size = 10.0F
 r.Font.SmallCaps = -1
 r.Font.Name = "Verdana"

 r.Collapse(Word.WdCollapseDirection.wdCollapseEnd)
 r.InsertAfter("This should be a heading.")
 r.Style = "Heading 1"

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

Figure 8.22. Result of running Listing 8.36.

Find and Replace

The Find property returns a Find object that you can use to search a Range. The Find object allows you to set options
similar to the ones you find in Word's Find dialog box. The Find object's Text property can be set to the String you want
to search for. The Find object's MatchWholeWord property can be set to False to allow matching of the string against a
partial word in the Range. After the find options have been set up, the Find object's Execute method executes the find
against the Range. Execute takes a number of optional parameters by referencesome of which correspond to properties
on the Find object. So, you have an option of either presetting Find properties and then calling Execute and omitting the
optional parameters, or skipping presetting Find properties and passing optional parameters to the Execute method. In
Listing 8.36, we take the former approach. Execute returns TRue if it is able to find the text specified and modifies the
Range so that it covers the found text. In Listing 8.37, calling Execute modifies the Range to have a start of 20 and an
end of 24.

Listing 8.37. A VSTO Customization That Uses the Find Object

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim r As Word.Range = Range()
 r.Text = "The quick brown fox jumps over the lazy dog."

 Dim f As Word.Find = r.Find()
 f.Text = "jump"
 f.MatchWholeWord = False

 If f.Execute() Then
 MsgBox(String.Format("Found {0} at position {1},{2}.", _
 f.Text, r.Start, r.End))
 End If

 End Sub

End Class

It is also possible to iterate over multiple found items using the Find object's Found property instead of checking the
return value of Execute each time. Listing 8.38 shows an example of iterating over every occurrence of the string "jump"
in a document. This example bolds every instance of jump that it finds in the document.

Listing 8.38. A VSTO Customization That Uses the Find Object's Found Property to
Iterate over Found Items

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Iterate over Found Items

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim r As Word.Range = Range()
 r.Text = "Jumping lizards! Jump on down to " & _
 "Mr. Jumpkin's jumpin' trampoline store."

 Dim f As Word.Find = r.Find()
 f.Text = "jump"
 f.MatchWholeWord = False

 f.Execute()
 While f.Found
 MsgBox(String.Format("Found {0} at position {1},{2}.", _
 f.Text, r.Start, r.End))
 r.Font.Bold = -1
 f.Execute()
 End While

 End Sub

End Class

The Find object has a Replacement property that returns a Replacement object, which allows you to set options for
doing a find and replace. The Replacement object's Text property lets you set the text you want to use to replace found
text with. In addition, to perform a replacement, you must pass a member of the WdReplace enumeration to the Replace
parameter of the Execute method (the 11th optional parameter). You can pass wdReplaceAll to replace all found
occurrences or wdReplaceOne to replace the first found occurrence. In Listing 8.39, we use the Replacement.Text property
to set the replace string and then call Execute passing wdReplaceAll to the Replace parameter.

Listing 8.39. A VSTO Customization That Performs a Replace

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim r As Word.Range = Range()
 r.Text = "The quick brown fox jumps over the lazy dog."

 Dim f As Word.Find = r.Find()
 f.Text = "jump"
 f.MatchWholeWord = False
 f.Replacement.Text = "leap"

 If f.Execute(Replace:=Word.WdReplace.wdReplaceAll) Then
 MsgBox(String.Format("Replaced {0} at position {1},{2}.", _
 f.Text, r.Start, r.End))
 End If

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with Bookmarks
Bookmarks provide you a way to name and keep track of a particular Range. The user can even edit the Range, and the
modified Range will still be accessible by its name unless the user deletes the Range.

To create and manage bookmarks, you can use Word's Bookmark dialog box. You can select some text in the
document, choose Bookmark from the Insert menu, give the range of text a name, and then click the Add button to add
a bookmark, as shown in Figure 8.23. Existing bookmarks can be selected and navigated to using the Go To button.
They can also be removed using the Delete button.

Figure 8.23. The Bookmark dialog box.

VSTO provides some additional tools for creating bookmarks. You can drag a bookmark control from the Visual Studio
control toolbox to the Word document to create a bookmark, for example. VSTO also adds any bookmarks in the
document as named class member variables of the ThisDocument class. VSTO support for bookmarks is described in
more detail in Chapter 13, "The VSTO Programming Model."

If you check the Bookmarks check box in the View tab of Word's Options dialog box, Word shows gray brackets around
any bookmarks defined in your document. Figure 8.24 shows the brackets Word displays. Here, we have created a
bookmark that includes the word brown and the space after brown.

Figure 8.24. Result of checking the Bookmarks check box in the View tab of Word's
Options dialog box.

To create and manage bookmarks programmatically, you can use the Document object's Bookmarks property or the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To create and manage bookmarks programmatically, you can use the Document object's Bookmarks property or the
Range object's Bookmarks property. Both return a Bookmarks collection. The former returns all the bookmarks defined
in the document; the latter returns just the bookmarks defined within the Range you are working with.

The Bookmarks collection's Add method adds a bookmark. It takes a required Name parameter to which you pass a String
representing the name you want to use for the bookmark. The Name parameter must be one word. The Add method also
takes by reference an optional Object parameter to which you pass the Range you want to create a bookmark for. The
method returns the newly added Bookmark object.

The Bookmarks collection's Exists method takes a String representing the name of a bookmark and returns a Boolean
value indicating whether the bookmark exists in the document. The Item property allows you to get to a bookmark
given its name or 1-based index in the Bookmarks collection. The Item property takes by reference an Object parameter
that can be set to a String representing the name of the bookmark or the 1-based index. Given a Bookmark object, you
can get the Range it refers to by using the Bookmark object's Range property.

Listing 8.40 shows an example of working with bookmarks. It first creates several bookmarks and then gets them again
using the Item property.

Listing 8.40. A VSTO Customization That Works with Bookmarks

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim r As Word.Range = Range()
 r.Text = "The quick brown fox "
 Me.Bookmarks.Add("FirstHalf", r)
 r.Collapse(Word.WdCollapseDirection.wdCollapseEnd)
 r.Text = "jumps over the lazy dog."

 Me.Bookmarks.Add("SecondHalf", r)
 If Me.Bookmarks.Exists("FirstHalf") = True Then
 MsgBox("FirstHalf exists")
 End If

 Dim b As Word.Bookmark = Me.Bookmarks.Item("FirstHalf")
 MsgBox(String.Format(_
 "FirstHalf starts at {0} and ends at {1}.", _
 b.Range.Start, b.Range.End))

 End Sub

End Class

Bookmarks are easily deleted from the document. Setting the Text property of the Range associated with a bookmark,
for example, replaces the Range and in the process deletes the bookmark associated with the Range. VSTO extends
Bookmark and adds some functionality to preserve the bookmark even when you set the Text property. For more
information on VSTO's support for bookmarks and the Bookmark control, see Chapter 13, "The VSTO Programming
Model."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with Tables
As mentioned earlier, both the Document and Range object have a Tables property that returns the Tables collection,
which contains tables in the Document or Range. To add a Table, you can use the Tables collection's Add method, which
takes a Range where you want to add the table, the number of rows and number of columns in the table, and two
optional Object parameters passed by reference that specify the autofit behavior of the table. The Add method returns
the newly added table.

Listing 8.41 shows code that adds and populates a small table. It uses the returned Table object's Rows property to get
the Rows collection. It uses the index operator () on the Rows collection to get an individual Row object. It uses the
Row object's Cells property to get the Cells collection. It uses the index operator on the Cells collection to get to an
individual Cell object. Finally, it uses the Cell object's Range property to get a Range corresponding to the Cell object
and uses the Range object's Text to property set the value of the cell.

Listing 8.41. A VSTO Customization That Creates and Populates a Simple Table

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim r As Word.Range = Range()
 Dim t As Word.Table = r.Tables.Add(r, 5, 5)

 Dim i As Integer
 For i = 1 To 5
 Dim j As Integer
 For j = 1 To 5
 t.Rows(i).Cells(j).Range.Text = _
 String.Format("{0}, {1}", i, j)
 Next
 Next

 End Sub

End Class

The Table object's Cell method provides an easier way of getting to a Cell. The Cell method takes an Integer row-and-
column parameter and returns a Cell object. Listing 8.42 shows the use of the Cell method, along with the use of
several autoformatting techniques as we create a simple multiplication table. The Columns object's AutoFit method is
used to resize the column widths to fit the contents of the cells. The Table object's Style property takes an Object by
reference that is set to the name of a table style as found in the Table AutoFormat dialog box. The Table object's
ApplyStyleLastRow and ApplyStyleLastColumn properties are set to False in Listing 8.42 to specify that no special style
be applied to the last row or last column in the table.

Listing 8.42. A VSTO Customization That Creates a Multiplication Table

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup
 Dim r As Word.Range = Range()
 Dim t As Word.Table = r.Tables.Add(r, 12, 12)

 Dim i As Integer
 For i = 1 To 12
 Dim j As Integer
 For j = 1 To 12
 Dim c As Word.Cell = t.Cell(i, j)
 If i = 1 And j = 1 Then
 c.Range.Text = "X"
 ElseIf i = 1 Then
 c.Range.Text = j.ToString()
 ElseIf j = 1 Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ElseIf j = 1 Then
 c.Range.Text = i.ToString()
 Else
 Dim result As Integer = i * j
 c.Range.Text = result.ToString()
 End If
 Next
 Next

 t.Columns.AutoFit()
 t.Style = "Table Classic 2"
 t.ApplyStyleLastRow = False
 t.ApplyStyleLastColumn = False

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter explored some of the most important objects in the Word object model. We use many of these objects in
the Word examples in subsequent chapters. We also consider some additional Word object model objects used to work
with XML in Word in Chapter 22, "Working with XML in Word."

This chapter described these objects as defined by the PIAs for Word. Be aware, however, that VSTO extends some of
these objects (Document, Bookmark, XMLNodes, and XMLNode) to add some functionality, such as data binding
support. Part III of this book, starting with Chapter 13, "The VSTO Programming Model," covers those extensions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9. Programming Outlook

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ways to Customize Outlook
Outlook has an object model that consists of 67 objects that combined have more than 1,700 properties and methods.
The Outlook object model is about a third as big as the Excel and Word object models and tends to give you less control
over Outlook than you would expect. Outlook does have a larger number of events compared with the Word and Excel
object modelsmore than 300 events. The large number of events, however, is due mainly to 16 events that are
duplicated on 15 Outlook objects.

The main way that you will integrate your code into Outlook is via add-ins. This model was originally designed to allow
the integration of COM components written in Visual Basic 6, Visual Basic for Applications, C, or C++. Through COM
interop, however, a managed object can masquerade as a COM object and participate in the Outlook add-in model.

Automation Executable

As mentioned in Chapter 2, "Introduction to Office Solutions," you can start Outlook from a console application or
Windows application and automate it from that external program. The problem with this approach is that you cannot
add your automation executable to the exclusion list of the Outlook object model security guard.

The Outlook object model security guard prevents code from accessing sensitive parts of the Outlook object model,
such as the address book or the send mail functionality. Its purpose is to protect Outlook from code that might spread
as an e-mail worm or virus. Outlook has a mechanism to trust a particular installed add-in and let it bypass the Outlook
object model guard that is discussed in Chapter 11, "Working with Outlook Objects." It does not have a mechanism to
trust an automation executable and let an automation executable bypass the guard.

Add-Ins

When building add-ins for Outlook, you have two choices: You can build either a COM add-in or a VSTO Outlook add-in.
A VSTO Outlook add-in solves many of the problems associated with COM add-in development and is the preferred
model for Outlook 2003 add-in development. You can read about this model for Outlook add-ins in Chapter 24,
"Creating Outlook Add-Ins with VSTO." The only time you would want to consider building a COM add-in instead is when
you need to target versions of Outlook that are older than Outlook 2003. You can read about building COM add-ins in
Chapter 23, "Developing COM Add-Ins for Word and Excel."

Outlook has a COM add-ins dialog box that enables users to enable and disable add-ins. Both VSTO add-ins and COM
add-ins appear in the COM Add-Ins dialog box. This dialog box is very well hidden. To access the COM Add-Ins dialog
box, you must follow these steps:

1. Choose Options from the Tools menu to bring up the Options dialog box.

2. Click the Other tab.

3. Click the Advanced Options button to bring up the Advanced Options dialog box.

4. Click the COM Add-Ins button to bring up the COM Add-Ins dialog box, shown in Figure 9.1.

Figure 9.1. The COM Add-Ins dialog box in Outlook.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can add and remove COM add-ins in the dialog box by using the Add and Remove buttons. VSTO add-ins cannot be
added using the Add button but can be removed using the Remove button. Each add-in has a check box that can be
checked and unchecked to enable or disable the add-in while leaving it in the list of available add-ins. Typically, you will
not use this dialog box to add and remove add-insonly to disable and enable available add-ins. The addition and
removal of add-ins is handled by the installer of your COM add-in or VSTO add-in.

Outlook discovers the add-ins that are installed by reading the registry keys under My
Computer\HKEY_CURRENT_USER\Software\Microsoft\Office\Outlook\Addins in the registry. You can view the registry
on your computer by going to the Windows Start menu and choosing Run. In the Run dialog box, type regedit for the
program to run; then click the OK button. You can also register add-ins for Outlook under My
Computer\HKEY_LOCAL_MACHINE\Software\Microsoft\Office\Outlook\Addins. Add-ins registered under
HKEY_LOCAL_MACHINE do not appear in the COM Add-Ins dialog box and cannot be enabled or disabled by users.

Smart Tags

Smart Tags are a feature that enables the display of a pop-up menu with actions for a given piece of text on the screen.
Outlook supports Smart Tags in several ways.

Smart Tags When Word Is the E-Mail Editor

First, if Word is used as the e-mail editor in Outlook, Smart Tags appear when you edit e-mail messages. To set Word
as the e-mail editor, you can use the Options command in the Tools menu to display Outlook's Options dialog box. On
the Mail Format tab, check Use Microsoft Office Word 2003 to Edit E-Mail Messages, as shown in Figure 9.2.

Figure 9.2. Specifying Word as the e-mail editor.

In addition to specifying Word as the e-mail editor, you must configure Word's Smart Tag options as described in
Chapter 6, "Programming Word." Then, when you create a new e-mail message, you will be able to see Smart Tags in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6, "Programming Word." Then, when you create a new e-mail message, you will be able to see Smart Tags in
your message, as shown in Figure 9.3.

Figure 9.3. Smart Tags in an e-mail message when Word is the e-mail editor.

Smart Tags in the Research Task Pane When Word Is the E-Mail Editor

You can register Smart Tags to recognize text in the Research task pane. If Word is being used as the e-mail editor, the
user can select some text in the e-mail, right-click the text, and choose Look Up to bring up the Research task pane.
Results in the Research task pane may include text that is tagged by Smart Tags.

Smart Tags Embedded in HTML-Formatted E-Mail and Displayed in the Reading Pane

A third way Smart Tags are supported in Outlook is when you use Word as the e-mail editor and send e-mail in HTML
format. If Word's send format is configured appropriately, Smart Tags can be embedded in the HTML-formatted
message. Users who read the messages that have Smart Tags installed and have Outlook's security settings set to
allow them will be able to see Smart Tags in Outlook's reading pane. Outlook's reading pane is effectively an HTML Web
browser.

To configure this use of Smart Tags, you must first specify Word as the e-mail editor and choose the send format to be
HTML, as shown in Figure 9.2 earlier in this chapter. To configure Word to be able to embed Smart Tags in HTML, you
must choose Options from the Tools menu of Word to bring up Word's Options dialog box. In this dialog box, select the
General tab, and click the E-Mail Options button. This brings up the E-Mail Options dialog box, shown in Figure 9.4. In
the General tab of this dialog box, you must set the HTML filtering options to None or Medium and check the Save
Smart Tags in E-Mail check box.

Figure 9.4. E-mail options to enable the embedding of Smart Tags in HTML e-mail
messages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

messages.

Finally, you must ensure that the security settings of Outlook will allow Smart Tags to appear. In Outlook's Options
dialog box, select the Security tab, and make sure that Zone is set to Internet, as shown in Figure 9.5.

Figure 9.5. Internet zone security required to allow Smart Tags to be displayed in
e-mail messages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With all these settings configured, you should be able to type an e-mail message and send it, and when it is received,
you can see the Smart Tag in the reading pane, as shown in Figure 9.6. The Smart Tag looks a little different because
the reading pane uses Internet Explorer's menu style rather than the Office menu style.

Figure 9.6. A Smart Tag displayed in the reading pane.

[View full size image]

Persona Menu Smart Tags

The final way Smart Tags are supported in Outlook is via the Persona menu. This menu appears on e-mail items and
other Outlook items when you click the Persona icon shown in many Outlook views. Figure 9.7 shows the Persona icon
and the menu that appears when you click it. Smart Tag actions appear in the Additional Actions submenu that is shown
in Figure 9.7.

Figure 9.7. The Persona menu in Outlook. Smart Tag actions appear in the
Additional Actions submenu.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSTO cannot be used to provide Smart Tags for Outlook because VSTO supports Smart Tags only for code behind a
document. The Outlook uses of Smart Tags are not at the document level but at the application level. Chapter 16,
"Working with Smart Tags in VSTO," describes how to create an application-level Smart Tag in Visual Basic that could
be used in e-mail when Word is your e-mail editor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Custom Property Pages
An Outlook add-in can add a custom property page to the Properties dialog box for a folder or to Outlook's Options
dialog box. We walk through how this is done using a VSTO Outlook add-in. First, create a VSTO Outlook add-in project
in VSTO by following the instructions in Chapter 24, "Creating Outlook Add-Ins with VSTO."

After you create a basic VSTO Outlook add-in project, you need to add a user control project item to the project. A user
control is a special kind of Windows Forms control that is useful for inserting into another window. To add a user control
to your project, click the project node in Solution Explorer and then choose Add User Control from the Project menu.
When you double-click the newly added user control project item, you will see the user control designer, shown in
Figure 9.8. You can resize the user control using the drag handle in the bottom-right corner. Resize it to about 410 x
355 pixels, which is the size of a property page in Outlook. With the user control resized, use the controls toolbox
(choose Toolbox from the View menu if it is not already showing) to add controls to your user control surface. In Figure
9.8, we have added several check boxes, radio buttons, and buttons to the user control surface.

Figure 9.8. The user control designer.

To use this user control as a custom property page, we must make some modifications to the code behind it. Right-click
the user control project item in Solution Explorer, and choose View Code. First, we must implement an interface
required by Outlook called PropertyPage. The PropertyPage interface has two methods and a property. The Apply
method is called on our PropertyPage implementation when the user clicks the Apply button in the Outlook Options or
Folder Properties dialog box. The GetPageInfo method gets a help filename and help context so that you can provide
help for your custom property page. The Dirty property is a Boolean property that you can use to let Outlook know
whether the user has changed any settings in your custom property page. When Dirty returns true, Outlook knows to
enable the Apply button in the dialog box so that the user can apply changes made in the custom property page.

Second, we must add a property that Outlook will call to get the caption for the property page tab. This property must
be marked with a DispId attribute that Outlook uses to identify which property will return the caption for the property
page tab. The name of the property does not matter as long as it returns a String; in Listing 9.1, we name the property
PageCaption.

Listing 9.1 shows what your class should look like after you have made these modifications. Because user controls use
the partial class feature in Visual Studio, all the code that is specific to how many buttons or controls you added should

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the partial class feature in Visual Studio, all the code that is specific to how many buttons or controls you added should
not show up in this file, but in the other hidden part of the partial class. Note that the code uses the
System.Runtime.InteropServices namespace for the DispID attribute on the Caption property. The code also declares a
constant called captionDispID that is set to the ID Outlook expects will be associated with the Caption property.

Listing 9.1. First Version of the Modified User Control Class

Imports Outlook = Microsoft.Office.Interop.Outlook
Imports System.Runtime.InteropServices

Public Class UserControl1
 Implements Outlook.PropertyPage

 Const captionDispID As Integer = -518
 Private isDirty As Boolean = False

 Public Sub Apply() Implements _
 Microsoft.Office.Interop.Outlook.PropertyPage.Apply

 MsgBox("The user clicked the Apply button.")

 End Sub

 Public ReadOnly Property Dirty() As Boolean _
 Implements Outlook.PropertyPage.Dirty

 Get
 Return isDirty
 End Get

 End Property

 Public Sub GetPageInfo(ByRef HelpFile As String, _
 ByRef HelpContext As Integer) _
 Implements Outlook.PropertyPage.GetPageInfo

 End Sub
 <DispId(captionDispID)> _
 Public ReadOnly Property PageCaption() As String
 Get
 Return "Test Page"
 End Get
 End Property

End Class

With the user control created, two event handlers must be added. The first event handler is for the Application object's
OptionsPagesAdd event. This event is raised when Outlook is ready to add custom property pages to the Outlook
Options dialog box, which is shown when the user chooses Options from the Tools menu. The event handler is passed a
pages parameter of type PropertyPages that has an Add method that can be used to add a user control as a custom
property page.

The second event handler is for the NameSpace object's OptionsPages Add event. This event is raised when Outlook is
ready to add custom property pages when a Properties dialog box for a folder is displayed. The Properties dialog box for
a folder is shown when the user right-clicks a folder and chooses Properties from the pop-up menu. The event handler
is passed a pages parameter of type PropertyPages that has an Add method that can be used to add a user control as a
custom property page. The event handler is also passed a folder parameter of type MAPIFolder that specifies the folder
for which the Properties dialog box will be shown.

Listing 9.2 shows an implementation of a VSTO ThisApplication class that handles these two events. In the event handlers
for the Application object's OptionsPagesAdd event and the NameSpace object's OptionsPagesAdd event, an instance of
the user control in Listing 9.1 is created and passed as the first parameter to the PropertyPages.Add method. The
second property is passed an empty string because the caption for the custom property page is retrieved by Outlook
calling the PageCaption property on the user control that has been attributed with a DispID known to Outlook.

Listing 9.2. A VSTO Outlook Add-In That Handles the OptionsPagesAdd Event on
Application and Namespace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application and Namespace

Imports Microsoft.VisualStudio.Tools.Applications.Runtime
Imports Outlook = Microsoft.Office.Interop.Outlook
Public Class ThisApplication

 Private nameSpace1 As Outlook.NameSpace

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 AddHandler Me.OptionsPagesAdd, _
 AddressOf ThisApplication_OptionsPagesAdd

 nameSpace1 = Me.Session
 AddHandler nameSpace1.OptionsPagesAdd, _
 AddressOf NameSpace_OptionsPagesAdd

 End Sub

 Private Sub ThisApplication_OptionsPagesAdd(_
 ByVal pages As Outlook.PropertyPages)

 pages.Add(New UserControl1(), "")

 End Sub

 Private Sub NameSpace_OptionsPagesAdd(_
 ByVal pages As Outlook.PropertyPages, _
 ByVal folder As Outlook.MAPIFolder)

 pages.Add(New UserControl1(), "")

 End Sub

End Class

If you compile and run this VSTO add-in, you will get the result shown in Figure 9.9 when you show Outlook's Options
dialog box and click the Test Page tab.

Figure 9.9. A custom property page added to Outlook's Options dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you right-click a folder and choose Properties, you can also see that the custom property page is added to the folder's
Properties dialog box, as shown in Figure 9.10.

Figure 9.10. A custom property page added to a folder's Properties dialog box.

If you play with these dialog boxes a bit, you will notice that the Apply button never gets enabled when you change the
check boxes or radio buttons in the custom property page. Also note that the Apply method that was implemented as
part of implementing the PropertyPage interface is never called. To fix this, the implementation of the user control is
modified as shown in Listing 9.3 so that when a check box or radio button is changed, it changes the value of the class
variable isDirty to true. In addition, the code notifies Outlook that the property page state has changed by connecting to
Outlook's PropertyPageSite object. The code declares a propertyPageSite class member variable and sets it by calling the
InitializePropertyPageSite method in the Load event handler. The Load event handler must use reflection to get the
PropertyPageSite object.

With the PropertyPageSite connected, the code defines a method called SetIsDirty that changes the state of the isDirty
variable and then calls Outlook's PropertyPageSite.OnStatusChange method. This notifies Outlook that it needs to call
into the PropertyPage interface to get the new state of the custom property page. A complete implementation would
detect any changes made to the property page that could change the dirty state and potentially detect when a change
is undone and clear the dirty state back to false.

Finally, the code raises the CheckedChanged event of the first check box on the custom property page. When the
changed state changes, the code calls SetIsDirty to set the dirty state to true and notifies Outlook that the state has
changed.

Listing 9.3. Second Version of a User Control Class That Handles Dirty State
Properly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Properly

Imports Outlook = Microsoft.Office.Interop.Outlook
Imports System.Runtime.InteropServices

<ComVisible(True)> _
Public Class UserControl1
 Implements Outlook.PropertyPage

 Const captionDispID As Integer = -518
 Private isDirty As Boolean = False
 Private propertyPageSite As Outlook.PropertyPageSite = Nothing

 Public Sub Apply() Implements _
 Microsoft.Office.Interop.Outlook.PropertyPage.Apply

 MsgBox("The user clicked the Apply button.")

 End Sub

 Public ReadOnly Property Dirty() As Boolean _
 Implements Outlook.PropertyPage.Dirty
 Get
 Return isDirty
 End Get

 End Property

 Public Sub GetPageInfo(ByRef HelpFile As String, _
 ByRef HelpContext As Integer) _
 Implements Outlook.PropertyPage.GetPageInfo

 End Sub

 <DispId(captionDispID)> _
 Public ReadOnly Property PageCaption() As String
 Get
 Return "Test Page"
 End Get
 End Property

 Private Sub SetIsDirty(ByVal value As Boolean)
 isDirty = value
 propertyPageSite.OnStatusChange()
 End Sub

 Private Sub CheckBox1_CheckedChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles CheckBox1.CheckedChanged

 SetIsDirty(True)

 End Sub

 Private Sub UserControl1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 InitializePropertyPageSite()

 End Sub

 Private Sub InitializePropertyPageSite()
 Dim windowsFormsStrongName As String = _
 Type.GetType("System.Windows.Forms.Form"). _
 Assembly.FullName.ToString()

 Dim objType As Type = GetType(System.Windows.Forms.Form)
 Dim windowsFormsStrongName As String = _
 objType.Assembly.FullName.ToString()

 Dim oleObjectType As Type = Type.GetType(_
 System.Reflection.Assembly.CreateQualifiedName(_
 windowsFormsStrongName, _
 "System.Windows.Forms.UnsafeNativeMethods")). _
 GetNestedType("IOleObject")

 Dim getClientSiteMethodInfo As System.Reflection.MethodInfo
 getClientSiteMethod Info = _
 oleObjectType.GetMethod("GetClientSite")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 oleObjectType.GetMethod("GetClientSite")

 propertyPageSite = CType(getClientSiteMethodInfo.Invoke(_
 Me, Nothing), Outlook.PropertyPageSite)

 End Sub

End Class

Now when you run the add-in and change the checked state of the first check box in the custom property page, the
dirty state is changed, and Outlook's PropertyPageSite is notified. The result is that the Apply button is enabled. Clicking
the Apply button invokes the test dialog box in Listing 9.3's implementation of the Apply method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction to the Outlook Object Model
Regardless of the approach you choose to integrate your code with Outlook, you eventually will need to talk to the
Outlook object model to get things done. This section introduces the Outlook object model. Chapter 10, "Working with
Outlook Events," and Chapter 11, "Working with Outlook Objects," describe some of the most frequently used
properties, methods, and events. This chapter also briefly examines another object model you can use with Outlook:
Collaboration Data Objects (CDO).

The first step in learning the Outlook object model is getting an idea of the basic structure of the object model
hierarchy. Figure 9.11 shows some of the most critical objects in the Outlook object model and their hierarchical
relationships.

Figure 9.11. The basic hierarchy of the Outlook object model.

[View full size image]

The Outlook object model has the notion of an Outlook item. An Outlook item is represented in the object model as an
Object and can be cast to one of the 15 Outlook item types shown in Table 9.1. Some objects in the object model, such
as the MAPIFolder object, contain an Items collection that can contain instances of any of the 15 Outlook item types;
therefore, the folder may contain a mixture of MailItem objects, TaskRequestItem objects, and so on. When you iterate
over a collection of Items, Outlook returns each item to you as an Object that you must cast to one of the 15 Outlook
item types before using it.

Table 9.1. Outlook Item Types
Object Description

ContactItem A contact item typically found in the Contacts folder

DistListItem A distribution list typically found in the Contacts folder

DocumentItem A document that you have added to an Outlook folder by dragging
and dropping it from the file system into the Outlook folder

JournalItem A journal entry typically found in the Journal folder

MailItem A mail message typically found in the Inbox folder

MeetingItem A meeting request typically found in the Inbox folder

NoteItem A note typically found in the Notes folder

PostItem A post in an Outlook folder

RemoteItem A mail message that has not yet been fully retrieved from the
server but has the subject of the message, the received date and
time, the sender, the size of the message, and the first 256
characters of the message body

ReportItem A mail delivery report, such as a report when mail delivery failed,
typically found in the Inbox folder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

typically found in the Inbox folder

TaskItem A task typically found in the Tasks folder

TaskRequestAcceptItem A response to a TaskRequestItem typically found in the Inbox
folder

TaskRequestDeclineItem A response to a TaskRequestItem typically found in the Inbox
folder

TaskRequestItem A task request sent to another user typically found in the Inbox
folder

TaskRequestUpdateItem An update to a TaskRequestItem typically found in the Inbox folder

Another example of an Outlook object model object that is associated with multiple Outlook item types is the Inspector
object. The Inspector object represents a window providing a detail view for one of the 15 Outlook item types. It could
be providing a view on a NoteItem, a MeetingItem, and so on. Inspector has a CurrentItem property that returns the
Outlook item it is displaying as an Object. You must cast the Object returned by CurrentItem to one of the Outlook item
types in Table 9.1 before using it. Chapter 11, "Working with Outlook Objects," discusses Outlook items in more detail.

Figure 9.12 shows a more complete view of the Outlook object model. (All the objects considered Outlook items are
gray.) Note in this diagram that the Inspector object and the Items object points to a gray circle, which represents any
of the Outlook items colored gray.

Figure 9.12. Some of the objects in the Outlook object model. All gray objects are
"Outlook items."

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction to the Collaboration Data Objects
The Outlook object model is complemented by another object model, called Collaboration Data Objects (CDO). This
section briefly discusses this object model and the reasons you might have to use it.

CDO provides some functionality unavailable in the Outlook object model. CDO works against the underlying data that
Outlook is connected to rather than working against UI elements specific to Outlook. CDO exposes some properties of
folders and Outlook items that the Outlook object model does not expose. CDO also provides methods unavailable in
the Outlook object model. For example:

CDO lets you delete an Outlook item permanently without first routing it to the Deleted Items folder, whereas
Outlook always routes Outlook items you delete to the Deleted Items folder.

CDO lets you programmatically show the Select Names dialog box, which can be used to choose recipients for
an e-mail message.

CDO lets you read and write several properties that are either not available in the Outlook object model or are
read-only in the Outlook object model.

The connection between the Outlook object model and CDO is that every Outlook item is in an information store
represented in Outlook by a root folder in Outlook's Folder List view. An information store can be an Exchange mailbox
on a server or a local PST file. Every information store is identified by a StoreID. Within that information store, an
Outlook item is identified by an EntryID. So if you can get the StoreID and EntryID associated with an Outlook item via
the Outlook object model, you can write CDO code to get to that same Outlook item using the StoreID and EntryID.

Before we show some code that illustrates navigating from an Outlook item to a CDO item, let's consider how to add a
reference to the CDO object model. Given that you have a project in Visual Studio, right-click the Project node in
Solution Explorer; then click the References tab in the Project Properties dialog box and choose Add to add a reference.
In the Add Reference dialog box, shown in Figure 9.13, click the COM tab, select the component Microsoft CDO 1.21
Library, and then click the OK button.

Figure 9.13. Adding a reference to CDO.

The result of clicking OK in the dialog box shown in Figure 9.13 is that a reference is added to the CDO library. The CDO

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The result of clicking OK in the dialog box shown in Figure 9.13 is that a reference is added to the CDO library. The CDO
library is contained in a namespace called MAPI. No pregenerated primary interop assembly (PIA) for the CDO library
existsso Visual Studio creates an interop assembly (IA) for the CDO library.

Listing 9.4 shows a VSTO Outlook add-in that navigates from an Outlook MailItem to the corresponding CDO Message
object. It handles the Inspectors.NewInspector event and displays a dialog box showing the subject using both an
Outlook Item object and CDO's Message object.

Also illustrated in this code is the use of CDO's root object, called the Session object. In the Startup method, the code
creates a new instance of the Session object and then calls the Session.Logon method to initialize the Session object. In
the Shutdown method, the code calls Logoff on the Session object to clean it up properly.

The GetMessageFromOutlookItem method gets the CDO Message object that corresponds to an Outlook Item object. It
gets several property values in a late-bound way. It gets an EntryID and a StoreID, and then uses the GetMessage
method on Session to get a CDO Message object. The GetOutlookItemFromMessage takes a CDO Message and gets the
corresponding Outlook Item object. It gets an EntryID and StoreID using properties on CDO's Message object. Then it
uses the GetItemFromID method on Outlook's NameSpace object to get an Outlook Item object.

Listing 9.4. Getting from an Outlook MailItem to a CDO Message Object

Imports Outlook = Microsoft.Office.Interop.Outlook

Public Class ThisApplication

 Private nameSpace1 As Outlook.NameSpace
 Private mapiSession As MAPI.Session
 Private inspectors1 As Outlook.Inspectors

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 nameSpace1 = Me.Session
 mapiSession = New MAPI.Session()
 mapiSession.Logon(ShowDialog:=False, NewSession:=False)

 inspectors1 = Me.Inspectors
 AddHandler inspectors1.NewInspector, _
 AddressOf Inspectors_NewInspector

 End Sub

 Private Sub ThisApplication_Shutdown(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Shutdown

 mapiSession.Logoff()

 End Sub

 Private Function GetMessageFromOutlookItem(_
 ByVal outlookItem As Object) As MAPI.Message

 ' Late Bound Properties
 Dim entryID As Object = outlookItem.EntryID
 Dim parentFolder As Object = outlookItem.Parent
 Dim storeID As Object = parentFolder.StoreID

 Return CType(mapiSession.GetMessage(entryID, storeID), MAPI.Message)

 End Function

 Private Function GetOutlookItemFromMessage(_
 ByVal message As MAPI.Message) As Object

 Dim entryID As String = CType(message.ID, String)
 Dim storeID As String = CType(message.StoreID, String)
 Return nameSpace1.GetItemFromID(entryID, storeID)

 End Function

 Private Sub Inspectors_NewInspector(_
 ByVal inspector As Outlook.Inspector)

 Dim inspectedItem As Object = inspector.CurrentItem

 Dim message As MAPI.Message = _
 GetMessageFromOutlookItem(inspectedItem)
 MsgBox(String.Format("message.Subject={0}", message.Subject))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim outlookItem As Object
 outlookItem = GetOutlookItemFromMessage(message)
 MsgBox(String.Format(_
 "outlookItem.Subject={0}", _
 outlookItem.Subject))

 End Sub

End Class

Figure 9.14 shows a diagram of the objects in the CDO object model. This book does not cover the CDO object model in
any additional depth.

Figure 9.14. The CDO object model.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter introduced the various ways you can integrate your code into Outlook. You learned about Outlook's ability
to add a custom property page to the Outlook Option's dialog box or to a folder's Properties dialog box. This chapter
also introduced the basic hierarchy of the Outlook object model and briefly considered the Collaboration Data Objects
object model. Chapter 10, "Working with Outlook Events," describes the events in the Outlook object model. Chapter
11, "Working with Outlook Objects," describes the most important objects in the Outlook object model. Chapter 24,
"Creating Outlook Add-Ins with VSTO," describes building VSTO Outlook add-ins.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10. Working with Outlook Events

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Events in the Outlook Object Model
Understanding the events in the Outlook object model is critical because this is often the primary way that your code is
run. This chapter covers many of the events in the Outlook object model, when they are raised, and the type of code
you might associate with these events.

Outlook associates the same set of events with all the Outlook item object types listed in Table 10.1. In this chapter, we
will refer to Item events, but there is no Item object per se in the Outlook object model. Instead, you will find the same
set of Item events (defined by ItemEvents_10_Event interface) on each of the 16 Outlook object model objects listed in
Table 10.1.

Table 10.1. Outlook Item Objects
Object Description

AppointmentItem An appointment item typically found in the
Calendar folder

ContactItem A contact item typically found in the Contacts
folder

DistListItem A distribution list typically found in the
Contacts folder

DocumentItem A document that you have added to an Outlook
folder by dragging and dropping it from the file
system into the Outlook folder

JournalItem A journal entry typically found in the Journal
folder

MailItem A mail message typically found in the Inbox
folder

MeetingItem A meeting request typically found in the Inbox
folder

NoteItem A note typically found in the Notes folder

PostItem A post in an Outlook folder

RemoteItem A mail message that has not yet been fully
retrieved from the server but has the subject
of the message, the received date and time,
the sender, the size of the message, and the
first 256 characters of the message body

ReportItem A mail delivery report, such as a report when
mail delivery failed, typically found in Outlook's
Inbox folder

TaskItem A task typically found in the Tasks folder

TaskRequestAcceptItem A response to a TaskRequestItem typically
found in the Inbox folder

TaskRequestDeclineItem A response to a TaskRequestItem typically
found in the Inbox folder

TaskRequestItem A task request sent to another user typically
found in the Inbox folder

TaskRequestUpdateItem An update to a TaskRequestItem typically
found in the Inbox folder

Advanced Topic: Why Are There Multiple Event Interfaces?

When you work with the Outlook object model, you will quickly notice multiple public interfaces, classes,
and delegates associated with events:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and delegates associated with events:

ApplicationEvents interface

ApplicationEvents_Event interface

ApplicationEvents_* delegates

ApplicationEvents_SinkHelper class

ApplicationEvents_10 interface

ApplicationsEvents_10_Event interface

ApplicationEvents_10_* delegates

ApplicationEvents_10_SinkHelper class

ApplicationEvents_11 interface

ApplicationsEvents_11_Event interface

ApplicationEvents_11_* delegates

ApplicationEvents_11_SinkHelper class

ExplorerEvents interface

ExplorerEvents_Event interface

ExplorerEvents_* delegates

ExplorerEvents_SinkHelper class

ExplorerEvents_10 interface

ExplorerEvents_10_Event interface

ExplorerEvents_10_*delegates

ExplorerEvents10_SinkHelper class

ExplorersEvents interface

ExplorersEvents_Event interface

ExplorersEvents_*delegates

ExplorersEvents_SinkHelper class

FoldersEvents interface

FoldersEvents_Event interface

FoldersEvents_* delegates

FoldersEvents_SinkHelper class

InspectorEvents interface

InspectorEvents_Event interface

InspectorEvents_* delegates

InspectorEvents_SinkHelper class

InspectorEvents_10 interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

InspectorEvents_10_Event interface

InspectorEvents_10_* delegates

InspectorEvents_10_SinkHelper class

ItemEvents interface

ItemEvents_Event interface

ItemEvents_* delegates

ItemEvents_SinkHelper class

ItemEvents_10 interface

ItemEvents_10_Event interface

ItemEvents_10_* delegates

ItemEvents_10_SinkHelper class

ItemsEvents interface

ItemsEvents_Event interface

ItemsEvents_* delegates

ItemsEvents_SinkHelper class

NameSpaceEvents interface

NameSpaceEvents_Event interface

NameSpaceEvents_* delegates

NameSpaceEvents_SinkHelper class

OutlookBarGroupsEvents interface

OutlookBarGroupsEvents_Event interface

OutlookBarGroupsEvents_* delegates

OutlookBarGroupsEvents_SinkHelper class

OutlookBarPaneEvents interface

OutlookBarPaneEvents_Event interface

OutlookBarPaneEvents_* delegates

OutlookBarPaneEvents_SinkHelper class

OutlookBarShortcutsEvents interface

OutlookBarShortcutsEvents_Event interface

OutlookBarShortcutsEvents_* delegates

OutlookBarShortcutsEvents_SinkHelper class

ReminderCollectionEvents interface

ReminderCollectionEvents_Event interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ReminderCollectionEvents_* delegates

ReminderCollectionEvents_SinkHelper class

ResultsEvents interface

ResultsEvents_Event interface

ResultsEvents_* delegates

ResultsEvents_SinkHelper class

SyncObjectEvents interface

SyncObjectEvents_Event interface

SyncObjectEvents_* delegates

SyncObjectEvents_SinkHelper class

ViewsEvents interface

ViewsEvents_Event interface

ViewsEvents_* delegates

ViewsEvents_SinkHelper class

The only elements from this list that you should ever use in your code are the ones in bold text. The
*_Event interfaces in bold should be used only when you have to cast an object to its corresponding
event interface because a method name and event name collide. An example of this is the Inspector
object, which has both a Close method and a Close event. To distinguish between the two when you are
handling an event dynamically, you have to cast the Inspector object to InspectorEvents_10_Event when
you want to handle the Close event.

Chapter 1, "An Introduction to Office Programming," briefly explains the reason for the other items in
this list. This explanation, however, explains only the SinkHelper class and why there are both an Object
Events interface and an Object Events_Event interface. The reason there are multiple numbered events
associated with some objects goes back to the original COM implementation of the Outlook object model.

Outlook's Application, Explorer, Inspector, and Item COM objects have had their event interfaces defined
over multiple versions. Consider the Application events, for example. Events defined in Outlook XP for
the Application object are on the interface named ApplicationEvents_Event. Events that were new in
Outlook 2000 are on the interface named ApplicationEvents_10_Events. (Outlook 2000 was known
internally at Microsoft as Outlook 10.) ApplicationEvents_10_Events also contains all the events that are
in the ApplicationEvents_Event. Events that were new in Outlook 2003 are on the interface named
ApplicationEvents_11_Events. (Outlook 2003 was known internally at Microsoft as Outlook 11.) The
ApplicationEvents_11_Events interface includes all the events defined in Outlook XP and Outlook 2000.
Because ApplicationEvents_11_Events contains all the events defined for Application, this is the only
interface you should use for Outlook 2003 development.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ApplicationLevel Events
This section covers events that occur at the Application level. This includes both events raised on the Application object
and events that are raised on the main Outlook windows. The two primary windows displayed by Outlook are
represented in the Outlook object model by the Explorer object and the Inspector object. An Explorer object represents
the main Outlook window in which the contents of folders display. An Inspector object represents the Outlook window
that appears when you doubleclick an Outlook itemfor example, when you doubleclick a mail item in your inbox. Figure
10.1 shows representative Explorer and Inspector windows.

Figure 10.1. An Explorer window and an Inspector window.

[View full size image]

It is possible to have zero or more Explorer and zero or more Inspector windows open at any time. If you rightclick a
document in the My Documents folder and choose Mail Recipient from the Send To menu, for example, Outlook
launches with only an Inspector window open. If you launch Outlook by picking it from the Start menu, it typically starts
with just the main Outlook window open, which is an Explorer window. If you rightclick a folder within Outlook and
choose Open in New Window, doing so creates an additional Explorer window to display that folder. Outlook can also
run in a mode with neither an Explorer nor an Inspector window runningfor example, when it is started by the
ActiveSync application shipped by Microsoft for syncing phones and PDAs to Outlook.

Startup and Quit Events

Outlook raises several events during startup and shutdown:

Application.Startup is raised when Outlook has completely started. This event is raised after add-ins have
been loaded so that an add-in can handle this eventthat is, it is not raised before add-ins are loaded (as are
some events in Word and Excel).

Application.MAPILogonComplete is raised after Outlook has logged on to the mail services to which it is
configured to connect.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

configured to connect.

Application.Quit is raised when Outlook is about to exit. This event is raised before add-ins have been
unloaded so that an add-in can handle this event. A VSTO Outlook add-in is unloaded before the Quit event is
raised and should use the Shutdown event instead.

Note

Quit is the name of both a method and an event on the Application object. Because of this collision, you
will have to use the CType operator to cast the Application object to the ApplicationEvents_11_Event
interface when adding an event handler dynamically using the AddHandler statement. If you are adding an
event handler declaratively using WithEvents and Handles, you do not have to worry about this issue.

The order in which IDTExtensibility2 methods associated with a COM add-in (described in Chapter 23, "Developing COM
AddIns for Word and Excel") and Outlook's Startup, Quit, and MAPILogonComplete events occur is shown here:

User launches Outlook.

- OnConnection method of IDTExtensibility2 is called.

- OnStartupComplete method of IDTExtensibility2 is called.

- Startup event is raised.

- MAPILogonComplete event is raised.

User quits Outlook.

- Quit event is raised.

- OnBeginShutdown of IDTExtensibility2 is called.

- OnDisconnection of IDTExtensibility2 is called.

Listing 10.1 shows an add-in that handles these three events dynamically using AddHandler. In most of the other
examples in this book, we handle events declaratively using WithEvents and Handles. Listing 10.1 also displays message
boxes when the methods of IDTExtensibility2 are called.

Note

For simplicity, the COM add-in listings in this chapter do not include the fix described in Chapter 24,
"Creating Outlook AddIns with VSTO," that is required to get Outlook always to shut down reliably when
loading a COM add-in.

Even though this book includes some COM add-in samples, our recommendation is that you create VSTO
Outlook add-ins rather than COM add-ins to avoid the issues described in Chapter 24.

Listing 10.1. A COM AddIn That Handles the Application Object's Quit, Startup, and
MAPILogonComplete Events

Imports Extensibility
Imports Outlook = Microsoft.Office.Interop.Outlook
Imports System.Windows.Forms
Imports System.Runtime.InteropServices

<GuidAttribute("9D71C9DB-BB7A-45D4-9AE2-13E58D05FD1B"),_
ProgIdAttribute("MyAddin2.Connect")>_
Public Class Connect
 Implements Extensibility.IDTExtensibility2

 Dim applicationObject As Outlook.Application
 Dim addInInstance As Object

 Public Sub OnConnection(ByVal application As Object, _
 ByVal connectMode As Extensibility.ext_ConnectMode, _
 ByVal addInInst As Object, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal addInInst As Object, _

 ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnConnection

 applicationObject = CType(application, Outlook.Application)
 addInInstance = addInInst

 AddHandler applicationObject.Startup, _
 AddressOf ApplicationObject_Startup
 AddHandler applicationObject.Quit, _
 AddressOf ApplicationObject_Quit
 AddHandler applicationObject.MAPILogonComplete, _
 AddressOf ApplicationObject_MAPILogonComplete

 MsgBox("OnConnection")

 End Sub

 Public Sub OnDisconnection(_
 ByVal RemoveMode As Extensibility.ext_DisconnectMode, _
 ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnDisconnection

 MsgBox("OnDisconnection")

 End Sub

 Public Sub OnAddInsUpdate(ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnAddInsUpdate
 End Sub

 Public Sub OnStartupComplete(ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnStartupComplete

 MsgBox("OnStartupComplete")

 End Sub

 Public Sub OnBeginShutdown(ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnBeginShutdown

 MsgBox("OnBeginShutdown")

 End Sub

 Public Sub ApplicationObject_Startup()
 MsgBox("Startup Event")
 End Sub

 Public Sub ApplicationObject_MAPILogonComplete()
 MsgBox("MAPILogonComplete Event")
 End Sub

 Public Sub ApplicationObject_Quit()
 MsgBox("Quit Event")
 End Sub

End Class

The order in which a VSTO Outlook add-in's Startup and Shutdown event handlers and Outlook's Startup, Quit, and
MAPILogonComplete events occur is shown here:

User launches Outlook.

- VSTO Startup event is raised.

- Outlook Application object's Startup event is raised.

- Outlook Application object's MAPILogonComplete event is raised.

User quits Outlook.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

- Outlook Application object's Quit event is raised. The VSTO add-in system uses this event to control
how the add-in unloads, so you may not see this event. Your code should handle the Shutdown event
instead.

- VSTO Shutdown event is raised.

Activation Events

When an Explorer or Inspector window becomes the active window (activates) or loses focus to another window
(deactivates), events are raised:

Explorer.Activate is raised on an Explorer object when the window it corresponds to becomes the active
window.

Inspector.Activate is raised on an Inspector object when the window it corresponds to becomes the active
window.

Note

Activate is the name of both a method and an event on the Explorer and Inspector object. Because
of this collision, you will have to use the CType operator to cast the Explorer object to the
ExplorerEvents_10_Event interface and the Inspector object to the InspectorEvents_10_Event
when adding an event handler dynamically using the AddHandler statement. If you are adding an
event handler declaratively using WithEvents and Handles, you do not have to worry about this issue.

Explorer.Deactivate is raised on an Explorer object when the window it corresponds to loses focus to another
window.

Inspector.Deactivate is raised on an Inspector object when the window it corresponds to loses focus to
another window.

Listing 10.2 shows a VSTO Outlook add-in that handles Activate and Deactivate events for the Explorer object. In this
listing, the events are handled declaratively using WithEvents and Handles.

Note

For simplicity, future VSTO Outlook add-in listings in this chapter omit the Imports lines of code at the
beginning of the VSTO This Application class and the Shutdown event handler.

Listing 10.2. A VSTO AddIn That Handles the Explorer Object's Activate and
Deactivate Events

Imports Outlook = Microsoft.Office.Interop.Outlook

Public Class ThisApplication

 Private WithEvents explorer As Outlook.Explorer

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 explorer = Me.ActiveExplorer

 End Sub

 Private Sub Explorer_Activate() Handles explorer.Activate
 Debug.Print(String.Format(_
 "The explorer with caption {0} was activated.", _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "The explorer with caption {0} was activated.", _
 explorer.Caption))
 End Sub

 Private Sub Explorer_Deactivate() Handles explorer.Deactivate
 Debug.Print(String.Format(_
 "The explorer with caption {0} was deactivated.", _
 explorer.Caption))
 End Sub

End Class

New Window Events

When a new Explorer or Inspector window is created, Outlook raises an event:

Explorers.NewExplorer is raised when a new Explorer window is created. The newly created Explorer is
passed as a parameter to this event.

Inspectors.NewInspector is raised when a new Inspector window is created. The newly created Inspector is
passed as a parameter to this event.

Listing 24.1 in Chapter 24, "Creating Outlook AddIns with VSTO," shows an example of handling these events.

Window Events

When an Explorer or Inspector window is maximized, minimized, moved, or resized, events are raised by Outlook. All
these events can be canceled to prevent the change to the window from occurring:

Explorer.BeforeMaximize is raised on an Explorer object when the window it corresponds to is about to be
maximized. Outlook passes by reference a Boolean cancel parameter. The cancel parameter can be set to true by
your event handler to prevent Outlook from maximizing the window.

Inspector.BeforeMaximize is raised on an Inspector object when the window it corresponds to is about to be
maximized. Outlook passes by reference a Boolean cancel parameter. The cancel parameter can be set to true by
your event handler to prevent Outlook from maximizing the window.

Explorer.BeforeMinimize is raised on an Explorer object when the window it corresponds to is about to be
minimized. Outlook passes by reference a Boolean cancel parameter. The cancel parameter can be set to true by
your event handler to prevent Outlook from minimizing the window.

Inspector.BeforeMinimize is raised on an Inspector object when the window it corresponds to is about to be
minimized. Outlook passes by reference a Boolean cancel parameter. The cancel parameter can be set to TRue by
your event handler to prevent Outlook from minimizing the window.

Explorer.BeforeMove is raised on an Explorer object when the window it corresponds to is about to be moved.
Outlook passes by reference a Boolean cancel parameter. The cancel parameter can be set to TRue by your event
handler to prevent Outlook from moving the window.

Inspector.BeforeMove is raised on an Inspector object when the window it corresponds to is about to be
moved. Outlook passes by reference a Boolean cancel parameter. The cancel parameter can be set to true by your
event handler to prevent Outlook from moving the window.

Explorer.BeforeSize is raised on an Explorer object when the window it corresponds to is about to be resized.
Outlook passes by reference a Boolean cancel parameter. The cancel parameter can be set to TRue by your event
handler to prevent Outlook from resizing the window.

Inspector.BeforeSize is raised on an Inspector object when the window it corresponds to is about to be
resized. Outlook passes by reference a Boolean cancel parameter. The cancel parameter can be set to TRue by your
event handler to prevent Outlook from resizing the window.

Close Events

When an Explorer or Inspector window is closed, Outlook raises an event:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Explorer.Close is raised on an Explorer object when the window it corresponds to has been closed.

Inspector.Close is raised on an Inspector object when the window it corresponds to has been closed.

Note

Close is the name of both a method and an event on the Explorer and Inspector object. Because of this
collision, you will have to use the CType operator to cast the Explorer object to the
ExplorerEvents_10_Event interface and the Inspector object to the InspectorEvents_10_Event when adding
an event handler dynamically using the AddHandler statement. If you are adding an event handler
declaratively using WithEvents and Handles, you do not have to worry about this issue.

Listing 24.1 in Chapter 24, "Creating Outlook AddIns with VSTO," shows an example of handling these events.

View and Selection Change Events

As you navigate from folder to folder in an Explorer window, Outlook displays a view of the items in the folder you have
selected. The user can also change the view for a particular folder by using the View menu and choosing a different
view from the Current View submenu of the Arrange By menu. Outlook raises events when the view changes or the
selection changes:

Explorer.BeforeViewSwitch is raised on an Explorer object when the user changes the view for a particular
folder by using the View menu. This event is not raised when the user simply switches from folder to folder,
thereby changing the view (but the ViewSwitch event is raised). Outlook passes a newView parameter that is of
type Object. This parameter can be cast to a String value representing the name of the view about to be switched
to. Outlook also passes by reference a Boolean cancel parameter. The cancel parameter can be set to true by your
event handler to prevent Outlook from switching to the view the user selected.

Explorer.ViewSwitch is raised on an Explorer object when the view changes either because the user changed
the view using the View menu or because the user selected another folder.

Inspector.SelectionChange is raised on an Explorer object when the selection in the Explorer window
changes.

Explorer.BeforeFolderSwitch is raised on an Explorer object before the active folder changes. Outlook passes
a newFolder parameter of type Object. This parameter can be cast to a MAPIFolder that represents what the new
active folder will be. Outlook also passes by reference a Boolean cancel parameter. The cancel parameter can be set
to true by your event handler to prevent Outlook from switching to the folder the user selected.

Explorer.FolderSwitch is raised on an Explorer object when the active folder changes.

Listing 10.3 shows a VSTO Outlook add-in that handles these events.

Listing 10.3. A VSTO AddIn That Handles View and Selection Change Events

Public Class ThisApplication

 Private WithEvents explorer As Outlook.Explorer

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 explorer = Me.ActiveExplorer

 End Sub

 Private Sub Explorer_BeforeViewSwitch(_
 ByVal NewView As Object, _
 ByRef cancel As Boolean) Handles explorer.BeforeViewSwitch

 MsgBox(String.Format("About to switch to {0}.", NewView))

 End Sub

 Private Sub Explorer_ViewSwitch() Handles explorer.ViewSwitch
 Dim view As Outlook.View = explorer.CurrentView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim view As Outlook.View = explorer.CurrentView
 If view IsNot Nothing Then
 MsgBox(String.Format(_
 "The view switched. Current view is now {0}.", _
 view.Name))
 End If
 End Sub

 Private Sub Explorer_SelectionChange() _
 Handles explorer.SelectionChange

 MsgBox(String.Format(_
 "Selection changed. {0} items selected.", _
 explorer.Selection.Count))

 End Sub

 Private Sub Explorer_BeforeFolderSwitch(_
 ByVal NewFolder As Object, _
 ByRef cancel As Boolean) Handles explorer.BeforeFolderSwitch

 Dim folder As Outlook.MAPIFolder = _
 CType(NewFolder, Outlook.MAPIFolder)

 MsgBox(String.Format("The new folder will be {0}.", _
 folder.Name))

 End Sub

 Private Sub Explorer_FolderSwitch() _
 Handles explorer.FolderSwitch
 MsgBox("Folder switch")
 End Sub

End Class

Folder Change Events

Given a collection of folders in Outlook, several events are raised when folders in that collection change:

Folders.FolderAdd is raised on a Folders collection when a new folder is added. Outlook passes a folder
parameter of type MAPIFolder representing the newly added folder.

Folders.FolderRemove is raised on a Folders collection when a folder is deleted.

Folders.FolderChange is raised on a Folders collection when a folder is changed. Examples of changes include
when the folder is renamed or when the number of items in the folder changes. Outlook passes a folder
parameter of type MAPIFolder representing the folder that has changed.

Listing 10.4 shows an add-in that handles folder change events for any subfolders under the Inbox folder. To get to a
Folders collection, we first get a NameSpace object. The NameSpace object is accessed by calling the
Application.Session property. The NameSpace object has a method called GetDefaultFolder that returns a MAPIFolder
object to which you can pass a member of the enumeration OlDefaultFolders to get a standard Outlook folder. In Listing
10.4, we pass olFolderInbox to get a MAPIFolder for the Inbox. Then we connect our event handlers to the Folders
collection associated with the Inbox's MAPIFolder object.

Listing 10.4. A VSTO AddIn That Handles Folder Change Events

Public Class ThisApplication

 Private WithEvents folders As Outlook.Folders

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim ns As Outlook.NameSpace = Me.Session
 Dim folder As Outlook.MAPIFolder = _
 ns.GetDefaultFolder(Outlook.OlDefaultFolders.olFolderInbox)
 folders = folder.Folders

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

 Private Sub Folders_FolderAdd(_
 ByVal folder As Outlook.MAPIFolder) _
 Handles folders.FolderAdd

 MsgBox(String.Format("Added {0} folder.", folder.Name))

 End Sub

 Private Sub Folders_FolderChange(_
 ByVal folder As Outlook.MAPIFolder) _
 Handles folders.FolderChange

 MsgBox(String.Format("Changed {0} folder. ", folder.Name))

 End Sub

 Private Sub Folders_FolderRemove() _
 Handles folders.FolderRemove
 MsgBox("Removed a folder.")
 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Outlook Item Events
Outlook has many events that occur at the Outlook item level. We refer to Item events in this section, but there is no
Item object per se in the Outlook object model. Instead, you will find Item events on each of the 16 Outlook object
model objects listed in Table 10.1

Item Addition, Deletion, and Change Events

Several events are raised when Outlook items are added, deleted, or changed:

Items.ItemRemove is raised when an item is deleted from the Items collection associated with a folderfor
example, when an item is deleted from the collection of items in the Inbox folder. It is raised once for each item
removed from the collection. Unfortunately, the item removed from the collection is not passed as a parameter
to this event and is difficult to determine unless you store the previous state of the items in the folder in some
way. This event is also not raised if more than 16 items are deleted at once or when the last item in a folder is
deleted if the folder is in a PST file. You can work around these limitations by using the FolderChange event
described in the "Folder Change Events" section earlier in this chapter. For example, you could store the
number of items in the folder in a variable and when handling the FolderChange event determine whether the
number of items in the folder have decreased.

Items.ItemChange is raised when an item is changed in the Items collection associated with a folderfor
example, when an item is changed in the collection of Outlook items in the Inbox folder. Outlook passes the
Outlook item that has changed as an Object parameter to this event.

Items.ItemAdd is raised when an item is added to the Items collection associated with a folderfor example,
when an item is added to the collection of Outlook items in the Inbox folder. It is raised once for each item that
is added to the collection. Outlook passes the Outlook item that was added as an Object parameter to this event.
Unfortunately, this event is not raised if a large number of items are added at once. You can work around this
limitation by using the FolderChange event described in the "Folder Change Events" section earlier in this
chapter. You could store the state of the items in the folder that you want to monitor for changes and, when
handling the FolderChange event, determine whether the new state of the items in the folder matches the state
you have stored.

Item.BeforeDelete is raised on an Outlook item when the item is deleted. The item must be deleted from an
Inspector window, however; the event is not raised if you just delete the item from a folder. Outlook passes by
reference a Boolean cancel parameter. The cancel parameter can be set to TRue by your event handler to prevent
Outlook from deleting the item.

Listing 10.5 shows some VSTO Outlook add-in code that handles these events. To get to an individual MailItem to
handle the Item.BeforeDelete event, the code first gets the NameSpace object. The NameSpace object is accessed by
calling the Application.Session property. The NameSpace object has a method called GetDefaultFolder that returns a
MAPIFolder to which you can pass a member of the enumeration OlDefaultFolders to get a standard Outlook folder. In
Listing 10.5, we pass olFolderInbox to get a MAPIFolder for the Inbox. Then we use the Items collection associated with
the Inbox's MAPIFolder to connect our event handlers to, as well as to get an individual MailItem to handle the
Item.BeforeDelete event.

Listing 10.5. A VSTO AddIn That Handles Item Addition, Change, and Delete
Events

Public Class ThisApplication

 Private WithEvents mailItem As Outlook.MailItem
 Private WithEvents items As Outlook.Items

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim ns As Outlook.NameSpace = Me.Session
 Dim inbox As Outlook.MAPIFolder = _
 ns.GetDefaultFolder(Outlook.OlDefaultFolders.olFolderInbox)

 For Each o As Object In inbox.Items
 If TypeOf o Is Outlook.MailItem Then
 mailItem = o
 Else
 Exit For
 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End If
 Next

 If mailItem Is Nothing Then
 MessageBox.Show("Couldn't find a mail item to connect to.")
 Else
 AddHandler mailItem.BeforeDelete, _
 AddressOf MailItem_BeforeDelete
 MsgBox(String.Format(_
 "Connected to the mail item with subject {0}.", _
 mailItem.Subject))
 End If

 items = inbox.Items

 End Sub

 Private Sub MailItem_BeforeDelete(ByVal item As Object, _
 ByRef cancel As Boolean)
 MsgBox(String.Format(_
 "The mail item {0} cannot be deleted.", _
 mailItem.Subject))
 cancel = True
 End Sub

 Private Sub Items_ItemRemove() Handles items.ItemRemove
 MsgBox("An item is about to be removed.")
 End Sub

 Private Sub GenerateItemMessage(ByVal item As Object, _
 ByVal operation As String)
 If TypeOf item Is Outlook.MailItem Then
 Dim mailItem As Outlook.MailItem = item
 MsgBox(String.Format(_
 "MailItem {0} was just {1}.", _
 mailItem.Subject, operation))
 Else
 MsgBox(String.Format(_
 "An Outlook item was just {0}.", operation))
 End If
 End Sub

 Private Sub Items_ItemChange(ByVal item As Object) _
 Handles items.ItemChange
 GenerateItemMessage(item, "changed")
 End Sub

 Private Sub Items_ItemAdd(ByVal item As Object) _
 Handles items.ItemAdd
 GenerateItemMessage(item, "added")
 End Sub

End Class

Copy, Paste, Cut, and Delete Events

Outlook raises several events when Outlook items are copied, cut, or pasted. These events are raised on an Explorer
object. An Explorer object has a Selection property that returns the current selected items in the Explorer. Because
many of the Explorer events telling you that a copy, cut, or paste is about to occur do not pass the items that are being
acted upon, you must examine the Selection object to determine the items that are being acted upon:

Explorer.BeforeItemCopy is raised before one or more Outlook items are copied. Outlook passes by
reference a Boolean cancel parameter. The cancel parameter can be set to true by your event handler to prevent the
item or items from being copied.

Explorer.BeforeItemCut is raised before one or more Outlook items are cut. Outlook passes by reference a
Boolean cancel parameter. The cancel parameter can be set to true by your event handler to prevent the item or
items from being cut.

Explorer.BeforeItemPaste is raised before one or more Outlook items are pasted. Outlook passes a
clipboardContent parameter as an Object. If the clipboard contains Outlook items that have been cut or copied, you
can cast the clipboardContent parameter to a Selection object and examine what is about to be pasted. Next,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

can cast the clipboardContent parameter to a Selection object and examine what is about to be pasted. Next,
Outlook passes a target parameter of type MAPIFolder. This represents the destination folder to which the item
or items will be pasted. Outlook also passes by reference a Boolean cancel parameter. The cancel parameter can be
set to true by your event handler to prevent the item or items from being pasted.

Listing 10.6 shows a VSTO Outlook add-in that handles these events. It uses a helper function called GenerateItemsMessage
that iterates over the items in a Selection object and displays a dialog box with the subject of each MailItem selected.

Listing 10.6. A VSTO AddIn That Handles Copy, Cut, and Paste Events

Public Class ThisApplication

 Private WithEvents explorer As Outlook.Explorer

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 explorer = Me.ActiveExplorer

 End Sub

 Private Sub GenerateItemsMessage(_
 ByVal selection As Outlook.Selection, _
 ByVal operation As String)

 Dim b As New System.Text.StringBuilder()
 b.AppendFormat("Items to be {0}:" & vbCrLf & _
 vbCrLf, operation)

 For Each o As Object In selection
 If TypeOf o Is Outlook.MailItem Then
 Dim mi As Outlook.MailItem = o
 b.AppendFormat("MailItem: {0}" & vbCrLf, mi.Subject)
 Else
 b.AppendLine("Other Outlook item")
 End If
 Next

 MsgBox(b.ToString())

 End Sub

 Private Sub Explorer_BeforeItemCopy(ByRef cancel As Boolean) _
 Handles explorer.BeforeItemCopy

 GenerateItemsMessage(explorer.Selection, "copied")

 End Sub

 Private Sub Explorer_BeforeItemCut(ByRef cancel As Boolean) _
 Handles explorer.BeforeItemCut

 GenerateItemsMessage(explorer.Selection, "cut")

 End Sub

 Private Sub Explorer_BeforeItemPaste(_
 ByRef clipboardContent As Object, _
 ByVal target As Outlook.MAPIFolder, _
 ByRef cancel As Boolean) _
 Handles explorer.BeforeItemPaste

 If TypeOf clipboardContent Is Outlook.Selection Then
 Dim selection As Outlook.Selection = clipboardContent
 GenerateItemsMessage(selection, "pasted")
 Else
 MsgBox("The clipboard is not a Selection object.")
 End If

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Property Change Events

A typical Outlook item has many associated properties, such as CreationTime, Importance, and LastModificationTime.
All the properties associated with an Outlook item are contained by the ItemProperties property. When any of these
properties is changed, Outlook raises the PropertyChange event. It is also possible to define additional custom
properties and associate them with an Outlook item. When custom properties are changed, Outlook raises the
CustomPropertyChange event:

Item.PropertyChange is raised when a property of an Outlook item is changed. Outlook passes a name
parameter as a String that represents the name of the property that was changed.

Item.CustomPropertyChange is raised when a userdefined property of an Outlook item is changed. Outlook
passes a name parameter as a String that represents the name of the userdefined property that was changed.

Open, Read, Write, and Close Events

Outlook raises events when an Outlook item is opened, written to, or closed:

Item.Read is raised when an Outlook item is displayed from within either an Explorer or Inspector view. This
event has nothing to do with the Read or Unread status of an itemjust whether it is being displayed in a view.

Item.Open is raised when an Outlook item is opened in an Inspector view. Outlook passes by reference a
Boolean cancel parameter. The cancel parameter can be set to true by your event handler to prevent the item from
being opened.

Item.Write is raised when an Outlook item is saved after being modified. Outlook passes by reference a Boolean
cancel parameter. The cancel parameter can be set to true by your event handler to prevent the item or items from
being written to.

Item.Close is raised when an Outlook item is closed after being opened in an Inspector view. Outlook passes
by reference a Boolean cancel parameter. The cancel parameter can be set to TRue by your event handler to prevent
the item or items from being closed.

Note

Close is the name of both a method and an event on Outlook item objects. Because of this collision, you
will have to use the CType operator to cast the Outlook item object to the Item Events_10_Event interface
when adding an event handler dynamically using the AddHandler statement. If you are adding an event
handler declaratively using WithEvents and Handles, you do not have to worry about this issue.

Listing 10.7 shows a VSTO Outlook add-in that handles these events.

Listing 10.7. A VSTO AddIn That Handles Open, Read, Write, and Close Events

Public Class ThisApplication

 Private mailItem As Outlook.MailItem

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim ns As Outlook.NameSpace = Me.Session
 Dim inbox As Outlook.MAPIFolder = ns.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 For Each o As Object In inbox.Items
 If TypeOf o Is Outlook.MailItem Then
 mailItem = o
 Else
 Exit For
 End If
 Next

 If mailItem Is Nothing Then
 MsgBox("Couldn't find a mail item to connect to.")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox("Couldn't find a mail item to connect to.")
 Else
 MsgBox(String.Format(_
 "Connected to the mail item with subject {0}.", _
 mailItem.Subject))

 AddHandler mailItem.Read, AddressOf MailItem_Read
 AddHandler mailItem.Open, AddressOf MailItem_Open
 AddHandler mailItem.Write, AddressOf MailItem_Write
 AddHandler CType(mailItem, _
 Outlook.ItemEvents_10_Event).Close, _
 AddressOf MailItem_Close
 End If

 End Sub

 Private Sub MailItem_Read()
 MsgBox("Read")
 End Sub

 Private Sub MailItem_Open(ByRef cancel As Boolean)
 MsgBox("Open")
 End Sub

 Private Sub MailItem_Write(ByRef cancel As Boolean)
 MsgBox("Write")
 End Sub

 Private Sub MailItem_Close(ByRef cancel As Boolean)
 MsgBox("Close")
 End Sub

End Class

EMail Events

Outlook raises several emailrelated events when new mail is received, when an Outlook item is sent by email, or when
an Outlook item is forwarded or replied to:

Application.NewMail is raised when new items are received in the Inbox, including mail messages, meeting
requests, and task requests.

Application.NewMailEx is raised when new items are received in the Inbox, including mail messages, meeting
requests, and task requests. An entry IDs parameter is passed as a String. The enTRyIDs parameter contains a
commadelimited list of the entry IDs of the Outlook items that were received. An entry ID uniquely identifies an
Outlook item.

Application.ItemSend is raised when an Outlook item is sentfor example, when the user has an Outlook item
open in an Inspector window and clicks the Send button. An item parameter is passed as an Object that contains
the Outlook item being sent. Outlook also passes by reference a Boolean cancel parameter. The cancel parameter
can be set to true by your event handler to prevent the item from being sent.

Item.Send is raised when an Outlook item is sentfor example, when the user has an Outlook item open in an
Inspector window and clicks the Send button. Outlook passes by reference a Boolean cancel parameter. The cancel
parameter can be set to true by your event handler to prevent the item from being sent.

Item.Reply is raised when an Outlook item is replied to. A response parameter is passed as an Object and
represents the Outlook item that was created as a response to the original Outlook item. Outlook also passes by
reference a Boolean cancel parameter. The cancel parameter can be set to true by your event handler to prevent the
item from being replied to.

Item.ReplyAll is raised when an Outlook item is replied to using the Reply All button. A response parameter is
passed as an Object and represents the Outlook item that was created as a response to the original Outlook
item. Outlook also passes by reference a Boolean cancel parameter. The cancel parameter can be set to TRue by
your event handler to prevent the item from being replied to.

Item.Forward is raised when an Outlook item is forwarded. A response parameter is passed as an Object and
represents the Outlook item that was created to forward the original Outlook item. Outlook also passes by
reference a Boolean cancel parameter. The cancel parameter can be set to TRue by your event handler to prevent
the item from being forwarded.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the item from being forwarded.

Listing 10.8 shows a VSTO Outlook add-in that handles these events.

Listing 10.8. A VSTO AddIn That Handles EMail Events

Public Class ThisApplication

 Private mailItem As Outlook.MailItem

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim ns As Outlook.NameSpace = Me.Session
 Dim inbox As Outlook.MAPIFolder = ns.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 For Each o As Object In inbox.Items
 If TypeOf o Is Outlook.MailItem Then
 mailItem = o
 Else
 Exit For
 End If
 Next

 If mailItem Is Nothing Then
 MsgBox("Couldn't find a mail item.")
 Else
 MsgBox(String.Format(_
 "Connected to the mail item {0}.", _
 mailItem.Subject))

 AddHandler mailItem.Send, AddressOf MailItem_Send
 AddHandler mailItem.Reply, AddressOf MailItem_Reply
 AddHandler mailItem.ReplyAll, AddressOf MailItem_ReplyAll
 AddHandler mailItem.Forward, AddressOf MailItem_Forward
 End If

 End Sub

 Private Sub GenerateItemMessage(ByVal item As Object, _
 ByVal operation As String)

 If TypeOf item Is Outlook.MailItem Then
 Dim mi As Outlook.MailItem = item
 MsgBox(String.Format(_
 "MailItem {0} will be {1}.", _
 mi.Subject, operation))
 Else
 MsgBox(String.Format(_
 "An Outlook item will be {0}.", _
 operation))
 End If

 End Sub

 Private Sub ThisApplication_NewMail() Handles Me.NewMail
 MsgBox("New mail was received")
 End Sub

 Private Sub ThisApplication_NewMailEx(_
 ByVal entryIDCollection As String) Handles Me.NewMailEx

 MsgBox(String.Format(_
 "NewMailEx: {0}.", _
 entryIDCollection))

 End Sub

 Private Sub ThisApplication_ItemSend(ByVal item As Object, _
 ByRef cancel As Boolean) Handles Me.ItemSend

 GenerateItemMessage(item, "sent")

 End Sub

 Private Sub MailItem_Send(ByRef cancel As Boolean)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub MailItem_Send(ByRef cancel As Boolean)
 MsgBox("MailItem Send")
 End Sub

 Private Sub MailItem_Reply(ByVal response As Object, _
 ByRef cancel As Boolean)
 GenerateItemMessage(response, "generated as a reply")
 End Sub

 Private Sub MailItem_ReplyAll(ByVal response As Object, _
 ByRef cancel As Boolean)
 GenerateItemMessage(response, "generated as a reply to all")
 End Sub

 Private Sub MailItem_Forward(ByVal forward As Object, _
 ByRef cancel As Boolean)
 GenerateItemMessage(forward, "generated as a forward")
 End Sub

End Class

Attachment Events

Outlook raises events when attachments are added to an Outlook item and when attachments associated with an
Outlook item are read or saved:

Item.AttachmentAdd is raised when an attachment is added to an Outlook item. Outlook passes an attachment
parameter that represents the attachment that was added.

Item.AttachmentRead is raised when an attachment attached to an Outlook item is opened for reading.
Outlook passes an attachment parameter that represents the attachment that was read.

Item.BeforeAttachmentSave is raised when an attachment attached to an Outlook item is about to be saved.
Outlook passes an attachment parameter that represents the attachment that is about to be saved. Outlook also
passes by reference a Boolean cancel parameter. The cancel parameter can be set to TRue by your event handler to
prevent the attachment from being saved.

Custom Action Events

Outlook enables you to associate custom actions with an Outlook item. A custom action is given a name and some
default behavior. You can create a custom action whose default behavior is to act on the original item or to create a
new reply to the existing item, for example. You can also set whether the action is shown as a button, a menu
command, or both. When the custom action is invoked from the menu or toolbar, the CustomAction event is raised on
the associated Outlook item.

Figure 10.2 shows a custom action that has been associated with an Outlook mail item called "My custom action."
Outlook displays the custom action in the Action menu when an Inspector window is opened on the mail item. It also
displays the custom action as a toolbar button.

Figure 10.2. A custom action called "My custom action."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Item.CustomAction is raised when a custom action associated with an Outlook item is invoked. Outlook
passes an action parameter as an Object that represents the custom action that was invoked. This parameter can
be cast to an Action object. Outlook passes a response parameter as an Object that represents the Outlook item
created because of the custom action. Outlook also passes by reference a Boolean cancel parameter. The cancel
parameter can be set to true by your event handler to prevent the custom action from being invoked.

Listing 10.9 shows a VSTO Outlook add-in that creates a custom action called My custom action. The CustomAction
event is handled to set the subject when the custom action is invoked.

Listing 10.9. A VSTO AddIn That Creates a Custom Action and Handles a Custom
Action Event

Public Class ThisApplication

 Private mailItem As Outlook.MailItem

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim ns As Outlook.NameSpace = Me.Session
 Dim inbox As Outlook.MAPIFolder = ns.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 For Each o As Object In inbox.Items
 If TypeOf o Is Outlook.MailItem Then
 mailItem = o
 Else
 Exit For
 End If
 Next

 If mailItem Is Nothing Then
 MsgBox("Couldn't find a mail item.")
 Else
 MsgBox(String.Format(_
 "Connected to the mail item {0}.", _
 mailItem.Subject))

 AddHandler mailItem.CustomAction, _
 AddressOf MailItem_CustomAction

 Dim action As Outlook.Action = mailItem.Actions.Add()
 action.Name = "My custom action"
 action.ShowOn = Outlook.OlActionShowOn.olMenuAndToolbar
 action.ReplyStyle = _
 Outlook.OlActionReplyStyle.olLinkOriginalItem
 End If

 End Sub

 Private Sub MailItem_CustomAction(ByVal action As Object, _
 ByVal response As Object, ByRef cancel As Boolean)
 action = CType(action, Outlook.Action)
 Dim mailItem As Outlook.MailItem = CType(response, _
 Outlook.MailItem)
 If action.Name = "My custom action" Then
 mailItem.Subject = "Created by my custom action"
 End If

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Other Events
Table 10.2 lists several other, less commonly used events in the Outlook object model. Figure 10.3 shows the Shortcuts
pane of the Outlook bar, with which several events in Table 10.2 are associated.

Figure 10.3. The Shortcuts pane, showing two groups (Shortcuts and Group1) and
two shortcuts (Outlook Today and Inbox).

Table 10.2. Additional Outlook Events
Events Description

Search Events
Application.AdvancedSearchCompleted When the AdvancedSearch method on the

Application object is invoked programmatically,
this event is raised when the search is
complete.

Application.AdvancedSearchStopped When the AdvancedSearch method on the
Application object is invoked programmatically,
this event is raised if the search is stopped by
calling Stop on the Search object returned by
the AdvancedSearch method.

Synchronization Events
SyncObject.OnError Raised when a synchronization error occurs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SyncObject.OnError Raised when a synchronization error occurs
while synchronizing the Send\Receive group
corresponding to the SyncObject.

SyncObject.Progress Raised periodically while synchronizing the
Send\Receive group corresponding to the
SyncObject.

SyncObject.SyncEnd Raised when the synchronization is complete
for the Send\Receive group corresponding to
the SyncObject.

SyncObject.SyncStart Raised when the synchronization starts for the
Send\Receive group corresponding to the
SyncObject.

Reminder Events
Application.Reminder Raised before a reminder is displayed.

Reminders.BeforeReminderShow Raised before a reminder is displayed.

ReminderCollection.ReminderAdd Raised when a reminder is added to the
ReminderCollection.

ReminderCollection.ReminderChange Raised when a reminder is changed in the
ReminderCollection.

ReminderCollection.ReminderFire Raised before a reminder in the
ReminderCollection is displayed.

ReminderCollection.ReminderRemove Raised when a reminder is removed from the
ReminderCollection.

ReminderCollection.ReminderSnooze Raised when a reminder in the
ReminderCollection is snoozed.

Outlook Bar Shortcuts Pane Events
OutlookBarGroups.BeforeGroupAdd Raised before a new group is added to the

Shortcuts pane in the Outlook bar.

OutlookBarGroups.BeforeGroupRemove Raised before a group is removed from the
Shortcuts pane in the Outlook bar.

OutlookBarGroups.GroupAdd Raised when a new group is added to the
Shortcuts pane in the Outlook bar.

OutlookBarPane.BeforeGroupSwitch Raised before the user switches to a different
group in the Shortcuts pane in the Outlook bar.

OutlookBarPane.BeforeNavigate Raised when the user clicks on a Shortcut in
the Shortcuts pane in the Outlook bar.

OutlookBarShortcuts.BeforeShortcutAdd Raised before a Shortcut is added to the
Shortcuts pane in the Outlook bar.

OutlookBarShortcuts.BeforeShortcutRemove Raised before a shortcut is removed from the
Shortcuts pane in the Outlook bar.

OutlookBarShortcuts.ShortcutAdd Raised when a shortcut is added to the
Shortcuts pane in the Outlook bar.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter covered the various events raised by objects in the Outlook object model. Chapter 11, "Working with
Outlook Objects," discusses in more detail the most important objects in the Outlook object model and how to use them
in your code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11. Working with Outlook Objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Application Object
This chapter examines some of the major objects in the Outlook object model, starting with the Application object.
Many of the objects in the Outlook object model are very large, and it is beyond the scope of this book to describe
these objects completely. Instead, this chapter focuses on the most commonly used methods and properties associated
with these objects.

The Application object is the root object in the Outlook object model hierarchy, meaning that you can access all the
other objects in the object model by starting at the Application object and accessing its properties and methods and the
properties and methods of objects it returns.

A companion object to the Application object is the NameSpace object, which is retrieved by using the Application
object's Session property. Some confusion can arise because functionality that you would expect to be on the
Application object is often found on the NameSpace object. The way to get to the root folders that are open in Outlook,
for example, is through the NameSpace object's Folders property. The Application object has no Folders property.

Methods and Properties That Return Active or Selected Objects

The Application object has a number of methods and properties that return active objectsobjects representing things
that are active or selected within Outlook. Table 11.1 shows some of these properties and methods.

Table 11.1. Application Properties and Methods That Return Active
Objects

Name Type What It Does

ActiveExplorer() Explorer Returns the active Explorer objectthe Explorer
window that has focus within Outlook. If an
inspector window is active, this returns the Explorer
window that is frontmost in the stack of Outlook
windows. If no Explorer windows are open, this
method returns Nothing.

ActiveInspector() Inspector Returns the active Inspector objectthe inspector
window that has focus within Outlook. If an Explorer
window is active, this returns the inspector window
that is frontmost in the stack of Outlook windows. If
no inspector windows are open, this method returns
Nothing.

ActiveWindow() Object Returns the active window as an Object. If no
windows are open, this method returns Nothing. The
returned Object can be cast to either an Explorer or
an Inspector object.

Session Session A property that returns the NameSpace object.

GetNameSpace() Session A method that returns the NameSpace object.
Takes the type of NameSpace to return as a string.
The only string you can pass to GetNameSpace,
however, is the string "MAPI". This is an older way to
get the NameSpace object. The newer way to
access the NameSpace object that is used in this
book is through the Session property.

Properties That Return Important Collections

The Application object has a number of properties that return collections that you will frequently use. Table 11.2 shows
several of these properties. Listing 11.1 shows some code from a VSTO Outlook add-in that works with the active object
methods and properties shown in Table 11.1 and the collections shown in Table 11.2.

Table 11.2. Application Properties That Return Important
Collections

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Collections
Property Name Type What It Does

Explorers Explorers Returns the Explorers collection, which enables you to
access any open Explorer windows

Inspectors Inspectors Returns the Inspectors collection, which enables you to
access any open inspector windows

Reminders Reminders Returns the Reminders collection, which enables you to
access all the current reminders

Listing 11.1. A VSTO Add-In That Works with Active Objects and Collections

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim activeExplorer As Outlook.Explorer = Me.ActiveExplorer()

 If activeExplorer IsNot Nothing Then
 MsgBox(String.Format("The active explorer is {0}.", _
 activeExplorer.Caption))
 End If

 Dim activeInspector As Outlook.Inspector
 activeInspector = Me.ActiveInspector()
 If activeInspector IsNot Nothing Then
 MsgBox(String.Format("The Active Inspector is {0}.", _
 activeInspector.Caption))
 End If

 Dim activeWindow As Object = Me.ActiveWindow()
 If TypeOf activeWindow Is Outlook.Explorer Then
 Dim explorer1 As Outlook.Explorer = activeWindow
 MsgBox(String.Format(_
 "The active window is an Explorer: {0}.", _
 explorer1.Caption))
 ElseIf TypeOf activeWindow Is Outlook.Inspector Then
 Dim inspector1 As Outlook.Inspector = activeWindow
 MsgBox(String.Format(_
 "The active window is an Inspector: {0}.", _
 inspector1.Caption))
 Else
 MsgBox("No Outlook windows are open")
 End If

 Dim ns As Outlook.NameSpace = Me.Session
 MsgBox(String.Format("There are {0} root folders.", _
 ns.Folders.Count))

 MsgBox(String.Format("There are {0} explorer windows.", _
 Me.Explorers.Count))

 For Each explorer As Outlook.Explorer In Me.Explorers
 MsgBox(explorer.Caption)
 Next

 MsgBox(String.Format("There are {0} inspector windows.", _
 Me.Inspectors.Count))

 For Each inspector As Outlook.Inspector In Me.Inspectors
 MsgBox(inspector.Caption)
 Next

 MsgBox(String.Format("There are {0} reminders.", _
 Me.Reminders.Count))

 Dim reminders As New System.Text.StringBuilder()

 For Each reminder As Outlook.Reminder In Me.Reminders
 reminders.AppendLine(reminder.Caption)
 Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Next
 MsgBox(reminders.ToString())

 End Sub

End Class

Performing a Search and Creating a Search Folder

Outlook provides an AdvancedSearch method on the Application object that allows you to perform a search in Outlook.
The AdvancedSearch method works asynchronously and raises the AdvancedSearchComplete event when the search
has completed. You can also save a search you perform using the AdvancedSearch method as an Outlook Search folder.
AdvancedSearch takes four parameters, as shown in Table 11.3.

Table 11.3. Parameters for the AdvancedSearch Method
Parameter
Name Type Description

Scope String Pass the name of the folder or folders that you want to
search. To search the Inbox, for example, pass the string
"'Inbox'". To search the Inbox and Calendar, pass "'Inbox',
'Calendar'".

 You can pass the full name of a folder, including the path
to the folder, to search a folder within a folder. The
scope string "'Reference\Reviews'"searches a folder called
Reviews nested in a folder called Reference in the default
Outlook Store.

 You can search a folder in another PST Outlook data file
that is open inside Outlook. The Scope string
"'\\Archive\Backup'" searches a folder called Backup in a PST
file called Archive that is open in Outlook.

Filter optional Object Pass the filter string that specifies what you want to
search for. You will learn how to construct this string
below.

SearchSubFolders optional Object Pass TRue to also search any subfolders under the folders
specified in Scope.

Tag optional Object Pass a String to name the search uniquely so that when
you handle the Application.AdvancedSearchComplete
event, you can distinguish between a search created by
you and other searches created by other loaded add-ins.
This is critical; you cannot assume that you are the only
add-in that is handling this event. You must carefully tag
your searches with a unique string to ensure that your
add-in does not act on an advanced search started by
another add-in.

Now we consider how to construct the filter string that is mentioned in Table 11.3. The easiest way to do this is to let
Outlook's built-in user interface for constructing filters build the string for you. To do this, first select the folder you
want to search. From the Arrange By menu in the View menu, choose Custom to display the Customize View dialog box
(see Figure 11.1).

Figure 11.1. The Customize View dialog box.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Click the Filter button to display the Filter dialog box. You can use this dialog box to create the filter you want. In Figure
11.2, we have simply set the filter to show messages in which the word review is in the Subject field.

Figure 11.2. The Filter dialog box.

After you have edited the filter to yield the results you want, click the SQL tab, shown in Figure 11.3. Check the Edit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After you have edited the filter to yield the results you want, click the SQL tab, shown in Figure 11.3. Check the Edit
These Criteria Directly check box. Doing so enables you to select the filter string and copy and paste it into your code.
After you have copied the filter string to the clipboard, you can cancel out of the Filter dialog box and the Customize
View dialog box.

Figure 11.3. The SQL tab of the Filter dialog box displays a filter string.

[View full size image]

Finally, paste the filter string into your code. You will want to expand all quotation marks to be double quotation marks.
For our example, the Visual Basic 2005 code would look like this:

Dim filter As String
filter = """urn:schemas:httpmail:subject"" LIKE '%review%'"

Listing 11.2 shows a complete example of using AdvancedSearch. Note that because the search proceeds
asynchronously, we must handle the AdvancedSearchComplete event to determine when the search is finished. We also
save the completed search as a search folder by calling Save on the completed Search object.

Listing 11.2. A VSTO Add-In That Uses the AdvancedSearch Method

Public Class ThisApplication

 Const searchTag As String = "'review' Search In Inbox"

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim scope As String = "'Inbox'"
 Dim filter As String
 filter = """urn:schemas:httpmail:subject"" LIKE '%review%'"
 Dim searchSubfolders As Boolean = True

 Try
 MsgBox("Starting search")
 Me.AdvancedSearch(scope, filter, searchSubfolders, _
 searchTag)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 searchTag)
 Catch ex As Exception
 MsgBox(ex.Message)
 End Try

 End Sub

 Public Sub ThisApplication_AdvancedSearchStopped(_
 ByVal searchObject As Outlook.Search) _
 Handles Me.AdvancedSearchStopped

 If searchObject.Tag = searchTag Then
 MsgBox(String.Format("Search completed. " & _
 Found {0} results.", _
 searchObject.Results.Count))

 ' Save this search as a search folder
 searchObject.Save(searchTag)
 End If

 End Sub

 Public Sub ThisApplication_AdvancedSearchComplete(_
 ByVal searchObject As Outlook.Search) _
 Handles Me.AdvancedSearchComplete

 If searchObject.Tag = searchTag Then
 MsgBox(String.Format("Search was stopped. " & _
 Found {0} results.", _
 searchObject.Results.Count))
 End If

 End Sub

End Class

Copying a File into an Outlook Folder

Outlook provides a method to copy an existing document, such as a spreadsheet on your desktop, to an Outlook folder.
The Application object's CopyFile method takes as a parameter a FilePath as a String, which is the full path to the
document you want to copy into the Outlook folder. It also takes a DestFolderPath parameter, which is the name of the
Outlook folder you want to copy the document to. Listing 11.3 shows an example of using CopyFile to put a spreadsheet
called mydoc.xls in the Inbox and a second spreadsheet called mydoc2.xls in a folder called Reviews nested within a
folder called Reference.

Listing 11.3. A VSTO Add-In That Uses the CopyFile Method

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Me.CopyFile("c:\mydoc.xls", "Inbox")
 Me.CopyFile("c:\mydoc2.xls", "Reference\Reviews")

 End Sub

End Class

Quitting Outlook

The Quit method can be used to exit Outlook. If any unsaved Outlook items are opened, Outlook prompts the user to
save each unsaved Outlook item. When users are prompted to save, they get a dialog box that gives them a Cancel
button. If the user clicks Cancel, Outlook does not quit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Explorers and Inspectors Collections
Listing 11.1 showed how to use Visual Basic's For Each loop to iterate over the Explorers and the Inspectors collections. It
is also possible to get to an Explorer or Inspector using the index operator () and passing an index as an Object. That
index can be a 1-based index into the array of Explorers or Inspectors, or it can be a String index that is the caption of
the Explorer or inspector window in the array. Listing 11.4 illustrates using both types of indices with the Explorers and
Inspectors collections.

Listing 11.4 also illustrates how to create a new Inspector and Explorer window. Both the Explorers and Inspectors
collections have an Add method. The Explorers collection's Add method takes a Folder parameter of type MAPIFolder,
which is the folder for which to display a new Explorer window. It takes a second optional parameter of type
OlFolderDisplayMode that enables you to set the initial display used in the newly created Explorer window. The Add method
returns the newly created Explorer object. To show the newly created Explorer object, you must then call the Explorer
object's Display method.

The Inspectors collection's Add method takes an Object parameter, which is the Outlook item for which to display an
inspector window. In Listing 11.4, we get an Outlook item out of the Inbox folder and create an inspector window for it.
To show the newly created Inspector object, you must then call the Inspector object's Display method, which takes an
optional parameter called Modal of type Object to which you can pass true to show the Inspector as a modal dialog box or
False to show the Inspector as a modeless dialog box. If you omit the parameter, the parameter defaults to False.

Listing 11.4. A VSTO Add-In That Works with Explorer and Inspector Windows

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim folder As Outlook.MAPIFolder
 Folder = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 ' Create a new explorer
 Dim NewExplorer As Outlook.Explorer = Me.Explorers.Add(_
 folder, Outlook.OlFolderDisplayMode.olFolderDisplayNormal)

 NewExplorer.Display()
 Dim explorerIndex As String = NewExplorer.Caption

 ' Get explorer by passing a String and an index
 Dim exp As Outlook.Explorer = Me.Explorers(explorerIndex)
 MsgBox(String.Format("Got explorer {0}.", exp.Caption))

 exp = Me.Explorers(1)
 MsgBox(String.Format("Got explorer {0}.", exp.Caption))

 ' Create a new inspector
 Dim item As Object = folder.Items(1)
 Dim NewInspector As Outlook.Inspector
 NewInspector = Me.Inspectors.Add(item)
 NewInspector.Display(False)
 Dim inspectorIndex As String = NewInspector.Caption

 ' Get inspector by passing a String as the index
 Dim inspector As Outlook.Inspector
 Inspector = Me.Inspectors(inspectorIndex)
 MsgBox(String.Format(_
 "Got inspector {0}.", inspector.Caption))

 inspector = Me.Inspectors(1)
 MsgBox(String.Format(_
 "Got inspector {0}.", inspector.Caption))

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Explorer Object
The Explorer object represents an Outlook Explorer windowthe main window in Outlook that displays views of folders. It
is possible to open multiple Explorer windows; you can right-click a folder in one Explorer window and choose the option
Open in New Window. Doing so creates a new Explorer window with the folder you selected to open in a new window as
the active folder.

Working with the Selected Folder, View, and Items

The Explorer object has several methods and properties that enable you to work with the selected folder in the Explorer
window, the view being used to display the list of items in that folder, and the selected items.

The CurrentFolder property returns a MAPIFolder object representing the folder selected in the Explorer window. An
Explorer window always has a selected folder. To change the selected folder in an Explorer window, you can use the
Explorer object's SelectFolder method, which takes as a parameter the MAPIFolder object you want to select. You can
also determine whether a particular folder is selected by using the Explorer object's IsFolderSelected method, which
takes as a parameter the MAPIFolder object you want to check to see whether it is selected. The IsFolderSelected
method returns TRue if the folder is selected in the Explorer window and False if it is not.

Listing 11.5 shows some code that displays the name of the selected folder. Then it checks to see whether the Contacts
folder is selected. If that folder isn't selected, the code selects it. Finally, it displays the name of the newly selected
folder. Listing 11.5 uses the NameSpace object's GetDefaultFolder method to get a MAPIFolder object for the Contacts
folder.

Listing 11.5. A VSTO Add-In That Selects the Contacts Folder

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim exp As Outlook.Explorer = Me.ActiveExplorer()

 If exp IsNot Nothing Then
 MsgBox(String.Format("{0} is selected.", _
 exp.CurrentFolder.Name))

 Dim folder As Outlook.MAPIFolder
 folder = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderContacts)

 If Not exp.IsFolderSelected(folder) Then
 exp.SelectFolder(folder)
 End If

 MsgBox(String.Format("{0} is selected.", _
 exp.CurrentFolder.Name))
 End If

 End Sub

End Class

The CurrentView property returns a View object representing the view that is being used to display the items in the
folder. A folder has a number of views that can be used to display its contents, such as view by date, by conversation,
by sender, and so on. It is also possible to define custom views. You can see the views that are defined for a given
folder by selecting that folder in an Explorer window and then choosing View > Arrange By > Current View > Define
Views to display the dialog box shown in Figure 11.4.

Figure 11.4. The Custom View Organizer dialog box shows views associated with a
folder.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[View full size image]

You can change the view used by an Explorer window by setting the Explorer object's CurrentView property to a View
object associated with the folder. Listing 11.6 demonstrates this by selecting the Inbox folder and then setting the view
for the Inbox folder to one of the View objects associated with the folder.

Listing 11.6. A VSTO Add-In That Selects the Inbox Folder and Changes the View

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim exp As Outlook.Explorer = Me.ActiveExplorer()

 If exp IsNot Nothing Then
 Dim folder As Outlook.MAPIFolder
 folder = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)
 exp.SelectFolder(folder)

 Dim view As Outlook.View = folder.Views(folder.Views.Count)
 exp.CurrentView = view
 MsgBox(String.Format("The view is now {0}.", view.Name))
 End If

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to a selected folder and selected view, Outlook items can be selected in an Explorer window. A user can
select multiple items in a folder by Shift-clicking to select a range of items or holding down the Ctrl key while clicking to
select discontiguous items. To retrieve the items that are selected in an Explorer window, use the Explorer object's
Selection property. The Selection property returns a Selection collection. The Selection collection has a Count property
that gives you the number of selected Outlook items. The collection also has an Item method that allows you to get to
an individual Outlook item that was selected, or you can use the For Each loop to iterate over a Selection collection and
get back Outlook items that are selected. Outlook items are returned as type Object because they could be any of the 16
types of Outlook items (MailItem, ContactItem, and so on).

In Listing 11.7, we handle the Application object's BeforeFolderSwitch event to display the items selected in a given
folder before Outlook switches to a new folder. We use the late-bound Subject property to get the subject from each
selected Outlook item. We know that the Subject property exists on all 16 types of Outlook items, so this is a safe
property to get for any Outlook item contained in the selection. This simplifies the code so it does not have to have a
cast to all 16 Outlook item types before accessing the Subject property.

Listing 11.7. A VSTO Add-In That Iterates over the Selected Outlook Items in a
Folder

Public Class ThisApplication

 Private WithEvents explorer As Outlook.Explorer

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 explorer = Me.ActiveExplorer()

 End Sub

 Private Sub explorer_BeforeFolderSwitch1(_
 ByVal NewFolder As Object, _
 ByRef Cancel As Boolean) _
 Handles explorer.BeforeFolderSwitch

 Dim selection As Outlook.Selection = explorer.Selection
 For Each o As Object In selection
 ' Access late bound Subject property

 Dim subject As String = CType(o.Subject, String)
 MsgBox(String.Format(_
 "An Outlook Item is selected with subject {0}.", _
 subject))
 Next

 End Sub
End Class

Working with an Explorer Window

Table 11.4 lists several properties and methods used to set and get the position of an Explorer window, as well as some
other commonly used properties and methods related to the management of the window.

Table 11.4. Explorer Properties and Methods
Name Type Description

Activate() Makes the Explorer window the active window with
focus.

Caption String Read-only property that returns a String value containing
the caption of the Explorer window.

Close() Closes the Explorer window.

Height Integer Gets and sets the height of the Explorer window in
pixels. This can be set only when the WindowState is set
to OlWindowState.olNormalWindow.

Left Integer Gets and sets the left position of the Explorer window in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Left Gets and sets the left position of the Explorer window in
pixels. This can be set only when the WindowState is set
to OlWindowState.olNormalWindow.

Top Integer Gets and sets the top position of the Explorer window in
pixels. This property can be set only when the
WindowState is set to OlWindowState.olNormalWindow.

Width Integer Gets and sets the width of the Explorer window in pixels.
This can be set only when the WindowState is set to
OlWindowState.olNormalWindow.

WindowState optional Object Gets and sets the window state of the Explorer window
using the OlWindowState enumeration. Can be set to
olMaximized, olMinimized, and olNormalWindow.

Adding Buttons and Menus to an Explorer Window

The CommandBars property returns a CommandBars object, which is defined in the Microsoft Office 11.0 Object Library
primary interop assembly (PIA) object. Outlook uses the same object model used by Word and Excel to work with
buttons and menus in an Explorer window. Refer to Chapter 4, "Working with Excel Events," for more information on
the CommandBars object hierarchy and examples of using the CommandBar objects. Listing 11.8 shows a VSTO add-in
that creates a toolbar and a button, and handles the click event for the new button.

Listing 11.8. A VSTO Add-In That Adds a Toolbar and Button to an Explorer
Window

Public Class ThisApplication

 Private WithEvents btn1 As Office.CommandBarButton

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim explorer As Outlook.Explorer = Me.ActiveExplorer()

 If explorer IsNot Nothing Then
 Dim bar As Office.CommandBar = explorer.CommandBars.Add(_
 "My Command Bar", Temporary:=True)
 bar.Visible = True

 btn1 = bar.Controls.Add(_
 Office.MsoControlType.msoControlButton, Temporary:=True)

 btn1.Caption = "My Custom Button"
 btn1.Tag = "OutlookAddin1.btn1"
 btn1.Style = Office.MsoButtonStyle.msoButtonCaption
 End If

 End Sub

 Private Sub Btn1_Click(ByVal ctrl As Office.CommandBarButton, _
 ByRef cancelDefault As Boolean) Handles btn1.Click

 MsgBox("You clicked my button!")

 End Sub

End Class

Associating a Web View with a Folder

It is possible to associate with an Outlook folder an HTML Web page by right-clicking a folder, choosing Properties, and
then clicking the Home Page tab of the dialog box that appears. Figure 11.5 shows the Home Page tab of the Properties
dialog box. You can also associate a Web page with a Folder using the MAPIFolder object's WebViewURL property. If
you check Show Home Page by Default for This Folder or set the MAPIFolder object's WebViewOn property to TRue,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

you check Show Home Page by Default for This Folder or set the MAPIFolder object's WebViewOn property to TRue,
users are shown the Web page when they select the folder, rather than an Outlook view of the items in the folder.

Figure 11.5. Associating an HTML page with a folder.

You can get to the HTML document object model for the Web page displayed by a folder by using the Explorer object's
HTMLDocument property. This property returns a non-Nothing value only if the selected folder is associated with a Web
page. Interacting with the HTML document object model of a Web page through this property is an advanced topic that
is not covered further in this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Inspector Object
The inspector window is the window in Outlook that shows detailed information for a particular Outlook item. This is the
window that displays when you double-click an item in an Outlook folder. You can have multiple inspector windows open
at any time.

Working with the Outlook Item Associated with the Inspector

An inspector window is always associated with 1 of the 16 Outlook item types listed in Table 10.1 in Chapter 10,
"Working with Outlook Events." To get to the Outlook item associated with an Inspector object, use the CurrentItem
property, which returns an Outlook item as an Object. You can cast the returned Object to 1 of the 16 Outlook item types.

Working with an Inspector Window

Table 11.5 lists several properties and methods that are used to set and get the position of an inspector window, as
well as some other commonly used properties and methods related to the management of the window.

Table 11.5. Inspector Properties and Methods
Name Type Description

Activate() Makes the inspector window the active window with
focus.

Caption String Read-only property that returns a String value containing
the caption of the inspector window.

Close() Closes the inspector window.

Height Integer Gets and sets the height of the inspector window in
pixels. This can be set only when the WindowState is set
to OlWindowState.olNormalWindow.

Left Integer Gets and sets the left position of the inspector window in
pixels. This can be set only when the WindowState is set
to OlWindowState.olNormalWindow.

Top Integer Gets and sets the top position of the inspector window in
pixels. This can be set only when the WindowState is set
to OlWindowState.olNormalWindow.

Width Integer Gets and sets the width of the inspector window in
pixels. This can be set only when the WindowState is set
to OlWindowState.olNormalWindow.

WindowState optional Object Gets and sets the window state of the inspector window
using the OlWindowState enumeration. Can be set to
olMaximized, olMinimized, and olNormalWindow.

Working with Different Inspector Editor Types

In the Mail Format tab of Outlook's Options dialog box, users can set preferences for what kind of formats and editor
they want to use when editing an Outlook item. The Options dialog box, shown in Figure 11.6, can be accessed using
the Options menu command in the Tools menu. Two key options are what message format to use (HTML, Rich Text, or
Plain Text) and whether to use Word as the editor of e-mail messages and rich text.

Figure 11.6. Picking formats and editor preferences in the Options dialog box.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

These settings help determine what the Inspector object's EditorType property returns. EditorType returns a member of
the OlEditorType enumeration: olEditorHTML, olEditorRTF, olEditorText, or olEditorWord. If the EditorType returns olEditorHTML, you
can get to the HTML document object model for the inspector window by using the Inspector object's HTMLEditor
property. Using the HTML document object model is an advanced topic and is not covered in this book.

If the user has chosen to use Word as his editor, the Inspector object's IsWordMail property returns TRue. This means
that Outlook has started an instance of Word and is embedding the Word editor in the inspector window. Outlook has
also created a Word Document to edit the Outlook item in. You can access Word's Document object by using the
WordEditor property. This property returns an Object that you can cast to Word's Document object.

Adding Buttons and Menus to an Inspector Window

The Inspector object's CommandBars property returns a CommandBars object, which is defined in the Microsoft Office
11.0 Object Library PIA object. Outlook uses the same object model used by Word and Excel to work with buttons and
menus associated with an inspector window. See Chapter 4, "Working with Excel Events," for more information on the
CommandBars object hierarchy and examples of using the CommandBar objects. Listing 11.9 shows a simple VSTO
add-in that creates a toolbar and a button in an inspector window and handles the click event for the new button.

Listing 11.9. A VSTO Add-In That Adds a Toolbar and a Button to an Inspector
Window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window

Public Class ThisApplication

 Private WithEvents btn1 As Office.CommandBarButton

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim folder As Outlook.MAPIFolder
 folder = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)
 Dim inspector As Outlook.Inspector = Me.Inspectors.Add(_
 folder.Items(1))
 inspector.Display()

 Dim bar As Office.CommandBar = inspector.CommandBars.Add(_
 "My Command Bar", Temporary:=True)
 bar.Visible = True

 btn1 = bar.Controls.Add(_
 Office.MsoControlType.msoControlButton, _
 Temporary:=True)

 btn1.Caption = "My Custom Button"
 btn1.Tag = "OutlookAddin1.btn1"
 btn1.Style = Office.MsoButtonStyle.msoButtonCaption

 End Sub

 Private Sub Btn1_Click(ByVal ctrl As Office.CommandBarButton, _
 ByRef cancelDefault As Boolean) Handles btn1.Click

 MsgBox("You clicked my button!")

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the NameSpace Object
A companion object to the Application object is the NameSpace object, which is retrieved by using the Application
object's Session property. As noted earlier, some confusion can arise because functionality that you would expect to be
on the Application object is actually often found on the NameSpace object. Further increasing the confusion is the
Application.GetNameSpace method, which is an older way to get to a NameSpace object. This method takes a string for
the type of NameSpace to return, implying that you can get different types of NameSpace objects. In reality, the
GetNameSpace method accepts only one string ("MAPI"). In this chapter, we use the Application object's Session
property (added in Outlook 98) to get a NameSpace object rather than the older GetNameSpace method.

Working with the Root Folders of the Open Outlook Stores

The NameSpace object's Folders property returns a Folders collection, allowing you to iterate over all the root folders
that are open within Outlook. Each root folder is the root of what is called a Store. A root folder could correspond to an
Exchange account or some other e-mail account. It could also correspond to an Outlook data file, such as a .PST file. All
folders and Outlook items under a particular root folder share a StoreID.

You can iterate over the Folders collection using Visual Basic's For Each loop. You can also get to a particular MAPIFolder
in the Folders collection using the index operator (). The index operator can be passed a String representing the name of
the Folder in the Folders collection or a 1-based index representing the index of the Folder within the Folders collection.

Although the Folders collection provides Add and Remove methods, these methods are not applicable to root folders,
because root folders represent accounts that are added and removed by adding and removing e-mail accounts or
adding and removing Outlook data files. The following section discusses how a Store is added and removed
programmatically.

Listing 11.10 illustrates iterating over the Folders collection using For Each. It also shows how to get a MAPIFolder using
the index operator on the Folders collection. Finally, it shows how to add a new Folder to an existing store using the
Folders collection's Add method.

Listing 11.10. A VSTO Add-In That Iterates over the Root Folders and Adds a New
Folder

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 For Each folder As Outlook.MAPIFolder In Me.Session.Folders
 MsgBox(folder.Name)
 Next

 Dim rootFolder As Outlook.MAPIFolder = Me.Session.Folders(1)
 Dim NewFolder As Outlook.MAPIFolder
 NewFolder = rootFolder.Folders.Add(_
 "Test Notes Folder", _
 Outlook.OlDefaultFolders.olFolderNotes)

 MsgBox(String.Format(_
 "A new folder has been created in the store {0}.", _
 rootFolder.Name))

 End Sub

End Class

Adding and Removing Outlook Stores

To add a Store programmatically, you can use the NameSpace object's AddStore or AddStoreEx method. The AddStore
method takes a Store parameter of type Object. You can pass a String representing the complete filename of the PST file to
add. If the PST file you provide does not exist, Outlook creates the file for you. AddStoreEx takes the same Store
parameter of type Object that AddStore does. It also takes a second Type parameter of type OlStoreType. To this

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

parameter of type Object that AddStore does. It also takes a second Type parameter of type OlStoreType. To this
parameter, you can pass a member of the OlStoreType enumeration, which will control the format in which the PST file
will be created should you pass a PST file that does not exist. The possible values you can pass are olStoreDefault,
olStoreUnicode, and olStoreANSI.

Use the NameSpace object's RemoveStore method to remove a Store programmatically. RemoveStore removes the
Store from Outlook but does not delete the actual PST file or mailbox on the server associated with the Store.
RemoveStore takes a Folder parameter of type MAPIFolder. This parameter must be one of the root folders in the
NameSpace object's Folders collection.

Determining the Current User

The NameSpace object's CurrentUser property returns a Recipient object representing the logged-in user. Given a
Recipient object, you can use the Recipient object's Name property to get the name of the logged-in user.

Checking Whether Outlook Is Offline

You can determine whether Outlook is offline by getting the value of the NameSpace object's Offline property. This
property returns true if Outlook is offline and not connected to a server.

Getting Standard Folders Such As the Inbox Folder

A method already used in several examples in this chapter to get standard Outlook folders, such as the Inbox folder, is
the NameSpace object's GetDefaultFolder method. This method takes a FolderType parameter of type OlDefaultFolders and
returns a MAPIFolder object. Table 11.6 lists the members of the OlDefaultFolders enumeration that can be passed to
GetDefaultFolder and the standard Outlook folder that is returned.

Table 11.6. Members of the OlDefaultFolders Enumeration That Can
Be Passed to NameSpace Object's GetDefaultFolder Method

Enumeration Member GetDefaultFolder Result

olFolderCalendars Returns the Calendar folder

olFolderConflicts Returns the Conflicts folder

olFolderContacts Returns the Contacts folder

olFolderDeletedItems Returns the Deleted Items folder

olFolderDrafts Returns the Drafts folder

olFolderInbox Returns the Inbox folder

olFolderJournal Returns the Journal folder

olFolderJunk Returns the Junk E-Mail folder

olFolderLocalFailures Returns the Local Sync Failures folder

olFolderNotes Returns the Notes folder

olFolderOutbox Returns the Outbox folder

olFolderSentMail Returns the Sent Items folder

olFolderServerFailures Returns the Server Sync Failures folder

olFolderSyncIssues Returns the Sync Issues folder

olFolderTasks Returns the Tasks folder

olPublicFoldersAllPublicFolders Returns the Public Folders folder

Getting a Folder or Outlook Item by ID

All Outlook items and folders are uniquely identified by an EntryID and a StoreID. All Outlook items and folders within a
given Store share a StoreID. The EntryID is unique within a given Store. So the combination of an EntryID and StoreID
uniquely identifies a folder or an Outlook item. When you have created a new Outlook item using the Items collection's
Add method or the Application object's CreateItem method, the newly created Outlook item will not be assigned an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add method or the Application object's CreateItem method, the newly created Outlook item will not be assigned an
EntryID until you call the Save method on the newly created item.

Both a MAPIFolder and the 16 Outlook item types have an EntryID property that returns the EntryID for the folder or
item as a String. But only MAPIFolders have a StoreID property. To determine the StoreID that corresponds to a
particular Outlook item, you must get the parent MAPIFolder using the Parent property of an Outlook item and then
determine the StoreID from the parent folder.

The NameSpace object's GetFolderFromID method takes an EntryID parameter as a String and an optional StoreID
parameter as an Object to which you can pass the StoreID as a String. If you omit the StoreID parameter by passing
Type.Missing, Outlook assumes that it should look in the default Store (the Store in which the default Inbox and Calendar
are located). The GetFolderFromID method returns the MAPIFolder object identified by the EntryID and StoreID.

The NameSpace object's GetItemFromID method takes an EntryID parameter as a String and an optional StoreID parameter
as an Object to which you can pass the StoreID as a String. If you omit the StoreID parameter, Outlook assumes that it
should look in the default Store. The GetItemFromID method returns the Object for the Outlook item identified by the
EntryID and StoreID. Then you can cast the returned Object to 1 of the 16 Outlook item types listed in Table 10.1 in
Chapter 10, "Working with Outlook Events."

Listing 11.11 illustrates getting a folder and an Outlook item by EntryID and StoreID.

Listing 11.11. A VSTO Add-In That Uses the NameSpace Object's GetFolderFromID
and GetItemFromID Methods

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)
 Dim inboxStoreID As String = inbox.StoreID
 Dim inboxEnTryID As String = inbox.EntryID

 Dim outlookItem As Object = inbox.Items(1)
 Dim itemStoreID As String = inboxStoreID
 Dim itemEntryID As String = outlookItem.EntryID
 Dim theFolder As Outlook.MAPIFolder
 theFolder = Me.Session.GetFolderFromID(_
 inboxStoreID, inboxEnTryID)
 MsgBox(theFolder.Name)

 Dim theItem As Object = Me.Session.GetItemFromID(_
 itemEntryID, itemStoreID)
 MsgBox(theItem.Subject)

 End Sub

End Class

Accessing Address Books and Address Entries

The NameSpace object's AddressLists property returns the AddressLists collection. The AddressLists collection is a
collection containing all the available address books as AddressList objects. The AddressList object has an
AddressEntries collection, which is a collection of AddressEntry objects. Each AddressEntry object represents an address
in an address book.

Listing 11.12 iterates over the available address books and displays the name of each address book. It also displays the
name of the first address entry in each address book.

Listing 11.12. A VSTO Add-In That Iterates over Available Address Books

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 11.12. A VSTO Add-In That Iterates over Available Address Books

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim lists As Outlook.AddressLists = Me.Session.AddressLists
 For Each list As Outlook.AddressList In lists
 MsgBox(String.Format(_
 "{0} has {1} address entries.", _
 list.Name, list.AddressEntries.Count))

 If list.AddressEntries.Count > 0 Then
 MsgBox(String.Format(_
 "The first address in this address book is {0}.", _
 list.AddressEntries(1).Name))
 End If
 Next

 End Sub

End Class

Displaying the Outlook Select Folder Dialog Box

The NameSpace object provides a method that allows you to display Outlook's Select Folder dialog box, shown in Figure
11.7. The Select Folder dialog box provides a way for the user to pick a folder, as well as create a new folder. The
NameSpace object's PickFolder method displays the Select Folder dialog box as a modal dialog box. The method returns
the MAPIFolder object corresponding to the folder the user picked in the dialog box. If the user cancels the dialog box,
this method will return Nothing.

Figure 11.7. Outlook's Select Folder dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the MAPIFolder Object
This chapter has already covered how to iterate over Folders collections, how to get a MAPIFolder out of a Folders
collection using the index operator, how to access Outlook's default folders, how to get a MAPIFolder by EntryID and
StoreID, and how to use Outlook's Select Folder dialog box to get a MAPIFolder. This section examines some additional
properties and methods associated with the MAPIFolder object.

Other Identifiers for a Folder

The MAPIFolder object's Name property returns the display name of a folder as a String. The default server sync failures
folder identified by OlDefaultFolders.olFolderServerFailures, for example, returns the string "Server Failures" for its Name property.

The MAPIFolder object's FolderPath property returns the full name of the folder as a String, including the names of the
containing folders. The default server sync failures folder identified by OlDefaultFolders.olFolderServerFailures, for example,
returns the string "\\Eric Carter\Sync Issues\Server Failures" for its FolderPath property. For this example, the Server Failures
folder is contained in a folder called Sync Issues in the Store called Eric Carter.

The MAPIFolder object's Description property returns a String containing the description of the folder. This is a read/write
property that can be set to any String value. The MAPIFolder object's ShowItemCount property controls whether the
folder shows the unread item count, total item count, or no count when displayed in the Outlook Navigation pane folder
list. It can return or be set to a member of the OlShowItemCount enumeration: olNoItemCount, olShowTotalItemCount, or
olShowUnreadItemCount. If you want to determine the number of unread items in a particular folder, use the MAPIFolder
object's UnReadItemCount property, which returns an Integer value representing the unread item count.

Accessing Subfolders Contained in a Folder

A MAPIFolder may contain subfolders. The MAPIFolder object's Folders property returns a Folders collection, which
contains any additional MAPIFolder objects that are subfolders of the given folder.

As described earlier, you can iterate over the subfolders contained in the Folders collection for a MAPIFolder using
Visual Basic's For Each loop. You can also get to a particular MAPIFolder in the Folders collection by using the index
operator (). The index operator can be passed a String representing the name of the Folder in the Folders collection or a
1-based index representing the index of the Folder within the Folders collection.

The Folders collection's Add method enables you to add a new subfolder to the subfolders associated with a MAPIFolder.
The Add method takes the name of the new folder as a String parameter. It also takes as an optional Object parameter
the Outlook folder type to use for the new folder. You can pass this parameter a subset of the OlDefaultFolders constants:
olFolderCalendar, olFolderContacts, olFolderDrafts, olFolderInbox, olFolderJournal, olFolderNotes, olPublicFoldersAllPublicFolders, or olFolderTasks. If
you omit this parameter, the Outlook folder type of the newly created folder matches the folder type of the parent
folder. Also note that a folder of type olPublicFoldersAllPublicFolders can be added only somewhere under the root public
folder returned by the NameSpace object's GetdefaultFolder(olPublicFoldersAllPublicFolders).

The Folders collection's Remove method enables you to remove a subfolder by passing the 1-based index of the folder
in the Folders collection. Figuring out what the 1-based index is can be a bit of a pain; it usually is easier just to call the
Delete method on the MAPIFolder object representing the subfolder you want to remove.

Listing 11.13 shows a VSTO add-in that iterates over the subfolders of the Inbox folder and then adds a new folder
using the Folders collection's Add method. Then it deletes the newly added folder using the MAPIFolder object's Delete
method rather than the Folders collection's Remove method.

Listing 11.13. A VSTO Add-In That Iterates over Subfolders of the Inbox Folder,
Adds a New Subfolder, and Then Deletes It

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim folder As Outlook.MAPIFolder
 folder = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)
 MsgBox(String.Format(_
 "There are {0} subfolders in the Inbox.", _
 folder.Folders.Count))

 For Each subFolder As Outlook.MAPIFolder In folder.Folders

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 For Each subFolder As Outlook.MAPIFolder In folder.Folders
 MsgBox(String.Format("Sub folder {0}.", subFolder.Name))
 Next

 Dim NewSubFolder As Outlook.MAPIFolder
 NewSubFolder = folder.Folders.Add(_
 "New Temporary Folder")
 MsgBox("A new subfolder was added in the Inbox folder")

 NewSubFolder.Delete()
 MsgBox("The new subfolder was just deleted.")

 End Sub

End Class

Accessing Items Contained in a Folder

A MAPIFolder's main purpose in life is to contain Outlook items. When you create a new folder, you have to specify the
type of folder it is. This type constrains the types of Outlook items it can contain. Figure 11.8 shows Outlook's Create
New Folder dialog box, which appears when you right-click a folder or root folder (Store) in Outlook and choose New
Folder. The Create New Folder dialog box makes the user decide what kind of items the folder can contain: Calendar
Items, Contact Items, Journal Items, Mail and Post Items, Note Items, or Task Items. This constraint is enforced by
Outlook. If you try to drag a Mail item to a folder that was created to contain Calendar items, the item type will be
changed to Calendar.

Figure 11.8. Outlook's Create New Folder dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MAPIFolder object's Items property returns an Items collection containing Outlook items in the folder. Each Outlook
item in the folder is returned as an Object. You can use the fact that folders are constrained to contain certain types of
Outlook items when iterating over items in a folder. If you check the type of item that folder contains by looking at the
DefaultItemType property, you can write code that tries to cast the objects returned from the Items collection only to
the Outlook item types that are allowed in that folder. So, for example, if you are iterating over items in a Folder whose
DefaultItemType property returns olContactItem, objects returned from the Items collection can be cast to either a
ContactItem or a DistListItem.

Table 11.7 shows how the member of the OlDefaultFolders enumeration you pass in when you create the folder using
Folders.Add corresponds to the returned DefaultItemType and what possible Outlook item types could be found in that
folder.

Table 11.7. Relationship Between Folders.Add Folder Type
(OlDefaultFolders), DefaultItemType Value, and Outlook Item Types

Found in a Folder
Folder Created with
OlDefaultFolders
Enumeration Member

DefaultItemType
Returns OlItemType
Enumeration Member

Possible Outlook Item Types in
Folder

olFolderCalendar olAppointmentItem AppointmentItem

olFolderContacts olContactItem ContactItem, DistListItem

olFolderJournal olJournalItem JournalItem

olFolderInbox olFolderDrafts olMailItem MailItem, PostItem, MeetingItem,
RemoteItem, ReportItem,
DocumentItem,
TaskRequestAcceptItem,
TaskRequestDeclineItem,
TaskRequestItem,
TaskRequestUpdateItem

olFolderNotes olNoteItem NoteItem

olPublicFolders AllPublicFolders olPostItem PostItem

olFderTasks olTaskItem TaskItem

Listing 11.14 shows an add-in that iterates over the top-level folders in each open Store and iterates over the items in
each of those folders. It uses the DefaultItemType property to determine which kinds of items a particular folder might
have in it and casts the objects returned from the Items collection to one of the expected types in the folder. Note that
there is a case where the expected cast might fail. An object that is a MailItem that has restricted permissions cannot
be cast to a MailItem unless the item has been opened in Outlook in an inspector window with security permissions
verified.

Listing 11.14. A VSTO Add-In That Iterates over Items in Folders and Performs
Appropriate Casts

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim rootFolders As Outlook.Folders = Me.Session.Folders
 Dim folder As Outlook.MAPIFolder
 For Each folder In rootFolders
 Dim subFolders As Outlook.Folders = folder.Folders
 Dim subfolder As Outlook.MAPIFolder
 For Each subfolder In subFolders
 IterateFolder(subfolder)
 Next
 Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Next

 End Sub

 Public Sub IterateFolder(ByVal folder As Outlook.MAPIFolder)
 Dim subject As New System.Text.StringBuilder

 subject.AppendLine(folder.Name)
 For Each item As Object In folder.Items
 subject.AppendLine(GetSubject(item, _
 folder.DefaultItemType))
 Next
 MsgBox(subject.ToString())

 End Sub

 Public Function GetSubject(ByVal item As Object, _
 ByVal ptype As Outlook.OlItemType) As Object
 Select Case ptype
 Case Outlook.OlItemType.olAppointmentItem
 If TypeOf item Is Outlook.AppointmentItem Then
 Dim appointment As Outlook.AppointmentItem = item
 Return appointment.Subject
 End If
 Exit Select

 Case Outlook.OlItemType.olContactItem

 Case Outlook.OlItemType.olDistributionListItem
 If TypeOf item Is Outlook.ContactItem Then
 Dim contact As Outlook.ContactItem = item
 Return contact.Subject
 End If

 If TypeOf item Is Outlook.DistListItem Then
 Dim distlist As Outlook.DistListItem = item
 Return distlist.Subject
 End If
 Exit Select

 Case Outlook.OlItemType.olJournalItem
 If TypeOf item Is Outlook.JournalItem Then
 Dim journal As Outlook.JournalItem = item
 Return journal.Subject
 End If
 Exit Select

 Case Outlook.OlItemType.olMailItem
 If TypeOf item Is Outlook.MailItem Then
 Dim mail As Outlook.MailItem = item
 Return mail.Subject
 End If

 If TypeOf item Is Outlook.PostItem Then
 Dim post As Outlook.PostItem = item
 Return post.Subject
 End If

 If TypeOf item Is Outlook.MeetingItem Then
 Dim meeting As Outlook.MeetingItem = item
 Return meeting.Subject
 End If

 If TypeOf item Is Outlook.RemoteItem Then
 Dim remote As Outlook.RemoteItem = item
 Return remote.Subject
 End If

 If TypeOf item Is Outlook.ReportItem Then
 Dim report As Outlook.ReportItem = item
 Return report.Subject
 End If

 If TypeOf item Is Outlook.DocumentItem Then
 Dim doc As Outlook.DocumentItem = item
 Return doc.Subject
 End If

 If TypeOf item Is Outlook.TaskRequestAcceptItem Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If TypeOf item Is Outlook.TaskRequestAcceptItem Then
 Dim tra As Outlook.TaskRequestAcceptItem = item
 Return tra.Subject
 End If

 If TypeOf item Is Outlook.TaskRequestDeclineItem Then
 Dim trd As Outlook.TaskRequestDeclineItem = item
 Return trd.Subject
 End If

 If TypeOf item Is Outlook.TaskRequestItem Then
 Dim tr As Outlook.TaskRequestItem = item
 Return tr.Subject
 End If

 If TypeOf item Is Outlook.TaskRequestUpdateItem Then
 Dim tru As Outlook.TaskRequestUpdateItem = item
 Return tru.Subject
 End If

 Exit Select

 Case Outlook.OlItemType.olNoteItem
 Dim note As Outlook.NoteItem = item
 If note IsNot Nothing Then
 Return note.Subject
 End If
 Exit Select

 Case Outlook.OlItemType.olPostItem
 Dim post2 As Outlook.PostItem = item
 If post2 IsNot Nothing Then
 Return post2.Subject
 End If
 Exit Select

 Case Outlook.OlItemType.olTaskItem
 Dim task As Outlook.TaskItem = item
 If task IsNot Nothing Then
 Return task.Subject
 End If
 Exit Select

 End Select

 MsgBox(String.Format(_
 "Couldn't cast item with subject {0} and class {1}.", _
 item.Subject, _
 item.Class))

 Return ""

 End Function

End Class

Working with a Folder's View Settings

A MAPIFolder has a Views property that returns a Views collection. The Views collection contains all the available View
objects for a folder that correspond to the views shown in the Custom View Organizer dialog box, shown in Figure 11.4
earlier in this chapter. You can determine the view being used by the folder by accessing the MAPIFolder object's
CurrentView property, which returns a View object. The CurrentView property is read-only; you cannot change the
current view by setting the CurrentView property to another View object. Instead, you must access one of the View
objects in the Views collection and call the View object's Apply method to make the view associated with the folder the
active view.

Listing 11.15 shows add-in code that gets the name of the current view for the Inbox folder. Then it iterates over the
available views for the Inbox folder and applies each view.

Listing 11.15. A VSTO Add-In That Iterates over Available Views for the Inbox
Folder and Applies Each View

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Folder and Applies Each View

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)
 Me.ActiveExplorer().CurrentFolder = inbox

 MsgBox(String.Format("Current inbox view is {0}.", _
 inbox.CurrentView.Name))

 Dim view As Outlook.View
 For Each view In inbox.Views
 view.Apply()
 MsgBox(String.Format("Current inbox view is now {0}.", _
 inbox.CurrentView.Name))
 Next

 End Sub

End Class

Copying or Moving a Folder to a New Location

You can copy a folder and its dependent folders and items to a new location using the MAPIFolder object's CopyTo
method. The CopyTo method takes a DestinationFolder parameter of type MAPIFolder, which will be the parent folder for
the copied folder. It returns a MAPIFolder for the newly copied folder. The copy is a "deep copy" because all the items
and subfolders rooted at the folder you call the CopyTo method on are copied to the new location.

You can move a folder and its dependent folders and items to a new location using the MAPIFolder's MoveTo method.
The MoveTo method takes a DestinationFolder parameter of type MAPIFolder, which will be the parent folder for the moved
folder. The folder is moved, along with all dependent folders and items, to the new location.

Displaying a Folder in an Explorer View

You can open a MAPIFolder in a new Explorer view by calling the MAPIFolder object's Display method. To use an
existing Explorer view, you can set the Explorer object's CurrentFolder to the MAPIFolder you want to display in the
existing Explorer view. Listing 11.15 uses this approach.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Items Collection
This chapter has already covered how to iterate over the Outlook items in a MAPIFolder by using For Each with the Items
collection. This section examines some additional methods that you can use when working with the Items collection.

Iterating over Outlook Items

The Items collection's SetColumns method enables you to tell Outlook to cache certain properties when you iterate over
the Items collection so that access to those properties will be fast. An Outlook item has a number of properties
associated with itnamevalue pairs that can be accessed by using an Outlook item's ItemProperties property. A typical
MailItem has around 80 properties associated with it.

If you know that you are going to iterate using For Each over the Items collection, and you are going to be accessing the
Subject and CreationTime properties only of Outlook items in that collection, you can call the Items collection's
SetColumns method before iterating the collection and pass the string "Subject, CreationTime". Some limitations apply to
which properties can be cached (for example, properties that return objects cannot be cached); check the
documentation before using this method. After you have iterated over the collection, use the Items collection's
ResetColumns method to clear the cache of properties Outlook created.

The Items collection's Sort method enables you to apply a sort order to the Items collection before you iterate over the
collection using For Each. The method takes a Property parameter as a String, which gives the name of the property by
which to sort. You pass the name of the property enclosed in square brackets. To sort by subject, you would pass "
[Subject]". The Sort method also takes an optional Descending parameter that can be passed TRue to sort descending, False
to sort ascending. The default value if you omit the parameter is False. Some limitations apply to which properties can
sorted on; check the documentation before using this method.

Listing 11.16 illustrates using the SetColumns and Sort methods. It times the operation of iterating through all the
items in the Inbox and examining the Subject property without calling SetColumns. Then it times the operation again
but calls SetColumns first. Finally, Sort is illustrated, and the first item and last item in the sorted Items collection are
accessed using the index operator. The Items collection's Count property is also used to get the index of the last item in
the Items collection.

Listing 11.16. A VSTO Add-In That Uses the Items Collection's SetColumns and
Sort Methods

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim myItems As Outlook.Items = inbox.Items

 MsgBox("Click OK to start the test.")

 Dim startDate As System.DateTime = System.DateTime.Now
 Dim item As Object
 For Each item In myItems
 Dim subject As String = CType(item.Subject, String)
 Next
 Dim endDate As System.DateTime = System.DateTime.Now
 Dim result1 As System.TimeSpan = endDate.Subtract(startDate)

 MsgBox(String.Format(_
 "Without calling SetColumns this took {0} ticks.", _
 result1.Ticks))

 startDate = System.DateTime.Now
 myItems.SetColumns("Subject")
 For Each item In myItems
 Dim subject As String = CType(item.Subject, String)
 Next
 endDate = System.DateTime.Now
 Dim result2 As System.TimeSpan = endDate.Subtract(startDate)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox(String.Format(_
 "With SetColumns this took {0} ticks.", _
 result2.Ticks))

 myItems.ResetColumns()

 myItems.Sort("[Subject]")
 Dim firstItem As Object = myItems(1)
 Dim lastItem As Object = myItems(myItems.Count)

 MsgBox(String.Format(_
 "First item is {0}.", firstItem.Subject))
 MsgBox(String.Format("Last item is {0}.", lastItem.Subject))

 End Sub

End Class

Finding an Outlook Item

The Items collection's Find method enables you to find an Outlook item in the Items collection by querying the value of
one or more properties associated with the Outlook item. The Find method takes a String, which contains a filter to apply
to find an Outlook item. You might want to find an Outlook item in the items collection with its Subject property set to
"RE: Payroll", for example. The way you would call Find would look like this:

Dim foundItem As Object
foundItem = myItems.Find("[Subject] = ""RE: Payroll""")

The query string has the name of the property in brackets. Alternatively, you could call Find substituting apostrophes
for the quotation marks used in the first example:

Dim foundItem As Object
foundItem = myItems.Find("[Subject] = 'RE: Payroll'")

If the Items collection does not contain an Outlook item whose Subject property is equal to "RE: Payroll", the Find method
returns Nothing. If there are multiple Outlook items in the Items collection whose Subject property is equal to "RE: Payroll",
you can continue finding additional items by using the Items collection's FindNext method. The FindNext method finds
the next Outlook item in the collection that matches the filter string passed to Find. You can continue to call FindNext
until FindNext returns Nothing, indicating that no more items could be found, as shown in Listing 11.17.

Listing 11.17. A VSTO Add-In That Uses the Items Collection's Find and FindNext
Methods

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim myItems As Outlook.Items = inbox.Items

 Dim foundItem As Object = myItems.Find(_
 "[Subject] = ""RE: Payroll""")

 While foundItem IsNot Nothing
 MsgBox(String.Format(
 "Found item with EntryID {0}.", foundItem.EntryID))
 foundItem = myItems.FindNext()
 End While

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

We have illustrated a rather simple filter string that just checks to see whether a text property called Subject matches a
string. It is possible to use the logical operators AND, OR, and NOT to specify multiple criteria. The following filter
strings, for example, check both the property Subject and the property CompanyName. The first finds an Outlook item
where the Subject is "RE: Payroll" and the CompanyName is "Microsoft". The second finds an Outlook item where the
Subject is "RE: Payroll" or the CompanyName is "Microsoft". The third finds an Outlook item where the Subject is "RE: Payroll"
and the CompanyName is not "Microsoft".

Dim foundItem As Object = myItems.Find(_
 "[Subject] = 'RE: Payroll' AND [CompanyName] = 'Microsoft'")

Dim foundItem As Object = myItems.Find(_
 "[Subject] = 'RE: Payroll' OR [CompanyName] = 'Microsoft'")

Dim foundItem As Object = myItems.Find(_
 "[Subject] = 'RE: Payroll' AND NOT [CompanyName] " & _
 "= 'Microsoft'")

When searching for a property that is an integer value, it is not necessary to enclose the integer value you are
searching for in quotes. The same is true for a property that is a boolean property. This example searches for an
Outlook item whose integer property OutlookInternalVersion is equal to 116359 and whose boolean property NoAging is
set to False.

Dim foundItem As Object = myItems.Find(_
 "[OutlookInternalVersion] = 116359 AND [NoAging] = False")

Some limitations apply to which properties you can use in a filter string. Properties that return objects cannot be
examined in a filter string, for example. Check the documentation of the Outlook object model for more information.

If you are working with an Items collection that has a large number of Outlook items in it, consider using the Items
collection's Restrict method rather than Find and FindNext. The Restrict method is used in a similar way to how
SetColumns and Sort are used. You call the Restrict method on the Items collection passing the same kind of filter
string you provide to the Find method. Then you can use For Each to iterate over the Items collection, and only the
Outlook items that match the filter string will be iterated over. The Restrict method can be faster than Find and
FindNext if you have a large number of items in the Items collection and you expect to find only a few items. Listing
11.18 illustrates using the Restrict method.

Listing 11.18. A VSTO Add-In That Uses the Items Collection's Restrict Method

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim myItems As Outlook.Items = inbox.Items

 For Each foundItem As Object In myItems.Restrict(_
 "[Subject] = ""RE: Payroll""")

 MsgBox(String.Format("Found item with EntryID {0}.", _
 foundItem.EntryID))

 Next

 End Sub

End Class

Adding an Outlook Item to an Items Collection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To add a new Outlook Item to an Items collection, use the Items collection's Add method. The Add method takes an
optional Type parameter of type Object to which you can pass a member of the OlItemType enumeration: olAppointmentItem,
olContactItem, olDistributionListItem, olJournalItem, olMailItem, olNoteItem, olPostItem, or olTaskItem. If you omit the Type parameter, the
type of the item is determined by the type of folder (as determined by DefaultItemType) that you are adding the item
to. The Add method returns an Object, which can be cast to the Outlook item type corresponding to the Type parameter
that was passed in.

You must remember that you can add only an Outlook item that is compatible with the folder type the Items collection
came from. It is not possible, for example, to add a ContactItem to an Items collection from a folder that is designated
to hold MailItems and PostItems. For more information on the Outlook item types that can be contained by a particular
folder type, refer to Table 11.6 earlier in this chapter.

Listing 11.19 shows an example of using the Add method to add a PostItem and a MailItem to the Inbox folder. Note
that using the Add method is not sufficient to get the PostItem and MailItem added to the Inbox folder. For the
PostItem, we also have to call the Save method on the newly created Outlook item; otherwise, Outlook discards the
PostItem when the variable postItem that refers to it goes out of scope. We also have to call Save on the newly created
MailItem. In addition, we have to call the Move method to move the newly created MailItem into the Inbox folder. This
is necessary because Outlook puts newly created MailItems into the Drafts folder by defaulteven though we called Add
on the Items collection associated with the Inbox. Without the call to Move, the newly created MailItem remains in the
Drafts folder.

Listing 11.19. A VSTO Add-In That Adds a MailItem and a PostItem

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim myItems As Outlook.Items = inbox.Items

 Dim postItem As Outlook.PostItem = myItems.Add(_
 Outlook.OlItemType.olPostItem)
 postItem.Subject = "Test1"
 postItem.Save()

 Dim mailItem As Outlook.MailItem = myItems.Add(_
 Outlook.OlItemType.olMailItem)
 mailItem.Subject = "Test2"
 mailItem.Save()
 mailItem.Move(inbox)

 End Sub

End Class

An alternative way to create an Outlook item is to use the Application object's CreateItem method. This method takes a
Type parameter of type OlItemType that is passed a member of the OlItemType enumeration. It returns an Object
representing the newly created Outlook item. Then you must save the created item and place it in the folder you want
to store it in. Listing 11.20 shows code that uses CreateItem to do the same thing that Listing 11.19 does. In Listing
11.20, we must move the new MailItem and PostItem to the Inbox folder using the Move method on MailItem and
PostItem.

Listing 11.20. A VSTO Add-In That Uses the Application Object's CreateItem
Method to Add a MailItem and a PostItem

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim mailItem As Outlook.MailItem = Me.CreateItem(_
 Outlook.OlItemType.olMailItem)
 mailItem.Subject = "Test 1"
 mailItem.Save()
 mailItem.Move(inbox)

 Dim postItem As Outlook.PostItem = Me.CreateItem(_
 Outlook.OlItemType.olPostItem)
 postItem.Subject = "Test 2"
 postItem.Save()

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Properties and Methods Common to Outlook Items
This chapter has discussed the 16 Outlook item types: AppointmentItem, ContactItem, DistListItem, DocumentItem,
JournalItem, MailItem, MeetingItem, NoteItem, PostItem, RemoteItem, ReportItem, TaskItem,
TaskRequestAcceptItem, TaskRequestDeclineItem, TaskRequestItem, and TaskRequestUpdateItem. We group these
object model types because all these types have many common properties and methods, listed in Table 11.8. The
properties and methods in this table are found on all Outlook item types. The properties and methods marked in this
table with an asterisk are found on all Outlook item types except NoteItem. NoteItem is a special case in the Outlook
item family and has a subset of the properties and methods that the other Outlook item types share.

Table 11.8. Properties and Methods Common to All Outlook Items
Actions* Delete NoAging*

Application Display InternalVersion*

Attachments* DownloadState OutlookVersion*

AutoResolvedWinner EntryID Parent

BillingInformation* FormDescription* PrintOut

Body GetInspector Save

Categories Importance* SaveAs

Class IsConflict Saved

Close ItemProperties Sensitivity*

Companies* LastModificationTime Session

Conflicts Links ShowCategoriesDialog*

ConversationIndex* MarkForDownload Size

ConversationTopic* MessageClass Subject

Copy Mileage* UnRead*

CreationTime Move UserProperties*

Now we consider several of these common properties and methods. Even though we talk about Outlook Items as
though there were an OutlookItem type in the Outlook object model, there is no such type; the OutlookItem type is a
conceptual way of talking about the properties and methods common to the 16 Outlook item types in the Outlook object
model. So when we talk about the Save method, for example, that method is found on ContactItem, PostItem,
MailItem, and all the other Outlook item types.

Given an object that you know is 1 of the 16 Outlook item types, you can cast it to the correct Outlook item type, or
you can talk to the object via late-bound properties if you are talking to a property common to all Outlook items. Some
of the code listings in this section use late-bound properties and have illustrated this point. Usually, it is preferable to
cast the object to the specific item type rather than use late binding.

Creating an Outlook Item

You learned the two primary ways in which you can create an Outlook item earlier in this chapter, in the section "Adding
an Outlook Item to an Items Collection." You can call either the Items collection's Add method or the Application
object's CreateItem method. These methods take a member of the OlItemType enumeration and return an object that can
be cast to the Outlook item type corresponding to the OlItemType enumeration, as shown in Table 11.9.

Table 11.9. Correspondence Between OlItemType and Outlook Item
Types

OlItemType Member Outlook Item Type

olAppointmentItem AppointmentItem

olContactItem ContactItem

olDistributionListItem DistListItem

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

olMailItem MailItem

olNoteItem NoteItem

olJournalItem JournalItem

olPostItem PostItem

olTaskItem TaskItem

Notice that there are eight items in this table, which leaves out seven Outlook item types. How do you create the other
seven remaining Outlook item types? The remaining types are created by Outlook or created as a result of other actions
you take with an existing Outlook item type. Table 11.10 identifies how the other Outlook item types are created.

Table 11.10. How the Other Outlook Item Types Are Created
Outlook Item Type How Created

DocumentItem The Items collection's Add method also accepts
a member of the OlOfficeDocItemsType
enumeration: olWordDocumentItem,
olExcelWorkSheetItem, or olPowerPointShowItem.
Calling the Items collection's Add method with
any of these constants returns an Object that
can be cast to a DocumentItem. You can also
create a DocumentItem using the Application
object's CopyFile method.

MeetingItem Cannot be created directly. Created by Outlook
when AppointmentItem.MeetingStatus is set to
olMeeting and sent to one or more recipients.

RemoteItem Cannot be created directly. Created by Outlook
when you use a Remote Access System
connection.

ReportItem Cannot be created directly. Created by the mail
transport system.

TaskRequestAcceptItem Cannot be created directly. Created by Outlook
as part of the task delegation feature.

TaskRequestDeclineItem Cannot be created directly. Created by Outlook
as part of the task delegation feature.

TaskRequestItem Cannot be created directly. Created by Outlook
as part of the task delegation feature.

TaskRequestUpdateItem Cannot be created directly. Created by Outlook
as part of the task delegation feature.

Identifying the Specific Type of an Outlook Item

You can determine the specific type of an Outlook item given to you as type Object by using the TypeOf operator to
determine whether the Outlook item is a particular type, as shown in Listing 11.21. The code gets an Outlook item out
of the Inbox and then uses the TypeOf operator to determine whether it is an Outlook MailItem. If the Outlook item is a
MailItem, the code proceeds to call the late-bound subject property to display the subject of the mail message.

Listing 11.21. A VSTO Add-In That Uses the TypeOf Operator on an Outlook Item
of Type Object

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim item As Object = inbox.Items(1)

 If TypeOf item Is Outlook.MailItem Then
 MsgBox(item.Subject)
 End If

 End Sub

End Class

You can also use declare a variable to a specific Outlook item type and set the variable to the Object representing the
Outlook item. This will give you a variable that can be talked to in a strongly typed way. This technique is shown in
Listing 11.22. A second technique is to use the CType operator to cast the Object to a particular Outlook item type. This
approach is also shown in Listing 11.22.

Listing 11.22. A VSTO Add-In That Uses the Is Operator on an Outlook Item of
Type Object

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim item As Object = inbox.Items(1)

 If TypeOf item Is Outlook.MailItem Then
 ' Declaring a strongly variable and assigning technique
 Dim mailItem As Outlook.MailItem = item
 MsgBox(mailItem.Subject)

 ElseIf TypeOf item Is Outlook.PostItem Then
 ' Using CType technique
 MsgBox(CType(item, Outlook.PostItem).Subject)
 End If

 End Sub

End Class

A final way to determine the type of an Outlook item of type Object is to call the late-bound Class property, which is
found on every Outlook item type. The Class property returns a member of the OlObjectClass enumeration. Table 11.11
shows the correspondence between OlObjectClass enumerated values and Outlook item types.

Table 11.11. Correspondence Between Outlook Item Type and
OlObjectClass Enumerated Value

Outlook Item Type OlObjectClass Enumeration Member

AppointmentItem olAppointment

ContactItem olContact

DistListItem olDistributionList

DocumentItem olDocument

JournalItem olJournal

MailItem olMail

MeetingItem olMeetingRequest

NoteItem olNote

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PostItem olPost

RemoteItem olRemote

ReportItem olReport

TaskItem olTask

TaskRequestAcceptItem olTaskRequestAccept

TaskRequestDeclineItem olTaskRequestDecline

TaskRequestItem olTaskRequest

TaskRequestUpdateItem olTaskRequestUpdate

Listing 11.23 shows some add-in code that calls the Class property on an Outlook item of type Object. Then it uses a
Select Case statement, which for illustration purposes contains all the members of the OlObjectClass enumeration that
correspond to Outlook item types. The code in Listing 11.23 would be more efficient than using the IsType operator if
your code needs to cast to multiple specific Outlook item types, given an Outlook item of type Object. The code in Listing
11.15, for example, would be more efficient if it were rewritten to use the approach in Listing 11.23. The approach in
Listing 11.23 needs to make only one late-bound property call to get the Class value and then one cast to get the
specific Outlook item type.

Listing 11.23. A VSTO Add-In That Uses the Class Property to Determine the
Outlook Item Type

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim item As Object = inbox.Items(1)

 Dim objectClass As Outlook.OlObjectClass = _
 CType(item.Class, Outlook.OlObjectClass)
 MsgBox(String.Format("Class is {0}.", _
 objectClass.ToString()))

 Select Case objectClass
 Case Outlook.OlObjectClass.olAppointment
 Exit Select
 Case Outlook.OlObjectClass.olContact
 Exit Select
 Case Outlook.OlObjectClass.olDistributionList
 Exit Select
 Case Outlook.OlObjectClass.olDocument
 Exit Select
 Case Outlook.OlObjectClass.olJournal
 Exit Select
 Case Outlook.OlObjectClass.olMail
 Dim mailItem As Outlook.MailItem = item
 MsgBox(String.Format(_
 "Found mail item with subject {0}.", _
 mailItem.Subject))
 Exit Select
 Case Outlook.OlObjectClass.olMeetingRequest
 Exit Select
 Case Outlook.OlObjectClass.olNote
 Exit Select
 Case Outlook.OlObjectClass.olPost
 Dim postItem As Outlook.PostItem = item
 MsgBox(String.Format(_
 "Found post item with subject {0}.", _
 postItem.Subject))
 Exit Select
 Case Outlook.OlObjectClass.olRemote
 Exit Select
 Case Outlook.OlObjectClass.olReport
 Exit Select

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Exit Select
 Case Outlook.OlObjectClass.olTask
 Exit Select
 Case Outlook.OlObjectClass.olTaskRequest
 Exit Select
 Case Outlook.OlObjectClass.olTaskRequestAccept
 Exit Select
 Case Outlook.OlObjectClass.olTaskRequestDecline
 Exit Select
 Case Outlook.OlObjectClass.olTaskRequestUpdate
 Exit Select
 Case Else
 End Select

 End Sub

End Class

Other Properties Associated with All Outlook Items

This section covers several commonly used properties associated with all Outlook item types (with the possible
exception of NoteItem). When we say properties in the context of Outlook items, some confusion can arise. Some
properties are on the actual Outlook item type. The Subject property, for example, is a callable property on all Outlook
item object types. There are a MailItem.Subject property, PostItem.Subject, ContactItem.Subject, and so on.
Sometimes, a property that is on an Outlook item object type is also accessible via the OutlookItem.ItemProperties
collection. If you iterate over the ItemProperties collection, you will find an ItemProperty object where
ItemProperty.Name returns "Subject".

The creators of the Outlook object model exposed some of the properties in the ItemProperties collection as first-class
properties on the object types themselves. So the Subject property can be accessed by using either
OutlookItem.Subject or OutlookItem.ItemProperties("Subject"). Other properties that are more obscure were not
exposed out as properties on the objects themselves. The EnableSharedAttachments property, for example, can be
accessed only via OutlookItem.ItemProperties("EnableSharedAttachments"). You learn more about the ItemProperties
collection later in this chapter.

Table 11.12 lists several properties callable on all Outlook item object types. Properties marked with an asterisk are not
available on the NoteItem object.

Table 11.12. Properties Associated with All Outlook Items
Name Type What It Does

Body String Gets and sets the body text of the Outlook item.

Categories String Gets and sets the categories assigned to the Outlook
item. An Outlook item assigned to the Business and
Favorites category, for example, would return the string
"Business, Favorites".

ConversationIndex* String Gets an identifier for the conversation index.

ConversationTopic* String Gets the conversation topic of the Outlook item.

Importance* OlImportance Gets and sets the importance as a member of the
OlImportance enumeration: olImportanceHigh, olImportanceLow,
or olImportanceNormal.

Sensitivity* OlSensitivity Gets and sets the sensitivity as a member of the
OlSensitivity enumeration: olConfidential, olNormal, olPersonal, or
olPrivate.

CreationTime DateTime Gets the DateTime the Outlook item was created.

LastModificationTime DateTime Gets the DateTime the Outlook item was last modified.

Size Integer Gets the size in bytes of the Outlook item.

Subject String Gets and sets the subject of the Outlook item.

UnRead* Boolean Gets and sets whether the Outlook item has been
opened yet by the end user.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Copying or Moving an Outlook Item to a New Location

An Outlook item can be copied or moved from one folder to another. The Outlook item's Copy method creates a copy of
the Outlook item and returns the newly created item as an Object. The Outlook item's Move method moves an Outlook
item from one folder to another. It takes a DestFldr parameter of type MAPIFolder to which you pass the folder to which
you want to move the Outlook item.

Deleting an Outlook Item

To delete an Outlook item, call the Outlook item's Delete method. Doing so causes the Outlook item to be moved to the
Deleted Items folder, where it stays until the user empties the Deleted Items folder. If you do not want the item to
appear in the Deleted Items folder, you must call Delete twice. The first call moves the item to the Deleted Items
folder, and the second call deletes it from the Deleted Items folder, as shown in Listing 11.24.

Listing 11.24. A VSTO Add-In That Deletes an Item and Then Deletes It
Permanently by Removing It from the Deleted Items Folder

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim postItem As Outlook.PostItem = inbox.Items.Add(_
 Outlook.OlItemType.olPostItem)
 Dim subject As String = "Test Post To Be Deleted"
 postItem.Subject = subject
 postItem.Save()

 MsgBox("New post item is in inbox")
 Dim entryID1 As String = postItem.EntryID

 postItem.Delete()
 MsgBox("New post item is in deleted items")
 Dim deletedItems As Outlook.MAPIFolder = _
 Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderDeletedItems)

 Dim post As Outlook.PostItem = deletedItems.Items.Find(_
 String.Format("[Subject] = '{0}'", subject))

 If post IsNot Nothing Then
 Dim entryID2 As String = post.EntryID
 If entryID1 <> entryID2 Then
 MsgBox(entryID1)
 MsgBox(entryID2)
 MsgBox("When you delete an item its entry ID changes.")
 End If
 post.Delete()
 MsgBox("Removed post from deleted items folder.")
 End If

 End Sub

End Class

Note in Listing 11.24 that we cannot find the item we just deleted in the Deleted Items folder using the EntryID because
the EntryID changes when you delete the Outlook item. Instead, we use the Subject, which is not ideal because the
Subject is not guaranteed to be unique. A better approach to deleting an item permanently and preventing it from
showing up in the Deleted Items folder is using the Collaboration Data Objects (CDO) object model that was briefly
described in Chapter 9, "Programming Outlook." Listing 11.25 shows this approach. We assume the VSTO Outlook add-

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

described in Chapter 9, "Programming Outlook." Listing 11.25 shows this approach. We assume the VSTO Outlook add-
in has a reference to the CDO object model interop assembly that adds the MAPI name space to the project. We use the
GetMessageFromOutlookItem method, introduced in Listing 9.4 in Chapter 9.

Listing 11.25. A VSTO Add-In That Uses CDO to Delete an Outlook Item
Permanently

Public Class ThisApplication

 Private mapiSession As MAPI.Session

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 mapiSession = New MAPI.Session()
 mapiSession.Logon(ShowDialog:=False, NewSession:=False)

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim postItem As Outlook.PostItem = inbox.Items.Add(_
 Outlook.OlItemType.olPostItem)
 postItem.Subject = "Test Post To Be Deleted"
 postItem.Save()
 MsgBox("New post item is in inbox")

 Dim message As MAPI.Message
 message = GetMessageFromOutlookItem(postItem)
 message.Delete()
 MsgBox("New post item was permanently deleted.")

 End Sub

 Private Function GetMessageFromOutlookItem(_
 ByVal outlookItem As Object) As MAPI.Message

 Dim entryID As Object = outlookItem.EntryID
 Dim parentFolder As Object = outlookItem.Parent
 Dim storeID As Object = parentFolder.StoreID
 Return CType(mapiSession.GetMessage(entryID, storeID), _
 MAPI.Message)

 End Function

End Class

Displaying an Outlook Item in an Inspector Window

The Outlook item's GetInspector method gives you an Inspector object to display an Outlook item. You can configure
the inspector window before showing it by calling the Inspector object's Display method. The Display method takes an
optional Modal parameter of type Object to which you can pass TRue to show the inspector window as a modal dialog box
or False to show it as a modeless dialog box.

If you do not need to configure the inspector window before you display it, you can just use the Display method on an
Outlook item. The Display method displays an inspector window and takes an optional Modal parameter of type Object to
which you can pass TRue to show the inspector window as a modal dialog box or False to show it as a modeless dialog
box.

If an inspector window is open for a given Outlook item, you can close the inspector window by using the Close method
on the Outlook item being displayed. The Close method takes a SaveMode parameter of type OlInspectorClose. You can pass
a member of the OlInspectorClose enumeration to this parameter: olDiscard to discard changes made in the inspector
window, olPromptForSave to prompt the user to save if changes were made, and olSave to save without prompting.

Listing 11.26 creates a PostItem in the Inbox folder and calls the Display method to display an inspector window for it.
Then it calls the Close method passing OlInspectorClose.olDiscard to close the inspector window. Note that we have to cast
the PostItem to the Outlook._PostItem interface to distinguish between the Close method and the Close event, which
collide on Outlook item objects.

Listing 11.26. A VSTO Add-In That Uses the Display and Close Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 11.26. A VSTO Add-In That Uses the Display and Close Method

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim postItem As Outlook.PostItem = inbox.Items.Add(_
 Outlook.OlItemType.olPostItem)
 postItem.Subject = "Test to be shown in inspector window."
 postItem.Save()

 postItem.Display(False)
 MsgBox("Post item is shown in inspector window.")
 CType(postItem, Outlook._PostItem).Close(_
 Outlook.OlInspectorClose.olDiscard)

 End Sub

End Class

Working with Built-In and Custom Properties Associated with an Outlook Item

The ItemProperties property returns the ItemProperties collection associated with an Outlook item. This collection
contains ItemProperty objects for each property associated with the Outlook item. By property, we mean a namevalue
pair that may or may not also have a get/set property on the Outlook item type. The ItemProperties collection can be
iterated over using the For Each loop. It also supports Visual Basic's index operator (). You can pass a String as the index
representing the name of the ItemProperty you want to access. You can also pass a 1-based index for the ItemProperty
you want to access in the collection.

Listing 11.27 shows code that gets an ItemProperty object associated with a newly created PostItem using the index
operator with a String and numeric index. Listing 11.27 also illustrates iterating over all the ItemProperty objects in the
ItemProperties collection using For Each.

Listing 11.27. A VSTO Add-In That Works with ItemProperty Objects

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim postItem As Outlook.PostItem = inbox.Items.Add(_
 Outlook.OlItemType.olPostItem)
 MsgBox(String.Format(_
 "There are {0} properties associated with this post.", _
 postItem.ItemProperties.Count))

 ' Getting an ItemProperty with a string index
 Dim subject As Outlook.ItemProperty = _
 postItem.ItemProperties("Subject")

 MsgBox(String.Format(_
 "The property 'Subject' has value {0}.", _
 subject.Value))

 ' Getting an ItemProperty with a numeric index
 Dim firstProp As Outlook.ItemProperty
 firstProp = postItem.ItemProperties(1)
 MsgBox(String.Format(_
 "The first property has name {0} and value {1}.", _
 firstProp.Name, firstProp.Value))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Iterating the ItemProperties collection with foreach
 Dim result As New System.Text.StringBuilder

 For Each iProperty As Outlook.ItemProperty In _
 postItem.ItemProperties

 result.AppendFormat(_
 "{0} of type {1} has value {2}." & vbCrLf, _
 iProperty.Name, iProperty.Type.ToString(), _
 iProperty.Value)

 Next

 MsgBox(result.ToString())

 End Sub

End Class

You can add your own custom properties to an Outlook item. Custom properties that you have added are accessed by
using the UserProperties property. An Outlook item's UserProperties property returns a UserProperties collection that
contains UserProperty objects representing custom properties you have added to an Outlook item. Just as with the
ItemProperties collection, the UserProperties collection can be iterated over using the For Each loop. A particular
UserProperty in the collection can be accessed using the index operator () to which you pass a String representing the
name of the UserProperty or the 1-based index of the UserProperty in the collection.

To add your own custom property, use the UserProperties collection's Add method. This method takes a required Name
parameter of type String to which you pass the name of the new custom property. You must also specify the type of the
new property by passing a member of the OlUserPropertyType enumeration. Common members of that enumeration you
might use include olDateTime, olNumber, olText, and olYesNo. Other types are also supported; consult the Outlook object
model documentation for more information. The Add method also takes two optional parameters that we omit:
AddToFolderFields and DisplayFormat. Note that you can add custom properties to all Outlook item types except the NoteItem
and DocumentItem types.

Listing 11.28 shows the creation of several custom properties using the UserProperties.Add method.

Listing 11.28. A VSTO Add-In That Works with Custom Properties

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim postItem As Outlook.PostItem = inbox.Items.Add(_
 Outlook.OlItemType.olPostItem)
 postItem.Subject = "User Properties Test"
 postItem.Save()

 Dim userProperties As Outlook.UserProperties = _
 postItem.UserProperties

 Dim dateProp As Outlook.UserProperty = userProperties.Add(_
 "DateProp", Outlook.OlUserPropertyType.olDateTime)
 dateProp.Value = System.DateTime.Now

 Dim numberProp As Outlook.UserProperty
 numberProp = userProperties.Add(_
 "NumberProp", Outlook.OlUserPropertyType.olNumber)
 numberProp.Value = 123

 Dim textProp As Outlook.UserProperty = userProperties.Add(_

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim textProp As Outlook.UserProperty = userProperties.Add(_
 "TextProp", Outlook.OlUserPropertyType.olText)
 textProp.Value = "Hello world"

 Dim boolProp As Outlook.UserProperty = userProperties.Add(_
 "BoolProp", Outlook.OlUserPropertyType.olYesNo)
 boolProp.Value = True

 MsgBox(String.Format("There are now {0} UserProperties.", _
 userProperties.Count))

 postItem.Save()

 End Sub

End Class

Saving an Outlook Item

As you have already seen, when you create an Outlook item, you have to call the Save method, or the newly created
item gets discarded when your variable containing the newly created item goes out of scope. You can check whether an
Outlook item needs to be saved by accessing the Saved property. In Listing 11.28, for example, if we examine the
Saved property right before we call postItem.Save at the end of the function, Saved would return False because some
changes were made to the Outlook item (user properties were added) after the Save method was invoked earlier in the
function.

The code in Listing 11.28 works even when you omit the last call to Save. Consider what happens, however, if we omit
the last call to Save. If you examine the newly created item, its Saved state is still False after this function runs. If you
double-click the newly created item to display an Inspector view and then close the Inspector view without making any
changes, Outlook prompts users to save the changes made to the item, which is confusing to users because they did
not make any changes. Outlook prompts to save because it still detects that it needs to save the changes made to the
user properties by the add-in code. If you exit Outlook, Outlook will save the changes to the newly created item, and on
the next run of Outlook, the saved state of the new item will be back to true.

Showing the Categories Dialog Box for an Outlook Item

You can show the Categories dialog box in Figure 11.9 by using the Outlook item's ShowCategoriesDialog method. This
dialog box allows the user to select categories to associate with an Outlook item. As described earlier, the Outlook
item's Categories property enables you to examine what categories an Outlook item is associated with. The Categories
property returns a String value with each category associated with the Outlook item in a comma-delimited list.

Figure 11.9. Outlook's Categories dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mail Properties and Methods

Several commonly used properties and methods are associated with items that would be found in a mail folder, such as
a MailItem or a PostItem. The BodyFormat property tells you what format the body of a mail message is in. It sets or
gets a member of the OlBodyFormat enumeration: olFormatHTML, olFormatPlain, olFormatRichText, or olFormatUnspecified. When a
message is set to have its BodyFormat in olFormatHTML, the HTML for the body of the message can be set or get via the
HTMLBody property. This property gets and sets the String value, which is the HTML content of the message.

Listing 11.29 shows add-in code that creates a PostItem using the BodyFormat and HTMLBody properties. Figure 11.10
shows the PostItem created by Listing 11.29.

Listing 11.29. A VSTO Add-In That Creates a PostItem with BodyFormat Set to
olFormatHTML

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim postItem As Outlook.PostItem = inbox.Items.Add(_
 Outlook.OlItemType.olPostItem)
 postItem.Subject = "HTML Example"
 postItem.BodyFormat = Outlook.OlBodyFormat.olFormatHTML
 postItem.HTMLBody = _
 "<HTML><BODY><H1>Heading 1</H1>Item 1" & _
 "Item 2</BODY></HTML>"
 postItem.Save()

 End Sub

End Class

Figure 11.10. PostItem created by Listing 11.29.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11.10. PostItem created by Listing 11.29.

The Forward method returns a new Outlook item that can be forwarded to a recipient. Given a MailItem, for example,
the MailItem object's Forward method returns a new MailItem. Then this MailItem can be given a recipient. Recipients
of a MailItem are accessed via the Recipients property, which returns a Recipients collection. A new Recipient can be
added by using the Recipients collection's Add method, which takes a String representing the display name of the
recipient. When a recipient is added, the Outlook item can be sent in e-mail by calling the Outlook item's Send method.

Listing 11.30 illustrates working with the Forward method, the Recipients collection, and the Send method. It creates a
PostItem that it then forwards as a MailItem to a recipient.

Listing 11.30. A VSTO Add-In That Creates a PostItem and Then Forwards It As a
MailItem

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim postItem As Outlook.PostItem = inbox.Items.Add(_
 Outlook.OlItemType.olPostItem)
 postItem.Subject = "HTML Example"
 postItem.BodyFormat = Outlook.OlBodyFormat.olFormatHTML
 postItem.HTMLBody = _
 "<HTML><BODY><H1>Hello World</H1></BODY></HTML>"
 postItem.Save()

 ' Forward the PostItem to someone
 Dim forwardedItem As Outlook.MailItem = postItem.Forward()
 forwardedItem.Recipients.Add("Misha Shneerson")
 forwardedItem.Send()

 End Sub

End Class

An identical pattern is followed to reply or reply all to an Outlook item. The original item has its Reply or ReplyAll

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An identical pattern is followed to reply or reply all to an Outlook item. The original item has its Reply or ReplyAll
method called, which generates a new MailItem object. The Recipients collection of the new MailItem object is modified
if needed. Finally, the new MailItem object's Send method is invoked to send the new MailItem.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Outlook Issues
This section examines two special issues relating to Outlook development. The first is the Outlook object model security
dialog box and how to prevent your add-in code from triggering it. The second Outlook-specific issue is a third object
model, called Extended MAPI, that can be used in addition to the Outlook object model and the CDO object model. We
briefly consider when you might need to resort to using it and how this is typically done.

Outlook Object Model Security

Occasionally, as you develop Outlook 2003 add-ins, you might write code that causes the Outlook object model security
dialog box to display (see Figure 11.11). This dialog box was added to prevent the spread of viruses and worms that
accessed parts of the Outlook object model, such as the address book, to spread themselves.

Figure 11.11. The Outlook object model security dialog box.

Typically, you want to prevent this dialog box from coming up, because it can distress your users. When you
understand why this dialog box appears, you can refactor your code to avoid this dialog box. If you write a COM add-in,
you are passed an Application object to the OnConnection method of IDTExtensibility2. If you write a VSTO add-in, you
can access the methods and properties of Outlook's application object through the base class of the ThisApplication
class. The Application object passed to OnConnection and the base class of VSTO's ThisApplication class are trusted in
Outlook 2003; as long as you obtain all other objects you use from these trusted objects, you never have to worry
about the object model security dialog box.

If you create a new instance of the Application object, this new instance will not be trusted, and the objects you create
or access from it will sometimes cause the Outlook object model security dialog box to appear. Also, the objects passed
into your event handlers as parameters are not trusted objects, and accessing restricted methods and properties on
these objects can cause the Outlook object model security dialog box to appear. If you trigger the Outlook object model
security dialog box by using these objects, you should find a way to get the same object through your trusted
Application object.

A handful of restricted properties and methods of the Outlook object model can cause the security dialog box to appear
when you talk to an object that was not obtained from a trusted Application object. Table 11.13 shows the complete list
of properties and methods in the Outlook object model that can cause the security dialog box to appear when you call
them on an object that was not obtained from a trusted Application object.

Table 11.13. Properties and Methods That Can Cause the Outlook
Security Dialog Box to Appear If Accessed from Objects Not

Obtained from a Trusted Application Object
Object Restricted Properties and Methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Action Execute()

AddressEntries All properties and methods

AddressEntry All properties and methods

AppointmentItem Body

 NetMeetingOrganizerAlias

 OptionalAttendees

 Organizer

 RequiredAttendees

 Resources

 Respond()

 SaveAs()

 Send()

ContactItem Body

 Email1Address

 Email1AddressType

 Email1DisplayName

 Email1EntryID

 Email2Address

 Email2AddressType

 Email2DisplayName

 Email2EntryID

 Email3Address

 Email3AddressType

 Email3DisplayName

 Email3EntryID

 IMAddress

 NetMeetingAlias

 ReferredBy

 SaveAs()

DistListItem Body

 GetMember()

 SaveAs()

Inspector HTMLEditor

 WordEditor

ItemProperties Any access of a restricted property associated

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ItemProperties Any access of a restricted property associated
with an Outlook item

JournalItem Body

 ContactNames

 SaveAs()

MailItem Bcc

 Body

 Cc

 HTMLBody

 ReceivedByName

 ReceivedOnBehalfOfName

 ReplyRecipientNames

 SaveAs()

 Send()

 SenderEmailAddress

 SenderEmailType

 SenderName

 SentOnBehalfOfName

 To

MeetingItem Body

 SaveAs()

 SenderName

NameSpace CurrentUser

 GetRecipientFromID

PostItem Body

 HTMLBody

 SaveAs()

 SenderName

Recipient All properties and methods

Recipients All properties and methods

TaskItem Body

 ContactNames

 Contacts

 Delegator

 Owner

 SaveAs()

 Send()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Send()

 StatusUpdateRecipients

 StatusOnCompletionRecipients

UserProperties Find()

UserProperty Formula

Listing 11.31 illustrates a COM add-in that uses a trusted and an untrusted Application object. The first block of code
gets a MailItem out of the Inbox using the Application object passed to OnConnection, which we have set to a class
member variable called trustedApplication. Then it tries to access the MailItem object's Body property (which is a restricted
property) on the object obtained via the trustedApplication object. This action will not cause the object model security
dialog box to appear. The second block of code uses an Application object we have created using the New keyword. This
Application object is not trusted, and the Outlook item we obtain via this unTRustedApplication variable causes the object
model security dialog box to appear when we access the restricted Body property.

Listing 11.31. A COM Add-In That Accesses a MailItem's Body Property Through a
Trusted and Untrusted Application Object

Public Sub OnConnection(ByVal application As Object, _
 ByVal connectMode As Extensibility.ext_ConnectMode, _
 ByVal addInInst As Object, ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnConnection

 applicationObject = application
 addInInstance = addInInst

 Dim trustedApplication As Outlook.Application = _
 CType(application, Outlook.Application)
 Dim untrustedApplication As New Outlook.Application()

 ' Using trusted application
 Dim inbox As Outlook.MAPIFolder = _
 trustedApplication.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 If TypeOf inbox.Items(1) Is Outlook.MailItem Then
 Dim mailItem As Outlook.MailItem = inbox.Items(1)
 MsgBox(mailItem.Body)
 End If

 ' Using untrusted application causes dialog to appear
 Dim inbox2 As Outlook.MAPIFolder = _
 untrustedApplication.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 If TypeOf inbox2.Items(1) Is Outlook.MailItem Then
 Dim mailItem2 As Outlook.MailItem = inbox2.Items(1)
 MsgBox(mailItem2.Body)
 End If

End Sub

Listing 11.32 shows a VSTO add-in that has a similar problem because it tries to access a restricted property on an
Outlook item passed into an event handler as a parameter. As mentioned earlier, parameters passed into event
handlers are untrusted, and accessing properties on these parameters that are restricted causes the Outlook object
model security dialog box to appear.

Listing 11.32. A VSTO Add-In That Tries to Access the Body Property of a MailItem
Obtained from an Untrusted Event Parameter

Public Class ThisApplication

 Private Sub ThisApplication_ItemSend(ByVal Item As Object, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub ThisApplication_ItemSend(ByVal Item As Object, _
 ByRef Cancel As Boolean) Handles Me.ItemSend

 If TypeOf Item Is Outlook.MailItem Then
 Dim untrustedMailItem As Outlook.MailItem = Item
 MsgBox(String.Format("Untrusted body {0}", _
 untrustedMailItem.Body))
 End If

 End Sub

End Class

If you are developing for a version of Outlook older than 2003, the Application object provided to an add-in is not
trusted by default. Also, some installations of Outlook 2003 are configured to not trust any COM or VSTO add-ins by
default. For these cases, you have to use the Outlook security administration tools, which rely on a public exchange
folder and a form template (Outlooksecurit.oft) that can be installed and configured to provide specific add-ins with a
trusted Application object. For VSTO Add-ins, you need to use the Outlook security administration tools to trust the
AddinLoader.dll component that loads all VSTO add-ins. You also need to deploy appropriate .NET security policy, as
described in Chapter 19, ".NET Code Security."

Extended MAPI

Occasionally, you will find a property in the Outlook object model that you really want to change but that is read-only.
Sometimes, it is possible to change these properties using another API set called Extended MAPI. Extended MAPI is a
C++-oriented API that talks directly to the MAPI store that backs Outlook folders and items. The way .NET developers
typically use Extended MAPI is by creating an assembly written in managed C++. Then your existing managed code
then call the managed C++ assembly, which then can call into Extended MAPI. This is an advanced scenario that is not
covered further in this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter examined some of the most important objects in the Outlook object model. The chapter covered the
properties and methods common to all of the 16 Outlook item types. You also learned about the Outlook object model
security issue.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 12. Introduction to InfoPath

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What Is InfoPath?
InfoPath is an Office application that enables users to design and fill out rich, XML-based forms. When designing a form,
you can start with a blank form or infer the form structure from an XML data file, an XML schema file, a database, or
even a Web service.

Every form can be composed of one or more views. A view is what users see when they fill out the form. Each view
consists of one or more controls that are data-bound to XML data nodes. A node is a field or group in the data source
that represents an item of the XML data behind the form.

You can add features such as conditional formatting, spell checking, and autocomplete to forms using the form's
designer, but more complex forms might require custom code to achieve the desired results. You might write code
behind a form to verify that an e-mail address is valid; to fetch a current stock quote from a Web service; or to restrict
certain views to be available only to users with a particular role, such as an administrator.

Before VSTO, code behind forms in InfoPath consisted solely of JScript and VBScript code developed with the Microsoft
Script Editor. Although easy to use, the script languages lack some of the language features that make developing and
maintaining larger, more complex customized forms easier, such as strong typing, IntelliSense, and access to the .NET
framework.

This chapter discusses how to use VSTO to create InfoPath forms with managed code behind them. The chapter starts
with a brief overview of what must be installed on your machine to develop managed code behind an InfoPath form
with VSTO and shows how Visual Studio and InfoPath work together. Then the chapter covers the InfoPath security
model, deployment model, and event-driven programming model. We consider the data events that you can handle in
your code. We also consider the InfoPath form object model and how to handle form-related events.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Getting Started
Before you can use VSTO to put code behind InfoPath forms, you must ensure that the following things are installed on
your development machine:

Visual Studio 2005

InfoPath 2003 Service Pack 1 or later

The Microsoft Office InfoPath 2003 Toolkit for Visual Studio 2005

The toolkit must be installed last because it has an explicit dependency on both Visual Studio and InfoPath.

InfoPath Service Pack 1 contains the primary interop assemblies (PIAs) for InfoPath so that managed code can
automate the InfoPath object model. Service Pack 1 also added the OnSave event, improved support for some offline
scenarios, and digital signature support. You will read more about the details later in this chapter.

After you have the toolkit installed, open Visual Studio, and choose New Project from the File Menu. Open the Visual
Basic node in the tree view; choose Office; and then choose the InfoPath Form Template project, as shown in Figure
12.1.

Figure 12.1. Creating an InfoPath project in Visual Studio.

[View full size image]

Note

The location is the location on the development machine, not the final location from which the published
form will be accessed by your users.

After you click OK, the Microsoft Office Project Wizard asks whether you want to create a new form or open a form that
you have already created with InfoPath, as shown in Figure 12.2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

you have already created with InfoPath, as shown in Figure 12.2.

Figure 12.2. Creating the project based on a blank or existing form.

To create a new, blank form, keep the default selection of Create New Form Template, and click Finish. To create a new
form template based on an XML data file, XML schema, database connection, or Web service, create the form template
in InfoPath first without using Visual Studio and then open it as an existing form template. After you have a form
template created in InfoPath, you can select the Open Existing Form Template option and browse to the form template
(.xsn) or form template definition (.xsf) file.

Note

JScript (.js) or VBScript (.vbs) files associated with an existing form template will also be imported, but the
script itself will be nonfunctional. Other scripts, such as scripts used for custom task-pane extensibility, are
not affected. If you select a form template that already has managed code, the associated code is not
included in the import; rather, you should open the Visual Studio project associated with the form
template.

After you have created your project, you can use Visual Studio as your code editor at the same time as you design the
form using the InfoPath designer window, as shown in Figure 12.3. While developing for InfoPath, you will switch
frequently between the InfoPath designer window and the Visual Studio window. In addition, when you press F5 in your
project, InfoPath starts another InfoPath window, called a "preview" window, to preview what your form would look like
at runtime. This makes for three top-level windows you might be juggling at any time. When you close the InfoPath
preview window, Visual Studio stops debugging the project. If you close the InfoPath designer window accidentally, you
can reopen it by choosing Open InfoPath from Visual Studio's Project menu.

Figure 12.3. The Visual Studio window and the InfoPath designer window run as
two separate windows.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Take a look at the Solution Explorer window on the right side of Visual Studio. Behind the scenes, a form template
consists of many files working together. By default, when you're working with just InfoPath, the XML template, XML
schemas, XSL views, and so on are hidden unless you choose Extract Form Files from the File menu and then explore
that folder in Windows Explorer. When designing the code behind a form in Visual Studio, you can see and edit all files
in the InfoPath project directly. The InfoPath designer, however, "locks" all the forms files. If you want to edit the files
in Visual Studio manually, first close the InfoPath designer window to unlock the files.

Visual Studio adds the following new commands to facilitate the development of code behind an InfoPath form:

Open InfoPath (opens the InfoPath designer window)

Publish Form (the equivalent of choosing Publish from InfoPath's File menu)

Preview > Default (previews the form you are designing in an InfoPath windowthe equivalent of creating a new
form from the template you have designed)

Preview > With Data File (previews the form you are designing with a custom XML file passed in as the initial
data the form is editing)

Preview > With User Role (previews the form with a custom role defined using InfoPath's User Roles command
in the InfoPath Tools menu)

These commands are available in the Visual Studio Project menu, the Tools menu, and in the context menu that
displays when you right-click the InfoPath Project node in the Visual Studio Solution Explorer window.

The InfoPath Project Properties dialog box, also accessible from the project's right-click menu, has two settings that
prove useful when previewing your form, as shown in Figure 12.4.

Figure 12.4. Setting InfoPath-specific project properties.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first text box, called Preview Data File Path, takes a path to a custom XML file. Without a custom XML file, InfoPath
previews with the default XML file used when filling out a new form. A custom XML file is useful for simulating what a
user would experience if an existing form, saved from a previous editing session, were reopened. You can also use the
Preview > With Data File command to achieve the same result.

The second text box, called Preview User Role, sets a preview role. You can create forms that have different views
depending on the role of the user filling out the form; an administrator might have a different view from an accountant.
These roles are defined using InfoPath's User Roles command in the InfoPath Tools menu. You can also use the Preview
> With User Role command to achieve the same result.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Form Security
Before delving into the specifics of how the InfoPath event-driven programming model works, you need to understand
how the security model works.

InfoPath was designed to be "secure by default" to provide protection for the end users using InfoPath to fill out your
forms. As an InfoPath developer, the burden is on you to ensure that your form can be deployed without problems. The
method of deployment you choose can affect which parts of the InfoPath object model your code will be allowed to use.
To understand how the method of deployment you choose can affect decisions during form development, take a look at
the InfoPath security model.

Form Security Levels

InfoPath defines three security levels: restricted, domain, and full trust. Each InfoPath form requires and is granted a
certain level. If the granted level is lower than the required level, the form will not run. This security system is enforced
regardless of whether there is code behind the form.

Forms in the restricted security level can access only resources within the form template itself. A form that requires this
security level must not attempt to access local files, for example.

Forms in the domain security level can use files and connect to resources on the machine hosting the form without
asking the user. If a form in the domain security level attempts to read or write information from a different machine,
InfoPath prompts the user to ensure that the cross-domain access is acceptable.

Forms in the full-trust security level have complete and unrestricted access to every resource that the user running the
form has access to. Only forms installed to trusted locations or digitally signed with a trusted signature are fully trusted.
(Deployment location and security are discussed later in this chapter.)

When running a form, you can see whether it was granted restricted, domain, or full-trust security level by looking at
the icon in the status bar, as shown in Figure 12.5.

Figure 12.5. The form's security level and location are shown in the status bar
when a user fills out a form. The icons shown are for the restricted, domain, and

full-trust security levels, respectively.

Automatically and Manually Setting the Required Security Level

InfoPath 2003 Service Pack 1 automatically sets the required security level as you design your form. It can do so by
determining which features the form uses and the minimum security level the form needs to function properly.

If a form on the local intranet (\\MyComputer\MyShare\Template1.xsn) posts to a Web server on the Internet
(www.contoso.com), for example, that is potentially dangerous. A malicious form might be attempting to trick you into
entering sensitive information that would then be sent across the Internet. The form would require at a minimum the
domain security level, not the restricted security level. If a user runs this form without sufficient evidence for InfoPath
to grant the form the domain security level, the form will not run. Even the form it is granted the domain security level,
at runtime, InfoPath warns the user when the form attempts to post the information to the new domain.

Note

InfoPath can determine the required security level automatically by looking at the properties of the form,
but it does not look at the code behind the form and, therefore, might set the required security level too
low. If you deploy a form that successfully requests domain trust but calls XDocument.SaveAs in an event
handler, for example, the form will load but will fail at runtime if the event handler is called. In this case,
InfoPath shows an error to the end user, explaining that there is not sufficient permission to perform the
operation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

operation.

To change the required security level of an InfoPath form manually, open the form template in design mode. Select
Form Options from the Tools menu, and click the Security tab of the Form Options dialog box, as shown in Figure 12.6.

Figure 12.6. Specifying the required security level for a form.

Deployment Location and Security

You have many options when deploying forms, and covering them completely is beyond the scope of this chapter. For
the purposes of this chapter, we discuss only the impact of deployment location on security level.

You can deploy a form in two ways: the URL and the URN. URL deployment is used by default when you use Save or
Save As from the InfoPath designer. Use URL deployment to publish the form to some shared location, such as a Web
server, SharePoint site, or shared network directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

InfoPath uses Internet Explorer security settings to determine what security level to grant to URL-deployed forms. If
Internet Explorer would classify the form's location as an Internet or local intranet site, InfoPath will grant the form the
restricted security level. If Internet Explorer thinks that the form's location is a "trusted site" or the "my computer"
domain, InfoPath will grant the domain security level. Forms from locations on Internet Explorer's "restricted sites" list
are not allowed to run at all.

URN deployment is necessary (but not sufficient) to ensure that InfoPath grants a form full trust. Choose Publish from
the File menu of InfoPath to deploy a form to a URN. A URN-published form can be installed to the local machine or
digitally signed with a trusted certificate to ensure that InfoPath fully trusts the form.

Registering a Form Template to Grant Full Trust

After you have published a form using URN deployment, the easiest way to enable a form template to be granted full
trust on your machine is to call the RegisterSolution method on the form. If called from within an InfoPath form itself,
this would require the full trust security level. This presents somewhat of a chicken-and-egg problem: We need to be
fully trusted to register a template as fully trusted.

Fortunately, InfoPath can be automated from an automation executable, much as we automated Word and Excel in
Chapter 2, "Introduction to Office Solutions." We use automation to call the RegisterSolution method; because it is not
an InfoPath form calling the method, but a fully trusted utility program, there is no chicken-and-egg problem.

Suppose that we have a mortgage application form template that we want to be a full-trust form template while we are
developing and debugging it. There are two ways to register the form template: We can register the .XSF file or the
.XSN file.

What's the difference? If you are registering the form template so that it is fully trusted on your development machine,
it makes more sense just to register the .XSF file, which can be found in the InfoPath project folder. If you are
registering a form template that is going to be published to a central location for end users to use, however, register
the .XSN file after publishing the form.

Listing 12.1 shows a console application that registers an .XSF file so it can be granted full trust. To use this code,
create a new console application, and add a reference to the InfoPath PIA.

Listing 12.1. A Console Application That Registers an .XSF File So That It Can Be
Granted Full Trust

Imports System
Imports System.XML
Imports InfoPath = Microsoft.Office.Interop.InfoPath

Module Module1

 Sub Main()

 Const xsfLocation As String = _
 "C:\InfoPathProjects\MortgageApplication\manifest.xsf"

 ' Remove the publishUrl
 Dim xsfDom As XmlDocument = New XmlDocument()
 xsfDom.PreserveWhitespace = True
 xsfDom.Load(xsfLocation)
 Dim xns As XmlNamespaceManager = _
 New XmlNamespaceManager(New NameTable())

 xns.AddNamespace("xsf", xsfDom.DocumentElement.NamespaceURI)
 Dim xDoc As XmlNode = xsfDom.SelectSingleNode(_
 "/xsf:xDocumentClass", xns)

 xDoc.Attributes.RemoveNamedItem("publishUrl")
 xsfDom.Save(xsfLocation)

 ' Register the file
 Dim ip As InfoPath.ExternalApplicationClass = _
 New InfoPath.ExternalApplicationClass()

 ip.RegisterSolution(xsfLocation, "overwrite")

 End Sub

End Module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you are registering an InfoPath form to be fully trusted, the form must not have a publishUrl. A publishUrl means
that the solution is URL-based. Remember that URN-based solutions cannot have a URL component and also be granted
full trust. The console application in Listing 12.1 removes the publishUrl (if it exists) from the .XSF form template
definition and then registers the .XSF file to enable this form to run with full-trust permissions on your machine.

Do not forget to select the Full Trust option in the Security tab of the Form Options dialog box when designing the form
on which you are going to run this console application. After you have run the console application, running the form in
full trust is as easy as double-clicking the manifest.xsf file.

More Information

A full discussion of the InfoPath security model and deployment system is beyond the scope of this book. For more
information, refer to the InfoPath SDK documents titled "Security Guidelines for Developing InfoPath Forms" and "Form
Security Model," available on MSDN at http://msdn.microsoft.com/library/en-
us/ipsdk/html/ipsdkSecureAForm_HV01083590.asp and http://msdn.microsoft.com/library/en-
us/ipsdk/html/ipsdkFormSecurityModel_HV01083562.asp.

For more information about digitally signing your form template, see the InfoPath Team Blog at
http://blogs.msdn.com/infopath/archive/2004/05/10/129216.aspx. The InfoPath SDK, also available on MSDN,
discusses using the RegForm tool to help form designers create installable form templates.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming InfoPath
InfoPath uses a declarative, per-form, event-driven approach to programming customized forms. That is, code consists
of declarations that define which event handlers are to be invoked when form elements or data elements source events.
Code in InfoPath is always written behind a specific form template; it is not possible to write "application-level" code
that is executed for all form templates. Code runs when events are raised that have been declaratively handled by
event handlers.

There are two "root" objects in the InfoPath object model. The Application object is the root of the runtime object
model; every programmable object in InfoPath can be accessed through the Application object. The other "root" object
is the ExternalApplication object. The ExternalApplication object is useful for automating InfoPath by an automation
executable rather than from code behind a form, as shown in Listing 12.1. This chapter, however, discusses only how to
create code behind a form and does not cover automation executables further.

When you create an InfoPath form template project in VSTO, Visual Studio automatically generates a FormCode.vb file
for you to add the code behind the form. It generates some boilerplate code for you to get started containing methods
called when the InfoPath form starts and shuts down, as shown in Listing 12.2.

Listing 12.2. The FormCode.vb File

Namespace PurchaseOrder

 ' <Attribute omitted)> _
 Public Class PurchaseOrder

 Private thisXDocument As XDocument
 Private thisApplication As Application

 Public Sub _Startup(ByVal app As Application, _
 ByVal doc As XDocument)
 thisXDocument = doc
 thisApplication = app

 ' You can add more initialization code here.
 End Sub

 Public Sub _Shutdown()
 End Sub

 End Class

End Namespace

When the InfoPath form starts, InfoPath calls the _Startup method and passes in an Application and XDocument object.
By default, the managed class that represents the InfoPath form stashes away references to these objects in
thisApplication and thisXDocument so that your event handlers and other code can use them later. The same
Application object is passed to all executing forms. The XDocument object is a specific instance that refers to the form
to which it is passed.

Note

Although you now have references to the Application and XDocument objects in the _Startup method, do
not make any InfoPath object model calls yet. Calling the InfoPath object model is not allowed in either the
_Startup or _Shutdown method. During these methods, calls to the object model are unavailable because
the form is either still in the process of being created or is being terminated.

Event-Based Programming

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

While users are filling out the form, various user actions directly or indirectly trigger events. Take the OnLoad event, for
example. To handle (that is, register an event handler to be called when the event occurs) the OnLoad event, select
Tools > Programming > On Load Event in the InfoPath designer window. Notice that the InfoPath designer
automatically creates a code stub and handles the event. Whenever you add an event handler to an InfoPath form, you
always do it using the InfoPath designer window and its associated menusnever by using any commands within Visual
Studio.

The code below shows a code stub generated by InfoPath to handle the OnLoad event:

<InfoPathEventHandler(EventType:=InfoPathEventType.OnLoad)> _
Public Sub OnLoad(ByVal e As DocReturnEvent)
 ' Write your OnLoad event handler code here
End Sub

You will notice immediately that an InfoPath event is not connected in the traditional .NET way of creating a new
delegate and adding that delegate to an object that raises the event using the WithEvents, Handles, or AddHandler. Instead,
InfoPath events are connected via attributes; the InfoPath runtime reflects on the attributing of methods in your code
to determine events that are handled by your code and the methods to call when an event is raised. In this case, the
attribute InfoPathEventHandler is added to your OnLoad event handler. This attribute is constructed with
EventType:=InfoPathEventType.OnLoad, which tells the InfoPath runtime to raise the OnLoad event on this attributed method.

Let's add some code to our OnLoad handler to restrict users from creating a new form outside business hours. (Note
that this does not restrict editing existing formsjust creating new ones.) Listing 12.3 shows the new OnLoad handler.

Listing 12.3. On OnLoad Handler That Restricts Creation of New Forms Outside
Business Hours

<InfoPathEventHandler(EventType:=InfoPathEventType.OnLoad)>_
Public Sub OnLoad(ByVal e As DocReturnEvent)
 If (DateTime.Now.Hour < 8 _
 Or DateTime.Now.Hour > 17 _
 Or DateTime.Today.DayOfWeek = DayOfWeek.Saturday _
 Or DateTime.Today.DayOfWeek = DayOfWeek.Sunday) _
 And thisXDocument.IsNew Then

 thisXDocument.UI.Alert("Sorry, you can only create a new" & _
 " mortgage application 8am-5pm, Monday through Friday.")
 e.ReturnStatus = False

 End If
End Sub

Note

The IsNew property and the UI.Alert method both require the domain security level.

All form events in InfoPath are cancelable through code. In this OnLoad event example, setting the ReturnStatus
property to False on the DocReturnEvent object e tells InfoPath to fail the OnLoad event (and, thus, fail loading the form)
when the event handler has returned. The default value is true.

Previewing

Press F5 or choose Start from the Debug menu in Visual Studio, and the code in Listing 12.3 will be compiled and start
running in InfoPath's preview form mode. Depending on what time and day you run the code in Listing 12.3, you may
not be able to fill out the form!

Suppose that you are working latelater than 5 p.m., at least. The OnLoad handler will not allow you to create a new
form, because thisXDocument.IsNew always returns TRue when you press F5 or choose Start from the Debug menu.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

form, because thisXDocument.IsNew always returns TRue when you press F5 or choose Start from the Debug menu.
How can you force the form to look like an existing form? If you double-click the template.xml file (located in the Visual
Studio project folder), you will start InfoPath and cause InfoPath to think that it is opening an already created form. The
template.xml file is used internally by InfoPath when creating a new form after you double-click the .XSN form
template. Opening this file directly, however, tricks InfoPath into thinking that it is opening an existing or previously
saved form.

Previewing is a very useful technique when designing and debugging a form, but it is important to realize that
previewing a form causes the following side effects:

If you choose the Tools menu and then the Preview submenu, you will see a With Data File menu item.
Previewing with a data file is never considered to be creating a new form. Instead, it is considered to be viewing
an existing form.

Previewing does not allow the user to save changes.

InfoPath will not grant the full-trust security level to a previewed formonly the domain or restricted security
level.

So in addition to previewing, you should use your form in a production environment with InfoPath running by itself to
verify that everything works properly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Data Source Events
The InfoPath object model consists of objects that expose properties, methods, and events. InfoPath's programming
model has two kinds of events: data source events and form events. Because InfoPath's programming model
emphasizes the role of events, let's take a look at the data source events first and then consider some of the useful
form events, properties, and methods of the various objects.

The number of data source events is small compared with the number of form events, but they are arguably more
powerful. Typically, most of the code behind a form involves sinking data source events.

Three data source events raise sequentially in the order listed here:

OnBeforeChange

OnValidate

OnAfterChange

Each of these events can be raised on any data node (that is, element, attribute, or group of elements) in the data
source.

Note

Although the events are always raised in this order, InfoPath does not guarantee that the events will be
raised one immediately after the other. If you have a hierarchy and have event handlers for different levels
in the hierarchy, for example, you might not see the events handled immediately after one another for a
given data source node. You might see OnBeforeChange raise for a group first, OnBeforeChange handled
next for a field, and then OnValidate for the group, and so on.

While learning about these events and their functions, keep in mind that a data source change could occur because the
text in a data node was deleted, cut, pasted, dragged, dropped, or modified in some other way. Furthermore, changes
are not limited to textual changes in single elements. Inserting, deleting, or replacing a section and repeating a table
row or list item also trigger data source events.

Suppose that we are sinking these three events for a text node called FirstName, which is bound to a text box
containing the text Jogn. If the user fixes the typo by changing the text box to John, each event for the node bound to
this text box will be raised twice: once as a delete operation (the text Jogn was deleted) and once as an insert
operation (the text John was inserted). You will learn how to handle these cases by examining the Operation property
on the DataDOMEvent object.

Furthermore, the events will not just raise on the node that changed, but also "bubble up" on the parent node of the
changed node, and on its parent, and so on until the root of the data source tree is reached.

The following sections will look at two ways to create event handlers using InfoPath. Then we will describe the purpose
of the OnBeforeChange, OnValidate, and OnAfterChange events.

Creating an Event Handler

How do you create an event handler for a particular data node? Suppose that you have a mortgage application form,
and you want to handle the OnBeforeChange event for the telephone number HomePhone. Using the InfoPath designer,
click the drop-down button on the data node called HomePhone; choose Properties; and then click the Validation and
Event Handlers tab, shown in Figure 12.7.

Figure 12.7. Selecting a data source node and showing the Properties dialog box.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

From the Events drop-down list, select the OnBeforeChange event. Then click the Edit button. Visual Studio will
automatically generate the appropriate event handler with the appropriate attributing. Remember that the correct
attributing must be in place for InfoPath to raise an event to a particular handler. These attributes are difficult to
generate by hand, which is why you should use the dialog boxes of InfoPath to create these event handlers:

<InfoPathEventHandler(_
 MatchPath:="/my:myFields/my:Email/my:Address", _
 EventType:=InfoPathEventType.OnBeforeChange)> _
Public Sub Address_OnBeforeChange(ByVal e As DataDOMEvent)
 ' Write your code here. Warning: Ensure that the constraint you
 ' are enforcing is compatible with the default value you set
 ' for this XML node.
End Sub

You might want to start from a data-bound control to get to a data node for which you want to handle an event. If the
data node is bound to a control, you can get to the same dialog box shown in Figure 12.7 by first double-clicking the
data-bound control in the view to get to its Properties dialog box, as shown in Figure 12.8.

Figure 12.8. Selecting a control's properties to handle a data event.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Click the Data Validation button to get to the dialog box shown in Figure 12.7.

The OnBeforeChange Event

The OnBeforeChange event fires before the change is made to the underlying XML data. If you want to abort the
change, the OnBeforeChange event is your only chance; by the time the OnValidate event is raised, the change has
already been made to the underlying data source.

To reject the change to the data, set the ReturnStatus property of the DataDOMEvent argument e to False. When
ReturnStatus is set to False, InfoPath will show an error dialog box informing the user that the change is not allowed.

Several additional useful properties are associated with the DataDOMEvent object. The Operation property returns a
String set to "Delete", "Update", or "Insert". This tells you whether the user is deleting data, updating data, or inserting new
data. The ReturnMessage property accepts a String that is shown in a dialog box when the change is rejected. The
NewValue property returns a String for the new value of the data node that was changed. The OldValue property returns
a String for the value of the data node before it was changed.

Listing 12.4 shows an OnBeforeChange event handler that validates that an e-mail address is in a valid format. In
Listing 12.4, we first check the DataDOMEvent object's Operation property to make sure we are not in a delete
operation. If we are in a delete operation, the NewValue property would be Nothing. Then we validate the e-mail address
returned by the NewValue property by using a regular expression. If the change is not matched by our regular
expression, we set ReturnStatus to False and set ReturnMessage to the message text we want InfoPath to use in the
error dialog box.

Listing 12.4. An OnBeforeChange Event Handler

<InfoPathEventHandler(_
 MatchPath:="/my:myFields/my:Email/my:Address", _
 EventType:=InfoPathEventType.OnBeforeChange)> _
Public Sub Address_OnBeforeChange(ByVal e As DataDOMEvent)
 If e.Operation = "Delete" Then ' only handle update and insert
 Return
 End If
 Dim newEmail As String = e.NewValue.ToString()
 If newEmail.Length > 0 Then
 Dim emailRegEx As New Regex(_
 "^[a-zA-Z][\w\.-]*[a-zA-Z0-9]@[a-zA-Z0-9][\w\.-]*" & _
 "[a-zA-Z0-9]\.[a-zA-Z][a-zA-Z\.]*[a-zA-Z]$", _
 RegexOptions.IgnoreCase)
 e.ReturnStatus = emailRegEx.IsMatch(newEmail)
 e.ReturnMessage = "Please use a valid email address."
 End If
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You cannot change the data source itself from within the event handler. You cannot set the NewValue property to a
different string, for example. InfoPath locks the data source to make it read-only for the duration of the event, to
prevent the scenario where one event handler attempts to change the data, triggering another change event handler
that might trigger yet another change event handler, and so on. Making the data source read-only while the event sink
runs prevents these "event storm" scenarios.

Note

Data source change events are fired when the form loads and the data source is first created. If you set
the DataDOMEvent object's ReturnStatus property to False during this data source creation phase, the form
will fail to load. Use caution when writing an OnBeforeChange event handler.

The OnValidate Event

By the time the OnValidate event raises, the new value has already been written into the data source. The most
common reason to sink an OnValidate event is to implement error handling.

A form error typically is shown in an InfoPath form by a red dashed "error visual" rectangle surrounding the control. If
you require that a telephone number include the area code, for example, you might use an error visual rectangle to
indicate an improper format, as shown in Figure 12.9.

Figure 12.9. A data validation error shown in InfoPath with a red dashed
rectangle.

Let's add error handling for telephone-number data using the OnValidate event. Listing 12.5 shows an OnValidate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's add error handling for telephone-number data using the OnValidate event. Listing 12.5 shows an OnValidate
handler that uses some additional features of the InfoPath object model. The code uses the DataDOMEvent object's
ReportError method to report data validation errors. The ReportError method takes the parameters listed in Table 12.1.

Table 12.1. Parameters Passed to the DataDOMEvent Object's
ReportError Method

Parameter Name Type What It Does

varNode Object The data node to associate with the error. If this
data node is bound to one or more controls, the
controls might display error visuals.

bstrShortError-Message String The short error message is the message shown in
the tooltip when the user hovers over a control that
is data-bound to the data node passed to varNode.

fSiteIndependent optional
Boolean

Set to true to tell InfoPath that the error applies to
all potentially matching nodes, which proves useful
when you add an error to a node that is repeating,
and you want to add an error to the collection of
nodes instead of a particular node. If set to False,
the error is associated with the specific node passed
to varNode and no other.

bstrDetailed-ErrorMessage optional
String

The long error message typically has more
information than the short error message and has
additional troubleshooting options.

lErrorCode optional
Integer

An error code value. It is sometimes convenient to
be able to give each error condition a number.
Setting an error code proves particularly useful if
you have an existing error reporting system whose
numeric codes you want to reuse.

bstrType optional
String

Tells InfoPath how first to reveal the error, If you
pass the string "modeless", InfoPath will passively
alert the user via an error visual on the control. If
you pass the string "modal", InfoPath will show a
dialog box prompting the user with the long error
message.

Listing 12.5 also illustrates the use of the XDocument object's Errors collection as an alternative way to report errors.
Recall from Listing 12.2 that the code generated for the InfoPath form has cached away the XDocument object in the
thisXDocument variable. The code uses the thisXDocument variable to access the XDocument object for the form. It accesses
the XDocument object's Errors collection and uses the Errors collection's Add method to associate errors with the form.
The arguments to the Errors.Add are very similar to those of ReportError, with three differences. First, Errors.Add has
no "site-independent" option. Second, Errors.Add allows you to tag an error condition with a string parameter called
bstrConditionName, as well as with an error code. This condition string is for your internal use only and does not display to
the end user. Third, you can call Errors.Add at any time in any handler, but ReportError may be called only from within
an OnValidate event handler.

Listing 12.5. An OnValidate Event Handler That Uses the DataDOMEvent Object's
ReportError Method and the XDocument Object's Errors Collection

<InfoPathEventHandler(MatchPath:="/my:myFields/my:HomePhone", _
EventType:=InfoPathEventType.OnValidate)> _
Public Sub HomePhone_OnValidate(ByVal e As DataDOMEvent)
 ' Ensure that the format is "xxx-xxx-xxxx"
 If e.NewValue Is Nothing Then
 Return
 End If

 Dim siteIndependent As Boolean = False
 Dim errorCode As Integer = 0
 Dim modal As String = "modal"
 Dim NewPhone As String = e.NewValue.ToString
 If NewPhone.Length <> 12 Then
 'Tell InfoPath what node caused the error, whether the error
 'is associated with this node, what the short and long error
 'messages should be, and whether to produce a modal or
 'modeless error dialog:

 e.ReportError(e.Site, "Phone number format error", __

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 e.ReportError(e.Site, "Phone number format error", __
 siteIndependent, "Expected format is xxx-xxx-xxxx.", _
 errorCode, "modeless")
 Else
 Dim indexOfHyphen As Integer = NewPhone.IndexOf("-")
 If indexOfHyphen <> 3 Then
 thisXDocument.Errors.Add(e.Site, "NoExpectedHyphen", _
 "No hyphen found", "Expected a hyphen after 3 digits.", _
 errorCode, modal)
 Else
 indexOfHyphen = NewPhone.IndexOf("-", indexOfHyphen + 1)
 If indexOfHyphen <> 7 Then
 thisXDocument.Errors.Add(e.Site, "NoExpectedHyphen",_
 "Second hyphen not found", _
 "Expected a hyphen after 6 digits.", _
 errorCode, modal)
 End If
 End If
 End If
End Sub

Site Versus Source

Another thing to note in Listing 12.5 is the code passes the Site property of the DataDOMEvent object to give
ReportErrors and Errors.Add the data node where the error occurred. The Site property of the DataDOMEvent object
refers to the data node currently processing the validation event (that is, the data node to which the event handler is
listening). The DataDOMEvent object's Source property refers to the data node that changed and triggered validation.
Remember that events can bubble up from child nodes to parent nodes. If you are sinking the OnValidate event of a
parent node, and the user changes a child node, the Site will refer to the parent node handling the event, and the
Source will refer to the child node that triggered the event in the first place.

Note

The Site and Source properties and the Errors.Add and ReportError methods all require the domain
security level.

The OnAfterChange Event

In OnBeforeChange and OnValidate events, the data source is read-only and cannot be modified by your event handler
code. When can your code modify the data source? Code you write in an OnAfterChange event handler is allowed to
edit the data source if InfoPath is not raising the OnAfterChange event for an undo or redo operation invoked by the
user. Your OnAfterChange event handler can detect whether an undo or redo resulted in the event being raised by
checking the DataDOMEvent's IsUndoRedo property.

If you directly update the data node that your event handler corresponds to, use caution; otherwise, you could create
infinite recursion. Listing 12.6 shows a simple OnAfterChange event handler that directly changes the data node it is
handling the event for by setting e.Site.text to a new value. It prevents recursion by first checking to see whether
e.Site.text is already set to the new value. It also checks the IsUndoRedo property to make sure OnAfterChange was
not raised as a result of an undo or redo.

Listing 12.6. An OnAfterChange Event Handler That Updates the Data in the Node
for Which It Is Handling the OnAfterChange Event

<InfoPathEventHandler(MatchPath = "/my:myFields/my:someField", _
 EventType = InfoPathEventType.OnAfterChange)> _
Public Sub someField_OnAfterChange(ByVal e As DataDOMEvent)
 If (e.IsUndoRedo) Then
 Return
 End If
 If (e.Site.text = "newFieldValue") Then
 Return ' prevents recursion
 End If
 e.Site.text = "newFieldValue"
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Form Events, Properties, and Methods
Data source events prove very useful for ensuring that data constraints are maintained and taking action when the user
makes changes to data. InfoPath also provides a form object model that you can use to customize the behavior of your
form further. Some of the scenarios the form object model enables are as follows:

Consider the earlier example of a form that displays interest-rate quotes to the user filling out the form. You
might want to create an Administrator view of the form that allows authorized people to change the quoted
interest rates.

You might want to integrate context-sensitive help as the user navigates through your form.

You might want a custom task pane to extend and further customize the experience of filling out the form.

You might want to customize how your forms are saved and submitted. Instead of submitting via a data
connection or allowing a user to save to any location, you could restrict where the form is saved.

The remainder of this chapter examines the form object model and discusses how to create a custom task pane for a
form. The InfoPath forms object model contains many events, properties, and methods. This book discusses only some
of the most commonly used parts of the InfoPath forms object model.

Button Events and View Switching

A view is a surface on which you insert controls and form content in the designer; it is what the user looks at while
filling out the form. Lengthy forms are often composed of multiple views. In addition, data being edited can be
displayed in multiple views. You may have a timecard that can be viewed in a less-detailed view for someone who
wants to enter information quickly, for example, and a more-detailed view may be available for a manager trying to
generate end-of-pay-period reports. You can find a list of available views for the data being edited in InfoPath's View
menu. A user can switch between views at will.

Switching between views might not be the desired behavior, especially if your views are supposed to be sequential or
have dependencies. While designing your form, you have an option to remove the name of a view from the View menu
and to prevent users from choosing a particular view. Then the code behind the form can switch views
programmatically by using the XDocument.View.SwitchView method.

Suppose that you have a mortgage application with two views. The first view allows the user to fill out contact
information: name, phone numbers, and so on. When all the required contact information is filled out, the user can click
the Go to Mortgage Details button. You can add a button to the form by selecting the Controls task pane in the InfoPath
form design view and dragging a button onto the form designer. If you right-click the button and choose Properties, you
can open the Properties dialog box, shown in Figure 12.10.

Figure 12.10. Creating a button with the form designer.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We want this button to switch to another view to display the mortgage details, but only if the first-name and last-name
text boxes are filled on the contact information view. We can do this by clicking the Edit Form Code button in the
Properties dialog box, which causes Visual Studio to emit an event handler for the OnClick event raised by the button.

Listing 12.7 shows code for the OnClick event handler that switches the view. Because this is not a data event but a
forms event, the event argument object DocActionsEvent does not refer to the data nodes that we are interested in
checking before we switch the view. The code gets to the data nodes by querying the XML data source using an XPATH
query and then verifies that the strings that come back are valid before changing views.

Listing 12.7 uses the XDocument object's DOM property to access an IXMLDOMDocument object. Then it uses the
IXMDOMDocument object's selectSingleNode method to get a node by passing the XPATH query strings to get to
FirstName and LastName. Finally, it examines the retrieved node's text property to see whether the FirstName and
LastName fields have been filled in.

Listing 12.7 also uses two other methods from XDocument. The XDocument object's UI property returns a UI object.
The UI object's Alert method displays a simple message box within InfoPath. The XDocument object's View property
returns a View object. The View object represents the currently active view in the form. Listing 12.7 uses the View
object's SwitchView method to change to another view if the FirstName and LastName data nodes have been entered.

Listing 12.7. An OnClick Event Handler for a Button That Switches the View

<InfoPathEventHandler(MatchPath:="GoToDetailsButton", _
 EventType:=InfoPathEventType.OnClick)> _
Public Sub GoToDetailsButton_OnClick(ByVal e As DocActionEvent)
 Const FirstNameXPath As String = "/my:myFields/my:FirstName"
 Const LastNameXPath As String = "/my:myFields/my:LastName"
 Dim mainData As IXMLDOMDocument = thisXDocument.DOM
 If String.IsNullOrEmpty(_
 mainData.selectSingleNode(FirstNameXPath).text) Or _
 String.IsNullOrEmpty(_
 mainData.selectSingleNode(LastNameXPath).text) Then

 thisXDocument.UI.Alert("Please fill in first and last name.")
 Else
 thisXDocument.View.SwitchView("Mortgage Details")
 End If
End Sub

The OnContextChange Event and the Custom Task Pane

Another way to write code to handle form changes is to use the XDocument object's OnContextChange event. Exactly
what do we mean by context?

The user can be interacting with only one control at a time; mouse clicks or key presses are handled by the control that
has the focus. The context of a form is the data source node bound to the control that has the focus.

Consider the example of a contact-information form. Each text box is bound to a particular node in the data source. As
the user filling out the form uses the mouse or keyboard to move the focus from one control to the next on the form,
context changes to a different data node, and the XDocument object's OnContextChange event is raised.

You could have more than one control bound to the same data node. In that case, if the user were to change the focus
from one control to another bound to the same data node, the context change event would not raise, because context
has not changed. In a repeating control, the OnContextChange event is raised when focus is changed from row to row.
The OnContextChange event does not indicate the new row position, however.

Creating a Custom Task Pane

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A common way to use the OnContextChange event is to integrate a dynamic help system into a form. By detecting
when the form is editing a different data node, we can provide help for the data node being edited in the task pane. The
first thing we need to do is enable the custom task pane for this form. Choose Form Options from the Tools menu of the
InfoPath designer window, and select the Advanced tab of the Form Options dialog box, as shown in Figure 12.11.

Figure 12.11. Enabling and adding resources to the custom task pane.

Using the Advanced tab, you can enable the custom task pane and add HTML files as resource files that can be displayed
in the task pane. Click the Resource Files button to bring up the Resource Files dialog box. Click the Add button to add
HTML files as resources to the InfoPath form. For this example, we add three HTML files: one named generalHelp.htm, a
second named nameHelp.htm, and a third named phoneHelp.htm. Note that as you add the HTML files, they display in
Solution Explorer in Visual Studio.

After you have added several HTML files to the form, you can handle the OnContextChange event to display the
appropriate HTML file in the task pane for a particular context. To generate a handler for the OnContextChange event,
choose the On Context Change Event command from the Programming menu in the Tools menu of the InfoPath
designer window. Listing 12.8 shows an OnContextChange event handler that switches among generalHelp.htm,
nameHelp.htm, and phoneHelp.htm in the task pane, depending on the current data node.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 12.8. An OnContextChange Event Handler That Switches the HTML Shown
in the Task Pane

<InfoPathEventHandler(_
 EventType:=InfoPathEventType.OnContextChange)> _
Public Sub OnContextChange(ByVal e As DocContextChangeEvent)
 If e.Type = "ContextNode" Then
 Dim helpTaskPane As HTMLTaskPane = _
 CType(thisXDocument.View.Window.TaskPanes(0), HTMLTaskPane)
 Dim navigateTo As String = "generalHelp.htm"
 Dim thisNodeName As String = e.Context.nodeName
 If thisNodeName = "my:FirstName" Then
 navigateTo = "nameHelp.htm"
 ElseIf thisNodeName = "my:LastName" Then
 navigateTo = "nameHelp.htm"
 ElseIf thisNodeName = "my:HomePhone" Then
 navigateTo = "phoneHelp.htm"
 ElseIf thisNodeName = "my:WorkPhone" Then
 navigateTo = "phoneHelp.htm"
 End If

 helpTaskPane.Navigate(navigateTo)
 End If
End Sub

If you preview this form, you will see that as you select different text boxes, the task pane displays the appropriate
HTML files, as shown in Figure 12.12.

Figure 12.12. The custom task pane at runtime.

[View full size image]

The code in Listing 12.8 checks the DocContextChangeEvent object's Type property to verify that it is "ContextNode".
InfoPath supports only a type of "ContextNode" as of Service Pack 1, but other values may be introduced in future versions
of InfoPath. As a result, the check for "ContextNode" is recommended for forward-compatibility reasons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of InfoPath. As a result, the check for "ContextNode" is recommended for forward-compatibility reasons.

You probably noticed that the InfoPath object model exposes an array of task panes. The custom task pane is always
located at index 0. Other indices reference built-in task panes available while filling out a form. Index 4, for example, is
the Help task pane.

Note

Forms in the restricted security level can access the task panes collection, but reading the Context property
requires at least the domain security level.

Focus Versus Selection

What if you want to determine the current context in some event handler other than an OnContextChange handler? The
XDocument's View property returns a View object. The View object has a GetContextNodes method that can be called
from any event handler. It returns a collection of all the XML nodes that are in contextnot just the node bound to the
control with the focus, but all its parent nodes in the data source tree as well.

The View object also provides a GetSelectedNodes method that returns the collection of XML nodes bound to the
selected controls. This is a subtle distinction: Only one control can have the focus at any time, but a user can select
multiple controls.

You might be tempted to use the GetSelectedNodes or GetContextNodes method in a button-click handler.
Unfortunately, this does not work; as soon as the user clicks the button, the focus and selection change to the button
itself.

Note

GetContextNodes and GetSelectedNodes both require at least the domain security level.

Setting Selection

Two other useful methods on the View object are the SelectNodes and SelectText methods. SelectText takes a single
IXMLDOMNode, and SelectNodes takes two IXMLDOMNodes (to define the start and end of a range) to determine what
to select. Consider the example earlier in this chapter in which we wrote an OnClick event handler for a button to
ensure that the FirstName and LastName fields were not blank before switching views. You could use the SelectText
method to select the text box that was blank so that the user could simply start typing in the blank text box to fix the
error.

Overriding Submit, Confirm, and Save

So far you have seen how to use data source and form events to ensure that data entered by users is valid, reacts to
users navigating around the form, and so on. This chapter has not yet discussed what happens to the data in the form
when all the information is entered and validated. Somehow, the data must be saved to disk or submitted to a server
somewhere.

Suppose that you want to prevent the user from specifying a destination for the saved data. Rather, when the user is
done with the form, you want to ensure that the data is always saved to a particular shared directory on your intranet.
You can accomplish this by handling the OnSubmitRequest event and writing code to force the data to be saved to that
location.

The first thing you need to do is to disallow users from saving. In the InfoPath designer window, choose Form Options
from the Tools menu to show the Form Options dialog box; then click the Open and Save tab. Uncheck the Save and
Save As check box, as shown in Figure 12.13.

Figure 12.13. Disabling Save and Save As for a form.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12.13. Disabling Save and Save As for a form.

The next step is to handle the OnSubmitRequest event. This event is raised when the Submit action is invoked when
filling out the form. To handle this event, choose Submitting Forms from the InfoPath Tools menu to display the
Submitting Forms dialog box. Select the Enable Submit Commands and Buttons radio button; then pick Custom Submit
Using Form Code from the Submit To drop-down list, as shown in Figure 12.14.

Figure 12.14. Creating a custom event handler for the OnSubmitRequest event.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you click the OK button, an event handler is generated for you in Visual Studio. In the OnSubmitRequest event,
use the XDocument object's SaveAs method to save the form to a specific network share and filename. In Listing 12.9,
the code saves the form to the network share \\myShare and names the file using the user's first and last names.
Listing 12.9 also uses the XDocument object's UI object. It calls the UI object's Confirm method to ask users whether
they are sure that they want to save. The code also uses the Application object's Window object and calls the Window
object's Close method to close the window associated with the form after the form is saved.

Listing 12.9. An OnSubmitRequest Event Handler That Forces the Form to Be
Saved to a Particular Network Share

<InfoPathEventHandler(_
 EventType:=InfoPathEventType.OnSubmitRequest)> _
Public Sub OnSubmitRequest(ByVal e As DocReturnEvent)
 ' If the submit operation is successful, set
 ' e.ReturnStatus = true
 ' Write your code here.
 Dim submitChoice As XdConfirmChoice
 If thisXDocument.Errors.Count > 0 Then
 submitChoice = thisXDocument.UI.Confirm(_
 "Errors exist on the form. Continue submitting?", _
 XdConfirmButtons.xdYesNo)
 Else
 submitChoice = thisXDocument.UI.Confirm(_
 "Are you sure you want to submit?", _
 XdConfirmButtons.xdYesNo)
 End If

 If submitChoice = XdConfirmChoice.xdYes Then
 Dim firstName As String
 firstName = thisXDocument.DOM.selectSingleNode(_
 "/my:myFields/my:FirstName").text
 Dim lastName As String
 lastName = thisXDocument.DOM.selectSingleNode(_
 "/my:myFields/my:LastName").text
 Dim fileName As String = firstName + "_" + lastName + ".XML"
 thisXDocument.SaveAs("\\myShare\forms$\" + fileName)
 thisXDocument.UI.Alert("Thank you, " & _
 firstName & "! You will be contacted shortly.")
 thisApplication.ActiveWindow.Close(True)
 ' No need to set ReturnStatus because InfoPath closes
 Else
 e.ReturnStatus = False
 End If
End Sub

InfoPath uses the ReturnStatus flag to determine whether the OnSubmitRequest event succeeded. It is not necessary to
set the ReturnStatus flag to true in this example when closing the form window, because the runtime is immediately

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

set the ReturnStatus flag to true in this example when closing the form window, because the runtime is immediately
shut down when the form window is closed.

Note

The call to Confirm requires the domain security level, and the call to SaveAs requires the full-trust security
level. Therefore, we will need either to sign digitally or register the form template to get full-trust
permissions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter introduced InfoPath development with VSTO. You learned how to create a new VSTO InfoPath project
based on a new form or an existing form. The chapter also covered key objects that you will code against, including
InfoPath's Application object, the XDocument object (which represents a form), the View object, and objects passed as
parameters to events such as the DataDOMEvent object.

This chapter also examined the InfoPath security model. You learned how a form is granted a particular security level,
such as restricted, domain, or full trust. The chapter also covered InfoPath's data model and key data events such as
OnBeforeChange, OnValidate, and OnAfterChange. You also read about the InfoPath's form object model and how to
handle key events, including OnLoad, a button-click handler, OnContextChange, and OnSubmitRequest.

As you no doubt discovered while working through the examples in this chapter, InfoPath development differs quite a
bit from the Excel, Word, and Outlook development experience. Whenever you add an event handler, you must do so
using the menus and commands in InfoPath; you never use Visual Studio to add an event handler. Event handlers do
not follow the traditional declarative Visual Basic 2005 event model of using WithEvents and Handles. Instead, methods that
will handle InfoPath events are attributed. These attributes are somewhat difficult to create and edit, hence the need to
have the InfoPath menus and dialog boxes generate these handlers for you. Finally, InfoPath development differs from
development in Excel and Outlook because the design view of an InfoPath form is the InfoPath application window, not
a designer that shows up in place within Visual Studio.

This book does not cover InfoPath in any additional detail. For more information on InfoPath programming, consult the
MSDN page for InfoPath at http://msdn.microsoft.com/library/en-us/odc_2003_ta/html/odc_ancInfo.asp.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part III: Office Programming in VSTO
So far, you have seen how to use Visual Studio to develop managed customizations and add-ins that
can run in various Office applications. Clearly, it is possible to use the power of both managed code and
the rich Office object models together. Compare, however, the development process for such solutions
with, say, designing a Windows Formsbased application in Visual Studio. Developers of forms-based
solutions get visual designers, powerful data binding, and a truly object-oriented programming model.
These tools help professional developers manage the complexity of modern application construction.

VSTO takes the same approach to Word and Excel solution development. VSTO features include the
following:

Word and Excel run as designers inside Visual Studio.

Workbooks, worksheets, and documents are represented by customizable, extensible classes in
an object-oriented programming model.

Managed controls can be hosted by worksheets and documents.

Business process code can be logically separated from display code.

Windows Forms data binding connects business data to controls.

Business data can be cached in the document and manipulated as XML, enabling both offline
client and server scenarios.

Part III of this book explores these features:

Chapter 13, "The VSTO Programming Model," shows how VSTO extends the Word and Excel
object models.

Chapter 14, "Using Windows Forms in VSTO," covers adding Windows Forms controls to VSTO-
customized documents.

Chapter 15, "Working with the Actions Pane," shows how to add managed controls to Office's
Document Actions task pane.

Chapter 16, "Working with Smart Tags in VSTO," shows how to implement Smart Tags using
managed code.

Chapter 17, "VSTO Data Programming," and Chapter 18, "Server Data Scenarios," discuss ways
to manipulate datasets associated with the document on the client and server.

Chapter 19, ".NET Code Security," covers the VSTO security model.

Chapter 20, "Deployment," shows how to deploy your customized documents.

Part III also examines some advanced topics regarding using XML with Word and Excel, as well as
creating managed application-level add-ins in Word, Excel, and Outlook.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13. The VSTO Programming Model

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The VSTO Programming Model
In Windows Forms programming, a form is a window that contains controls, such as buttons and combo boxes. To
implement a form, you can drag and drop controls from the Visual Studio toolbox onto the form's designer. Then the
form designer generates a customized subclass of the Form class. Because each form is implemented by its own class,
you can customize the form code further by adding properties and methods of your own to the class. And because all
the controls are added as properties on the form class, you can use IntelliSense to program those custom methods
more rapidly.

The system of host items and host controls in VSTO is directly analogous to Windows Forms. By host, we mean the
applicationWord or Excelthat hosts the customization. Host items are like forms: programmable objects that contain
user interface elements called host controls. The Workbook, Worksheet, and Chartsheet objects are host items in Excel;
the Document object is the sole host item in Word. In Outlook, the Outlook Application object is exposed as a host item.

As we saw back in Chapter 2, "Introduction to Office Solutions," the Visual Studio Excel and Word designers create
custom classes that extend the Worksheet and Document base classes. As you place host controls such as lists, named
ranges, charts and buttons onto the worksheet, they are exposed as fields on the customized subclass.

Separation of Data and View

Some people use spreadsheet software solely for its original purpose: to lay out financial data on a grid of cells that
automatically recalculates sums, averages, and other formulas as they update the data. You might have a simple Excel
spreadsheet that calculates the total expenses for a wedding given all the costs involved, for example. Similarly, some
people use word-processing software solely for its original purpose: to typeset letters, memos, essays, books and other
written material automatically.

In a business setting, however, spreadsheets and documents have evolved to have both high internal complexity and
external dependencies. Unlike a spreadsheet containing a wedding budget, a spreadsheet containing an expense report
or a document containing an invoice is likely to be just one small part of a much larger business process. This fact has
implications for the design of a programming model. Consider this Visual Basic for Applications (VBA) code, which might
be found in a spreadsheet that is part of a larger business process:

SendUpdateEmail _
 ThisWorkbook.Sheets(1).Cells(12,15).Value2

Clearly, the unreadable snippet is sending an e-mail to someone, but because the Excel object model emphasizes how
the spreadsheet represents the data, not what the data represents, it is hard to say what exactly this is doing. The code
is not only hard to read, but also brittle; redesigning the spreadsheet layout could break the code. We could improve
this code by using a named range rather than a hard-coded direct reference to a particular cell:

SendUpdateEmail _
 ThisWorkbook.Names("ApproverEmail").RefersToRange.Value2

Better, but it would be even nicer if the particular range showed up in IntelliSense. VSTO builds a convenient custom
object model for each work sheet, workbook, or document so that you can more easily access the named items
contained therein:

SendUpdateEmail(ExpenseReportSheet.ApproverEmail.Value2)

A more readable, maintainable, and discoverable object model is a welcome addition. Even in the preceding snippet,
however, the VSTO programming model still does not address the more fundamental problem: We are manipulating the
data via an object model that treats it as part of a spreadsheet. The spreadsheet is still the lens through which we see
the data; instead of writing a program that manipulates ice cream sales records, we wrote a program that manipulates
a list and a chart.

The crux of the matter is that Word and Excel are editors; they are for designing documents that display data.
Therefore, their object models thoroughly conflate the data itself with the "view": the information about how to display
them. To mitigate this conflation, the VSTO programming model was designed to enable developers to separate view
code logically from data code. Host items and host controls represent the view elements; host items and host controls
can be data bound to classes that represent the business data.

Model-View-Controller

If you're familiar with design patterns, you will have already recognized this as based on the Model-View-Controller

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you're familiar with design patterns, you will have already recognized this as based on the Model-View-Controller
(MVC) design pattern, shown in Figure 13.1. In the MVC pattern, the data model code represents the business data and
the processes that manipulate that data. The view code reads the data, listens to Change events from the data, and
figures out how to display the data. The controller code mediates between the view and the data code, updating the
data based upon the gestures the user makes in the view (mouse clicks, key presses, and so on).

Figure 13.1. Model-View-Controller architecture.

[View full size image]

Benefits of Separation

Logically separating the data code from the view code leads to a number of benefits when building more complex
business documents on top of Word and Excel:

Business data and rules can be encapsulated in ADO.NET datasets and reused in different applications.

Changes to view code are less likely to break data code unexpectedly (and vice versa).

Data code can cache local copies of database state for offline processing.

Server-side code can manipulate cached data inside the document without starting Word/Excel.

Now that you know some of the design philosophy behind VSTO, let's take a look at how the host items and host
controls actually extend the Word and Excel object models. (The data side is covered in Chapter 17, "VSTO Data
Programming," and server-side data manipulation is covered in Chapter 18, "Server Data Scenarios.")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSTO Extensions to Word and Excel Objects
VSTO extends the Word and Excel object models in several ways. Although it is possible to use these features without
understanding what is actually happening behind the scenes, it is helpful to take a look back there. This section explains
by what mechanisms host items and host controls extend the Word and Excel programming models. Then the
discussion focuses on which new features are available.

Aggregation, Inheritance, and Implementation

If you create a Word project in Visual Studio and open the Object Browser window, you will see several assemblies
listed. Two are of particular interest. You already know that the Microsoft.Office.Interop.Word assembly is the primary
interop assembly (PIA), containing the definitions for the interfaces that allow managed code to call the unmanaged
Word object model. Similarly, the Microsoft.Office.Interop.Excel assembly is the PIA for the unmanaged Excel object
model.

You can find the VSTO extensions to the Word and Excel object models in the Microsoft.Office.Tools.Word and
Microsoft.Office.Tools.Excel assemblies; each contains a namespace of the same name.

From a VSTO Word document project, open the Object Browser, and take a look at the Document host item class in the
Tools namespace, shown in Figure 13.2.

Figure 13.2. Examining the Document host item class in the Object Browser.

[View full size image]

Notice that the host item class implements the properties, methods, and events defined by the Document interface
from the PIA, and extends the BindableComponent base class. Chapter 17, "VSTO Data Programming," gets into the
details of how data-bindable components work; for now, the fact that this class implements the properties, methods,
and events from the PIA interface rather than extends a base class is important. It is important to notice that even
though the Document host item class has all the methods, properties, and events of the Document interface from the
PIA, the type definition does not actually say that it implements the Document interface itself. This is a subtle
distinction that we will discuss in more detail later.

Conceptually, the difference between extending a base class and implementing the properties, methods, and events
from an interface is that the former describes an "is a" relationship, whereas the latter describes a "can act like"
relationship. A Microsoft.Office.Tools.Word.Document object really is a bindable component; it actually shares
functionalitycodewith its base class. But it merely looks like and acts like a Word Document object; it is not a Word

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

functionalitycodewith its base class. But it merely looks like and acts like a Word Document object; it is not a Word
document object as far as Word is concerned.

The Sheet1 class in Excel, for example, has your event handlers and host controls. It extends the
Microsoft.Office.Tools.Excel.Worksheet base class and implements the properties, methods, and events defined by the
Microsoft.Office.Interop.Excel.Worksheet interface.

Connecting the Aggregates

VSTO's host item and host control objects aggregate some of the underlying Word and Excel document objects (such as
the Document and Bookmark objects in Word, and the Worksheet and NamedRange objects in Excel). You have already
seen how you can call methods on the document object in a VSTO customization. Suppose that you call the
CheckGrammar method on the document. If this is not really a Word Document object but merely looks like one, how
does it work?

The aggregating object's implementation of that method checks to see whether it has obtained the aggregated
Document object already. If it has not, it makes a call into Word to obtain it (and caches away the object so that it will
be available immediately when you make a second method call). After it has the reference to the aggregated object,
the aggregating object calls CheckGrammar on the aggregated object. The great majority of the properties and
methods on the aggregating objects do nothing more than pass the arguments along to the PIA code, which then
passes them along to the unmanaged object model.

Events work in the analogous way; if your code listens to an event exposed by an aggregating object, the aggregating
object listens to the event on the aggregated object on your behalf. When the event is raised by the aggregated object,
the aggregating object's delegate is called; it raises the aggregating object's event and calls your event handling
delegate.

All the host controls are connected in a similar manner to the host items. If you have a NamedRange host control
member of a worksheet, for example, the aggregating Worksheet object itself creates an aggregating NamedRange
object. The first time you call a method on the host control, the aggregating class obtains the underlying "real" object
from Excel and passes the call along.

This might seem like a whole lot of rigmarole to go through just to add new functionality to the Word and Excel object
models. The key benefit that this system of aggregates affords is that each host item class in each project can be
customized. One spreadsheet can have an InvoiceSheet class with a CustomerNameRange property; another can have
a MedicalHistorySheet class with a CholesterolLevelChart property, and so on.

In short, VSTO extends the Word and Excel object models by aggregating the unmanaged object models with managed
objects. VSTO enables developers to customize and extend some of those objects furtherthose representing the
workbook, worksheet, chart sheet, and documentthrough subclassing.

Obtaining the Aggregated Object

Much of the time, the foregoing details about how the aggregation model works are just that: implementation details.
Whether the host item "is a" worksheet or merely "looks like" one seems to be an academic point. In some rare
scenarios, however, it does matter.

Word's and Excel's object models were not written with the expectation that managed aggregates would implement
their interfaces; when you call a method that takes a range, Excel expects that you are passing it a real range, not an
aggregated range that acts like a range.

Suppose that you have a customized worksheet with two host controls: a NamedRange member called InvoiceTotals
and a Chart object called InvoiceChart. You might want to write code something like this snippet:

Me.InvoiceChart.SetSourceData(Me.InvoiceTotals, _
 Excel.XlRowCol.xlColumns)

This code will throw an exception at runtime because the SetSourceData method on the chart aggregate must be
passed an object that implements the Range interface. It looks like at runtime, the InvoiceChart aggregate will pass
InvoiceTotals, an aggregated range, to the "real" aggregated chart. But Excel will expect that the object passed to
SetSourceData is a range, whereas in fact it is the VSTO aggregate; it merely looks like an Excel range.

When just calling methods, reading or writing properties, and listening to events, the aggregate is more or less
transparent; you can just use the object as though it really were the thing it is aggregating. If for any reason you need
to pass the aggregate to an Excel object model method that requires the real Excel object, you can obtain the real Excel
object via the InnerObject property. The code above will work properly if you rewrite it to look like this:

Me.InvoiceChart.SetSourceData(Me.InvoiceTotals.InnerObject, _
 Excel.XlRowCol.xlColumns)

Aggregation and Windows Forms Controls

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you drag and drop a Windows Forms button onto a worksheet or document, the button control is also aggregated.
Windows Forms controls, however, are aggregated slightly differently from the NamedRange, Bookmark, ListObject,
and other controls built in to Word and Excel. There are two relevant differences between Windows Forms controls and
Office's controls. First, Windows Forms controls are implemented by extensible managed classes, unlike the unmanaged
Office controls, which only expose interfaces in their PIAs. Second, Word and Excel controls inherently know how they
are situated in relation to their containing document or worksheet; non-Office controls on a worksheet do not know that
they are in a worksheet.

Word and Excel overcome the second difference by aggregating an extender onto a control sited on a document or
worksheet. Word's extender implements the properties, methods, and events of the_OLEControl interface that can be
found in the Word PIA (but as with other aggregated VSTO controls, the type definition does not actually claim to
implement the _OLEControl interface). It has five methods, all of which take no arguments and return no result:
Activate, Copy, Cut, Delete, and Select. It also exposes Single read-write properties Top, Left, Height, and Width, String
properties Name and AltHTML, and an Automation property of type Object. Excel's extender implements the properties,
methods, and events of the _OLEObject interface that can be found in the Excel PIA.

When you drop a button onto a document or worksheet, the project system adds a new field to the host item class but
types it as Microsoft .Office.Tools.Word.Controls.Button or Microsoft.Office.Tools .Excel.Controls.Button, respectively.
Because the underlying System.Windows.Forms.Button class is extensible, this time, the aggregate actually is a
subclass of the Windows Forms control. It still must aggregate the unmanaged extender interface provided by Word or
Excel, however.

As a further convenience, the managed objects representing embedded Windows Forms controls also have read-only
Right and Bottom properties aggregated onto them.

The "Tag" Field

Every host item and host control now has a field called Tag, which can be set to any value. This field is entirely for you
to use as you see fit; it is neither read nor written by any code other than your customization code. It is included
because it is very common for developers to have auxiliary data associated with a particular control, but no field on the
control itself in which to store the data. Having the object keep track of its own auxiliary data is, in many cases, more
straightforward than building an external table mapping controls onto data.

Event Model Improvements

Like VBA, VSTO encourages an event-driven programming style. In traditional VBA programming, relatively few of the
objects source events, which can make writing event-driven code cumbersome. In Word, for example, the only way to
detect when the user double-clicks a bookmark using the standard VBA object model is to declare an "events" class
module with a member referring to the application:

Public WithEvents WordApp As Word.Application

Then sink the event and detect whether the clicked range overlaps the bookmark:

Private Sub App_WindowBeforeDoubleClick(ByVal Sel As Selection, _
 Cancel As Boolean)
 If Sel.Range.InRange(ThisDocument.Bookmarks(1).Range) Then
 MsgBox "Customer Clicked"
 End If
End Sub

And initialize the event module:

Dim WordEvents As New WordEventsModule
Sub InitializeEventHandlers
 Set WordEvents.WordApp = Word.Application
End Sub

Then add code that calls the initialization method. In short, this process requires a fair amount of work to detect when
an application-level event refers to a specific document or control. The VSTO extensions to the Word and Excel object
models were designed to mitigate difficulties in some tasks, such as sinking events on specific controls. In VSTO, the
bookmark object itself sources events, so you can start listening to it as you would sink any other event.

In Chapter 2, "Introduction to Office Solutions," you saw some of the new VSTO extensions to the view object model in
action. You also read about events added by VSTO in Chapter 4, "Working with Excel Events," and Chapter 7, "Working
with Word Events." At the end of this chapter, we describe all the additions to the event model in detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dynamic Controls
In Chapter 2, "Introduction to Office Solutions," you saw that VSTO allows developers to build customized document
solutions by using Word and Excel as designers inside Visual Studio. The host item classes expose the host controls
present at design time as custom properties on a class that aggregates the underlying unmanaged object.

But what about host controls not present at design time? What if you want to create new named ranges, bookmarks,
buttons, or other controls at runtime? It would be nice to be able to use the new events and other extensions to the
programming model on dynamically generated controls. As you will see, VSTO supports adding both host items and
host controls dynamically, although the former is a little bit trickier to pull off.

Chapter 14, "Using Windows Forms in VSTO," shows how to add Windows Forms controls dynamically to Word and
Excel documents.

The Controls Collection

In a Windows Forms application, every form class has a property called Controls that refers to a collection of all the
controls hosted by the form. In VSTO, each worksheet and document class contains a similarly named property. In
Word, the document class contains an instance of Microsoft.Office.Tools.Word.ControlCollection. In Excel, each
worksheet class contains an instance of Microsoft.Office.Tools.Excel.ControlCollection. These two classes are quite
similar; the following sections discuss their differences.

Enumerating and Searching the Collection

You can use the Controls collection to enumerate the set of aggregated controls and perform actions upon all of them.
You could disable all the button controls on a sheet or document, for example:

For Each control As Object In Me.Controls
 If TypeOf control Is Button Then
 Dim button As Button = control
 button.Enabled = False
 End If
Next

The Controls collection also has some of the indexing and searching methods you would expect. Both the Excel and
Word flavors have methods with these signatures:

Public Function Contains(ByVal control As Object) As Boolean
Public Function Contains(ByVal name As String) As Boolean
Public Function Index(ByVal control As Object) As Integer
Public Function Index(ByVal name As String) As Integer

If the collection does not contain the searched-for control, IndexOf returns 1. Both collections can be enumerated via a
For Each loop; should you want to enumerate the collection yourself, you can call GetEnumerator. This method returns a
ControlCollectionEnumerator object from the Microsoft.Office.Tools.Excel or Microsoft.Office.Tools.Word namespace, as
appropriate. They are essentially identical functionally. Both classes have only three public methods:

ReadOnly Property Current() As Object

Function MoveNext() As Boolean

Sub Reset()

Current returns Nothing when moved past the final element in the collection; MoveNext moves the enumerator to the
next element; and Reset starts the enumerator over at the beginning of the collection.

Both collections also expose three index operators, which take a name as a String, an Integer index, and an Object,
respectively. The indexers throw an ArgumentOutOfRangeException if there is no such control in the collection.

Adding New Word and Excel Host Controls Dynamically

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The worksheet and document Controls collections provide methods to create host controls dynamically. In Word, you
can create aggregated bookmarks dynamically:

Public Function AddBookmark(_
 ByVal range as Microsoft.Office.Interop.Word.Range, _
 ByVal name as String) As Microsoft.Office.Tools.Word.Bookmark

This method creates a new bookmark on the given range and aggregates it with the VSTO host control class.

Note

XMLNode and XMLNodes host controls cannot be created dynamically in Word. The XMLMappedRange host
control cannot be created dynamically in Excel.

In Excel, you can create aggregated NamedRanges, ListObjects, and Chart controls dynamically. Of those, only Chart
controls can be positioned at arbitrary coordinates; all the rest must be positioned with a range object:

Public Function AddChart(_
 ByVal range As Microsoft.Office.Interop.Excel.Range, _
 ByVal name As String) As Microsoft.Office.Tools.Excel.Chart

Public Function AddChart(ByVal left As Double, _
 ByVal top As Double, _ByVal width As Double, _
 ByVal height As Double, ByVal name As String) _
 As Microsoft.Office.Tools.Excel.Chart

Public Function AddNamedRange(_
 ByVal range As Microsoft.Office.Interop.Excel.Range, _
 ByVal name As String) As _
 Microsoft.Office.Tools.Excel.NamedRange

Public Function AddListObject(_
 ByVal range As Microsoft.Office.Interop.Excel.Range, _
 ByVal name As String) _
 As Microsoft.Office.Tools.Excel.ListObject

Removing Controls

The host controls added to a worksheet or document host item class at design time are exposed as properties on the
host item class. If at runtime the user were to delete one accidentally, save the document, and then reload it, the
customization code would be unable to find the aggregated control. This would likely result in an exception because
eventually the customization would try to listen to an event or call a method on the missing aggregated control. If the
customization detects this condition, it will throw a ControlNotFoundException.

Although it is difficult to prevent end users from accidentally or deliberately deleting controls without locking the
document, the Controls collection can at least try to prevent programmatic destruction of controls added at design time.
There are four equivalent ways to remove controls from the Controls collection; all will throw a
CannotRemoveControlException if you attempt to remove a control that was not added dynamically.

The four ways to remove a dynamic control are to call Delete() on the control itself or to call Remove(ByVal control As Object),
Remove(ByVal name as String), or RemoveAt(ByVal index as Integer) on the Controls collection itself. All four of these methods
remove the control from the collection, remove the control from the document or worksheet, and destroy the extender
object.

Most collections have a Clear() method that removes every member from the collection. Because completely clearing a
Controls collection would almost always result in an exception when a design-time control was removed, this method
always throws a NotSupportedException and is hidden from IntelliSense.

Saving and Loading Controls

What happens when you add one or more dynamic controls to a document, save it, and reload it later?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dynamically created Windows Forms controls such as buttons and check boxes do not survive being saved and then
loaded. They just disappear; your customization code can create them again afresh the next time the document is
loaded.

Because "host" controls such as ranges and bookmarks are themselves part of the document, they will be persisted
along with the rest of the document. The controls do not save any information about any aggregating objects you may
have created around them, however. When the document is reloaded, the controls will still be there, but there will be
no aggregates wrapping them. You will have to add the controls back to the Controls collection to create new
aggregates for the controls. The Controls collection provides Add methods that can reconnect an aggregate to an
existing control in the document without creating a new control in the document.

Advanced Topic: Dynamic Host Items

As you have just seen, adding new aggregated host controls onto a host item is relatively
straightforward: just call the appropriate method on the controls collection for the containing host item
and the control is created, aggregated, and placed on the host item automatically.

But what if you should want to use some of the features of an aggregated host item class on a
dynamically created worksheet? To do that, you need only three lines of code. Understanding those three
lines will require us to delve somewhat deeper into how the VSTO runtime, the hosting application, and
the aggregating class all work together.

Start by creating a helper method in the ThisWorkbook class that takes in the worksheet you want to be
aggregated and returns an aggregated worksheet:

Friend Function AggregateWorksheet(_
 ByVal worksheet As Microsoft.Office.Interop.Excel.Worksheet) _
 As Microsoft.Office.Tools.Excel.Worksheet

Recall that the aggregating object obtains the aggregated object "on demand." That is, it obtains the
underlying object only when the first method is called that must be passed along to the underlying
object. That means that the aggregating object must not require the aggregated object when the
aggregating object is constructed, but it does need to be able to obtain that object at any time.
Somehow, the aggregating object must talk to the host and obtain the unique object that it is
aggregating.

It does so by passing a string called the cookie, which identifies the aggregated object to a special
service object provided by the host. In the event that an error occurs when attempting to fetch the
worksheet, the runtime will need to raise an error. It is possible that the cookie that uniquely identifies
the aggregated object might contain control characters or be otherwise unsuitable for display. Therefore,
the aggregate constructor also takes a human-readable name, used in the event that the host is unable
to find the object to be aggregated. In the case of Excel worksheets, we will use a cookie that is already
created for each worksheet by VBA, called the CodeName. To initialize that cookie, we must make a call
into the VBA engine to force the cookie to be created.

How do we obtain a reference to the service that maps cookies onto unmanaged host objects? The
already-aggregated host item has a member variable called RuntimeCallback that contains a reference to
the VSTO runtime library's service provider. Service provider is actually a bit of a misnomer; a service
provider is an object that knows how to obtain objects that provide services, not necessarily one that
provides those services itself. We identify services by the interface they implement.

Finally, to make data binding work properly, the aggregating class needs to know what object contains
this worksheet. Chapter 17, "VSTO Data Programming," covers data binding in more detail.

Let's put all this together. We need to obtain five things to create an aggregating worksheet:

A host-provided service that can obtain the aggregated object

The cookie that the host application uses to identify the worksheet

A human-readable name for the worksheet

The container of the worksheet

The VSTO runtime service provider

We obtain the service that maps the name and container to the aggregated object by passing the
appropriate interface type to the VSTO runtime service provider:

Dim hostItemProvider As IHostItemProvider
hostItemProvider = Me.RuntimeCallback.GetService(_
 GetType(IHostItemProvider))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 GetType(IHostItemProvider))

Next, we have to make a call into VBA to initialize the CodeName for the new worksheet. This line of
code does nothing except force VBA to initialize. It does not add a VBA project to the workbook or
anything else of that nature. It does access the VBProject object, however. For a solution that
dynamically creates host items in Excel, you must make sure that users of your solution have Trust
access to Visual Basic Project checked in the VBA Security dialog box (Tools > Macro > Security).
Otherwise, this line of code will fail:

Me.VBProject.VBComponents.Item(1)

We will use the name of the new Worksheet object for the human-readable name and the CodeName as
the host cookie. The container of the new worksheet is the same as the container of the current
workbook. The final function looks like this.

Friend Function AggregateWorksheet(ByVal worksheet As _
 Excel.Worksheet) As Microsoft.Office.Tools.Excel.Worksheet

 Dim hostItemProvider As IHostItemProvider

 hostItemProvider = Me.RuntimeCallback.GetService(_
 GetType(IHostItemProvider))

 Me.VBProject.VBComponents.Item(1)
 AggregateWorksheet = New Excel.Worksheet(hostItemProvider, _
 Me.RuntimeCallback, worksheet.CodeName, Me, worksheet.Name)

End Function

To use this function, put the following code in the Startup handler for Sheet1. This code creates a new
worksheet, calls the AggregateWorksheet function in the ThisWorkbook, and then adds a dynamic button
to the newly created worksheet using the aggregated worksheet returned by the function:

Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim worksheet As Excel.Worksheet = _
 Globals.ThisWorkbook.Sheets.Add()
 Globals.ThisWorkbook.AggregateWorksheet(_
 worksheet).Controls.AddButton(10, 10, 100, 100, "foo")

End Sub

Just as dynamic host controls are not re-created when a document containing them is saved and then
reloaded, dynamic host items are not re-created.

Inspecting the Generated Code

Let's take a deeper look behind the scenes at what is going on when you customize a worksheet or
document. Create a new Excel project; create a named range called MyRange; and take a look at the
code for Sheet1.vb in Listing 13.1.

Listing 13.1. The Developer's Customized Worksheet Class

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 End Sub

 Private Sub Sheet1_Shutdown(ByVal sender As Object, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub Sheet1_Shutdown(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Shutdown

 End Sub

End Class

Upon closer inspection, a few questions might come to mind. Where is the MyRange property declared
and initialized? Didn't we say earlier that the customized worksheet class extends a base class? Where is
the base class declaration?

It's Visual Basic's support for partial classes that is the key. C# and Visual Basic support a new syntax
that allows a class declaration to be split among several files. The portion that you see before you is the
home of all your developer-customized code; the automatically generated code is hidden in another
portion of the class not displayed by default.

Click the Show All Files button in Solution Explorer, and you will see that a number of normally hidden
files make up the class, as shown in Figure 13.3.

Figure 13.3. Using the Show All Files button to examine hidden code.

[View full size image]

First, notice that behind every worksheet is an XML file for the worksheet. If you look at the first few
lines of the XML, you will see that it contains a description of the contents of the worksheet and how to
represent it as a class. This "blueprint" contains information about what namespace the class should live
in, what the name of the class should be, what controls are exposed on the class, how Excel identifies
those controls, and so on.

Behind this language-independent representation of the class is another Visual Basic file that contains
the other half of the partial class, generated from the XML blueprint. It begins something like this:

[View full width]
<Microsoft.VisualStudio.Tools.Applications.Runtime. _
 StartupObjectAttribute(1), _
 System.Runtime.InteropServices.ComVisibleAttribute(False), _
 System.Security.Permissions.PermissionSetAttribute(_
 System.Security.Permissions.SecurityAction.Demand, _
 Name:="FullTrust")> _
Partial Public NotInheritable Class Sheet1
 Inherits Microsoft.Office.Tools.Excel.Worksheet
 Implements Microsoft.VisualStudio.Tools.Applications.Runtime

.IStartup

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.IStartup

 Friend WithEvents MyRange As _
 Microsoft.Office.Tools.Excel.NamedRange

As you can see, here is where the base classes are specified and the member variables declared. The
class also specifies that it is one of the startup classes in your customization assembly and that code that
calls members of this class must be fully trusted.

Plenty more code is in the hidden portion of the partial class, most of which is devoted to initializing
controls, starting data binding, and handling data caching; Chapter 17, "VSTO Data Programming,"
discusses data binding in more detail. The constructor, in particular, should look familiar:

[View full width]
Public Sub New(ByVal RuntimeCallback As _
Microsoft.VisualStudio.Tools.Applications.Runtime

.IRuntimeServiceProvider)
 MyBase.New(CType(RuntimeCallback.GetService(GetType(_
Microsoft.VisualStudio.Tools.Applications.Runtime

.IHostItemProvider)), _
Microsoft.VisualStudio.Tools.Applications.Runtime

.IHostItemProvider), _
 RuntimeCallback, "Sheet1", Nothing, "Sheet1")
 Me.RuntimeCallback = RuntimeCallback
End Sub

This is functionally the same code discussed in the previous section on creating custom host items by
calling the aggregate base class constructor.

If you ever want to debug through this code, ensure that Just My Code Debugging is turned off (via the
Tools > Options > Debugging > General dialog box). Then you can put breakpoints on any portion of the
hidden code, just like any other code.

Do not attempt to edit the hidden code. Every time you make a change in the designer that would result
in a new control's being added, or even change a control property, the hidden half of the partial class is
regenerated completely. Any changes you have made to the hidden half will be lost; that is why it is
hidden by default!

The Startup and Shutdown Sequences

You have probably noticed by now that we have been putting custom initialization code in an event
handler:

Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup
 Me.MyRange.Value = "Hello"
End Sub

But exactly what happens, in what order, as the startup classes are created and initialized? Excel
customizations typically have many startup classes, one for each sheet and one for the workbook itself.
Which ones load first?

You already saw a clue that answers the latter question. In the hidden half of the partial class, each class
declaration has an attribute:

<Microsoft.VisualStudio.Tools.Applications.Runtime. _
 StartupObjectAttribute(1), _

The Workbook class has 0 for the argument; Sheet1 has 1; Sheet2 has 2; and so on. The workbook
aggregate always has ordinal 0, and each worksheet is given its ordinal based on the order in which Excel
enumerates its sheets. The startup sequence happens in four phases, and each phase is executed on
each startup class in order of the given ordinal before the next phase begins.

In the first phase, each class is constructed using the constructor mentioned above. This simply
constructs the classes and stores the information that will be needed later to fetch the unmanaged
aggregated objects from Excel or Word.

In the second phase, the Initialize method of each startup class is calledagain, in multiclass
customizations, starting with the workbook and then each worksheet by ordinal. If you look at the hidden
half of the partial class, you will see the Initialize method:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

half of the partial class, you will see the Initialize method:

[View full width]
<Global.System.Diagnostics.DebuggerNonUserCodeAttribute(), _
 Global.System.ComponentModel.EditorBrowsableAttribute(_
 System.ComponentModel.EditorBrowsableState.Never)> _
Public Sub Initialize() Implements _
 Microsoft.VisualStudio.Tools.Applications.Runtime.IStartup

.Initialize

 Me.HostItemHost = CType(Me.RuntimeCallback.GetService(GetType(_
Microsoft.VisualStudio.Tools.Applications.Runtime

.IHostItemProvider)), _
Microsoft.VisualStudio.Tools.Applications.Runtime.IHostItemProvider)
 Me.DataHost = CType(Me.RuntimeCallback.GetService(GetType(_
Microsoft.VisualStudio.Tools.Applications.Runtime

.ICachedDataProvider)), _
 Microsoft.VisualStudio.Tools.Applications.Runtime

.ICachedDataProvider)
 Globals.Sheet1 = Me
 System.Windows.Forms.Application.EnableVisualStyles()
 Me.InitializeCachedData()
 Me.InitializeControls()
 Me.InitializeComponents()
 Me.InitializeData()
 Me.BeginInitialization()
End Sub

The attributes prevent the Initialize method from showing up in IntelliSense drop-down lists and mark
the method as being "not my code" for the Debug Just My Code feature. Then the initializer fetches
services from the host that are needed to initialize the view and data elements, sets up the global class
(discussed in more detail later in this chapter), loads cached data, and initializes all the controls.

In the third phase, data binding code is activated. Data bindings must be activated after all the classes
are initialized because a control on Sheet2 might be bound to a dataset on Sheet1.

Finally, in the fourth phase, after everything is constructed, initialized, and data-bound, each startup
class raises its Startup event, and the code in the developer's half of the partial class runs.

This multiphase startup sequence ensures that you can write handlers for the Startup event that can
assume not just that the class itself is ready to go, but also that every startup class in the customization
is ready to go.

Ideally, it would be a good idea to write Startup event handlers for each class that do not depend on the
order in which they are executed. If you must, however, you can always look at the startup attributes to
see in what order the events will be executed.

The shutdown sequence is similar but simpler. As the host applicationWord or Excelshuts down, each
host item class raises the Shutdown event. Shutdown events are raised in the same order as each phase
in the startup sequence.

The Globals Class in Excel

Suppose that you're writing code in the Sheet1 class that needs to set a property on a control hosted by Sheet2. You
are probably going to need to obtain the instance of the aggregated Sheet2 class somehow. Instead of aggregating
properties representing all the other sheets and the workbook aggregates onto each startup class, VSTO exposes all the
sheets and the workbook as static members of the Globals class:

Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Globals.Sheet2.MyRange.Value = "Hello"

End Sub

Because at least the first three phases of the startup sequence have finished at this point, you know that the Globals
class and Sheet2 have been initialized, although Sheet2's Startup event has probably not fired yet.

Notice that by default, controls aggregated onto the worksheet classes are given the Friend visibility modifier. You can

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice that by default, controls aggregated onto the worksheet classes are given the Friend visibility modifier. You can
change the visibility modifier generated for a control by selecting the control in the designer and then selecting the
Modifiers property in the Properties window. If you change the visibility of the control to Private, however, you will be
unable to access the control's field from the Globals class.

The Globals class is also constructed using partial classes, although by default, there is no visible portion. Rather, each
generated code file defines a portion of the Globals class. You can see this code at the bottom of the hidden file for each
class. Should you for some reason want to add your own custom members to the Globals class, you can always create
your own portion of the partial class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSTO Extensions to the Word and Excel Object Models
This chapter finishes with a detailed list of all new properties, events, and methods aggregated onto the Word and Excel
objects by the VSTO aggregates, with the exception of the new data binding features (which are covered in Chapter 17,
"VSTO Data Programming"). For Outlook, only the Application object is aggregated, and no new events, methods, or
properties are added to that object.

As mentioned previously, every aggregated object now has a Tag property that you can use for any purpose you choose
and an InnerObject property that you can use to access the aggregated object. In addition, each host control now has a
Delete method that removes it (if it can be added dynamically at runtime) from its document or worksheet. Because
every aggregating object has these properties and methods now, they are not mentioned again in the following topics.

The Word Document Class

VSTO Word projects have exactly one host item class. Every customized document class inherits from the aggregating
class Microsoft.Office.Tools .Word.Document and implements the properties, methods, and events defined by the
Microsoft.Office.Interop.Word.Document interface.

Document objects in VSTO source the new events shown in Table 13.1, all of which are raised by the Document object
when the Application object raises the identically named event.

Table 13.1. New Events on VSTO's Aggregated Document Object
Event Name Delegate Notes

ActivateEvent WindowEventHandler From Application, renamed
from WindowActivate

BeforeClose CancelEventHandler From Application

BeforeDoubleClick ClickEventHandler From Application

BeforePrint CancelEventHandler From Application

BeforeRightClick ClickEventHandler From Application

BeforeSave SaveEventHandler From Application

CloseEvent DocumentEvents2_CloseEventHandler From Document, renamed

Deactivate WindowEventHandler From Application

EPostageInsert EventHandler From Application

EPostagePropertyDialog EventHandler From Application

MailMergeAfterMerge MailMergeAfterMergeEventHandler From Application

MailMergeAfterRecordMerge EventHandler From Application

MailMergeBeforeMerge EventHandler From Application

MailMergeBeforeRecordMerge CancelEventHandler From Application

MailMergeDataSourceLoad EventHandler From Application

MailMergeDataSourceValidate HandledEventHandler From Application

MailMergeWindowSendTo-
Custom

EventHandler From Application

MailMergeWizardStateChange MailMergeWizardStateChangeEventHandler From Application

New DocumentEvents2_NewEventHandler From Document, delayed

Open DocumentEvents2_OpenEventHandler From Document, delayed

SelectionChange SelectionEventHandler From Application

Shutdown EventHandler
Startup EventHandler
SyncEvent DocumentEvents2_Sync-EventHandler From Application, renamed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WindowSize WindowEventHandler From Application

XMLAfterInsert DocumentEvents2_XMLAfterInsertHandler From Document

XMLBeforeDelete DocumentEvents2_XMLBeforeDeleteHandler From Document

Notice that the Sync and Close events have been renamed to prevent a naming conflict; C# does not allow a class to
have an event and a method with the same name.

The Document class now has OnStartup and OnShutdown methods that force the Document object to source the
Startup and Shutdown events.

The New and Open events are delayed so that they are not raised until the aggregate class is fully initialized. These
events normally would be raised before any user-authored code could run. If user code does not run until after the
event has been raised, however, how would you add an event handling delegate to listen to the event? Therefore, the
events are delayed until after the customization's event binding code can run.

The event delegate types could use some additional explanation. All the event delegate types that begin with
DocumentEvents2_ are from the Word PIA. The System.EventHandler, System.ComponentModel.CancelEventHandler, and
System.ComponentModel.HandledEventHandler delegates are straightforward. All the remaining delegate types are
defined in the Microsoft.Office.Tools.Word namespace and have signatures as follows:

Public Delegate Sub ClickEventHandler(ByVal sender As Object, _
 ByVal e As Microsoft.Office.Tools.Word.ClickEventArgs)

Public Delegate Sub MailMergeAfterMergeEventHandler(_
 ByVal sender As Object, ByVal e As _
 Microsoft.Office.Tools.Word.MailMergeAfterMergeEventArgs)

Public Delegate Sub MailMergeWizardStateChangeEventHandler(_
 ByVal sender As Object, ByVal e As _
 Microsoft.Office.Tools.Word.MailMergeWizardStateChangeEventArgs)

Public Delegate Sub SaveEventHandler(ByVal sender As Object, _
 ByVal e As Microsoft.Office.Tools.Word.SaveEventArgs)

Public Delegate Sub SelectionEventHandler(ByVal sender _
 As Object, ByVal e As _
 Microsoft.Office.Tools.Word.SelectionEventArgs)

Public Delegate Sub WindowEventHandler(ByVal sender As Object, _
 ByVal e As Microsoft.Office.Tools.Word.WindowEventArgs)

The arguments classes of each are as follows:

The ClickEventArgs class inherits from System.ComponentModel.CancelEventArgs and, therefore, has a Cancel
property. It also exposes the selection that was clicked:

 Public Class ClickEventArgs
 Inherits CancelEventArgs

 Public Sub New(ByVal selection As Selection, _
 ByVal cancel As Boolean)
 Public ReadOnly Property Selection As Selection
 End Class

The MailMergeAfterMergeEventArgs class exposes the new document created:

Public Class MailMergeAfterMergeEventArgs
 Inherits EventArgs

 Public Sub New(ByVal newDocument As Document)
 Public ReadOnly Property NewDocument As Document
End Class

The MailMergeWizardStateChangeEventArgs class exposes the previous, current, and handled states:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Class MailMergeWizardStateChangeEventArgs
 Inherits EventArgs

 Public Sub New(ByVal fromState As Integer, _
 ByVal toState As Integer, ByVal handled As Boolean)

 Public ReadOnly Property FromState As Integer
 Public ReadOnly Property Handled As Boolean
 Public ReadOnly Property ToState As Integer
End Class

The SaveEventArgs class allows the handler to instruct the event source whether the Save As dialog box should
display. This is also a cancelable event:

 Public Class SaveEventArgs
 Inherits CancelEventArgs

 Public Sub New(ByVal showSaveAsUI As Boolean, _
 ByVal cancel As Boolean)
 Public Property ShowSaveAsDialog As Boolean
 End Class

The SelectionEventArgs class provides the selection that was changed:

Public Class SelectionEventArgs
 Inherits EventArgs

 Public Sub New(ByVal selection As Selection)
 Public ReadOnly Property Selection As Selection
End Class

The WindowEventArgs class provides the window that was activated, deactivated, or resized:

Public Class WindowEventArgs
 Inherits EventArgs

 Public Sub New(ByVal window As Window)
 Public ReadOnly Property Window As Window
End Class

In addition to the new events, the Document object contains two new collections. First, as discussed earlier in this
chapter, the Document object aggregate contains a collection of controls. Second, the Document object now contains a
VSTOSmartTags collection (discussed further in Chapter 16, "Working with Smart Tags in VSTO").

The derived class can be customized further to add new events, methods, and properties. As you edit the document in
the Word designer, any bookmarks or other host controls (buttons, check boxes, and so on) that you drop onto the
design surface will be added as members of the document class. Similarly, any XML mapping added to the document
will be added to the document class as either an XMLNode member (if the mapping is to a single node) or an XMLNodes
member (if the mapping is to a repeatable node).

The document class has one additional new method: RemoveCustomization, which takes no arguments and has no
return value. Calling this method on the aggregated document object removes the customization information from the
document, so that after it is saved and reloaded the customization code will no longer run.

The ActiveWritingStyle and Compatibility properties from the Document PIA interface are parameterized properties.
Because C# does not support calling parameterized properties, the document class uses helper classes that enable a
C# developer to use parameterized indexers from C#. The properties ActiveWritingStyle and Compatibility use these
helper classes. The syntax you use when calling these properties changes from the syntax that you would use with the
Document object from the PIA

Me.Compatibility(_
 Word.WdCompatibility.wdAlignTablesRowByRow) = True

to the syntax that you would use with the aggregated Document class:

Me.Compatibility.Item(_
 Word.WdCompatibility.wdAlignTablesRowByRow) = True

Finally, the document class has a new property, ThisApplication, that refers to the Application object. This property
exists to help migrate VSTO 2003 code that referred to a ThisApplication object. The document class also has an
ActionsPane property, which is covered in detail in Chapter 15, "Working with the Actions Pane."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Word Bookmark Host Control

Bookmark objects in the Word object model do not source any events. The aggregated host control Bookmark in VSTO
sources the new events shown in Table 13.2.

Table 13.2. New Events on VSTO's Aggregated Bookmark Object
Event Name Delegate

BeforeDoubleClick ClickEventHandler

BeforeRightClick ClickEventHandler

Deselected SelectionEventHandler

Selected SelectionEventHandler

SelectionChange SelectionEventHandler

The delegate types and their corresponding argument classes are documented in the document class topic earlier in this
chapter.

As a convenience for both view programming and data binding, bookmark host controls also aggregate more than 150
methods and properties of the Range object that they represent. These two lines of code, for example, are functionally
identical:

columns = Me.Bookmark1.Range.Columns
columns = Me.Bookmark1.Columns

The methods and properties of the Range object aggregated onto the Bookmark object are for the most part
straightforward proxies that just call the method or property accessor on the aggregated range, so almost all the
methods will be functionally identical whether you call them from the Range or the Bookmark.

Three exceptions apply. First, setting the Text property on the Range object directly sometimes results in the bookmark
itself being deleted by Word. If you set the Text property by calling the new property added to the Bookmark
aggregate, it ensures that the bookmark is not deleted.

Second and third, the Information and XML properties from the PIA interface are parameterized properties. Because C#
does not support calling parameterized properties, the bookmark host control uses helper classes that enables a C#
developer to use parameterized indexers from C#. The properties InformationType and XMLType use these helper
classes. The syntax you use when calling these properties changes from the syntax that you would use with the Range
object from the PIA

info = Me.myBookmark.Range.Information(WdInformation.wdCapsLock)

to the syntax that you would use with the aggregated Bookmark class:

info = Me.myBookmark.Information.Item(WdInformation.wdCapsLock)

The Word XMLNode and XMLNodes Host Control Classes

When you map a schema into a Word document, element declarations that have a maxOccurs attribute in the schema
equal to 1 are represented in the host item class as XMLNode objects. All others are represented as XMLNodes objects,
because there could be more than one of them.

Table 13.3 shows the new events in VSTO that the XMLNode and XMLNodes objects source.

Table 13.3. New Events on VSTO's Aggregated XMLNode and
XMLNodes Objects

Event Name Delegate

AfterInsert NodeInsertAndDeleteEventHandler

BeforeDelete NodeInsertAndDeleteEventHandler

ContextEnter ContextChangeEventHandler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ContextEnter ContextChangeEventHandler

ContextLeave ContextChangeEventHandler

Deselect ContextChangeEventHandler

Select ContextChangeEventHandler

ValidationError EventHandler

As you can see, we have two new delegate classes and, therefore, two new event argument classes. These events are
normally sourced by the application object.

The delegates and event argument classes are all in the Microsoft .Office.Tools.Word namespace. The delegate classes
are as follows:

 Public Delegate Sub ContextChangeEventHandler(_
 ByVal sender As Object, _
 ByVal e As Microsoft.Office.Tools.Word.ContextChangeEventArgs)

 Public Delegate Sub NodeInsertAndDeleteEventHandler(_
 ByVal sender As Object, ByVal e As _
 Microsoft.Office.Tools.Word.NodeInsertAndDeleteEventArgs)

When a node is inserted or deleted, it is often interesting to know whether the change is a result of the user's
inserting or deleting the element directly, or whether this is part of an undo or redo operation. Therefore, this
flag is exposed on the event arguments class:

Public NotInheritable Class NodeInsertAndDeleteEventArgs
 Inherits EventArgs

 Public Sub New(ByVal inUndoRedo As Boolean)
 Public ReadOnly Property InUndoRedo As Boolean
End Class

When a node is selected or deselected, the appropriate event is raised. A context change is a special kind of
selection change in which the insertion point of the document moves from one XML node to another. Therefore,
the event arguments for the ContextEnter and ContextLeave events specify both the node that was until
recently the home of the insertion point and the new home:

Public Class ContextChangeEventArgs
 Inherits EventArgs

 Public Sub New(ByVal oldXMLNode As XMLNode, _
 ByVal newXMLNode As XMLNode, ByVal selection As Selection, _
 ByVal reason As Integer)

 Public ReadOnly Property NewXMLNode As XMLNode
 Public ReadOnly Property OldXMLNode As XMLNode
 Public ReadOnly Property Reason As Integer
 Public ReadOnly Property Selection As Selection
End Class

The XMLNode interface in the PIA has two parameterized properties, ValidationError and XML, that are not supported in
C#. Therefore, these properties have been redefined to return helper classes that implement parameterized indexers
instead. To specify the parameters for these parameters in Visual Basic, use the Item method as described with other
modified parameterized properties in this chapter.

XMLNode objects also implement several convenient new methods for manipulating the XML bound to the document:

Public Sub Load(ByVal fileName As String)
Public Sub LoadXml(ByVal xml As String)
Public Sub LoadXml(ByVal document As XmlDocument)
Public Sub LoadXml(ByVal xmlElement As XmlElement)

All these methods take the contents of the XML in the argument and insert it into the given node and its children. The
onus is on the caller, however, to ensure both that the XML inserted into the node corresponds to the schematized type
of the node and that any child nodes exist and are mapped into the document appropriately. These methods neither
create nor delete child nodes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

create nor delete child nodes.

As a further convenience for both view and data programming, the XMLNode object provides a property that aggregates
the Text property of the node's range:

Public Property NodeText As String

Chapter 15, "Working with the ActionsPane," Chapter 17, "VSTO Data Programming," and Chapter 22, "Working with
XML in Word," cover data binding scenarios and actions pane scenarios for XMLNode and XMLNodes objects in detail.
That sums up the VSTO extensions to the Word object model. The extensions to the Excel object models are similar but
somewhat more extensive because of the larger number of host controls.

The Excel Workbook Host Item Class

The aggregating workbook class raises the same 29 events as the aggregated workbook class, with the same delegate
types. Aside from renaming the Activate event to ActivateEvent, so as to prevent a collision with the method of the
same name, there are no changes to the events raised by the Workbook object.

The Workbook object does have two new events raised when the customization starts and shuts down:

Public Event Startup As EventHandler
Public Event Shutdown As EventHandler

The aggregated Workbook object also has two new methods, OnStartup and OnShutdown, that cause the workbook to
raise the Startup and Shutdown events.

As with the Word document class, the Excel workbook class gains a ThisApplication property, which refers to the Excel
Application object; an ActionsPane property, covered in Chapter 15, "Working with the Actions Pane"; and a
VstoSmartTags collection, covered in Chapter 16, "Working with Smart Tags in VSTO." The Workbook object also has
one additional new method: RemoveCustomization, which takes no arguments and has no return value. Calling this
method on the aggregated Workbook object removes the customization information from the spreadsheet, so that after
it is saved and reloaded, the customization code will no longer run.

There is only one other minor change to the view programming model of the workbook class. Because C# cannot use
parameterized properties, the Colors property now returns a helper class (scoped to the host item class itself) that
allows you to use a parameterized indexer.

The Excel Worksheet Host Item Class

Much like the workbook, the aggregating worksheet class does not have any major changes to its view programming
model. The aggregating worksheet class raises the same eight events as the aggregated worksheet class, with the
same delegate types. Aside from renaming the Activate event to ActivateEvent, so as to prevent a collision with the
method of the same name, there are no changes to the events raised by the Worksheet object.

The Worksheet object does have two new events raised when the customization starts and shuts down:

Public Event Shutdown As EventHandler
Public Event Startup As EventHandler

The Worksheet object has two new methods, OnStartup and OnShutdown, that cause the worksheet to raise the
Startup and Shutdown events. The worksheet also provides the Controls collection mentioned earlier in this chapter.

Worksheets classes can be customized by subclassing; the derived classes generated by the design have properties
representing charts, named ranges, XML-mapped ranges, list objects, and other controls on each sheet.

There is only one other minor change to the view programming model of the worksheet class. Because C# cannot use
parameterized properties, the Range property now returns a helper class (scoped to the worksheet class itself) that
allows you to use a parameterized indexer.

The Excel Chart Sheet Host Item Class and Chart Host Control

Chart sheet host items and chart host controls are practically identical; the only difference between them as far as
VSTO is concerned is that chart sheets are host items classes with their own designer and code-behind file. Charts, by
contrast, are treated as controls embedded in a worksheet.

Both rename the Activate and Select events (to ActivateEvent and SelectEvent, respectively) to prevent name conflicts
with the methods of the same name. The chart sheet host item class raises Startup and Shutdown events and has
OnStartup and OnShutdown methods, just as the worksheet class does.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OnStartup and OnShutdown methods, just as the worksheet class does.

Both the chart and the chart sheet have a parameterized HasAxis property that cannot be called from C#. The property,
therefore, now returns an instance of a helper class that allows you to use a parameterized indexer instead.

The Excel NamedRange, XmlMappedRange, and ListObject Host Controls

All three of these controls are special kinds of Range objects. They raise the new events shown in Table 13.4.

Table 13.4. New Events on VSTO's Aggregated NamedRange,
XmlMappedRange, and ListObject Objects

Event Name Delegate

BeforeDoubleClick DocEvents_BeforeDoubleClickEventHandler

BeforeRightClick DocEvents_BeforeRightClickEventHandler

Change DocEvents_ChangeEventHandler

Deselected DocEvents_SelectionChangeEventHandler

Selected DocEvents_SelectionChangeEventHandler

SelectionChange DocEvents_SelectionChangeEventHandler

All the event delegates are from the Microsoft.Office.Tools.Interop .Excel namespace in the Excel PIA.

The list object raises several more events in addition to those above, but because they all are primarily used to
implement data binding functionality, Chapter 17, "VSTO Data Programming," covers them.

Many parameterized properties in both the NamedRange and XmlMappedRange interfaces are not supported by C#. To
make this functionality usable more easily from C#, these properties now return helper classes (scoped to the
NamedRange or XmlMappedRange classes themselves) that expose parameterized indexers. The properties that are
changed in this way are End, AddressLocal, Address, Characters, Item, Offset, and Resize.

As a convenience for both view and data programming, NamedRange host controls also expose directly all the methods
of the associated Name object:

Public Property RefersTo As String

Public Property RefersToLocal As String

Public Property RefersToR1C1 As String

Public Property RefersToR1C1Local As String

Public ReadOnly Property RefersToRange As Range

If somehow, the NamedRange object has been bound to a non-named range, these will throw a
NotSupportedException.

The NamedRange object also has a Name property that is somewhat confusing. The property-getter returns the Name
object associated with this named range. If you pass a Name object to the setter, it will set the Name property, just as
you would expect. If you pass a String, however, it will attempt to set the Name property of the underlying Name object.

The NamedRange host control also slightly changes the exception semantics of the Name property in two ways. First, in
the standard Excel object model, setting the Name property of the name object of a named range to the name of
another named range deletes the range, oddly enough; doing the same to a VSTO NamedRange host control raises an
ArgumentException and does not delete the offending range.

Second, in the standard Excel object model, setting the Name property to an invalid string fails silently. The VSTO
NamedRange object throws an ArgumentException if the supplied name is invalid.

Note

The XMLMappedRange and ListObject host controls do not aggregate the methods of the Name object or
change the error-handling semantics of the name setter. The changes to the Name property semantics
apply only to the NamedRange object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XML mapped ranges and list objects are the Excel equivalents of the XMLNode and XMLNodes controls in Word. The
XML mapped range represents a mapped singleton element, and the list object represents a set of rows. We cover data
binding scenarios in Chapter 17, "VSTO Data Programming," and other XML scenarios in Excel in Chapter 21, "Working
with XML in Excel." In this chapter, we just discuss their use as host controls.

The list object host control has one new property:

Public ReadOnly Property IsSelected As Boolean

This property is most useful for determining whether there is an insert row. Excel does not display an insert row if the
list object's range is not selected.

The list object host control also slightly changes the error-handling semantics of the DataBodyRange, HeaderRowRange,
InsertRowRange, and TotalsRowRange. All these properties now return Nothing rather than throw an exception if you
attempt to access the property on a list object that lacks a body, header, insert row, or totals row, respectively.

Chapter 17, "VSTO Data Programming," discusses other new properties and methods added to the list object used for
data binding.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
VSTO brings the Word and Excel object models into the managed-code world by aggregating key unmanaged objects
onto managed base classes. Developers can then extend these base classes by using Word and Excel as designers in
Visual Studio.

The next chapter takes a more detailed look at how to use Windows Forms controls in VSTO.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 14. Using Windows Forms in VSTO

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
Office has a user interface that has been designed to make it as easy as possible for an end user to access the
functionality provided by each Office application. But the application you are writing that is integrated with Office will
have its own very specific user-interface requirements. The application you write will have user-interface needs that are
not met by the default Office user interface.

In previous versions of Office, Visual Basic for Applications (VBA) provided the ability to show User Forms to meet your
application user-interface requirements. You could also use custom ActiveX controls on the document surface. VSTO
adds Windows Forms control support to Office to meet your user-interface needs.

Moving from ActiveX to Windows Forms

When we started designing VSTO, being able to build applications that extended the default Office user interface was
one of our primary goals. We also wanted to ensure that developers writing managed code would not have to rely on
ActiveX controls to do so; .NET developers want to use Windows Forms controls. To address these requirements, the
team came up with a design to integrate Windows Forms deeply into Office. The vision was to allow you to use Windows
Forms controls and forms in all the places you could use ActiveX controls and User Forms in previous versions of Office.
We also wanted to make the design and coding experience similar to that of a traditional Windows Forms application.

This chapter covers how to use Windows Forms controls in your VSTO applications. You can use Windows Forms in
VSTO in three basic ways:

1. You can put a Windows Forms control on the document or spreadsheet surface.

2. You can display a custom Windows Forms form as a modal or modeless dialog box.

3. You can put Windows Forms controls in the Document Actions task pane using the ActionsPane feature of VSTO.

We cover the first two ways in this chapter. This chapter also covers how to create custom user controls that can be
used to provide solutions to some of the shortcomings of the Windows Forms support in VSTO. The third way to use
Windows Forms in VSTOusing controls in the Document Actions task paneis covered in Chapter 15, "Working with the
Actions Pane."

When to Use Windows Forms Controls on the Document Surface

VSTO enables developers to put Windows Forms controls on the document surface. Just because you can put a control
onto the document surface does not necessarily mean that it is a good idea for your particular application. When should
you use a control on a document as opposed to using a form, an intrinsic Office user-interface element such as a cell or
a hyperlink, a custom menu command or toolbar button, a Smart Tag, or the actions pane?

Think about how you expect the document or spreadsheet to be used and how you want to extend the interface. Maybe
you are going to use an Excel spreadsheet as a front end to corporate data. Many stockbrokers use Excel as their
primary input and display mechanism when trading, for example. In this scenario, the spreadsheet is very rarely e-
mailed or printed, so changing the spreadsheet interface to meet the application requirements makes a lot of sense.
Putting a Windows Forms button control on the surface of the document meets the requirement of making the
spreadsheet more interactive and provides obvious actions that are available to the user of the spreadsheet. Figure
14.1 shows two Windows Forms buttons that have been placed on a spreadsheetone that refreshes the stock quotes
and the other that trades a particular stock.

Figure 14.1. Two Windows Forms controls on a spreadsheet.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sometimes you will have data that needs to be edited with a more effective user interface than Office provides. A good
example of this is date input. Excel and Word provide a rich mechanism to display dates but do not provide an easy-to-
use mechanism for entering dates other than basic text input. Windows Forms provides a DateTimePicker control that
makes it easy for a user to enter a date. Combining the date entry interface provided by the DateTimePicker and the
display capabilities of Excel or Word results in a more effective user interface.

You could integrate the DateTimePicker into your workbook, as shown in Figure 14.2. Here, we have added a
DateTimePicker control for each cell containing a date. The DateTimePicker provides a combo-box drop-down list with a
calendar that the user can use to pick a different date.

Figure 14.2. DateTimePicker controls on a spreadsheet.

[View full size image]

The DateTimePicker may be better used in the Document Actions task pane than on the document surface, however.
The first problem you will encounter with a solution such as the one shown in Figure 14.2 is what you will put in the
spreadsheet for the values of the cells covered by the DateTimePicker controls. It would seem reasonable that the cell
covered by a particular DateTimePicker control should contain the date value being represented by the control. This
way, the date value for that cell can be used in formulas and can be found when the user searches the spreadsheet with
Excel's Find command.

The second problem is that if you put the DateTimePicker on the document surface, the control does not automatically
save its state into the Excel workbook when the document is saved. So, if in a particular session the user selects
several dates and then saves the document, the next time the user opens the workbook, all the DateTimePickers will
reset to today's date. You will lose the date the user picked in the last session unless you write code to synchronize the
DateTimePicker with the cell value covered by it on startup of the Excel workbook and whenever the DateTimePicker or
underlying cell value changes.

A third problem is keeping the DateTimePicker controls looking like the rest of the workbook formatting. If the user
changes the font of the workbook, the controls embedded in the document will not change his font. Printing is also an
issue because the control, replete with its drop-down combo widget, will be printed. In addition, the user will likely want
to add and remove rows in the list of stocks, which means that you will have to add and remove DateTimePicker
controls dynamically at runtime.

Although it is possible to work through these issues and achieve a reasonable solution, the actions pane may be an
easier mechanism to use. The actions pane can show Windows Forms controls alongside the document in the Document
Actions task pane rather than in the document. Whenever the user of your workbook has a date cell selected, for
example, the Document Actions task pane can be displayed with the DateTimePicker in it to allow the user to pick a
date, as shown in Figure 14.3. Chapter 15, "Working with the Actions Pane," discusses the actions pane.

Figure 14.3. Using the DateTimePicker control in the Document Actions task pane.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When to Use a Modal or Modeless Windows Forms Form

Another way to use Windows Forms in an Office application is to use a standard Windows Forms form shown as a dialog
box. You could handle the BeforeDoubleClick event for the worksheet, for example, and if a cell containing a date is
double-clicked, you could display a custom Windows Forms form, as shown in Figure 14.4.

Figure 14.4. Displaying a Windows Forms dialog box when the user double-clicks a
cell.

[View full size image]

This approach is also quite useful if you want to ensure that certain information is filled in before the user starts
working with a document. You might want to display a wizard during the creation of a document that fills in certain
portions of the document, for example.

A choice you must make when using Windows Forms as shown in Figure 14.4 is the modality of the form. A modal form
must be interacted with and dismissed by clicking the OK, Cancel, or Close button before the user can get back to
editing the document. A modeless Windows Forms can float above the document and still allow the user to interact with
the document even though the form has not yet been closed. When using a modeless Windows Forms dialog box, note
that an Office application can enter certain states where your modeless dialog box cannot be activated. If another
modal dialog box is displayed, for example, users must dismiss the modal dialog box before they can interact with the
modeless dialog box again. Cell-editing mode in Excel also affects modeless dialog boxes. If the user is editing a cell
value in Excel, she cannot activate the modeless form until she leaves cell-editing mode.

Listing 14.1 shows a VSTO Excel customization that displays a simple modeless form. The modeless form has a button
that, when clicked, shows a message box.

Listing 14.1. A VSTO Excel Customization That Displays a Modeless Form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 14.1. A VSTO Excel Customization That Displays a Modeless Form

Public Class Sheet1

 Public WithEvents btn1 As Button
 Public form1 As Form

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 btn1 = New Button()

 form1 = New Form()
 form1.Controls.Add(btn1)
 form1.Show()

 AddHandler Globals.ThisWorkbook.BeforeClose, _
 AddressOf ThisWorkbook_BeforeClose

 End Sub

 Private Sub btn1_Click(ByVal sender As Object, _
 ByVal e As EventArgs) _
 Handles btn1.Click

 MsgBox("You clicked me.")

 End Sub

 Private Sub ThisWorkbook_BeforeClose(ByRef Cancel As Boolean)
 form1.Close()
 End Sub

End Class

Note that using the ActionsPane feature of VSTO is often an easier way to achieve a modeless result, because it
provides all the benefits of a modeless form, with the addition of the ability to dock within the Office window space.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Adding Windows Forms Controls to Your Document
One of the key design goals for VSTO was to keep the design experience as close to existing Windows Forms
development as possible, and adding Windows Forms controls to the document is a key tenet of this goal. The great
thing about adding controls to the document or spreadsheet is that you really do not have to think about it, because
most of the design experience is almost identical to that of creating a Windows Forms form. There are some differences
in the experience, however, and we examine them in this section.

When you create a new project based on an Excel workbook or Word document, VSTO creates a project and
automatically loads the Excel or Word document surface into Visual Studio to provide a design surface for you to drag
and drop controls onto. It is easier to pin the toolbox to make it dock to the side of Visual Studio window, because it is
difficult to drag and drop from the toolbox onto Word or Excel when it is in its default auto hide mode. Why? When the
toolbox shows itself, it obscures quite a bit of the left side of the document or spreadsheet. When you drag and drop a
control onto the document surface, the toolbox does not autohide and get out of the way until the drag and drop is
over.

Modes for Adding Controls

VSTO provides three modes for adding controls to the document surface:

Dragging and dropping This involves selecting the control from the toolbox and dragging it onto the
document or worksheet. This method creates a default-size control on the document and proves particularly
useful for adding controls that tend to be a set size, such as buttons. Figure 14.5 shows this mode.

Figure 14.5. Drag and drop of a Button control from the toolbox to an Excel
worksheet.

Drawing Clicking a control in the toolbox to select it and then moving your mouse pointer over the document
or spreadsheet changes the cursor to the standard draw cursor. In this mode, you can click and drag a
rectangle, thereby drawing the control onto the document or spreadsheet. Figure 14.6 shows this mode.

Figure 14.6. Drawing a PictureBox control on a Word document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.6. Drawing a PictureBox control on a Word document.

Double-clicking Double-clicking a control in the toolbox causes a control to be added at the current insertion
point in the document or spreadsheet. The insertion point in Word behaves quite differently from the way it
behaves Excelnot surprising, given the flow-based nature of a document compared with the grid of a
spreadsheet. Double-clicking a control in the toolbox in a Word VSTO project inserts the control at the cursor in
the document. Double-clicking a control in the toolbox in an Excel VSTO project, however, inserts the control at
the center of the spreadsheet.

Controls That Are Not in the Control Toolbox

A number of Windows Forms controls do not show up in the controls toolbox for Excel and Word projects. These
controls were purposely excluded because of known issues in using them on the document surface. Some of these
issues are purely design-time-related, in that the design-time representation of the control does not work well. This
does not mean that the control cannot be used, but it might mean that the only way that you can use it on a document
is to add it programmatically at runtime or to use the control in a user control that you then add to the document.

A good example of such a control is the group box. The design-time experience of the group box does not work well in
Excel or Word, because the group-box designer requires the container to support container drag and drop, which the
Excel and Word designer does not support. You have two options to work around this limitation:

Create the group box programmatically at runtime. This approach uses VSTO's support for adding controls at
runtime, which is described later in this chapter.

Create a custom user control that contains the group box and the contained controls within the group box. After
this is built, drag the user control onto the document or spreadsheet as you would any control. The advantage
to this approach is that you get full-fidelity designer support in the user-control designer, making it easy to lay
out the controls.

Some other controls are excluded from the toolbox for the following reasons:

The control does not work with the VSTO control hosting architecture. The BindingNavigator control, for
example, relies on a container model that is not supported in the VSTO control hosting architecture to
communicate with other data components.

The control relies heavily on being hosted in a Windows Forms form. The MenuStrip control, for example,
cannot be added to a document or spreadsheetonly to a form.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cannot be added to a document or spreadsheetonly to a form.

The control has problems at design time. Because many controls were designed before the release of VSTO,
some have bugs when hosted on a document or spreadsheet surface in the designer. The RichTextBox control,
for example, has considerable issues when running inside Excel and Word at design time. In the interest of
stability, it was removed from the controls toolbox, but you can add it to a document or spreadsheet
programmatically at runtime.

Control Insertion Behavior in Word

A control added to Word is affected by the insertion settings set in Word's Options dialog box. A control can be inserted
"in line with text," which means the control is inserted into the text flow of the document and moves as the text flow
changes. It also can be inserted "in front of text," which means that the control is positioned at an absolute position in
the document that does not change when the text flow changes.

You can change the default insertion behavior in Word to be exact-position-based rather than flow-based by changing
the insert/paste pictures setting in Word's Option dialog box from the default In Line with Text to In Front of Text. After
you change this setting, all controls will be positioned where you want them instead of having to be in line with the text.
To change this setting, choose Options from the Tools menu, and click the Edit tab of the Options dialog box. Figure
14.7 shows the Insert/Paste Pictures As setting.

Figure 14.7. Changing the default insertion behavior in Word's Options dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can also change the way a control in Word is wrapped with the text by right-clicking the control in the designer and
selecting the Format Control menu option. Doing so brings up Word's Format Object dialog box, shown in Figure 14.8.
Changing the wrapping style from in line with text to in front of text provides exact positioning.

Figure 14.8. Changing the wrapping style for a control with Word's Format Object
dialog box.

From the standpoint of the Word object model, a control whose wrapping style is set to In Line with Text, Square, or
Tight is represented by the InlineShape object in Word's object model and located in the Document object's
InlineShapes collection. A control whose wrapping style is set to Behind Text or In Front of Text is represented by the
Shape object in Word's object model and located in the Document object's Shapes collection.

Control Insertion Behavior in Excel

Excel also provides options for positioning a control on the worksheet surface, with the default being to move the
control relative to the cell but not to size with the cell. This setting means that when you put a control onto the
worksheet surface, it is linked to the cell that you dropped it on; so if you insert or delete cells around that cell, the
control will stay positioned relative to the cell it was dropped on. If you resize the cell you dropped, however, the size of
the control stays the same. This is usually the behavior that you would expect when adding a control. If you want your
control to resize with the cell, you can either draw the control over the cell so that it matches the size of the cell (not
for the faint of heart) or right-click the control inside Visual Studio and select Format Control, which brings up the
Format Control dialog box, shown in Figure 14.9. Click the Properties tab, and select one of three options:

Figure 14.9. Setting object-positioning options for a control in Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.9. Setting object-positioning options for a control in Excel.

Move and Size with Cells This option ensures that the control resizes and repositions relative to the cell
resize. If your control takes up half the cell, for example, it will continue to take up half the cell when the cell is
resized.

Move but Do Not Size with Cells This is the default setting, which ensures that the control remains with the
cell it was dropped on but does not resize.

Do Not Move or Size with Cells This setting provides you exact positioning that does not change when the
cell the control that was dropped on is moved or resized.

Layout of Controls on the Document or Worksheet Surface

The Windows Forms editor in Visual Studio has some great alignment tools that make it much simpler to design
professional-looking forms without having to resort to per-pixel tweaks on each control. Unfortunately, the alignment
tools do not work on documents because the display surface is very different from that of a form. In the place of these
tools, a new toolbar provides easy access to the alignment functionality in Word and Excel. Figure 14.10 shows the
toolbar. To align controls, just select the controls you want to align and then click the button that represents the
alignment option you want.

Figure 14.10. The control-positioning toolbar in VSTO.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Writing Code Behind a Control
Writing code behind a control on a document or spreadsheet is not much different from writing code behind a normal
Windows Forms control. You can double-click a control, and the designer will add a new event handler for the default
event on the control in the partial class for the sheet or document you are working on.

Event handlers can also be generated by using the Events view in the Properties window. In this view, you can double-
click an event-handler cell to add a default named event handler for an event. Alternatively, you can enter the name of
the event-handler function you want to use. Listing 14.2 shows the code generated when you drop a button on a
spreadsheet and then double-click the event-handler cell for Click and SystemColorsChanged to generate default event
handlers for these events.

Listing 14.2. Default Event Connection and Handlers Generated by VSTO for a
Button's Click and SystemColorsChanged Events

Public Class Sheet1

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 End Sub

 Private Sub Button1_SystemColorsChanged(_
 ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles Button1.SystemColorsChanged

 End Sub

End Class

Not all the events on a Windows Forms control are raised in an Office document. The ResizeBegin and ResizeEnd
events, for example, are common across all Windows Forms controls (these events are defined on the Control base
class) but are never raised on controls on a document or worksheet because of the way that Windows Forms support in
VSTO was designed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Windows Forms Control Hosting Architecture
Typically, the implementation details of a particular technology are interesting to know but not a prerequisite for using a
feature. In the case of Windows Forms control hosting on an Office document, it is important to understand how the
feature is implemented, because you will be exposed to some implementation details as you create solutions using
controls.

The Windows Forms Control Host ActiveX Control

Windows Forms control support in Office 2003 and VSTO is based on the capability of Word and Excel to host ActiveX
controls on the document surface. When you add a Windows Forms control to a document, what actually is added is an
ActiveX control called the Windows Forms control host. The Windows Forms control host acts as a host for each
Windows Forms control added to the document. The Office application thinks that it is just hosting a basic ActiveX
control because the Windows Forms control host implements all the necessary ActiveX control interfaces.

When the customization assembly is loaded for the document or spreadsheet, the actual Windows Forms control
instance is created in the same application domain and security context as the rest of the customization code. Then
these Windows Forms control instances are parented by a special parent Windows Forms control, called the
VSTOContainerControl, that derives from UserControl. Then the VSTOContainerControl is sited to the Windows Forms
control host ActiveX control. Your controlfor example, a Trade Stock button in a spreadsheetis added as a child of the
VSTOContainerControl. Figure 14.11 shows this "sandwich" architecture.

Figure 14.11. The basic hosting architecture for Windows Forms controls on the
document.

[View full size image]

The fact that an ActiveX control is hosting the Windows Forms control on the document surface does peek through at
times. One example is in the Excel design view. When you click a managed control that you have added to the Excel
workbook surface, the formula bar shows that it is hosted by an embedded ActiveX control with ProgID
"WinForms.Control.Host," as shown in Figure 14.12.

Figure 14.12. Excel shows the ProgID of the underlying ActiveX hosting control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSTO Controls Derived from Windows Forms Controls

The fact that an ActiveX control is hosting the Windows Forms control dragged onto the document surface does not
show up immediately in your code. VSTO adds a member variable to the ThisDocument or Sheet1 class, named
something like Button1, that you can code against just as you would if you were working with a traditional Windows
Forms form. At first glance, the experience appears to be identical to working with a Windows Forms form, but the type
of the control that you added to the document is not quite what you would expect. If you drag a button from the
Windows Forms toolbox, it would be natural to expect the type of the button created on the document to be
System.Windows.Forms.Button. When you add a button to a spreadsheet, however, VSTO creates a button with type
Microsoft.Office.Tools.Excel.Controls.Button that derives from System .Windows.Forms.Button. When you add a button
to a Word document, VSTO creates a button with type Microsoft.Office.Tools.Word.Controls .Button that derives from
System.Windows.Forms.Button. Understanding why a button in VSTO derives from the standard Windows Forms button
requires some further digging into the details of how Windows Forms controls are hosted in a Word or Excel document.

Windows Forms controls, be they controls in the System.Windows.Forms namespace or custom controls written by a
third party or you, were originally designed to be added to a Windows Forms form and not an Office document. Luckily,
much of the Windows Forms control works just fine when used in an Office document. The main special case is around
the positioning of the control. If you set the Left property of a Windows Forms control hosted in a form, it sets the
distance in pixels between the left edge of the control and the left edge of its container's client area. This works fine in a
form or a container control but does not work well when the control is placed in a document or spreadsheet.

The reason why it does not work well is directly related to the hosting architecture of controls in the document, because
the control is actually hosted by the VSTOContainerControl, which is hosted by the ActiveX control. As a result, if VSTO
were to expose the raw positioning properties of the control, they would be relative to the area of the
VSTOContainerControl container, not the document. Setting the Left property of a control should actually move the
ActiveX control within the document, rather than the hosted Windows Forms control within the VSTOContainerControl.

Listing 14.3 illustrates this point. In Listing 14.3, we have a spreadsheet to which we have added some Windows Forms
buttons, as shown in Figure 14.1. The Refresh button shown in Figure 14.1 is added to Sheet1 as a member variable
called refreshButton of type Microsoft.Office.Tools.Excel.Controls.Button. We display that type in the Startup event. As
mentioned earlier, Microsoft.Office.Tools.Excel.Controls .Button derives from System.Windows.Forms.Button. The
Microsoft .Office.Tools.Excel.Controls.Button's override of Left sets the position of the ActiveX control hosting the
Windows Forms control. The code in Listing 14.3 sets this Left to 0, which causes the control to move to the left edge of
the worksheet. Casting refreshButton to a System.Windows.Forms.Button strips the override that VSTO adds for the Left
property. Setting the Left property on refreshButton when cast to a System.Windows.Forms.Button sets the Left property
of the control relative to the parent VSTOContainerControl. This listing, when run, gives the strange result shown in
Figure 14.13, where the first call to Left moved the ActiveX control to the far-left edge of the worksheet, but the
subsequent calls to Left and Top on the base class System.Windows.Forms.Button moved the managed control relative
to the VSTOContainerControl.

Listing 14.3. A VSTO Excel Customization That Exposes the Windows Forms
Control Hosting Architecture

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 MsgBox(refreshButton.GetType().ToString())

 ' Cast to a System.Windows.Forms.Button
 ' to set position on underived control
 Dim refreshButtonBase As Button = refreshButton

 MsgBox(refreshButtonBase.Parent.GetType().ToString())
 MsgBox(_
 refreshButtonBase.Parent.GetType().BaseType.ToString())

 ' Moving the control on Microsoft.Office.Tools.Button
 refreshButton.Left = 0

 ' Moving the control again on the base
 ' System.Windows.Forms.Button
 refreshButtonBase.Left = 10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 refreshButtonBase.Left = 10
 refreshButtonBase.Top = 10

 End Sub

End Class

Figure 14.13. The result of running Listing 14.3. The Refresh button has been
offset relative to the VSTOContainerControl in the VSTO hosting architecture.

To enable your code to set the position of the control relative to the document, VSTO creates a derived class for each
control that extends the class of the original Windows Forms control and overrides the positional information with the
positional information from the ActiveX control in the Office document. The object model object for Excel that provides
the properties and methods to position the ActiveX control is called OLEObject, and for Word, it is called OLEControl.
The derived classes created for each VSTO Windows Forms control effectively merges the original Windows Forms
control class and the OLEObject object for Excel or the OLEControl object for Word.

If you create a Windows Forms control of your own or use a third-party control, when you drag and drop the control to
a document or spreadsheet, VSTO automatically generates an extended class for you that merges your control with
OLEObject or OLEControl. Because the ability to add custom Windows Forms controls to a document requires the
control to be extended, you can use only controls that are not sealed. The good news is that the vast majority of third-
party controls are unsealed.

Security Implications of the VSTO Control Hosting Model

The security-minded might be wondering about the implications of having to use an ActiveX control to host managed
controls added to a document. This is something that we spent considerable time on to ensure that the ActiveX control
did not provide a vulnerability to Office. The Windows Forms control host ActiveX control, when initialized, does not
actually do anything and will not run any code until it is accessed by the customization assembly. This means that the
control is safe for initialization, and the only way for it to do anything is for code with full trust (the customization) to
call it. The control is marked safe for initialization to ensure that it will load in Office with the default security settings.

One strange side effect of the control hosting architecture is that Office requires VBA to be installed to add ActiveX
controls to a document. Adding ActiveX controls to a document does not add VBA code to that document, but it does
require the use of parts of the VBA engine. Therefore, you need to ensure that your Office installation has VBA installed
to use managed controls in the document. VBA is installed by default in all versions of Office, so it is unusual for it not
to be installed. VSTO also requires that the Trust Access to Visual Basic Project check box be checked in the Macro
Security dialog box of Office on a development machine. This check box does not have to be checked on end-user
machines unless you are adding dynamic worksheets at runtime, as described in Chapter 13, "The VSTO Programming
Model."

The macro security level in VBA can affect the loading of ActiveX controls and, hence, managed controls. If your user
sets the VBA macro security settings to Very High (it is set to High by default), any ActiveX controls in the document
will be allowed to load only in their inactive design mode state. In this state, Windows Forms controls in the document
will not function properly. Luckily, the default macro security setting of High allows controls to be loaded, assuming that
they are safe for initialization. Because all Windows Forms controls in the document are loaded by the Windows Forms
control host ActiveX control, which is marked as safe for initialization, all managed controls can load in the High setting.

Limitations of the Control Hosting Model

Each Windows Forms control on the document is contained by an instance of the Windows Forms control host ActiveX
control, which leads to some limitations. The most noticeable limitation that affects all controls is the lack of support for
a control's TabIndex property. Tab order in a Windows Forms is determined by the containing form or control. This is
not a problem with a traditional Windows Forms form because all controls on the form are contained by one container.
In VSTO, each control placed onto a document or spreadsheet is contained by it is own containerby its own unique
instance of the Windows Forms control host. The net result is that the tab index of the control is scoped to its container,
and because there is a one-to-one relationship between control and container, the TabIndex property is of little use.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and because there is a one-to-one relationship between control and container, the TabIndex property is of little use.
This can have an impact on the accessibility of your application, because users would expect to be able to tab between
fields, but nothing happens when they press the Tab key.

Another limitation is that controls such as radio buttons really require the control be contained within a container to
make the controls mutually exclusive so that only one radio button within the container can be selected at a time.
Without a common container, the radio button is not particularly useful. Adding each radio button directly onto a
document or spreadsheet causes each radio button to be hosted in its own container. There is a simple way to work
around this problem, however; you just create a user control that has a container (a group box, for example) and then
add the radio buttons to the group box within the user control. Then you can add the user control to the document as a
single control.

Control State Not Saved

We considered this limitation briefly in the introduction of this chapterthe limitation that the state of a Windows Forms
control is not saved in the document. To illustrate, imagine a solution that generates customer-service letters in Word.
One of the key pieces of information in the document is the date the customer first called customer service. To aid with
entering this date, the Word document contains a DateTimePicker, as shown in Figure 14.14.

Figure 14.14. A DateTimePicker control in a Word document.

This is great functionality for your users, but where will the date that the user picks with the DateTimePicker be stored
in the document? Consider the scenario where the user opens the document for the first time. The DateTimePicker
defaults to show today's date. Then the user picks a different date, using the DateTimePicker, and saves the document.
Now we have a problem: Windows Forms controls placed in a document do not save their state into the document when
the document is saved. The next time the document is opened, the DateTimePicker will show today's date again, rather
than the date picked by the user the last time the document was saved.

To get the DateTimePicker to remember the date picked by the user the last time the document was saved, you have to
write code to detect when the user picks a new date by handling the DateTimePicker control's ValueChanged event. You
need to store the date in the document somehow so that it will be saved when the document is saved. Some options
you have for storing the date that was picked include inserting some hidden text into the document, adding a custom
property to the document, or using the cached-data feature of VSTO to cache the date in the data island of the
document. Then you have to write some code in the Startup event handler to set DateTimePicker.Value to the saved
date.

Listing 14.4 shows some VSTO code associated with the Word document shown in Figure 14.14. The code uses the
cached-data feature of VSTO, described in Chapter 18, "Server Data Scenarios," to save the date that was picked in the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cached-data feature of VSTO, described in Chapter 18, "Server Data Scenarios," to save the date that was picked in the
DateTimePicker in a public field called lastPickedDate that has been marked with the Cached attribute. The Cached attribute
causes the value of lastPickedDate to be saved automatically in a data island in the document from session to session. The
Startup handler puts the stored value of lastPickedDate back in the DateTimePicker each time the document is reopened.

Listing 14.4. A VSTO Word Customization That Saves the Date That Was Picked
Using the Cached-Data Feature of VSTO

Public Class Sheet1

 <Cached()> _
 Public lastPickedDate As DateTime = DateTime.MinValue

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 If lastPickedDate <> DateTime.MinValue Then
 Me.DateTimePicker1.Value = lastPickedDate
 End If

 End Sub

 Private Sub DateTimePicker1_ValueChanged(_
 ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles DateTimePicker1.ValueChanged

 lastPickedDate = DateTimePicker1.Value

 End Sub
End Class

Controls Sometimes Blurry

Have you noticed that sometimes a control in Word or Excel looks a little blurred when you are in the designer, but it
snaps back into focus when you run the project? This is because the Windows Forms control host ActiveX control stores
a bitmap of the hosted Windows Forms control so that when Excel or Word first opens the document, it can display the
bitmap until the actual control is loaded. This was done because the actual control is not loaded until the customization
assembly is fully loaded. If we had not done this, the control would have an attractive red x through it until the
customization assembly loaded.

The reason it looks a bit out of focus is that Office antialiases the image when it stores it, so it is not an exact copy of
the original bitmap. So if you see a slightly out-of-focus control on your document, you know that your customization
assembly has not loaded yet, that it did not load properly, or that you have been up too late writing a book about
Windows Forms controls on Office documents!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Properties Merged from OLEObject or OLEControl
After the control has been added to the document or spreadsheet, the experience of using the control on the design
surface should be very close to that of working with a standard Windows Form. There are some differences, however.
The biggest difference appears when you click a Windows Forms control in the document and use the categorized view
in the Properties window. If you compare a Windows.Forms.Controls.Button with a
Microsoft.Office.Tools.Excel.Controls.Button, you will see the extra properties merged in from the OLEObject. These
properties are listed in the Misc category to denote that these properties are coming from OLEObject.

Excel Control Properties That Are Added from OLEObject

The OLEObject merge done for controls in the Microsoft.Office.Tools .Excel.Controls namespace adds several properties
to VSTO extended controls that are not in the base Windows.Forms controls. Table 14.1 shows the most important
properties that are added for controls in Excel.

Table 14.1. Additional Excel Control Properties
Name Type Access Description

BottomRightCell Excel.Range Read-only The Range object that
represents the cell that lies
under the bottom-right
corner of the control.

Enabled Boolean Read-write Determines whether the
control is enabled. If you
set this to False, the control
will appear grayed-out in
Excel. This enables you to
control whether the control
will accept input at
runtime.

Height Double Read-write The height, in points, of
the control.

Left Double Read-write The distance, in points,
from the left edge of the
control to the left edge of
column A.

Placement Object Read-write Determines how the
control will be placed. This
can be one of three values:
xlFreeFloating (equivalent to
the Do Not Move or Size
with Cell setting in the
Format Control dialog box),
xlMove (equivalent to the
Move but Do Not Size with
Cell setting in the Format
Control dialog box), or
xlMoveAndSize (equivalent to
the Move and Size with Cell
setting in the Format
Control dialog box).

PrintObject Boolean Read-write Determines whether the
control will print when the
worksheet is printed. This
can prove very useful if the
control you are using is
something like a button
that should not be part of
the final printed document.

Shadow Boolean Read-write Determines whether Excel
should provide a drop
shadow for the control.
When set to true, Excel will

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When set to true, Excel will
provide a simple black drop
shadow around the control.

TopLeftCell Excel.Range Read-only The Range object that
represents the cell that lies
under the top-left corner of
the control.

Top Double Read-write The distance in points from
the top edge of the control
to the top edge of row 1.

Visible Boolean Read-write Determines whether to
hide the control at runtime.

Width Double Read-write The width in points of the
control.

Word Control Properties Added from OLEControl

The OLEControl merge done for controls in the Microsoft.Office.Tools .Word.Controls namespace adds several properties
to VSTO extended controls that are not in the base Windows.Forms controls. Table 14.2 shows the most important
properties that are added for controls in Word.

Table 14.2. Additional Word Control Properties
Name Type Access Description

Bottom Single Read-only The distance in points from
the top edge of the first
paragraph on the page to
the bottom of the control

Height Single Read-write The height in points of the
control

InlineShape InlineShape Read Returns the InlineShape
object in the Word object
model corresponding to the
control; returns Nothing if
the control is not inline

Shape Shape Read Returns the Shape object
in the Word object model
corresponding to the
control; returns Nothing if
the control is inline

Left Single Read-write The distance in points from
the left edge of the control
to the left edge of the first
paragraph on the page

Name String Read-write The name of the control

Right Single Read-only The distance in points from
the right edge of the
control to the left edge of
the first paragraph on the
page

Top Single Read-write The distance in points from
the top edge of the control
to the top edge of the first
paragraph on the page

Width Single Read-write The width in points of the
control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Many of the properties for controls running in Word are dependent on the wrapping style of the control. If the control is
inline with text, the Left, Bottom, Right, Top, and Width properties will throw an exception. Why? Word represents
ActiveX controls as either Shapes or InlineShapes, depending on how the control is positioned on the document, and
the positioning properties are available only on Shapes that are controls whose wrapping style is Behind Text or In
Front of Text.

Word controls also have an InlineShape and Shape property that provide you access to the InlineShape or Shape object
in the Word object model corresponding to the control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Adding Controls at Runtime
So far, this chapter has described how to add controls to the document or worksheet at design time with the Visual
Studio control toolbox. Often, the controls needed for your application need to be added (and deleted) at runtime.
Consider again the worksheet shown in Figure 14.1 earlier in this chapter. Suppose that you want to provide a Trade
button at the end of every row that shows a stock. This would be impossible to achieve by adding buttons at design
time, because the number of stock rows will vary at runtime as the workbook is edited. You would need to add a button
to the end of the row dynamically as stock is added at runtime.

VSTO provides a mechanism to add controls at runtime via the Controls collection, present on Word's Document class
and Excel's Worksheet classes. This Controls collection works a bit differently from the Controls collection in Windows
Forms. In the Controls collection associated with a Windows Forms form class, you can add controls at runtime by
creating an instance of the control and adding it to the form's collection of controls. Then you can set positioning on the
control you created:

Dim btn As New System.Windows.Forms.Button

form1.Controls.Add(btn)

btn.Left = 100

The VSTO Controls collection cannot take this approach, because although the instance of the button could be added to
the collection, there would be no way for the developer to change any positional properties on it; the positional
properties are not available until the ActiveX control is created and connected to the Windows Forms control. There
needs to be a way to return to the developer a wrapped control that has both the original control and the OLEObject or
OLEControl. The VSTO Controls collection provides two mechanisms for adding controls:

VSTO provides a generic AddControl method that can be used with any Windows Forms control. This method
takes an instance of the Windows Forms control you want to add and returns to you the
Microsoft.Office.Tools.Excel.OLEObject or Microsoft.Office.Tools.Word.OLEControl that contains the control you
passed in. So the equivalent of the Windows Forms code above in VSTO is shown here. The main difference is
that now you have to track two objects, the Button object and the OLEObject object, and remember to set
positioning only on the OLEObject:

Dim btn As New System.Windows.Forms.Button()

Dim oleObject as Microsoft.Office.Tools.Excel.OLEObject
oleObject = Me.Controls.Add(btn, 100, 100, 150, 100, "button1")

oleObject.Left = 100

For common Windows Forms controls, a set of helper methods on the Controls collection will return the VSTO
extended control with positioning information merged in. A method called AddButton is provided on Excel's
Controls collection, for example. This method returns a Microsoft.Office.Tools.Excel.Controls.Button. The code
below does the same thing as the code shown earlier, except that it frees you from having to track two objects:

Dim btn As Microsoft.Office.Tools.Excel.Controls.Button

btn = Me.Controls.AddButton(100, 100, 150, 100, "button1")

btn.Left = 100

Listing 14.5 shows code that dynamically adds a group box to an Excel worksheet using the AddControl mechanism. It
doesn't even use the returned OLEObject, because it sets the position as part of the initial call to AddControl. Then it
goes further and adds more RadioButton controls to that group box.

Listing 14.5. A VSTO Excel Customization That Adds a Group Box to an Excel
Worksheet at Runtime

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Worksheet at Runtime

Public Class Sheet1

 Public myGroupBox As GroupBox

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 myGroupBox = New System.Windows.Forms.GroupBox()

 ' Add the group box to the controls collection on the sheet
 Me.Controls.AddControl(_
 myGroupBox, 100, 100, 150, 100, "groupbox")
 ' Set the title of the group box
 myGroupBox.Text = "Insurance type"
 ' Add the radio buttons to the groupbox
 myGroupBox.Controls.Add(New RadioButton())
 myGroupBox.Controls.Add(New RadioButton())
 ' Set the text of the radio buttons
 myGroupBox.Controls(0).Text = "Life"
 myGroupBox.Controls(1).Text = "Term"
 ' Arrange the radio buttons in the group box
 myGroupBox.Controls(0).Top = myGroupBox.Top + 25
 myGroupBox.Controls(1).Top = _
 myGroupBox.Controls(0).Bottom + 20

 ' iterate through each button in the controls collection
 Dim rb As RadioButton
 For Each rb In myGroupBox.Controls
 rb.Left = myGroupBox.Left + 10
 Next

 End Sub

End Class

Working with the Controls Collection

The Controls collection provides a simple mechanism to add controls to your document or worksheet at runtime. Before
we get into the details of the Controls collection, it is important to note that the implementation and methods exposed
are different between Word and Excel. Although the behavior of the collection is the same in each application, it was
necessary to have a different implementation to ensure that the collection takes advantage of the host application. If
you want to add a control to Excel, for example, passing in an Excel.Range object for its position makes a lot of sense.
If you want to add a control to Word, passing in a Word.Range object makes sense.

To illustrate using the collection, we start by looking at the helper methods available for all the supported Windows
Forms controls that ship with the .NET Framework. The helper methods follow a common design pattern; call the
method with positional arguments and an identifier, and the method returns you the wrapped type for the control.

Word has two overloads for each helper method:

A method that takes a Word Range object, a width and height for the control in points, and a string name for
the control that uniquely identifies it within the controls collection:

Controls.AddButton(ActiveWindow.Selection.Range, _
 100, 50, "NewButton")

A method that takes a left, top, width, and height for the control in points and a string name for the control that
uniquely identifies it within the controls collection:

Controls.AddMonthCalendar(10, 50, 100, 100, "NewCalendar")

Excel also has two overloads for each helper method:

A method that takes an Excel range object and a string name for the control that uniquely identifies it within the
controls collection. The control will be sized always to match the size of the range passed to the method:

Controls.AddButton(Range("A1"), "NewButton")

A method that takes a left, top, width, and height for the controls in points and a string name for the control
that uniquely identifies it within the controls collection:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that uniquely identifies it within the controls collection:

Controls.AddMonthCalendar(10, 50, 100, 100, "NewCalendar")

After the control has been added to the document or worksheet, you can program against it just as you do a control
added at design time. Table 14.3 shows the complete list of helper methods to add controls on the Controls collection.

Table 14.3. Add Methods on the Excel Controls
Collection

Method Name Return Type

AddButton Microsoft.Office.Tools.Excel.Controls.Button

AddChart Microsoft.Office.Tools.Excel.Chart

AddCheckBox Microsoft.Office.Tools.Excel.Controls.CheckBox

AddCheckedListBox Microsoft.Office.Tools.Excel.Controls.CheckedListBox

AddComboBox Microsoft.Office.Tools.Excel.Controls.ComboBox

AddDataGridView Microsoft.Office.Tools.Excel.Controls.DataGridView

AddDateTimePicker Microsoft.Office.Tools.Excel.Controls.DateTimePicker

AddDomainUpDown Microsoft.Office.Tools.Excel.Controls.DomainUpDown

AddHScrollBar Microsoft.Office.Tools.Excel.Controls.HScrollBar

AddLabel Microsoft.Office.Tools.Excel.Controls.Label

AddLinkLabel Microsoft.Office.Tools.Excel.Controls.LinkLabel

AddListBox Microsoft.Office.Tools.Excel.Controls.ListBox

AddListView Microsoft.Office.Tools.Excel.Controls.ListView

AddMonthCalendar Microsoft.Office.Tools.Excel.Controls.MonthCalendar

AddNumericUpDown Microsoft.Office.Tools.Excel.Controls.NumericUpDown

AddPictureBox Microsoft.Office.Tools.Excel.Controls.PictureBox

AddProgressBar Microsoft.Office.Tools.Excel.Controls.ProgressBar

AddPropertyGrid Microsoft.Office.Tools.Excel.Controls.PropertyGrid

AddRadioButton Microsoft.Office.Tools.Excel.Controls.RadioButton

AddRichTextBox Microsoft.Office.Tools.Excel.Controls.RichTextBox

AddTextBox Microsoft.Office.Tools.Excel.Controls.TextBox

AddTrackBar Microsoft.Office.Tools.Excel.Controls.TrackBar

AddTreeView Microsoft.Office.Tools.Excel.Controls.TreeView

AddVScrollBar Microsoft.Office.Tools.Excel.Controls.VScrollBar

AddWebBrowser Microsoft.Office.Tools.Excel.Controls.WebBrowser

AddControl

Unfortunately, helper methods are not available for every control on your machine, so there needs to be a way to add
controls outside the list in Table 14.3. To do this, the Controls collection provides an AddControl method that enables
you to pass in an instance of any Windows Forms control, and it will return the OLEObject (for Excel) or the OLEControl
(for Word) that can be used to position the control after it is added:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

' Declare a OLEObject variable
Dim myobj As Microsoft.Office.Interop.Excel.OLEObject

' Add the control to the A10 cell
myobj = Controls.AddControl(New UserControl1(), _
 Me.Range("A10"), "DynamicUserControl")

// Reposition it to the top of B15
myobj.Top = Me.Range("B15").Top

A common pitfall of using AddControl is forgetting to set the positioning on the OLEObject and setting it directly on the
Windows Forms control itself. If you do this, the control will change its position relative to the container rather than
move its position correctly in the document. For an example of this issue, consider Listing 14.3 and Figure 14.13.

Deleting Controls at Runtime

Now that we have some controls added to the document at runtime, it is important that there be a mechanism to delete
controls from the collection. VSTO provides three ways to achieve this:

Calling the Remove method on the Controls collection and passing in the instance or name of the control that
you want to remove from the collection

Calling the RemoveAt method on the Controls collection and passing in the index of the control to be removed

Calling the Delete method on the control itself, which will in turn delete the control

You can delete only controls that have been added at runtime. If you try to remove controls that were added at design
time, you will get an exception.

Controls Added at Runtime Not Saved

We wanted to keep the behavior of the Controls collection as close to the Windows Forms development experience so
that any control added at runtime is deleted from the document when the user saves the document. If you add controls
to a Windows Forms application at runtime, for example, you do not expect those controls just to appear the next time
you run the application without code being written to re-create those controls. We spent many hours debating the
relative merits of this approach versus the alternative, which was to allow Word or Excel to save the newly added
control when the document was saved. The main deciding argument for not saving the newly added control was to
make it easier to write dynamic control code in the document. If we had left the control in the document when the user
saved the document, it would have been very difficult to write code that could connect controls that had been added
dynamically the last time the document was open. To understand why this was difficult really involves looking into how
a control is added to the document at runtime.

When a control is added to the Controls collection, the VSTO runtime adds an instance of the ActiveX control that will
host the control and then sets it to host the provided control. This works fine when the document is running but quickly
becomes complicated when the user saves the document. If we were to save the control into the document, all that
would be stored would be the ActiveX control itself, but without any instance of the Windows Forms control, because it
must be provided by the code at runtime. The next time the document loaded up, the ActiveX control would load but
would not get an instance of the control, because the code that added the instance of the Windows Forms control would
run again and add a new instance of the ActiveX control, because it would have no link back to the saved ActiveX
control. Extrapolate this situation out over a few hundred saves of a document, and you quickly get a lot of "orphaned"
ActiveX controls that will never be used.

The solution that was implemented in VSTO was to remove all ActiveX control instances that were added as a result of
adding a control at runtime to the Controls collection. This way, there will never be any "orphaned" ActiveX controls on
the document, and it also makes your code simpler to write. Why is the code simpler to write? Imagine writing the code
to add the buttons at the end of each row containing a stock:

For Each stock As StockRow In Stocks
 ' add stock information to row here
 Me.Controls.AddButton(_
 Me.Range(currentrow, "12"), stock.Ticker + "btn")
Next

If the control were persisted with the worksheet on save, the code would have to go through each control and ensure
that the buttons added in the last run were thereand quite possibly delete and add them again, because the stock list
had changed. We believed it was more straightforward just to iterate through the stocks on every run of the workbook
and add the buttons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and add the buttons.

Controls in the Controls Collection Typed as Object

VSTO documents and worksheets can have Windows Forms controls added to them at runtime via the Controls
collection, as well as host controls such as NamedRange and ListObject. Both these types of controls act like controls in
the VSTO model. You can click a NamedRange in VSTO and display a Visual Studio property window for it, for example.
You can establish data bindings to a NamedRange just as you can with a text box or any other Windows Forms control.

As a result, the VSTO model considers both NamedRange and a Windows Forms control to be a "control" associated
with the worksheet or document. The Controls collection contains both host controls and Windows Forms controls.
Although providing a strongly typed collection was something that we would have liked to do, there was no common
type other than Object that a host control and a Windows Forms control share.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
The key to using Windows Forms controls in your Word or Excel solutions is to think about what user interface options
meet your requirements. VSTO provides you considerable flexibility for extending the user interface of Word or Excel,
and there is no one right answer as to which is the best way. Windows Forms controls allow you to extend the
capabilities that ActiveX controls provided while leveraging the ever-growing Windows Forms controls ecosystem.

This chapter described how you can use Windows Forms controls to extend your Office solutions. In particular, the
chapter examined how hosting controls on the document surface is a very powerful tool for developing applications. The
chapter also covered the architecture of hosting controls on the document surface, as well as the limitations and
differences in this model compared with traditional Windows Forms development. Chapter 15, "Working with the Actions
Pane," continues the discussion about Windows Forms and Office, specifically showing how to use Windows Forms
controls on Office's Document Actions task pane.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 15. Working with the Actions Pane

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction to the Actions Pane
Developing a solution that runs within an Office application provides considerable benefits because you can take
advantage of the functionality that already exists in Office. Sometimes, however, it is hard to design a user interface
that meets your needs, as most of the user interface space is controlled by the Office application. Office 2003 and VSTO
introduce a number of new user interface capabilities, including the ability to use Windows Forms controls on the
document. (See Chapter 14, "Using Windows Forms in VSTO," for more information on this capability.)

Placing a control on the document is not always the right paradigm for the user interface of your application. Putting a
control onto the document can often lead to issues with layout when the controls are laid out relative to a range or
paragraph, for example. If you use a button on a Word document, by default, it will be inline with the text. This means
that when you reformat the document, the button will move with the text. Obviously, being able to move a control with
the text is something that you would want if you are developing a flow-based user interface. But this model quickly
becomes difficult when you are developing more traditional user interfaces. Things get even more complex if you start
to consider what type of behavior you want when the user prints a document. Do you want your Windows Forms
controls to be printed with the rest of the document, for example?

To address these user interface challenges, Office 2003 introduced the ability to put your own custom user interface
into the Document Actions task pane of Word and Excel. The task pane is designed to provide a contextual user
interface that is complementary to the document. Word, for example, provides a task pane that shows the styles and
formats available in the current document and displays the style of the current selection in the document, as shown in
Figure 15.1. To display the task pane, choose Task Pane from the View menu.

Figure 15.1. The Styles and Formatting task pane in Word.

[View full size image]

The active task pane can be changed by making a selection from the drop-down list of available task panes at the top of
the task pane, as shown in Figure 15.2. The active task pane is a per-document setting. You can have only one task
pane visible at a time per document. The drop-down list shows several task panes that are built into Office. The task
pane acts like a toolbar when you drag it to move it to another location. It can float above the document. It can also be
docked to the left, top, right, or bottom of the application window space.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

docked to the left, top, right, or bottom of the application window space.

Figure 15.2. Selecting a task pane in Word.

Figure 15.2 lists several of the built-in task panes available in Word, including Getting Started, Help, and Clip Art. The
task pane in the list that is customizable by your VSTO Word or Excel application is called the Document Actions task
pane. In VSTO and in this book, we often refer to the Document Actions task pane as the actions pane, as kind of a
contraction between the Document Actions and the task pane. ActionsPane is the name of the control in the VSTO
programming model that you will use to put your own content in the Document Actions task pane. Note that the
Document Actions task pane is listed as an available task pane for a document that has a VSTO customization
associated with it that uses the ActionsPane control.

Listing 15.1 shows a simple VSTO Excel customization that displays a Windows Forms button control in the Document
Actions task pane. In Excel, the ActionsPane control is a member of the ThisWorkbook class. Because this code is
written in Sheet1, we use the Globals object to access the ThisWorkbook class and, from the ThisWorkbook class, to
access the ActionsPane control. The ActionsPane control has a Controls collection that contains the controls that will be
shown in the Document Actions task pane. We add to this collection of controls a Windows Forms button control we
created previously. Note that just the action of adding a control to the Controls collection causes the Document Actions
task pane to be shown at startup.

Listing 15.1. A VSTO Excel Customization That Adds a Button to the Actions Pane

Public Class Sheet1

 Public myButton As New Button

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 myButton.Text = "Hello World"
 Globals.ThisWorkbook.ActionsPane.Controls.Add(myButton)

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.3 shows the result of running Listing 15.1. The Document Actions task pane is shown with a Windows Forms
button displayed in the pane.

Figure 15.3. The result of running Listing 15.1.

Listing 15.2 shows a similar VSTO Word customization that displays a Windows Forms Button control in the Document
Actions task pane. In Word, the ActionsPane control is a member of the ThisDocument class.

Listing 15.2. A VSTO Word Customization That Uses the Actions Pane

Public Class ThisDocument

 Public myButton As New Button

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 myButton.Text = "Hello World"
 ActionsPane.Controls.Add(myButton)

 End Sub

End Class

The Document Action task pane is actually part of a larger application development platform provided in Office 2003
called Smart Documents. The vision was that Smart Documents would integrate the new XML features available in Word
and Excel and in the Document Actions task pane. This combination of XML and the Document Actions task pane
provides an application development platform that makes it easier to build documents that are "smart" about their
content and provide the appropriate user interface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

content and provide the appropriate user interface.

Smart Documents were designed primarily for the COM world. So although Smart Documents provided a powerful
platform, they did not fit easily into the .NET development methodology. Why?

1. The way you create a Smart Document is first to create a component that implements the ISmartDocument
interface. This interface is rather COM-centric.

2. To use a Smart Document, you must have XML schema mapped in your document. Although XML mapping
provides considerable functionality to your application programming (see Chapter 21, "Working with XML in
Excel," and Chapter 22, "Working with XML in Word"), not all documents need or want to use XML mapping.

3. The Document Actions task pane supports only a small set of built-in controls and ActiveX controls. To use a
Windows Forms control, you would have to register it as an ActiveX control and then attempt to get that to
work within the Document Actions task pane. This requires COM registration and COM interop.

4. The Smart Documents infrastructure requires you to create an expansion pack, which includes the following:

- Manifest.xml, which contains links to all the components within the expansion pack

- Document to be used

- Schema for the Smart Document

- Configuration XML file, which contains the definition of the controls to be used

VSTO provides the ActionsPane control to give you access to all the features provided by Smart Documents with a much
more .NET development experience. You do not have to implement the ISmartDocument interface or use schema
mapping in the document. You do not have to register Windows Forms controls in the registry so that they can act as
ActiveX controls. You do not have to create an expansion pack. Because using the ActionsPane control is so much
simpler than using Smart Documents and provides all the benefits, this book does not consider building Smart
Documents in the old COM way.

The ActionsPane feature of VSTO is actually implemented under the covers as a specialized Smart Document solution;
when you look at a customized VSTO document and examine the attached XML schemas, you will see that a schema
called ActionsPane is attached automatically. This schema provides the plumbing to connect VSTO's ActionsPane control
to the Smart Document platform. When you install the VSTO runtime (see Chapter 20, "Deployment"), the ActionsPane
schema is also installed and registered with Excel and Word, enabling the ActionsPane control to access the Document
Actions task pane.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the ActionsPane Control
A first step in understanding how VSTO's ActionsPane control works is delving a little into the architecture of VSTO's
ActionsPane support.

The ActionsPane Architecture

The Document Actions task pane is a window provided by Office that can host ActiveX controls, as shown in Figure
15.4. VSTO places a special invisible ActiveX control in the Document Actions task pane that in turn hosts a single
Windows Forms UserControl. This UserControl is represented in the VSTO programming model by the ActionsPane
controlaccessible in Word via Document.ActionsPane and accessible in Excel via Globals. This Workbook.ActionsPane.

Figure 15.4. The four layers of the ActionsPane architecture.

[View full size image]

Although the Document Actions task pane can host multiple ActiveX controls, VSTO needs to put only a single ActiveX
control and a single UserControl in the Document Actions task pane window, because the UserControl can host multiple
Windows Forms controls via its Controls collection (ActionsPane.Controls). You can add Windows Forms controls to the
ActionsPane by using the ActionsPane.Controls.Add method.

The UserControl placed in the ActionsPane window is set to expand to fit the area provided by the ActionsPane window.
If the area of the Document Actions task pane is not big enough to display all the controls hosted by the UserControl, it
is possible to scroll the UserControl by setting the AutoScroll property of ActionsPane to true.

The ActionsPane control is a wrapper around System.Windows .Forms.UserControl with most of the properties,
methods, and events of a UserControl. It also adds some properties, events, and methods specific to ActionsPane.
When you understand the architecture in Figure 15.4, you will not be too surprised to know that some properties from
UserControl that are exposed by ActionsPanesuch as position-related properties, methods, and eventsdo not do
anything. Because the position of the ActionsPane UserControl is forced to fill the space provided by the ActionsPane
window, for example, you cannot reposition the UserControl to arbitrary positions within the Document Actions task
pane window.

Adding Windows Forms Controls to the Actions Pane

The basic way you add your custom UI to the actions pane is to add Windows Forms controls to the actions pane's
Controls collection. Listing 15.1 illustrates this approach. First, it declares and creates an instance of a
System.Windows.Forms.Button control. Then this control is added to the actions pane by calling the Add method of the
Controls collection associated with the actions pane and passing the button instance as a parameter to the Add method.

The actions pane is smart about arranging controls within the ActionsPane. If multiple controls are added to the
Controls collection, the actions pane can automatically stack and arrange the controls. The stacking order is controlled
by the ActionsPane.StackOrder property, which is of type Microsoft.Office.Tools.StackStyle. It can be set to None for no
automatic positioning, or it can be set to FromTop, FromBottom, FromLeft, or FromRight. Figure 15.5 shows the effects of the
various StackOrder settings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

various StackOrder settings.

Figure 15.5. The results of changing the ActionsPane StackOrder setting, from top
left:None, FromLeft, FromBottom, FromTop, and FromRight.

[View full size image]

Listing 15.3 shows some code that adds and positions controls in the actions pane when StackOrder is set to
StackStyle.FromBottom and automatically positioned or set to StackStyle.None and manually positioned.

Listing 15.3. A VSTO Excel Customization That Adds and Positions Controls with
Either StackStyle.None or StackStyle.FromBottom

Public Class Sheet1

 Public button1 As New Button
 Public button2 As New Button
 Public button3 As New Button

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup
 button1.Text = "Button 1"
 button2.Text = "Button 2"
 button3.Text = "Button 3"

 Globals.ThisWorkbook.ActionsPane.BackColor = Color.Aquamarine

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Globals.ThisWorkbook.ActionsPane.Controls.Add(button1)
 Globals.ThisWorkbook.ActionsPane.Controls.Add(button2)
 Globals.ThisWorkbook.ActionsPane.Controls.Add(button3)

 If MsgBox("Do you want to auto-position the controls?", _
 MsgBoxStyle.YesNo, "StackStyle") = MsgBoxResult.Yes Then

 Globals.ThisWorkbook.ActionsPane.StackOrder = _
 Microsoft.Office.Tools.StackStyle.FromBottom
 Else
 Globals.ThisWorkbook.ActionsPane.StackOrder = _
 Microsoft.Office.Tools.StackStyle.None

 button1.Left = 10
 button2.Left = 20
 button3.Left = 30

 button1.Top = 0
 button2.Top = 25
 button3.Top = 50

 End If

 End Sub

End Class

Adding a Custom User Control to the Actions Pane

A more visual way of designing your application's actions pane user interface is to create a user control and add that
user control to the ActionsPane's control collection. Visual Studio provides a rich design-time experience for creating a
user control. To add a user control to your application, click the project node in Solution Explorer, and choose Add User
Control from Visual Studio's Project menu. Visual Studio will prompt you to give the User Control a filename, such as
UserControl1.vb. Then Visual Studio will display the design view shown in Figure 15.6.

Figure 15.6. The design view for creating a custom user control.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The design area for the user control has a drag handle in the bottom-right corner that you can drag to change the size
of the user control. Controls from the toolbox can be dragged onto the user control design surface and positioned as
desired. Figure 15.7 shows a completed user control that uses check boxes, text boxes, and labels.

Figure 15.7. A custom user control.

Listing 15.4 shows a VSTO Excel customization that adds this custom user control to the Document Actions task pane.
The user control created in Figure 15.7 is a class named UserControl1. Listing 15.4 creates an instance of UserControl1
and adds it to ActionPane's Controls collection using the Add method.

Listing 15.4. A VSTO Excel Customization That Adds a Custom User Control to the
Task Pane

Public Class Sheet1

 Public myUserControl As New UserControl1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Globals.ThisWorkbook.ActionsPane.Controls.Add(myUserControl)

 End Sub

End Class

Figure 15.8 shows the Document Actions task pane that results when Listing 15.4 is run.

Figure 15.8. The result of running Listing 15.4.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Contextually Changing the Actions Pane

A common application of the ActionsPane is providing commands in the Document Actions task pane that are
appropriate to the context of the document. In an order-form application, for example, the Document Actions task pane
might display a button for selecting a known customer when filling out the customer information section of the
document. When the user is filling out the order part of the document, the Document Actions task pane might display a
button for examining available inventory.

Listing 15.5 shows a VSTO Excel customization in which two named ranges have been defined. One, called orderInfo, is a
range of cells where the contents of an order are placed. The other, called customerInfo, is a range of cells specifying the
customer information for the customer placing the order. Listing 15.5 contextually adds and removes an inventoryButton
when the orderInfo range is selected and a customerButton when the customerInfo range is selected or deselected. It does this
by handling NamedRange.Selected and NamedRange.Deselected events. When the Selected event indicating the
customerInfo range of cells is selected, Listing 15.5 adds a customerButton that, when clicked, would allow the user to pick an
existing customer. Listing 15.5 removes the customerButton when the customerInfo.Deselected event is raised. It calls
ActionsPane.Controls.Remove to remove the customerButton from the actions pane.

Listing 15.5 is written in such a way that if the customerInfo range and the orderInfo range are selected at the same time,
both the customerButton and the inventoryButton would be visible in the Document Actions task pane.

Listing 15.5. A VSTO Excel Customization That Changes the Actions Pane Based on
the Selection

Public Class Sheet1

 Public customerButton As New Button
 Public inventoryButton As New Button

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 customerButton.Text = "Select a customer..."
 inventoryButton.Text = "Check inventory..."
 End Sub

 Private Sub orderInfo_Selected(_
 ByVal Target As Microsoft.Office.Interop.Excel.Range) _
 Handles orderInfo.Selected

 Globals.ThisWorkbook.ActionsPane.Controls.Add(_
 inventoryButton)

 End Sub

 Private Sub orderInfo_Deselected(_
 ByVal Target As Microsoft.Office.Interop.Excel.Range) _
 Handles orderInfo.Deselected

 Globals.ThisWorkbook.ActionsPane.Controls.Remove(_
 inventoryButton)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

 Private Sub customerInfo_Selected(_
 ByVal Target As Microsoft.Office.Interop.Excel.Range) _
 Handles customerInfo.Selected

 Globals.ThisWorkbook.ActionsPane.Controls.Add(customerButton)

 End Sub

 Private Sub customerInfo_Deselected(_
 ByVal Target As Microsoft.Office.Interop.Excel.Range) _
 Handles customerInfo.Deselected

 Globals.ThisWorkbook.ActionsPane.Controls.Remove(_
 customerButton)

 End Sub

End Class

You can also change the contents of the Document Actions task pane as the selection changes in a Word document.
One approach is to use bookmarks and change the contents of the Document Actions task pane when a particular
bookmark is selected. A second approach is to use the XML mapping features of Word and VSTO's XMLNode and
XMLNodes controls (described in Chapter 22, "Working with XML in Word") and to change the contents of the Document
Actions task pane when a particular XMLNode or XMLNodes is selected in the document.

Detecting the Orientation of the Actions Pane

ActionsPane has all the UserControl events documented in the .NET class libraries documentation and one additional
event: OrientationChanged. This event is raised when the orientation of the actions pane is changed. The actions pane
can be in either a horizontal or a vertical orientation. Figure 15.3 earlier in this chapter shows an actions pane in a
vertical orientation. Figure 15.9 shows a horizontal orientation.

Figure 15.9. The actions pane in a horizontal orientation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 15.6 shows a VSTO Excel customization that adds several buttons to the ActionsPane's Controls collection.
Listing 15.6 also handles the OrientationChanged event and displays the orientation of the ActionsPane in a dialog box.
It determines the orientation of the actions pane by checking the ActionsPane.Orientation property. The Orientation
property returns a member of the System.Windows.Forms.Orientation enumeration: either Orientation.Horizontal or Orientation.Vertical.

Listing 15.6. A VSTO Excel Customization That Handles ActionsPane's
OrientationChanged Event

Public Class Sheet1

 Public button1 As New Button
 Public button2 As New Button
 Public button3 As New Button

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 button1.Text = "Button 1"
 button2.Text = "Button 2"
 button3.Text = "Button 3"

 Globals.ThisWorkbook.ActionsPane.StackOrder = _
 Microsoft.Office.Tools.StackStyle.FromTop

 Globals.ThisWorkbook.ActionsPane.Controls.Add(button1)
 Globals.ThisWorkbook.ActionsPane.Controls.Add(button2)
 Globals.ThisWorkbook.ActionsPane.Controls.Add(button3)

 Globals.ThisWorkbook.ActionsPane.BackColor = Color.Aquamarine

 AddHandler _
 Globals.ThisWorkbook.ActionsPane.OrientationChanged, _
 AddressOf ActionsPane_OrientationChanged

 End Sub

 Private Sub ActionsPane_OrientationChanged(_
 ByVal sender As Object, _
 ByVal e As EventArgs)

 Dim orientation1 As Orientation = _
 Globals.ThisWorkbook.ActionsPane.Orientation()
 MsgBox(String.Format("Orientation is {0}.", _
 orientation1.ToString()))

 End Sub

End Class

Scrolling the Actions Pane

The AutoScroll property of the ActionsPane gets or sets a Boolean value indicating whether the actions pane should
display a scroll bar when the size of the Document Actions task pane is such that not all the controls can be shown. The
default value of AutoScroll is true. Figure 15.10 shows a Document Actions task pane with ten buttons added to it.
Because AutoScroll is set to TRue, a scroll bar is shown when not all ten buttons can be displayed, given the size of the
Document Actions task pane.

Figure 15.10. The actions pane when AutoScroll is set to true.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.10. The actions pane when AutoScroll is set to true.

Showing and Hiding the Actions Pane

The actions pane is shown automatically when you add controls to ActionsPane's Controls collection using the Add
method. To show and hide the actions pane programmatically, you need to use the Excel or Word object model. In
Excel, set the Application.DisplayDocumentActionTaskPane property to true or False. In Word, set the property
Application.TaskPanes[WdTaskPanes.wdTaskPaneDocumentActions].Visible property to true or False.

You might be tempted to call ActionsPane.Hide or set ActionsPane.Visible to False to hide the ActionsPane. These
approaches do not work, because you are actually hiding the UserControl shown in Figure 15.4 that is hosted by the
Document Actions task pane, rather than just the Document Actions task pane. You should use the object model of
Excel and Word to show and hide the actions pane.

Listing 15.7 shows a VSTO Excel customization that shows and hides the actions pane on the BeforeDoubleClick event
of the Worksheet by toggling the state of the Application.DisplayDocumentActionTaskPane property. Note that the
DisplayDocumentActionTaskPane property is an application-level property that is applicable only when the active
document has a Document Actions task pane associated with it. If the active document does not have a Document
Actions task pane associated with it, accessing the DisplayDocumentActionTaskPane property will raise an exception.

Listing 15.7. A VSTO Excel Customization That Shows and Hides the Actions Pane
When Handling the BeforeDoubleClick Event

Public Class Sheet1

 Private isVisible As Boolean = True

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim i As Integer
 For i = 1 To 10
 Dim myButton As New Button()
 myButton.Text = String.Format("Button {0}", i)
 Globals.ThisWorkbook.ActionsPane.Controls.Add(myButton)
 Next

 End Sub

 Private Sub Sheet1_BeforeDoubleClick(_
 ByVal Target As Microsoft.Office.Interop.Excel.Range, _
 ByRef Cancel As System.Boolean) Handles Me.BeforeDoubleClick

 ' Toggle the visibility of the ActionsPane on double-click.
 isVisible = Not isVisible

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 isVisible = Not isVisible
 Me.Application.DisplayDocumentActionTaskPane = isVisible

 End Sub

End Class

Listing 15.8 shows a VSTO Word application that shows and hides the actions pane on the BeforeDoubleClick event of
the Document by toggling the state of the Application.TaskPanes[WdTaskPanes.wdTaskPaneDocumentActions].Visible
property.

Listing 15.8. VSTO Word Customization That Shows and Hides the Actions Pane in
the BeforeDoubleClick Event Handler

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup
 Dim i As Integer
 For i = 1 To 10
 Dim myButton As New Button()
 myButton.Text = String.Format("Button {0}", i)
 ActionsPane.Controls.Add(myButton)
 Next

 End Sub

 Private Sub ThisDocument_BeforeDoubleClick(_
 ByVal sender As System.Object, _
 ByVal e As Microsoft.Office.Tools.Word.ClickEventArgs) _
 Handles Me.BeforeDoubleClick

 If Me.Application.TaskPanes(_
 Word.WdTaskPanes.wdTaskPaneDocumentActions).Visible Then

 Me.Application.TaskPanes(_
 Word.WdTaskPanes.wdTaskPaneDocumentActions).Visible _
 = False
 Else
 Me.Application.TaskPanes(_
 Word.WdTaskPanes.wdTaskPaneDocumentActions).Visible _
 = True

 End If

 End Sub

End Class

Attaching and Detaching the Actions Pane

Sometimes you will want to go beyond just hiding the actions pane and actually detach the actions pane from the
document or workbook. You might also want to control whether the user of your document is allowed to detach the
actions pane from the document or workbook. Recall from earlier in this chapter that the actions pane is actually a
Smart Document solution, and as such, it can be attached or detached from the document or workbook via Excel and
Word's built-in dialog boxes for managing attached Smart Document solutions.

When the actions pane is detached from the document, this means that the Document Actions task pane will not be in
the list of available task panes when the user drops down the list of available task panes, as shown in Figure 15.2
earlier in this chapter. To detach the actions pane from the document programmatically, call the ActionsPane.Clear
method. Doing so detaches the actions pane solution from the document and hides the Document Actions pane. Calling
ActionsPane.Show reattaches the actions pane and makes it available again in the list of available task panes. Note that
in Word, when you call ActionsPane.Clear, you must follow the call with a second call to the Word object model:
Document.XMLReferences["ActionsPane"].Delete.

If you want to allow the user of your document to detach the actions pane solution by using the Templates and Add-ins
dialog box in Word, shown in Figure 15.11, or the XML Expansion Packs dialog box in Excel, shown in Figure 15.12, you
must set the ActionsPane.AutoRecover property to False. By default, this property is set to TRue, which means that even

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

must set the ActionsPane.AutoRecover property to False. By default, this property is set to TRue, which means that even
when the user tries to detach the actions pane solution by deselecting it in these dialog boxes, VSTO will recover and
automatically reattach the actions pane solution.

Figure 15.11. The ActionsPane solution attached to a Word document is visible in
Word's Templates and Add-Ins dialog box and can be removed if

ActionsPane.AutoRecover is not set to TRue.

Figure 15.12. The ActionsPane solution attached to an Excel workbook is visible in
Excel's XML Expansion Packs dialog box and can be removed if

ActionsPane.AutoRecover is not set to TRue.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After an actions pane solution is attached to the document, and the user saves the document, the next time the user
opens the document, the actions pane will be available and can be selected at any time during the session. If your code
does not add controls to the actions pane until some time after startup, you might want to call the ActionsPane.Clear
method in the Startup handler of your VSTO customization to prevent the user from showing the actions pane before
your VSTO customization has added controls to the ActionsPane control.

Some Methods and Properties to Avoid

As mentioned earlier, the ActionsPane is a user control that has a fixed location and size that are controlled by VSTO.
As such, you should avoid using a number of position-related properties and methods on the ActionsPane control, as
listed in Table 15.1.

Table 15.1. Methods and Properties of ActionsPane
to Avoid

Left Top Width

Height Right Location

Margin MaximumSize MinimumSize

Size TabIndex AutoScrollMargin

AutoScrollMinSize

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
The chapter covered the ActionsPane control in VSTO and how it enables custom UI in Office's Document Actions task
pane. The chapter examined the properties, methods, and events unique to the ActionsPane control. You also learned
the basic architecture of ActionPane and how ActionsPane has the properties, methods, and events found on a Windows
Forms user control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 16. Working with Smart Tags in VSTO

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction to Smart Tags
The Smart Tags feature of Word and Excel enables you to display a pop-up menu with actions for a given piece of text
in a document or spreadsheet. A Smart Tag could recognize stock symbols (such as the MSFT stock symbol) and display
a set of actions that can be taken for that symbol, for example. When Word finds a piece of text that a Smart Tag has
recognized, it displays a red dotted underline under the recognized text. If the user hovers over the text, a pop-up
menu icon appears next to the cell, as shown in Figure 16.1. If the user clicks the pop-up menu icon, a menu of actions
displays for the recognized piece of text, as shown in Figure 16.2. When an action is selected, Word calls back into the
Smart Tag to execute the action.

Figure 16.1. Some recognized text in Word

Figure 16.2. Dropping down the Smart Tag menu in Word.

When Excel recognizes a Smart Tag, it displays a little triangle in the bottom-right corner of the associated cell. If the
user hovers over the cell, a pop-up menu icon appears next to the cell; the user can click this icon to drop down a
menu of actions for the recognized piece of text. Figure 16.3 shows an example menu. When an action is selected,
Excel calls back into the Smart Tag to execute the action.

Figure 16.3. Dropping down the Smart Tag menu in Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.3. Dropping down the Smart Tag menu in Excel.

Figure 16.4 shows some additional detail about the drop-down list that appears for recognized text. At the top of the
drop-down list, the name of the Smart Tag displays, along with the text that was recognized. The next section of the
menu shows actions that are available for the given Smart Tag. This particular Smart Tag, called Financial Symbol, has
four actions associated with it. The bottom section of the menu provides Word- or Excel-specific options for the Smart
Tag.

Figure 16.4. The Smart Tag menu.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Configuring Smart Tags in Word and Excel

Smart Tags in Word are managed from the Smart Tags tab of the AutoCorrect Options dialog box, shown in Figure
16.5. The Smart Tags tab can be displayed by choosing AutoCorrect Options from the Tools menu. Here, the user can
turn on and off individual Smart Tags, as well as control other options relating to how Smart Tags display in the
document.

Figure 16.5. Word's Smart Tags tab in the AutoCorrect dialog box.

Smart Tags in Excel are managed from the Smart Tags tab of the AutoCorrect dialog box, as shown in Figure 16.6. The
Smart Tags tab can be displayed by choosing AutoCorrect Options from the Tools menu. Here, the user can turn on and
off individual recognizers, as well as control other options relating to how Smart Tags display in the workbook.

Figure 16.6. Excel's Smart Tags tab in the AutoCorrect dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.6. Excel's Smart Tags tab in the AutoCorrect dialog box.

The Persistent Tagging Generated by Smart Tags

To understand how Smart Tags work in Office, it is helpful to have a conceptual model in your mind. Otherwise, some
of the behavior you will see when working with Smart Tags will be confusing.

A Smart Tag has a recognition engine that is passed text in the document or workbook. If the Smart Tag recognizes a
segment of text, it can tell Word or Excel to tag the text as being recognized. This tagging is stored and saved in the
document by Word or Excel. When text is tagged, it remains tagged until the user removes the tag by choosing Remove
This Smart Tag from the Smart Tag menu. So even if a Smart Tag has stopped recognizing a particular term or is no
longer active, the tagging in the document can remain.

Text that has been tagged by a Smart Tag has its tagged state saved into the document. You can see this tagging when
you save into WordML format. A document with the stock symbol MSFT has been recognized in a Word document by a
Smart Tag with Smart Tag type name customsmarttag. Also, this tag can optionally store custom properties in the
document when it recognizes a term. In this example, the Smart Tag stores the properties LongStockName and the current
StockValue. You can see all this in the WordML markup:

<st1:customsmarttag LongStockName="Microsoft" StockValue="29"
w:st="on"><w:r><w:t>MSFT</w:t></w:r></st1:customsmarttag>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating Document-Level Smart Tags with VSTO
The simplest way to create a Smart Tag is to use the support in Visual Studio 2005 Tools for Office (VSTO) for
document-level Smart Tags. VSTO provides some classes that enable you to create a Smart Tag easily. First, VSTO
provides a class called SmartTag in the Microsoft.Office.Tools.Word namespace and the Microsoft.Office.Tools.Excel
namespace. You create an instance of this SmartTag class to define a new Smart Tag. The constructor of the SmartTag
object takes two parameters: a unique identifier and the caption that will display in the Smart Tag menu. The unique
identifier is constructed using a namespace URI such as "http://vsto.aw.com" and a tag type name such as "mytagtypename"
separated by a number sign, resulting in "http://vsto.aw.com#mytagtypename".

The SmartTag object has several important properties and methods. The SmartTag object's Terms property returns a
StringCollection to which you can add words you want to recognize. The SmartTag object's Actions property must be set
to an array of Action objects representing the actions (the menu items) you want displayed for your Smart Tag. VSTO
provides a class called Action in the Microsoft.Office.Tools.Word namespace and the Microsoft.Office.Tools.Excel
namespace that you can instantiate. The constructor of the Action object takes one parameter: the caption that will
display in the Smart Tag menu for the action. After you have created an Action object for each action you want to make
available for your Smart Tag, you can set the SmartTag.Actions property to an array containing all the Action objects
you want to provide. Finally, you can handle the Action.Click event for each Action to be called back by Word or Excel
when the user selects that action from the Smart Tag menu.

After you have created a SmartTag object, set the SmartTag.Terms collection, created one or more Action objects, and
set SmartTag.Actions, you must remember to add the newly created SmartTag to the VstoSmartTags collection on the
VSTO Document object for Word and on the VSTO Workbook object for Excel.

Listing 16.1 shows a simple Word VSTO customization that illustrates these steps. First, it creates a SmartTag instance
passing "http://vsto.aw.com#fish" as the identifier and "Fish Catcher" as the caption. Then it adds two terms to recognize using
SmartTag.Terms: "Mackerel" and "Halibut". Note that a term cannot contain a space. A term such as "Eric Carter" could not
be added to the terms collection, for example.

Two actions are created: one with the caption "&Fishing///&Catch a fish" and the other with the caption "&Fishing///&Throw it
back". The ampersand (&) in these strings indicates which letter to use as an accelerator for the menu. The use of the
three forward slashes tells Word to create a menu called Fishing with a child menu called Catch a fish and a second
child menu called Throw it back. These actions are added to the SmartTag.Actions property by creating a new array of
Actions containing both actions. Click events raised by the two actions are handled by the code. Finally, the SmartTag
instance that was created is added to the VstoSmartTags collection associated with the document object.

Listing 16.1. A VSTO Word Customization That Adds a Smart Tag

Imports Microsoft.Office.Tools.Word

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim mySmartTag As New SmartTag(_
 "http://vsto.aw.com#fish", "Fish Catcher")
 mySmartTag.Terms.Add("Mackerel")
 mySmartTag.Terms.Add("Halibut")

 Dim myAction As New Action("&Fishing///&Catch a fish...")
 Dim myAction2 As New Action("&Fishing///&Throw it back...")
 mySmartTag.Actions = New Action() {myAction, myAction2}
 AddHandler myAction.Click, AddressOf myAction_Click
 AddHandler myAction2.Click, AddressOf myAction2_Click

 Me.VstoSmartTags.Add(mySmartTag)

 End Sub

 Private Sub myAction_Click(ByVal sender As Object, _
 ByVal e As ActionEventArgs)
 MsgBox(String.Format(_
 "You caught a fish at position {0}.", _
 e.Range.Start))
 End Sub

 Private Sub myAction2_Click(ByVal sender As Object, _
 ByVal e As ActionEventArgs)
 MsgBox(String.Format(_
 "You threw back a fish at position {0}.", _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "You threw back a fish at position {0}.", _
 e.Range.Start))
 End Sub

End Class

The code to add a Smart Tag in Excel is very similar and is shown in Listing 16.2. The main changes are to use the
SmartTag and Action classes from the Microsoft.Office.Tools.Excel namespace and to use the VstoSmartTags collection
off the Workbook object. Because the code in Listing 16.2 is written in Sheet1, the Workbook object is accessed using
Globals.ThisWorkbook.

Listing 16.2. A VSTO Excel Customization That Adds a Smart Tag

Imports Microsoft.Office.Tools.Excel

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim mySmartTag As New SmartTag(_
 "http://vsto.aw.com#fish", "Fish Catcher")
 mySmartTag.Terms.Add("Mackerel")
 mySmartTag.Terms.Add("Halibut")

 Dim myAction As New Action("&Fishing///&Catch a fish...")
 Dim myAction2 As New Action("&Fishing///&Throw it back...")
 mySmartTag.Actions = New Action() {myAction, myAction2}

 AddHandler myAction.Click, AddressOf myAction_Click
 AddHandler myAction2.Click, AddressOf myAction2_Click

 Globals.ThisWorkbook.VstoSmartTags.Add(mySmartTag)

 End Sub

 Private Sub myAction_Click(ByVal sender As Object, _
 ByVal e As ActionEventArgs)

 MsgBox(String.Format("You caught a fish at position {0}.", _
 e.Range.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1))

 End Sub

 Private Sub myAction2_Click(ByVal sender As Object, _
 ByVal e As ActionEventArgs)

 MsgBox(String.Format(_
 "You threw back a fish at position {0}.", _
 e.Range.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1)))

 End Sub

End Class

Action Events

In Listing 16.1 and Listing 16.2, we handled the click event of the Action object. The code that handled the click event
used the ActionEventArgs argument e and accessed the ActionEventArgs. Range property to get a Word.Range object
for Word and an Excel.Range object for Excel. The Range property allows you to access the range of text that was
recognized in Word or the Excel cell that contains the recognized text.

The ActionEventArgs.Text property returns the text that was recognized. This proves useful when you are matching
multiple string values with a single Smart Tag class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

multiple string values with a single Smart Tag class.

The ActionEventArgs.Properties property allows you to access a property bag associated with the actions pane. This
property bag can be used to store additional information about the text that was recognized. We consider this further in
the "Creating a Custom Smart Tag Class" section later in this chapter.

The Action object also raises a BeforeCaptionShow event before the caption for an Action is shown in the actions pane
menu. This event is also passed an ActionEventArgs argument e, which can be used to access information about what
was recognized just as with the click event. You can use this event to change the caption of the action before it is
shown.

Listing 16.3 shows a VSTO Excel customization that handles the Click and BeforeCaptionShow event. You must add a
reference to the Microsoft Smart Tags 2.0 Type Library, as shown in Figure 16.7 later in this chapter, to access the
types associated with the property bag.

Listing 16.3. A VSTO Excel Customization That Handles the Click and
BeforeCaptionShow Events and Uses the ActionEventArgs Argument

Imports Microsoft.Office.Tools.Excel

Public Class Sheet1

 Private WithEvents myAction As Action
 Private WithEvents myAction2 As Action

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim mySmartTag As New SmartTag(_
 "http://vsto.aw.com#fish", "Fish Catcher")
 mySmartTag.Terms.Add("Mackerel")
 mySmartTag.Terms.Add("Halibut")

 myAction = New Action("&Fishing///&Catch a fish...")
 myAction2 = New Action("&Fishing///&Throw it back...")
 mySmartTag.Actions = New Action() {myAction, myAction2}

 Globals.ThisWorkbook.VstoSmartTags.Add(mySmartTag)

 End Sub

 Private Sub myAction_BeforeCaptionShow(_
 ByVal sender As Object, _
 ByVal e As ActionEventArgs) _
 Handles myAction.BeforeCaptionShow

 Dim r As New Random()

 myAction.Caption = "Test caption " & r.NextDouble()

 End Sub

 Private Sub myAction2_Click(ByVal sender As Object, _
 ByVal e As ActionEventArgs) Handles myAction2.Click

 MsgBox(String.Format(_
 "You threw back a fish at position {0}.", _
 e.Range.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1)))

 MsgBox(e.Text)
 MsgBox(e.Properties.Count.ToString())
 Dim i As Integer
 For i = 0 To e.Properties.Count - 1 Step i + 1
 MsgBox(String.Format("Prop({0},(1})", _
 e.Properties.KeyFromIndex(i), _
 e.Properties.ValueFromIndex(i)))
 Next

 End Sub

 Private Sub myAction_Click(ByVal sender As Object, _
 ByVal e As ActionEventArgs) Handles myAction.Click

 MsgBox(String.Format("You caught a fish at position {0}.",_
 e.Range.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1)))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

End Class

Using Varying Numbers of Terms

It is possible to vary the number of terms recognized at runtime by adding terms to and removing terms from the
SmartTag.Terms collection. Listing 16.4 shows this approach. Note that instances of terms that have already been
typed in the document and recognized will continue to be recognized even when you remove that term from the Terms
collection. But new instances of the removed term that you type will no longer be recognized.

Listing 16.4. A VSTO Excel Customization That Varies the Number of Terms
Recognized

Imports Microsoft.Office.Tools.Excel

Public Class Sheet1

 Private WithEvents myAction As Action
 Private mySmartTag As SmartTag

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 mySmartTag = New SmartTag(_
 "http://vsto.aw.com#variableterms", _
 "Varying Number of Terms")

 mySmartTag.Terms.Add("Hello")

 myAction = New Action("Add a new term...")
 mySmartTag.Actions = New Action() {myAction}

 Globals.ThisWorkbook.VstoSmartTags.Add(mySmartTag)

 End Sub

 Private Sub myAction_Click(ByVal sender As Object, _
 ByVal e As ActionEventArgs) Handles myAction.Click

 Dim r As New Random()
 Dim numberOfActionsToShow As Integer = r.Next(5)

 If mySmartTag.Terms.Contains(_
 numberOfActionsToShow.ToString()) Then
 mySmartTag.Terms.Remove(numberOfActionsToShow.ToString())
 MsgBox(String.Format("Removed the term {0}.", _
 numberOfActionsToShow))
 Else
 mySmartTag.Terms.Add(numberOfActionsToShow.ToString())
 MsgBox(String.Format("Added the term {0}.", _
 numberOfActionsToShow))
 End If

 End Sub

End Class

Using Regular Expressions

Although the Terms collection provides a way to recognize specific words, you will inevitably want to have more power
in the text patterns that are recognized. The SmartTag class allows you to use regular expressions to recognize text in
a Word document or Excel spreadsheet. This book does not cover how to construct a regular expression; if regular
expressions are new to you, try looking at the documentation in the .NET Framework for the Regex class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

expressions are new to you, try looking at the documentation in the .NET Framework for the Regex class.

We are going to construct a regular expression that will match stock symbols in a document. A stock symbol will be
defined as any three- or four-letter combination that is in all caps, such as IBM or MSFT. The regular expression we will
use is shown below and will match a word (\b indicates a word boundary) that is composed of three to four characters
(specified by {3,4}) composed of capital letters from A to Z ([A-Z]):

\b[A-Z]{3,4}\b

This regular expression string is passed to the constructor of a Regex object. Then the Regex object is added to the
SmartTag.Expressions collection, as shown in Listing 16.5.

Listing 16.5. A VSTO Excel Customization That Adds a Smart Tag Using a Regular
Expression

Imports Microsoft.Office.Tools.Excel
Imports System.Text.RegularExpressions

Public Class Sheet1

 Private WithEvents myAction As Action

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim mySmartTag As New SmartTag(_
 "http://vsto.aw.com#stock", "Stock Trader")
 Dim myRegex As New Regex("\b[A-Z]{3,4}\b")

 mySmartTag.Expressions.Add(myRegex)

 myAction = New Action("Trade this stock...")
 mySmartTag.Actions = New Action() {myAction}

 Globals.ThisWorkbook.VstoSmartTags.Add(mySmartTag)

 End Sub

 Private Sub myAction_Click(ByVal sender As Object, _
 ByVal e As ActionEventArgs) Handles myAction.Click

 MsgBox(String.Format(_
 "The stock symbol you selected is {0}", _
 e.Text))

 End Sub

End Class

Another great feature when you use regular expressions is VSTO's support for named groups in a regular expression.
When you create a regular expression with a named group, VSTO creates a namevalue pair in the property bag for each
recognized term with the name and value of each named group recognized by the regular expression. You can use the
ActionEventArgs object's Properties object to retrieve the value of a named group by using the group name as a key.

Using Varying Numbers of Actions

You might have wondered why the SmartTag object has an Actions property that must be set to a fixed array of
Actions. After all, wouldn't it be easier if you could write the code mySmartTag.Actions.Add(myAction)? The reason the
Actions property was designed this way is to enforce the notion that the maximum number of actions for a given Smart
Tag is fixed at the time you add the SmartTag object to the VstoSmartTags collection. This is a limitation of the Office
Smart Tags architecture.

There is a way to have a varying number of actions. There is still the limitation that the maximum number of actions is
fixed at the time you first add it to the VstoSmartTags collection. But then, at runtime, you can set actions within the
array to Nothing to vary the number of available actions up to the maximum number of actions. Listing 16.6 shows this
approach. The maximum number of actions is set to be five actions by setting the initial array of actions to contain five
actions. But each time an action is selected, the number of actions is changed by setting the items in the actions array
to Nothing or to an Action object.

Listing 16.6. A VSTO Excel Customization with a Varying Number of Actions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 16.6. A VSTO Excel Customization with a Varying Number of Actions

Imports Microsoft.Office.Tools.Excel
Imports System.Text.RegularExpressions

Public Class Sheet1

 Private WithEvents myAction As Action
 Private mySmartTag As SmartTag

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 mySmartTag = New SmartTag(_
 "http://vsto.aw.com#variableactions", _
 "Varying Number of Actions")
 Dim myRegex As New Regex("\b[A-Z]{3,4}\b")

 mySmartTag.Expressions.Add(myRegex)

 myAction = New Action("Change Number of Actions...")
 mySmartTag.Actions = New Action() _
 {myAction, myAction, myAction, myAction, myAction}

 Globals.ThisWorkbook.VstoSmartTags.Add(mySmartTag)

 End Sub

 Private Sub myAction_Click(ByVal sender As Object, _
 ByVal e As ActionEventArgs) Handles myAction.Click

 Dim r As New Random()
 Dim numberOfActionsToShow As Integer = 1 + r.Next(4)

 MsgBox(String.Format("Changing to have {0} actions.", _
 numberOfActionsToShow))

 Dim i As Integer
 For i = 0 To numberOfActionsToShow - 1
 mySmartTag.Actions(i) = myAction
 Next

 For i = numberOfActionsToShow To 4
 mySmartTag.Actions(i) = Nothing
 Next

 End Sub

End Class

Creating a Custom Smart Tag Class

When the Terms collection and the Expressions collection are not sufficient to meet your Smart Tag recognition needs,
you also have the option of creating your own custom Smart Tag class that derives from the Word or Excel SmartTag
class. This gives you some additional capability. First of all, you get to write your own code to process text that Word or
Excel passes to your Smart Tag class to recognize. Second, you can use the ISmartTagProperties collection to associate
custom Smart Tag properties in the property bag associated with each instance of recognized text.

Suppose that you are writing a Smart Tag that recognizes part numbers stored in a database. You know that part
numbers are in a format such as PN1023, with a PN preface and four following digits. Just because that pattern is found
in the text, however, does not mean that it is a valid part number; it might be a part number that has been deleted or
does not exist in the database. So after finding a match for the expected part-number format, you want to make a call
into the database to make sure that a row exists for the given part number. If the part number is not in the database,
you do not want to tag it.

You can do this by writing your own custom Smart Tag class. Your class must derive from the Word or Excel SmartTag
class in the Microsoft.Office.Tools.Word or Microsoft.Office.Tools.Excel namespace. Your class must have a constructor
that calls into the base class constructor passing the Smart Tag type name and the caption for the Smart Tag. The
custom class must also override the Recognize method of the base class shown here:

 Protected Overrides Sub Recognize(ByVal text As String, _
 ByVal site As SmartTag.ISmartTagRecognizerSite, _
 ByVal tokenList As SmartTag.ISmartTagTokenList)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal tokenList As SmartTag.ISmartTagTokenList)

The Recognize method passes the text to recognize as a String, an ISmartTagRecognizerSite object that your code will
use if it associates custom Smart Tag properties with an instance of recognized text, and a tokenList parameter. Your
implementation of Recognize could find the basic part-number format, and if a match is found, it can look up the part
number in a database to verify that it is a valid part number. If it is a valid part number, your implementation of
Recognize must call into the base class's PersistTag method to specify the index within the text where the part number
occurred, the length of the part number, and optionally specify custom Smart Tag properties to associate with the text
that will be tagged.

Custom Smart Tag properties are useful when you need to cache additional information that was determined at
recognize time and that might be used later when an action associated with a tag is executed. In our example, we have
talked to a database to get the row out of the database corresponding to the part number. Perhaps one of the actions
available will be to display the price of the part. Because we have accessed the database row for the part, we have the
price already. Rather than have to look up the price in the database again when the action displaying the price is
invoked, you could choose to create custom Smart Tag properties and add the price to the recognized text as a custom
property. You can create a custom Smart Tag properties collection of type ISmartTagProperties by calling the
GetNewPropertyBag method on the ISmartTagRecognizerSite object passed into the Recognize method. To get the
definition of ISmartTagProperties and ISmartTagRecognizerSite, you must add a reference to your project to the
Microsoft Smart Tags 2.0 Type Library, as shown in Figure 16.7

Figure 16.7. A reference to the Microsoft Smart Tags 2.0 Type Library is required
to use the ISmartTagProperties and ISmartTagRecognizerSite interfaces in your

code.

The code in Listing 16.7 illustrates these ideas by defining a custom Smart Tag class that recognizes part numbers of
the format PN1023 and uses ISmartTagRecognizerSite, ISmartTagProperties, and the PersistTag method to associate
the custom property "Price" with a part number that has been recognized. Our class CustomSmartTag derives from the
SmartTag class in the Microsoft.Office.Tools.Word namespace because this custom Smart Tag will be used with Word. It
implements a simple constructor that calls into the base constructor passing an identifier and caption. An action is
created and added to the Smart Tag that will display the part cost already stored in the tagged text. It does this by
accessing the ISmartTagProperties associated with the tagged text, using the Properties property of the
ActionEventArgs argument passed to the Action.Click event.

We override the Recognize method to write custom logic that looks for the part number and then calls IsValidPart to find
out whether the part number is in the database and to get the price of the part, if available. The implementation of
IsValidPart does not actually connect to a database for this sample but requires that a part number be greater than 1000.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IsValidPart does not actually connect to a database for this sample but requires that a part number be greater than 1000.
To simulate getting a price from a database, it generates a random price that will be saved in the document when the
text is tagged. You can easily imagine this function being rewritten to query a database instead.

Listing 16.7. A Custom Smart Tag Class for Word

Imports System
Imports System.Collections.Generic
Imports System.Text
Imports Microsoft.Office.Tools.Word
Imports System.Windows.Forms
Imports SmartTag = Microsoft.Office.Interop.SmartTag

Friend Class CustomSmartTag
 Inherits Microsoft.Office.Tools.Word.SmartTag

 Private WithEvents customAction As Action

 Friend Sub New()
 MyBase.New("http://www.aw-bc.com/VSTO#customsmarttag", _
 "Custom Smart Tag")

 customAction = New Action("Get Part Cost...")
 MyBase.Actions = New Action() {customAction}
 End Sub

 Private Sub customAction_Click(ByVal sender As Object, _
 ByVal e As ActionEventArgs) Handles customAction.Click

 Dim props As SmartTag.ISmartTagProperties = e.Properties
 Dim i As Integer

 For i = 0 To props.Count - 1
 MsgBox(String.Format("{0} - {1}", props.KeyFromIndex(i), _
 props.ValueFromIndex(i)))
 Next

 End Sub

 Protected Overrides Sub Recognize(ByVal text As String, _
 ByVal site As SmartTag.ISmartTagRecognizerSite, _
 ByVal tokenList As SmartTag.ISmartTagTokenList)

 Dim textToFind As String = "PN"

 Dim startIndex As Integer = 0
 Dim index As Integer = 0

 While text.IndexOf(textToFind, startIndex) >= 0
 index = text.IndexOf(textToFind, startIndex)
 If index + 6 < text.Length Then
 Dim partNumber As String = text.Substring(index, 6)
 Dim price As String = ""
 If IsValidPart(partNumber, price) Then
 Dim props As SmartTag.ISmartTagProperties = _
 site.GetNewPropertyBag()
 props.Write("Price", price)
 MyBase.PersistTag(index, 6, props)
 End If
 End If

 startIndex = index + textToFind.Length
 End While

 End Sub

 Private Function IsValidPart(ByVal partNumber As String, _
 ByRef price As String) As Boolean

 Dim numericPartNumber As Int32 = 0
 Try
 numericPartNumber = Convert.ToInt32(_
 partNumber.Substring(2, 4))
 Catch
 End Try

 ' Only part numbers greater than 1000 are valid

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Only part numbers greater than 1000 are valid
 If numericPartNumber > 1000 Then
 Dim rnd As New Random()
 price = rnd.Next(100).ToString()
 Return True
 End If

 price = "N/A"
 Return False

 End Function

End Class

To add this custom Smart Tag to the document, you must put this code in the Startup method of your document:

Me.VstoSmartTags.Add(New CustomSmartTag())

Using Smart Tag Properties Wisely

You must consider some other issues when using Smart Tag properties. These properties are serialized into the
document, and the recognizer is not given a chance to re-recognize text that has already been recognized. You might
type in the part number on May 1, for example, and the Recognize method runs. Then you save the document, and the
price is saved with the document. When you reopen the document on May 31 and click the Smart Tag menu to select
the Get Part Cost action, the action will go to the Smart Tag property created on May 1 and display the May 1 price.
Therefore, if the prices of parts change frequently, the part price stored as a custom property may be out of date when
the action is invoked at some time later than when the Recognize method was called.

Also, remember that any Smart Tag properties you put in the document for recognized text will be visible in the saved
document file format. So be sure not to put Smart Tag properties containing sensitive information in the document. You
could have a document full of part numbers that you send to a competitor, for example. If the custom Smart Tag in
Listing 16.7 has recognized all the part numbers in the document before you save the document and send it to the
competitor, the prices of all those parts will also be embedded in the document with each tagged part number.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating Application-Level Smart Tags
VSTO's document-level Smart Tags are great when you want to recognize a term in a particular document or a class of
document created from a template. What are your options when you want to recognize a term in all open documents?

You can control the text that Word or Excel recognizes at an application level and the actions made available for that
text by creating a Smart Tag DLL. A Smart Tag DLL contains two types of classes that are used by Office: a recognizer
class and an action class. A recognizer class tells Office the text in the workbook to recognize. The recognizer class
"tags" recognized text by creating a property bageven an empty property bagand attaching it to recognized text. An
action class corresponds to an action displayed in the pop-up menu that Office displays when a user hovers over a
recognized piece of text. Recognizer classes implement the ISmartTagRecognizer interface and optionally the
ISmartTagRecognizer2 interface. Action classes implement the ISmartTagAction interface and optionally the
ISmartTagAction2 interface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating an Application-Level Smart Tag Class Library in Visual Studio
To create a Smart Tag class library DLL, start Visual Studio. Choose New Project from the File menu, and create a new
class library project as shown in Figure 16.8.

Figure 16.8. Creating a new class library project.

[View full size image]

With the class library project created, right-click the Project node, and choose Add Reference. Click the COM tab, and
add a reference to the Microsoft Smart Tags 2.0 Type Library, as shown in Figure 16.7. Doing so gives you a definition
for the two interfaces you have to implement: ISmartTagRecognizer and ISmartTagAction.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating a Recognizer Class
Let's start by creating a class that implements ISmartTagRecognizer. Our class will be similar to the class we created in
Listing 16.7 and will recognize part numbers in a document. In the newly created project, there is already a class
created for you, called Class1, in a file called Class1.vb. Add a Imports SmartTag = Microsoft.Office.Interop.SmartTag line to the
Imports statements at the top of the class to bring the SmartTag interfaces into a namespace called SmartTag. Rename
Class1 to be a class called Recognizer, and declare the class to implement SmartTag.ISmartTagRecognizer. The class now
looks like this:

Imports System.Collections.Generic
Imports System.Text
Imports SmartTag = Microsoft.Office.Interop.SmartTag

Public Class Recognizer
 Implements SmartTag.ISmartTagRecognizer
End Class

Visual Studio provides a neat trick for implementing the ISmartTagRecognizer interface. After you type the line
Implements SmartTag.ISmartTagRecognizer, when you press the Enter key at the end of the line Visual Studio automatically
creates an initial implementation of the ISmartTagRecognizer interface, as shown in Listing 16.8.

Listing 16.8. An Initial Stub Implementation of a Smart Tag Recognizer Class

using System;
Imports System.Collections.Generic
Imports System.Text
Imports SmartTag = Microsoft.Office.Interop.SmartTag

Public Class Recognizer
 Implements SmartTag.ISmartTagRecognizer

 Public ReadOnly Property Desc(_
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagRecognizer.Desc
 Get

 End Get
 End Property

 Public ReadOnly Property Name(_
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagRecognizer.Name
 Get

 End Get
 End Property

 Public ReadOnly Property ProgId() As String _
 Implements SmartTag.ISmartTagRecognizer.ProgId
 Get

 End Get
 End Property

 Public Sub Recognize(ByVal Text As String, _
 ByVal DataType As SmartTag.IF_TYPE, _
 ByVal LocaleID As Integer, _
 ByVal RecognizerSite As SmartTag.ISmartTagRecognizerSite) _
 Implements SmartTag.ISmartTagRecognizer.Recognize

 End Sub

 Public ReadOnly Property SmartTagCount() As Integer _
 Implements SmartTag.ISmartTagRecognizer.SmartTagCount
 Get

 End Get

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Get
 End Property

 Public ReadOnly Property SmartTagDownloadURL(_
 ByVal SmartTagID As Integer) As String _
 Implements SmartTag.ISmartTagRecognizer.SmartTagDownloadURL
 Get

 End Get
 End Property

 Public ReadOnly Property SmartTagName(_
 ByVal SmartTagID As Integer) _
 As String _
 Implements SmartTag.ISmartTagRecognizer.SmartTagName
 Get

 End Get
 End Property

End Class

We must implement six properties (ProgID, SmartTagCount, Desc, Name, SmartTagDownloadURL, and SmartTagName)
and one method (Recognize). Let's start by implementing the properties.

The ProgID property is required only for COM Smart Tags. For our Smart Tag, we will return Nothing.

Public ReadOnly Property ProgId() As String _
 Implements SmartTag.ISmartTagRecognizer.ProgId

 Get
 Return Nothing
 End Get

End Property

Now let's implement the SmartTagCount property. Normally, this property should return the Integer value 1. This
property does not affect how many terms our recognizer can recognize; it affects only how many unique recognizers
our Smart Tag recognizer class provides. For simplicity, it usually is easiest to have one Smart Tag recognizer class
expose one unique recognizer:

Public ReadOnly Property SmartTagCount() As Integer _
 Implements SmartTag.ISmartTagRecognizer.SmartTagCount

 Get

 Return 1
 End Get

End Property

The Desc property takes a locale ID as an Integer and returns a String representing the description of the Smart Tag
recognizer. You can use the locale ID to provide localized descriptions, if you want to. For our purposes, the code will
return a simple description String for all locales:

Public ReadOnly Property Desc(_
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagRecognizer.Desc
 Get
 Return "Recognizes Part Numbers in PN#### format."
 End Get

End Property

The Name property takes a locale ID as an Integer and returns a String representing the name of the Smart Tag
recognizer. When the Smart Tag is listed in an Office dialog box, this name will display in parentheses to the right of the
string returned by SmartTagCaption in the Action class. Name should return a string no longer than 30 characters. We'll
return the string "English" to indicate to the user that our Smart Tag is not localized into other locales:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

return the string "English" to indicate to the user that our Smart Tag is not localized into other locales:

Public ReadOnly Property Name(_
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagRecognizer.Name

 Get
 Return "English"
 End Get

End Property

The SmartTagDownloadURL property takes a Smart Tag ID as an Integer and returns a URL as a String where Smart Tag
actions associated with this recognizer can be downloaded from. For this example, we will be providing the Smart Tag
action class in the same DLL, so we will always return Nothing.

Public ReadOnly Property SmartTagDownloadURL(_
 ByVal SmartTagID As Integer) As String _
 Implements SmartTag.ISmartTagRecognizer.SmartTagDownloadURL

 Get
 Return Nothing
 End Get

End Property

This is the first property we have seen that is passed a smartTagID as a parameter. A Smart Tag ID is an Integer value that
for this recognizer class will always be passed 1 because the code returns 1 for the SmartTagCount property. If the code
returned some other number for SmartTagCountsay, 5all methods that are passed a Smart Tag ID parameter in the
recognizer class would be called five times, once with smartTagID set to 1, then 2, then 3, and so on. This lets one
Smart Tag recognizer class provide multiple Smart Tags recognizers.

The SmartTagName property takes a Smart Tag ID as an Integer and returns a unique identifier as a String for the Smart
Tag. The identifier must be in the form namespaceURI#tagname. A valid namespace URI would be something like a
company Web site's URL followed by a unique directory for the Smart Tag name. So in our case, we will use the URL
http://www.aw-bc.com/VSTO. For the tag name, we will use our Smart Tag namespace PartNumberSmartTag. The
critical thing when constructing your Smart Tag name is to make sure that it will be unique and not conflict with Smart
Tags released by other companies or by your company:

Public ReadOnly Property SmartTagName(_
 ByVal SmartTagID As Integer) _
 As String _
 Implements SmartTag.ISmartTagRecognizer.SmartTagName

 Get
 Return "http://www.aw-bc.com/VSTO#PartNumberSmartTag"
 End Get

End Property

Now we have arrived at the method that does all the work of recognizing text in the document: the Recognize method.
The method is passed parameters very similar to those passed to Recognize in Listing 16.7. The text to be looked at by
our code is passed in as a String. The locale ID is passed in if our recognizer needs to recognize different text depending
on the locale. An instance of the ISmartTagRecognizerSite interface is passed in as well. We will use this interface to
associate a property bag with any text we recognize in the document.

Text that is recognized is marked with a property bag. The property bag can be emptybut for this example, we will stick
a namevalue pair in the property bag to store a price. When we find some text we recognize, we must create a new
property bag using ISmartTagRecognizerSite's GetNewPropertyBag method. This method returns an
ISmartTagProperties object. We can use this object to write namevalue pairs into the property bag through
ISmartTagProperties Write method that takes a key as a String and a value as a String. For this example, we will generate
a property with key of "Price" and value being the price of the part identified by the part number we locate in the
document.

To tell Office where recognized text is found, you must call ISmartTagRecognizerSite's CommitSmartTag method. This
method takes the Smart Tag name as a String (we just call our existing implementation of SmartTagName to get this),
the 1-based start position of the recognized text as an Integer, the length of the text we recognized as an Integer, and the
ISmartTagProperties object we created using the GetNewPropertyBag method. This is a little different from the
document-level custom class we created in Listing 16.7, where the start position of the recognized text was 0-based.

Listing 16.9 shows the final implementation of our Recognizer class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 16.9. The Final Implementation of a Smart Tag Recognizer Class

Imports System.Collections.Generic
Imports System.Text
Imports SmartTag = Microsoft.Office.Interop.SmartTag

Public Class Recognizer
 Implements SmartTag.ISmartTagRecognizer

 Public ReadOnly Property Desc(_
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagRecognizer.Desc

 Get
 Return "Recognizes Part Numbers in PN#### format."
 End Get

 End Property

 Public ReadOnly Property Name(_
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagRecognizer.Name

 Get
 Return "English"
 End Get

 End Property

 Public ReadOnly Property ProgId() As String _
 Implements SmartTag.ISmartTagRecognizer.ProgId

 Get
 Return Nothing
 End Get

 End Property

 Public Sub Recognize(ByVal Text As String, _
 ByVal DataType As SmartTag.IF_TYPE, _
 ByVal LocaleID As Integer, _
 ByVal RecognizerSite As SmartTag.ISmartTagRecognizerSite) _
 Implements SmartTag.ISmartTagRecognizer.Recognize

 Dim textToFind As String = "PN"
 Const length As Integer = 6 ' Found part numbers will
 ' always be 6 characters long

 Dim startIndex As Integer = 0
 Dim index As Integer = 0

 While Text.IndexOf(textToFind, startIndex) >= 0
 index = Text.IndexOf(textToFind, startIndex)
 If index + length <= Text.Length Then
 Dim partNumber As String = Text.Substring(index, length)
 Dim price As String = ""
 If IsValidPart(partNumber, price) Then
 Dim props As SmartTag.ISmartTagProperties = _
 RecognizerSite.GetNewPropertyBag()

 props.Write("Price", price)
 RecognizerSite.CommitSmartTag(SmartTagName(1), _
 index + 1, length, props)
 End If
 End If

 startIndex = index + textToFind.Length
 End While

 End Sub

 Public ReadOnly Property SmartTagCount() As Integer _
 Implements SmartTag.ISmartTagRecognizer.SmartTagCount

 Get
 Return 1
 End Get

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Get

 End Property

 Public ReadOnly Property SmartTagDownloadURL(_
 ByVal SmartTagID As Integer) As String _
 Implements SmartTag.ISmartTagRecognizer.SmartTagDownloadURL

 Get
 Return Nothing
 End Get

 End Property

 Public ReadOnly Property SmartTagName(_
 ByVal SmartTagID As Integer) As String _
 Implements SmartTag.ISmartTagRecognizer.SmartTagName

 Get
 Return "http://www.aw-bc.com/VSTO#PartNumberSmartTag"
 End Get

 End Property

 Private Function IsValidPart(ByVal partNumber As String, _
 ByRef price As String) As Boolean

 Dim numericPartNumber As Int32 = 0
 Try
 numericPartNumber = _
 Convert.ToInt32(partNumber.Substring(2, 4))
 Catch
 End Try

 ' Only part numbers greater than 1000 are valid
 If numericPartNumber > 1000 Then
 Dim rnd As New Random()
 price = rnd.Next(100).ToString()
 Return True
 End If

 price = "N/A"
 Return False

 End Function

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating an Action Class
Now that we have a complete Smart Tag recognizer class, we will create a Smart Tag action class. Right-click the class
library project in Solution Explorer, and choose Add and then Class to add a second class to the project. Visual Studio
will create a class called Class2 by default. Add a Imports SmartTag = Microsoft.Office.Interop.SmartTag line to the using
statements at the top of the class to bring the Smart Tag interfaces into a namespace called SmartTag. Rename Class2
to be a class called Action, and declare the class to implement SmartTag.ISmartTagAction. The class now looks like this:

Imports System.Collections.Generic
Imports System.Text
Imports SmartTag = Microsoft.Office.Interop.SmartTag

Public Class Action
 Implements SmartTag.ISmartTagAction

End Class

Use the Implement Interface trick again for implementing the ISmartTagAction interface. Visual Studio automatically
creates an initial implementation of the ISmartTagAction interface when you press Enter after typing the line Implements
SmartTag.ISmartTagAction, as shown in Listing 16.10.

Listing 16.10. An Initial Stub Implementation of a Smart Tag Action Class

Imports System.Collections.Generic
Imports System.Text
Imports SmartTag = Microsoft.Office.Interop.SmartTag

Public Class Action
 Implements SmartTag.ISmartTagAction

 Public ReadOnly Property Desc(_
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagAction.Desc

 Get

 End Get

 End Property

 Public Sub InvokeVerb(ByVal VerbID As Integer, _
 ByVal ApplicationName As String, ByVal Target As Object, _
 ByVal Properties As SmartTag.ISmartTagProperties, _
 ByVal Text As String, ByVal Xml As String) _
 Implements SmartTag.ISmartTagAction.InvokeVerb

 End Sub

 Public ReadOnly Property Name(_
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagAction.Name

 Get

 End Get

 End Property

 Public ReadOnly Property ProgId() As String _
 Implements SmartTag.ISmartTagAction.ProgId

 Get

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Get

 End Get

 End Property

 Public ReadOnly Property SmartTagCaption(_
 ByVal SmartTagID As Integer, _
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagAction.SmartTagCaption

 Get

 End Get

 End Property

 Public ReadOnly Property SmartTagCount() As Integer _
 Implements SmartTag.ISmartTagAction.SmartTagCount

 Get

 End Get

 End Property

 Public ReadOnly Property SmartTagName(_
 ByVal SmartTagID As Integer) As String _
 Implements SmartTag.ISmartTagAction.SmartTagName

 Get

 End Get

 End Property

 Public ReadOnly Property VerbCaptionFromID(_

 ByVal VerbID As Integer, ByVal ApplicationName As String, _
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagAction.VerbCaptionFromID

 Get

 End Get

 End Property

 Public ReadOnly Property VerbCount(_
 ByVal SmartTagName As String) As Integer _
 Implements SmartTag.ISmartTagAction.VerbCount

 Get

 End Get

 End Property

 Public ReadOnly Property VerbID(ByVal SmartTagName As String, _
 ByVal VerbIndex As Integer) As Integer _
 Implements SmartTag.ISmartTagAction.VerbID

 Get

 End Get

 End Property

 Public ReadOnly Property VerbNameFromID(_
 ByVal VerbID As Integer) As String _
 Implements SmartTag.ISmartTagAction.VerbNameFromID

 Get

 End Get

 End Property

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

We must implement ten properties (ProgID, SmartTagCount, Desc, Name, SmartTagCaption, SmartTagName,
VerbCaptionFromID, VerbCount, VerbID, and VerbNameFromID) and one method (InvokeVerb). Let's start by
implementing the properties.

The ProgID property returns Nothing because it is used only for COM Smart Tags:

Public ReadOnly Property ProgId() As String _
 Implements SmartTag.ISmartTagAction.ProgId

 Get
 Return Nothing
 End Get

End Property

Now let's implement the SmartTagCount property. As described earlier, for simplicity, it is usually easiest to return just
1. This does not affect how many available "verbs" or menu commands we can provide for a recognized part number:

Public ReadOnly Property SmartTagCount() As Integer _
 Implements SmartTag.ISmartTagAction.SmartTagCount

 Get
 Return 1
 End Get

End Property

The Desc property takes a locale ID as an Integer and returns a String representing the description of the Smart Tag
action. You can use the locale ID to provide localized descriptions, if you want to. For our purposes, the code will return
a simple description String for all locales:

Public ReadOnly Property Desc(_
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagAction.Desc

 Get
 Return "Provides actions for the part number Smart Tag."
 End Get

End Property

The Name property takes a locale ID as an Integer and returns a String representing the name of the Smart Tag action.
The name should match what you returned for your Recognizer class:

Public ReadOnly Property Name(_
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagAction.Name

 Get
 Return "The PN#### Smart Tag"
 End Get

End Property

The SmartTagName property takes a Smart Tag ID as an Integer and returns a unique identifier as a String for the Smart
Tag. The identifier should match what was returned in the Recognizer class implementation:

Public ReadOnly Property SmartTagName(_
 ByVal SmartTagID As Integer) As String _
 Implements SmartTag.ISmartTagAction.SmartTagName

 Get
 Return "http://www.aw-bc.com/VSTO#PartNumberSmartTag"
 End Get

End Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Property

The SmartTagCaption property takes a Smart Tag ID as an Integer and a locale ID as an Integer. It returns a String that will
be the caption used in the pop-up menu for the recognized text. It will also be used as the primary name of the Smart
Tag in Office's Smart Tag dialog boxes:

Public ReadOnly Property SmartTagCaption(_
 ByVal SmartTagID As Integer, _
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagAction.SmartTagCaption

 Get
 Return "Part Number Smart Tag"
 End Get

End Property

The VerbCount property returns as an Integer how many verbs or menu commands that this Action will provide to the
Smart Tag menu. It is passed as a parameter the Smart Tag name for which the verb count is requested; you can
ignore this parameter if you returned 1 for the SmartTagCount property. For this example, we provide two verbs or
menu commands: one to display the price and the other to open a Web page to the price. So the implementation of
VerbCount returns 2:

Public ReadOnly Property VerbCount(_
 ByVal SmartTagName As String) As Integer _
 Implements SmartTag.ISmartTagAction.VerbCount

 Get
 Return 2
 End Get

End Property

The VerbID property gets a unique Integer identifier called a verb ID for each verb. This property is passed a verb index
as an Integer that will be a number 1 through the number of verbs returned from the VerbCount implementation. For
simplicity, we reuse the verbIndex passed into this method as the verb ID:

Public ReadOnly Property VerbID(ByVal SmartTagName As String, _
 ByVal VerbIndex As Integer) As Integer _
 Implements SmartTag.ISmartTagAction.VerbID

 Get
 Return VerbIndex
 End Get

End Property

The VerbCaptionFromID property is passed a verb ID number as an Integer, the application name showing the Smart Tag
as a String, and the locale ID as an Integer. Because we are using the verb index as the verb ID because of how we
implemented VerbID, the verb ID passed in will be 1 through the number of verbs returned from VerbCount. The
property returns a String for the menu command caption to use for each verb supported by the action class.

Within the string, you can use three forward slashes in a row to create submenus and the ampersand (&) characters to
tell Office what to use for accelerators in the menus. Here, we have defined the return strings so we will have a Part
Number menu with two submenus: Show part price and Show part Web page. We have also indicated that N should be
the accelerator for the Part Number menu, P should be the accelerator for the Show part price submenu, and W should
be the accelerator for the Show part Web page submenu.

Public ReadOnly Property VerbCaptionFromID(_
 ByVal VerbID As Integer, ByVal ApplicationName As String, _
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagAction.VerbCaptionFromID

 Get
 Select Case VerbID
 Case 1
 Return "Part &Number///Show part &price..."
 Case 2
 Return "Part &Number///Show part &web page..."
 Case Else
 Return Nothing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Return Nothing
 End Select
 End Get

End Property

The VerbNameFromID property takes a verb ID as an Integer and returns an identifier String for each verb. We return
some unique strings for our two verbs:

Public ReadOnly Property VerbNameFromID(_
 ByVal VerbID As Integer) As String _
 Implements SmartTag.ISmartTagAction.VerbNameFromID

 Get
 Select Case VerbID
 Case 1
 Return "ShowPartPrice"
 Case 2
 Return "ShowPartWebPage"
 Case Else
 Return Nothing
 End Select
 End Get

End Property

Now we have arrived at the method that does all the work of handling a selected verb: the InvokeVerb method. This
method takes the verb ID as an Integer, the name of the application the Smart Tag is being displayed in as a String, the
property bag associated with the recognized text as an ISmartTagProperties object, the text that was recognized as a
String, and the XML that was recognized as a String.

The implementation of InvokeVerb for this example first checks what verb is passed. Because the Smart Tag returned 2
for VerbCount, it will be passed a verb ID of 1 or 2. If the verb ID is 1, the code displays the price of the item by using
the ISmartTagProperties object to read the price value the Recognizer class wrote to the property bag when it
recognized the text. If the verb ID is 2, the code displays a dialog box threatening to launch a Web page for the part
number, which is passed in as the recognized text string. Listing 16.11 shows the complete implementation of our
Action class. Because the Action class displays a message box, be sure to add a reference to the
System.Windows.Forms library.

Listing 16.11. The Final Implementation of a Smart Tag Action Class

Imports System.Collections.Generic
Imports System.Text
Imports SmartTag = Microsoft.Office.Interop.SmartTag

Public Class Action
 Implements SmartTag.ISmartTagAction

 Public ReadOnly Property Desc(_
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagAction.Desc

 Get
 Return "Provides actions for the part number Smart Tag."
 End Get

 End Property

 Public Sub InvokeVerb(ByVal VerbID As Integer, _
 ByVal ApplicationName As String, ByVal Target As Object, _
 ByVal Properties As SmartTag.ISmartTagProperties, _
 ByVal Text As String, ByVal Xml As String) _
 Implements SmartTag.ISmartTagAction.InvokeVerb

 Select Case VerbID
 Case 1
 Dim price As String = Properties.Read("Price")
 MsgBox(String.Format(_
 "The price of the part is {0}.", price))
 Exit Select
 Case 2
 MsgBox(String.Format(_
 "Launching web page for part {0}.", Text))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "Launching web page for part {0}.", Text))
 Exit Select
 End Select

 End Sub

 Public ReadOnly Property Name(_
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagAction.Name

 Get
 Return "The PN#### Smart Tag"
 End Get

 End Property

 Public ReadOnly Property ProgId() As String _
 Implements SmartTag.ISmartTagAction.ProgId

 Get
 Return Nothing
 End Get

 End Property

 Public ReadOnly Property SmartTagCaption(_
 ByVal SmartTagID As Integer, _
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagAction.SmartTagCaption

 Get
 Return "Part Number Smart Tag"
 End Get

 End Property

 Public ReadOnly Property SmartTagCount() As Integer _
 Implements SmartTag.ISmartTagAction.SmartTagCount

 Get
 Return 1
 End Get

 End Property

 Public ReadOnly Property SmartTagName(_
 ByVal SmartTagID As Integer) As String _
 Implements SmartTag.ISmartTagAction.SmartTagName

 Get
 Return "http://www.aw-bc.com/VSTO#PartNumberSmartTag"
 End Get

 End Property

 Public ReadOnly Property VerbCaptionFromID(_
 ByVal VerbID As Integer, ByVal ApplicationName As String, _
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagAction.VerbCaptionFromID

 Get
 Select Case VerbID
 Case 1
 Return "Part &Number///Show part &price..."
 Case 2
 Return "Part &Number///Show part &web page..."
 Case Else
 Return Nothing
 End Select
 End Get

 End Property

 Public ReadOnly Property VerbCount(_
 ByVal SmartTagName As String) As Integer _
 Implements SmartTag.ISmartTagAction.VerbCount

 Get
 Return 2
 End Get

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Get

 End Property

 Public ReadOnly Property VerbID(ByVal SmartTagName As String, _
 ByVal VerbIndex As Integer) As Integer _
 Implements SmartTag.ISmartTagAction.VerbID

 Get
 Return VerbIndex
 End Get

 End Property

 Public ReadOnly Property VerbNameFromID(_
 ByVal VerbID As Integer) As String _
 Implements SmartTag.ISmartTagAction.VerbNameFromID

 Get
 Select Case VerbID
 Case 1
 Return "ShowPartPrice"
 Case 2
 Return "ShowPartWebPage"
 Case Else
 Return Nothing
 End Select
 End Get

 End Property

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Registering and Trusting an Application-Level Smart Tag Class Library
After you have implemented your Recognizer and Action class completely in your class library project, build the project
to create a class library DLL. Then copy the class library DLL that was built to a convenient directory. In this example,
we copy it to C:\PartNumberSmartTag\PartNumberSmartTag.dll.

Office can load the Smart Tag DLL we have created directly and without any of the problems associated with managed
add-ins described in Chapter 23, "Developing COM Add-Ins for Word and Excel." Office will check the .NET 1.1 security
policy to decide whether to trust the DLL. If there is a policy in place to trust the Smart Tag DLL, Office will load the
Smart Tag DLL into its own application domain.

We must do three things to get our Smart Tag to work:

1. We must register the Smart Tag recognizer class in the registry.

2. We must register the Smart Tag action class in the registry.

3. We must configure .NET 1.1 policy (not 2.0 policy) to trust the Smart Tag DLL.

The final requirement seems counterintuitive; why would we have to configure .NET 1.1 policy? After all, we built the
Smart Tag with Visual Studio 2005 against .NET 2.0. The reason is that trust decisions for managed Smart Tags loaded
by Office 2003 are made based on .NET 1.1 policy even when Office is running a newer version of .NET.

Registering the Smart Tag Recognizer Class in the Registry

To register the Smart Tag class library in the registry, we must add a registry entry for the Recognizer class and a
registry entry for the Smart Tag Recognizer class. Recognizer classes are registered under this path in the registry:

HKEY_CURRENT_USER\Software\Microsoft\Office\Common\Smart Tag\Recognizers

Under this path, we must create a new key that has as its name the full name of the managed Recognizer class. In our
case, we created a class called Recognizer in the namespace PartNumberSmartTag. Therefore, the full name of the
managed Recognizer class is PartNumberSmartTag.Recognizer. We will create a new registry key named as follows:

HKEY_CURRENT_USER\Software\Microsoft\Office\Common\Smart Tag\
 Recognizers\PartNumberSmartTag.Recognizer

Under the new PartNumberSmartTag.Recognizer registry key, we will create a string value called Filename that is set to
the full filename of the Smart Tag DLL (in our example, C:\PartNumberSmartTag\PartNumberSmartTag.dll).

We will also create under the new PartNumberSmartTag.Recognizer registry key a DWORD value called Managed that
we will set to 1.

Listing 16.12 shows the final registry settings for registering the Recognizer class when exported to a .reg file.

Listing 16.12. Registry Entries to Register the Recognizer Class

[HKEY_CURRENT_USER\Software\Microsoft\Office\Common\Smart Tag\
Recognizers\PartNumberSmartTag.Recognizer]
"Filename"="c:\\PartNumberSmartTag\\PartNumberSmartTag.dll"
"Managed"=dword:00000001

Registering the Smart Tag Action Class in the Registry

With the Recognizer class registered, the next step is to register the Smart Tag Action class in the registry. Action
classes are registered under this path in the registry:

HKEY_CURRENT_USER\Software\Microsoft\Office\Common\Smart Tag\Actions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HKEY_CURRENT_USER\Software\Microsoft\Office\Common\Smart Tag\Actions

Under this path, we must create a new key that has as its name the full name of the managed Action class. In our case,
we created a class called Action in the namespace PartNumberSmartTag. Therefore, the full name of the managed
Action class is PartNumberSmartTag.Action. We will create a new registry key named as follows:

HKEY_CURRENT_USER\Software\Microsoft\Office\Common\Smart Tag\
 Actions\PartNumberSmartTag.Action

Under the new PartNumberSmartTag.Action registry key, we will create a string value called "Filename" that is set to the
full filename of the Smart Tag DLL (in our example, C:\PartNumberSmartTag\PartNumberSmartTag.dll).

We will also create under the new PartNumberSmartTag.Action registry key a DWORD value called Managed that we will
set to 1.

Listing 16.13 shows the final registry settings for registering the Action class when exported to a .reg file.

Listing 16.13. Registry Entries to Register the Action Class

[HKEY_CURRENT_USER\Software\Microsoft\Office\Common\Smart Tag\
Actions\PartNumberSmartTag.Action]
"Filename"="c:\\PartNumberSmartTag\\PartNumberSmartTag.dll"
"Managed"=dword:00000001

Setting Up .NET 1.1 Security Policy to Trust the Smart Tag Class Library

The final step is to set up .NET 1.1 security policy to trust the Smart Tag class library. We will consider how to configure
.NET security policy in more detail in Chapter 19, ".NET Code Security." For now, we will use a command-line tool called
caspol.exe that configures .NET security policy. From the command line, navigate to the version of caspol.exe that will
be at a path such as C:\Windows\Microsoft.NET\Framework\v1.1.4322. In this directory, run the following command:

caspol -user -addgroup "All_Code" url
c:\PartNumberSmartTag\PartNumberSmartTag.dll FullTrust -name
"PartNumberSmartTag"

This command adds user-level security policy under the existing code group called All_Code, a new code group called
PartNumberSmartTag that grants full trust to our DLL C:\PartNumberSmartTag\PartNumberSmartTag.dll.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Running and Testing the Application-Level Smart Tag
Now launch Word or Excel to test the Smart Tag. Type text such as PN1234 in Word or in an Excel cell. You will see
that a Smart Tag appears. Click the Smart Tag indicator, and the menu shown in Figure 16.9 will display. Note that
because of the strings we returned from VerbCaptionFromID, a Part Number menu is shown with two submenus for our
two verbs. Also note the accelerators (indicated by an underlined letter in the menu caption) that were created because
of the use of the ampersand (&) character in the strings returned from VerbCaptionFromID.

Figure 16.9. The two verbs for the part number Smart Tag.

In addition, you can see the Smart Tag listed in the Smart Tags tab of the AutoCorrect dialog box, as shown in Figure
16.10. To bring up this dialog box in Word, choose AutoCorrect Options from the Tools menu. The part number Smart
Tag is in the list of Recognizers with the string returned from the SmartTagCaption (Part Number Smart Tag) and, in
parentheses, the string returned from Name (English).

Figure 16.10. The Part Number Smart Tag displayed in the Smart Tags tab.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Debugging an Application-Level Smart Tag
If you need to debug an application-level Smart Tag, make sure that the .pdb file that was built with your Smart Tag
DLL is copied to the same location where you put your Smart Tag DLL. With your class library project open, use the
Attach to Process command in the Debug menu of your project, and attach to the Office application that has your Smart
Tag loaded. Then set breakpoints in the methods you want to debugmost likely, ISmartTagRecognizer.Recognize and
ISmartTagAction.InvokeVerb.

If you need to attach the debugger earlierfor example, when the Smart Tag is first getting loadedright-click the class
library project node in the Solution Explorer window, and choose Properties. In the Properties window, click the Debug
tab. Change the Start Action to Start External Program, and enter the full path to the Office application you want to
debug. Then you can start debugging by choosing Start Debugging from the Debug menu. Doing so launches the Office
application you entered in the start action, and you will be able to debug the Smart Tag as it loads.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter examined VSTO's support for document-level Smart Tags. VSTO provides a simple way to get started by
using terms and actions. VSTO also supports more powerful techniques, including support for regular expressions and
support for multiple actions, as well as the ability to create your own custom Smart Tag classes.

This chapter also covered how to build an application-level Smart Tag by creating a class library project and a class that
implements ISmartTagRecognizer, along with a class that implements ISmartTagAction. You have learned how to
register an application-level Smart Tag in the registry and how to configure .NET 1.1 security policy so the Smart Tag
will run. For more information about .NET security and VSTO, see Chapter 19, ".NET Code Security."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 17. VSTO Data Programming
A FULL TREATMENT of Microsoft's ADO.NET data programming model could easily fill an entire book of its own. Therefore,
this chapter starts with an example of how to use the Visual Studio 2005 Tools for Office (VSTO) designer to create a
data-bound customized spreadsheet without writing a single line of code. After that, the chapter examines some
ADO.NET features and then delves into the Word- and Excel-specific programming model.

To understand ADO.NET in all its complexity, read Shawn Wildermuth's Pragmatic ADO.NET (Addison-Wesley, 2003)
and the data binding chapters of Windows Forms Programming in Visual Basic .NET (Addison-Wesley, 2004), by Chris
Sells and Justin Gehtland.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating a Data-Bound Customized Spreadsheet with VSTO
Creating a no-frills, data-bound, customized document using the VSTO designer requires no coding but a whole lot of
mouse clicking. What we are going to do is first tell Visual Studio about a data sourcein this case, the Northwind sample
database that comes with Officeand then drag and drop some data-bound controls onto the spreadsheet.

Defining a Data Source

Let's start Visual Studio and create a new Excel project. From Visual Studio's Data menu, choose Show Data Sources to
display the Data Sources pane. Click Add New Data Source to start the Data Source Wizard, shown in Figure 17.1.

Figure 17.1. Starting the Data Source Wizard.

[View full size image]

Choose Database, and click Next. Click New Connection when the Data Source Wizard appears. This creates the Choose
Data Source wizard, shown in Figure 17.2.

Figure 17.2. Choosing the data source.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Choose Microsoft Access Database File, and click OK to go on to the Connection dialog box, shown in Figure 17.3. The
Northwind database file typically is in the Program Files\Microsoft Office\Office11\Samples directory. If the Northwind
database file is not on your machine, customize your installation of Microsoft Access, and choose to install sample
databases. Click Browse, and find the Northwind database. No security is enforced on this database file, so the default
username Admin and a blank password are fine.

Figure 17.3. Creating the database connection.

Click OK to close the Connection Wizard and continue with the Data Source Wizard, shown in Figure 17.4.

Figure 17.4. Viewing the connection string.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note

In a real-world application with a secured database, it would be a very bad idea to have a blank
administrator password. See the section "Data Sources and Security Best Practices" later in this chapter for
more information.

As you can see in Figure 17.4, all the information about the database connection that you have just created is saved in
a connection string. In the next screen of the wizard, shown in Figure 17.5, Visual Studio asks whether you want to
save the connection string to a configuration file. For both convenience and security, it is a good idea to save that
connection string in a configuration file rather than hard-code it into your program. Again, see the section on security
best practices later in this chapter for more details.

Figure 17.5. Save the connection string in the application configuration file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The database to which we are connecting might have an enormous number of queries, tables, and columns within those
tables, and so on. To manage some of this complexity, Visual Studio enables you to choose which portions of the
database will display in Visual Studio. Let's select the entire Suppliers table and the ProductName, SupplierID,
QuantityPerUnit, and UnitPrice columns from the Products table using the final wizard screen, shown in Figure 17.6.

Figure 17.6. Choose your tables.

Finally, click Finish to exit the Data Source Wizard.

Creating Data-Bound Controls the Easy Way

The Data Sources window now contains an entry for the NorthwindDataSet. (Why dataset rather than database? We
explain exactly what we mean by dataset later in this chapter.) Expand the nodes in the tree view, as shown in Figure
17.7.

Figure 17.7. The Data Sources pane contains the dataset tree view.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice a few interesting things here. First, Visual Studio has discovered from the database that the Products table has a
relationship with the Suppliers table; the Products table appears both as a table in its own right and as a child node of
the Suppliers table. This will allow us to create master-detail views more easily.

Second, notice that the icons for the columns have "named range" icons, indicating that if you drag and drop the icon
onto the worksheet, you will get a data-bound named range to this column. The default for a column is a named range,
and the default for an entire table is a list object, but you can choose other controls by clicking the item and selecting
the drop-down list that appears. Suppose that you want to have a combo box bound to CompanyName. You can choose
ComboBox from the drop-down list as the control to use for CompanyName, as shown in Figure 17.8.

Figure 17.8. Choosing the control type.

[View full size image]

Drag the CompanyName as a combo box, the ContactName as a named range, and the entire Products table onto the
worksheet. Use the Products table that is the child of the Suppliers table in the tree view, and you will get a nice
master-detail view, shown in Figure 17.9.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 17.9. Creating the data-bound view.

[View full size image]

A whole lot of stuff has magically appeared in the component tray below the Excel designer: a dataset, two binding
sources, and two table adapters. We get into the details of what these components are for later in this chapter. For
now, compile and run the application. The result should look something like Figure 17.10. Without writing a single line
of code, you have gotten a data-bound master-detail view on an Excel spreadsheet. As you select different items from
the combo box, the named range and list object automatically update themselves.

Figure 17.10. A data-bound master-detail spreadsheet.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating a Data-Bound Customized Word Document with VSTO
We can create a similar data-bound document in Word using bookmarks rather than named ranges and a data grid
rather than an Excel List object. Create a new Word document project, and again add the Northwind database as a data
source to the Data Sources pane. Visual Studio should remember the connection string from last time, so you will not
need to configure it again.

Unfortunately, in this version of VSTO, there is no way to bind a data table to a Word table, as you can with an Excel
list object. Drag the CompanyName as a combo box, the ContactName as a Bookmark, and the entire Products table as
a data grid. Use the Products table that is the child of the Suppliers table in the tree view, and you will get a nice
master-detail view, as shown in Figure 17.11.

Figure 17.11. A data-bound master-detail Word document in the designer.

[View full size image]

When you build and run the customized Word document, again, you have a master-detail view of a data table running
in Word without writing a single line of code. The running document is shown in Figure 17.12.

Figure 17.12. The master-detail view at runtime.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Datasets, Adapters, and Sources
Now that we have seen a couple of no-coding-required examples, let's take a peek under the hood and see how data
binding actually works. Several players make data binding work, many of which can be seen on the component tray or
design surface:

A back-end data source, such as an Access database, a remote SQL Server database, a Web service, or some
other data storage and retrieval system, is where the data ultimately lives.

A dataset is a disconnected local cache of some portion of the back-end data source.

An adapter connects the dataset to the back-end data source, both to fill the dataset from the back-end source
and to update the back end with any changes. There usually is one adapter per table, which is why we saw two
adapters in the preceding example.

A binding source acts as the intermediary between the user interface control and the dataset. Although it is
possible to bind a control directly to a dataset, as discussed later in this chapter, it usually is more convenient
to go through a dedicated binding source object.

A data-bindable control provides a user interface element that enables the user to read or write the data.

The back-end data source is represented in a VSTO project by the connection string passed to the adapter; everything
else is represented by a member of the customized host item (the worksheet or document) class.

Let's take a look at these different components in more detail.

Data Sources and Security Best Practices

As you probably noticed in the Connection Wizard, all the information required to connect to the back-end data source
is stored in a connection string generated by the wizard. It typically looks something like this:

 Server=MyDataServer; Database=Customers;
 Integrated Security=true;

That is, it says where the database is located, what it is called, and how the user should be authenticated. All this
information is potentially sensitive! Use caution when embedding connection strings in your programs. Remember, even
without the source code it is very easy to figure out which strings are embedded in a managed application. This
particularly applies to connection strings in which, instead of using Windows NT integrated security, you simply embed
UserID=eric;Password=BigSecret123 directly.

Furthermore, hard-coded embedded strings in your source code make it hard for developers, testers, end users, and
database administrators to update your application should the database connection information change over time. As
discussed earlier in this chapter, Visual Studio gives you the option of embedding the connection string in the
configuration file. The automatically generated configuration file in our example above looks something like Listing 17.1.

Listing 17.1. A Typical Database Connection String in a Configuration File

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 </configSections>
 <connectionStrings>
 <add name=
 "ExcelWorkbook11.Properties.Settings.NorthwindConnectionString"
 connectionString="Provider=Microsoft.Jet.OLEDB.4.0;Data
 Source="C:\Program Files\Microsoft
 Office\OFFICE11\SAMPLES\Northwind.mdb"
 providerName="System.Data.OleDb" />
 </connectionStrings>
</configuration>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It is also a good idea to use the "principle of least privilege." This is one of the fundamental principles of secure design:
Grant exactly as much privilege as you need to get the job doneno more, no less. If your user needs to be able to read
from the database but not write to it, for example, do not specify a connection string that gives the user administrator
rights to the database. Instead, choose a connection string that specifies a username and password with read-only
access. That way, if the username and password are ever compromised, at least the attacker does not get
administrator access out of it.

Better still, do not use stored user IDs and passwords at all. Some databases use integrated Windows authentication, so
the logged-on user can use his already-authenticated credentials seamlessly. Or if your database system requires a
username and password, make the user type them rather than store them. As you'll see later in this chapter, when we
discuss adapters, you can change manually the connection string used by the adapter before it fills the dataset. That
way, you could ask the user to type his user ID and password and then generate a new connection string from that
information.

Datasets

The cornerstone of the VSTO 2005 data model, and of ADO.NET in general, is the dataset. We should motivate the
existence of datasets by describing the old way of doing data access. Back in the 20th century, you typically
communicated with a database via "ADO Classic" something like this:

1. Create and open a connection to a database.

2. Create and execute a database command (such as SELECT partnumber FROM invoices WHERE price>100).

3. Enumerate the resulting record set.

4. Close the connection.

This approach worked fairly well, but it had several drawbacks. The principal drawbacks were consequences of the fact
that this model requires a live connection to a database. If there are going to be many live connections, the server
needs to be scalable and robust, which can be expensive. Therefore, to minimize load upon the server, we want
connections to be short-lived. But because the connection is open while the user is enumerating the record set, the
connection is typically open for quite some timeas long as the user is working with the data.

Furthermore, even if the server-side expense of keeping connections open is unimportant, this model does not work
well in a world where you want to be able to work with your data even if you temporarily lack network connectivity.

A Disconnected Strategy

Database connections are both expensive and necessary; therefore, they must be managed carefully. In a typical ADO
application, much developer effort is expended writing code to ensure that the connection is open for as little time as
possible while still meeting the needs of the application's users. ADO.NET addresses the problems of ADO by going
straight to the root; if we cannot make connections inexpensive, we can at least make them less necessary. ADO.NET,
therefore, is fundamentally a disconnected strategy. A typical ADO.NET scenario goes something like this:

1. Create a DataAdapter to manage the connection to a specific database or other data source.

2. Set properties on the adapter that tell it what query to execute against the database.

3. Create a dataset to be filled.

4. Invoke a method on the adapter to take care of the details of opening a connection, executing the query, saving
the results in the dataset, and closing the connection as soon as possible.

5. Work with the data in the now-disconnected dataset.

6. When you finish working with the data, invoke a method on the adapter to reopen the connection to the
database and update it with any changes.

And indeed, as you will see later in the chapter, when we discuss adapters, VSTO does exactly this on your behalf.

Because the dataset acts much like the original database, the connection need be open only as long as it takes to fill
the dataset. After the data has been copied to the dataset, you can query and manipulate the dataset for as long as you
want without worrying that you are consuming a valuable database connection.

Furthermore, there is no reason why the data used to fill the dataset has to come from a connected database; you
could fill the dataset from an XML file, or write a program to add tables and rows to build one from scratch. Datasets
have no knowledge of where the data they contain comes from; if you need it, all that knowledge is encapsulated in the
adapter.

Note

The foregoing is not to say that old-fashioned connected data access is impossible, or even discouraged, in
ADO.NET; the DataReader class allows for traditional always-connected access to a database. Neither

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ADO.NET; the DataReader class allows for traditional always-connected access to a database. Neither
Windows Forms controls nor VSTO 2005 host items/host controls can use DataReaders for data binding,
however, so we speak of them no more in this book.

Typed and Untyped Datasets

In Solution Explorer in the Word or Excel projects we created earlier, you will find a NorthwindDataSet.xsd file
containing the database schema. This is an XML document that describes the tables, columns, and relationships that
make up the dataset. One of the child nodes in the Solution Explorer tree view is NorthwindDataSet.Designer.cs. This
file contains the automatically generated code for the dataset and table adapters.

The first line of the declaration is interesting:

Partial Class NorthwindDataSet

The generated class is partial so that if you need to add your own extensions to it, you can do so in a separate file; it is
a bad idea to edit automatically generated files. More important, this dataset extends the System.Data .DataSet class.
A System.Data.DataSet consists of a collection of data tables. As you would expect, data tables consist of a collection of
data columns and data rows. Each class exposes various collections as properties that allow you to navigate through the
dataset.

System.Data.DataSet is not an abstract class; you can create instances and fill them from any back-end data source.
But that would be an untyped dataset; the NorthwindDataSet is a typed dataset. Untyped datasets give you great
flexibility but are so general that they are somewhat harder to use.

If you were to fill an untyped dataset with data from the Northwind database file, for example, you could access a
particular datum with an expression such as this:

name = myDataSet.Tables("Products").Rows(1)("ProductName")

But that flexibility comes at a cost: You can accidentally pass in a bad table name or a bad column name, or make a
bad assumption about the type of the data stored in a column. Because none of the structure of the tables or types of
the columns is known at compile time, the compiler is unable to verify that the code will run without throwing
exceptions. Also, the IntelliSense engine is unable to provide any hints about the dataset's structure while you are
developing the code.

Typed datasets mitigate these problems. A typed dataset is a class that extends the dataset base class; it has all the
flexible, untyped features of a regular untyped dataset but also has compile-time strongly typed properties that expose
the tables by name. A typed dataset also defines typed data table and data row subclasses.

As you can see from the NorthwindDataSet.Designer.vb file, the typed dataset has public properties that enable you to
write much more straightforward code, such as this:

name = myDataSet.Products(1).ProductName

Typed datasets extend untyped datasets in many ways; some of the most important are as follows:

Tables are exposed as read-only properties typed as instances of typed data tables.

Tables have read-only properties for each column.

Tables have an indexer that returns a typed data row.

Event delegates for row change events pass typed change event arguments. Each row type has a row-changing,
a row-changed, a row-deleting, and a row-deleted event. (You may be wondering where the row-adding and
row-added events are. The changing/changed events pass a DataRowAction enumerated type to indicate whether
the row in question was newly created.)

Tables provide methods for adding and removing typed data rows.

Rows provide getters, setters, and nullity testers for each column.

In short, it is almost always a good idea to use a typed dataset. Weakly typed code is harder to read, harder to reason
about, and harder to maintain.

Adapters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Take a look at the Startup event handler in either the Word or the Excel example above. Visual Studio has generated
the code in Listing 17.2 automatically on your behalf.

Listing 17.2. Autogenerated Table-Filling Code

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 'TODO: Delete this line of code to remove the default
 'AutoFill for 'NorthwindDataSet.Products'.
 If Me.NeedsFill("NorthwindDataSet") Then
 Me.ProductsTableAdapter.Fill(Me.NorthwindDataSet.Products)
 End If
 'TODO: Delete this line of code to remove the default
 'AutoFill for 'NorthwindDataSet.Suppliers'.
 If Me.NeedsFill("NorthwindDataSet") Then
 Me.SuppliersTableAdapter.Fill(_
 Me.NorthwindDataSet.Suppliers)
 End If

 End Sub

End Class

We discuss what exactly NeedsFill is for in more detail when we discuss data caching later in this chapter and in Chapter
18, "Server Data Scenarios." But for now, this should look fairly straightforward: If the two tables need to be filled from
the back-end data source, the adapters fill the appropriate tables.

There are a number of reasons why you might want to not fill the data tables automatically in the Startup event, which
is why the comment points out that you can remove the auto-generated code. As mentioned earlier in this chapter, you
may want to require that the user enter a database password before attempting to fill the dataset. You can generate a
new connection string and then set the adapter's Connection.ConnectionString property.

Or perhaps you want to give the user the option of whether to connect to the back end. If the user is on an expensive
or slow connection, the user may want to skip downloading a large chunk of data. For any number of reasons, you may
not want to connect right away or use the default connection string, so Visual Studio allows you to modify this startup
code.

Visual Studio generates strongly typed custom adapters at the same time that it generates the typed dataset. If you
show hidden files and read through the hidden generated adapter code in NorthwindDataSet.Designers.vb, you will see
that the generated adapter has been hard-coded to connect to the database specified by the connection string in the
configuration file. The bulk of the generated adapter code consists of the query code to handle reading from the back-
end data store into the typed dataset and then taking any changes in the dataset and updating or deleting the
appropriate rows in the store.

The adapter takes care of all the details of opening the connection, executing the query, copying the data into the
dataset, and closing the connection. At this point, we have a local copy of the data, which we can use to our heart's
content without worrying about taxing the server further.

When you are done editing the local copy of the data in the dataset, you can use the adapter to update the database
with the changes by calling the Update method of the adapter. Then the adapter will take care of making the additions,
changes, and deletions to the back-end database.

Note

By default, the adapter assumes that you want optimistic concurrencythat is, other users will be able to
update the database unless you are in the process of updating the database. Other concurrency models are
possible but beyond the scope of this text. If you want either pessimistic concurrency (that is, the database
remains locked the whole time that you have the offline dataset) or destructive concurrency (that is, the
database is never locked, even when multiple people are writing at once), consult a reference on ADO.NET
to see how to configure your adapter appropriately.

Using Binding Sources As Proxies

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Why does Visual Studio bind the controls to a BindingSource proxy object, rather than binding controls directly to the
data table?

The reason is because the control can bind to the proxy even if the data in the table is not currently available. Perhaps
the data table is going to be derived from a call to a Web service, which will not happen until long after the initialization
is complete, or until the user types his password or clicks a button to start the database connection.

The proxy object is created when the customization starts, and controls can be bound to it even if no "real" data is
available. When the real data is available, the binding source updates the controls. It is essentially just a thin "shim"
that makes it easier to set up bindings before all the data is available.

As you saw in the examples, multiple controls can share the same binding source and, therefore, have the same
currencythat is, when one control is updated, every other control linked to the same binding source is also updated
automatically. Controls on different worksheets or even on the actions pane can share binding sources and thereby
share currency. You will learn about currency management in more detail later in this chapter.

Data-Bindable Controls

The last piece of the data binding puzzle is the host control or Windows Forms control on the spreadsheet or document
that actually displays the bound data. There are two flavors of data-bindable controls: simple and complex. Controls
that can bind a single datum to a particular property are simple-data-bindable. Controls that can bind multiple rows
and/or columns are complex-data-bindable.

In the preceding examples, the list object in Excel and the combo box and data grid Windows Forms controls are
complex-data-bindable; the list object and data grid display multiple rows and columns from a table, and the combo
box displays multiple rows from a single column. The bookmark and named range controls, by contrast, are simple-
data-bindable; only a single datum is bound to the Value property of the named range.

All the Windows Forms controls are simple-data-bindable, as are almost all the Word and Excel host items and host
controls. (There is one exception: The Word XMLNodes host control is neither simple- nor complex-data-bindable.) Of
the host items and host controls, only Excel's list object is complex-data-bindable.

The behind-the-scenes mechanisms by which controls implement data binding and manage currency are fairly complex;
we cover them in more detail toward the end of this chapter. But first, now that we have gotten a little context as to
what all these parts are and how they relate, let's take a look at a somewhat more labor-intensive way to do data
binding in Excel. This time, we are going to write a few lines of code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Another Technique for Creating Data-Bound Spreadsheets
Unlike our previous example, in this case we do not define ahead of time where the back-end data store is located; you
have to write a few lines of code to obtain the data.

Create a new Excel project, and choose Data > Microsoft Office Excel Data > XML > XML Source to display the XML
Source pane. As you can see, no XML schemas are mapped into this document, so click the XML Maps button, and add
the schema file shown in Listing 17.3.

Listing 17.3. A Schema for a Two-Table Dataset

<?xml version="1.0"?>
<xs:schema
 id="OrderDataSet"
 targetNamespace="http://myschemas/Order.xsd"
 xmlns="http://myschemas/Order.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Order">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Customer" type="xs:string"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="Book" minOccurs="0"
 maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Title" type="xs:string"
 minOccurs="0" />
 <xs:element name="ISBN" type="xs:string"
 minOccurs="0" />
 <xs:element name="Price" type="xs:double"
 minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

This is a dataset schema that defines an Order as consisting of a single Customer and any number of Books, where
each book has a Title, ISBN, and Price. In a database, this would be organized as two related tables, as you will see.

The structure of the XML schema then appears in the XML Source pane, and you can drag and drop elements of the
schema onto the spreadsheet. Try dragging the Customer node onto a cell. The single datum creates a named range
host control. If you then drag over the Book node, you get a List object. Also, Visual Studio has again created a dataset
source file. Visual Studio knows nothing about what the source of the data will be, however, so it does not generate any
adapters.

Next, let's add a binding source. From the Toolbox, find the binding source component in the Data category. Drag it
onto the spreadsheet. A binding source component appears in the component tray. Rename the binding source
OrderBookBindingSource, using the properties window. Then click the list object you created by dragging the Book node
onto the worksheet. In the Properties window, set the DataSource of the list object to the OrderBookBindingSource you
created.

If you compile and run the customization, not much will happen. The data binding source is just a dummy; no actual
data is in there. Also, there is no instance of the dataset on the components tray, so there is no chance that data will
ever be associated with this binding source as things stand now.

Notice in Figure 17.13 that the project system has added the schema to the project automatically; it will generate a
typed dataset for this schema and add it to the project as well. But that class is just source code; the project system
does not know yet what it is going to look like when compiled. Well, then, let's compile it. Build the project, but do not
run it.

Figure 17.13. The XML Source pane.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[View full size image]

Now if you pop open the toolbox, you will see a new set of tools under the name of the project. There should be an
OrderDataSet item. Drag it over onto the spreadsheet's component tray, and drop it; doing so adds an instance of the
typed dataset to the customized worksheet class.

Tip

Alternatively, you can add this typed dataset to your project before compiling if you open the ToolBox tab
on the left side of the designer, and drag and drop the dataset component onto the design surface. When
you drag and drop a dataset component, Visual Studio shows you a combo box that enables you to choose
among all available typed datasets referenced by or in your project. This combo box shows you the new
dataset even if you have not compiled your project.

We have gotten most of the parts we need: The binding source is connected to the list object, but the binding source
does not yet know that the dataset we have just dropped onto the component tray is important.

Click the book binding source in the component tray, and take a look at its Property pane. Start by clicking the
DataSource drop-down list, and navigate the tree view to select Other Data Sources > Sheet1 List Instances >
OrderDataSet1. Then click the DataMember property drop-down list, and select the Book table, as shown in Figure
17.4.

Figure 17.14. Setting the DataSource property of the binding source.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note

Do not forget to set the DataMember property when binding to a table. Without it, the binding data source
will attempt to extract the columns for the table from the dataset itself, not from the Book table. This will
fail at runtime.

We have gotten almost everything we need; the only thing left is to put some data in the typed dataset instance we
have added. Typically, we would fill the dataset by creating an adapter to talk to some external database. For this
example, we just fill the typed dataset manually, using the code in Listing 17.4. (You could also fill it by loading XML out
of a file or downloading XML from a Web service.)

Listing 17.4. Filling a Typed Dataset from Scratch

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 ' An order has a customer column
 Me.OrderDataSet1.Order.AddOrderRow("Vlad the Impaler")
 ' A book has a title, ISBN and price, and is associated with
 ' a particular order.
 Me.OrderDataSet1.Book.AddBookRow("Blood For Dracula", _
 "0-123-45678-9", 34.95, Me.OrderDataSet1.Order(0))
 Me.OrderDataSet1.Book.AddBookRow("Fang Attack!", _
 "9-876-54321-0", 14.44, Me.OrderDataSet1.Order(0))

 End Sub

End Class

Now build and execute the customized spreadsheet. You'll see in Figure 17.15 that when the Startup event runs and
creates the new row in the book table, the data binding layer automatically updates the list object.

Figure 17.15. The list object is bound to the data table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 17.15. The list object is bound to the data table.

Furthermore, data binding to list objects goes both ways; updating the data in the host control propagates the changes
back to the data table.

Complex and Simple Data Binding

What you have just seen is an example of complex data binding, so named not because it is particularly difficult, but
because many pieces of data are bound at once to a relatively complicated host control. Controls must be specially
written to support complex data binding. By contrast, simple data binding binds a single datum to a single property of a
host control.

Note that nothing happened to the Customer cell when we ran the code. Back in the designer, click the single-celled
range you mapped to the Customer property earlier, and take a look at its Properties pane. If you click the Advanced
DataBinding property in the Properties pane, the dialog box shown in Figure 17.16 displays.

Figure 17.16. Creating a simple data binding.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Select the property you want to bindValueand in the Binding drop-down list, you can select Other Data Sources >
Sheet1 List Instances > OrderDataSet1 > Order > Customer. Now we have binding information that associates the
Value property on the host control with the Customer field in the dataset. When we run the code, the value from the
dataset is copied automatically into the host control, and when the dataset is changed, the binding manager keeps the
host control up to date. Note in this example that we have not created a master-details relationship between the
customer and the orders; the list object will show all orders created by all customers. For an example of creating a
master-details relationship, see Chapter 21, "Working with XML in Excel."

It does not work the other way, however. Unlike in our earlier list object example, changing the value in the cell does
not propagate that change automatically back to the dataset. Why not?

In the Data Source Update Mode drop-down list in the top-left corner of the dialog box we just looked at, there are
three choices: Never, OnValidation, and OnPropertyChanged. The last choice certainly seems like a sensible choice;
when a property on the control changes, update the data source to keep it in sync.

Unfortunately, that does not work with Excel host controls. Why? Because you can create a binding to any old property
of a host control, but we cannot change the fact that the aggregated Range objects do not source any "some property
just changed" event that the binding manager can listen to. Windows Forms Controls do source such an event, but
Word and Excel host controls do not.

This means that you need to tell the binding manager explicitly that the data source needs to be updated instead of
relying on the control to inform its binding manager for you. Fortunately, doing this is simple. Double-click the mapped
range in the designer to create a Change event handler automatically, and fill it in with code that forces the binding to
update the source:

Private Sub OrderCustomerCell_Change(ByVal Target _
 As Excel.Range) Handles OrderCustomerCell.Change
 Me.OrderCustomerCell.DataBindings("Value").WriteValue()
End Sub

This line of code gets the changed data from the named range in this case back to the dataset. Next, you need to tell
the bound dataset to accept changes made to it (because of WriteValue) by calling AcceptChanges on the dataset:

 MyDataSet.AcceptChanges()

Alternatively, if you are using a BindingSource object, you can call EndEdit on the BindingSource object.

Data Binding in Word Documents

Word also supports creating XML mapped documents. Unlike the Excel designer, however, the Word designer does not
create typed datasets automatically from mapped schemas. If you want to create a typed dataset from a schema
mapped into Word, you have to add it to the project system yourself. Just add the schema XSD file to the project and
then ensure that in its Properties pane, the Custom Tool property is set to MSDataSetGenerator. Then the build system
will create the typed dataset for you.

Because simple data binding in Word is essentially the same as in Excel, and because Excel supports complex data
binding in the list object host control, this chapter does not talk much more about data binding in Word.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Caching Data in the Data Island
When a customized document with data-bound controls starts, the datasets have to be filled in somehow before the
controls display the data. As you saw at the beginning of this chapter, if you use the Data Sources pane to create data-
bound controls, Visual Studio automatically emits code to fill the datasets using custom-generated adapters:

Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 If Me.NeedsFill("NorthwindDataSet") Then
 Me.ProductsTableAdapter.Fill(Me.NorthwindDataSet.Products)
 End If

But under what circumstances would the dataset ever not need to be filled at startup? Consider a spreadsheet with a
dataset containing a single table. One worksheet has a single datum bound to a named range. If you save that
spreadsheet, only that one datum is going to be saved; all the other information in the dataset is just a structure in
memory at runtime that will be lost when the workbook is closed. The data is potentially going to have to be fetched
anew every time the worksheet host control starts.

One of the key benefits of Word and Excel documents is that they are useful even on machines that are not connected
to networks. (Working on a spreadsheet or document on a laptop on an airplane is the canonical scenario.) It would be
unfortunate indeed if a data-bound customized document required your users always to be connected.

Fortunately, VSTO solves this problem. Click the icon for the typed dataset in the component tray and then look at the
Properties pane for this component. A Cached property defaults to False. If you set it to TRue, when you save the
document, the VSTO runtime will turn the dataset into XML and store the XML in a data island inside the document.

The next time the document starts, the VSTO runtime detects that the data island contains a cached dataset and fills in
the dataset from the cache. The call to NeedsFill in the Startup event will then return False, and the startup code will not
attempt to fill in the data from the adapter. Essentially, the NeedsFill method returns False if the object was loaded from
the cache automatically, true otherwise.

Caching Your Own Data Types

You can cache almost any kind of data in the XML data island, not just datasets. To be cacheable by the VSTO runtime,
the data must meet the following criteria:

The data must be stored in a public member variable or property of a host item (a customized worksheet,
workbook, chart sheet, or document class).

If stored in a property, the property must have no parameters and must be both readable and writable.

The runtime type of the data must be dataset (or a subclass), data table (or a subclass), or any type
serializable by the System.Xml.Serialization.XmlSerializer object.

To tell Visual Studio that you would like to cache a member variable, just add the Cached attribute to its declaration.
Make sure that you check whether the member was already filled in from the cache; the first time the document is run,
there will be no data in the cache, so you have to fill in the data somehow. You could use the code in Listing 17.5, for
example.

Listing 17.5. Auto-Generated Table-Filling Code

Public Class Sheet1

 <Cached()> _
 Public CustomerName As String

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 If Me.NeedsFill("CustomerName") Then
 Me.CustomerName = "Unknown Customer"
 End If

 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

Dynamically Adding and Removing Cached Members from the Data Island

Cached data can be large. What if you decide that at some point you want to stop caching a particular dataset in the
data island? Or, conversely, what if you do not want to fill in a dataset automatically and store it in the cache on the
first run of the document, but you want to start caching a member based on some other criterion? It would be
unfortunate if the only way to tell VSTO to cache a member in the data island was to tag it with the Cached attribute at
design time.

Therefore, all customized view item classes generated by a VSTO project expose four handy functions that you can call
to query and manipulate the caching semantics, as follows:

Function NeedsFill(ByVal memberName As String) As Boolean

Function IsCached(ByVal memberName As String) As Boolean

Sub StartCaching(ByVal memberName As String)

Sub StopCaching(ByVal memberName As String)

NeedsFill, we have already seen. If the named member was initialized from the data island by the VSTO runtime when
the customization started, this returns False; otherwise, it returns true.

IsCached might seem like it is just the opposite of NeedsFill, but it is not. NeedsFill tells you whether the item in
question was loaded out of the data island; IsCached tells you whether the item will be saved to the data island when
the user saves the document.

StartCaching and StopCaching dynamically add members to and remove members from the set of members that will be
saved to the data island. It is illegal to call StartCaching on a member already in the cache or StopCaching on a
member not in the cache; use IsCached to double-check, if you need to. The same rules that apply to cached members
added to the cache by the Cached attribute apply to members added dynamically; only call StartCaching on public fields
or public readable/writable properties.

Note

If a cached member is set to Nothing at the time that the document is saved, the VSTO runtime assumes
that you intended to call StopCaching on the member, and it will be removed from the data island.

Advanced Topic: Using ICachedType

Suppose that you have a large cached dataset that you loaded out of the data island when the
customization started. Serializing a dataset into XML can be a time- and memory-consuming process, so
if there have been no changes to the dataset when the document is saved, the VSTO runtime is pretty
smart about skipping the serialization.

This is also important if the user closes Word or Excel without saving the document. The host application
needs to know whether to create the "Do you want to save changes?" dialog box. If the dataset is clean,
there are no changes to save, and the dialog box should not be created.

How can VSTO tell whether a custom class added to the cached members is dirty? The VSTO runtime can
track the Change events on a dataset or data table to tell whether they are dirty, but in general, any
other types simply have to be written out every time. To prevent the "Do you want to save?" dialog box,
the VSTO runtime must pessimistically serialize the object and compare it with the state that it loaded;
again, this is potentially time-consuming.

If you require more finely grained control over the caching process for a particular member, you can
implement the ICachedType interface. This interface enables you not only to hint to the VSTO runtime
whether the item needs to be reserialized, but also allows you to abort a save or load dynamically and
receive notification when the save or load is done. Listing 17.6 shows its members.

Listing 17.6. The ICachedType Interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 17.6. The ICachedType Interface

Public Interface ICachedType
 Sub AfterLoad()
 Sub AfterSave()
 Function BeforeLoad() As Boolean
 Function BeforeSave() As Boolean
 ReadOnly Property IsDirty As Boolean
End Interface

If you implement this interface on a particular class and then add a member containing an instance to
the class, the VSTO runtime will do the following:

Call your BeforeLoad method when the item is loaded out of the cache. If you return False, the
load will be aborted.

Call your AfterLoad method when the XMLSerializer is done loading your object. (If you are
tracking the dirty state of the object, this would be a good time to set it to clean.)

Call IsDirty before saving the document; if the object has no changes since it was last loaded or
saved, return False to avoid unnecessary expensive serializations.

Call BeforeSave before saving the member to the data island. If for some reason you determine
that the object is not in a state that can be saved, you can return False, and the object will be
removed from the cache.

Call AfterSave when the XMLSerializer is done saving the document to the data island. (Again,
this would be a good time to note that the object is clean.)

Manipulating the Serialized XML Directly

Chapter 18, "Server Data Scenarios," discusses how to view and edit the contents of the data island, start and stop
caching members, and so on without actually starting Word or Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Advanced ADO.NET Data Binding: Looking Behind the Scenes
The preceding section gave some of the flavor of ADO.NET data binding; we should describe more carefully what is
happening behind the scenes here. After all, you may want to write your own code to set up data binding rather than
rely on the code generated for you by the designer.

The first thing we need to do is describe what objects work together to bind data to controls. In the Excel data binding
example, many objects were involved. To begin with, there were five objects: the list object control, the XML mapped
range control, the dataset, and the two data tables. Then each of these objects was associated with more objects that
control the binding.

Each control implements IBindableComponent, so each control has a DataBindings property that returns an instance of
ControlBindingsCollection. This object maintains a collection of Binding objects, one for each simple data binding. The
collection is indexed by the name of the property, which has been simple-data-bound.

Each Binding object contains all the information necessary to describe the binding: what member of what data source is
bound to what property of what control, how the data is to be formatted, and so on.

One important member of the Binding object is the BindingManager Base property. The binding manager is the object
that actually does the work of the data binding: listening to changes in the data source and bound controls, and
ensuring that they stay synchronized.

The binding manager for data tables and other list data sources keeps track of the currency of the data source. If you
bind a list to a control that displays a single datum, the control will display the current item as determined by the
currency manager. (Because we'll almost always be talking about binding to list data sources, we use binding manager
and currency manager interchangeably throughout.)

Most of the time, each binding source has exactly one currency manager associated with it; two controls bound to the
same binding source share a currency manager and, therefore, share currency. In the event that you want to have two
controls bound to a single binding source, but with different currency, each control needs to have its own binding
context. A binding context is a collection that keeps track of pairs of binding sources and binding managers. Within each
context, every binding source has a unique binding manager, but two contexts can associate different managers with
the same source, thereby keeping two or more currencies in one binding source.

In typical scenarios, there is only one binding context, so this point is largely moot. Even when you have only one, the
binding context does have one use: In complex-data-binding, the binding context exposed by a list object lets you
obtain the currency manager for the binding source.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Binding-Related Extensions to Host Items and Host Controls
All data-bindable host items and host controls allow you to bind any single datum to any writable property. These
objects implement IBindableComponent, which defines two properties:

Property BindingContext As BindingContext

ReadOnly Property DataBindings As ControlBindings- Collection

Typically, you will have only one binding context. Should you need to have two controls bound to the same list data
source, but with different currency for each, you can create new binding contexts and assign them to the controls as
you want. Each host item and host control will raise a BindingContextChanged event if you do.

The ControlBindingsCollection object has many methods for adding and removing binding objects; there is one binding
for each bound property on the control. It also has a read-only indexer that maps the name of a property to its binding
object.

The list object aggregate in Excel has a large number of new properties, methods, and events added on to support
complex data binding. We described the view extensions earlier; now that we have covered how data binding works, we
can discuss the data model extensions.

New Data-Related List Object Host Control Properties and Methods

The two most important properties on the ListObject host control determine what data source is actually complex-data-
bound to the control:

 Public Property DataSource As Object
 Public Property DataMember As String

The reason that the list object divides this information into two properties is because some data sources contain
multiple lists, called members. You could set the DataSource property to a dataset, for example, and the DataMember
property to the name of a data table contained by the dataset.

The properties can be set in any order, and binding will not commence until both are set to sensible values. It usually is
easier, however, to use one of the SetDataBinding methods to set both properties at the same time:

Public Sub SetDataBinding(ByVal dataSource As Object)
Public Sub SetDataBinding(ByVal dataSource As Object, _
 ByVal dataMember As String)
Public Sub SetDataBinding(ByVal dataSource As Object, _
 ByVal dataMember As String, _
 ByVal ParamArray mappedColumns As String())

Notice that in the last overload, you can specify which columns in the data table are to be bound. Doing so proves quite
handy if you have a large, complicated table that you want to display only a portion of, or if you want to change the
order in which the columns display.

In some cases, the data source needs no further qualification by a data member, so you can leave it blank. In the
preceding example, the designer automatically generates code that creates a BindingSource proxy object, which needs
no further qualification. The generated code looks something like the code in Listing 17.7.

Listing 17.7. Setting up the Binding Source

Me.OrderBookBindingSource = New System.Windows.Forms.BindingSource()
Me.OrderBookBindingSource.DataMember = "Book"
Me.OrderBookBindingSource.DataSource = this.orderDataSet1
Me.BookList.SetDataBinding(Me.OrderBookBindingSource, "",
 "Title", "ISBN", "Price")

Because the binding source knows what table to proxy, the list object needs no further qualification.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note

Unlike the DataGrid control, the list object does not allow you to set the bound columns using a column
chooser in the list object's Properties pane. If you have a data-bound list object in the designer, however,
you can simply delete columns at design time; Visual Studio will update the automatically generated code
so that the deleted column is no longer bound when the code runs.

The information about which columns and tables are bound to which list objects is persisted in the document; you do
not need to rebind the list objects explicitly every time the customization starts. Should you want to ensure that all the
persisted information about the data bindings is cleared from the document, you can call the
ResetPersistedBindingInformation method:

 Public Sub ResetPersistedBindingInformation()

The data source of the list object must implement either IList or IList-Source. Should you pass an invalid object when
trying to set the data source, the list object will throw a SetDataBindingFailedException (as described later in this
chapter).

You can check whether the data source and data members have been set properly and the list object is complex-data-
bound by checking the IsBinding property:

 Public ReadOnly Property IsBinding As Boolean

Complex-data-bound list objects keep the currencythe selected row in the currency manager for the data sourcein sync
with the selected row in the host. You can set or get the currency of the data source's binding manager with this
property:

 Public Property SelectedIndex As Integer

Note that the selected index is 1-based, not 0-based; 1 indicates that no row is selected. When the selected index
changes, the list object raises the SelectedIndexChanged event. It raises IndexOutOfRangeException should you
attempt to set an invalid index.

If the AutoSelectRows property is set to TRue, the view's selection is updated whenever the currency changes:

Public Property AutoSelectRows As Boolean

Three other properties directly affect the appearance of data-bound list objects:

Public Property DataBoundFormat As XlRangeAutoFormat
Public Property DataBoundFormatSettings As FormatSettings
Public Property AutoSetDataBoundColumnHeaders As Boolean

The DataBoundFormat property determines whether Excel does automatic reformatting of the list object cells when the
data change. You have several dozen formats to choose among; the default is xlRangeAutoFormatNone. If you want no
formatting, choose xlRangeAutoFormatNone. You can also choose which aspects of the formatting you want to apply by
setting the bit flags in the DataBoundFormatSettings property (by default, all the flags are turned on):

Public Enum FormatSettings
 Alignment = 256
 Border = 4096
 Font = 16
 Number = 1
 Pattern = 65536
 Width = 1048576
End Enum

The AutoSetDataBoundColumnHeaders property indicates whether the list object data binding should automatically
create a header row in the list object that contains the column names. It is set to False by default.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

New Data-Related List Object Events

There are also several new data-related events on the List Object, listed in Table 17.1.

Table 17.1. New Events Associated with List Object
Event Name Delegate Type

DataSourceChanged EventHandler

DataMemberChanged EventHandler

SelectedIndexChanged EventHandler

DataBindingFailure EventHandler

BeforeAddDataBoundRow BeforeAddDataBoundRowEventHandler

ErrorAddDataBoundRow ErrorAddDataBoundRowEventHandler

OriginalDataRestored OriginalDataRestoredEventHandler

The DataSource and DataMember properties on the list object aggregate determine to what data source the list object
is complex-data-bound. The DataSourceChanged and DataMemberChanged events are raised when the corresponding
properties are changed.

The SelectedIndexChanged event is primarily a view event; when the user clicks a different row, the event is raised.
Note, however, that changing the selected row also changes the currency of the binding manager. This can be used to
implement master-detail event binding.

If for any reason an edit to the list object failsif the data binding layer attempts unsuccessfully to add a row or column
to the list, for example, or if a value typed in the list object cannot be copied back into the bound data sourcethe
DataBindingFailure event is raised.

The BeforeAddDataBoundRow event has two primary uses. Listing 17.8 shows its delegate.

Listing 17.8. The BeforeAddDataBoundRow Event Types

Public Delegate Sub BeforeAddDataBoundRowEventHandler(_
 ByVal sender As Object, _
 ByVal e As BeforeAddDataBoundRowEventArgs)

Public NotInheritable Class BeforeAddDataBoundRowEventArgs
 Inherits EventArgs
 Public Property Cancel As Boolean
 Public ReadOnly Property Item As Object
End Class

The item passed to the event handler is the row that is about to be added. The event can be used either to edit the row
programmatically just before it is added or to do data validation and cancel the addition should the data be somehow
invalid.

After the BeforeAddDataBoundRow event is handled, the list object attempts to commit the new row into the data
source. If that operation throws an exception for any reason, the list object deletes the offending row. Before it does so,
however, it gives you one chance to fix the problem by raising the ErrorAddDataBoundRow event. Listing 17.9 shows its
delegate.

Listing 17.9. The ErrorAddDataBoundRow Event Types

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 17.9. The ErrorAddDataBoundRow Event Types

Public Delegate Sub ErrorAddDataBoundRowEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorAddDataBoundRowEventArgs)

Public NotInheritable Class ErrorAddDataBoundRowEventArgs
 Inherits EventArgs

 Public ReadOnly Property InnerException As Exception
 Public ReadOnly Property Item As Object
 Public Property Retry As Boolean
End Class

The exception is copied into the event arguments; then the handler can analyze the exception, attempt to patch up the
row, and retry the commit operation. Should it fail a second time, the row is deleted. The exception thrown in this case
may be the new SetDataBindingFailedException, which is documented below.

A data source may have a fixed number of rows or a fixed number of columns. A data source can also contain read-only
data or read-only column names. Therefore, attempting to edit cells, add rows, remove rows, add columns, or remove
columns can all fail. In these cases, the list object disallows the change and restores the original shape. When it does
so, it raises the OriginalDataRestored event. Listing 17.10 shows its delegate.

Listing 17.10. The OriginalDataRestored Event Types

Public Delegate Sub OriginalDataRestoredEventHandler(_
 ByVal sender As Object, _
 ByVal e As OriginalDataRestoredEventArgs)

Public NotInheritable Class OriginalDataRestoredEventArgs
 Inherits EventArgs
 Public ReadOnly Property ChangeReason As ChangeReason
 Public ReadOnly Property ChangeType As ChangeType
End Class

Public Enum ChangeType
 ColumnAdded = 1
 ColumnHeaderRestored = 5
 ColumnRemoved = 2
 RangeValueRestored = 0
 RowAdded = 3
 RowRemoved = 4
End Enum

Public Enum ChangeReason
 DataBoundColumnHeaderIsAutoSet = 3
 ErrorInCommit = 4
 FixedLengthDataSource = 1
 FixedNumberOfColumnsInDataBoundList = 2
 Other = 5
 ReadOnlyDataSource = 0
End Enum

New Exception

Data binding can fail under many scenarios; the SetDataBindingFailedException is thrown in three of them:

If the data source of the list object is not a list data source

If the data source of the list object has no data-bound columns

If the list object cannot be resized when the data change

The exception class has these public methods and a Reason property, shown in Listing 17.11.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The exception class has these public methods and a Reason property, shown in Listing 17.11.

Listing 17.11. The SetDataBindingFailedException Types

Public NotInheritable Class SetDataBindingFailedException
 Inherits Exception
 Public Sub New()
 Public Sub New(ByVal message As String)
 Public Sub New(ByVal message As String, _
 ByVal innerException As Exception)
 Public ReadOnly Property Reason As FailureReason
End Class
Public Enum FailureReason
 CouldNotResizeListObject = 0
 InvalidDataSource = 1
 NoDataBoundColumnsSpecified = 2
End Enum

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
Using data binding effectively requires many objects to work well together: controls, datasets, data tables, binding
sources, binding contexts, binding managers, and so on. This chapterand indeed, this bookby no means describe all the
data binding tools at your disposal. Fortunately, the designer generates many of the objects that you need and
connects them sensibly. Still, understanding what is happening behind the scenes helps considerably when designing
data-driven applications.

The next chapter covers some more techniques for building data-driven applicationsin particular, how to manipulate the
data island programmatically without starting Word or Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 18. Server Data Scenarios

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Populating a Document with Data on the Server
Consider the following portion of an all-too-common server scenario. An authenticated user, perhaps a salesperson,
requests an Excel spreadsheet from a server. The spreadsheet is an expense report, and the server is an ASP, ASP.NET,
or SharePoint server. The server code looks up some information about the user from a database, Active Directory, or
Web service. Perhaps the server has a list of recent corporate credit card activity that it will prepopulate into the
expense list. The server starts Excel but keeps it "invisible" because there is no interactive user on the server. Then it
uses the Excel object model to insert the data into the appropriate cells, saves the result, and serves the resulting file
to the user.

This is a very suboptimal document life cycle for two reasons. First, it is completely unsupported and strongly
recommended against by Microsoft. Word and Excel were designed to be run interactively on client machines with
perhaps a few instances of each running at the same time. They were not designed to be scalable and robust in the face
of thousands of Web-server hits creating many instances on "headless" servers that allow no graphical user interfaces.

Second, this process thoroughly conflates the "view" with the data. The server needs to know exactly how the
document is laid out visually so that it can insert and remove the right fields in the right places. A simple change in the
document format can necessitate many tricky changes in the server code.

But automatically serving up documents full of a user's data is such a compelling scenario that many organizations have
ignored Microsoft's guidelines and built solutions around server-side manipulation of Word and Excel documents. Those
solutions tend to have serious scalability and robustness problems.

What can we do to mitigate these two problems?

Data-Bound VSTO Documents

As discussed in Chapter 17, "VSTO Data Programming," one way to solve this problem is to move the processing onto
the client. Just serve up a blank document that detects whether there is no cached data in its data island and fills its
datasets from the database server if so. When the client is ready to send the data back to the database, it connects
again and updates the database. No special document customization has to happen on the server at all, and the
database server is doing exactly what it was designed to do.

This solution has a major drawback, however: It requires that every user have access to the database. From a security
perspective, it might be smarter to give only the document server access to the database, thereby decreasing the
"attack surface" exposed to malicious hackers. What we really want to do is have the document ready to go with the
user data in it from the moment the user obtains the document but without having to start Word or Excel on the server.

XML File Formats

Avoiding the necessity of starting a client application on the server is key. Consider the first half of the scenario above:
The server takes an existing on-disk document and uses Excel to produce a modified version of the document. Excel is
just a means to an end; if you know what changes need to be made to the bits of the document and how to manipulate
the file format, you have no need to start the client application.

The Word and Excel binary file formats are opaque, but Word and Excel now support persisting documents in a much
more transparent XML format. It is not too hard to write a program that manipulates the XML document without ever
starting Word or Excel.

The XML file formats have some drawbacks, however. Although it certainly is faster and easier to manipulate the XML
format directly, parsing large XML files is still not blazingly fast. XML files tend to be quite a bit larger than the
corresponding binary files. And worst, although the Word XML format is full fidelity, the Excel format is not. Excel loses
information about the VSTO customization when it saves a document as XML.

Furthermore, unfortunately, the Word XML file format does not store the data island in human-readable, editable XML.
Rather, it serializes out the binary state that would have gone into the binary-file-format data island.

Also, we have not addressed the second problem that we identified earlier. Now we are not just manipulating the view;
we are manipulating the persisted state of the view to insert or extract data. It would be much cleaner if we could
simply get at the data island.

We need a way to solve these additional problems; we need a solution that works on binary non-human-readable files,
works with VSTO-customized documents, and cleanly separates view from data.

Accessing the Data Island

Chapter 17, "VSTO Data Programming," showed how to cache the state of public host item class members that contain

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 17, "VSTO Data Programming," showed how to cache the state of public host item class members that contain
data in a "data island" so that they could be persisted into the document as XML, independent of their user-interface
representation. The VSTO 2005 runtime library comes with a class, ServerDocument, that can read and write the data
island directly; it does not need to start Word or Excel on the server. The ServerDocument object can read and write
Word documents in binary or XML format and Excel documents in binary format.

Let's re-create the above document life cycle using the data island. Then we describe the advanced features of the
ServerDocument object model in more detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using ServerDocument and ASP.NET
Many pieces must be put together here, but each one is fairly straightforward. Here is what we are going to do:

1. Create an ASP.NET Web site.

2. Create a simple VSTO customized expense report spreadsheet that has a cached dataset that is data-bound to a
list object and a cached string assigned to a named range in the Startup handler.

3. Publish the expense-report template to the Web site.

4. Create an .aspx page that populates the data island (the cached dataset) before the document is served up.

5. As a bonus, we adapt that page and turn it into a custom file type handler.

In Visual Studio, select File > New > Web Site, and create a new ASP.NET site. Suppose for the sake of this example
that the server is http://accounting, and the Web site is http://accounting/expenses.

We come back to this Web site project later. For now, close it, and create a VSTO 2005 Excel spreadsheet project. Let's
start by putting together a simple customization with one named range and one list object control bound to an untyped
dataset. We will make the user's name and the expense dataset cached, so that the server can put the data in the data
island when the document is served up. Figure 18.1 shows the spreadsheet with a named range and a list object. You
can also see in Figure 18.1 the code behind Sheet1. The code defines a String called EmpName that is cached, as well as a
DataSet called Expenses that is cached. In the Startup handler for Sheet1, the code sets the Value2 property of the
NamedRange called EmployeeName to the cached value EmpName. It also data-binds the Expenses dataset to the ListObject
called List1.

Figure 18.1. A simple expense-report worksheet with two cached class members:
EmpName and Expenses.

[View full size image]

Choose Build > Publish, and use the Publishing Wizard to build the spreadsheet and put it up on
http://accounting/expenses. Doing so sets up the document so that it points to the customization on the Web server
rather than the local machine. (Chapter 20, "Deployment," covers deployment scenarios in more detail.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rather than the local machine. (Chapter 20, "Deployment," covers deployment scenarios in more detail.)

For the customization to run on the client machine, you need to have a security policy set to trust the server. Chapter
19, ".NET Code Security," covers the whys and wherefores of security policy issues in detail; for now, just trust us that
you need a security policy. On the client machine, you can use the command-line caspol.exe tool or the mscorcfg.msc
management tool to create a machine-level policy that grants full trust to the customization DLL. Here, we use
caspol.exe to add a new policy that trusts content from a directory on the accounting Web server:

> caspol -ag 1.2 -url http://accounting/expenses/* FullTrust

Microsoft (R) .NET Framework CasPol 2.0
Copyright (C) Microsoft Corporation. All rights reserved.
The operation you are performing will alter security policy.
Are you sure you want to perform this operation? (yes/no)
yes
Added union code group with "-url" membership condition to the
Machine level.
Success

Just to make sure that works, tell CASPOL to display the security policy:

> caspol -lg

Microsoft (R) .NET Framework CasPol 2.0
Copyright (C) Microsoft Corporation. All rights reserved.

Security is ON
Execution checking is ON
Policy change prompt is ON

Level = Machine

Code Groups:

1. All code: Nothing
 1.1. Zone - MyComputer: FullTrust
 1.1.1. StrongName -: FullTrust
 1.1.2. StrongName -: FullTrust
 1.2. Zone - Intranet: LocalIntranet
 1.2.1. All code: Same site Web
 1.2.2. All code: Same directory FileIO - 'Read, PathDiscovery'
 1.2.3. Url - http://accounting/expenses/*: FullTrust
 1.3. Zone - Internet: Internet
 1.3.1. All code: Same site Web
 1.4. Zone - Untrusted: Nothing
 1.5. Zone - Trusted: Internet
 1.5.1. All code: Same site Web
Success

We have not set up the handler on the server yet, but do a quick sanity check on the client to make sure that the
document can be downloaded and that the customization run on the client machine. There will not be any data in it yet;
let's take care of that next.

Setting Up the Server

Use Visual Studio to open the expenses Web site created earlier, and you will see that the deployed files for this
customized spreadsheet have shown up. Now all we need to do is write a server-side page that loads the blank
document into memory and fills in its data island before sending it out over the wire to the client. Right-click the Web
site, and choose Add New Item. Add a new .aspx Web form.

We need to add a reference to Microsoft.VisualStudio.Tools.Applications.Runtime.DLL to get at the ServerDocument
class. After we do that, the code is fairly straightforward right up until the point where we set the serialized state. We
discuss how that works in more detail later in this chapter. For now, take a look at the code in Listing 18.1.

Listing 18.1. An ASPX Web Form That Edits the Data Island on the Server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 18.1. An ASPX Web Form That Edits the Data Island on the Server

<%@ Page Language="VB" AutoEventWireup="true"%>
<%@ Import Namespace="System.Configuration" %>
<%@ Import Namespace="System.Web.Configuration" %>
<%@ Import Namespace="System.Data"%>
<%@ Import Namespace="System.Data.Common"%>
<%@ Import Namespace="System.Data.OleDb"%>
<%@ Import Namespace="System.IO"%>
<%@ Import Namespace="Microsoft.VisualStudio.Tools.Applications.Runtime"%>

<script runat=server>

 Const Forbidden As Integer = 403

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As EventArgs)
 ' If the user is not authenticated, then we do not want
 ' to give the user any expense report at all.
 If Not User.Identity.IsAuthenticated Then
 Response.StatusCode = Forbidden
 Response.End()
 Return
 End If

 ' If we do have a username, fetch the user's personal data
 ' from the database (or Web service or other data source).

 Dim dataset As DataSet = New DataSet()
 Dim datatable As DataTable = dataset.Tables.Add("Expenses")
 Dim adapter As OleDbDataAdapter = New OleDbDataAdapter()

 ' Authenticated usernames are hard to malform. If there is a
 ' chance that a string could be provided by a hostile caller,
 ' do not use string concatenation without vetting the string
 ' carefully. Better still, avoid SQL injection attacks
 ' entirely by using stored procedures.

 adapter.SelectCommand = New OleDbCommand(_
 "SELECT [Date], Description, Cost " & _
 "FROM Expenses WHERE EmployeeName = """ & _
 "User.Identity.Name""")

 ' It's a good idea to store connection strings in the
 ' web.config file both for security they can be
 ' encrypted in web.config and for convenience
 ' you can update the config file when the database server
 ' changes.

 Dim connectionString As String = _
 ConfigurationManager.ConnectionStrings(_
 "expenses").ConnectionString

 adapter.SelectCommand.Connection = _
 New OleDbConnection(connectionString)
 adapter.Fill(datatable)

 ' We do not want to modify the file on disk; instead,
 ' we'll read it into memory and add the user's
 ' information to the in-memory document before we serve it.

 Dim file As FileStream = New FileStream(_
 "c:\INetPub\WWWRoot\expenses\ExpenseReport.XLS", _
 FileMode.Open, FileAccess.Read)
 Dim template As Byte()
 Try
 template = New Byte(file.Length) {}
 file.Read(template, 0, CType(file.Length, Integer))
 Finally
 file.Close()
 End Try

 ' Finally, we'll create a ServerDocument object to
 ' manipulate the in-memory copy. Because it only has
 ' a raw array of bytes to work with, it needs to be
 ' told whether it is looking at an .XLS, .XLT, .DOC,
 ' or .DOT.

 Dim sd As ServerDocument = New ServerDocument(_
 template, ".XLS")
 Try
 sd.CachedData.HostItems("ExpenseReport.Sheet1"). _
 CachedData("EmpName").SerializeDataInstance(_
 User.Identity.Name)
 sd.CachedData.HostItems("ExpenseReport.Sheet1"). _
 CachedData("Expenses").SerializeDataInstance(dataset)
 sd.Save()

 ' "template" still has the original bytes.
 ' Get the new bytes.
 template = sd.Document
 Finally
 sd.Close()
 End Try

 Response.ClearContent()
 Response.ClearHeaders()
 Response.ContentType = "application/vnd.ms-excel"
 Response.OutputStream.Write(template, 0, template.Length)
 Response.Flush()
 Response.Close()
 End Sub

</script>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</script>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An Alternative Approach: Create a Custom Handler
It seems a little odd to go to an .aspx page to download a spreadsheet or document. An alternative approach to solving
the problem of customizing documents on the server is to intercept requests for particular file extensions and customize
the response before it goes out to the client.

This time, instead of creating a new .aspx Web form, create a new .ashx handler (see Figure 18.2).

Figure 18.2. Creating a custom handler item.

[View full size image]

The code in Listing 18.2 is essentially identical; the only difference is that because a handler is not an instance of a Web
page, we do not have any of the standard page objects, such as Response, Request, and User. Fortunately, the context
of the page request is encapsulated in a special "context" object that is passed to the handler.

Listing 18.2. Creating a Custom Handler That Edits the Data Island

<%@ WebHandler Language="VB" Class="XLSHandler" %>

Imports System
Imports System.Data
Imports System.Data.Common
Imports System.Data.OleDb
Imports System.IO
Imports System.Web
Imports Microsoft.VisualStudio.Tools.Applications.Runtime

Public Class XLSHandler
 Implements IHttpHandler

 Const Forbidden As Integer = 403

 Public Sub ProcessRequest(ByVal context As HttpContext) _
 Implements System.Web.IHttpHandler.ProcessRequest

 If Not context.User.Identity.IsAuthenticated Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If Not context.User.Identity.IsAuthenticated Then
 context.Response.StatusCode = Forbidden
 context.Response.End()
 Return
 End If

 Dim dataset As DataSet = New DataSet()
 Dim datatable As DataTable = dataset.Tables.Add("Expenses")
 Dim adapter As OleDbDataAdapter = New OleDbDataAdapter()

 adapter.SelectCommand = New OleDbCommand(
 "SELECT [Date], Description, Cost FROM " & _
 "Expenses WHERE EmployeeName = """ & _
 "context.User.Identity.Name""")

 Dim connectionString As String = _
 ConfigurationManager.ConnectionStrings(_
 "expenses").ConnectionString
 adapter.SelectCommand.Connection = _
 New OleDbConnection(connectionString)
 adapter.Fill(datatable)

 Dim file As FileStream = New FileStream(_
 "c:\INetPub\WWWRoot\expenses\ExpenseReport.XLS", _
 FileMode.Open, FileAccess.Read)
 Dim template() As Byte
 Try
 template = New Byte(file.Length) {}
 file.Read(template, 0, CType(file.Length, Integer))
 Finally
 file.Close()
 End Try

 Dim sd As ServerDocument = New ServerDocument(_
 template, ".XLS")
 Try
 sd.CachedData.HostItems("ExpenseReport.Sheet1"). _
 CachedData("EmpName").SerializeDataInstance(_
 context.User.Identity.Name)
 sd.CachedData.HostItems("ExpenseReport.Sheet1"). _
 CachedData("Expenses").SerializeDataInstance(_
 dataset)
 sd.Save()

 ' "template" still has the original bytes.
 ' Get the new bytes.
 template = sd.Document
 Finally
 sd.Close()
 End Try

 context.Response.ContentType = "application/vnd.ms-excel"
 context.Response.OutputStream.Write(_
 template, 0, template.Length)

 End Sub

 Public ReadOnly Property IsReusable() As Boolean _
 Implements System.Web.IHttpHandler.IsReusable

 Get
 Return False
 End Get

 End Property

End Class

Finally, to turn this on, add the information about the class and assembly name for the handler to your Web.config file
in the application's virtual root, as shown in Listing 18.3. If you want to debug the server-side code, you can add
debugging information in the configuration file, too.

Listing 18.3. A Web Configuration File to Turn on the Handler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 18.3. A Web Configuration File to Turn on the Handler

<configuration>
 <system.web>
 <httpHandlers>
 <add verb="GET" path="ExpenseReport.xls"
 type="XLSHandler, XLSHandler"/>
 </httpHandlers>
 <compilation debug="true"/>
 </system.web>
</configuration>

Now when the client hits the server, the handler will intercept the request, load the requested file into memory, contact
the database, create the appropriate dataset, and serialize the dataset into the data island in the expense reportall
without starting Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Handy Client-Side ServerDocument Utility
The ServerDocument object was aptly named. It was primarily designed for exactly the scenario we have just explored:
writing information into a document on a server. It can do a lot more, however, from reading the data back out of a
document to updating the deployment information inside a document to adding customizations to documents. We
discuss the portions of the ServerDocument object model used in deployment scenarios in Chapter 20, "Deployment,"
and spend the rest of this chapter describing the data-manipulating tools in the ServerDocument in more detail.

Let's take a look at another illustrative use of the ServerDocument object; then we'll give a more complete explanation
of all its data properties and methods. Listing 18.4 gives a handy console application that dumps out the cached data
manifest and serialized cached data in a document.

Listing 18.4. Creating a Cache Viewer with ServerDocument

Imports Microsoft.VisualStudio.Tools.Applications.Runtime
Imports System
Imports System.IO
Imports System.Text

Module Module1

 Sub Main(ByVal args As String())
 If args.Length <> 1 Then
 Console.WriteLine("Usage:")
 Console.WriteLine(" CacheViewer.exe myfile.doc")
 Return
 End If

 Dim filename As String = args(0)
 Dim doc As ServerDocument = Nothing

 Try
 doc = New ServerDocument(filename, False, FileAccess.Read)
 Console.WriteLine(vbCrLf & "Cached Data Manifest")
 Console.WriteLine(doc.CachedData.ToXml())

 Dim view As CachedDataHostItem
 For Each view In doc.CachedData.HostItems
 Dim item As CachedDataItem
 For Each item In view.CachedData
 If item.Xml <> Nothing And item.Xml.Length <> 0 Then
 Console.WriteLine(vbCrLf & "Cached Data: " & _
 view.Id & "." & item.Id & " xml" & vbCrLf)
 Console.WriteLine(item.Xml)
 End If
 If item.Schema <> Nothing And item.Schema.Length <> 0 Then
 Console.WriteLine(vbCrLf & "Cached Data: " & _
 view.Id & "." & item.Id & " xsd" & vbCrLf)
 Console.WriteLine(item.Schema)
 End If
 Next
 Next
 Catch ex As CannotLoadManifestException
 Console.WriteLine("Not a customized document:" + filename)
 Console.WriteLine(ex.Message)
 Catch ex As FileNotFoundException
 Console.WriteLine("File not found:" + filename)
 Catch ex As Exception
 Console.WriteLine("Unexpected Exception:" + filename)
 Console.WriteLine(ex.ToString())
 Finally
 If Not doc Is Nothing Then
 doc.Close()
 End If
 End Try

 End Sub

End Module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Module

After you compile this into a console application, you can run the console application on the command line and pass the
name of the document you want to view. The document must have a saved VSTO data island in it for anything
interesting to happen.

Now that you have an idea of how the ServerDocument object model is used, we can talk about it in more detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ServerDocument Object Model
The ServerDocument object model enables you to read and write all the deployment information and cached data
stored inside a customized document. This section goes through all the data properties and methods in this object
model, describing what they do, their purpose, and why they look the way they do. Chapter 20, "Deployment,"
describes the deployment portions of the object model.

Warning

Before we begin, note that the ServerDocument object model is what we like to call an "enough rope"
object model. Because this object model enables you to modify all the information about the customization,
it is quite possible to create documents with inconsistent cached data or nonsensical deployment
information. The VSTO runtime engine does attempt to detect malformed customization information and
throw the appropriate exceptions, but still exercise caution when using this object model.

ServerDocument Class Constructors

The ServerDocument class has seven constructors, but five of them are mere syntactic sugars for these two:

Public Sub New(ByVal bytes As Byte(), ByVal fileType As String)

Public Sub New(ByVal documentPath As String, _
 ByVal onClient As Boolean, ByVal access As FileAccess)

These correspond to the two primary ServerDocument scenarios: You want to read/edit a document either in memory
or on disk. Note that these two scenarios cannot be mixed; if you start by opening a file on disk, you cannot treat it as
an array of bytes in memory, and vice versa.

The in-memory version of the constructor takes a string that indicates the type of the file. Because all you are giving it
is the bytes of the file, as opposed to the name of the file, the constructor does not know whether this is an .XLS, .XLT,
.DOC, .DOT, or .XML. Pass in one of those strings to indicate what kind of document this is. If you pass in .XML, the
document you pass must be in the WordprocessingML (WordML) format supported by Word. ServerDocument cannot
read documents saved in the Excel XML format.

The byte array passed in must be an image of a customized document. The ServerDocument object model does not
support in-memory manipulation of not-yet-customized documents.

The on-disk version takes the document path, from which it can deduce the file type. The onClient flag indicates
whether your code is running in a client scenario (such as the document viewer sample above) or a server scenario
(such as the customized data-island-generation example at the beginning of this chapter).

Why does the ServerDocument care whether it is running on a client or a server? Most of the time, it does not care.
There is one important scenario, however: What if you pass in a document that does not yet have a customization?

In that case, the ServerDocument object attempts to add customization information to the uncustomized document.
Adding the customization information requires the ServerDocument class to start Word or Excel, load the document into
the application, and manipulate it using the Office object model. Because doing that is a very bad idea in server
scenarios, the ServerDocument throws an exception if given an uncustomized document on the server.

The file access parameter can be FileAccess.Read or FileAccess.ReadWrite. If it is read-only, attempts to change the document
will fail. (Opening an uncustomized document on the client in read-only mode is not a very good idea; the attempt to
customize the document will fail.)

The other in-memory constructor is provided for convenience; it simply reads the entire stream into a byte array for
you:

Public Sub New(ByVal stream As Stream, ByVal fileType As String)

Finally, the three remaining on-disk constructors act just like the three-argument constructor above, with the onClient
flag defaulting to False if omitted and the file access defaulting to ReadWrite if omitted:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

flag defaulting to False if omitted and the file access defaulting to ReadWrite if omitted:

Public Sub New(ByVal documentPath As String, _
 ByVal onClient As Boolean)
Public Sub New(ByVal documentPath As String, _
 ByVal access As FileAccess)
Public Sub New(ByVal documentPath As String)

Saving and Closing Documents

The ServerDocument object has two important methods and one property used to shut down a document:

Public Sub Save()
Public ReadOnly Property Document As Byte()
Public Sub Close()

If you opened the ServerDocument object with an on-disk document, the Save method writes the changes you have
made to the application manifest, cached data manifest, or data island to disk. If you opened the document using a
byte array or stream, the changes are saved into a memory buffer that you can access with the Document property.
Note that it is an error to read the Document property if the file was opened on disk.

It is good programming practice to close the ServerDocument object explicitly when you have finished with it. Large
byte arrays and file locks are both potentially expensive resources that will not be reclaimed by the operating system
until the object is closed (or, equivalently, disposed by either the garbage collector or an explicit call to
IDisposable.Dispose).

Server-side users of ServerDocument are cautioned to be particularly careful when opening on-disk documents for
read-write access. It is a bad idea to have multiple writers (or a single writer and one or more readers) trying to access
the same file at the same time. The ServerDocument class will do its best in this situation; it will make "shadow copy"
backups of the file so that readers can continue to read the file without interference while writers write. Making shadow
copies of large files can prove time-consuming, however.

If you do find yourself in this situation, consider doing what we did in the first example in this chapter: Read the file into
memory, and edit it in memory rather than on disk. As long as the on-disk version is only read, it will never need to be
shadow-copied and runs no risk of multiple writers overwriting one another's changes.

Static Helper Methods

Developers typically want to perform a few common scenarios with the ServerDocument object model; the class
exposes some handy static helper methods so that you do not have to write the boring boilerplate code. All these
scenarios work only with on-disk filesnot with "in-memory" files. The following static methods are associated with
ServerDocument:

Public Shared Function AddCustomization(_
 ByVal documentPath As String, ByVal assemblyName As String, _
 ByVal deploymentManifestPath As String, _
 ByVal applicationVersion As String, _
 ByVal makePathsRelative As Boolean, _
 ByRef nonpublicCachedDataMembers As String()) As String

Public Shared Sub RemoveCustomization(_
 ByVal documentPath As String)

Public Shared Function IsCustomized(_
 ByVal documentPath As String) As Boolean

Public Shared Function IsCacheEnabled(_
 ByVal documentPath As String) As Boolean

AddCustomization

AddCustomization takes an uncustomized document and adds customization information to it. It creates a new
application manifest and cached data manifest. If AddCustomization is given an already-customized document, the
customization information is destroyed and replaced with the new information. This allows you to create new
customized documents on a machine without Visual Studio; you could create the customization assemblies on a
development box and then apply the customizations to documents on a different machine.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note

AddCustomization should be called only on client machines, never on servers, because it always starts
Word or Excel to embed the customization information in the uncustomized document.

The document and assembly paths are required; the deployment manifest path may be Nothing or empty if you do not
want to use a deployment manifest to manage updating your customization.

The application version string must be a standard version string of the form "1.2.3.4". Note that this is the version
number of the customization itself, not the version number of the assembly. (It may be wise, however, to use the
version number of the assembly as the version number of your customized document application.)

If the makePathRelative flag is set to true, the assembly location written into the customization information will be relative
to the document location. If the document location is a UNC path such as \\accounting\documents\budget.doc, for
example, and the assembly location is \\accounting\documents\dlls\budget.dll, the assembly location written into the
document will be dlls\budget.dll, not the full path. Otherwise, if makePathRelative is False, the assembly location is written
exactly as it is passed in.

The AddCustomization method loads the assembly and scans it for document/worksheet classes that contain members
marked with the Cached attribute so that it can emit information into the cached data manifest indicating that these
members need to be filled when the customization starts for the first time. Because the VSTO runtime will be unable to
fill in nonpublic members of these classes, the AddCustomization method returns the names of such members to help
you catch this mistake early.

RemoveCustomization

RemoveCustomization removes all customization information from a document, including all the cached data in the data
island. It also starts Word/Excel, so do not call it on a server. Calling RemoveCustomization on an uncustomized
document results in an invalid operation exception.

IsCustomized and IsCacheEnabled

IsCustomized and IsCacheEnabled are similar but subtly different because of a somewhat obscure scenario. Suppose
that you have a customized document that contains cached data in the data island, and you use the ServerDocument
object model to remove all information about what document/worksheet classes need to be started. In this odd
scenario, the document will not run any customization code when it starts; therefore, there is no way for the document
to access the data island at runtime. Essentially, the document has become an uncustomized document with no code
behind it, but all the data is still sitting in the data island. The VSTO designers anticipated that someone might want to
remove information about the code while keeping the data island intact for later extraction via the ServerDocument
object model.

IsCustomized returns true if the document is customized and will attempt to run code when it starts. IsCacheEnabled
returns TRue if the document is customized at all and, therefore, has a data island, regardless of whether the
customization information says what classes to start when the document is loaded. (Note that IsCacheEnabled says
nothing about whether the data island actually contains any datajust whether the document supports caching.)

Cached Data Objects, Methods, and Properties

As you saw in our handy utility above, a customized document's data island contains a small XML document called the
cached data manifest, which describes the classes and properties in the cache (or, if the document is being run for the
first time, the properties that need to be filled). The cached data is organized hierarchically; the manifest consists of a
collection of view class elements, each of which contains a collection of items corresponding to cached members of the
class. Here is a cached data manifest that has one cached member of one view class. The cached data member contains
a typed DataSet:

<cdm:cachedDataManifest cdm:revision="1">
 <cdm:view cdm:viewId="ExcelCached.Sheet1">
 <cdm:dataInstance cdm:dataId="NorthwindDataSet"
 cdm:dataType="ExcelCached.NorthwindDataSet,
 ExcelCached, Version=1.0.1854.30463, Culture=neutral,
 PublicKeyToken=null" />
 </cdm:view>
</cdm:cachedDataManifest>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Having a collection of collections is somewhat more complex than just having a collection of cached items. The cached
data manifest was designed this way to avoid the ambiguity of having two host item classes (such as Sheet1 and
Sheet2) each with a cached property named the same thing. Because each item is fully qualified by its class, there is no
possibility of name collisions.

The actual serialized data is stored in the data island, not in the cached data manifest. In the object model, however, it
is more convenient to associate each data instance in the cached data manifest with its serialized state.

The Cached Data Object Model

To get at the cached data manifest and any serialized data in the data island, the place to start is the CachedData
property of the ServerDocument class. The CachedData object returns the CachedDataHostItemCollection, which
contains a CachedDataHostItem for each host item in your customized document. A CachedDataHostItem is a collection
of CachedDataItem objects that correspond to each class member variable that has been marked with the Cached
attribute. Figure 18.3 shows an object model diagram for the objects returned for the example in Figure 18.1.

Figure 18.3. The cached data object model for the example in Figure 18.1.

There are no constructors for any of the types we will be discussing. The CachedData class has four handy helper
methods (Clear, FromXml, ToXml, and ClearData) and a collection of CachedDataHostItem:

Public Sub Clear()
Public Sub FromXml(ByVal cachedDataManifest As String)
Public Function ToXml() As String
Public Sub ClearData()
Public ReadOnly Property HostItems As _
 CachedDataHostItemCollection

Like the application manifest, the Clear method throws away all information in the cached data manifest; the FromXml
method clears the manifest and repopulates it from the XML state; and the ToXml method serializes the manifest as an
XML string.

The ClearData method throws away all information in the data island but leaves all the entries in the cached data
manifest. When the document is started in the client, all the corresponding members will be marked as needing to be
filled.

The CachedDataHostItem Collection

The HostItems collection is a straightforward extension of CollectionBase that provides a simple strongly typed
collection of CachedDataHostItem objects. (It is called "host items" because these always correspond to items provided
by the hosting application, such as Sheet1, Sheet2, or ThisDocument.) The cached data host item collection has the
following methods and properties:

Public Function Add(ByVal hostItemId As String) _
 As CachedDataHostItem
Public Function Contains(ByVal hostItemId As String) As Boolean
Public Sub CopyTo(ByVal hostItems As CachedDataHostItem(), _
 ByVal index As Integer)
Public Function IndexOf(ByVal hostItem As CachedDataHostItem) _
 As Integer
Public Sub Insert(ByVal index As Integer, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Sub Insert(ByVal index As Integer, _
 ByVal value As CachedDataHostItem)
Public Sub Remove(ByVal hostItem As CachedDataHostItem)
Public Sub Remove(ByVal hostItemId As String)
Public ReadOnly Property Item(ByVal index As Integer) _
 As CachedDataHostItem
Public ReadOnly Property Item(ByVal hostItemId As String) _
 As CachedDataHostItem

The hostItemId argument corresponds to the namespace-qualified name of the host item class. Be careful when creating
new items to ensure that the class identifier is fully qualified.

The CachedDataHostItem Object

Each CachedDataHostItem object corresponds to a host item in your document and has a CachedData property that
returns a collection of CachedDataItem objects that correspond to cached members of the customized host item class:

Public Function Add(ByVal dataId As String, _
 ByVal dataType As String) As CachedDataItem
Public Function Contains(ByVal dataId As String) As Boolean
Public Sub CopyTo(ByVal items As CachedDataItem(), _
 ByVal index As Integer)
Public Function GetEnumerator() As CachedDataItemEnumerator
Public Function IndexOf(ByVal data As CachedDataItem) _
 As Integer
Public Sub Insert(ByVal index As Integer, ByVal item _
 As CachedDataItem)
Public Sub Remove(ByVal data As CachedDataItem)
Public Sub Remove(ByVal dataId As String)
Public ReadOnly Property Item(ByVal dataId As String) _
 As CachedDataItem
Public ReadOnly Property Item(ByVal index As Integer) _
 As CachedDataItem

You may wonder why it is that you must specify the type of the property when adding a new element via the Add
method. If you have a host item class declared like the following lines of code, surely the name of the class and
property is sufficient to deduce the type, right?

 Public Class Sheet1
 <Cached()> Public myData As NorthwindDataSet

In this case, it would be sufficient to deduce the compile-time type, but it would not be if the compile-time type were
Object. When the document is run in the client, and the cached members are deserialized and populated, the
deserialization code in the VSTO runtime needs to know whether the runtime type of the member is a dataset,
datatable, or other serializable type.

The CachedDataItem Object

The identifier of a CachedDataItem is the name of the property or field on the host item class that was marked with the
Cached attribute. The CachedDataItem itself exposes the type and identifier properties

Public Property DataType As String
Public Property Id As String

as well as two other interesting properties and a helper method:

Public Property Schema As String
Public Property Xml As String
Public Sub SerializeDataInstance(ByVal value As Object)

Setting the Xml and Schema properties correctly can be slightly tricky; the SerializeDataInstance method takes an Object
and sets the Xml and Schema properties for you. If you do not have an instance of the object on the server, however,
and want to manipulate just the serialized XML strings, you must understand the rules for how to set these properties
correctly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

correctly.

The first thing to note is that the Schema property is ignored if the DataType is not a DataTable or DataSet (or subclass
thereof). If you are serializing out another type via XML serialization, there is no schema, so leave it blank. On the
other hand, if you are writing out a DataSet or DataTable, you must specify the schema.

Second, the data island may contain DataSets and DataTables in either in regular raw XML form or in diffgram form.
The regular format that you are probably used to seeing XML-serialized DataSets in looks something like this:

<DataSet1 xmlns="http://www.foocorp.org/schemas/customers.xsd">
 <dbo_Customers>
 <Name>Maria Anders</Name>
 <Address>Obere Str. 57</Address>
 </dbo_Customers>
 <dbo_Customers>
 <Name>Ana Trujillo</Name>
 <Address>Avda. de la Constitución 2222</Address>
 </dbo_Customers>

And so on. A similar DataSet in diffgram form looks different:

<diffgr:diffgram>
 <NorthwindDataSet
 xmlns="http://www.foocorp.org/schemas/NorthwindDataSet.xsd">
 <Customers diffgr:id="Customers1" msdata:rowOrder="0">
 <CustomerID>ALFKI</CustomerID>
 <CompanyName>Alfreds Futterkiste</CompanyName>
 <ContactName>Maria Anders</ContactName>

You can store cached DataSets and DataTables by setting the Xml property to either format. By default, the VSTO
runtime saves them in diffgram format. Why? Because the diffgram format not only captures the current state of the
DataSet or DataTable, but also records how the object has changed because it was filled in by the data adapter. That
means that when the object's data is poured back into the database, the adapter can update only the rows that have
changed instead of having to update all of them.

Be Careful

One final caution about using the ServerDocument object model to manipulate the cache: The cache should be all or
nothing. Either the cached data manifest should have no data items with serialized XML or they should all have XML.
The VSTO runtime does not support scenarios in which some cached data items need to be filled and others do not. If,
when the client runtime starts, it detects that the cache is filled inconsistently, it will assume that the data island is
corrupted and start fresh, refilling everything. If you need to remove some cached data from a document, remove the
entire data item from the host item collection; do not just set the XML property to an empty string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
The ServerDocument object model was primarily designed to enable server-side code to edit the contents of the data
island before serving up a document, but it does much more. You can use it to read or write the data island and to add
customization assemblies to uncustomized documents. The latter requires ServerDocument to start Word or Excel,
however, so doing this on a server is a bad idea. Chapter 20, "Deployment," examines another use for the
ServerDocument: editing the deployment information inside a customized document.

The ServerDocument object model provides fine-grained control over the information stored in a document and
assumes that you know what you're doing. Be very careful, and test your scenarios thoroughly when using the
ServerDocument object model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 19. .NET Code Security
IN THE OLD DAYSback in the 20th centurythe primary way that we got software onto our machines went something like
this: Go to software store; buy shrink-wrapped box containing disks; insert said disks into machine; install software. If
that is the only way you put software on your machine, it is pretty hard to get a computer virusnot impossible, but
pretty hard.

That world is long gone; code in the 21st century is both highly mobile and highly componentized. Generally,
"monolithic" applications such as Word and Excel now make extensive use of third-party components and store
customized code behind documents. Many machines are constantly connected to the Internet, a worldwide network
chock full of evil hackers.

Ubiquitous networking and rich customization of everything from Web pages to spreadsheets are undoubtedly enabling
technologies, but they come with the price of an enormous increase in the size of the attack surface available to
malicious attackers. Anyone who has ever received a mass-mail virus e-mail or been infected by an Excel macro virus
knows of what we speak!

Fortunately, the .NET Framework was designed from day one to provide tools to help mitigate the vulnerabilities
inherent in modern software. This chapter starts with an overview of the .NET security system to explain some key
concepts. Then the chapter takes a detailed look at how to use the .NET security system to keep yourself and your
users productive while keeping attackers unproductive.

This discussion is especially relevant to VSTO because VSTO has the security model that no code is allowed to run by
default. You always have to configure the .NET security system to trust a VSTO customization or add-in you build before
it will run on a user's machine.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Code-Access Security Versus Role-Based Security
The immediate and obvious example of a computer security system is the one most of us encounter the first thing in
the morning: the login prompt. The purpose of the login prompt is to authenticate you, to verify your identity somehow.
After your identity has been determined, you are authorized to perform certain tasks: delete this file, run that
application, and so on.

Determining identity is a hard problem, and many strategies exist for doing so. Each strategy, however, is based on
consuming some evidence and making a decision based on it. Evidence might be based on the ability to produce a
secret (such as a password), possession of an object (such as a smart card), biometrics (such as thumbprints or retinal
scans), and so on.

After you have been authenticated, the security system knows of which groups you are a member and can enforce
policies based on identity and group membership. A policy, for example, might be "only members of the Administrators
group can modify registry keys in the Local Machine hive." Policies are implemented by access control lists and other
mechanisms in the operating system, and administered by various application programming interfaces (APIs).

The system just described is a role-based security system. In a role-based security system, the fundamental question is
"Who is running the code?" After that has been determined, the code runs with all the privileges and restrictions of the
user. A fundamental presumption of role-based security systems is that users run some code because they know what
it does and want it to succeed. When you run format.exe, the operating system presumes that you really do want to
format your hard disk and checks to ensure that you have permission to do so.

But sometimes role-based security is not enough. Consider a Web page that runs a script that tries to format the hard
disk. In that case, whether the user who started the Web browser has the right to destroy the disk in question is of
secondary importance. What is more relevant is whether the user actually intended the Web page to format the hard
disk! The fundamental presumption of role-based security no longer applies; in a world with mobile code that sits
behind Web pages, e-mails, and documents, the user does not necessarily know what the code is doing and may not
want it to succeed.

Internet Explorer, therefore, implements a code-access security system. A code-access security system consumes
evidence not about the user running the code, but about the code itself. Where did it come from? Who wrote it? What is
the user's trust relationship with the Web site? The browser can then enforce policies such as "Web pages in the
Untrusted Sites zone are not allowed to run scripts at all," and users and administrators can set policies accordingly.

The .NET security system implements both role-based and code-access security systems, but for our purposes this
discussion examines only the code-access security system. Customized documents are much more like Web pages,
where the user might not know exactly what the customization is doing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Code-Access Security in .NET
The .NET code-access security system works like this: Every time an assembly is loaded into an application domain, the
security system determines what permission set should be granted to that assembly. The .NET runtime does this by
examining evidence about the assembly. Assemblies are categorized in one or more code groups based on their
evidence. Then the policy evaluator determines which permissions to grant based on which code groups the assembly
belongs to (just as a role-based system determines which permissions to grant to users based on which user groups
they belong to).

When the code runs, if it attempts to perform some task that requires a permission (such as deleting a file), the
security system checks to ensure that the code was granted the appropriate permission. If not, it throws an exception,
and the attempt fails.

The Machine Policy Level

Let's take a look at the out-of-the-box policy. Go to your .NET Framework SDK directory, and run the mscorcfg.msc file
to pop up the management console, shown in Figure 19.1.

Figure 19.1. The .NET Runtime Security Policy management console.

[View full size image]

As you can see, under Runtime Security Policy, there are three policy levels: Enterprise, Machine, and User. (There is
also a fourth level, not shown: the Application policy level, which is discussed later in this chapter.) Open the Machine
policy level, and you'll see a tree of code groups. Each code group is associated with a particular permission set and
evidence condition.

Code that has the My Computer Zone evidence, for example, is granted the FullTrust permission set; code that is
installed on your machine is granted permission to do anything. Code that has the LocalIntranet Zone evidence is
granted the LocalIntranet permission set, which is rather more restrictive. If you run a managed assembly off a share
on your local intranet, it will be able to run, produce user-interface elements, and so on but is not granted the right to
modify your security settings or read or write to any file on your disk.

Notice that the root code group in the Machine policy level is All Code; every assembly is a member of this group
irrespective of its evidence. If you look at the permission set granted by that group, however, it grants no permissions
whatsoever. It denies the right to execute at all. What's up with that?

Within a policy level, the permission set granted to an assembly is (usually) the least-restrictive union of all the
permission sets of all the applicable code groups. Code that belongs to the All Code group (which grants nothing) and
the LocalIntranet Zone code group (which grants the LocalIntranet permission set) will be granted the permissions from
the less-restrictive group.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the less-restrictive group.

Note

We say "usually" because there are ways of creating custom policies that enforce rules other than "Take
the least-restrictive union." You could create a policy tree with the rule "Take the permission set granted
by the first matching code group, and ignore everything else." Policy trees can become quite complex.

Kinds of Evidence

So far we have seen the All Code group, which does not consider evidence at all, and various zone code groups that
consider evidence about where code comes from in a broad sense. Zones describe whether the code comes from the
local machine, the local intranet, an explicitly trusted Internet site, an explicitly untrusted Internet site, or an Internet
site of unknown trustworthiness.

When we discuss the User policy level, you will see a much more specific kind of location-based evidence; you can
create policies that grant permissions if the code is running from specific local or network directories or Web sites.

A close look at the Machine policy level shows two child code groups, subsets of the My Computer Zone code group,
that grant full trust to assemblies in the My Computer Zone and are strong-named with the Microsoft or ECMA keys.
You will learn more about strong-name evidence, and why it should always be in a child code group, later in this
chapter.

Finally, there is evidence associated with individual assemblies. Every assembly has a statistically unique hash number
associated with it; it is possible to create policies that grant permissions to specific assemblies by checking their hash
numbers. Assemblies can also be signed with a publisher certificate (such as a VeriSign code-signing certificate). When
the loader attempts to load a publisher-signed assembly, it automatically creates evidence describing the certificate.
You could create code groups that grant permissions to all assemblies signed with your internal corporate certificate, for
example.

Combining Policy Levels

Take a look at the Enterprise policy level shown in Figure 19.1. Unless your network administrator has set policy on
your machine, this policy level should be much simpler than the Machine policy level. It consists of a single code group
that matches all code and grants full trust.

But hold on a momentif the Enterprise policy is "Grant full trust to all code," how does this security system restrict
anything whatsoever?

The .NET security system determines the grant set for each policy levelEnterprise, Machine, User, and Applicationand
actually grants the permission only if a permission is granted by all four levels.

Setting the Enterprise policy level to "Everything gets full trust" cannot possibly weaken the restrictions of the other
three groups. If the Machine policy level refuses to grant, say, permission to access the file system, it does not matter
what the other three policy levels grant; that permission will not be granted to the assembly.

It works the other way, too. Suppose that the Enterprise policy level states "Grant full trust to all assemblies except for
this known-to-be-hostile Trojan horse assembly." If you accidentally install the Trojan horse on your machine, the
Machine policy level will grant full trust, but the Machine policy level cannot weaken the Enterprise policy level. Every
policy level must agree to grant a permission for it to be granted, so the evil code will not run.

We discuss later in this chapter ways to get around the requirement that a permission must be granted by all four
levels.

The User Policy Level

Take a look at your User policy level while logged in to a machine where you have been creating VSTO 2005 projects
with Visual Studio. The contents of the User policy level, shown in Figure 19.2, might be a little bit surprising.

Figure 19.2. The User policy level. VSTO automatically creates policy so that VSTO
projects are allowed to run on your development machine.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At the root, we have an All Code group that grants full trust, just like the Enterprise level. In keeping with the general
rule that a policy level grants the least-restrictive union of permissions, it would seem that any further code groups in
the policy tree for this level would be superfluous. Yet there is a child code group for VSTO projectsalso an All Code
group, although it grants no permissions. It in turn has a code group for every project you have created, which again is
an All Code group that grants no permissions. (The code group is given a GUID as its name to ensure that the group is
unique no matter how many projects you create.)

The project-level code groups have URL-based child groups for every build configuration you have built that grant only
execution permissionnothing elseto all code in the named directory. And those have children that grant full trust to the
specific customization assemblies.

What the heck is going on here? It looks like Visual Studio has gone to great lengths to ensure that the User policy level
explicitly grants full trust to your customization assemblies. Yet the User policy level's root code group already grants
full trust. How is this not redundant?

There is a good reason for this, but before we get to that, we should talk about full trust versus partial trust.

Full Trust and Partial Trust

As anyone who has ever been infected by a Word or Excel macro virus knows, the code behind a customized document
does not always do what you want, and you do not always know what it does. Fortunately, that is exactly the scenario
that code-access security systems were invented to handle. There is a problem with code-access security in Office
customizations, however. There is no way to trust partially any code that accesses the Word and Excel object models.
Trust is all or nothing.

The Internet Explorer object model was specifically designed from day one so that code running inside the Web browser
was in a "sandbox." Code can run, but it is heavily restricted. The browser's objects inherently cannot do dangerous
things such as write an arbitrary file or change your registry settings. Code is partially trusted: trusted enough to run
but not trusted enough to do anything particularly dangerous. The Word and Excel object models, by contrast, are
inherently powerful. They manipulate potentially sensitive data loaded from and saved to arbitrary files. These object
models were designed to be called only by fully trusted code. Therefore, when a VSTO customization assembly is
loaded, it must be granted full trust to run at all.

This fact has serious implications for the application domain security policy created by the VSTO runtime when a
customization starts.

The VSTO Application Domain Policy Level

Before examining the details of VSTO security policy, let's take a step back and consider why anyone has any security
policy at all.

It is the same reason why stores have merchandise-exchange policy, governments have foreign policy, and parents
have bedtime policy: Policy is a tool that enables us to make thoughtful decisions ahead of time instead of having to
make decisions on a case-by-case basis. The Enterprise, Machine, and User policy levels allow network administrators,
machine administrators, and machine users to make security decisions independently ahead of time so that the .NET
runtime can enforce those decisions without user interaction.

Decisions about policy can also be made by application domains (or AppDomains, for short). Because only those
permissions granted by all four policy levels are actually granted to the assembly, the AppDomain policy level can

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

permissions granted by all four policy levels are actually granted to the assembly, the AppDomain policy level can
strengthen the overall security policy by requiring more stringent evidence than the other policy levels.

We know that VSTO customizations must be granted full trust. By default, the Enterprise and User policy levels grant
full trust to all assemblies regardless of evidence. The Machine policy level grants full trust to all assemblies installed on
the local machine. In the absence of an App-Domain policy level, a VSTO customization copied to your local machine is
granted full trust.

That seems like a reasonable decision for an application that you have deliberately installed on your local machine.
Users typically install applications that they trustapplications that perform as expected and do what users want them to
doso it makes sense to grant full trust implicitly to assemblies in the Local Machine Zone.

But spreadsheets are not usually thought of as applications. Do users realize that by copying a customized document to
their machine, they are essentially installing an application that will then be fully trusted, capable of doing anything that
the users themselves can do? Probably not! Users do not tend to think of customized documents as applications; they
are much less careful about copying random spreadsheets to their machines than they are about copying random
executables to their machines.

Good security policies take typical usage scenarios into account. Therefore, the VSTO runtime tightens the overall
security policy by creating an AppDomain policy level that grants all the permissions of the other three policy levels
except for those permissions that would have been granted solely on the basis of membership in either an All Code
code group or a zone code group. All other permissions granted because of URL evidence, certificates, strong names,
and so on are honored.

Let's take a look at an example.

Resolving VSTO Policy

Consider a VSTO customization assembly that you have just built on your development machine that you want to run.
The customization assembly must be granted full trust by all four policy levels; otherwise, it will not run. The Enterprise
and User policy levels grant full trust to all code. The Machine policy level grants full trust to code from the My
Computer Zone. Three of the four levels have granted full trust.

What about the AppDomain policy level? It grants the same permissions as the other three policy levels except for
those permissions granted solely by All Code and zone code groups. The Enterprise policy level consists of a single All
Code code group, so it is ignored by the AppDomain policy level. The Machine policy level consists only of zone code
groups, plus two strong-name code groups for the Microsoft and ECMA strong names. Unless you happen to work for
Microsoft and have access to the code-signing hardware, it is likely that those code groups do not apply, so effectively,
the AppDomain policy level is going to ignore all of these, too. Things are not looking good; the AppDomain policy has
found nothing it can use to grant full trust yet. If the User policy level also consists solely of an All Code code group, as
it does on a clean machine, the customization will not run.

But the User policy level on your development machine has a code group that is not ignored by the AppDomain policy
level; it has a URL code group that explicitly trusts the customization assembly based on its path. The AppDomain policy
sees this and grants full trust to the assembly. Because all four policy levels have granted full trust, the code runs.

Now it should be clear why Visual Studio modified your User security policy and added a seemingly redundant code
group for the assembly. The VSTO AppDomain policy level requires that the customization assembly not only be fully
trusted, but also be fully trusted for some better reason than "We trust all code" or "We trust all code installed on the
local machine." Therefore, there has to be some Enterprise, Machine, or User code group that grants full trust on the
basis of some stronger evidence.

Because the VSTO AppDomain policy level refuses to grant full trust on the basis of zone alone, you're pretty much
forced to come up with a suitable policy to describe how you want the security system to treat VSTO customization
assemblies. Take off your softwaredeveloper hat for a moment, and think like an administrator setting security policy
for an enterprise. Let's go through a few typical security policies that you might use to ensure that customized Word
and Excel documents work in your organization while preventing potentially hostile customizations from attackers out
on the Internet from running. After discussing the pros and cons of each, we talk about how to roll out security policy
over an enterprise.

Location, Location, Location

One of the most straightforward ways to ensure that customized Word and Excel documents can run is to set a policy
stating that customization assemblies that run from a particular place are fully trusted. You may have Web servers or
file shares on your network where write access is restricted to trusted individuals; if the customization is there, that is
pretty good evidence that it is trustworthy.

You can set an Enterpriselevel policy that states that customization assemblies at a particular location are fully trusted
by right-clicking the All Code code group in the Enterprise policy level and selecting New from the menu. Doing so
causes the Create Code Group dialog box to appear, as shown in Figure 19.3.

Figure 19.3. The first step of the Create Code Group dialog box.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enter a name for the code group and a description to help others understand what the code group is intended to do.
Then click the Next button. The Create Code Group dialog box, shown in Figure 19.4, will appear. Choose a URL
membership condition from the condition-type drop-down list. For the URL, give the location to which the VSTO
customization assembly will be deployed. In Figure 19.4, we are matching any customization assemblies in the Web
folder http://accounting/customizations because we used the * wildcard in the URL.

Figure 19.4. The second step of the Create Code Group dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After you have chosen the URL condition type and entered a URL, click the Next button. The third step of the Create
Code Group dialog box displays, as shown in Figure 19.5. Select the Use Existing Permission Set radio button, and
select FullTrust as the permission set to be granted to the code group.

Figure 19.5. The third step of the Create Code Group dialog box.

But hold on a moment. Clearly, this is not going to work. Remember, the policy evaluator grants a permission only if it
is granted by all four code groups. When a user runs this customization, the Enterprise and User policy levels will grant
full trust because of their root All Code code group. The AppDomain policy level will grant full trust because the
Enterprise policy level contains a URL code group that grants full trust. But what about the Machine policy level? It will
take one look at that thing, classify it as being from the LocalIntranet Zone, and grant it the LocalIntranet permission
set. Because the customization assembly requires full trust, it will not run.

We have a problem here. You could, of course, solve this problem by setting the policy at the Machine level rather than
the Enterprise level. Or you could set it at both levels. In the system described so far, however, policy levels can only
add additional restrictions; it seems sensible that an enterprise administrator would be able to override the restrictions
of a machine administrator. We need a way for a policy level to say "Grant full trust even if another policy level
disagrees".

Fortunately, we can tweak the code group to achieve this. Rightclick the code group you just created, and choose
Properties. Take a look at the check boxes at the bottom of the Properties dialog box (see Figure 19.6).

Figure 19.6. The Properties dialog box for the AccDeptDocuments code group.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 19.6. The Properties dialog box for the AccDeptDocuments code group.

Checking the first check box makes this an exclusive code group; the regular rules about combining the permission sets
of different code groups to determine the grant set for a particular policy level cease to apply. Checking the second
check box makes this a levelfinal code group; policy levels from the lower code groups are ignored if the code's
evidence matches the membership condition for this group.

What does lower mean? The Enterprise code group is the highest, followed by Machine and User;Application Domain is
the lowest.

Note

Creating a levelfinal code group considerably weakens your security policy because it prevents lower code
groups from enforcing further restrictions. Always be careful when setting security policy, but be
particularly careful when creating level-final groups.

Location-based policies are reasonably flexible. It is easy to deploy new documents to the trusted network locations and
have them automatically be fully trusted by Enterprise policy. But there is always a tradeoff between ease of use and
security; the drawback of locationbased policies is that if some untrustworthy person does manage to install a hostile
customization on a trusted server, it will run with full permissions on user machines. The next few sections show how to
lock down the set of valid customizations even further to mitigate such vulnerabilities.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

lock down the set of valid customizations even further to mitigate such vulnerabilities.

Some problems may also arise if multiple users all try to run the customized document from the same place. If users
typically download documents to their own computers and use them there, a more local URL policy may be in order.
Instead of trusting a Web site in the policy, enter a URL such as file://c:\MyCustomizedDocuments* or another local
directory. Then users can download trusted customized documents to that folder and run them, while untrusted
customizations copied to other locations are prevented from running.

In that scenario, it may be more appropriate to roll out User or Machine policy to allow individual users or machine
administrators to change the locations of their trusted-documents folder.

Strong Names

Strong names allow you to grant full trust to only those assemblies that your organization (or other organizations that
you trust) created. Confusion abounds about what strong names are, what they are for, and how they work.

Back in the old days of "DLL hell,"dynamically linked libraries were loaded based on filename and location. This
approach has an inherent fundamental security problem: Attackers can name their evil DLLs system32.dll or
oleaut32.dll, too. Attackers could try to trick you into loading their code rather than the code that you want to load by
taking advantage of this weakness in the naming system.

The traditional DLL system suffers from other technical problems, such as versioning. When you load oleaut32.dll,
which version are you getting? Writing the code to figure it out is not rocket science, but it is not as easy as it could be.

Strong names mitigate these weaknesses. The purpose of a strong name is to provide every assembly a unique,
hardtoforge name that clearly identifies its name, version, and author. When you load an assembly based on its strong
name, you have extremely good evidence that you are actually loading the code you expect to be loading, not some
hostile version that some other author managed to slip onto your machine.

Creating a Strong-Name Code Group

Because strong names identify the customization's author, you could set a policy that states that any code by a
particular author is fully trusted. Suppose that you have a strongnamed assembly, and you want to set a policy that
says that all assemblies by this author are to be fully trusted. Again, create a new code group as a child of the location
code group created before, but this time select the Strong Name membership condition, as shown in Figure 19.7.

Figure 19.7. Creating a code group with a strong-name membership condition.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Import the public key from the strong-named assembly, and you have created a policy that trusts all assemblies by that
author. (As the dialog box notes, you can further strengthen the policy by trusting only certain names or even only
certain versions.) But what is a public key, and what does it have to do with the code's author?

How Strong Names Are Implemented

Strong naming works by using public-key cryptography. The mathematical details of how publickey cryptosystems work
would take us far off topic, but briefly, these systems work something like this: An author generates two keys,
appropriately called the public key and the private key. Assemblies can be signed with the private key, and the
signature can be verified with the public key.

Therefore, if you have a public key and an assembly, you can determine whether the assembly was signed with the
private key. Then you know that the person who signed the assembly possessed the private key. If you believe that the
author associated with that public key was not careless with the private key, you have good evidence that the assembly
in question really was signed by the author.

The signing process is highly tamper-resistant. Changing so much as a single bit of the assembly invalidates the
signature. Therefore, you also have good evidence that the assembly has not been changed postrelease by hostile
attackers out to get you.

Why Create a Child Code Group?

You may wonder why we recommended that you create your Strong Name code group as a child code group of the
location-based code group discussed earlier. And come to think of it, in the outofthebox Machine policy level, the
Microsoft Strong Name code group is a child of the Local Machine Zone code group. Why is that? Surely if having a
strong name is sufficient to grant full trust, it should be sufficient no matter where the code came from.

Code groups with membership conditions based on some fact about the assembly itself should always be children of
location-based code groups. Here is why: Suppose that you trust Foo Corporation. For the sake of argument, we
assume that this trust is justified; Foo Corporation really is not hostile toward you. Consider what would happen if your
Enterprise policy level grants assemblies signed with Foo Corporation's key full trust, period, with a level-final code
group. You impose no additional location-based requirement whatsoever.

Foo Corporation releases version 1.0 of its FooSoft library, and no matter where foosoft.dll is located, all members of
your enterprise fully trust it. Foo Corporation releases version 2.0, and then version 3.0, and so on. Everything is fine
for years.

But one day, some clever and evil person discovers a security hole in version 1.0. The security hole allows partially
trusted codesay, code from a lowtrust zone such as the Internetto take advantage of FooSoft 1.0's fully trusted status
to lure it into using its powers for evil.

Even if that flaw does not exist in the more recent versions, you are now vulnerable to it. Your policy says to trust this
code no matter where it is, no matter what version it is. Evil people could put it up on Web sites from now until forever
and write partially trusted code that takes advantage of the security hole, and you can do nothing about it short of
rolling out new policy.

If, on the other hand, you predicate fully trusting FooSoft software upon the software being in a certain location, that
scopes the potential attack surface to that location alone, not the entire Internet. All you have to do to mitigate the
problem is remove the offending code from that location, and you are done.

That explains why the Microsoft Strong Name code group is a child of the My Computer Zone code group. Should an
assembly with Microsoft's strong name ever be found to contain a security flaw, the vulnerability could be mitigated by
rolling out a patch to all affected users. If the outofthebox policy were "Trust all code signed by Microsoft, no matter
where it is," there would be no way to mitigate this vulnerability at all; the flawed code would be trusted forever, no
matter what dodgy Web site hosts it.

Note

This best practice for strong-name code groups also applies to other membership conditions that consider
only facts about the assembly itself, such as the hash and publisher certificate membership conditions.

Now that we have a child code group that grants full trust to code that is both strong-named and in a trusted location,
we can reduce the permission set granted by the outer "location" code group to nothing. That way, only code that is
both strong-named and in the correct location will run.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

both strong-named and in the correct location will run.

Implementing Strong-Named Assemblies

So far, we have been talking about the administrative problem of trusting a strongnamed assembly after you have one.
What about the development problem of creating the strong-named assembly in the first place? The process entails four
steps:

1. Designate a signing authority (that is, some highly trusted and security-conscious person in your organization
who can ensure the secrecy of the private key).

2. Create a key pair, and extract the public key from the key pair. Publicize the public key, and keep the private
key a secret.

3. Developers doing day-to-day work on the assembly should delay-sign it with the public key.

4. When you are ready to ship, the signing authority signs the assembly with the private key.

Let's take a look at each of these steps in detail.

Designate a Signing Authority

A strong name that matches a particular public key can be produced by anyone who has the private key. Therefore, the
best way to ensure that only your organization can produce assemblies signed with your private key is to keep the
private key secret. Create a small number (preferably one) of highly trusted people in your organization as signing
authorities, and make sure that they are the only people who have access to the private-key file.

Create a Key Pair

When you need a key pair for your organization, the signing authority should create a private-key file to keep to itself
and a public-key file for wide distribution. The strong-name key generation utility is sn.exe, and it is located in the bin
directory of your .NET Framework SDK:

> sn.exe -k private.snk
Microsoft (R) .NET Framework Strong Name Utility Version 2.0
Copyright (C) Microsoft Corporation. All rights reserved.

Key pair written to private.snk

> sn.exe -p private.snk public.snk
Microsoft (R) .NET Framework Strong Name Utility Version 2.0
Copyright (C) Microsoft Corporation. All rights reserved.

Public key written to public.snk

The private.snk file contains both the public and private keys; the public.snk file contains only the public key. Do
whatever is necessary to secure the private.snk file: Burn it to a CD-ROM, and put it in a safety deposit box, for
example. The public.snk file is public. You can e-mail it to all your developers, publish it on the Internet, whatever you
want. You want the public key to be widely known, because that is how people are going to identify your organization
as the author of a given strong-named assembly.

Developers Delay-Sign the Assembly

Developers working on the customization in Visual Studio will automatically get their User policy level updated so that
the assembly that they generate is fully trusted. But what if they want to test the assembly in a more realistic user
scenario, where there is unlikely to be a User-level policy that grants full trust to this specific customization assembly?
If users are going to trust the code because it is strong-named, developers and testers need to make sure that they can
run their tests in such an environment.

But you probably do not want to make every developer a signing authority; the more people you share a secret with,
the more likely that one of them will be careless. And you do not want the signing authority to sign off on every build
every single day, because prerelease code might contain security flaws. If signed-but-flawed code gets out into the
wild, you might have a serious and expensive patching problem on your hands.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can wriggle out of this dilemma in two ways. The first is to create a second key pair for a "testing purposes only"
strong name for which every developer can be a signing authority. Your test team can trust the test strong name,
making the tests more realistic. Because it is unlikely that customers ever will trust the test-only public key, there is no
worry that signed-but-buggy prerelease versions that escape your control will need to be patched.

That is considerably better than real-signing every daily build, but we can do better still; another option is to delay-sign
the assembly. When the signing authority signs the assembly, the public key and the private-key-produced signature
are embedded in the assembly; the loader reads the public key and ensures that it verifies the signature. By contrast,
when a developer delay-signs the assembly, the public key and a fake signature are embedded in the assembly; the
developer does not have the private key, and therefore the signature is not valid.

To delay-sign a customization, right-click the project in Solution Explorer, and select Properties. In the Properties pane,
click Signing and then choose the public-key file, as shown in Figure 19.8.

Figure 19.8. Delay-signing a customization.

[View full size image]

If the signature is invalid, won't the loader detect that the strong name is invalid? Yes. Therefore, developers and
testers can set their development and test machines to have a special policy that says "Skip signature validation on a
particular assembly":

> sn.exe -Vr ExpenseReporting.DLL

Note

Skipping signature validation on developer and test machines makes those machines vulnerable. If an
attacker can deduce what the name of your customization is and somehow trick a developer into running
that code, the hostile code will then be fully trusted. Developers and testers should be very careful to not
expose themselves to potentially hostile code while they have signature verification turned off. Turn it back
on as soon as testing is done.

You can turn signature validation back on with

> sn.exe -Vu ExpenseReporting.DLL

or use Vx to delete all "skip validation" policies.

Really Sign the Assembly

Finally, when you have completed development and are ready to ship the assembly to customers, you can send the
delay-signed assembly to the signing authority. The signing authority has access to the file containing both the private

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

delay-signed assembly to the signing authority. The signing authority has access to the file containing both the private
and public keys:

> sn.exe -R ExpenseReporting.DLL private.snk

Public Keys and Public-Key Tokens

One more thing about strong names and then we'll move on. A frequently asked question about strong names is
"What's the difference between a public key and a public-key token?"

The problem with public keys is that they are a little bit unwieldy. The Microsoft public key, for example, when written
out in hexadecimal, is as follows:

002400000480000094000000060200000024000052534131000400000100010
007D1FA57C4AED9F0A32E84AA0FAEFD0DE9E8FD6AEC8F87FB03766C834C9992
1EB23BE79AD9D5DCC1DD9AD236132102900B723CF980957FC4E177108FC6077
74F29E8320E92EA05ECE4E821C0A5EFE8F1645C4C0C93C1AB99285D622CAA65
2C1DFAD63D745D6F2DE5F17E5EAF0FC4963D261C8A12436518206DC093344D5
AD293

That's a bit of a mouthful. It is easier to say "I read Hamlet last Tuesday and quite enjoyed it" than "I read a play that
goes like this: Bernardo says, 'Who's there?'" and to finish four hours later with "'Go, bid the soldiers shoot,' last
Tuesday and quite enjoyed it."

Similarly, if you want to talk about a public key without writing the whole thing out, you can use the public-key token.
The public-key token corresponding to the public key above is b03f5f7f11d50a3a, which takes up a lot less space. Note,
however, that just as the title Hamlet tells you nothing about the action of the play, the public-key token tells you
nothing about the contents of the public key. It is just a useful, statistically guaranteed-unique 64-bit integer that
identifies a particular public key.

Public-key tokens usually are used when you write out a strong name. The strong name for the VSTO 2005 runtime, for
example, is this:

 Microsoft.VisualStudio.Tools.Applications.Runtime,
 Version=8.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a, ProcessorArchitecture=MSIL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Publisher Certificates
Strong names, as just described, were invented to solve a particular problem. They provide strong evidence that the
code you are loading is the code that you actually intended to load. Because the public key of the author is part of the
strong name, you can use strong names as evidence to create policies that grant full trust to code authored by
particular trusted individuals or groups.

But then what is a publisher certificate for? What is the difference between signing code with your organization's
strong-name private key and signing code with your organization's certificate?

You will note that by using strong names as evidence when setting security policy, we are essentially using strong
names to do something that they were not designed to do. Strong names were designed to solve the naming problem,
not to solve the more difficult problem of codifying trust relationships between code authors and code users.

This is not to say that strong names are not adequate; clearly, strong names are strong enough to use as evidence in
security policy. But think about some of the shortcomings of the strong-name system:

What if disaster strikes, and the private key of a trusted author is revealed? There is no standard procedure in
place to deal with this. There is no standard way even to publicize that a problem exists!

The longer a strong name's public key has been public, the longer attackers have had to attempt to determine
the corresponding private key through either brute-force or sophisticated cryptographic attacks. But strong-
name public keys have no standard mechanism for indicating expiry dates or updated keys.

Suppose that you want to add Foo Corporation's strong-name public key to your policy. How do you know that
you are adding Foo Corporation's key? If some evil hacker can convince you that his public key is actually Foo's
key, you will write a policy that trusts the evil hacker.

Amateur cryptographers often think that coming up with the "unbreakable" algorithm is the hard part. That is hard, no
doubt about it. But building a system to manage the keys effectively is often what makes or breaks an implementation.
Clearly, strong names do not have a very sophisticated system for managing keys. By contrast, publisher certificates
were designed for exactly these scenarios.

License to Code

An analogy might help. Imagine that you are reading a document, and you want to know whether it is factual or full of
lies. If the author is trustworthy, you are more likely to believe the document's contentsprovided, of course, that you
have reason to believe that the document was in fact by the stated author. Perhaps the author has signed the
document, and you recognize the signature. The details of how you come to trust the author, how you learn to
recognize the signature, and so on are left up to you.

Now suppose that you have the signed document, and you trust the author, but you do not know what the author's
signature looks like. Therefore, you cannot tell whether this document is actually trustworthy; anyone could have
signed it.

But if, in addition, you have a notarized statement from the editor-in-chief of the Encarta encyclopedia attesting to the
accuracy of the document, that might be enough. The notarized, dated statement describes the document in question,
identifies the author, and has a copy of the author's signature for comparison. You do recognize the signature of the
editor-in-chief and trust her to put her imprimatur only on trustworthy authors.

That's what a publisher certificate is like: It not only identifies the author, but also names a trusted authority who
attests to the identity and trustworthiness of the author. It indicates details such as who everyone in the chain of trust
is, when the various certificates identifying them were signed, and so on.

We use certificate-based evidence all the time in real life. A driver's license identifies the bearer by providing a
description (name, age, height, weight, eye color, hair color), a photograph, and a signature. It also attests that the
individual thereby identified has passed a driving test. To be useful as evidence, the description must match the bearer,
and it must have actually been issued by the department of motor vehicles. Furthermore, it is valid only for a certain
period of time, so out-of-date licenses become invalid.

Various organizations that need to determine the trustworthiness of individuals they know nothing about use certificate-
based evidence in their policies. If you are trying to get into a bar, any state-issued evidence that indicates your age
probably is good enough. If you are trying to rent a car, odds are pretty good that you will need a driver's license, with
its further evidence that you passed a driving test at some point. But either way, what is happening here is that
organizations are leveraging their trust of one entitythe stateto obtain evidence about the identity and trustworthiness
of an unknown individual.

Publisher certificates are essentially licenses to write code, not to drive. A publisher certificate identifies a particular
author and also identifies the certifying authority (CA), which vouches for the identity and trustworthiness of the author.

Trusting the CA to make decisions for you, of course, once more trades convenience for risk. The CA might choose

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Trusting the CA to make decisions for you, of course, once more trades convenience for risk. The CA might choose
poorly or fail to exercise due diligence in vetting its authors. You might not agree with the criteria that the CA uses to
decide who is trustworthy. In such cases, do not trust the CA! You would not rent a car to a driver who presented a
driver's license from Bob's Discount Driver's License Emporium, so trust only certifying authorities that you believe give
out certificates to trustworthy people.

Code-signing certificates, like drivers' licenses, expire after a certain date. And like driver's licenses, they can be
revoked by the CA due to bad behavior. Certifying authorities publish lists of revoked certificates; individuals can
configure their computers to download recent changes to the revocation lists automatically so that they are less likely to
be fooled by untrustworthy individuals who managed to obtain a certificate.

Obtaining Certificates

Suppose that you decide that your customizations should have publisher certificate evidence. Where you get your
publisher certificate depends on how your customers' policies are likely to be configured. Obtaining a certificate from a
CA that your customers do not trust makes it unlikely that the .NET security system will actually grant full trust to your
customization assembly. If you plan on distributing a customization widely to the public, you might consider getting a
code-signing certificate from a widely trusted CA, such as VeriSign or thawte.

On the other hand, if you are creating a customization to be rolled out inside an enterprise, you can be your own CA by
installing Microsoft Certificate Server and issuing your own code-signing certificates to your signing authority.

After you have a code-signing certificate from your CA, you can use the certmgr.exe utility to manage your certificates.
Unfortunately, there is no GUI tool in Visual Studio to sign a document with a publisher certificate automatically. That's
just as well, however. Unlike strong names, publisher certificates have no delay-signing option; an assembly is either
signed with a valid certificate or it is not. Use signcode.exe in the Framework SDK directory to attach a publisher
certificate to a customization assembly.

Tip

If you want to provide both strong-name and publisher-certificate evidence for your customization, make
sure that the signing authority real-signs the strong name first and then uses signcode.exe to apply your
publisher certificate signature to the customization. Both are designed to detect tampering with the
assembly, but because both strong-name signing and publisher-certificate signing embed signature
information in the document, you may wonder why they do not see each other as tampering with the
document. Because the strong-name system was designed after the code-signing system already existed,
the strong-name system takes this into account; adding a publisher-certificate signature to a document
does not invalidate the strong name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Trusting the Document
So far, we have been talking only about trusting the customization assembly. That makes sense; it is, after all, the
container of the code that is going to run. Something quite unusual about customized documents, however, makes
them very different from traditional forms-based applications. Here is a silly but illustrative example. Suppose that you
write a customization for a budget spreadsheet that has two named ranges with event handlers that handle their
double-click events, as shown in Figure 19.9.

Figure 19.9. A budget spreadsheet that could be exploited by an attacker.

[View full size image]

You build the customization, sign it with a strong name, ensure that companywide security policy grants full trust to
code with your strong name, and deploy the customization assembly and spreadsheet. But the text in the spreadsheet's
named ranges is just text. What is to stop some unscrupulous person from changing the text in those ranges to
whatever he wants? Anyone can swap the labels around, delete them, change the size of the range, change the font to
white letters on a white background, and so on. If the text in Figure 19.9's rows 11 and 12 is swapped, a double-click to
raise taxes will actually invoke code that will lower taxes.

In most forms-based applications, the user interface is determined by the code. Not so with customized documents. The
user interface is editable by end users, and the customization is none the wiser. Therefore, it is not enough to trust only
the customization; the document must be fully trusted as well. But how are we going to do that?

Unfortunately, all the techniques discussed thus far in this chapter for obtaining cryptographic evidence about the
customization are not going to work well with the document. The whole point of cryptographic verification is to
determine that not one bit of the assembly has been changed, but documents, by their very nature, are edited all the
time.

For this reason, although the document must be fully trusted, the AppDomain policy level does not put the same policy
restrictions on the document as it does on the assembly. A document can be fully trusted by virtue of its being in the
My Computer Zone code group or in a fully trusted All Code code group.

Consider the following policy scenario: You want to deploy your customized document on an internal Web server. The
customization is strong-named, and you have an Enterprise policy that grants full trust to code with that strong name
on that Web server. Suppose that the policy looks like this:

Enterprise

All CodeFull trust

URL: http://MyServer/customizations/* No permissions

Foo Corporation Strong NameFull trust, level-final

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Foo Corporation Strong NameFull trust, level-final

This will fully trust the customization assembly because the level-final attribute on the strong-name code group will
prevent the other three policy levels from further restricting the assembly's granted permission set.

But what about the document? The document needs to be trusted, too. In this example, the Enterprise policy level will
fully trust the document by virtue of that root All Code code group. But the out-of-the-box Machine policy level will see
only that the document is in the LocalIntranet Zone code group and will not grant full trust.

We could fix this policy by making the URL code group above also grant the full-trust permission set and make it level-
final. That fix represents a pretty serious weakening of the policy, however. Then the policy would say that all
documents and code on that Web site, regardless of whether they were associated with a customization, whether they
are strong-named or not, are fully trusted. Really, what we want to say is "All code signed with the strong name on the
server and all documents on the server are fully trusted."

We need a new membership condition that matches only Word and Excel documents. There is such a membership
condition now: the aptly named Office Document Membership Condition. Membership conditions are represented by
objects in the .NET security policy, and the assembly containing those objects has to be in the Global Assembly Cache
(GAC). If it is not already, use gacutil.exe to install msosec.dll in the GAC:

> Gacutil -i MSOSec.DLL
Microsoft (R) .NET Global Assembly Cache Utility. Version 2.0
Copyright (C) Microsoft Corporation. All rights reserved.
Assembly successfully added to the cache

Now you can create a custom security policy that trusts all Word and Excel documents on a particular server. Custom
membership conditions are represented by XML files. The Office DocumentMembership Condition has a simple
representation in XML; it contains just the name of the membership condition type and the strong name of the
assembly containing it, as shown in Figure 19.10.

Figure 19.10. Creating a code group based on the Office Document Membership
Condition.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We noted above that msosec.dll might not be in the GAC. The other VSTO assemblies are put in the GAC for you
automatically, so why not this one? There is a good reason.

A basic tenet of writing install/uninstall software is that you must uninstall what you install. If the VSTO installer installs
msosec.dll in the GAC, the uninstaller must remove it. But consider what happens if the installer installs msosec.dll, and
a user creates a security policy that uses the Office Document Membership Condition and then uninstalls VSTO.What
happens the next time that user tries to run managed code with msosec.dll deleted?

The managed-code loader will examine the security policy and discover that policy references a membership object that
no longer exists. The policy engine has no idea which assemblies would match that membership condition, so the policy
engine really has no idea what permissions ought to be granted to a given assembly! When faced with this situation,
the policy enginesimply bails out and refuses to grant any code permission to run until the situation is fixed. All
managed code on the machine would cease to run.

But if you do not install msosec.dll in the GAC in the first place, the uninstaller does not have to remove it. Users are
responsible for putting this code in the GAC and ensuring that it is not removed until they have finished with it. Be very
careful when removing security objects from the GAC.

Deploying Policy to User Machines

After you have figured out which policies you need to deploy throughout your enterprise, how are you going to get
them from your administration machine onto user machines? Fortunately, it is no different from deploying any other
application: You can create an MSI installation file, create a batch file to set up security policy from the command line,
or write a C# program.

Creating an MSI Installer

Create the Enterprise policy level you want to deploy on your machine, using the mscorcfg.msc management tool.
When you have a satisfactory policy, right-click the Runtime Security Policy node in the tree view, and select Create
Deployment Package. The dialog box shown in Figure 19.11 will appear.

Figure 19.11. Creating a code group based on the Office Document Membership
Condition.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Then the Deployment Package Wizard will create an installation script that you can deploy the same way you deploy
any other application throughout your enterprise, whether via System Management Server or Group Policy, to update
user machines automatically or simply put the installation script up on a share so users can click it themselves.

Creating a Batch File

As discussed in Chapter 18, "Server Data Scenarios," you can use the caspol.exe utility to change security policy.
Usually, caspol.exe is located in the Windows\Microsoft.NET\Framework\v2.0 directory. Generally, caspol.exe is
extremely flexible and has many options, but for our purposes, we'll discuss only how to view and edit a policy level.

To view a policy level, the syntax is as follows:

caspol.exe -<level> -listgroups

<level> can be enterprise, machine, or user. For example:

C:\> caspol -machine -listgroups

Microsoft (R) .NET Framework CasPol 2.0
Copyright (C) Microsoft Corporation. All rights reserved.
Security is ON
Execution checking is ON
Policy change prompt is ON
Level = Machine
Code Groups:
1. All code: Nothing
 1.1. Zone - MyComputer: FullTrust
 1.1.1. StrongName -: FullTrust
 1.1.2. StrongName -: FullTrust
 1.2. Zone - Intranet: LocalIntranet
 1.2.1. All code: Same site Web
 1.2.2. All code: Same directory FileIO - 'Read, PathDiscovery'
 1.3. Zone - Internet: Internet
 1.3.1. All code: Same site Web
 1.4. Zone - Untrusted: Nothing
 1.5. Zone - Trusted: Internet
 1.5.1. All code: Same site Web

As you can see, every group is numbered to indicate its position in the code group hierarchy. To add a child group, we
need to give caspol the number of the parent group, the membership condition of the group, and the permission set
granted by this group. The syntax is as follows:

caspol.exe-<level> -addgroup <parent> <condition> <permissions>

<permissions> can be Nothing, Execution, Internet, Local-Intranet, or FullTrust. The <condition> is somewhat more complicated due to
the number of possible membership conditions for a code group. Typically, you will want to pick one of the following:

-allcode (The group grants full trust to all code.)

-strong mycustomization.dll (The group grants full trust to the strong-named assembly; remember that strong-
name groups should be child groups of a location group.)

-url http://mysite/* (URL groups can also refer to directories on the local machine.)

-zone <zone> (<zone> is MyComputer, Intranet, trusted, Internet or Untrusted.)

-custom customfile.xml (This creates a custom membership condition.)

To create a code group that includes all Office documents, use this customfile.xml:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To create a code group that includes all Office documents, use this customfile.xml:

<IMembershipCondition
class="Microsoft.Office.Security.Policy.
OfficeDocumentMembershipCondition, msosec, Version=7.0.5000.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"/>

To create a level-final or exclusive code group, add levelfinal on or exclusive on to the end of the command line.

To create a policy in the Machine level that fully trusts all files on a particular intranet site, you could use caspol.exe like
this:

caspol.exe-machine -addgroup 1.2 url http://MyCorp/* FullTrust

Writing a Visual Basic Program That Modifies Security Policy

The System.Security namespace provides objects that enable you to manipulate all aspects of the security system
programmatically. To set a security policy, we first obtain the three persisted policy levels (Enterprise, Machine, and
User are saved to disk; the Application policy is created dynamically whenever an application domain is created). Then
we create a new code group by associating a membership condition with a permission set. Finally, we search the
Machine policy for the Intranet group and add a child group, as shown in the Console application in Listing 19.1.

Listing 19.1. Programmatically Modifying Security Policy

Imports System.Collections
Imports System.Security
Imports System.Security.Policy

Module Module1

 Sub Main()
 Dim enterprisePolicyLevel As PolicyLevel
 Dim machinePolicyLevel As PolicyLevel
 Dim userPolicyLevel As PolicyLevel
 Dim zone As ZoneMembershipCondition
 Dim accountingServerGroup As CodeGroup
 Dim accountingServerCondition As UrlMembershipCondition
 Dim policyStatement As PolicyStatement
 Dim fullTrust As PermissionSet
 Dim children As IList

 ' Obtain the three policy levels:

 Dim policyEnumerator As IEnumerator = _
 SecurityManager.PolicyHierarchy()
 policyEnumerator.MoveNext()
 enterprisePolicyLevel = CType(policyEnumerator.Current, PolicyLevel)
 policyEnumerator.MoveNext()
 machinePolicyLevel = CType(policyEnumerator.Current, _
 PolicyLevel)
 policyEnumerator.MoveNext()
 userPolicyLevel = CType(policyEnumerator.Current, _
 PolicyLevel)

 ' Create a new group by combining a permission set with a
 ' membership condition:

 fullTrust = machinePolicyLevel.GetNamedPermissionSet(_
 "FullTrust")
 policyStatement = New PolicyStatement(fullTrust, _
 PolicyStatementAttribute.Nothing)
 accountingServerCondition = New UrlMembershipCondition(_
 "http://accounting/*")
 accountingServerGroup = New UnionCodeGroup(_
 accountingServerCondition, policyStatement)

 ' Search the Machine policy level for the parent group:

 children = machinePolicyLevel.RootCodeGroup.Children
 ' Note that this makes a _copy_ of the children, so we'll
 ' have to copy it back when we're done editing it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' have to copy it back when we're done editing it.
 Dim codeGroup As CodeGroup
 For Each codeGroup In children
 Dim zone1 As ZoneMembershipCondition = _
 codeGroup.MembershipCondition
 If zone1 IsNot Nothing And _
 zone1.SecurityZone = SecurityZone.Intranet Then
 codeGroup.AddChild(accountingServerGroup)
 machinePolicyLevel.RootCodeGroup.Children = children
 SecurityManager.SavePolicy()
 Exit For
 End If
 Next
 End Sub

End Module

This program just gives a good starting point for building a custom policy editor; a more sophisticated program would
check to see whether the child group already existed, prompt the user before changing security policy, and so on.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
That was a lot of information; security administration can be complex. The key takeaways from this chapter include the
following:

VSTO customization code will not run under the "out-of-the-box" security policy. Some additional policy must be
applied that allows customizations to run. Choose your enterprise's security policies carefully.

The AppDomain policy level will not consider zone-based evidence for the customization assembly.

Both the customization and the document location must be fully trusted; there is no partial-trust scenario for
calling the Word and Excel object models.

Strong names and publisher certificates use similar technology but solve slightly different problems. It is
possible to use both forms of evidence in the same assembly.

A document that is opened from an intranet or Internet location must have additional policy to trust the
document location; this policy is created using the Office Document Membership Condition.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 20. Deployment
After you have built a great VSTO solution by customizing a Word document or Excel spreadsheet, you have to get the
final bits of the code to your users somehow. But how? There are two broad classifications of deployment scenarios:
local install and network install. Each has pros and cons.

Consider how this problem has traditionally been solved in the application programming world. In the traditional rich
client or thick client application, all the application logic is stored in files that somehow get copied to the local machine.
There might be a single .exe file, orthe solution might have a number of .dll files associated with it that also need to be
installed. When installing a thick client application, often the administrator or end user needs to runsome kind of setup
program to ensure that everything is registered and in the right location.

Rich client applications can take advantage of the full power of the client environment and are always available. Install
an application; unplug your laptop; hop on a plane; and your applications are still there. That very strength, however, is
also a potential weakness: You have whatever version you installed, which is not necessarily the latest version. If your
organization has many applications installed on many machines, ensuring that every machine is up to date can be a
full-time job.

Exactly the opposite is true of thin client applications, where the application logic is on a network server somewhere.
When the client logic is in the form of HTML and script downloaded fresh every time you refresh the page in the
browser, updating every client is easy; just put the latest version on the Web server, and every client will get it the
next time he or she navigates the browser to your site. But thin client applications often squander the power of modern
desktop and laptop computers by targeting a lowest-common-denominator platform that assumes nothing more than a
browser; JScript was not designed for manipulating huge datasets. Thin client applications also frequently work poorly
in disconnected scenarios, particularly if much of theapplication logic is on the server.

VSTO is all about taking full advantage of the power of locally installed Office applications. Because the customization
assembly need not be in the same location as the document itself, VSTO cleanly supports both local installs (for offline
scenarios) and network installs (for always-up-to-date scenarios). Furthermore, advanced users can take advantage of
local caching of network-installed customization assemblies to get the best of both worlds: offline access to a locally
cached customization assembly, but a guarantee that you are always using the latest version when connected.

This chapter covers how to use the Publish Wizard in Visual Studio to deploy applications toservers, how to create a
setup project for a Word or Excel project, and how to use the ServerDocument object model to edit the deployment
information inside a Word or Excel document. The chapter finishes with a discussion of some of the advanced offline-
caching scenarios.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSTO Prerequisites
No matter how your users are going to get the customized documents onto their machines, they will need some
prerequisites, as follows:

Microsoft Office Service Pack One, which can be found at http://www.microsoft.com/downloads/details.aspx?
familyid=9C51D3A6-7CB1-4F61-837E-5F938254FC47

The primary interop assemblies (PIAs), which can be found at
http://www.microsoft.com/downloads/details.aspx?familyid=3c9a983a-ac14-4125-8ba0-d36d67e0f4ad

The .NET Framework 2.0

The VSTO runtime

Those last two will also be available as stand-alone setup packages, should you want to deploy them. The VSTO runtime
redistribution setup package (vstor.exe) is available on the VSTO installation CD-ROM, as is the .NET Framework 2.0
setup package (dotnetfx.exe). The .NET Framework2.0 setup package will also be made available through Windows
Update.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deploying to an Intranet Shared Directory or Web Site
Suppose that you are ready to roll out an expense-reporting application using a customized Excel spreadsheet. You plan
to put the application up on the http://accounting Web site. Users will download the spreadsheet to their local machines
for editing, but the code will live up on the server.

As discussed in Chapter 19, ".NET Code Security," you need to ensure that users have policy that explicitly trusts the
customization assembly. The policy should explicitly trust the server; the strong name of the assembly; or, preferably,
both. See the last section of Chapter 19 for tips on how to roll out security policy.

Deploying to a Server with the Publish Wizard

Choose Publish from the Build menu to start the Publish Wizard, and give the name of the intranet Web server or
network share to which you want to publish the customization, as shown in Figure 20.1.

Figure 20.1. The Visual Studio Publish Wizard.

[View full size image]

Click Finish. It is as simple as that; Visual Studio will build the customization and copy the document and customization
assembly to the server. As you will see later in this chapter, Visual Studio also creates a deployment manifest for you.
We discuss what deployment manifests are for shortly, but first, what if you do not have write access to the server?

Some Security Questions

A few security questions may have just come to mind. What if your security-conscious administrators have not granted
you write access to the Website? What if the delay-signed assemblies must be properly strong-named by a signing
authority or signed with a publisher certificate before they are deployed?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

authority or signed with a publisher certificate before they are deployed?

The Publish Wizard creates a local copy of the files that it deploys up to the network site before it deploys them, but
unfortunately, there is no way to get the Publish Wizard to skip attempting to copy them up to the site. It is possible to
do this from the command line, however, using the msbuild.exe utility. The syntax is as follows:

MSBuild.exe /target:Publish /property:PublishUrl=<Url> <Project>

This produces the files that would be deployed and puts them in the following directory:

<ProjectFolder>\<OutputFolder>\<ProjectName>.publish

The following would produce the files to be copied to the Web server but not actually copy them there:

MSBuild.exe /target:Publish
/property:PublishUrl=http://accounting/ExpenseReport
"c:\MyProjects\ExpenseReport\ExpenseReport.vbproj"

Instead, they would be saved in the following:

c:\MyProjects\ExpenseReport\bin\Release\ExpenseReport.publish

After you have the files to be deployed on your local machine, you can get them strong-named by your signing
authority, send them to the server administrator to be copied onto the Web server, or do whatever else needs to be
done before the files become available on a live server.

Examining the Generated Files

Take a look at the contents of the network (or local) directory to which you just deployed the application. (This typically
will be a subdirectory of the c:\inetpub\wwwroot directory if you published to a Web site.) You should see a directory
structure that looks something like this:

> dir /s /b
C:\Inetpub\wwwroot\ExpenseReport\ExpenseReport.application
C:\Inetpub\wwwroot\ExpenseReport\ExpenseReport.doc
C:\Inetpub\wwwroot\ExpenseReport\ExpenseReport_1.0.0.0
C:\Inetpub\wwwroot\ExpenseReport\ExpenseReport_1.0.0.0\
 ExpenseReport.dll
C:\Inetpub\wwwroot\ExpenseReport\ExpenseReport_1.0.0.0\
 ExpenseReport.dll.manifest
C:\Inetpub\wwwroot\ExpenseReport\ExpenseReport_1.0.0.0\
 ExpenseReport.doc
C:\Inetpub\wwwroot\ExpenseReport\ExpenseReport_1.0.0.0\
 ExpenseReport.dll.config

To understand what is going on here, we need to introduce some jargon. The ExpenseReport.application file is the
deployment manifest, and the ExpenseReport.dll.manifest file is the application manifest.

Note

It is somewhat confusing that the ".application" file is not the application manifest; unfortunately, now we
are stuck with this poor choice of nomenclature.

The Deployment Manifest

The sole purpose of the deployment manifest is to point the VSTO runtime toward the most current version of the
application manifest. The application manifest, by contrast, contains information about where the customization
assembly is and which host item classes need to be created when the customization is started. There is always only one
deployment manifest, but there can be many application manifests, one for each version of the customization.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

deployment manifest, but there can be many application manifests, one for each version of the customization.

A typical automatically generated deployment manifest looks something like Listing 20.1.

Listing 20.1. The Deployment Manifest

<?xml version="1.0" encoding="utf-8"?>
<asmv1:assembly
 xsi:schemaLocation=
 "urn:schemas-microsoft-com:asm.v1 assembly.adaptive.xsd"
 manifestVersion="1.0"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xmlns="urn:schemas-microsoft-com:asm.v2"
 xmlns:asmv1="urn:schemas-microsoft-com:asm.v1"
 xmlns:asmv2="urn:schemas-microsoft-com:asm.v2"
 xmlns:xrml="urn:mpeg:mpeg21:2003:01-REL-R-NS"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <assemblyIdentity
 name="ExpenseReport.application"
 version="1.0.0.0"
 publicKeyToken="0000000000000000"
 language="neutral"
 processorArchitecture="msil"
 xmlns="urn:schemas-microsoft-com:asm.v1" />
 <description
 asmv2:publisher="Microsoft"
 asmv2:product="ExpenseReport"
 xmlns="urn:schemas-microsoft-com:asm.v1" />
 <deployment install="true" />
 <dependency>
 <dependentAssembly
 dependencyType="install"
 codebase=
 "ExpenseReport_1.0.0.0\ExpenseReport.dll.manifest"
 size="1460">
 <assemblyIdentity
 name="ExpenseReport.dll"
 version="1.0.0.0" />
 <hash>
 <dsig:Transforms>
 <dsig:Transform Algorithm=
 "urn:schemas-microsoft-com:HashTransforms.Identity" />
 </dsig:Transforms>
 <dsig:DigestMethod Algorithm=
 "http://www.w3.org/2000/09/xmldsig#sha1" />
<dsig:DigestValue>8cQI8YsGgIUaSSysgK3Ad8do9t0=</dsig:DigestValue>
 </hash>
 </dependentAssembly>
 </dependency>
</asmv1:assembly>

We have emphasized the relevant portions of the deployment manifest. What is all the rest ofthis stuff? There seem to
be some confusing things in here. Why is the root element "assembly"? Why are there two inconsistent
"assemblyIdentity" elements? And what's that digital signature?

VSTO uses the same deployment manifest format as ClickOnce, a technology designed to facilitate deployment of entire
applications, not single customizations; these oddities are a result of backward-compatibility factors from the ClickOnce
world.

The oldest of these historical factors is the root element "assembly." Explaining that strange choice requires us to go
back to a time before the version 1.0 .NET runtime shipped. When the .NET runtime was being designed, assembly
referred to all an application's files and configuration informationthat is, all the bits described by what we now call a
manifest. The manifest file format above dates from that time, and its elements were not renamed when assembly
came to mean "the smallest unit of versionable executable code."

That explains why there are two inconsistent assemblyIdentity elements. The first assemblyIdentity identifies not a DLL,
but the manifest itself. Notice that the first assemblyIdentity element names the manifest. Manifests can have their own
version numbers. Deployment manifests usually are versioned along with the customization assembly, but the
deployment manifest can haveits own version number distinct from that of the customization assembly, if you so
choose; as you will see later, it must be consistent with the application manifest but need not be consistent with the
customization assembly. VSTO considers only the name and version attributes in the first assemblyIdentity element.

The second assemblyIdentity element uses assembly in the modern sense and identifies the customization code. Notice
that the codebase attribute gives the relative path to the application manifest, and the assemblyIdentity identifies the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that the codebase attribute gives the relative path to the application manifest, and the assemblyIdentity identifies the
name and version of the customization code. We discuss the meanings and interactions of the various codebase
attributes later in this chapter.

Finally, ClickOnce supports digital signing security features in its manifests; unlike ClickOnce, VSTO does not do any
kind of digital signature verification on its manifests. VSTO will ignore these elements.

The Application Manifest

As you have seen, the deployment manifest identifies the location and current version of theapplication manifest. The
application manifest identifies the customization assembly and lists the classes that need to be created when the
customization starts. The application manifest, shown in Listing 20.2, looks somewhat similar to the deployment
manifest.

Listing 20.2. The Application Manifest

<assembly xmlns="urn:schemas-microsoft-com:asm.v1"
 xmlns:asmv2="urn:schemas-microsoft-com:asm.v2">
 <assemblyIdentity name="ExpenseReport.dll" version="1.0.0.0" />
 <asmv2:entryPoint name="Startup" dependencyName="dependency0">
 <asmv2:clrClassInvocation
 class="ExpenseReport.ThisWorkbook"/>
 </asmv2:entryPoint>
 <asmv2:entryPoint name="Startup" dependencyName="dependency0">
 <asmv2:clrClassInvocation class="ExpenseReport.Sheet1"/>
 </asmv2:entryPoint>
 <asmv2:entryPoint name="Startup" dependencyName="dependency0">
 <asmv2:clrClassInvocation class="ExpenseReport.Sheet2"/>
 </asmv2:entryPoint>
 <asmv2:entryPoint name="Startup" dependencyName="dependency0">
 <asmv2:clrClassInvocation class="ExpenseReport.Sheet3"/>
 </asmv2:entryPoint>
 <asmv2:dependency asmv2:name="dependency0">
 <asmv2:dependentAssembly>
 <assemblyIdentity name="ExpenseReport"
 version="1.0.0.0" culture="neutral" />
 <asmv2:installFrom
 codebase="ExpenseReport_1.0.0.0\ExpenseReport.DLL" />
 </asmv2:dependentAssembly>
 <asmv2:installFrom codebase=
"http://accounting/ExpenseReport/ExpenseReport.application" />
 </asmv2:dependency>
</assembly>

Again, we have assembly used in the now-obsolete sense as the root element and an assemblyIdentity element that
gives the version number of the application manifest. What is all the rest of the stuff in here?

Clearly, all the information we need to start the customization is in here, but again, the format is somewhat odd
because it tries to be similar to the ClickOnce format. We have a collection of entryPoints listing the classes that are to
be created when the customization starts. We also have a single dependency (that is, the assembly containing the
customization). Because a ClickOnce application manifest describes all the assemblies that make up an application, a
ClickOnce manifest can have many dependent assemblies. A VSTO customization always consists of a single assembly
and, therefore, has only one dependency in the application manifest.

Notice that the application manifest also refers to the location of the deployment manifest. But is not the point of the
deployment manifest to identify the location of the application manifest? What is going on here?

The Relationship Between Application and Deployment Manifests

The easiest way to explain this is to walk through a typical deployment scenario. Suppose that you develop and publish
version 1.0.0.0 of the expense-reporting solution above. Now there are four interesting files: the deployment manifest,
the application manifest, the assembly, and the document. The deployment manifest points to the application manifest;
the application manifest points to the assembly; and the document's data island contains a copy of the application
manifest.

Now you e-mail the document, without the assembly, to a user. The user loads the document into Excel. The VSTO
runtime reads the copy of the application manifest out of the document and notices a deployment manifest in the
installFrom location. The VSTO runtime downloads the deployment manifest and discovers that both the application and
deployment manifests are version 1.0.0.0. Therefore, the VSTO runtime knows that the document contains the most
recent copy of the application manifest, so it need not update it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

recent copy of the application manifest, so it need not update it.

The deployment manifest's codebase refers to the location of the server's copy of the manifest and the customization
DLL. The CLR assembly loader downloads the assembly and configuration file, caches them locally, and loads the
assembly into memory. (Although the file has been cached locally for convenience, the CLR assembly loader sets the
evidence associated with the assembly to match its original location, not its temporary location on the local disk.) Then
the VSTO runtime starts the classes named in the entryPoint elements, and the customization runs.

A few days later, you fix some bugs and roll out version 1.0.0.1 to the server, using the Publish Wizard. The next time
the user starts the document while online, the VSTO runtime contacts the server to see whether there have been any
changes in the deployment manifest.

This time, the document's copy of the application manifest is 1.0.0.0, but the deployment manifest is 1.0.0.1. The VSTO
runtime downloads the new application manifest from the server and caches a copy of it in the document. (Note that if
the user quits Excel without saving the document, the change to the cached manifest will be lost with all the other
changes.)

The CLR loader detects that the assembly's codebase is different and downloads the new assembly. Now the user is
running the latest version without ever having to download or install anything manually.

Because the local copy of the application manifest knows where the deployment manifest is, and the deployment
manifest knows where the latest application manifest is, the document always can keep itself up to date with the latest
bits.

Note

A deployment manifest's version number must match the version number of the application manifest it
refers to. If the deployment manifest's version attribute indicates that itis version 1.0.0.1, the referred-to
application manifest must also be version 1.0.0.1. If the VSTO runtime detects that the deployment
manifest refers to a mismatched application manifest, it assumes that the deployment server has been
corrupted and refuses to load the customization.

Determining the Assembly Location from a Deployment Manifest

Did you notice that between the deployment manifest and the application manifest, there were three codebase
attributes? The application manifest says this:

 <asmv2:dependency asmv2:name="dependency0">
 <asmv2:dependentAssembly>
 <assemblyIdentity name="ExpenseReport"
 version="1.0.0.0" culture="neutral" />
 <asmv2:installFrom codebase=
 "ExpenseReport_1.0.0.0\ExpenseReport.DLL" />
 </asmv2:dependentAssembly>
 <asmv2:installFrom codebase=
 "http://accounting/ExpenseReport/ExpenseReport.application" />
 </asmv2:dependency>

Whereas the deployment manifest says this:

codebase="ExpenseReport_1.0.0.0\ExpenseReport.dll.manifest"

How does the loader determine the codebase from which to load the customization assembly? In the preceding
example, the application manifest has an absolute path to the deployment manifest, so the runtime starts there. The
absolute path to the deployment manifest is combined with the codebase in the application manifest, which is relative to
the deployment manifest path for a published project. So the VSTO runtime looks for the assembly in
http://accounting/ExpenseReport/ExpenseReport_1.0.0.0/.

Had the application manifest contained an absolute path to the DLL, the VSTO runtime would ignore the deployment
manifest information for the purposes of loading the customization and just use the absolute path. You learn how to
edit the codebase and other attributes in the application and deployment manifests later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Local Machine Deployment Without a Deployment Manifest
What if you choose to eschew the convenience of having customization assemblies deployed to centralized network
locations? Perhaps there is no suitable location, or the number of users who will be using your customized document is
sufficiently small that rolling out new assemblies to all their machines is not particularly onerous. You could always stick
with the default behavior, where the customization assembly must be in the same directory as the document it
customizes.

As discussed at the beginning of this chapter, however, that leads to the inconvenience of having to copy around the
associated files every time you move the document itself. The security system imposes an additional inconvenience: If
the customization assembly is in the same location as the document, that location must be fully trusted for some reason
other than simply being in the local machine zone.

For these reasons, your users may want the convenience of having one location on their local machine for the
customization. That way, the customization need not be moved around with the document, and only one location need
be explicitly trusted.

If no deployment manifest is listed in the embedded application manifest, clearly, the VSTO runtime will not be able to
resolve the codebase relative to the nonexistent deployment manifest location. Instead, the VSTO runtime will resolve
the codebase by taking the path relative to the current document location. Of course, having a relative path to the
document again makes it difficult to move the document around without moving the assembly as well. Therefore, it is
most likely that the assembly codebase will be an absolute path.

A particularly useful feature when setting the application codebase is that the VSTO runtime will expand any
environment variables in the installFrom path. You could set the installFrom path to this, for example:

 <asmv2:installFrom codebase=
"%ProgramFiles%\ExpenseReport\ExpenseReport.dll" />

Then the VSTO runtime would replace the named environment variable with the appropriate path on the user's
machine.

But how does one go about editing these paths? The application manifest in question is embedded in the document's
data island. Fortunately, the VSTO runtime provides a convenient object model for manipulating embedded application
manifests. The ServerDocument object, which you saw used for manipulating a document's cached data in Chapter 18,
"Server Data Scenarios," will come in handy again.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Editing Manifests
You can use several tools to edit deployment and application manifests.

Using MAGE to Edit Deployment Manifests

The Visual Studio Publish Wizard will automatically generate and update a deployment manifest for you, but should you
want to edit the manifest yourself, you have two main options. First, the deployment manifest is nothing more than an
XML file sitting on a server; you can use Notepad or any other editor of your choice.

If editing raw XML is not your idea of a good time, you can use the Manifest Generating and Editing (MAGE) tool,
mage.exe (see Figure 20.2). MAGE ships with Visual Studio and provides a convenient graphical interface for editing
deployment manifests. (Look in the SDK\v2.0\BIN directory of your Visual Studio installation.)

Figure 20.2. Using mage.exe to update a deployment manifest manually torefer to
a new version of the customization.

[View full size image]

Unfortunately, the VSTO application manifest file format is sufficiently different from the ClickOnce file format that
MAGE cannot be used to edit VSTO application manifestsonly deployment manifests. To edit application manifests, you
have a couple of options: You can use the VSTO Application Manifest Editor utility, or you can write your own tools
using the ServerDocument object model.

Using the VSTO Application Manifest Editor

The VSTO SDK ships with a library of code samples, one of which is a graphical utility for editing application manifests.
Load the ApplicationManifestEditor sample solution into Visual Studio, and build it. Then you can use this utility to edit
the manifests inside spreadsheets and documents (see Figure 20.3).

Figure 20.3. Using the VSTO Application Manifest Editor to edit the manifest
embedded in a spreadsheet file.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Graphical utilities prove handy if you want to change a small number of files, but what if you want to make changes to
many customizations at the same time? Then it would be nice to be able to write programs that edit the application
manifests directly. Fortunately, the ServerDocument object model can manipulate not just the cached data inside a
document, but also the application manifest.

Using the ServerDocument Object Model to Read and Edit Embedded
Application Manifests

The ServerDocument object model, discussed in Chapter 18, "Server Data Scenarios," was primarily designed to
manipulate the cached data island on the server. You can also use it to read or edit the application manifest stored in a
customized document, however. The ServerDocument object can edit the application manifests stored in Word
documents saved in either binary or XML format, and Excel documents saved in binary format only.

Listing 20.3 shows how we can modify our cached-data viewer from Chapter 18 to display the application manifest
inside a document.

Listing 20.3. Creating an Application Manifest Viewer with ServerDocument

Imports Microsoft.VisualStudio.Tools.Applications.Runtime
Imports System.IO

Module Module1

 Sub Main(ByVal args As String())
 If args.Length <> 1 Then
 Console.WriteLine("Usage:")
 Console.WriteLine(" AppInfoViewer.exe myfile.doc")
 Return
 End If

 Dim filename As String = args(0)
 Dim doc As ServerDocument = Nothing

 Try
 doc = New ServerDocument(filename, False, FileAccess.Read)
 Console.WriteLine(vbCrLf & "Application Manifest")
 Console.WriteLine(doc.AppManifest.ToXml())
 Catch ex As CannotLoadManifestException
 Console.WriteLine("Not a customized document:" + filename)
 Console.WriteLine(ex.Message)
 Catch ex As FileNotFoundException
 Console.WriteLine("File not found:" + filename)
 Catch ex As Exception
 Console.WriteLine("Unexpected Exception:" + filename)
 Console.WriteLine(ex.ToString())
 Finally
 If Not doc Is Nothing Then
 doc.Close()
 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End If
 End Try
 End Sub

End Module

This section covers all the application-manifest-related properties and methods in the server document object model,
describing what they do, their purpose, and why they look the way they do.

Note

As mentioned in Chapter 18, "Server Data Scenarios," because this object model enables you to modify all
the information about the customization, it is quite possible to create documents with nonsensical
deployment information. The VSTO runtime engine does attempt to detect malformed customization
information and throw the appropriate exceptions, but still, exercise caution when using this object model.

Application Manifest Objects, Methods, and Properties

The ServerDocument represents the application manifest as an object of type AppManifest:

Public ReadOnly Property AppManifest As AppManifest

The AppManifest object has no public constructors; the only way to get an instance of an AppManifest is to open a
ServerDocument object. After you have one, there is an easy way to turn an XML manifest into the programmable
object model:

Public Sub Clear()
Public Sub FromXml(ByVal manifest As String)
Public Function ToXml() As String

The ToXml method turns the current state of the object model into XML. The Clear method throws away all the
information in the manifest, making it a blank slate. The FromXml method clearsthe present state of the document
before loading the information from the passed-in XML string. The AppManifest object also has four properties:

Public Property Dependency As Dependency
Public Property DeployManifestPath As String
Public ReadOnly Property EntryPoints As EntryPointCollection
Public Property Identity As AssemblyIdentity

The AssemblyIdentity property is the "assembly" identity of the manifest, not of the customization assembly. This
contains the application manifest's version number. If a deployment manifest is used, the VSTO runtime compares the
application manifest and deployment manifest versions to see whether the application manifest is out of date.

The DeployManifestPath property gives the URL to the deployment manifest. This property sets the codebase attribute
of the second installFrom element in the application manifest.

Using a deployment manifest is optional; if no deployment manifest path is set, the VSTO runtime assumes that the
embedded application manifest is always up to date.

An EntryPointCollection is a straightforward, strongly typed collection class that extends CollectionBase with these
methods:

Public Function Add(ByVal className As String) As EntryPoint
Public Function Contains(ByVal value As EntryPoint) As Boolean
Public Sub CopyTo(ByVal entryPoints As EntryPoint(), _
 ByVal index As Integer)
Public Function GetEnumerator() As EntryPointEnumerator
Public Function IndexOf(ByVal entryPoint As EntryPoint) _
 As Integer
Public Sub Insert(ByVal index As Integer, _
 ByVal value As EntryPoint)
Public Sub Remove(ByVal entryPoint As EntryPoint)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Sub Remove(ByVal entryPoint As EntryPoint)

Like the AppManifest, the EntryPointCollection and EntryPoint objects have no public constructors. Use the Add method
on the EntryPointCollection if you want to create a new EntryPoint. An EntryPoint has only one public property. It should
be the namespace-qualified name of the view class:

Public Property ClassName As String

The Dependency object has two properties:

Public Property AssemblyIdentity As AssemblyIdentity
Public Property AssemblyPath As String

To load the customization assembly, the runtime needs to know both the full name of the assembly and its location. The
AssemblyPath corresponds to the codebase attribute of the first installFrom element in the application manifest. As
mentioned previously, it may be either an absolute or a relative URL. If absolute, the assembly is loaded from that
location. If relative, the path is relative to the location of the deployment manifest's codebase, if there is one, or the
document if there is not.

The AssemblyIdentity object does have a public constructor, unlike every other object in the application manifest object
model:

Public Sub New(ByVal name As String, _
 ByVal version As FourPartVersion, _
 ByVal publicKeyToken As String)
Public Property Name As String
Public Property PublicKeyToken As String
Public Property Version As FourPartVersion

The Name property gives the name of the assembly, not the name of the file containing it; it should not end in .dll.

The PublicKeyToken property is part of the strong name. A full public key encoded as a string is a rather long and
unwieldy string. The public-key token is a much shorter statistically guaranteed-unique key that identifies the public key
used to verify a strong-named assembly. (See Chapter 19, ".NET Code Security," for more details on what a strong
name is and what the key token is for.) You can use sn.exeT myassembly.dll to give the public-key token of a strong-named
assembly.

Finally, the FourPartVersion object is a value type that keeps track of "1.2.3.4"-formatted version numbers. It has the
following properties and methods:

Public Sub New(ByVal major As Integer, ByVal minor As Integer, _
 ByVal buildNumber As Integer, ByVal revision As Integer)
Public Property BuildNumber As Integer
Public Property Major As Integer
Public Property Minor As Integer
Public Property Revision As Integer
Public Shared Function Parse(ByVal value As String) _
 As FourPartVersion
Public Shared ReadOnly Property Empty As FourPartVersion

The FourPartVersion class also overrides all the comparison operators so that you can easily compare any two.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating Setup Packages
Creating a setup package to install a VSTO customized document on a user's local machine requires us to build a couple
of custom installer classes. We need to update the application manifest stored in the document to refer to the location
on the user's machine, and we need to update the user's security policy. Let's walk through all the steps required to
add a setup package to a customized spreadsheetsay, an expense-reporting application.

Open the solution for the customized document, and right-click the solution (the root of the tree) in Solution Explorer.
Choose Add > New Project, and create a setup project as shown in Figure 20.4.

Figure 20.4. Creating a setup project.

[View full size image]

Tip

This step is not necessary if you have created an Outlook Add-In VSTO project. Visual Studio will
automatically create an installer project that installs the DLL, creates a manifest, and updates the Outlook
add-in registry key for you. You still need to ensure that the right security policy is rolled out, however,
and that the VSTO runtime assemblies are installed on the client machines.

Use the Properties pane for the setup project to customize strings such as the author, description, and so on, as shown
in Figure 20.5.

Figure 20.5. Setting setup-project properties.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We have not yet told the setup project what files it is going to be setting up. We want it to set up all the files produced
by the expense-report project in this solution.

Right-click the setup project, and select Add > Project Output to view the Add Project Output Group dialog box, shown
in Figure 20.6.

Figure 20.6. Telling the setup project which files to set up.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Select the Primary Output files associated with the ExpenseReport project, and click OK.

At this point, if you want the users to take responsibility for installing the customization to a location that they trust and
do not care that they will have to copy around the customization assembly if they want to move the spreadsheet, you
are done. You can build and execute the setup package, and it will copy the necessary files to the user's machine just
as they are on the development machine.

You probably want to set the codebase in the application manifest, however, so that it refers to the installation location
rather than the current directory. You also probably want to set the user's security policy so that the customization
location is fully trusted. That way, the user can copy the document around without worrying about dragging the
customization along with it.

To do that, we create yet another project in this solution. Right-click the solution in Solution Explorer again, and create
a new, empty Visual Basic project (in the Visual Basic > Windows branch of the tree view of the Add New Project dialog
box) called CustomSetup. When you have the project, right-click it, and select the Properties pane for the project.
Change the output type to Class Library, as shown in Figure 20.7.

Figure 20.7. Setting the custom installer class project to build a class library.

[View full size image]

Right-click the project again, and choose Add > New Item. Add a new Installer Class, as shown in Figure 20.8. In fact,
add two: one for the security change, and one for the application manifest change.

Figure 20.8. Adding custom installer classes.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Right-click the References node in the CustomSetup project's tree view, and add a reference to
Microsoft.VisualStudio.Tools.Applications.Runtime; we are going to need to create the ServerDocument class, so we
need a reference to the VSTO runtime library. Finally, right-click the application manifest installer, and select View
Code. Now the Visual Studio IDE should look something like Figure 20.9.

Figure 20.9. Editing the custom installer classes.

[View full size image]

Before we get into adding code to these custom actions, however, let's tell the installer about them. Right-click the
installer project in Server Explorer, and choose View > Custom Actions. In the Custom Actions viewer, right-click
Install, and choose Add Custom Action to view the custom action dialog box shown in Figure 20.10.

Figure 20.10. Selecting the custom install actions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 20.10. Selecting the custom install actions.

Click Application Folder and then Primary Output from CustomSetup. Doing so tells the setup project that it should look
for Installer classes decorated with the RunInstaller attribute in the assembly produced by the CustomSetup project. As
you can see from looking at the hidden partial class associated with the Installer class, both the new custom install
action classes are decorated with this attribute.

We must do one more thing to get the custom install actions working properly: They need to know the name of the
assembly, the name of the document, and where they are located. To pass these strings from the installer to the
custom action, we add the strings to the CustomActionData property of the custom action just created, as shown in
Figure 20.11.

Figure 20.11. Setting the custom action data.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The custom action data consists of a set of keys and values:

/custassembly="[TARGETDIR]\ExpenseReport.dll"
/custdoc="[TARGETDIR]\ExpenseReport.xls"

Finally, we are all set up to write the custom installation actions. First, we write the application manifest editor shown in
Listing 20.4. We get the strings passed by the main installer out of the installation context object, create a
ServerDocument on the installed document, and set the assembly path to the absolute path. Finally, because this is a
derived class, we make sure that we call the base class install method in case it does anything interesting (such as
write a success message to a log file).

Listing 20.4. Creating an Application Manifest Editor Custom Install Action with
ServerDocument

Imports System.ComponentModel
Imports System.Configuration.Install
Imports Microsoft.VisualStudio.Tools.Applications.Runtime

Public Class AppManifestInstaller
 Inherits Installer

 Public Sub New()
 MyBase.New()

 'This call is required by the Component Designer.
 InitializeComponent()
 End Sub

 Public Overrides Sub Install(_
 ByVal stateSaver As System.Collections.IDictionary)

 Dim assemblyPath As String = _
 Me.Context.Parameters("custassembly")
 Dim documentPath As String = Me.Context.Parameters("custdoc")
 Dim sd As ServerDocument = New ServerDocument(documentPath, _
 True, System.IO.FileAccess.ReadWrite)
 Try
 sd.AppManifest.Dependency.AssemblyPath = assemblyPath
 sd.Save()
 Finally
 sd.Close()
 End Try
 MyBase.Install(stateSaver)

 End Sub

End Class

Second, we write code similar to the code we wrote in Chapter 19, ".NET Code Security," to set the local security policy.
This time, we set a user security policy that trusts the installation directory explicitly, as shown in Listing 20.5.

Listing 20.5. A Custom Install Action Class to Set Local Security Policy

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 20.5. A Custom Install Action Class to Set Local Security Policy

Imports System.Collections
Imports System.ComponentModel
Imports System.Configuration.Install
Imports System.Security
Imports System.Security.Policy
Imports Microsoft.VisualStudio.Tools.Applications.Runtime

Public Class SecurityInstaller
 Inherits Installer

 Public Sub New()
 MyBase.New()

 'This call is required by the Component Designer.
 InitializeComponent()
 End Sub

 Public Overrides Sub Install(_
 ByVal stateSaver As System.Collections.IDictionary)

 Dim enterprisePolicyLevel As PolicyLevel
 Dim machinePolicyLevel As PolicyLevel
 Dim userPolicyLevel As PolicyLevel
 Dim assemblyGroup As CodeGroup
 Dim assemblyCondition As UrlMembershipCondition
 Dim policyStatement As PolicyStatement
 Dim fullTrust As PermissionSet
 Dim assemblyPath As String = _
 Me.Context.Parameters("custassembly")

 ' Obtain the three policy levels:
 Dim policyEnumerator As IEnumerator
 policyEnumerator = SecurityManager.PolicyHierarchy()
 policyEnumerator.MoveNext()
 enterprisePolicyLevel = CType(_
 policyEnumerator.Current, PolicyLevel)
 policyEnumerator.MoveNext()
 machinePolicyLevel = CType(_
 policyEnumerator.Current, PolicyLevel)
 policyEnumerator.MoveNext()
 userPolicyLevel = CType(_
 policyEnumerator.Current, PolicyLevel)

 ' Create a new group by combining a permission set with a
 ' membership condition:
 fullTrust = userPolicyLevel. _
 GetNamedPermissionSet("FullTrust")
 policyStatement = New PolicyStatement(fullTrust, _
 PolicyStatementAttribute.Nothing)
 assemblyCondition = New UrlMembershipCondition(assemblyPath)
 assemblyGroup = New UnionCodeGroup(_
 assemblyCondition, policyStatement)

 ' Add the new policy to the root:
 userPolicyLevel.RootCodeGroup.AddChild(assemblyGroup)
 SecurityManager.SavePolicy()

 MyBase.Install(stateSaver)
 End Sub

End Class

If you build all three projects, right-click the installation project, and choose Install, you will see how the Installation
Wizard allows the user to select the location, copies the files over, and then updates the user's security policy and sets
the assembly codebase in the embedded application manifest.

This section has given a bare-bones skeleton of a customized installation program, of course. A more robust installer
includes features such as custom logging, better error handling, user-interface elements, rollback/uninstall when things
go wrong, and so on.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Advanced Topic: Deploying Network Solutions to Be Cached Locally

This chapter began by noting that VSTO supports two main deployment scenarios: Local install ensures
that customizations always work, even when the user is not connected to the network, and network
installs ensure that the user always has the latest version. It would be nice to have the best of both
worlds: the latest version whenever you are online plus the ability to work offline.

If your users always need to be able to run the latest version of the customization while they are online
or offline, and also want to have one centralized point at which the customization can be updated, there
are two principal techniques for doing so: Deploy the customization to a Web server, and deploy it to an
IntelliMirror shared directory.

IntelliMirror Versus Web Caching

If the customization is deployed to a Web server, the Visual Studio runtime loader keeps a local copy of
the assembly and configuration file in the Internet Explorer cache so that the customization is available
when Internet Explorer is offline. Similarly, a locally cached IntelliMirror share makes the network
customization seamlessly available even when the network share is not available.

All other things being equal, the IntelliMirror technique is preferred over the Web server technique, for
several reasons. Suppose that you deploy your customization assembly to http://accounting, a local
intranet Web server. A user runs the customized document, which downloads the customization
assembly from the intranet site and caches a copy in the Internet Explorer cache. Then the user unplugs
his laptop from the wall, heads to the local library, and connects to the library's free wireless networking
service. Now when the user tries to run the customized document, the .NET Framework will not load the
customization assembly out of the Internet Explorer cache, because Internet Explorer believes that it is
connected to the network. Instead, the .NET Framework attempts to connect to the intranet server, fails,
and prompts the user to go offline to use the locally cached copy. Then the user faces the unfortunate
choice of either not running the customization or putting Internet Explorer into offline mode, negating
the benefits of having wireless Internet access.

Also, because the Web-server-caching scenario puts the customization assembly in the Internet Explorer
cache, anything that causes the cache to be cleared destroys the cached customization assembly along
with everything else. Many users clear their Web caches frequently when the caches get too large, and it
is very easy to delete a cached customization assembly accidentally.

Finally, a further inconvenience of the Web-caching scenario is that all customizations must have a
configuration file associated with them for the offline scenario to work. The next section discusses why.

Therefore, all other things being equal, if you want a hybrid online/offline scenario, the IntelliMirror
technique is the preferred one. IntelliMirror shares pay no attention to the state of the Internet Explorer
cache or online status.

Why Do We Need a Configuration File?

One of the goals explicitly stated earlier was to be able to have code live up on a Web server, so that it
was always up to date, yet be able to access the code when the machine is disconnected. To achieve this
goal, the first time the remote code is run, it is downloaded into a local cache. If you run the code again
while connected, VSTO checks to ensure that the latest version is downloaded; if offline, VSTO runs the
cached code.

Consider this scenario: Your customization assembly is on a Web server along with a configuration file.
The customization assembly uses version 1.0.0.0 of a strong-named assembly containing some useful
routines you have written. The first time the user runs the application, the customization assembly and
configuration file are downloaded and cached. The user goes offline, but the customization continues to
work because the cached assembly and configuration file are available.

So far, everything is good. Unfortunately, one day you discover a serious security hole in your library.
You fix it and release version 1.0.1.0 of the library. Every customization, however, still attempts to load
the old code because the customization assembly was built against the old version. You would rather not
go to the trouble of recompiling what might be hundreds or thousands of customizations against the new
library; instead, you just update their server-side configuration files to say that the new version should
be loaded when the old version is requested. While the user is offline, of course, he will still be running
the insecure code, but there's nothing anyone can do about that. When the user goes back online and
runs the code, the new configuration file can be downloaded, the new library is installed, and everyone is
happy again.

That scenario is reason enough always to use configuration files; it is very handy to be able to change
the assembly loading policy easily. But why not create a configuration file only when you find yourself in
this unfortunate situation? Why do we require you always to create a configuration file if you want to be
able to run server-side code while offline?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

able to run server-side code while offline?

Well, suppose that you did not create a configuration file; let's go through that scenario again. Your
customization assembly is on the Web, without a configuration file, and uses buggy version 1.0.0.0 of
your library assembly. The user runs the application for the first time. The loader finds the customization
assembly, caches it, and determines that there is no configuration file on the server. Then the user goes
offline. You discover your security hole and roll out a configuration file pointing the loader to version
1.0.1.0 of your library assembly. The disconnected user knows none of this and attempts to run the
customization again.

Look at this from the point of view of the CLR assembly loader: It has been asked to load a file off an
unavailable Web server. It tries to find a local copy of the assembly, and it succeeds. It tries to find a
local copy of the configuration file, but it fails. If you had cached a local copy of the configuration file, the
CLR can assume that you meant for it to use that configuration file and that you were fine with using
potentially out-of-date configuration information. But because there is no cached file, the CLR has to
assume the worst: that there is, in fact, a new and important configuration file available that it cannot
find.

Therefore, if you want to ensure that users must always be online and using the latest version of your
server-side customization, you should not create a configuration file on the server. On the other hand, if
you want to allow users to use cached assemblies and configuration files when your server is
inaccessible, ensure that you have a configuration file on the server.

To add a configuration file to your project, right-click the project in Solution Explorer, and choose Add >
New Item > Application Configuration File. Name the configuration file after the customization assembly
filename. If your assembly is ExpenseReport.dll, for example, name the configuration file
ExpenseReport.dll.config.

The configuration file need not have any loading policies in it. For now, stick with the bare minimum:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
</configuration>

Configuration files do not get any more straightforward than that. To ensure that this file is copied up to
the deployment server, make sure that the Build Action is set to Content in the Properties pane for the
configuration file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
VSTO's deployment system affords the ease of updating found traditionally in Web-based applications without
squandering the power of the rich client or compromising the strong Office offline story. The key to understanding how
the deployment system works is understanding the relationship between application manifests embedded in the
document and deployment manifests stored on servers. The application manifest refers to the deployment manifest,
which then points to the most recent copy of the application manifest and, hence, the customization.

VSTO also supports local install scenarios without deployment manifests. By default, the customization loads out of the
same directory as the document, but you can edit the embedded application manifest to point to a central machine
location (such as the user's Program Files directory). Custom installation classes can use the ServerDocument object
model to edit embedded application manifest information much as you would edit embedded cached data in the data
island.

This chapter completes our look at the fundamentals of VSTO projects using Word and Excel. The final four chapters
examine some advanced topics, such as using XML data with Word and Excel, and creating application-level managed
add-ins for Word, Excel, and Outlook.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part IV: Advanced Office Programming
Part IV covers some advanced Office programming scenarios, including using the XML features of Excel
and Word, building COM add-ins for Word and Excel, and building VSTO add-ins for Outlook:

Chapter 21, "Working with XML in Excel," explores Excel's XML schema-mapping capabilities and
the features of VSTO that are enabled when you map a schema into the document.

Chapter 22, "Working with XML in Word," explores Word's XML schema-mapping capabilities
and the features of VSTO that are enabled when you map a schema into the document. This
chapter also covers VSTO's support for the WordML file format.

Chapter 23, "Developing COM Add-Ins for Word and Excel," describes how to create a managed
COM add-in in .NET for Word and Excel. This chapter also explores the pitfalls to avoid when
writing a managed COM add-in.

Chapter 24, "Creating Outlook Add-Ins with VSTO," covers add-in development for Outlook. In
particular, this chapter examines the support for creating a VSTO Outlook add-in and the way
that helps you avoid the pitfalls with managed COM add-in development described in Chapter
23. This chapter also describes some Outlook-specific issues you might encounter when
developing a managed COM add-in that you can avoid by building a VSTO Outlook add-in
instead.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 21. Working with XML in Excel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction to Excel's XML Features
The first thing to note about the XML features described in this chapter is that most of them are available only in
Microsoft Office Professional Edition 2003 and the stand-alone Microsoft Office Excel 2003. If you work with other Office
editionssuch as Microsoft Office Standard Edition 2003, Microsoft Office Student and Teacher Edition 2003, or Microsoft
Office Basic Edition 2003the XML features described in this chapter are not available.

Many of the XML features of Excel are accessed via Excel's XML Source task pane. To bring up the XML Source task
pane, if it is not already displayed, choose Task Pane from Excel's View menu. The task pane has a drop-down list from
which XML Source can be selected, as shown in Figure 21.1.

Figure 21.1. Selecting XML Source from the task pane drop-down list.

An alternative way of accessing the XML Source task pane is by using the XML submenu of the Data menu. The XML
submenu has an XML Source command that will show the XML Source task pane. Figure 21.2 shows the XML submenu.
This chapter examines many of the commands in the XML submenu.

Figure 21.2. Choosing Data > XML > XML Source.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After you have made the XML Source task pane visible using one of these two methods, the XML Source task pane will
appear, as shown in Figure 21.3.

Figure 21.3. The XML Source task pane.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The XML Source task pane refers to something called an XML map. An XML map is a mapping from an XML schema to
cells and/or lists in the workbook. Before you create an XML map, you must have an XML schema to work with. The
following section examines how to create an XML schema using Visual Studio 2005.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction to XML Schema Creation in Visual Studio
Visual Studio 2005 has support for creating XML schemas. Launch Visual Studio 2005. Choose File from the New menu.
The dialog box shown in Figure 21.4 appears. Pick XML Schema from this dialog box and then click the Open button.

Figure 21.4. Creating a new XML schema file.

[View full size image]

Visual Studio shows a design view for creating XML schema, as shown in Figure 21.5. The toolbox has XML schema
objects that can be dragged onto the design surface for the new XML schema.

Figure 21.5. Design view, creating a new XML schema file.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The schema object we will use most frequently in this example is element. An XML schema element defines an element
in an XML file. The simple XML file shown in Listing 21.1, for example, has an element called Order in the namespace
ns1. It also has an element called CustomerName in the namespace ns1. The CustomerName element is parented by
the Order element.

Listing 21.1. XML File Representing a Simple Order

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns1:Order xmlns:ns1="http://tempuri.org/XMLSchema.xsd">
 <ns1:CustomerName>Eric Carter</ns1:CustomerName>
</ns1:Order>

The XML schema for this simple Order XML file is created by following these steps:

1. Drag an element from the toolbox onto the schema design surface.

2. In the header row of the newly created element next to the E, type Order.

3. In the * row next to the asterisk (*), type CustomerName.

Figure 21.6 shows the resulting designer view.

Figure 21.6. Design view of a simple Order schema.

When you save this schema, use the Save As command from the File menu to save it as order.xsd. You will have to pick
XML Schema Files (*.xsd) from the Save As Type drop-down list in the Save As dialog box. The order.xsd file will look
like the one shown in Listing 21.2. You can see that an XML schema is just another XML file that defines what
constitutes a valid Order XML file. It defines two elements: Order and Customer Name. Because the Order element
contains other elements, it is defined as a complexType. It contains a sequence of CustomerName elements that are of
type string. Sequence in this case is misleading; the way the XSD file is defined it will be a sequence of one, and only
one, CustomerName element. It is possible to define a sequence that has a varying number of elements in it using the
maxOccurs and minOccurs settings, which we consider later in this chapter. By setting minOccurs to 1 and maxOccurs
to unbounded, for example, you could allow one or more CustomerName elements to be associated with an order.

Listing 21.2. XSD Schema File for a Simple Order Schema

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 21.2. XSD Schema File for a Simple Order Schema

<?xml version="1.0" encoding="utf-8"?>
<xs:schema targetNamespace="http://tempuri.org/XMLSchema.xsd"
elementFormDefault="qualified"
xmlns="http://tempuri.org/XMLSchema.xsd" xmlns:mstns="http://tempuri.org/
XMLSchema.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Order">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CustomerName"
 type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Note that this schema is defined entirely with elements. An alternative way of representing this same data is to use an
Order element and a CustomerName attribute. If CustomerName is defined as an attribute, the resultant XML is as
shown in Listing 21.3.

Listing 21.3. XML File for a Simple Order That Uses an Attribute

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns1:Order xmlns:ns1="http://tempuri.org/XMLSchema.xsd"
CustomerName="Eric Carter">
</ns1:Order>

The XML schema for an Order XML file that uses an attribute is created in Visual Studio by following these steps:

1. Drag an element from the toolbox onto the schema design surface.

2. In the header row of the newly created element next to the E, type Order.

3. In the * row next to the asterisk (*), type CustomerName.

4. Click the E next to CustomerName.

A drop-down list will appear.

5. Select an attribute from the drop-down list to convert CustomerName to an attribute.

Figure 21.7 shows the resultant designer view.

Figure 21.7. Design view of a simple Order schema that uses an attribute.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 21.4 shows the schema for an order using an attribute. Because the Order element contains other attributes, it
is defined as a complexType. It contains an empty sequence; this sequence can actually be removed without affecting
the schema. Then it defines CustomerName as an attribute of type string.

Listing 21.4. XSD Schema File for a Simple Order Schema That Uses an Attribute

<?xml version="1.0" encoding="utf-8"?>
<xs:schema targetNamespace="http://tempuri.org/XMLSchema.xsd"
elementFormDefault="qualified"
xmlns="http://tempuri.org/XMLSchema.xsd"
xmlns:mstns="http://tempuri.org/XMLSchema.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Order">
 <xs:complexType>
 <xs:sequence />
 <xs:attribute name="CustomerName" type="xs:string" />
 </xs:complexType>
 </xs:element>
</xs:schema>

Excel works equally well with schemas that use attributes or elements. Word, however, does not work very well when
you use attributes in a schema. If you are creating a schema that you need to use in Excel and Word, you should try to
use elements instead of attributes. For more information, see Chapter 22, "Working with XML in Word."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An End-to-End Scenario
This section deals with a more complex end-to-end scenario that puts together the schema-creation capabilities of
Visual Studio and the schema-mapping capabilities of Excel. When you take a schema and map it into Excel using the
XML Source task pane, you enable the exporting and importing of XML data in the spreadsheet. We are going to create
an Excel spreadsheet that can be used to record a customer's book order. The spreadsheet will support the import and
export of XML that conforms to our book-order schema. The spreadsheet will look like Figure 21.8.

Figure 21.8. An Excel spreadsheet for processing a book order.

[View full size image]

Listing 21.5 shows the XML that this spreadsheet will be able to import and export.

Listing 21.5. XML File Generated from Book-Order Spreadsheet

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns1:Order xmlns:ns1="http://tempuri.org/XMLSchema.xsd">
 <ns1:CustomerName>Eric Carter</ns1:CustomerName>
 <ns1:Date>2005-02-19</ns1:Date>
 <ns1:Book>
 <ns1:Title>Windows Forms Programming in C#</ns1:Title>
 <ns1:ISBN>0-321-11620-8</ns1:ISBN>
 <ns1:Publisher>Addison-Wesley</ns1:Publisher>
 <ns1:Price>49.99</ns1:Price>
 </ns1:Book>
 <ns1:Book>
 <ns1:Title>Effective C#</ns1:Title>
 <ns1:ISBN>0-321-24566-0</ns1:ISBN>
 <ns1:Publisher>Addison-Wesley</ns1:Publisher>
 <ns1:Price>39.99</ns1:Price>
 </ns1:Book>
 <ns1:Book>
 <ns1:Title>The C# Programming Language</ns1:Title>
 <ns1:ISBN>0-321-15491-6</ns1:ISBN>
 <ns1:Publisher>Addison-Wesley</ns1:Publisher>
 <ns1:Price>29.99</ns1:Price>
 </ns1:Book>
 <ns1:Subtotal>119.97</ns1:Subtotal>
 <ns1:Tax>10.7973</ns1:Tax>
 <ns1:Total>130.7673</ns1:Total>
</ns1:Order>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</ns1:Order>

Creating the Schema Using Visual Studio

To create this schema using Visual Studio, follow these steps:

1. Start Visual Studio 2005.

2. Create a new XSD file by choosing File > New > File or by pressing Ctrl+N.

3. Choose XML Schema from the list of Visual Studio installed templates, as shown in Figure 21.4 earlier in this
chapter; then click the Open button.

The schema design view appears, as shown in Figure 21.5 earlier in this chapter.

4. Drag an element object off the toolbox onto the design surface.

5. Type Order, and press the Enter key.

6. In the * row, type CustomerName, and press Enter.

7. In the * row, type Date, and press the Tab key; then type date for the data type, and press Enter.

8. In the * row, type Subtotal, and press the Tab key; then type float for the data type, and press Enter.

9. In the * row, type Tax, and press the Tab key; then type float for the data type, and press Enter.

10. In the * row, type Total, and press the Tab key; then type float for the data type, and press Enter.

11. Now right-click the Order element box, and choose New Element from the Add menu.

12. Type Book, and press Enter.

13. In the * row of the newly created Book element, type Title, and press Enter.

14. In the * row of the newly created Book element, type ISBN, and press Enter.

15. In the * row of the newly created Book element, type Publisher, and press Enter.

16. In the * row of the newly created Book element, type Price, and press the Tab key; then type float for the data
type, and press Enter. Now we now want to specify that multiple books can be included in an order.

17. Click the Book row in the Order element box, and show the Properties window by choosing Properties Window
from the View menu.

18. For the property maxOccurs, type unbounded; for the property minOccurs, type 1.

19. Save the schema, using the Save As command from the File menu.

20. In the Save File As dialog box, drop down the Save As Type combo box, and pick XML Schema Files (*.xsd); for
the filename, type BookOrder.xsd; and save it to a convenient place, such as the desktop.

Figure 21.9 shows what the final schema in Visual Studio should look like.

Figure 21.9. The book-order schema in Visual Studio.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 21.9. The book-order schema in Visual Studio.

Listing 21.6 shows the generated XSD file. Note that the sequence of Book elements in an Order element is now a
sequence with a minimum (minOccurs) of one Book element and a maximum (maxOccurs) of unbounded Book
elements. This will allow our schema to represent one or more Books in an Order. Also, having a sequence where
maxOccurs is greater than 1 or unbounded will help Excel know that it needs to represent the Books in an Order using
an Excel list.

Listing 21.6. Book-Order Schema XSD File

<?xml version="1.0" encoding="utf-8"?>
<xs:schema targetNamespace="http://tempuri.org/XMLSchema.xsd"
elementFormDefault="qualified"
xmlns="http://tempuri.org/XMLSchema.xsd"
xmlns:mstns="http://tempuri.org/XMLSchema.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Order">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CustomerName"
 type="xs:string" />
 <xs:element name="Date" type="xs:date" />
 <xs:element name="Book"
 maxOccurs="unbounded" minOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Title"
 type="xs:string" />
 <xs:element name="ISBN"
 type="xs:string" />
 <xs:element name="Publisher"
 type="xs:string" />
 <xs:element name="Price"
 type="xs:float" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Subtotal" type="xs:float" />
 <xs:element name="Tax" type="xs:float" />
 <xs:element name="Total" type="xs:float" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Adding a Schema to the Excel Workbook

Now that we have created a schema, let's add it to an Excel workbook. Launch Excel, and create a new, empty
workbook. Bring up the Excel XML Source task pane, as described in the first section of this chapter. You should see the
XML Source task pane with no mappings as yet in the task pane. To add an XML map, click the XML Maps button in the
XML Source task pane. Doing so brings up the dialog box shown in Figure 21.10.

Figure 21.10. The XML Maps dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 21.10. The XML Maps dialog box.

Click the Add button, and browse to wherever you saved your book-order schema. Select the schema, and click the
Open button. The XML map now appears as a loaded XML map in the workbook. Using this dialog box, you can delete
and rename an XML map. For now, we will just click the OK button to exit this dialog box.

The Excel XML Source task pane shows the XML map we just added, as shown in Figure 21.11.

Figure 21.11. The XML Source task pane with an XML map.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mapping the Schema to the Excel Workbook

The XML Source task pane represents our book-order schema in a tree view. The icon associated with Order indicates a
required parent element. The icons associated with CustomerName, Date, Title, ISBN, Publisher, Price, Subtotal, Tax,
and Total indicate required child elements. The icon associated with Book indicates a required repeating parent element.
Excel also supports other schema constructs, such as attributes and nonrequired elements and attributes. These
constructs also have their own icons.

Let's try a few different ways of mapping the schema into the workbook. The first approach we will take is to click the
root ns1:Order node in the XML Source task pane and drag it to cell A1 in the workbook. Excel creates one list to
contain all the data, as shown in Figure 21.12.

Figure 21.12. The list created when ns1:Order is dragged to cell A1.

[View full size image]

The XML Source task pane now indicates that all the elements have been mapped by bolding each element that has
been mapped, as shown in Figure 21.13. Parent elements such as Order and Book are not mapped explicitly in the
Workbook because these containing relationships do not need to be mapped directly to an Excel cell or list. You can
remove a mapping by selecting the mapped cell or list in the Workbook and pressing the Delete key. You can also right-
click the elements in the XML Source task pane that are in bold and choose Remove Element to remove the mapping.

Figure 21.13. Mapped elements are bolded in the XML Source task pane.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At the bottom of the XML Source task pane, click the Verify Map for Export link. Excel displays the dialog box shown in
Figure 21.14.

Figure 21.14. Mapping cannot be exported because of denormalized data.

To consider why this mapping cannot be exported, let's import the XML in Listing 21.5 into our current mapping. In
Excel, choose Data > XML > Import. Browse to an XML file containing the XML in Listing 21.5, and click the Import
button. Because of the mapping we have established, Excel knows how to bring the XML into the list defined in the
worksheet. Figure 21.15 shows the resulting worksheet.

Figure 21.15. Result of importing the XML in Listing 21.5.

[View full size image]

The error we got when we clicked Verify Map for Export was that the mapping contained denormalized data. In Figure
21.15, we have highlighted the data that is denormalized and redundant. If we were to try to export this list by
choosing Data > XML > Export, Excel would fail to export because it would not know how to deal with the redundant
data.

Let's clear out this mapping and try to create a mapping that can be exported successfully as XML. Select the whole
worksheet by pressing Ctrl+A and then press the Delete key. This time, we are going to drag in CustomerName, Date,
Subtotal, Tax, and Total as individual cell mappings, and we will map the Book element sequence as a list.

To prepare the spreadsheet for mapping, let's put in some labels in advance. Figure 21.16 shows the resulting
spreadsheet.

Figure 21.16. Preparing the spreadsheet for mapping.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now do the following to map the nonrepeating elements to cells in the spreadsheet:

1. Drag the CustomerName element from the XML Source task pane to cell C3.

2. Drag the Date element from the XML Source task pane to cell C4. You will be prompted that the formatting in
the cell does not match the format of the data. This is Excel noticing that the format of the cell you are mapping
to is not formatted to contain a date.

3. Click the Match Element Data Type button to continue and format the mapped cell as a date.

4. Drag the Subtotal element from the XML Source task pane to cell C9.

5. Drag the Tax element from the XML Source task pane to cell C10.

6. Drag the Total element from the XML Source task pane to cell C11.

Finally, let's map the repeating elements to a list by dragging the Book element to cell B6. Because Book is a repeating
element in a sequence with 1 to unbounded elements, this will create a list containing the elements Title, ISBN,
Publisher, and Price as column headers.

The column headers created by Excel have the format ns1:Title rather than Title. You can edit these columns in the
spreadsheet without breaking the XML mapping.

We are also going to use some features of Excel in our spreadsheet:

1. Right-click the list object that was created, and from the pop-up menu, choose Total Row from the List menu.

2. Click the bottom-right cell of the List object in the total row (cell E8).

3. Pick Sum from the drop-down list that appears next to the cell.

4. Click cell C10, and in the formula bar, type the formula =E8. This causes the total created in the total row to be
saved in the Subtotal element as well.

5. Click cell C11, and in the formula bar, type the formula =C10*.09 to calculate a 9 percent sales tax.

6. Click cell C12, and in the formula bar, type the formula =SUM(C10:C11).

This sums the cost of the books and the sales tax. Let's also do some formatting.

7. Click the cells C10 through C12, and click the $ button to format these cells as currency.

8. Also click the column header for the Price column in the list, and format this column as currency, because it is
the column where book prices will go.

Now the spreadsheet will look like the one shown in Figure 21.17. Note the blue borders around all the mapped cells or
lists. You can hide these blue borders by using the Options button in the XML Source task pane. Click the Options
button and then choose the Hide Border of Inactive Lists command from the pop-up menu.

Figure 21.17. The final mapped spreadsheet.

Now fill out the spreadsheet to make it look like Figure 21.8 earlier in this chapter. Note that when you have the list
selected, a new row marked with * displays; you can enter new items in that row. Also note that as you type prices, the
total row sums the prices in the list, and the formulas in the spreadsheet calculate the Tax and Total.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

total row sums the prices in the list, and the formulas in the spreadsheet calculate the Tax and Total.

With the spreadsheet filled out, let's export the data in the spreadsheet as XML conforming to the schema we have
mapped. We have assumed that this mapping will be exportable. To verify that, click the Verify Map for Export link in
the XML Source task pane. A dialog box should appear that says that our mapping is exportable.

Choose Data > XML > Export. Type the name of the XML file you want to export tosomething like bookorder.xml. Then,
after exporting the file, open it in a text editor such as Notepad. You should see the XML very similar to that shown in
Listing 21.5 earlier in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Advanced XML Features in Excel
We will use the mapped spreadsheet we have created to consider some other XML features in Excel.

Importing XML and Refresh XML Data

To import XML from an XML file into our mapped spreadsheet, follow these steps:

1. Clear out the rows in the Excel list and some of the mapped fields so that you can see that XML is being
imported in subsequent steps.

2. Select one of the mapped cells or the list. Note that because you can map multiple XML schemas into one
workbook, you must let Excel know which of the mappings you want to import to by selecting a cell or list
corresponding to that mapping.

3. Choose Data > XML > Import.

4. Browse to the file you exported to previously (bookorder.xml), and click the Import button.

Note that Excel brings the XML back into the spreadsheet. Next, you will edit the bookorder.xml file directly with
Notepad.

5. Change the CustomerName element to a different value, and save the bookorder.xml file.

6. Select the cell where CustomerName is mapped.

7. Choose Data > XML > Refresh XML Data.

Excel remembers the XML file you last imported, and it reimports the XML data from that file. Excel also stores
this information in the document so you can save, close, and reopen the document at a later time and choose
Refresh XML data.

Note that Excel does not remember the XML file you last imported if you uncheck Save Data Source Definition in
Workbook in the XML Map Properties dialog box (discussed in the next section).

The XML Map Properties Dialog Box

Figure 21.18 shows the XML Map Properties dialog box, which you can display by choosing Data > XML > XML Map
Properties. Note that you must select a cell in the worksheet that is mapped to XML for this menu item and some of the
other menu items in the XML menu to be available (not grayed out).

Figure 21.18. The XML Map Properties dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XML Schema Validation

The first setting we consider in this dialog box is the XML schema validation setting. With this setting unchecked, set the
price of one of the books to a value such as cat. This is clearly not a valid floating-point number. Choose Data > XML >
Export, and export the XML to a file. No error will occur. Now check the Validate Data Against Schema for Import and
Export check box in the XML Map Properties dialog box. Export the XML again. This time, you will get the error dialog
box shown in Figure 21.19 for using the value of cat in a place where a number was expected.

Figure 21.19. A schema validation error on export.

If you try to import XML that has the value cat for a floating-point number, you also get errors with the Validate Data
option checked. Figure 21.20 shows the first error dialog box that appears.

Figure 21.20. A schema validation error on import.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first line warns that some data was imported as textnamely, the value cat was imported as text rather than as a
floating-point number. When you click the second error line and click the Details button, the dialog box shown in Figure
21.21 displays.

Figure 21.21. Details of the validation error on import.

Data Formatting and Layout

The XML Map Properties dialog box provides settings for controlling the data formatting and layout of lists that are XML-
mapped. The Adjust Column Width check box, when checked, will make it so that an import of XML into a list will
automatically adjust the column width to fit the data that is imported. Excel will make a column wider up to two thirds
the width of the screen. To prevent automatically adjusting the column width of a list when XML is imported, uncheck
this check box.

The Preserve Column Filter check box, when checked, will preserve the filtering settings for a list when XML is imported
into the list. If you have the list set to show only books whose publisher is Addison-Wesley, for example, importing new
XML will preserve that setting. If you uncheck this check box, whenever XML is imported into a list, any existing filters
will be cleared.

The Preserve Number Formatting check box, when checked, will preserve any number formatting in the list that the
XML is imported into. If a column is set to display the book price in red if it is greater than $20, for example, this
setting will be preserved when XML data is imported into the list. If this check box is not checked, any number
formatting in the list will be cleared when XML data is imported into the list.

Appending Data to Lists

The XML Map Properties dialog box provides for two different behaviors when importing XML or refreshing XML and
when updating a mapped list. If you choose Overwrite Existing Data with New Data, a mapped list will be cleared of its
data before loading data from the XML data file on import or refresh. If you choose Append New Data to Existing XML
Lists, the data in the list will be preserved, and the data from the XML data file will be appended on import or refresh.
So with the append setting set, importing the XML in Listing 21.5 into a blank list generates three book orders on the
first import, and on refresh it appends the three book orders to the list, for a total of six book orders.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Excel-Friendly XML Schemas
Several characteristics make an XML schema more amenable to being mapped into Excel. First, an XML schema should
have one root element. In our example in this chapter, the root element is Order. If a schema supports more than one
root element, you must choose which element will be the root element when adding the XML map to the spreadsheet.

Unsupported XML Schema Constructs

Excel does not support several XML schema constructs. Table 21.1 lists these constructs.

Table 21.1. XML Schema Constructs That Are Not Supported by Excel
Construct What It Does

<any> Allows you to include arbitrary elements that are not declared by the
schema.

<anyAttribute> Allows you to include arbitrary attributes that are not declared by the
schema.

recursion A structure that refers to itself recursively.

abstract elements Allows an element to be declared but never usedalso uses substitution to
substitute other elements for the abstract element.

<substitutionGroup> Allows an element to be substituted for another element.

mixed content When XML elements are intermixed with non-XML elements. This proves to
be very useful for Word XML mapping.

Constructs That Can Be Mapped But Not Exported

There are also several things that can be mapped, but the generated mappings cannot be exported as XML. You have
already seen that if an XML mapping is denormalized, it cannot be exported. You also cannot export a list of items
containing a second list of items. Choice elements also cannot be exported.

The other general class of issues that prevents exporting is when a mapped element's relationship with another element
it is related to cannot be preserved by the mapping. For more information on these types of mapping issues, consult the
Excel documentation.

VSTO-Friendly Schemas

VSTO puts some additional requirements on schema mapping if you want to use a schema-mapped spreadsheet with
VSTO. First, you need to have a schema mapping that can be exported. Second, all the schema mapping must be within
a single worksheet. Although Excel will let you map some elements of the schema to Sheet1 and other elements to
Sheet2, VSTO requires that all schema mapping for a given schema be on the same sheet.

How XML Schema Data Types Are Mapped to Excel Cell Formats

As you saw earlier in this book when mapping dates, Excel can automatically pick cell formatting based on the type in
the schema. When we dragged a date into Excel, Excel prompted to change the cell formatting. Table 21.2 shows how
Excel maps schema types to Excel cell-formatting settings.

Table 21.2. XML Schema Types and Their Corresponding Excel Cell
Formatting

XML Type Excel Formatting

anytype Text

anyURI Text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

anyURI Text

base64Binary Text

boolean Boolean

byte General

date Date *3/14/2001

dateTime m/d/yyyy h:mm

decimal General

double General

duration Text

ENTITIES Text

ENTITY Text

float General

gDay Number, no decimals

gMonth Number, no decimals

gMonthDay Custom d-mmm

gYear Number, no decimals

gYearMonth Custom mmm-yy

hexBinary Text

ID Text

IDREF Text

IDREFS Text

int General

integer General

language Text

long General

Name Text

NCName Text

negativeInteger General

NMTOKEN Text

NMTOKENS Text

nonNegativeInteger General

nonPositiveInteger General

normalizedString Text

NOTATION Text

positiveInteger General

QName Text

short General

string Text

time h:mm:ss

token Text

unsignedByte General

unsignedInt General

unsignedLong General

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unsignedShort General

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSTO Support for Excel Schema Mapping
This section examines VSTO's support for Excel schema mapping. Let's create a new VSTO Excel project based on the
book-order spreadsheet we created in this chapter. Launch VSTO, and choose File > New > Project. In the New Project
dialog box, choose a Visual Basic Excel Workbook project. Give the project a name and location; then click the OK
button. A dialog box appears, asking for a document to be used for the application. Click the Copy an Existing
Document radio button. Then click the ellipsis (...) button to browse to the spreadsheet you created in this chapter that
has the book-order schema mapped in it. Click the Finish button to create the project.

We want to consider several features of the generated VSTO project. First is the creation of XMLMappedRange controls.
Second is the creation of ListObject controls. Third is the addition of the schema mapped to our spreadsheet to the
VSTO project. Finally, we will consider how to use the controls that are created and the schema that is added to the
VSTO project to connect data binding in the project.

XMLMappedRange Controls

Use the class view to browse the members associated with Sheet1. Notice as you browse that the member variables
listed in Table 21.3 have been created automatically based on the XML mapping in the spreadsheet to the book-order
schema.

Table 21.3. Sheet1 Member Variables Created from Schema
Mapping

Name Type

BookList Microsoft.Office.Tools.Excel.ListObject

OrderCustomerNameCell Microsoft.Office.Tools.Excel.XmlMappedRange

OrderDateCell Microsoft.Office.Tools.Excel.XmlMappedRange

OrderSubtotalCell Microsoft.Office.Tools.Excel.XmlMappedRange

OrderTaxCell Microsoft.Office.Tools.Excel.XmlMappedRange

OrderTotalCell Microsoft.Office.Tools.Excel.XmlMappedRange

For each nonrepeating element or attribute mapped to a cell in the Excel spreadsheet, VSTO creates an
XMLMappedRange control. We mapped the CustomerName element from the Order element into a cell, for example.
VSTO created an XMLMappedRange corresponding to this cell called OrderCustomerNameCell. An XMLMappedRange control
has all the properties and methods of an Excel Range object. In addition, it has several events that are not found on the
Excel Range object:

XMLMappedRange.BeforeDoubleClick is raised when the cell corresponding to the mapped element or
attribute is double-clicked. Excel passes a target parameter of type Range for the range of cells that was
double-clicked and a Boolean cancel parameter passed by reference. The cancel parameter can be set to true by your
event handler to prevent Excel from executing its default double-click behavior.

XMLMappedRange.BeforeRightClick is raised when the cell corresponding to the mapped element or
attribute is right-clicked. Excel passes a target parameter of type Range for the range of cells that was right-
clicked. The target parameter is provided so you can determine whether multiple cells were selected when the
right-click occurred. Excel also passes a Boolean cancel parameter by reference. The cancel parameter can be set to
true by your event handler to prevent Excel from executing its default right-click behavior.

XMLMappedRange.Change is raised when the cell corresponding to the mapped element or attribute is
changed by a user editing the cell or when a cell is linked to external data and is changed as a result of
refreshing the cell from the external data. Change events are not raised when a cell is changed as a result of a
recalculation. They are also not raised when the user changes the formatting of the cell without changing the
value of the cell. Excel passes a target parameter of type Range for the range of cells that was changed. The
target parameter is provided so you can determine whether multiple cells were changed at the same timefor
example, if the user dragged the bottom-right corner of a particular cell to drag that value across multiple cells.

XMLMappedRange.Deselected is raised when the cell corresponding to the mapped element or attribute is
deselected. Excel passes a target parameter of type Range for the range of cells that was deselected. The target
parameter is provided so you can determine whether multiple cells were deselected at the same time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

parameter is provided so you can determine whether multiple cells were deselected at the same time.

XMLMappedRange.Selected is raised when the cell corresponding to the mapped element or attribute is
selected. Excel passes a target parameter of type Range for the range of cells that was selected. The target
parameter is provided so you can determine whether multiple cells were selected at the same time.

XMLMappedRange.SelectionChange is raised when the cell corresponding to the mapped element or
attribute is deselected or selected. Excel passes a target parameter of type Range for the range of cells that was
deselected or selected. The target parameter is provided so you can determine whether multiple cells were
deselected or selected at the same time.

Listing 21.7 shows a VSTO customization that handles all the events associated with an XMLMappedRange. In this case,
we choose to handle events associated with the XMLMappedRange called OrderCustomerNameCell, which corresponds to the
CustomerName element from our book-order schema that we mapped to Sheet1 in the Excel workbook.

Listing 21.7. A VSTO Excel Customization That Handles All Events Associated with
an XML-MappedRange

Imports Excel = Microsoft.Office.Interop.Excel
Imports Office = Microsoft.Office.Core

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 End Sub

 Private Function GetAddress(_
 ByVal target As Excel.Range) As String
 Return target.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1)
 End Function

 Private Sub OrderCustomerNameCell_BeforeDoubleClick(_
 ByVal target As Excel.Range, ByRef cancel As Boolean) _
 Handles OrderCustomerNameCell.BeforeDoubleClick

 MsgBox(String.Format("{0} BeforeDoubleClick.", _
 GetAddress(target)))

 End Sub

 Private Sub OrderCustomerNameCell_BeforeRightClick(_
 ByVal target As Excel.Range, ByRef cancel As Boolean) _
 Handles OrderCustomerNameCell.BeforeRightClick

 MsgBox(String.Format("{0} BeforeRightClick.", _
 GetAddress(target)))

 End Sub

 Private Sub OrderCustomerNameCell_Change(_
 ByVal target As Excel.Range) _
 Handles OrderCustomerNameCell.Change

 MsgBox(String.Format("{0} Change.", GetAddress(target)))

 End Sub

 Private Sub OrderCustomerNameCell_Deselected(_
 ByVal target As Excel.Range) _
 Handles OrderCustomerNameCell.Deselected

 MsgBox(String.Format("{0} Deselected.", GetAddress(target)))

 End Sub

 Private Sub OrderCustomerNameCell_Selected(_
 ByVal target As Excel.Range) _
 Handles OrderCustomerNameCell.Selected

 MsgBox(String.Format("{0} Selected.", GetAddress(target)))

 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub OrderCustomerNameCell_SelectionChange(_
 ByVal target As Excel.Range) _
 Handles OrderCustomerNameCell.SelectionChange

 MsgBox(String.Format("{0} SelectionChange.", _
 GetAddress(target)))

 End Sub

End Class

ListObject Controls

As you saw in Table 21.3 earlier in this chapter, a ListObject control was created for the repeating Book element in our
mapped schema. A ListObject control is created for any repeating element. A ListObject control has all the properties
and methods of an Excel ListObject object. In addition, it has several events that are not found on the Excel ListObject
object:

ListObject.BeforeAddDataboundRow is described in Chapter 17, "VSTO Data Programming."

ListObject.BeforeDoubleClick is raised when any cell contained by the ListObject is double-clicked. Excel
passes a target parameter of type Range for the range of cells that was double-clicked and a Boolean cancel
parameter passed by reference. The cancel parameter can be set to true by your event handler to prevent Excel
from executing its default double-click behavior.

ListObject.BeforeRightClick is raised when any cell contained by the ListObject is right-clicked. Excel passes
a target parameter of type Range for the range of cells that was right-clicked. The target parameter is provided so
you can determine whether multiple cells were selected when the right-click occurred. Excel also passes a
Boolean cancel parameter by reference. The cancel parameter can be set to true by your event handler to prevent
Excel from executing its default right-click behavior.

ListObject.Change is raised when any cell contained by the ListObject is changed by a user editing the cell or
when a cell is linked to external data and is changed as a result of refreshing the cell from the external data.
Change events are not raised when a cell is changed as a result of a recalculation. They are also not raised
when the user changes the formatting of the cell without changing the value of the cell. Excel passes a target
parameter of type Range for the range of cells that was changed. The target parameter is provided so you can
determine whether multiple cells were changed at the same timefor example, if the user dragged the bottom-
right corner of a particular cell to drag that value across multiple cells.

ListObject.DataBindingFailure is described in Chapter 17.

ListObject.DataMemberChanged is described in Chapter 17.

ListObject.DataSourceChanged is described in Chapter 17.

ListObject.Deselected is raised when any cell contained by the ListObject is deselected. Excel passes a target
parameter of type Range for the range of cells that was deselected. The target parameter is provided so you can
determine whether multiple cells were deselected at the same time.

ListObject.ErrorAddDataboundRow is described in Chapter 17.

ListObject.OriginalDataRestored is described in Chapter 17.

ListObject.Selected is raised when any cell contained by the ListObject is selected. Excel passes a target
parameter of type Range for the range of cells that was selected. The target parameter is provided so you can
determine whether multiple cells were selected at the same time.

ListObject.SelectedIndexChanged is described in Chapter 17.

ListObject.SelectionChange is raised when any cell contained by the ListObject is deselected or selected.
Excel passes a target parameter of type Range for the range of cells that was deselected or selected. The target
parameter is provided so you can determine whether multiple cells were deselected or selected at the same
time.

Listing 21.8 shows a VSTO customization that handles all the events associated with a ListObject. In this case, we
choose to handle events associated with the ListObject called BookList, which corresponds to the repeating Book element
from our book-order schema that we mapped to a list in Sheet1 in the Excel workbook.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

from our book-order schema that we mapped to a list in Sheet1 in the Excel workbook.

Listing 21.8. A VSTO Excel Customization That Handles All Events Associated with
a ListObject

Imports Excel = Microsoft.Office.Interop.Excel
Imports Office = Microsoft.Office.Core

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 End Sub

 Private Function GetAddress(ByVal target As Excel.Range, _
 ByVal event1 As String) As String

 Return String.Format("{0} {1}.", _
 target.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1), _
 event1)

 End Function

 Private Sub BookList_BeforeAddDataBoundRow(_
 ByVal sender As System.Object, _
 ByVal e As Excel.BeforeAddDataBoundRowEventArgs) _
 Handles BookList.BeforeAddDataBoundRow

 MsgBox("BeforeAddDataBoundRow")

 End Sub

 Private Sub BookList_BeforeDoubleClick(_
 ByVal Target As Excel.Range, _
 ByRef Cancel As System.Boolean) _
 Handles BookList.BeforeDoubleClick

 MsgBox(GetAddress(Target, "BeforeDoubleClick"))

 End Sub

 Private Sub BookList_BeforeRightClick(_
 ByVal Target As Excel.Range, _
 ByRef Cancel As System.Boolean) _
 Handles BookList.BeforeRightClick

 MsgBox(GetAddress(Target, "BeforeRightClick"))
 End Sub

 Private Sub BookList_BindingContextChanged(_
 ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles BookList.BindingContextChanged

 MsgBox("BindingContextChanged")

 End Sub

 Private Sub BookList_Change(_
 ByVal targetRange As Excel.Range, _
 ByVal changedRanges As Excel.ListRanges) _
 Handles BookList.Change

 MsgBox(GetAddress(targetRange, "Change"))

 End Sub

 Private Sub BookList_DataBindingFailure(_
 ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles BookList.DataBindingFailure

 MsgBox("DataBindingFailure")

 End Sub

 Private Sub BookList_DataMemberChanged(_

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub BookList_DataMemberChanged(_
 ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles BookList.DataMemberChanged

 MsgBox("DataMemberChanged")

 End Sub

 Private Sub BookList_DataSourceChanged(_
 ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles BookList.DataSourceChanged

 MsgBox("DataSourceChanged")

 End Sub

 Private Sub BookList_Deselected(ByVal Target As Excel.Range) _
 Handles BookList.Deselected

 MsgBox(GetAddress(Target, "Deselected"))

 End Sub

 Private Sub BookList_ErrorAddDataBoundRow(_
 ByVal sender As System.Object, _
 ByVal e As Excel.ErrorAddDataBoundRowEventArgs) _
 Handles BookList.ErrorAddDataBoundRow

 MsgBox("ErrorAddDataBoundRow")

 End Sub

 Private Sub BookList_OriginalDataRestored(_
 ByVal sender As System.Object, _
 ByVal e As Excel.OriginalDataRestoredEventArgs) _
 Handles BookList.OriginalDataRestored

 MsgBox("OriginalDataRestored")

 End Sub

 Private Sub BookList_Selected(ByVal Target As Excel.Range) _
 Handles BookList.Selected

 MsgBox(GetAddress(Target, "Selected"))

 End Sub

 Private Sub BookList_SelectedIndexChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles BookList.SelectedIndexChanged

 MsgBox("SelectedIndexChanged")

 End Sub

 Private Sub BookList_SelectionChange(_
 ByVal Target As Excel.Range) _
 Handles BookList.SelectionChange

 MsgBox(GetAddress(Target, "SelectionChange"))

 End Sub

End Class

Schema Added to the VSTO Project

The final thing to notice about our generated VSTO project is that VSTO automatically adds the schema that was
mapped into the workbook as a project item in the project, as shown in Figure 21.22. This schema is added to support
the data binding features discussed in the next section. The schema is a copy of your original schema file that is copied
to the project directory of the newly created project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to the project directory of the newly created project.

Figure 21.22. The VSTO Excel project with the Order schema.

[View full size image]

When you create an XML map, Excel grabs the schema you add and keeps a copy of it in the Excel workbook. If the
schema file you created the XML map from is changed, Excel does not detect it. So if you edit the schema in Visual
Studio, you have to save the schema, remove the XML map corresponding to the schema from the Excel worksheet,
add the XML map again by browsing to the updated schema in your project directory, and then reapply your XML
mappings.

To add and remove XML mappings without leaving Visual Studio, VSTO provides a toolbar button for displaying the XML
Source task pane quickly, as shown in Figure 21.23. The button that displays the XML Source task pane is the second
button from the left in the toolbar. As you map schemas using the XML Source task pane, VSTO automatically adds
XMLMappedRange or ListObject member variables for new mappings.

Figure 21.23. The VSTO Excel toolbar with the XML Source task pane button.

Combining XML Mapping with VSTO Data Binding

Given an XML mapping in a worksheet, you can programmatically import and export XML conforming to the schema
associated with the mapping using the Excel object model. You may also want to combine this functionality with VSTO's
support for data binding. Data binding will allow you to connect the worksheet to not just one book order, but also to a
database with many book orders. You can easily move a cursor in the database from row to row in the database and
update the contents of the worksheet.

The first step is to build the project. This will result in the creation of a typed dataset for the order schema called
NewDataSet. After you have built the project, make sure that the toolbox is showing, and expand the Data tab, as
shown in Figure 21.24. Note the component tray in Figure 21.24the empty area below the Excel worksheet. We will add
one component to the component tray and use it later to data-bind the ListObject that was created when the schema
was mapped into the workbook. From the Data tab, drag a BindingSource component to the component tray. Name this
BindingSource OrderBookConnector. We are going to ignore this component for the time being, because our initial goal
is to data-bind the XMLMappedRange controls in our worksheet.

Figure 21.24. The DataSet component and the component tray.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Drag the DataSet component from the toolbox into the component traythe empty area below the Excel worksheet. The
dialog box in Figure 21.25 will display. Pick the Typed Dataset option; then pick the NewDataSet. This is the dataset
that was created from our Order schema. Finally, click the OK button.

Figure 21.25. The Add Dataset dialog box.

This will create a component called newDataSet1 in the component tray. Right-click the newly added component, and
choose Properties from the pop-up menu. Doing so will show and activate the Visual Studio Properties window. Let's
change the name for the typed dataset component from newDataSet1 to the more descriptive name BookOrderDataSet
by typing this new name in the (Name) row in the Properties window and pressing the Enter key.

Because BookOrderDataSet is a typed dataset created from our Orders schema, as shown in Figure 21.22 earlier in this
chapter, we know that the dataset contains two tables: Order and Book. Now we want to connect the fields that come
from the Order table to the corresponding XMLMappedRange controls in Sheet1. To do that, we must add a
BindingSource component by dragging a BindingSource from the Data tab in the toolbox to the component tray. This
creates a BindingSource called bindingSource1, which we will rename OrderConnector because it will be used to connect
the Order table from the BookOrderDataSet to the XMLMappedRange controls in the workbook.

Using the Properties window, set the DataSource property of OrderConnector to BookOrderDataSet. Figure 21.26 shows
the drop-down list that appears. Note that we have to expand the Other Data Sources and Form List Instances nodes to
find the BookOrderDataSet that we have already added to the component tray.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

find the BookOrderDataSet that we have already added to the component tray.

Figure 21.26. Setting a DataSource for OrderConnector using the Properties
window.

[View full size image]

With the DataSource property set to BookOrderDataSet, now we need to set the DataMember property to the Order
table. Figure 21.27 shows the drop-down list that appears. Note that the only options available are the Order table and
the Book table. Pick the Order table.

Figure 21.27. Setting the DataMember for OrderConnector using the Properties
window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now we are ready to connect individual XMLMappedRange controls to OrderConnector. Click the cell mapped to the
CustomerName element in the Excel spreadsheet; doing so selects the XMLMappedRange associated with
CustomerName called OrderCustomerNameCell. Expand the (DataBindings) node in the Properties window, and click the
drop-down arrow associated with the property Value. You will see the drop-down list shown in Figure 21.28. Expand the
OrderConnector node, and click CustomerName. You have data-bound the Value property of OrderCustomerNameCell to
OrderConnector's CustomerName.

Figure 21.28. Setting a data binding connecting OrderCustomerNameCell.Value to
OrderConnector.CustomerName.

Now click the cell associated with Date, expand the (DataBindings) node in the Properties window for the
XMLMappedRange OrderDateCell, and data-bind the Value property to the Date field coming from OrderConnector.
Continue to do this for the cells associated with Subtotal, Tax, and Total.

Now let's connect the ListObject. Earlier, you created a BindingSource that you named OrderBookConnector. Click the
ListObject in the spreadsheet, and in the Properties window, set the ListObject's DataSource property to
OrderBookConnector. Next, we need to connect the OrderBookConnector to our data. We could connect
OrderBookConnector directly to the Book table in BookOrderDataSet, but this would not give us the behavior we want
for this example. We want to allow BookOrder DataSet to contain multiple book orders, and as we move from row to
row in the Order table via OrderConnector, we want to show only the books for that particular order. If we connect
OrderBookConnector to the Book table in BookOrderDataSet, this will result in all books in the books table being shown,
no matter what row is being shown from the Order table by OrderConnector. What we need is a way to tie
OrderBookConnector to OrderConnector.

Instead of connecting the OrderBookConnector to BookOrderDataSet, we connect it to the existing OrderConnector
corresponding to our Order table. Doing so causes what is sometimes called a master-details relationship. As the
OrderDataConnector moves from row to row in the Order table, our OrderBookConnector will display only the Books
that correspond to the order row that OrderConnector is displaying. In the Properties window, set the DataSource
property by expanding the OrderConnector node and selecting Order_Book, as shown in Figure 21.29.

Figure 21.29. Connecting OrderBookConnector to OrderConnector.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To create this relationship between the OrderConnector and the OrderBookConnector, VSTO creates a third
BindingSource, called orderBookBindingSource, that acts as an intermediate connector between OrderConnector and
OrderBookConnector. Figure 21.30 shows the resulting configuration of the DataSet and the three BindingSource
components.

Figure 21.30. The relationship among the dataset, binding sources, and data
bindings.

Now let's add some code to Sheet1's Startup event so that this application does something interesting, as shown in
Listing 21.9. We are going to populate our dataset with three orders. When the user double-clicks the Excel
spreadsheet, we will call the MoveNext method on the OrderConnector to move to the next order or row in the Order
table in the BookOrderDataSet.

Listing 21.9. A VSTO Excel Customization That Populates a Dataset and Uses the
MoveNext Method

Imports Excel = Microsoft.Office.Interop.Excel
Imports Office = Microsoft.Office.Core

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim order1 As NewDataSet.OrderRow = _
 BookOrderDataSet.Order.AddOrderRow(_
 "Eric Carter", DateTime.Now, 39.99F, 1.0F, 40.99F)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim order1book1 As NewDataSet.BookRow = _
 BookOrderDataSet.Book.AddBookRow(_
 "Effective C#", "0-321-24566-0", _
 "Addison-Wesley", 39.99F, order1)

 Dim order2 As NewDataSet.OrderRow = _
 BookOrderDataSet.Order.AddOrderRow(_
 "Andrew Clinick", DateTime.Now, 49.99F, 1.0F, 50.99F)

 Dim order2book1 As NewDataSet.BookRow = _
 BookOrderDataSet.Book.AddBookRow(_
 "Windows Forms Programming in C#", "0-321-11620-8",_
 "Addison-Wesley", 49.99F, order2)

 Dim order3 As NewDataSet.OrderRow = _
 BookOrderDataSet.Order.AddOrderRow(_
 "Eric Lippert", DateTime.Now, 29.99F, 1.0F, 30.99F)

 Dim order3book1 As NewDataSet.BookRow = _
 BookOrderDataSet.Book.AddBookRow(_
 "The C# Programming Language", "0-321-15491-6",_
 "Addison-Wesley", 29.99F, order3)

 End Sub

 Private Sub Sheet1_BeforeDoubleClick(_
 ByVal Target As Excel.Range, _
 ByRef Cancel As System.Boolean) _
 Handles Me.BeforeDoubleClick

 OrderConnector.MoveNext()

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter explored the XML schema-mapping feature of Excel. You learned how to create a schema using Visual
Studio that will work well with Excel's schema-mapping features. This chapter also covered VSTO's support for Excel
schema mapping and how to layer on top of an XML schema mapping VSTO's data binding features. The next chapter
examines Word's model for XML, which is quite different from the Excel model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 22. Working with XML in Word

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction to Word's XML Features
The first thing to note about the XML features described in this chapter is that most of them are available only in
Microsoft Office Professional Edition 2003 and the stand-alone version of Microsoft Office Word 2003. If you work with
other Office Editionssuch as Microsoft Office Standard Edition 2003, Microsoft Office Student and Teacher Edition 2003,
or Microsoft Office Basic Edition 2003the XML features described in this chapter are not available.

Many of the XML features of Word are accessed via Word's XML Structure task pane. To show the XML Structure task
pane, if it is not already displayed, choose Task Pane in Word's View menu. The task pane has a drop-down list from
which the XML Structure task pane can be selected, as shown in Figure 22.1.

Figure 22.1. Selecting the XML Structure task pane from the task pane's drop-
down list.

The XML Structure task pane prompts you to go to the Templates and Add-Ins dialog box to attach an XML schema to
the document. To get to the Templates and Add-Ins dialog box, you can click the Templates and Add-Ins hyperlink
shown in the task pane in Figure 22.2, or choose Templates and Add-Ins from the Tools menu and then click the XML
Schema tab.

Figure 22.2. The XML Structure task pane prompts you to go to the Templates and
Add-Ins dialog box to add an XML schema.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add-Ins dialog box to add an XML schema.

Figure 22.3 shows the Templates and Add-Ins dialog box. This dialog box shows available XML schemas that can be
attached to the Word document by checking the check box next to an available schema. It also provides a button to add
a new schema to the document.

Figure 22.3. The Templates and Add-Ins dialog box with the XML Schema tab
selected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To add a new schema to the document, click the Add Schema button. When you click the Add Schema button, you are
prompted to browse to the schema file you want to add to the document. Let's use the book-order schema we created
in Chapter 21, "Working with XML in Excel." After you select the schema, the Schema Settings dialog box appears, as
shown in Figure 22.4. Let's enter BookOrder as an alias or friendly name for the book-order schema.

Figure 22.4. Picking an alias for a newly added schema in the Schema Settings
dialog box.

Click OK to dismiss the Schema Settings dialog box. Doing so returns you to the Templates and Add-Ins dialog box. The
book-order schema has been added, as shown in Figure 22.5, and is attached to the current document, as shown by
the checked check box next to the BookOrder schema. The BookOrder schema can be detached from the document by
unchecking the check box.

Figure 22.5. The BookOrder schema has been attached to the Word document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now that the BookOrder schema has been added, it will be available for attachment to other documents because Word
automatically adds any added schemas to Word's schema library. To manage Word's schema library, click the Schema
Library button in the Templates and Add-Ins dialog box. The Schema Library dialog box appears, as shown in Figure
22.6. This dialog box provides the same Add Schema button that lets you add new schemas. It also can edit the
Schema Settings dialog box for an already-added schema. You can select a schema and click the Schema Settings
button to assign the book-order schema a different friendly name, for example. A Delete Schema button lets you delete
a schema from the schema library.

Figure 22.6. The Schema Library dialog box.

The bottom half of the Schema Library dialog box provides options to associate Smart Document solutions with a
document to which a particular schema is attached. In this book, we do not cover this part of Word's functionality,
because VSTO provides an easier way to build Word solutions through the ActionsPane mechanism described in Chapter
15, "Working with the Actions Pane." We do cover the ability to use the Solutions section to associate an XSLT file with
a particular schema, however.

When you close the Schema Library dialog box and the Templates and Add-Ins dialog box, the XML Structure pane is
updated to show elements from the book-order schema, as shown in Figure 22.7. With the book-order schema attached
to the document, you are ready to start applying XML elements to the document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 22.7. The XML Structure dialog box with the book-order schema attached to
the document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An End-to-End Scenario: Creating a Schema and Mapping It into a
Word Document
This section examines an end-to-end scenario that puts together the schema-creation capabilities of Visual Studio and
the schema-mapping capabilities of Word. When you take a schema and apply it in Word using the XML Structure task
pane, you enable the exporting and importing of XML data in the document. We are going to create a Word document
that can be used to record a customer's book order. The document will support the import and export of XML that
conforms to our book-order schema. The document will look like Figure 22.8.

Figure 22.8. A Word document for processing a book order.

Listing 22.1 shows the XML that this document will be able to import and export.

Listing 22.1. XML File Generated from Book-Order Document

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Order xmlns=" http://dotnet4office.com/bookorder.xsd ">
 <CustomerName>John Doe</CustomerName>
 <Date>2005-09-30</Date>
 <Book>
 <Title>Windows Forms Programming in C#</Title>
 <ISBN>0-321-11620-8</ISBN>
 <Publisher>Addison-Wesley</Publisher>
 <Price>49.99</Price>
 </Book>
 <Book>
 <Title>Effective C#</Title>
 <ISBN>0-321-24566-0</ISBN>
 <Publisher>Addison-Wesley</Publisher>
 <Price>39.99</Price>
 </Book>
 <Book>
 <Title>The C# Programming Language</Title>
 <ISBN>0-321-15491-6</ISBN>
 <Publisher>Addison Wesley</Publisher>
 <Price>29.99</Price>
 </Book>
 <Subtotal>119.97</Subtotal>
 <Tax>10.80</Tax>
 <Total>130.77</Total>
</Order>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating the Schema Using Visual Studio

To create our schema using Visual Studio, follow these steps:

1. Start Visual Studio 2005.

2. Create a new XSD file by choosing File > New > File or by pressing Ctrl+N.

3. Choose XML Schema from the list of Visual Studio installed templates; then click the Open button.

The Schema design view appears.

4. Drag an element object off the toolbox onto the design surface.

5. Type Order, and press the Enter key.

6. In the * row, type CustomerName, and press Enter.

7. In the * row, type Date, and press the Tab key; then type date for the data type, and press Enter.

8. In the * row, type Subtotal, and press Tab; then type float for the data type, and press Enter.

9. In the * row, type Tax, and press Tab; then type float for the data type, and press Enter.

10. In the * row, type Total, and press Tab; then type float for the data type, and press Enter.

11. Right-click the Order Element box, and choose New Element from the Add menu.

12. Type Book, and press Enter.

13. In the * row of the newly created Book element, type Title, and press Enter.

14. In the * row of the newly created Book element, type ISBN, and press Enter.

15. In the * row of the newly created Book element, type Publisher, and press Enter.

16. In the * row of the newly created Book element, type Price, and press the Tab key; then type float for the data
type, and press Enter. Now we need to specify that multiple books can be included in an order.

17. Click the Book row in the Order Element box, and show the Properties window by choosing Properties Window
from the View menu.

18. For the property maxOccurs, type unbounded; for the property minOccurs, type 1.

We also need to change the targetNamespace for the XML schema. Visual Studio defaults the namespace to be
http://tempuri.org/XMLSchema.xsd. This needs to be changed to some other namespace name because if you
create multiple schemas with this namespace and try to attach them to Word, Word will display an error,
because it expects the namespace from each attached schema to be unique. We will change it to
http://dotnet4office.com/bookorder.xsd.

19. Display the Properties window, if it is not already visible, by choosing Properties Window from the View window.

In the properties for the schema, you will see a row that says targetNamespace.

20. Change the targetNamespace from http://tempuri.org/XMLSchema.xsd to
http://dotnet4office.com/bookorder.xsd.

21. Now choose the Save As command from the File menu to display the Save File As dialog box; drop down the
Save As Type combo box, and pick XML Schema Files (*.xsd); for the filename, type BookOrder.xsd; and save
to a convenient place, such as the desktop.

Figure 22.9 shows the final schema as displayed by Visual Studio.

Figure 22.9. The book-order schema in Visual Studio.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 22.9. The book-order schema in Visual Studio.

Listing 22.2 shows the generated XSD file. Note that the sequence of Book elements in an Order element is a sequence
with a minimum (minOccurs) of one Book element and a maximum (maxOccurs) of unbounded Book elements. This will
allow our schema to represent one or more Books in an Order. Also, having a sequence where maxOccurs is greater
than 1 or unbounded will allow Word to know that it can represent the Books in an Order using a Word table.

Listing 22.2. Book-Order XSD Schema File

<?xml version="1.0" encoding="utf-8"?>
<xs:schema
targetNamespace="http://dotnet4office.com/bookorder.xsd"
elementFormDefault="qualified" xmlns="http://dotnet4office.com/bookorder.xsd"
xmlns:mstns="http://dotnet4office.com/bookorder.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Order">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CustomerName"
 type="xs:string" />
 <xs:element name="Date" type="xs:date" />
 <xs:element name="Book"
 maxOccurs="unbounded" minOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Title"
 type="xs:string" />
 <xs:element name="ISBN"
 type="xs:string" />
 <xs:element
 name="Publisher"
 type="xs:string" />
 <xs:element name="Price"
 type="xs:float" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Subtotal" type="xs:float" />
 <xs:element name="Tax" type="xs:float" />
 <xs:element name="Total" type="xs:float" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

An additional point to notice about our schema file is that it is element-centric; we use XML elements and do not use
XML attributes at all in our schema. Although Word supports the mapping of XML attributes, it does so in a way that
makes it difficult for the end user to edit the attributes. The user must show the XML tags in the document, right-click
an XML tag, and use the Attributes dialog box (shown in Figure 22.10) to edit attributes. In this example, we have
mapped a book-order schema where Title, ISBN, and Publisher are attributes rather than elements. These attributes
will not show directly in the document, so it usually is best to avoid having attributes in schemas you are going to use
with Word and instead use only elements.

Figure 22.10. Word's attribute-editing dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 22.10. Word's attribute-editing dialog box.

Adding a Schema to the Word Document

Now that we have created a schema, let's add it to a Word document. Launch Word, and create a new, empty
document. Bring up the Word XML Structure task pane, as described in the first section of this chapter. You should see
the XML Structure task pane with no schema as yet associated with the document in the task pane. To add an XML
schema to the document, click the Templates and Add-Ins hyperlink in the XML Structure task pane. Then click the Add
Schema button, shown in Figure 22.3 earlier in this chapter, to add your book-order schema to the document. Give
your schema the friendly name or alias BookOrder in the Schema Settings dialog box, shown in Figure 22.4 earlier in
this chapter. Then close the Templates and Add-Ins dialog box by clicking the OK button. The XML Structure task pane
should look like Figure 22.7 earlier in this chapter.

The XML Options Dialog Box and Mixed Content

Before we start to construct the document shown in Figure 22.8, we need to consider briefly one additional dialog box:
XML Options. At the bottom of the XML Structure task pane is an XML Options hyperlink. Click this hyperlink to bring up
the XML Options dialog box. Alternatively, you can click the XML Options button in the Templates and Add-Ins dialog
box. Figure 22.11 shows the XML Options dialog box.

Figure 22.11. The XML Options dialog box. Ignore Mixed Content should be
checked.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

checked.

For the purpose of this end-to-end scenario, we need to make sure that the Ignore Mixed Content check box is checked.
Checking this box will allow us to intersperse text that is not part of our customer-order schema with text that is. Mixed
content allows us to have a structure similar to that shown in Listing 22.3, where arbitrary text (in bold) is mixed with
the tagged XML-data text.

Listing 22.3. Book-Order XML with Mixed Content in Bold

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Order xmlns=" http://dotnet4office.com/bookorder.xsd ">
 Customer Name: <CustomerName>John Doe</CustomerName>
 Date: <Date>2005-09-30</Date>

 Books that were ordered:
 <Book>
 <Title>Windows Forms Programming in C#</Title>
 <ISBN>0-321-11620-8</ISBN>
 <Publisher>Addison-Wesley</Publisher>
 <Price>49.99</Price>
 </Book>
 <Book>
 <Title>Effective C#</Title>
 <ISBN>0-321-24566-0</ISBN>
 <Publisher>Addison-Wesley</Publisher>
 <Price>39.99</Price>
 </Book>
 <Book>
 <Title>The C# Programming Language</Title>
 <ISBN>0-321-15491-6</ISBN>
 <Publisher>Addison Wesley</Publisher>
 <Price>29.99</Price>
 </Book>

Subtotal: <Subtotal>119.97</Subtotal>
 Tax: <Tax>10.80</Tax>
 Total: <Total>130.77</Total>
</Order>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</Order>

Creating a Document with Mapped XML Structure

To begin, let's construct a document with some text in it but no schema mapping. Create a document that looks like the
one shown in Figure 22.12. Create a place to put a customer name, date, subtotal, tax, and total. Create a single table
with four columns and two rows, where we will put a book with a title, ISBN, publisher, and price.

Figure 22.12. A Word document with no schema mapping.

Now we can begin mapping our schema by inserting tags into the document. The experience of mapping schema into a
Word document is quite different from mapping a schema into an Excel document. If you have ever edited an HTML
page in a text editor, you will find that mapping a schema into a Word document feels somewhat similar to the way
HTML tags are used to mark up text in an HTML page.

Make the XML Structure task pane visible, and verify that the Show XML Tags in the Document check box is checked in
the task pane. This will allow you to see the XML tags that Word is inserting into the document. Click anywhere in the
Word document. Then, in the bottom half of the XML structure task pane, you will see an element list that is identified
with the text "Choose an element to apply to your current selection." In that list is only one element: Order. Order is
the root element of our schema, so it must be mapped first.

Click Order in the element list. The dialog box shown in Figure 22.13 will appear. For this example, we will choose Apply
to Entire Document. It is possible to map multiple schemas into one document, but it is not possible to export valid XML
from such a document. VSTO also does not support the mapping of multiple schemas into one document, so we will
avoid constructing such a document.

Figure 22.13. The Apply to Entire Document dialog box.

[View full size image]

After you click the Apply to Entire Document button, the Word document looks like Figure 22.14. You can see that an
Order tag has been applied to the entire document. This will give you an idea of where we are going; effectively, we are
going to make the Word document look something like Listing 22.3 earlier in this chapter.

Figure 22.14. The Word document with an Order tag applied to the entire
document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

document.

The Order element has six child elements: CustomerName, Date, Book (which is a repeating element), Subtotal, Tax,
and Total. Let's map these elements now. Select the text John Doe in the document. In the XML Structure pane, click
CustomerName in the element list, as shown in Figure 22.15. If CustomerName does not appear in the element list
along with the other child elements of Order, toggle the List Only Child Elements of Current Element check box until it
appears.

Figure 22.15. The element list shows child elements of Order.

Select the text 2005-09-30, and click the Date element in the element list. Select the text 29.99, and click the Subtotal
element in the element list. Select the text 1.00, and click the Tax element in the element list. Select the text 30.99,
and click the Total element in the element list. If you make a mistake and tag some text with the wrong element tag,
right-click the element tag and choose the Remove Tag menu option.

Figure 22.16 shows the document with the entire schema mapped except for the Book subelements. Note the pink

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 22.16 shows the document with the entire schema mapped except for the Book subelements. Note the pink
squiggly line along the side of the document. This is Word's schema-validation feature, telling us that the mapped
document has not yet been constructed in a way that conforms to the book-order schema. This is because we have not
yet mapped the Book subelements. You can right-click the squiggly line to get the error that is occurring that will
prevent Word from exporting valid XML from this mapping.

Figure 22.16. Mappings for all elements of the book-order schema except for Book
subelements.

[View full size image]

We are going to map our repeating Book element into a table. If we map a Book element into a row of the table, Word
will be smart about this, and when rows are added to the table, Word will automatically tag the newly inserted row as a
new Book element with all related tags.

First, select the entire row with the book The C# Programming Language in it by clicking in the start of the row and
dragging across the row. It is important that you do not select beyond the edge of the rowthat you select only the
current row, as shown in Figure 22.17.

Figure 22.17. Selecting the entire row but not beyond the entire row.

With the entire row selected, click the Book element in the element list. Figure 22.18 shows the resulting tagged row.

Figure 22.18. Tagging an entire row as a Book element.

Now we need to tag the column values to mark them with the child elements of the Book element. The Book element
has four child elements: Title, ISBN, Publisher, and Price. Once again, if the elements do not appear in the element list,
toggle the List Only Child Elements of Current Element check box to make the elements appear. Select the text The C#
Programming Language, and click the Title element in the element list. Select the text 0-321-15491-6, and click the
ISBN element in the element list. Select the text Addison Wesley, and click the Publisher element in the element list.
Finally, select the text 29.99, and click the Price element in the element list. Figure 22.19 shows the resulting tagged
row.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 22.19. Completed tagging for a row in a table that represents a Book
element.

Now let's verify that we have set up the table in a way that Word will automatically tag new rows as Book elements.
Click somewhere in the table. From the Table menu, choose Insert and then choose Rows Below from the Insert
submenu. As shown in Figure 22.20, Word automatically adds tags to the new row.

Figure 22.20. Word automatically tags new rows in the table with the Book
element tags.

[View full size image]

Now fill out the remainder of the table to make it look like Figure 22.8 earlier in this chapter. After you have filled out
the table, you can hide the XML tags by unchecking the Show XML Tags in the Document check box in the XML
Structure pane or by pressing the keyboard accelerator Ctrl+Shift+X. Typically, when you deploy a document such as
this to end users, you will not want to have the XML tags showing in the document. The only complication this causes
occurs when a tag is empty; it is very hard for the user of your document to type text in the right place. To solve this
issue, use the XML Options dialog box, and check the Show Placeholder Text for All Empty Elements check box. Figure
22.21 shows the final document with XML tags showing.

Figure 22.21. The final Word document with tags showing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Also, note that the XML structure task pane shows the elements that have been mapped into the document in a tree
view, as shown in Figure 22.22. You can right-click the elements in this tree view, and a menu appears that allows you
to unmap a particular element or edit attributes associated with a particular element.

Figure 22.22. Elements mapped in the document are shown in the document tree
view.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exporting the Mapped XML in the Document to an XML Data File
With the document mapped to our XML schema, let's save this document to XML conforming to the book-order schema
we have used. First, make sure you save your document as a .doc file so that you do not lose your work. After you
have saved the document, from the File menu, choose the Save As command. From the Save As Type drop-down list,
choose XML Document. Two check boxes appear in the dialog box: Apply Transform and Save Data Only. Make sure the
Save Data Only check box is checked, as shown in Figure 22.23. Then click the Save button. Word will warn you that it
is going to save out only XML and not any formatting. If you have already saved your document as a .doc file, click the
Continue button to save as XML. When you open the saved XML, it will look like Listing 22.1 earlier in this chapter.

Figure 22.23. Saving as an XML document with Save Data Only checked.

There are some other ways to save to XML that will not generate our book-order XML. If Save Data Only is not checked,
Word will save the document in an XML format called WordprocessingML, or WordML for short. WordML is an XML file
format that Word documents can be saved in that preserves all the formatting and features of a Word document. If you
look at the WordML XML file that is generated for this example, you will notice that the WordML schema is used to
represent Word content. The book-order schema is also used in the saved WordML document to mark up any content
that we schema-mapped. In the snippet of the WordML file shown in Listing 22.4, you can see that the WordML file
format uses the CustomerName element to mark up the customer name (John Doe), but what is marked up is the
WordML representation of the customer name rather than just the simple text John Doe.

Listing 22.4. A Snippet of WordML Representing the Customer Name Label and
XML-Mapped CustomerName

<w:p>
 <w:r>
 <w:t>Customer Name: </w:t>
 </w:r>
 <w:r>
 <w:tab wx:wTab="555" wx:tlc="none" wx:cTlc="8"/>
 </w:r>
 <ns0:CustomerName>
 <w:r>
 <w:t>John Doe</w:t>
 </w:r>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </w:r>
 </ns0:CustomerName>
</w:p>

You can also use a transform when saving by checking the Apply Transform check box. A transform is an XSLT file that
acts on the WordML XML file and transforms it to some other XML format. You could create an XSLT transform that
takes a WordML XML file and transforms it to XML conforming to the book-order schema, for example. This does not
seem necessary, because clicking the Save Data Only check box already does this. There are compelling scenarios
around a similar scenario: importing XML data and applying a transform to convert it to a nicely formatted document in
WordML. The next section examines this scenario in more detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Importing an XML Data File into the Mapped Document
Let's consider the problem of how to get XML conforming to our customer-order schema, such as the XML shown in
Listing 22.1 earlier in this chapter, imported into our formatted Word document shown in Figure 22.21 earlier in this
chapter. Word does not provide a menu command to import XML, as Excel does. Instead, Word relies on something
called an XSLT file to transform XML conforming to our customer-order schema to a formatted Word document in
WordML format.

An XSLT file contains a set of instructions for transforming XML from one format to another format. Fortunately, you do
not have to understand the XSLT language or WordML to create an XSLT file. Word provides a developer tool to help
generate the XSLT file you need. Then you can use the XSLT file to transform the customer-order XML into the nicely
formatted document shown in Figure 22.21. First, we will first provide a brief checklist of the steps to do this; then we
will consider the steps in more detail.

To create the XSLT file, follow these steps:

1. Save the formatted and XML-mapped Word document shown in Figure 22.21 to the WordML file format.

2. Run the WordprocessingML Transform Inference Tool (wml2xslt.exe) on the WordML-formatted file to generate
an XSLT file.

This XSLT file will transform XML conforming to the book-order schema back to the formatted Word document in
WordML format.

To convert the book-order XML manually using the XSLT file, follow these steps:

1. Open an XML file conforming to the book-order schema in Word.

2. Use the XML Data Views feature of Word to browse to the XSLT file and transform the XML data file back to the
formatted Word document shown in Figure 22.21.

To use the XSLT file automatically when book-order XML is opened, use the Schema Library dialog box to add the XSLT
file created by the wml2xslt.exe tool as a solution associated with the book-order schema. Whenever you open book-
order XML conforming to the book-order schema, Word will automatically apply the XSLT transform to give back the
formatted Word document shown in Figure 22.21.

Creating the XSLT File

The first step in creating an XSLT file is taking the document you created as shown in Figure 22.21 and saving it in the
WordML file format. To do this, choose Save As from the File menu. From the File Type drop-down list, choose XML
Document. Then make sure that the Apply Transform and Save Data Only check boxes are not checked. Give the
resulting WordML XML file a name such as Book Sales.xml. Save the file to a location where you can find it in the next
step. Then click the Save button.

Book Sales.xml is a WordML-format document. It can be used as input to the WordprocessingML Transform Inference
Tool to create an XSLT file that can transform XML conforming to our book-order schema back to the Book Sales
formatted Word document. The WordprocessingML Transform Inference Tool is available for download at
http://www.microsoft.com/downloads/details.aspx?FamilyID=2cb5b04e-61d9-4f16-9b18-223ec626080e. Download
and install the tool on your machine. It typically will install in the directory C:\Program Files\Microsoft Office 2003
Developer Resources\Microsoft Office 2003 WordprocessingML Transform Inference Tool.

The Transform Inference Tool is a console application called wml2xslt.exe. Open a command prompt, and navigate to
the directory where wml2xslt.exe is installed. For simplicity, we have copied the Book Sales.xml WordML file to the
same directory where wml2xslt.exe is installed. At the command line, type this command:

WML2XSLT.EXE "book sales.xml" -o "book sales.xslt"

"book sales.xml" is the input WordML file. "book sales.xslt" is the output XSLT file that wml2xslt.exe creates. After this
command runs, Book Sales.xslt is created in the same directory where wml2xslt.exe is installed.

Manually Converting the Book-Order XML File Using the XSLT File

Now take the XML in Listing 22.1 and save it to a file called Book Order.xml. Edit the content of the file in some way so

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now take the XML in Listing 22.1 and save it to a file called Book Order.xml. Edit the content of the file in some way so
that it is different from the XML that was in Book Sales.xmlfor example, change the customer name and some of the
book titles. This will help convince you later that the XSLT file really works with arbitrary XML that conforms to the
book-order schema.

Now, from within Word, choose Open from the File menu. In the list of File Types, choose XML Files (*.xml). Browse to
the Book Order.xml file, and click Open. Word opens the XML file in a nice data-only view, as shown in Figure 22.24.

Figure 22.24. Opening Book Order.xml and displaying it in Word's XML data-only
view.

This view of the XML is nice and all, but we would like to get it back to the formatted document in Figure 22.21. When
you open the XML data file, the XML Document task pane automatically appears. This task pane is the key to converting
back to the formatted document view. Click the Browse option in the task pane to browse to the Book Sales.xslt XSLT
file you created using wml2xslt.exe. After you have located the XSLT file, click Open. Then Word will transform Book
Order.xml to a formatted Word document that looks like the document in Figure 22.21 but has the specific data
changes you made to the Book Order.xml file. If you go to the XML Structure pane and check the Show XML Tags in the
Document option, you will see that the formatted Word document created by using the XSLT file on the Book Order.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document option, you will see that the formatted Word document created by using the XSLT file on the Book Order.xml
file still has the XML mapping applied to it properly.

Automatically Applying an XSLT File When XML Conforming to the Book-Order
Schema Is Opened

Word provides a way of bypassing the extra steps of browsing to the XSLT file whenever you open the XML data file.
Using the Schema Library, you can associate an XSLT file with an XML schema so that whenever XML conforming to
that schema is opened, the XSLT file will be applied automatically to the XML. Follow these steps:

1. Choose Templates and Add-Ins from the Tools menu; then click the XML Schema tab in the Templates and Add-
Ins dialog box.

2. Click the Schema Library button to display the Schema Library dialog box, shown in Figure 22.6 earlier in this
chapter.

3. With the book-order schema selected, click the Add Solution button in the bottom half of the dialog box to
associate an XSLT file with the book-order schema. You will be prompted to browse for an XSLT file.

4. Browse to the XSLT file created by wml2xslt.exe, called Book Sales.xslt; then click the Open button.

The dialog box shown in Figure 22.25 will appear.

Figure 22.25. Adding an XSLT solution to the book-order schema.

5. Give the XSLT file the alias (friendly name) Book Order View; then click the OK button.

As shown in Figure 22.26, the XSLT file we created is now associated with the book-order schema. This will
cause Word to apply the XSLT file automatically when XML conforming to the book-order schema is opened.

Figure 22.26. The book-order view and XSLT are associated with the book-
order schema in the Schema Library.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now let's verify that the XSLT we have associated with the book-order schema will be applied automatically.

6. In Word, choose Open from the File menu to show the Open dialog box.

7. In the list of File Types, choose XML Files (*.xml).

8. Browse to the Book Order.xml file you created, and click Open. Instead of defaulting to an XML-only view, as
shown in Figure 22.24 earlier in this chapter, Word opens the XML file and automatically applies the XSLT to
display the formatted document, as shown in Figure 22.27. It also shows the XML Document task pane, which
gives the user the option to go back to the data-only view or pick some other XSLT file that can transform XML
conforming to the book-order schema into a formatted document.

Figure 22.27. Word automatically applies the book-order view solution and XSLT.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The XML Options Dialog Box
The XML Options dialog box, shown in Figure 22.11 earlier in this chapter, has three categories of options: XML Save
Options, Schema Validation Options, and XML View Options. These options are applied and saved at the document
level; different documents can have different sets of XML options. For XML Save Options, checking the Save Data Only
option makes it so when you save the document as XML, Word will save the XML mapped into the document rather than
saving the document in WordML format. The Apply Custom Transform option lets you specify an XSLT file to apply when
you save the document. This feature is the inverse of the import XSLT file we considered earlier and is beyond the
scope of this book.

The Schema Validation Options let you control the way Word validates the document against the attached schema. With
Validate Document Against Attached Schemas checked, Word validates the XML data in the document against the
attached schema. If Hide Schema Violations in This Document is not checked, Word displays squiggly lines under data
that does not conform to the schema being used in the document. In our book-order document, for example, consider
what happens if we type an invalid date for the date of the order. Word displays a squiggly line under the date. If you
right-click the squiggly line, you get a schema-validation error, as shown in Figure 22.28.

Figure 22.28. A schema-validation error for an illegal date.

We have already considered the Ignore Mixed Content option and the necessity of turning this option on when you
intermix formatting and labels with the XML that is mapped into the document. The Allow Saving As XML Even If Not
Valid option will let you save invalid XML; typically, you should not check this option. Although Word will let you
construct a document with multiple schemas attached that generate invalid XML, this prevents you from using features
such as the XSLT feature and VSTO programming model features.

The XML View Options section has some additional options for how Excel displays XML information. The Hide
Namespace Alias in XML Structure Task Pane option makes it so that the XML structure tree view does not display the
namespace prefix before element names. If the namespace is ns1 and the element is CustomerName, for example,
unchecking this option will result in Word's displaying ns1:CustomerName in the tree view. Checking this option will
result in Word's displaying CustomerName.

Show Advanced XML Error Messages shows advanced schema-validation errors. This is useful during development of
the document when you want to see the exact error message being returned by Word's XML validator. But these
messages are not very friendly for end users, so you should be sure to turn this option off before you deploy your
document. Figure 22.29 shows the error display for an illegal date when advanced XML error messages are turned on.

Figure 22.29. An advanced schema-validation error for an illegal date.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Show Placeholder Text for All Empty Elements is an option you will almost always want to turn on before you deploy
your document to end users. In a deployed document, you typically will not want to have the XML tags displayed
because they are busy and confusing to the user of your document. But when the data within an XML tag is empty, it is
impossible for the user of your document to know where to enter data. If you turn on Show Placeholder Text for All
Empty Elements, Word displays the name of the fields that need to be filled in so the user of the document can click the
field name and type (see Figure 22.30). We have emptied all the data between tags, but the placeholder text makes it
clear to the user of the document where to enter data.

Figure 22.30. A document with Show Placeholder Text for All Empty Elements
turned on.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSTO Support for Word Schema Mapping
This section covers VSTO 2005's support for Word's schema mapping. Let's create a new VSTO 2005 Word project
based on the book-order document we created in this chapter. Launch VSTO 2005, and from the New submenu of the
File menu, choose Project. In the New Project dialog box, select a Visual Basic Word document project. Give the project
a name and location, and then click the OK button. A dialog box appears, asking for a document to be used for the
application. Click the Copy an Existing Document radio button. Then click the ellipsis (...) button to browse to the
document you created in this chapter that has the book-order schema mapped in it. Click the Finish button to create the
project.

We want to consider several features of the generated VSTO project. First is the creation of XMLNode controls. Second
is the creation of XMLNodes controls. Finally, we will consider how to use the UpdateXml methods on an XMLNode to
load XML into our document without using an XSLT file.

Use the class view to browse the members associated with ThisDocument. Notice as you browse that the member
variables listed in Table 22.1 have been created automatically, based on the XML mapping in the document to the book-
order schema.

Table 22.1. ThisDocument Member Variables Added from Schema
Mapping

Name Type

OrderNode Microsoft.Office.Tools.Word.XMLNode

OrderCustomerNameNode Microsoft.Office.Tools.Word.XMLNode

OrderDateNode Microsoft.Office.Tools.Word.XMLNode

OrderBookNodes Microsoft.Office.Tools.Word.XMLNodes

BookTitleNodes Microsoft.Office.Tools.Word.XMLNodes

BookISBNNodes Microsoft.Office.Tools.Word.XMLNodes

BookPublisherNodes Microsoft.Office.Tools.Word.XMLNodes

BookPriceNodes Microsoft.Office.Tools.Word.XMLNodes

OrderSubtotalNode Microsoft.Office.Tools.Word.XMLNode

OrderTaxNode Microsoft.Office.Tools.Word.XMLNode

OrderTotal Node Microsoft.Office.Tools.Word.XMLNode

The XMLNode Control

For each nonrepeating element mapped to the Word document, VSTO creates an XMLNode control. By mapping the
nonrepeating element CustomerName from the Order element, for example, VSTO created an XMLNode control called
OrderCustomerNameNode. An XMLNode control has all the properties and methods of a Word XMLNode object. In addition, it
has several events that are not found on the Word XMLNode object:

XMLNode.AfterInsert is raised when a new XML element is added to the document.

XMLNode.BeforeDelete is raised when an XML element is removed from the document.

XMLNode.ContextEnter is raised when the XML node has focus.

XMLNode.ContextLeave is raised when the XML node loses focus.

XMLNode.Select is raised when text within the XML node is selected.

XMLNode.Deselect is raised when text within the XML node is deselected.

XMLNode.ValidationError is raised when a validation error occurs within the XML node.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 22.5 shows a VSTO customization that handles all the events associated with an XMLNode. In this case, the code
handles events associated with the XMLNode called OrderCustomerNameNode, which corresponds to the CustomerName
element from the book-order schema mapped into the Word document.

Listing 22.5. A VSTO Word Customization That Handles All Events Associated with
an XMLNode Control

Imports Word = Microsoft.Office.Interop.Word
Imports Office = Microsoft.Office.Core

Public Class ThisDocument

 Private list As System.Windows.Forms.ListBox

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As EventArgs) Handles Me.Startup

 list = New System.Windows.Forms.ListBox

 ActionsPane.Controls.Add(list)
 ActionsPane.Show()

 End Sub

 Private Sub Display(ByVal text As String, _
 ByVal text2 As String)
 list.Items.Add(String.Format("{0} {1}", text, text2))
 End Sub

 Private Sub OrderDateNode_AfterInsert(_
 ByVal sender As Object, _
 ByVal e As _
 Microsoft.Office.Tools.Word.NodeInsertAndDeleteEventArgs) _
 Handles OrderDateNode.AfterInsert

 Dim node As Microsoft.Office.Interop.Word.XMLNode = sender
 Display("AfterInsert", node.BaseName)

 End Sub

 Private Sub OrderDateNode_BeforeDelete(_
 ByVal sender As Object, _
 ByVal e As _
 Microsoft.Office.Tools.Word.NodeInsertAndDeleteEventArgs) _
 Handles OrderDateNode.BeforeDelete

 Dim node As Microsoft.Office.Interop.Word.XMLNode = sender
 Display("BeforeDelete", node.BaseName)

 End Sub

 Private Sub OrderDateNode_BindingContextChanged(_
 ByVal sender As Object, ByVal e As EventArgs) _
 Handles OrderDateNode.BindingContextChanged

 Display("BindingContextChanged", "")

 End Sub

 Private Sub OrderDateNode_ContextEnter(_
 ByVal sender As Object, _
 ByVal e As _
 Microsoft.Office.Tools.Word.ContextChangeEventArgs) _
 Handles OrderDateNode.ContextEnter

 Display("ContextEnter", e.NewXMLNode.BaseName)

 End Sub

 Private Sub OrderDateNode_ContextLeave(_
 ByVal sender As Object, _
 ByVal e As _
 Microsoft.Office.Tools.Word.ContextChangeEventArgs) _
 Handles OrderDateNode.ContextLeave

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Display("ContextLeave", e.NewXMLNode.BaseName)

 End Sub

 Private Sub OrderDateNode_Select(ByVal sender As Object, _
 ByVal e As _
 Microsoft.Office.Tools.Word.ContextChangeEventArgs) _
 Handles OrderDateNode.Select

 Display("Select", e.Selection.Text)

 End Sub

 Private Sub OrderDateNode_Deselect(ByVal sender As Object, _
 ByVal e As _
 Microsoft.Office.Tools.Word.ContextChangeEventArgs) _
 Handles OrderDateNode.Deselect

 Display("Deselect", e.Selection.Text)

 End Sub

 Private Sub OrderDateNode_ValidationError(_
 ByVal sender As Object, _
 ByVal e As EventArgs) Handles OrderDateNode.ValidationError

 Display("ValidationError", "")

 End Sub

End Class

The XMLNodes Control

For each repeating element mapped to the Word document, VSTO creates an XMLNodes control. For the repeating
element Book from the Order element, VSTO created an XMLNodes control called OrderBookNodes. An XMLNodes control
has all the properties and methods of a Word XMLNodes object. In addition, it has several events that are not found on
the Word XMLNodes object:

XMLNodes.AfterInsert is raised when a new XML element is added to the document.

XMLNodes.BeforeDelete is raised when an XML element is removed from the document.

XMLNodes.ContextEnter is raised when an element contained by the XMLNodes control gets focus.

XMLNodes.ContextLeave is raised when an element contained by the XMLNodes control loses focus.

XMLNodes.Select is raised when text within the elements contained by the XMLNodes control is selected.

XMLNodes.Deselect is raised when text within the elements contained by the XMLNodes control is deselected.

XMLNodes.ValidationError is raised when a validation error occurs within the elements contained by the
XMLNodes control.

Listing 22.6 shows a VSTO customization that handles all the events associated with an XMLNodes control. The code
handles events associated with the XMLNodes control called OrderBooksNodes, which corresponds to the repeating Book
element from the book-order schema that was mapped into the Word document.

Listing 22.6. A VSTO Word Customization That Handles All Events Associated with
an XMLNodes Control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

an XMLNodes Control

Imports Word = Microsoft.Office.Interop.Word
Imports Office = Microsoft.Office.Core

Public Class ThisDocument

 Private list As Windows.Forms.ListBox

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As EventArgs) Handles Me.Startup

 list = New Windows.Forms.ListBox

 ActionsPane.Controls.Add(list)
 ActionsPane.Show()

 End Sub

 Private Sub Display(ByVal text As String, _
 ByVal text2 As String)
 list.Items.Add(String.Format("{0} {1}", text, text2))
 End Sub

 Private Sub OrderBookNodes_AfterInsert(_
 ByVal sender As Object, _
 ByVal e As _
 Microsoft.Office.Tools.Word.NodeInsertAndDeleteEventArgs) _
 Handles OrderBookNodes.AfterInsert

 Dim node As Microsoft.Office.Interop.Word.XMLNode = sender
 Display("AfterInsert", node.BaseName)

 End Sub

 Private Sub OrderBookNodes_BeforeDelete(_
 ByVal sender As Object, _
 ByVal e As _
 Microsoft.Office.Tools.Word.NodeInsertAndDeleteEventArgs) _
 Handles OrderBookNodes.BeforeDelete

 Dim node As Microsoft.Office.Interop.Word.XMLNode = sender
 Display("BeforeDelete", node.BaseName)

 End Sub

 Private Sub OrderBookNodes_ContextEnter(_
 ByVal sender As Object, _
 ByVal e As _
 Microsoft.Office.Tools.Word.ContextChangeEventArgs) _
 Handles OrderBookNodes.ContextEnter

 Display("ContextEnter", e.NewXMLNode.BaseName)

 End Sub

 Private Sub OrderBookNodes_ContextLeave(_
 ByVal sender As Object, _
 ByVal e As _
 Microsoft.Office.Tools.Word.ContextChangeEventArgs) _
 Handles OrderBookNodes.ContextLeave

 Display("ContextLeave", e.NewXMLNode.BaseName)

 End Sub

 Private Sub OrderBookNodes_Select(ByVal sender As Object, _
 ByVal e As _
 Microsoft.Office.Tools.Word.ContextChangeEventArgs) _
 Handles OrderBookNodes.Select

 Display("Select", e.Selection.Text)
 End Sub

 Private Sub OrderBookNodes_Deselect(ByVal sender As Object, _
 ByVal e As _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal e As _
 Microsoft.Office.Tools.Word.ContextChangeEventArgs) _
 Handles OrderBookNodes.Deselect

 Display("Deselect", e.Selection.Text)

 End Sub

 Private Sub OrderBookNodes_ValidationError(_
 ByVal sender As Object, _
 ByVal e As EventArgs) Handles OrderBookNodes.ValidationError

 Display("ValidationError", "")

 End Sub

End Class

Loading XML Programmatically with LoadXml

Another addition that VSTO makes to XMLNode is the LoadXml method. The LoadXml method can be used to set the
XML on the entire node tree of the XMLNode on which it is called. The LoadXml method has three overloads that take a
String of XML, an XmlElement, or an XmlDocument.

LoadXml has one major limitation: It will not decrease or increase the number of XML elements in the document. So,
given the code in Listing 22.7 that has three book elements and given a document that has only one book in the table
mapped to book elements, LoadXml will transfer only the first book to the document. Transferring the second and third
books would require the addition of elements, which LoadXml does not do. As a second example, if you have a
document that has three books in the table, and you call LoadXml passing XML with only one book, LoadXml will update
the first row of the table but will leave the two extra books there. The second and third books are left there because
LoadXml does not remove elements.

Listing 22.7. The LoadXml Method on XMLNode Object

Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

Me.OrderNode.LoadXml(_
 "<?xml version=""1.0"" " & _
 "encoding=""UTF-8"" standalone=""no""?>" & _
 "<Order " & _
 "xmlns=""http://dotnet4office.com/bookorder.xsd"">" & _
 "<CustomerName>Lah Lah</CustomerName>" & _
 "<Date>2005-03-19</Date>" & _
 "<Book>" & _
 "<Title>Windows Forms Programming in C#</Title>" & _
 "<ISBN>0-321-11620-8</ISBN>" & _
 "<Publisher>Addison-Wesley</Publisher>" & _
 "<Price>49.99</Price>" & _
 "</Book>" & _
 "<Book>" & _
 "<Title>Effective C#</Title>" & _
 "<ISBN>0-321-24566-0</ISBN>" & _
 "<Publisher>Addison-Wesley</Publisher>" & _
 "<Price>39.99</Price>" & _
 "</Book>" & _
 "<Book>" & _
 "<Title>The C# Programming Language</Title>" & _
 "<ISBN>0-321-15491-6</ISBN>" & _
 "<Publisher>Addison-Wesley</Publisher>" & _
 "<Price>29.99</Price>" & _
 "</Book>" & _
 "<Subtotal>119.97</Subtotal>" & _
 "<Tax>10.7973</Tax>" & _
 "<Total>130.7673</Total>" & _
 "</Order>")

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You frequently will want to get the XML from an XMLNode or XMLNodes. The way you do this is to use the XML property
on the Range object returned by the Range property of an XMLNode or XMLNodes. The XML property takes an optional
Boolean parameter, to which you pass TRue to get the XML data. If you pass False, you will get the WordML for the
XMLNode or XMLNodes instead. Listing 22.8 shows a simple VSTO application that displays the XML data in the
document on startup using the root XMLNode called OrderNode.

Listing 22.8. Using the XML Property

Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 MsgBox(Me.OrderNode.XML(True))

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSTO Support for the WordML File Format
VSTO has several features that support the WordML file format. Although you cannot create a new VSTO Word project
in the WordML format, you can take a Word document that has been customized in VSTO and save it as WordML.
Because WordML preserves all the features of the Word document, the document continues to work, and the VSTO
customization will run even when saved in WordML format.

VSTO's ServerDocument object can open a file in the WordML file format without starting Word on the server and
manipulate the cached data and application manifest inside the Word document. For more information on
ServerDocument, see Chapter 18, "Server Data Scenarios," and Chapter 20, "Deployment."

VSTO also supports an easy way of attaching a VSTO customization to an uncustomized WordML document. If you add
a document property to the Word document called _AssemblyName and set it to *, and add a second property to the
Word document called _AssemblyLocation and set it to the URL to a VSTO deploy manifest (as described in Chapter
20), Word will attach the customization specified in the deploy manifest when the document is opened on the client.
This feature was added because it makes it much easier to attach a VSTO customization when using a WordML
document or an XSLT transformation that transforms XML data to a WordML-format document. When using this feature,
make sure that you start with a clean document that does not have a VSTO customization already associated with it. A
document that is customized with a VSTO customization will already have its _AssemblyName and _AssemblyLocation
properties set, and it will have a hidden ActiveX control embedded in it that contains the data island. The whole point of
using this feature is to not have to deal with the embedded ActiveX control in the document, because it becomes
unwieldy when generating WordML or writing an XSLT transform.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter examined the XML schema-mapping features in Word. You learned how to create a schema using Visual
Studio that will work well with Word's schema-mapping features. This chapter also covered how to export XML from a
Word document using Word's Save Data option when saving as XML. The chapter also addressed using XSLT files to
import XML effectively into a Word document. You also learned how to work with VSTO's XMLNode and XMLNodes
controls created for a mapped schema. The end of the chapter discussed VSTO's support for the WordML format.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 23. Developing COM AddIns for Word and
Excel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction to AddIns
Office provides a number of patterns to extend the functionality of Office applications. The most common patterns are
these:

Office automation executables

Office add-ins

Code behind an Office document or template

This chapter covers how to write COM add-ins in Visual Basic for Word and Excel. It also describes how COM add-ins are
registered in the registry and why there is another step, called shimming, that must be taken before deploying a
managed COM add-in.

VSTO supports building a new kind of "VSTOstyle" add-in for Outlook 2003. The VSTO Outlook add-in project is the
preferred way to build Outlook add-ins for Outlook 2003 and is described in Chapter 24, "Creating Outlook AddIns with
VSTO." The VSTO Outlook add-in project fixes many of the issues in COM add-in development discussed in this chapter,
as well as some additional Outlookspecific issues. The only reason to write a managed COM add-in for Outlook following
the instructions in this chapter is if it must run in versions of Outlook older than Outlook 2003.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Scenarios for Using AddIns
Addins provide a mechanism to extend the core functionality of an application so that the new functionality will be
available throughout the application. The key to writing effective add-ins in Office is to develop them so that they look
and feel like natural extensions to the Office application. A few examples of what add-ins can do in Office include the
following:

Extending existing functionality If your users need to print to a color printer but often find it difficult to find
the color printer nearest to them, you could write an add-in to mitigate this issue. The add-in could add a Print
to Color Printer command to their File menu and a Print to Color Printer button to their standard toolbar. When
the user clicks the button or selects the menu item, your add-in can handle that event and print to the nearest
color printer.

Integrating with data An add-in could be written that loads into Word and Excel that pulls data from a Web
service and pastes it into the Office application. The add-in could add a Paste Sales Information menu item, for
example. When the user selects the command from within Word, it would paste a table with the data from the
Web service at the position where your cursor is in Word. In Excel, it would paste into the selected cells.

Functionality that needs to be available for only one particular document or template type is better written using the
codebehindadocument pattern. If sales information needs to be retrieved only when working with a Quarterly
Report.doc file, for example, it is better to put your code that retrieves the sales information into code behind the
template or document for the quarterly report. This is an example of choosing the right context for your code. There is
no reason to clutter the application context with commands that are used for only a particular document or template.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How a COM AddIn Is Registered
A COM add-in, from the standpoint of the Office application, is a COM component registered in a particular place in the
registry that implements the IDTExtensibility2 interface defined by Office and Visual Studio. From your standpoint as a
Visual Basic developer, you are writing a Visual Basic class that you will compile into an assembly (DLL). Through .NET's
COM interop support, your Visual Basic class can be made to look like a COM component to the Office application. You
will have to register your add-in just like any COM component to get the Office application to load it.

The registry settings and interface implementation described in this section are created for you automatically when you
create an add-in project in Visual Studio. It is still important to understand the anatomy of an add-in, however, should
you have to troubleshoot add-in issues.

Registry Location of a COM AddIn: HKEY_CURRENT_USER or
HKEY_LOCAL_MACHINE

Office determines which COM add-ins to load for a particular application by checking two places in the registry: either
under HKEY_CURRENT_ USER or under HKEY_LOCAL_MACHINE. To view the registry, choose Run from the Start menu
of Windows; type regedit.exe; and click the OK button.

The first place a COM add-in can be registered is in the registry under
HKEY_CURRENT_USER\Software\Microsoft\Office\%appname%\Addins. This is where COM add-ins installed on a
peruser basis are found, as shown in Figure 23.1. COM add-ins typically should be installed on a peruser basis so that
the add-in user settings will move with the user should the user log on to a different machine.

Figure 23.1. A registry entry for a COM add-in.

[View full size image]

Any COM add-ins registered in the registry under HKEY_CURRENT_ USER will show up in the COM AddIns dialog box for
the relevant Office application. Finding the COM AddIns dialog box in each Office application can be quite a challenge. In
all Office applications, the dialog box is not available from a menu in the default install. To add a button to show the
COM AddIns dialog box, you need to customize the toolbars in the Office application by rightclicking the command bar
and selecting Customize. Doing so causes the Customize dialog box to appear (see Figure 23.2). Click the Commands
tab, and select Tools in the Categories list. Then scroll through the list of available commands; find the COM AddIns
command; and drag this command onto an existing toolbar.

Figure 23.2. Locating the COM AddIns command in the Customize dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you click the COM AddIns button that you have added to a toolbar, the COM AddIns dialog box displays, as shown
in Figure 23.3. This dialog box shows you all the COM add-ins registered in the registry under HKEY_CURRENT_USER
for the Office application you are using.

Figure 23.3. The COM AddIns dialog box.

The second place a COM add-in can be registered is under
HKEY_LOCAL_MACHINE\Software\Microsoft\Office\%appname%\Addins. COM add-ins registered on a permachine basis
are available for all users but also are effectively hidden from the user within the Office application. If a COM add-in is
registered under HKEY_LOCAL_MACHINE, it will never show up in the COM AddIns dialog box. It is recommended that
you register your COM add-in under HKEY_LOCAL_USER so that your COM add-in is visible to end users.

Registry Entries Required for a COM AddIn

Each COM add-in registered in the registry, whether under HKEY_CURRENT_USER or HKEY_LOCAL_MACHINE, must be
registered in the following way. First, there must be a key representing the COM add-in under the Addins key. This key
is named with the ProgID of the COM add-in. A ProgID is an identifier for the COM add-in that is generated by Visual
Studio. COM uses this identifier to figure out how to create your COM add-in. The default ProgID for a Visual Studio
COM add-in project is the name of the add-in project combined with the name of the class (Connect) generated in
Visual Studio that implements IDTExtensibility2. So if you create a COM add-in project in Visual Studio called MyAddin2
for an Office application such as Outlook, the main key that Visual Studio creates in the registry for the COM add-in
would be this:

HKEY_CURRENT_USER\Software\Microsoft\Office\Outlook\Addins\
 MyAddin2.Connect

Under the key for your COM add-in, several values are required. FriendlyName is a string value that contains the name of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Under the key for your COM add-in, several values are required. FriendlyName is a string value that contains the name of
the COM add-in that will appear to the user in the COM AddIns dialog box. Description is a string value that contains a
more indepth description of the COM add-in. This description does not appear anywhere in the Office UI or COM AddIns
dialog box, but it is helpful when users or administrators are investigating, by using regedit.exe, what add-ins are
installed on a machine and what they do. LoadBehavior is a DWORD value that describes the load behavior of the COM
add-in. The values that LoadBehavior can be set to are a bitwise or of the values in Table 23.1. Typically, this should be
set to the value of 3 to load and connect the COM add-in at startup. If the LoadBehavior is set to 2, the COM add-in is
loaded, but its IDTExtensibility.OnConnection method is never called, which effectively amounts to the COM add-in's
being disabled.

Table 23.1. Possible Values for LoadBehavior
Value Description

0 Disconnected. The COM add-in is not loaded.

1 Connected. The COM add-in is loaded.

2 Load at startup. The COM add-in will be loaded and connected when the host
application starts.

8 Load on demand. The COM add-in will be loaded and connected when the
host application requires it (for example, when a user clicks a button that
uses functionality in the COM add-in).

16 Connect first time. The COM add-in will be loaded and connected the first
time the user runs the host application after registering the COM add-in.

In addition to these keys, several entries under HKEY_CLASSES_ROOT\CLSID are made for the COM add-in, as shown
in Figure 23.4. A unique ClassID (a GUID, which is a unique identifier that looks like
{FEC2B9E793664AD2AD054CF0167AC9C6}) is created by Visual Studio. This ClassID is added as a key under the
HKEY_CLASSES_ ROOT\CLSID path. This ClassID is registered so that it corresponds to the ProgID for the COM add-in
(MyAddin2.Connect, in our example). The keys and values created under the ClassID key are described in more detail
later in this chapter.

Figure 23.4. The registry entries for a COM add-in under the
HKEY_CLASSES_ROOT\CLSID path

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Implementing IDTExtensibility2
The key to understanding COM add-in development is the IDTExtensibility2 interface. This interface is used by all Office
applications to communicate with a COM add-in. This ensures a common initialization mechanism and an ability to pass
in the application's object model so that the COM add-in can communicate with the Office application. Listing 23.1
shows the IDTExtensibility2 interface.

Listing 23.1. The IDTExtensibility2 Interface

Public Interface IDTExtensibility2
 Sub OnAddInsUpdate(ByRef custom As Array)
 Sub OnBeginShutdown(ByRef custom As Array)
 Sub OnConnection(ByVal Application As Object, _
 ByVal ConnectMode As ext_ConnectMode, _
 ByVal AddInInst As Object, ByRef custom As Array)
 Sub OnDisconnection(ByVal RemoveMode As ext_DisconnectMode, _
 ByRef custom As Array)
 Sub OnStartupComplete(ByRef custom As Array)
End Interface

Startup Order

IDTExtensibility2 is a simple interface, but it is important to note the loading order of the COM add-in and how that
affects where you write your code. Office instantiates your COM add-in, which causes your main Connect class to be
created. But there is a key difference from normal programming practice, in that the constructor of your Connect class
cannot be used to set up your class, because the Office application context (typically, the Application object from the
Office application's object model) is not made available in the constructor. Instead, it is provided via the OnConnection
method on the IDTExtensibility2 interface. Likewise, the shutdown behavior for an add-in is determined not by the
destructor of the class, but by when the OnDisconnection method is called.

Figure 23.5 illustrates the order in which these events occur for a COM add-in. First, the COM add-in is loaded, and the
Connect class is created. This results in the Connect class's constructor being called. Then the Connect class's
implementation of IDTExtensibility2.OnDisconnection is called, and the Office application's Application object is passed
via this method. The Connect class's implementation of IDTExtensibility2.OnStartupComplete is called. Now the add-in
is loaded and connected. Then, when the application exits or the user unloads the add-in, the Connect class's
implementation of IDTExtensibility2.OnBeginShutdown is called, followed by a call to IDTExtensibilty2.OnDisconnection.

Figure 23.5. Order of COM add-in startup and shutdown.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The OnAddInsUpdate Method

The OnAddInsUpdate method is called when any COM add-in is loaded or unloaded in the Office application. This
method is somewhat of an anomaly because the contents of the custom argument are never set by Office applications.
As a result, this method really can be used only to tell you that a COM add-in has been loaded or unloaded; then you
can query the COMAddins collection in the application object model to see what has been loaded or unloaded. A good
example of using this method is if your COM add-in relies on other COM add-ins to be running to work properly. So if
one of the dependent COM add-ins is unloaded, your COM add-in can unload this:

Sub OnAddInsUpdate(ByRef custom As Array)

Parameter Description

custom An array of Object that the host application can use to provide additional data.
None of the Office applications sets this value.

The OnBeginShutdown Method

The OnBeginShutdown method is called on a connected COM add-in when the Office application is being shut down:

Sub OnBeginShutdown(ByRef custom As Array)

Parameter Description

custom An array of Object that the host application can use to provide additional data.
None of the Office applications sets this value.

The OnConnection Method

The OnConnection method is called when a COM add-in is loaded into the environment. This method is the main entry
point for the COM add-in, because it provides the Application object from the Office application's object model that the
add-in will use to communicate with the Office application:

Sub OnConnection(ByVal Application As Object, _
 ByVal ConnectMode As ext_ConnectMode, _
 ByVal AddInInst As Object, ByRef custom As Array)

Parameter Description

Application The application object of the Office application passed as an Object. Because
IDTExtensibility2 is a generalpurpose interface, this has to be an Object rather
than a strongly typed parameter. This object can be cast to the Application
object type of the Office application.

ConnectMode The ext_ConnectMode constant specifying how the COM add-in was loaded.
There are six possible values:

Constant Value Description

ext_cm_AfterStartup 0 COM add-in was loaded after the
application started. Typically, this
occurs if the user has chosen to load
an add-in from the COM AddIns
dialog box.

ext_cm_Startup 1 COM add-in was loaded at startup.

ext_cm_External 2 COM add-in was loaded externally by
another program or component.

ext_cm_CommandLine 3 COM add-in was loaded through the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ext_cm_CommandLine 3 COM add-in was loaded through the
application's command line.

ext_cm_Solution 4 COM add-in was loaded when user
loaded a solution that required it.

ext_cm_UISetup 5 COM add-in was started for the first
time since being installed.

AddInInst An Object representing the COM add-in. This can be cast to a COMAddIn
object from the office.dll primary interop assembly (PIA) in the
Microsoft.Office.Core namespace.

custom An array of Object that the host application can use to provide additional data.
None of the Office applications sets this value.

The OnDisconnection Method

The OnDisconnection method is called when a COM add-in is unloaded from the application, either because the
application is shutting down or because the user disabled the COM add-in using the COM AddIns dialog box:

Sub OnDisconnection(ByVal RemoveMode As ext_DisconnectMode, _
 ByRef custom As Array)

Parameter Description

RemoveMode The ext_DisconnectMode constant specifies why the COM add-in was unloaded.

Constant Value Description

ext_dm_HostShutdown 0 COM add-in was unloaded when the
host application was closed.

ext_dm_UserClosed 1 COM add-in was unloaded when the
user cleared its check box in the
COM AddIns dialog box or when the
Connect property of the COMAddIn
object corresponding to the COM
add-in was set to False.

ext_dm_UISetupComplete 2 COM add-in was unloaded after the
environment setup completed and
after the OnConnection method
returned.

ext_dm_SolutionClosed 3 Used only with Visual Studio COM
add-ins.

custom An array of Object that the host application can use to provide additional data.
None of the Office applications sets this value.

The OnStartupComplete Method

The OnStartupComplete method is called when the Office application has completed starting up and has loaded all the
COM add-ins that were registered to load on startup:

Sub OnStartupComplete(ByRef custom As Array)

Parameter Description

custom An array of Object that the host application can use to provide additional data.
None of the Office applications sets this value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Simple Implementation of IDTExtensibility2

Listing 23.2 shows a simple implementation of IDTExtensibility2 similar to what is generated when you create an add-in
project in Visual Studio. This implementation displays several message boxes to give you information about the
methods of IDTExtensibility2 that are being called on the Connect class. It is a COM add-in that loads into Excel, so it
casts the application object to the Microsoft.Office.Interop.Excel.Application type. It also casts the addInInst object to the
Microsoft.Office.Core.COMAddin type. Note also that the InteropServices namespace is used to add a GuidAttribute and
ProgID attribute. The values of these attributes are used when registering the add-in, as described earlier in the chapter.

Listing 23.2. An Excel COM AddIn Connect Class That Implements
IDTExtensibility2

Imports Extensibility
Imports System.Runtime.InteropServices
Imports Excel = Microsoft.Office.Interop.Excel
Imports Office = Microsoft.Office.Core

<GuidAttribute("649D6562-F01F-4117-BF2C-198CDD3E11E4"), _
ProgId("MyAddin1.Connect")> _
Public Class Connect
 Implements Extensibility.IDTExtensibility2

 Public Sub New()
 MsgBox("Connect Constructor")
 End Sub

 Public Sub OnConnection(ByVal Application As Object, _
 ByVal ConnectMode As Extensibility.ext_ConnectMode, _
 ByVal AddInInst As Object, ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnConnection

 MsgBox("OnConnection")

 Dim addin As Office.COMAddIn = AddInInst
 MsgBox("My add-in ProgID is " + addin.ProgId)

 Dim app As Excel.Application = Application
 MsgBox(String.Format(_
 "The application this loaded into is called {0}.", _
 app.Name))

 MsgBox(String.Format(_
 "Load mode was {0}.", ConnectMode.ToString()))

 End Sub

 Public Sub OnDisconnection(_
 ByVal RemoveMode As Extensibility.ext_DisconnectMode, _
 ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnDisconnection

 MsgBox("OnDisconnection")
 MsgBox(String.Format(_
 "Disconnect mode was {0}.", RemoveMode.ToString()))

 End Sub

 Public Sub OnAddInsUpdate(ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnAddInsUpdate

 MsgBox("OnAddinsUpdate")

 End Sub

 Public Sub OnStartupComplete(ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnStartupComplete

 MsgBox("OnStartupComplete")

 End Sub

 Public Sub OnBeginShutdown(ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnBeginShutdown

 MsgBox("OnBeginShutdown")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox("OnBeginShutdown")

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Writing a COM AddIn Using Visual Studio
Writing a class that implements IDTExtensibility2 is not particularly difficult, but setting up the registry settings for the
application you are targeting and creating the setup package for the COM add-in can be tricky. Luckily, Visual Studio
provides a wizard that makes writing COM add-ins considerably easier. The wizard creates two projects: one for
implementing the COM add-in and a separate setup project for the COM add-in. The COM AddIn Wizard has actually
been part of Visual Studio since version 7.0, but you might not have come across it because it is somewhat hidden in
the project hierarchy and listed as a "Shared AddIn" project.

The wizard can be displayed by choosing Other Project Types > Extensibility > Shared AddIn and is shown in Figure
23.6. The only clue that the Shared AddIn project might have something to do with Office is the Office icon included on
the Shared AddIn icon.

Figure 23.6. Creating a Shared AddIn project in Visual Studio.

[View full size image]

The Shared AddIn Wizard steps you through the process of creating a COM add-in. One of the advantages of a generic
interface such as IDTExtensibility2 is that it can be used from just about any application that has a COM object model,
and as a result, all the Office applications support loading IDTExtensibility2 COM add-ins. The wizard enables you to
select the Office application that you want your COM add-in to load into, as shown in Figure 23.7. If you select the
check boxes next to multiple Office applications, Visual Studio will register your COM add-in in a way that enables the
same COM add-in to load in multiple Office applications.

Figure 23.7. Selecting the application host.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Although it is possible to write a single COM add-in that works in all the Office applications, it actually is quite difficult to
write and even more difficult to maintain, because bugfixing different application behavior often leads to the code in the
COM add-in's becoming overcomplicated. If you want to be able to share code among COM add-ins, creating a common
library called by an applicationspecific COM add-in provides a more manageable solution.

In this example, the application host for the COM add-in will be Microsoft Word. Selecting Microsoft Word in the wizard
will result in the setup project's registering the COM add-in in the correct location for Word so that you do not have to
worry about dealing with the registry when you run the project. The registry settings for the COM add-in require a
name and description, and this information is collected in the next step of the wizard, as shown in Figure 23.8.

Figure 23.8. Setting a name and description for a COM add-in.

The final step of the wizard is used to determine the load behavior of the COM add-in and whether the COM add-in will
be installed in HKEY_CURRENT_USER or HKEY_LOCAL_MACHINE. As mentioned before, it is preferable to register the
COM add-in in HKEY_CURRENT_ USER so that it will be visible in the COM AddIns dialog box. Leaving the second check
box in Figure 23.9 unchecked will ensure this behavior.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

box in Figure 23.9 unchecked will ensure this behavior.

Figure 23.9. Setting load behavior for the COM add-in.

When the wizard has finished, a solution is created in Visual Studio containing the two projects, as shown in Figure
23.10. The main COM add-in project is a standard Visual Basic class library project that has been pre-populated with
the core references required and a class called Connect in a Connect.vb file that has a basic implementation of the
IDTExtensibility2 interface. The setup project will create an installer for the COM add-in that will include all the
dependencies detected and will register the COM add-in in the registry.

Figure 23.10. The Solution Explorer view of a default COM add-in solution.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Changing the COM AddIn Project to Be More OfficeSpecific

The COM AddIn Wizard will create a project for any application that supports IDTExtensibility2, and as a result, it
creates a very generic project. The whole point of writing a COM add-in is to integrate with a particular Office
application, so the first thing you need to do is add the appropriate primary interop assembly (PIA) for the application
the COM add-in is targeting. The COM add-in being built in this example will load into Microsoft Word, so it needs to
have a reference to the Word PIA. Then you will be able to cast the application object passed in OnConnection to the
Microsoft.Office.Interop.Word.Application object defined in the Word PIA.

Adding the PIA for Word to a project is quite straightforward; it is just a matter of adding the reference to the Microsoft
Word 11 Object Library. Rightclick the WordAddin project node in the Solution Explorer tree view, and choose Add
Reference. Doing so brings up the Add Reference dialog box, shown in Figure 23.11. Click the COM tab and then select
the Microsoft Word 11 Object Library from the list. Finally, click OK to add a reference to the Word PIA to your Visual
Studio project.

Figure 23.11. Adding a reference to the Word PIA.

The Connect class that is created by the wizard contains untyped code, so a few changes need to be made to make it
more Wordaware. By default, the project sets up two member variables within the class that are of type Object. The
addInInstance variable can be redeclared as type Microsoft.Office.Core.COMAddin object, as defined by the Microsoft Office
11.0 Object Library PIA. After you have typed the addInInstance variable as a COMAddin object, you can use it to
determine the registry settings for the COM add-in, such as the GUID, the ProgID, and the description. It also has a
Connect property of type Boolean that can be set to False to disconnect the COM add-in.

The applicationObject member variable is also of type Object. Because this COM add-in will only ever run inside Word, it can
be safely redeclared as type Microsoft.Office.Interop.Word.Application. Making this change will make developing
considerably easier and safer. After you change the declaration of the applicationObject variable, all that remains is to
change the assignment lines within the OnConnection method to cast the application argument using CType from Object to
Microsoft.Office.Interop.Word.Application and the addInInst to Microsoft.Office.Core.COMAddin. Listing 23.3 shows the
redeclaration of the addInInstance and applicationObject variables, along with the new casts in OnConnection.

Listing 23.3. Strongly Typing applicationObject and addInInstance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 23.3. Strongly Typing applicationObject and addInInstance

Public Sub OnConnection(ByVal application As Object, _
 ByVal connectMode As Extensibility.ext_ConnectMode, _
 ByVal addInInst As Object, ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnConnection

 applicationObject = CType(application, _
 Microsoft.Office.Interop.Word.Application)

 addInInstance = CType(addInInst, _
 Microsoft.Office.Core.COMAddIn)

End Sub

Private applicationObject As Word.Application
Private addInInstance As Microsoft.Office.Core.COMAddIn

Setting the Start Action

The COM add-in is almost ready to go. The last problem to solve is that the project is set to start up a new instance of
Visual Studio rather than Word. This is easily solved by changing the debug settings for the project so that the project
will start winword.exe rather than devenv.exe. To do this, bring up the properties for the project by doubleclicking the
Properties project item in the Solution Explorer window; then select the Debug tab. Doing so brings up the dialog box
with a Start Action section, as shown in Figure 23.12.

Figure 23.12. The Start Action section of the Debug tab.

[View full size image]

The start action for the project should be set to Start External Program. This value needs to change to the location of
the Word process on your machinetypically, C:\Program Files\Microsoft Office\Office11\winword.exe. Now when you run
the project, Word will be started rather than a new instance of Visual Studio.

Word will reuse existing running instances of Word when you run the project. This can cause problems with COM add-in
development. If an instance of Word is already running when you run the project, the debugger will attach to that
running instance, but your COM add-in will not be loaded into that alreadyrunning instance. A way to ensure that the
COM add-in will always be loaded in a new instance of Word is to pass the commandline switch /w, which will cause
Word always to start a new instance.

Excel automatically creates a new instance if you start it at the command line, so there is no need to do this trick for
Excel. Outlook is a singleinstance application without the ability to override this behavior, so when programming against
Outlook applications, you need to shut down Outlook after every run of the project.

When a COM AddIn Project Stops Working

A common issue that occurs in COM add-in development goes like this: "I just pressed F5 on my COM add-in project,
and nothing happened! My COM add-in doesn't appear to load. What's the deal?" Office has a system to protect itself
from COM add-ins that fail. When you understand the system, you will better understand how to protect against your
COM add-in's not loading.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COM add-in's not loading.

Office automatically disables a COM add-in if it detects that it crashed the host application while starting. When the
Office application loads and starts a COM add-in, it puts a sentinel in the registry associated with the COM add-in that it
is loading. Then it calls the COM add-in's OnConnection and method. If the COM add-in successfully returns from this
method, Office removes the sentinel in the registry, and everything works fine. If the COM add-in crashes in
OnConnection, or if you stop debugging and kill the Office process before OnConnection returns, the sentinel is still
sitting in the registry. When you relaunch the Office application, Office detects that a sentinel got left in the registry on
the last run, and it disables your COM add-in.

It is very easy to have this happen during development; you might be stepping through code invoked by your
OnConnection entry point, and you get to a line of code and say to yourself, "This line of code is completely wrong."
You stop debugging, change the code, and press F5 to rerun the COM add-in. But on the second run, the COM add-in
does not work. Office detects the sentinel in the registry left over from the last run, when you killed the process in the
middle of OnConnection, and it disables your COM add-in.

The situation is even worse for unshimmed managed COM add-ins. The sentinel put in the registry for a managed COM
add-in is the name of the DLL that bootstraps the COM add-in. In the case of a nonshimmed COM add-in, the bootstrap
DLL is always mscoree.dlla component of the CLR. mscoree.dll acts as a class factory to create COM objects
implemented in managed code for a host such as Office that expects a COM object that implements IDTExtensibility2. It
bootstraps the CLR into the Office application process; loads the managed COM add-in registered in the registry; and
gives the Office application the managed COM add-in class that implements IDTExtensibility2 and, through interop,
makes that class looks like a COM object to Office.

So suppose that you have two add-in projects: Addin1 and Addin2, both of which are unshimmed. You are debugging
Addin1's OnConnection handler, and you hit Stop Debugging in the middle of it. This leaves the sentinel in the registry
saying not that Addin1.dll crashed Office, but that mscoree.dll crashed Office. Now you open the Addin2 project and run
it, and because Addin2 is also registered with mscoree.dll as its class factory, both Addin1 and Addin2 (and any other
unshimmed managed add-ins) will be disabled.

To reenable a COM add-in that has been disabled, go to the Help > About box of the Office application, and click the
Disabled Items button. Doing so pops up a dialog box that will let you reenable mscoree.dll for an unshimmed add-in
or, for a shimmed add-in, the DLL that is shimming the add-in.

There is a second way your COM add-in can get disabled. If your COM add-in throws an exception in OnConnection code
and does not catch it, that exception propagates out to Office, and Office disables the COM add-in by setting the
LoadBehavior key to 2 (HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Office\<<Application Name>>\Addins\<<Addin
ProgID>>\LoadBehavior). There is an easy way to deal with this issue. Always put your code that handles
OnConnection inside a TRy Catch block. Do not leak any exceptions in OnConnection back to Office. To undisable a COM
add-in that has been disabled in this way, you can change the LoadBehavior key back to 3 using regedit.exe or reenable
the COM add-in using the COM AddIns dialog box.

A Simple Word COM AddIn

To understand what is possible with COM add-ins in Office applications, refer to chapters on the object models of Excel
(Chapters 35), Word (Chapters 68), and Outlook (Chapters 911). To show that the COM add-in being developed
actually works, let's add some code to the OnStartupComplete method of the COM add-in, as shown in Listing 23.4. The
code will use the application object to add a button to the standard command bar in Word and show a message box
when a user clicks the button.

Listing 23.4. A Simple Word COM AddIn

Imports Extensibility
Imports System.Runtime.InteropServices
Imports Microsoft.Office.Core
Imports Word = Microsoft.Office.Interop.Word

<GuidAttribute("F91A3358-8DDB-4F6C-850D-7B79CD6F3310"),_
ProgIdAttribute("WordAddin2.Connect")>_
Public Class Connect

 Implements Extensibility.IDTExtensibility2

 Private applicationObject As Word.Application
 Private addInInstance As Microsoft.Office.Core.COMAddIn
 Private WithEvents simpleButton As CommandBarButton

 Public Sub OnStartupComplete(ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnStartupComplete

 Dim commandBars As CommandBars
 Dim standardBar As CommandBar
 commandBars = applicationObject.CommandBars

 ' Get the standard CommandBar from Word
 standardBar = commandBars("Standard")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 standardBar = commandBars("Standard")

 Try
 ' try to reuse the button if it is not deleted
 simpleButton = CType(standardBar.Controls(_
 "Word Addin"), CommandBarButton)
 Catch
 ' If it is not there, add a new button
 simpleButton = CType(standardBar.Controls.Add(1), _
 CommandBarButton)
 simpleButton.Caption = "Word Addin"
 simpleButton.Style = MsoButtonStyle.msoButtonCaption
 End Try

 ' Make sure the button is visible
 simpleButton.Visible = True

 standardBar = Nothing
 commandBars = Nothing

 End Sub

 Private Sub simpleButton_Click(_
 ByVal Ctrl As Microsoft.Office.Core.CommandBarButton, _
 ByRef CancelDefault As Boolean) Handles simpleButton.Click

 MsgBox("You clicked on the button")

 End Sub

 Public Sub OnConnection(ByVal application As Object, _
 ByVal connectMode As Extensibility.ext_ConnectMode, _
 ByVal addInInst As Object, ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnConnection

 applicationObject = CType(application, _
 Word.Application)

 addInInstance = CType(addInInst, _
 Microsoft.Office.Core.COMAddIn)

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Pitfalls of mscoree.dll
The Visual Studio setup project created when you create a COM add-in using the Shared AddIn Wizard provides a setup
package that you can use to deploy your COM add-in to your customers' machines. At first glance, the setup created by
Visual Studio appears to cover all the deployment requirements for COM add-ins. Alas, life is not quite that easy. A
deployed COM add-in written in managed code really needs to be shimmed. To understand what a shim is and why it is
needed, we have to dig into how a COM add-in written in managed code is actually loaded into an Office application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COM Interop and regasm.exe
The mechanism for loading COM add-ins into Office was developed long before .NET existed and relies entirely on a
technology called COM to instantiate the COM add-in. For a COM add-in written in Visual Basic to be used in Office, it
must be registered as a COM component. The ability to register a Visual Basic class as a COM component is a core
feature of the CLR called COM interop and can be achieved easily by running the regasm.exe tool on the assembly
containing your Connect class or by selecting the Register setting for the primary output assembly in the setup project.

The regasm.exe tool works by reading the declaration of your class and in particular the classlevel attributes
GuidAttribute and ProgID, shown in Listing 23.5. These classlevel attributes are defined in the
System.Runtime.InteropServices namespace. The GuidAttribute tells the regasm.exe tool what CLSID to use in the
registry for the class when registering it under HKEY_CLASSES_ROOT\CLSID. The ProgID tells the regasm.exe tool
what ProgID to use when registering the class. The regasm.exe tool writes the necessary keys only under
HKEY_CLASSES_ROOT\CLSID. The required key for the add-in with the ProgID name under
HKEY_CURRENT_USER\Software\Microsoft\Office\%appname%\Addins and associated key values are not added by
regasm.exe and must be added by custom install actions in the installer.

Listing 23.5. The Attributes in the Connect Class That Are Looked at by regasm.exe

Imports System.Runtime.InteropServices

<GuidAttribute("910322B9-AF60-4C4F-9FEE-9ABEE4A16FAE"), _
ProgIdAttribute("MyAddin1.Connect")> _
Public Class Connect

End Class

mscoree.dll and Managed AddIns

A managed component registered under HKEY_CLASSES_ROOT\CLSID differs from a typical unmanaged COM
component primarily with regard to the InProcServer32 key in the registry for the component. An unmanaged
component would set the InProcServer32 to be the DLL that implements the COM component. A managed component
cannot set this value to the name of the managed DLL, because to create an instance of the managed assembly, the
CLR needs to be loaded, and there is no guarantee that the calling application will already have loaded the CLR into
memory. In fact, it is almost certain that the calling application will not have loaded the CLR, because it is trying to load
what it thinks is a COM component. To circumvent this chickenandegg situation, the CLR provides a DLL called
mscoree.dll that loads the CLR, instantiates the class out of the managed assembly, and returns a COM Callable
Wrapper for the managed class to the calling application.

When a managed class is registered by regasm.exe, the InProcServer32 key for the assembly always has a default
value of mscoree.dll, and an additional set of registry values is set that mscoree.dll uses to load the managed class. These
additional keys provide information about the managed class and assembly that mscoree.dll will create and load. Figure
23.13 shows these values under a typical HKEY_CLASSES_ROOT\CLSID\{some guid}\InProcServer32 key for a
managed add-in class called Connect in an assembly called WordAddin1.

Figure 23.13. The values under the InProcServer32 key for a typical managed COM
add-in.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

All managed COM add-ins created by the Shared AddIn Wizard use mscoree.dll to get loaded into the Office process.
Unfortunately, this presents several problems for Office COM add-in development that have led to the need for
replacing the mscoree.dll with a different custom loadersometimes called a shimwhen building COM add-ins for Office
applications.

Note

If you are targeting Outlook 2003, you do not need to use a shim; you can use the new VSTO Outlook add-
in project type that solves the problems associated with mscoree.dll.

Problems with Using mscoree.dll to Load Your COM AddIn

Problem 1: mscoree.dll Can Be Disabled, Causing All Managed COM AddIns to Stop Loading

Office is composed of some of the most widely used applications in the world, and ensuring that the Office applications
remain as stable as possible is a key concern for the Office development team. Because Office is so widely used, a
number of COM add-ins have been designed to run inside Office applications. Unfortunately, not all of them are written
well, and they crash. When a COM add-in crashes, the hosting Office application becomes unstable or often crashes
itself, leaving the user with little or no way of knowing what on earth happened.

Microsoft invested heavily in the crashdetection and reporting system in Office XP to try to track down these crashes in
Office. While doing this, it quickly realized that many crashes were a result of thirdparty COM add-ins that were
crashing. Using this information, Microsoft introduced the ability to detect when a COM add-in crashes during
Officeapplication startup. On the next run of the application, Office displays a dialog box, such as the one shown in
Figure 23.14, offering to disable the COM add-in.

Figure 23.14. Office offers to disable a COM add-in.

[View full size image]

If the user clicks the Yes button, Office will "blacklist" the COM add-in so that it will not be loaded into Office until an
update has been received from the vendor. Although this is a great step forward for the reliability of Office applications,
the way it was implemented does not work well with the default registration mechanism for managed COM add-ins,
because Office believes that the offending DLL is mscoree.dll, which it blocks. Blocking mscoree.dll will block not only
the crashing COM add-in, but also every other managed COM add-in registered for that Office application.

Problem 2: mscoree.dll Cannot Be Signed

In the late 1990s, Office was plagued with viruses such as the Melissa virus that took advantage of the ability to run
code contained in an Office document. To defend against such attacks, Microsoft introduced several security measures
in Office XP primarily aimed at stopping malicious VBA code from running, but also to mitigate potential risks from COM
add-ins. The primary defense against an add-in was to introduce the capability to load only COM add-ins signed by a
trusted publisher. On the surface, this seems like a great idea, and indeed it is for unmanaged COM components.
Unfortunately, it does not work well with the default registration mechanism for managed COM add-ins, because Office
checks the signature of the InProcServer32 binary, which is always mscoree.dll, not the managed DLL started by
mscoree.dll, which contains the managed COM add-in. mscoree.dll is a system DLL that is not signed and is installed by
the CLR, so signing it with your own certificate is not possible. mscoree.dll cannot be signed because it cannot vouch
that the components it loads are safe.

Luckily, the default setting for Office is to trust all installed add-ins, even if they are not signed, so this problem is not
one that you will encounter in all Office installations. But it does mean that if a company or individual is particularly
security conscious and unchecks the Trust All Installed AddIns and Templates setting in the Security dialog box, shown
in Figure 23.15, your COM add-in will not run. This dialog box can be invoked by choosing the Security item from the
Macros submenu of the Tools menu in most Office applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 23.15. The Trust All Installed AddIns and Templates option in the Security
dialog box.

Problem 3: mscoree.dll Loads All COM AddIns into the Same AppDomain

Whenever managed code is loaded into an unmanaged application, the CLR must be hosted inside the application to run
the managed code. Hosting the CLR is something that can be achieved implicitly or explicitly. Implicit hosting of the CLR
is achieved by the unmanaged application's talking to mscoree.dll (which advertises itself as a COM object), which in
turn starts the CLR in the application and loads the managed code. Alternatively, the application can host the CLR
directly by using the CLR hosting APIs, which provide considerable control over how the CLR gets loaded and in
particular how assemblies get loaded. None of the Office 2003 applications hosts the CLR directly with respect to COM
add-ins (although Word and Excel do host the CLR for documentbased customizations created by Visual Studio Tools for
Office), so all COM add-ins are loaded via their InProcServer32 setting.

When the CLR is running inside a host application, it can load managed code into a unit of isolation called an
AppDomain. You can think of an AppDomain as a little miniprocess running inside the Office application process. Each
VSTO codebehinddocument solution loads into its own AppDomain. So when you have three Excel workbooks loaded in
the Excel process with VSTO code behind them, an AppDomain is created for each workbook. These AppDomains are
isolated from one another; code in one AppDomain cannot adversely affect the other AppDomains. Also, when the
workbook is closed, the AppDomain corresponding to it can be stopped and unloaded without affecting the running code
in other AppDomains.

By default, mscoree.dll loads managed COM add-ins into the same AppDomainan AppDomain known as the default
AppDomain. This is bad, because the COM add-ins are all running in the same AppDomain and can easily adversely
affect one another. Also, there is no mechanism to unload managed code that was loaded when a COM add-in was
connected but is no longer needed when the COM add-in is disconnected, because the default AppDomain cannot be
unloaded until the Office process exits. What you really want is for each COM add-in to load into its own AppDomain
instead of loading all together into the default AppDomain.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Shimming: A Solution to the Problems with mscoree.dll
Despite the gloomy picture painted for COM add-ins being loaded by mscoree.dll, a solution resolves these three
problems. The solution involves writing a custom CLR host DLL called a shim DLL (written in C++) to be the loader for
the CLR and the COM add-in instead of relying on mscoree.dll. A new shim DLL must be created for each COM add-in
you are going to deploy. Using a shim DLL leads to a number of advantages:

Integration with the Office security system Now the shim DLL will be the InProcServer32 for the COM add-
in, allowing you to sign the shim and trust it on the users' machines, which will guarantee that your COM add-in
can load irrespective of whether Trust All Installed AddIns and Templates is checked. The COM add-in is
guaranteed to load only if the user has trusted the certificate used to sign the custom shim DLL, of course.

Reliability Because the shim DLL is now the InProcServer32 for the COM add-in, if something should go wrong
with that COM add-in, the Office application will block only the shim DLL corresponding to that COM add-in,
leaving other managed COM add-ins unblocked.

Isolation The shim DLL can create an AppDomain into which the COM add-in will be loaded instead of loading
the COM add-in into the default AppDomain.

If you are building a managed COM add-in for Outlook 2003, consider using the new VSTO Outlook Addin project.
Building an add-in in this way resolves the problems with mscoree.dll, as well as some other Outlookspecific issues with
add-ins described in Chapter 24, "Creating Outlook AddIns with VSTO."

Microsoft has provided a Visual Studio COM add-in shim wizard project that works with Visual Studio 2003. It is
available at http://msdn.microsoft.com/office/default.aspx?
pull=/library/enus/dno2k3ta/html/ODC_Office_COM_Shim_Wizards.asp. At the time this book was written, no wizards
were available for Visual Studio 2005. You can use the C++ COM shim project generated by this wizard in Visual Studio
2003, however, and import it into Visual Studio 2005.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter examined the way a managed COM add-in can be created using Visual Studio. You also learned how a
managed COM add-in is registered in the registry, as well as the pitfalls of mscoree.dll for loading a managed COM add-
in. To solve the problems with mscoree.dll, we recommended using a shim DLL to load a managed COM add-in. If you
are building a COM add-in for Outlook 2003, there is a much better story for add-in development: the VSTO Outlook
AddIn project, described in Chapter 24, "Creating Outlook AddIns with VSTO."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 24. Creating Outlook AddIns with VSTO

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Moving Away from COM AddIns
Chapter 23, "Developing COM AddIns for Word and Excel," examined several issues with building COM add-ins in Visual
Basic for Office applications. In particular, the chapter considered several problems with using the default configuration
of a COM add-in where mscoree.dll loads the COM add-in:

mscoree.dll can be disabled, causing all managed COM add-ins to stop loading.

mscoree.dll cannot be signed, which makes it so your COM add-in cannot be loaded when the Trust All Installed
AddIns and Templates option is not checked.

mscoree.dll loads all COM add-ins into the same application domain, which allows COM add-ins to affect one
another adversely.

VSTO add-ins for Outlook solve these issues. VSTO also fixes some other issues in Outlook COM add-in development
that we consider here to motivate you to use the VSTO add-in technology rather than the COM add-in technology
described in Chapter 23. This chapter describes the problems with the COM add-in technology in enough detail so that if
you are forced to use a COM add-in approach, you will know how to work around these issues.

Getting Outlook to Shut Down Properly with a COM AddIn

The most troublesome issue in Outlook COM add-in development is that the OnDisconnection method you implement in
a COM add-in sometimes is not called if you have variables such as a class member variable that is holding an Outlook
object. The result is that when Outlook exits, all the Outlook windows go away, but Outlook does not shut down; the
outlook.exe process will continue running, waiting for the COM add-in to release the Outlook objects it is holding.

To get Outlook to shut down and call the COM add-in's OnDisconnection method, you must use a trick that involves
listening to Outlook events to determine when the last window has been closed. Outlook windows are represented by
two object model objects. The Explorer object in the Outlook object model represents the main Outlook window, which
consists of a view showing folders and items in folders. It is possible to open additional Explorer views by rightclicking
an Outlook folder and choosing Open in New Window. The Inspector object in the Outlook object model represents the
Outlook window that appears when you doubleclick an individual item in a folder, such as a mail item, contact item, or
other Outlook item.

The secret to getting OnDisconnection called and your COM add-in to unload is to listen to Explorer and Inspector Close
events, as well as the Application object's Quit event. When the last Explorer or Inspector has closed, or when the
Application object's Quit event is raised, you must make sure that you set all the variables that are holding Outlook
objects to Nothing. Then you should force a garbage collection after setting the variables to Nothing to ensure that your
add-in will not hold on to Outlook objects because objects are waiting to be garbagecollected.

Listing 24.1 shows a helper class that you can create and use from your main Connect class in a COM add-in. The class
takes as a parameter an Outlook Application object, as well as a delegate to a Shutdown method that you would declare
in your Connect class. The Shutdown method you declare in your Connect class would set all the class member variables in
the Connect class that are holding Outlook objects to Nothing, similar to what this helper class does in its HandleShutdown
method. Note that you do not have to use this approach or this class in VSTO Outlook add-insonly in COM add-ins. This
is one of the strong arguments for switching to VSTO Outlook add-ins.

You might also notice that the helper class holds on to the Explorers and Inspectors collection objects, as well as an
array of Explorer or Inspector objects. The helper class holds on to these things because if it does not, the event sinks it
has established on these objects will not work. This is another variant of the classic "Why has my button stopped
working?" problem described in Chapter 1, "An Introduction to Office Programming."

Listing 24.1. A Helper Class That Helps an Outlook COM AddIn Shut Down
Properly[1]

Imports Outlook = Microsoft.Office.Interop.Outlook

Public Class EventListener

 Public Delegate Sub Shutdown()

 Private application As Outlook.Application
 Private explorers As Outlook.Explorers
 Private inspectors As Outlook.Inspectors
 Private eventSinks As System.Collections.ArrayList
 Private shutdownHandlerDelegate As Shutdown

 Private Sub EventListener(_

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub EventListener(_
 ByVal application As Outlook.Application, _
 ByVal shutdownHandlerDelegate As Shutdown)

 Me.application = application
 Me.shutdownHandlerDelegate = shutdownHandlerDelegate
 explorers = application.Explorers
 inspectors = application.Inspectors
 eventSinks = New System.Collections.ArrayList()

 AddHandler explorers.NewExplorer, _
 AddressOf Explorers_NewExplorer
 AddHandler inspectors.NewInspector, _
 AddressOf Inspectors_NewInspector
 AddHandler application.Quit, AddressOf Application_Quit

 Dim e As Outlook.Explorer
 For Each e In application.Explorers
 Explorers_NewExplorer(e)
 Next

 Dim i As Outlook.Inspector
 For Each i In application.Inspectors
 Inspectors_NewInspector(i)
 Next
 End Sub

 Public Sub Explorers_NewExplorer(_
 ByVal explorer As Outlook.Explorer)
 eventSinks.Add(explorer)
 Dim explorerEvents As Outlook.ExplorerEvents_Event = _
 CType(explorer, Outlook.ExplorerEvents_Event)
 AddHandler explorerEvents.Close, AddressOf Explorer_Close
 End Sub

 Public Sub Inspectors_NewInspector(_
 ByVal inspector As Outlook.Inspector)

 eventSinks.Add(inspector)
 Dim inspectorEvents As Outlook.InspectorEvents_Event = _
 CType(inspector, Outlook.InspectorEvents_Event)
 AddHandler inspectorEvents.Close, AddressOf Inspector_Close

 End Sub

 Public Sub Explorer_Close()
 If application.Explorers.Count <= 1 And _
 application.Inspectors.Count = 0 Then

 HandleShutdown()

 End If
 End Sub

 Public Sub Inspector_Close()
 If application.Explorers.Count = 0 And _
 application.Inspectors.Count <= 1 Then

 HandleShutdown()

 End If
 End Sub

 Public Sub Application_Quit()
 HandleShutdown()
 End Sub

 Private Sub HandleShutdown()
 ' Release any Outlook objects this class is holding

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Release any Outlook objects this class is holding
 application = Nothing
 explorers = Nothing
 inspectors = Nothing
 eventSinks.Clear()
 eventSinks = Nothing

 ' call client provided shutdown handler delegate
 shutdownHandlerDelegate()

 ' Force a garbage collection
 GC.Collect()
 GC.WaitForPendingFinalizers()
 GC.Collect()
 GC.WaitForPendingFinalizers()
 End Sub

End Class

[1] This class is not necessary for VSTO Outlook add-ins.

Understanding RCWs, Application Domains, and Why to Avoid Calling
ReleaseComObject

Some Outlook developers have used ReleaseComObject on class member variables holding Outlook objects instead of
setting these variables to Nothing and forcing a garbage collection, as shown in Listing 24.1. ReleaseComObject is a
function in the CLR that, if you misuse it, has some additional side effects that can adversely affect your code. It can
also affect other COM add-ins if you are not using a COM add-in shim as described in Chapter 23, "Developing COM
AddIns for Word and Excel." For this reason, we recommend against using ReleaseComObject. Because it has been
recommended in the past, it is important to describe in more detail why calling ReleaseComObject is not advised. This
will eventually lead us to VSTO Outlook add-ins and a description of why they do not have to do any of the tricks shown
in Listing 24.1.

To understand ReleaseComObject, it is necessary to understand more of what is really happening when your code runs
inside the Outlook process. The first thing you need to understand is the concept of an application domain, or
AppDomain. An application domain is an isolated environment in which your code runs within a processin this case,
within outlook.exe. You can think of an application domain as being sort of a process within a process. There can be one
or more application domains running inside a single process. There are several ways that an application domain
provides processlike isolation. An application domain can be stopped and unloaded without affecting another application
domain. Individual application domains can be configured differently with different security policy, different settings for
loading assemblies, and so on. Code running in one application domain cannot directly access code in another
application domain. In addition, faults occurring in one application domain cannot affect other application domains.

With typical console applications or Windows Forms applications, you usually will have just one application domain
where your code will run. There always is at least one application domain created automatically for any process running
managed code. The application domain the CLR creates automatically is called the default application domain. The
default application domain can be unloaded only when the process exits. This is often acceptable, because you typically
control all the code that loads into a console application or Windows Forms application that you have written.

In Office scenarios, you will want to have multiple application domains created in the same process where each add-in
loads into its own application domain. This is desirable because if you load in the same application domain as another
add-in, that add-in can adversely affect you, as discussed shortly. You also will not want to have an add-in or
customization associated with a document load into the default application domain, because the default application
domain can be unloaded and cleaned up only when the process exits. A user might want to unload an add-in or close a
document, and she will not want the customization to stick around in memory in the default application domain. Users
will want the add-in to unload and free that memory for other uses.

Figure 24.1 shows the most desirable situation for Outlook COM add-ins (and Office COM add-ins in general). If each
COM add-in is shimmed as described in Chapter 23, each add-in will load into its own application domain, providing
isolation, so that one add-in cannot affect another. Note that no add-ins load into the default application domain in
Figure 24.1. If you do not shim a COM add-in, mscoree.dll will load it into the default application domain. If we could
rule the add-in world, no add-ins would ever load into the default application domain. You should avoid loading into the
default application domain because a tested COM add-in that works fine on your developer machine might conflict with
some other add-in loading into the default application domain on a user's machine, and chaos will ensue.

Figure 24.1. An ideal situation for add-ins. Each add-in loads in its own application
domain. No add-ins load into the default application domain.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

domain. No add-ins load into the default application domain.

If you do not use a shim to load a COM add-in and instead let mscoree.dll load your add-in, you will end up with a
situation such as the one shown in Figure 24.2. COM add-ins that are not shimmed are loaded into the default
application domain by default.

Given Figure 24.1 and Figure 24.2, now we consider what happens when you use a COM object in your customization.
When you use a COM object in your customization, such as Outlook's Application object, the CLR creates an object
called a Runtime Callable Wrapper (RCW) for the COM object that your managed code talks to. The RCW in turn talks to
the actual COM object. Any time your code talks to Outlook's Application object, your code is actually talking through
the RCW.

Figure 24.2. The undesirable situation that occurs when add-ins are not shimmed
and loaded by mscoree.dll.

RCWs are scoped to an application domain. The CLR creates one RCW that all code in a given application domain will
use to talk to Outlook's Application object. Figure 24.3 shows the ideal situation for RCWs. With each add-in loaded into
its own application domain, each add-in has its own RCWs. Figure 24.3 also illustrates that when multiple variables are
declared in a particular application domain that are set to an instance of Outlook's Application object, they share an
RCW object. Note that the RCW is shared because Outlook's Application object is a singleton COM object. For
nonsingleton COM objects, the RCW is not shared, and the situation described below does not have as great an impact.

Figure 24.3. An ideal situation for add-ins. Addins should not share RCWs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now we consider what ReleaseComObject does. Suppose that you have a class variable in your add-in code called
appObject1 that is set to an instance of Outlook's Application object. You might have another class variable in another
area of your add-in called appObject2 that is also set to an instance of Outlook's Application object. Even though you have
two variables set to an instance of Outlook's Application object, these two variables will both share one RCW that is at
the application domain level.

Now suppose that appObject1 gets set to an instance of Outlook's Application object first. This causes Outlook's
Application RCW to be created. The RCW is referencecountedthat is, a count is kept of each variable that is using the
RCW. So the reference count of the RCW goes to 1. In addition, the RCW talks to the COM object for Outlook's
Application object and adds a reference count to the COM object, too. Now Outlook knows that some code is "using"
one of its objects. Later in the code, appObject2 gets set to an instance of Outlook's Application object. The CLR detects
that an RCW is already available, so it increments the reference count on the RCW and has appObject2 share the RCW
with appObject1. It does not increment the reference count on the COM object, however; the RCW will take only one
reference count on the COM object, and it will release that reference count when all the variables using the RCW are
garbagecollected.

Because Outlook is more strict about reference counts than the other Office applications are, to get Outlook to shut
down, you need to release the reference count the RCW has made on any COM objects your managed code is using
when the last Outlook window (either Explorer or Inspector) is closed or when Outlook's Application object raises the
Quit event. The right way to do this is to set all the variables you have set to Outlook objects to Nothing and then force
two garbage collections. The quickanddirty way to do this is to use ReleaseComObject. When you call
ReleaseComObject on a variable, the CLR releases the reference count on the RCW associated with that variable type.
So if you want to get rid of the RCW for Outlook's Application object and thereby release Outlook's COM object to get it
to shut down properly, you could write the following code:

Runtime.InteropServices.Marshal.ReleaseComObject(appObject1)
Runtime.InteropServices.Marshal.ReleaseComObject(appObject2)

Note that this assumes that only two variables in the application domain are using the RCW: appObject1 and appObject2. If
you forgot about a variable that was set to Outlook's Application object, or you are referencing a library that sets its
own internal variables to Outlook's Application object, this code would not result in the RCW's going away and releasing
Outlook's COM object, because the reference count on the RCW would be greater than 2.

ReleaseComObject also returns the number of reference counts left on the RCW. So, armed with this knowledge, you
could write this evenscarier code:

Dim count as Integer

Do

 count = Runtime.InteropServices.Marshal.ReleaseComObject(_
 appObject1)

Loop While count > 0

This code keeps releasing the reference count on the RCW until it goes to 0, which then causes the RCW to be released
and the COM object it is talking with to have its reference count released. This code would get rid of the RCW even in
the case where you forgot about a variable that was set to Outlook's Application object or using a library that was using
Outlook's Application object. .NET also provides another method that is the equivalent of calling ReleaseComObject in a
loop. This method is shown here:

Runtime.InteropServices.Marshal.FinalReleaseComObject(appObject1)

After the RCW has gone away because of calling ReleaseComObject, ReleaseComObject in a loop, or
FinalReleaseComObject, if you attempt to use any of the properties or methods on any variables that were set to the
Outlook Application object (for example, you try to access appObject1.Name), you will get the error dialog box shown in
Figure 24.4.

Figure 24.4. The error that occurs when you try to talk to a variable whose RCW
has been released.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

has been released.

So you probably can see that if you load into your own application domain, if you are not using any referenced libraries
that talk to Outlook's application object, and if you can avoid talking to any properties or methods of Outlook's
Application object after you have called ReleaseComObject in a loop or FinalReleaseComObjectyou could get away with
using this approach. This is only because you are in your own application domain and presumably are in control of all
the code that might load there. If you shoot anyone in the foot by using ReleaseComObject, it will be yourself and not
other developers.

Consider what happens if you are not using a shim, and you load into the default application domain. Now you have
great potential to affect adversely other add-ins that also are not shimmed and are loading into the default application
domain. Figure 24.5 shows this situation. Suppose that Addin 1 calls FinalReleaseComObject on its appObject1 object.
This will not only release the references that Addin 1 has on the RCW, but because the RCW is shared at the application
domain level and Addin 2 is also loaded in the same application domain, it will also release the references that Addin 2
has on the RCW. Now, even if Addin 1 is smart enough not to touch appObject1 anymore, Addin 2 has no way of knowing
that when it talks to appObject2 or appObject3, it will get an exception due to the RCW's going away.

Figure 24.5. Worstcase situation for add-ins: Addins share RCWs, and one add-in
calls ReleaseComObject in a loop or FinalReleaseComObject.

If, instead, Addin 1 sets appObject1 to Nothing and forces a garbage collection, .NET will make sure that the right number
of reference counts is released on the RCW without affecting other users of the RCW. Also, with appObject1 set to Nothing,
it will be clearer in your code that you are no longer allowed to talk to appObject1.

The CLR does not clean up the reference counts on the RCW until the variable you have set to Nothing is
garbagecollected. In Listing 24.1 earlier in the chapter, where we are trying to clean up the reference count
immediately after the last window is closed, we force a garbage collection immediately after setting the variables
referring to Outlook objects to Nothing. To force the garbage collection, we call GC.Collect(), followed by
GC.WaitForPendingFinalizers(). Note that then we call GC.Collect() and GC.WaitForPendingFinalizers() a second time to ensure that any
RCWs that were stored as members of objects with finalizers are cleaned up properly.

How Outlook AddIn Development Should Be: The VSTO Outlook AddIn Project

Outlook COM add-in development requires you to track any variables set to Outlook objects, sink the Close events of
the Inspector and Explorer objects, set your variables set to Outlook objects to Nothing when the last Inspector or
Explorer closes or the Application object's Quit event is raised, and force two garbage collections. This complexity is not

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Explorer closes or the Application object's Quit event is raised, and force two garbage collections. This complexity is not
required when building add-ins for other Office applications, so do not apply these techniques to Excel or Word. Excel
and Word are more robust to reference counts on their COM objects being held during the shutting down of the
application. Also, this situation never occurs in VSTO 2005 customizations because of VSTO's better model for loading
and unloading code.

If you use the VSTO Outlook add-in project, you will not have to worry about any of these Outlookspecific shutdown
problems or any of the problems that we said (in Chapter 23, "Developing COM AddIns for Word and Excel") require a
shim. The VSTO Outlook add-in project uses the VSTO model for loading and unloading an add-in. The VSTO model
always loads a customization into its own application domain. When the add-in is unloaded or the application exits,
VSTO raises a Shutdown event into the customization. The developer does not have to set any objects to Nothing or
force a garbage collection to clean up RCWs, because once the Shutdown event handler has been run, VSTO unloads
the application domain associated with the customization. When the application domain is unloaded, all the RCWs used
by that application domain and customization are cleaned up automatically, and the references on COM objects are
released appropriately. After the application domain has been unloaded, memory used by the customization is freed,
and the process can continue to run. Because VSTO Outlook add-ins apply this approach to add-ins, you never have to
worry about setting variables to Nothing, RCWs, or any of the complexity discussed in this section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating an Outlook AddIn in VSTO
To create an Outlook add-in in VSTO, choose File > New > Project. The Outlook add-in project appears in the list of
templates under the Visual Basic/Office node in the tree of project types, as shown in Figure 24.6. Type a name for
your new Outlook add-in project; pick a location for the project; then click the OK button.

Figure 24.6. Creating a new Outlook add-in project.

[View full size image]

A project is created with references to the Outlook 2003 primary interop assembly (PIA), the core Office PIA, and other
needed references, as shown in Figure 24.7. One project item, called ThisApplication.vb, is created.

Figure 24.7. The Outlook add-in project in Solution Explorer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you doubleclick the ThisApplication.vb project item, you will see a simple code view, shown in Listing 24.2, that looks
very similar to the ThisDocument.vb project item in the Word document or template VSTO project, and to the
Sheet1.vb project item in the Excel workbook or template project. There is a simple Startup and Shutdown method
where you can write code that executes on the startup and shutdown of the add-in. Startup is roughly the equivalent of
OnConnection in IDTExtensibility2based add-ins, and Shutdown is roughly the equivalent of OnDisconnection. Listing
24.2 also illustrates that the ThisApplication class derives from an aggregate of the Outlook Application object, enabling
you to access properties and methods of the Outlook Application object by writing code such as Me.Inspectors.Count.

Listing 24.2. ThisApplication.vb for an Outlook AddIn Project

Imports Office = Microsoft.Office.Core
Imports Outlook = Microsoft.Office.Interop.Outlook

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 MsgBox(String.Format(_
 "There are {0} inspectors and {1} explorers open.", _
 Me.Inspectors.Count, Me.Explorers.Count))

 End Sub

 Private Sub ThisApplication_Shutdown(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Shutdown

 MsgBox("Goodbye")

 End Sub

End Class

When you run the project with the code shown in Listing 24.2, Outlook is launched, and the add-in loads and displays a
dialog box showing the count of the Inspectors and Explorers. Now go to Outlook's COM AddIns dialog box by following
these steps:

1. Choose Options from the Tools menu to bring up the Options dialog box.

2. Click the Other tab of the Options dialog box.

3. Click the Advanced Options button to bring up the Advanced Options dialog box.

4. Click the COM AddIns button to bring up the COM AddIns dialog box.

Figure 24.8 shows the COM AddIns dialog box. The add-in you just created (OutlookAddin1) is displayed as though it
were a COM add-in. If you look at the location of the add-in, it claims to be in the C:\Program Files\Common
Files\Microsoft Shared\VSTO\8.0 directory.

Figure 24.8. The COM AddIns dialog box shows the VSTO Outlook add-in.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 24.8. The COM AddIns dialog box shows the VSTO Outlook add-in.

From the standpoint of Outlook, Outlook believes that it is loading a COM add-in, even though we know this is a VSTO
Outlook add-in project. What is going on here? To answer that, let's do a little digging in the registry to understand how
VSTO is connecting everything. If we look under HKEY_CURRENT_USER\Software\Microsoft\Office\Outlook\Addins, we
will find a registry key for the add-in we created in VSTO, called OutlookAddin1 in our example, as shown in Figure
24.9. The registry entries look just like those for an IDTExtensibility2 add-in, as described in Chapter 23, "Developing
COM AddIns for Word and Excel." These registry entries make Outlook think that it is just loading a COM add-in.

Figure 24.9. A VSTO Outlook add-in registered under the Outlook Addins subkey.

[View full size image]

If we search the registry under the HKEY_CLASSES_ROOT\CLSID key for the ProgID OutlookAddin1, we will find a key
associated with the OutlookAddin1 ProgID. Looking under the InprocServer32 key for that ProgID, we see the entries in
Figure 24.10.

Figure 24.10. The InprocServer32 under the CLSID key associated with ProgID
OutlookAddin1.

[View full size image]

Under the InprocServer32 key are several important values. First, the (Default) value is the DLL that Outlook will start
to load the VSTO Outlook add-in we created. The DLL name is AddinLoader.dll. This is a VSTOprovided replacement for
mscoree.dll that can load a managed add-in without the problems associated with mscoree.dll listed at the start of this
chapter. This DLL also solves the Outlook shutdown problem, making it so that your add-in will always shut down
cleanly and not leave Outlook running.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cleanly and not leave Outlook running.

Second, we see a ManifestLocation key. Because the VSTO Outlook add-in project uses the VSTO runtime to load the
add-in, a manifest is required to specify what to load. This manifest is identical to the manifest embedded in VSTO
customized Word documents and Excel spreadsheets. The name of the manifest is stored in the ManifestName key. If
we go to the ManifestLocation and open the file with the name ManifestName (OutlookAddin1.manifest), we will see the
XML shown in Listing 24.3.

Listing 24.3. The OutlookAddin1.manifest File

<assembly xmlns="urn:schemasmicrosoftcom:asm.v1"
xmlns:asmv2="urn:schemasmicrosoftcom:asm.v2"
manifestVersion="1.0">
 <assemblyIdentity name="OutlookAddin1.manifest"
version="1.0.0.0" />
 <asmv2:entryPoint name="Startup" dependencyName="dependency0">
 <asmv2:clrClassInvocation
class="OutlookAddin1.ThisApplication" />
 </asmv2:entryPoint>
 <asmv2:dependency asmv2:name="dependency0">
 <asmv2:dependentAssembly>
 <assemblyIdentity name="OutlookAddin1" version="1.0.0.0"
culture="neutral" />
 </asmv2:dependentAssembly>
 <asmv2:installFrom codebase="OutlookAddin1.dll" />
 </asmv2:dependency>
</assembly>

The manifest indicates that the actual managed add-in assembly that AddinLoader.dll will load is called
OutlookAddin1.dll. The path provided in codebase will be relative to the location of the manifest (specified in
ManifestLocation). So, looking at the ManifestLocation key in Figure 24.10, we can see that the VSTO runtime will load
OutlookAddin1.dll from the full path below:

C:\Visual Studio Projects\OutlookAddin1\OutlookAddin1\bin\debug\OutlookAddin1.dll

Security

VSTO Outlook add-ins use the same security model that Word and Excel VSTO customizations usethat is, no Outlook
add-in runs without .NET Framework security policy that trusts the Outlook add-in assembly and any dependent
assemblies. When you create a new Outlook add-in project, Visual Studio automatically adds this policy to trust the bin
directory for the project and any referenced assemblies that are copied locally to the project directory. When you
deploy an Outlook add-in, however, you also need to create and install .NET policy that will trust the assemblies that
are part of the Outlook add-in. Chapter 19, ".NET Code Security," and Chapter 20, "Deployment," cover this topic in
more detail.

The VSTO security model is also the key to how the Trust All Installed AddIns and Templates problem is solved. When
this check box in the Security dialog box is unchecked, Office requires the InProcServer32 registered for the add-in to
be signed. Because VSTO's security model is that no add-in runs without .NET Framework security policy to trust it,
VSTO can sign the AddinLoader.dll, because it will load only code that has been trusted by .NET Framework security
policy. This makes it so that your add-in will load even in environments where this check box is not checked.

Manifest Updating

VSTO Outlook add-ins use the same basic updating and publishing mechanism that Word and Excel VSTO
customizations use to update the manifest in a document. You can publish a VSTO Outlook add-in that embeds in the
manifest a URL to a deploy manifest. To publish an add-in, rightclick the project node in Solution Explorer, and choose
Publish from the popup menu. The Publish Wizard, shown in Figure 24.11, will appear. Here, we choose to publish to a
local directory called c:\myaddins.

Figure 24.11. Publishing a VSTO Outlook add-in.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 24.11. Publishing a VSTO Outlook add-in.

This causes a manifest to be generated that is slightly different from the manifest in Listing 24.3 earlier in this chapter.
The first difference is that now the manifest points to a deploy manifest. Each time an Outlook add-in that has been
published and that has a deploy manifest location is loaded, the deploy manifest is checked to see whether a newer
version of the manifest is available. If there is, a new version of the manifest is pulled down to the ManifestLocation
specified in the registry, and it overwrites the old manifest. The second difference is that DLLs referred to in the
application manifest are now located relative to the path to the deploy manifest instead of the application manifest. For
more information on publishing and deploy manifests, see Chapter 20, "Deployment."

Installing

VSTO Outlook add-ins differ in one important way from Word and Excel VSTO customizations: They must be registered
in the registry. This means that you will have to have an installer that installs your add-in onto a user's machine and
puts the needed registry keys in the registry.

When you create a VSTO Outlook add-in project, a setup project for the add-in is created for you automatically. This
setup project will generate an installer that puts the required registry keys in the registry and copies the manifest and
add-in DLL to the desired location. It does not install the VSTO runtime redistributable (vstor.exe) or configure .NET
security policy to trust the add-in. These steps must either be added manually to the setup project or performed as a
separate step when rolling out VSTO to an enterprise. For more information, see Chapter 20, "Deployment."

Other VSTO Features

Although it would be nice, Outlook add-ins do not support VSTO's Smart Tags or ActionsPane features, which are
available to Word and Excel customizations. They also do not support the cacheddata feature of VSTO.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter examined the Outlook shutdown problem, the dangers of ReleaseComObject, and how application domains
and RCWs are used by an add-in. This chapter also considered the VSTO Outlook add-in model as a solution to these
problems.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Bibsrc. Bibliography

Security

Office Programming

Data Programming

Forms Programming

Infrastructure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Security
Howard, Michael, and David LeBlanc. Writing Secure Code. 2d ed. Redmond, WA: Microsoft Press, 2003.

LaMacchia, Brian, Sebastian Lange, Matthew Lyons, Rudi Martin, and Kevin T. Price. .NET Framework Security. Boston:
Addison-Wesley, 2002.

Lippert, Eric . Visual Basic .NET Code Security Handbook. Birmingham, UK: Wrox Press, 2002.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Office Programming
Mosher, Sue . Microsoft Outlook Programming. Burlington, MA: Digital Press, 2002.

Whitechapel, Andrew . Microsoft .NET Development for Microsoft Office. Redmond, WA: Microsoft Press, 2004.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Data Programming
Homer, Alex, Dave Sussman, and Mark Fussell . A First Look at ADO.NET and System.Xml v. 2.0. Boston: Addison-
Wesley, 2004.

Wildermuth, Shawn . Pragmatic ADO.NET. Boston: Addison-Wesley, 2003.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Forms Programming
Sells, Chris . Windows Forms Programming in C#. Boston: Addison-Wesley, 2004.

Sells, Chris, and Justin Gehtland . Windows Forms Programming in Visual Basic .NET. Boston: Addison-Wesley, 2004.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Infrastructure
Box, Don, Aaron Skonnard, and John Lam . Essential XML: Beyond Markup. Boston: Addison-Wesley, 2000.

Hejlsberg, Anders, Scott Wiltamuth, and Peter Golde . The C# Programming Language. Boston: Addison-Wesley, 2004.

Nathan, Adam. .NET and COM: The Complete Interoperability Guide. Indianapolis: Sams Publishing, 2002.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

% (percent), SendKeys
& (ampersand)
 use of in SmartTag actions
 using to identify accelerators in menus
() (parentheses), index operator 2nd
+ (plus), SendKeys
, (comma), union operator 2nd
/ (slash), using to create submenus
1900 format, converting Excel dates
1904 format, converting Excel dates
: (colon), range operator 2nd
^ (caret), SendKeys

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

A1-style references, in Range Object
Absolute address
Action classes, Smart Tags
 creating
 registering
Action events
 creating document level Smart Tags
 custom
 handling
Actions
 creating document level Smart Tags
 Smart Tag components in Excel
 Smart Tag components in Word
Actions pop-up menus
Actions task pane
 architecture of
 attaching/detaching
 contextually changing
 custom user control added to
 customizing with XML
 detecting orientation of
 introduction to
 methods/properties to avoid
 modeless Windows Form with
 scrolling
 showing/hiding
 Windows Forms controls added to 2nd
Activate events
 raising in Excel
 raising in Outlook
 raising in Word
Activate method
 activating window in workbook
 as simplest method form
 worksheet management
ActiveX controls
 blurry
 derived from Windows Forms control
 hosting in Actions task pane
 hosting managed
 limitations of hosting model
 not saving at runtime
 security implications of hosting model
 Windows Forms control hosting
Adapters
 dataset programming
 overview
Add method
 accessing Name in Names collection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 accessing Name in Names collection
 CachedDataHostItem object
 custom property pages
 DocumentProperty
 files objects
 Folders collection
 Outlook events
 Outlook Inspectors/Explorers collections
 window
 Word bookmarks
 Word documents
 Word Tables collection
 work/chart sheet to collection
 workbooks
Add Schema button 2nd
Add-ins
 Automation [See Automation add-ins.]
 COM [See COM add-ins.]
 creating Outlook
 customizing Excel
 customizing Outlook
 defined
 hosted code
 Install/Uninstall events
 multiple
 overview
 programming Excel
 running/unloading code
 template installed as
 VSTO [See VSTO add-ins.]
 Word e-postage
AddControl method 2nd
AddCustomization method
AddHandler statement
 Activate/Deactivate events
 Calculate events
 dynamic event handling
 Quit events
 selection change events
 Workbook events
Address books/entries, accessing in Outlook
Addresses, in Excel Range Object
AddressOf keyword, dynamic event handling
ADO classic
ADO.NET [See also Data programming.]
AdvancedSearch method, Outlook
After parameter 2nd
Aggregation
 connecting aggregates
 obtaining aggregated objects
 overview of
 Windows Forms controls
Alerts
 Excel
 Save Alerts in Excel
 Word
Aliasing, in Word
All Code group
AllowEditRanges collection, worksheet protection 2nd
Alt

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Alt
 searching research services
 specifying with SendKeys method
Ampersand (&)
 identifying accelerators in menus
 in Smart Tag actions
AND
app variable 2nd
AppDomain policy level
Application Manifest Editor
Application manifests
 editing
 objects, methods, and properties
 overview of
 reading/editing embedded
 relationship with deployment manifest
Application objects
 AppDomain policy level
 in InfoPath
 in object models
 properties
Application objects, Excel
 changing mouse pointer
 controlling dialog boxes and alerts
 controlling editing
 controlling file/printer settings
 controlling screen updates
 controlling workbook calculation/using built-in functions
 danger of using EnableEvents property
 displaying message in status bar
 properties that return active/selected objects
 properties that return important collections
 Quitting/Undo methods
 selecting and activating range of cells
 sending keyboard commands
 sending workbook in e-mail
 spell checking
Application objects, Excel events
 Activate/Deactivate
 Calculate
 Change
 Before Close
 Double-Click/Right-Click
 Follow Hyperlink
 NewWorkbook
 Open
 Before Print
 Before Save
 XML file Import/Export
Application objects, Outlook
 copy method
 methods/properties that return active/selected objects
 Outlook security and trusted/untrusted objects
 overview
 properties that return important collections
 Quit method
 search methods
 using Session property of to retrieve NameSpace object
Application objects, Outlook events
 Activate/Deactivate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Activate/Deactivate
 Close
 new window
 raising
 Start-up/Quit
 view and selection change
 window
Application objects, Word
 changing mouse pointer
 checking grammar/spelling
 controlling dialog boxes and alerts
 controlling look of Word
 controlling screen updates
 customizing Mail Merge
 displaying messages in status bar or window caption
 exiting Word
 File dialog boxes
 file save format options
 multiple application/document interfaces in Word
 navigating document
 New and Getting Started document task panes
 overview
 properties that return active/selected objects
 properties that return important collections
 user information
 working with Word's options
Application objects, Word events
 Document Activation/Deactivation events
 Document Close events
 Document Print events
 Document Save events
 Mail Merge event
 mouse events
 NewDocument event
 selection change events
 Startup/Shutdown events
 WindowSize events
 XML events
Apply method, of PropertyPage interface in Outlook
AppManifest object
Area, Range objects and
arg1, BeforeClick event parameter
arg2, BeforeClick event parameter
Argument, ActionEventArgs
Arrange method
 Excel windows
 Word windows
ASP.NET
 custom handler
 server setup
 ServerDocument and
Assemblies
 code groups and
 delay-sign
 determining location from deployment manifest
 signing
 strong-named
 trusting in Local Machine zone
Attachment events, Outlook
Attributes, InfoPath events

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Attributes, InfoPath events
Authentication
AutoFit method, Word tables
Automation add-ins
 customizing Excel 2nd
 debugging
 deploying
 managed
 user-defined functions provided by
Automation executables
 customizing Excel
 customizing Outlook
 customizing Word 2nd
 defined
 in InfoPath
 locale issue [See Locale issue.]
 overview
 unloading code in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Back-end data source [See also Sources.]
Base class, extending to Word/Excel object models
Batch files
Before Close events
 Excel
 Word 2nd
Before parameter, worksheets 2nd
Before Print events
 Excel
 Word
Before Save events
 Excel
 Word
BeforeCaptionShow event
BeforeDouble-Click events
 cancelable events and event bubbling and
 Excel
 Word
BeforeRight-Click events
 cancelable events and event bubbling and
 Excel
 Word
Binding data [See Data programming.]
Binding source
 in advanced ADO.NET data binding
 as proxies
 working with
Blocks
 controlling dialog boxes and alerts in Word
 ScreenUpdating property in Excel
 ScreenUpdating property in Word
BodyFormat property, Outlook mail folder
Bookmarks
 changing Actions pane contents
 data-bound customized Word document using
 host control
 Word
Booleans
 cancel parameter [See cancel parameter.]
 defining properties
 saveAsUI parameter 2nd
 in UndoRedo parameter
Boxing
Breaks, Word Range object
BreakSideBySide method, Word windows
Browsers
 browsing PIAs
 navigating Word document
 navigating Word Range object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 navigating Word Range object
Btn
Built in properties, Outlook
BuiltinDocumentProperties, workbooks
Businesses, programming for
Buttons
 adding to Explorer window
 failure issue in dynamic event handling
 in InfoPath

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

C
C# 2nd
C++
CA (Certificate Authority)
Cached data [See also Server data scenarios.]
 CachedDataHostItem collection
 CachedDataHostItem object
 CachedDataItem object
 caching in data island
 caching own data types
 dynamically adding/removing from data island
 ICachedType and
 methods/properties in ServerDocument object model
 object model
 Worksheet objects and
Calculate events, Excel
Calculation property, workbooks
"Can act like" relationship
cancel parameter
 attachment events
 cancelable events and event bubbling and
 Before Close events
 Close events
 Copy/Paste/Cut/Delete events in Outlook
 custom action events in Outlook
 Document Print events
 Double-Click/Right-Click events
 e-mail events in Outlook
 exiting Word
 mouse events
 Outlook window events
 Before Print events
 Before Save events
 Save events in Word
 view/selection change events in Outlook
Cancelable events
CapsLock property
Caption property, Action classes
caspol.exe
Catch block, ScreenUpdating property in Excel
Categories dialog box, Outlook items
CDO (Collaboration Data Objects)
Cells, Excel
 Address properties of cell ranges
 insertion behavior
 mapping XML schema data type to Excel cell formats
 naming cell ranges
 Range objects 2nd
 selecting and activating

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 selecting and activating
Cells, Word tables
Certificate Authority (CA)
Certificates
certmgr.exe
Change events
 data binding and
 Excel
 Outlook
 selection change events in Excel
 selection change events in Word
 toolbar/menu events
 Word documents
ChangeFileOpenDirectory method, Word
Characters, inserting nonprinting characters into Range object
Charts
 accessing in collection
 Activate/Deactivate events
 adding to workbooks
 Calculate events
 Chart object in Excel 2nd
 copying/moving sheets in chart collection
 Double-Click/Right-Click events in
 host item class and host control
 iterating over open sheets in chart collection
 selection change events in
CheckedChange event, Outlook
CheckSpelling
 Excel
 Word
Child code group
Classes
 action
 always connected to database
 code behind 2nd
 compiling into PIAs
 custom Smart Tag
 customization for dynamic event handling
 Excel host item
 Outlook item
 PIA browsing and
 properties/methods/events
 recognizer class
 ServerDocument [See Server data scenarios.]
 Smart Tag class library 2nd
 VSTO add-ins
Clauses, handles [See Handles clause.]
Clauses, workbook events
Clear method
 helper method Cached Data class
 in Range object
Click events
 cancelable events and event bubbling and
 Excel
 handling in Smart Tag Action objects
 "my button stopped working" issue in
 toolbar/menu events
 Word
ClickOnce
 application manifest and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 application manifest and
 deployment manifest and
ClipboardContent parameter, Outlook Paste events
Close events, Outlook
Close methods
 close and save Excel workbooks
 Before Close events in Excel
 closing all open Excel workbooks
 closing all open Word documents
 ServerDocument object
 Word documents 2nd
CLR [See Common Language Runtime (CLR).]
Coclass, PIA browsing and
Code
 hosted
 inspecting generated
 running after start-up
 unloading hosted
Code groups
 assemblies and
 creating stong-name code group
 granting trust and
 reasons for creating child code groups
 zones
Code security, .NET Framework
 access security
 AppDomain policy level
 deploying policies to user machines
 Enterprise policy level
 evidence types
 full and partial trusts
 location-based policy levels
 Machine policy level
 overview
 policy levels, combining
 publisher certificates
 role-based security vs. code-access security
 strong names [See Strong names.]
 trusting documents and
 User Policy level
Code-access security
Code-behind
 controls
 customizing Excel
 customizing Word
 Excel document
 Excel locale issue and
 InfoPath forms
 running/unloading code
 solution
CodeName cookie
Collaboration Data Objects (CDO)
Collapse method, Word Range objects
Collections
 CachedDataHostItem
 defined
 VSTO controls
Collections, Excel
 application object properties that return important collections
 Chart/Sheet/Worksheet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Chart/Sheet/Worksheet
 DocumentProperties
 ListObject
 Names
 OLEObject
 Shapes
 Windows
 workbook properties that return collections
 Workbooks
Collections, Outlook
 adding item to
 AddressEntries
 application object properties that return important collections
 Explorers/Inspectors collections
 Folders collection in NameSpace object
Collections, Smart Tags
 ISmartTagProperties
 Regular expressions
 Terms
Collections, Windows Forms
 Controls
 controls in collection typed as object
 enumerating/searching Controls collection in VSTO
Collections, Word [See also Document collections, Word.]
 application object properties that return important collections
 Document and Range collections
 Document only
 StoryRanges
 Template
Colon (:), range operator 2nd
Columns
 Excel Range object 2nd
 Word Tables collection
COM
 communicating with PIAs
 hosted code solutions
 implementation and multiple interfaces in Word
 problems with PIA browsing and
 referencing PIAs using
 running/unloading COM code
COM Add-In Wizard
COM add-ins
 COM interop and regasm.exe
 customizing Excel
 customizing Outlook
 customizing Word
 in Excel 2nd
 IDTExtensibility2 and
 introduction to
 locale issue and [See Locale issue.]
 mscoree.dll and
 Office-specific
 OnAddInsUpdate method
 OnBeginShutdown method
 OnConnection method
 OnDisconnection method
 OnStartupComplete method
 Quit/Startup events in Outlook and
 registry entries required for
 registry location of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 registry location of
 scenarios for use of
 shimming as solution to mscoree.dll problems
 simple example
 Start Action
 startup order
 troubleshooting
 VSTO add-ins for Outlook compared with
 in Word
 writing with Visual Studio
COM interop
Comma (,)
 creating new ranges
 as union operator
CommandBars
 adding buttons/menus to Explorer window
 adding buttons/menus to Inspector window
 Excel
 when Excel is embedded in another application
 Word
Commands
 sending keyboard commands to Excel
 VSTO commands for InfoPath form code development
CommitSmartTag method
Common Language Runtime (CLR)
 assembly loader
 mscoree.dll and
 RCW objects created by
CompareSideBySideWith method
 Excel windows
 Word windows
Complex data binding
Concurrencies, in data adapters
Configuration files, deploying
Confirm event, overriding in InfoPath
Connections, dataset
Console application, creating to automate Word
Constructors, of ServerDocument class
Container property, embedding Excel in other application
Container, control hosting model
Context
 binding
 changes
Controls [See also Actions task pane; Host controls.]
 AddControl method
 added at runtime not saved
 adding at runtime
 adding custom user control to Actions task pane
 adding host controls dynamically
 adding to documents
 adding Windows Forms controls to Actions task pane
 ADO.NET data binding and
 bindable
 binding to proxies
 blurry
 code behind
 Controls collection 2nd
 data binding and
 deleting at runtime
 deriving from Windows Forms controls

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 deriving from Windows Forms controls
 dynamic
 enumerating/searching Controls collection
 Excel host
 hosted in Actions task pane
 insertion in Excel
 insertion in Word
 layout on document/worksheet surface
 limitations of control hosting model
 modes for adding
 not in toolbox
 OLE
 removing
 saving/loading
 security implications of control hosting model
 state not saved
 typed as objects
 Windows Forms host control
 Word Bookmark host control
 Word XMLNode and host control classes
Cookie, identifying aggregated objects
Copy event, Outlook
Copy method
 folders in MAPIFolder object
 Outlook items
 Range objects and
 sheets in collection
 worksheet management
Count parameter/property
 action classes
 Chart/Sheet/Worksheet collections
 Excel cells
 Excel workbooks in collections
 recognizer classes
 Word documents in collections
 Word Range objects
Creatable objects
CreateItem method, Outlook
Cryptography
Ctrl
 specifying in Excel with SendKeys method
 using to select multiple discontinuous cells
CType function
CType operator
 Activate/Deactivate events
 Calculate events
 Close event
 NewWorkbook event
 Outlook item type and
 Quit event 2nd
 selection change events
Currency manager, ADO.NET data binding
CurrentFolder property, Explorer object
CurrentRegion property, Range Objects
CurrentView property
 Explorer object
 MAPIFolder object
Cursor property
 mouse pointer in Excel
 mouse pointer in Word

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 mouse pointer in Word
Custom action events, Outlook
Custom handler, editing data island
Custom properties
 Outlook
 Outlook items 2nd
 Smart Tags storing
 workbooks
 worksheets
Custom task pane, InfoPath
Custom views, Explorer object
Customization methods, ServerDocument object model
Customization, VSTO
 deploying [See Deploying VSTO solutions.]
 location and trust
 publisher certificates and
 signing authority and
 strong names and
 trusting assemblies
 trusting documents
Cut event, Outlook

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Data
 separating data and view in VSTO programming model
 XML data file Import/Export events
Data binding
 advanced ADO.NET
 complex
 controls
 data sources for data-bound spreadsheet
 host items and host controls
 IBindableComponent
 overview of
 simple
 sources as proxies
 spreadsheets 2nd
 in Word documents 2nd
 XML mapping combined with
Data nodes, event handlers for
Data programming
 adapters 2nd
 advanced ADO.NET data binding
 binding sources as proxies
 cached members, adding/removing from data island
 caching in data island
 caching own data types
 complex/simple data binding
 data bindable controls
 data bindable host items and host controls
 data binding in Word documents
 data sources
 data sources for data-bound spreadsheet
 data-bound controls for spreadsheets
 data-bound spreadsheets
 data-bound Word documents
 dataset disconnected strategy
 datasets
 exceptions in
 ICachedType
 list object events
 list object host control properties/methods
 overview
 serialized XML, manipulating
 summary
 typed/untyped datasets
Data server [See Server data scenarios.]
Data source events, InfoPath
Data sources
 back-end data source
 data-bound spreadsheet
 overview of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 overview of
 security
DataDOMEvent object
DataMember property
DataReader class
Datasets
 accessing data with
 adapters
 diffgram form
 disconnected strategy
 overview
 serializing, in cached datasets
 toolbox for dataset components
 typed/untyped
Dates, Excel
 converting to DateTime
 locale issue and
Deactivate event
 Excel
 Outlook
 Word
Debugging, application-level Smart Tag methods
Debugging, user-defined functions in Automation add-ins
Declarative event handling
 described
 in Double-Click/Right-Click events
 in workbooks
Default properties
 DefaultFilePath property in Word
 DefaultFileSave property in Word
 DefaultTab property in Word
 defined
 file/printer properties in Excel
Delay-sign, assemblies
Delegate types
 aggregated Document objects and
 aggregated Range objects and
 aggregated XMLNode/XMLNodes objects
 Bookmark objects and
 Excel Application objects and
 list objects and
 in Outlook object model
 in Word Document event interface
Delete events, in Outlook
Delete methods
 controls at runtime
 objects from collections
 Outlook items
 Range object
 worksheets
Deploying VSTO solutions
 application manifest
 Application Manifest Editor
 application manifest objects, methods, and properties
 configuration files and
 deployment manifest
 determining assembly location from deployment manifest
 examining generated files
 IntelliMirror and
 to Intranet or Web site

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 to Intranet or Web site
 local machine deployment
 MAGE for editing deployment manifest
 overview of
 prerequisites
 Publish Wizard for
 relationship between application manifest and deployment manifest
 security issues
 ServerDocument object for reading/editing embedded application manifests
 setup package creation
 Web caching and
Deployment manifests
 determining assembly location from
 editing with MAGE
 overview of
 relationship with application manifest
Deployment Package Wizard
Desc property
 action classes
 recognizer classes
DestFldr parameter, Outlook items
Destructive concurrency, in data adapters
Dialog object
 accessing COM add-Ins using
 actions in Word
 bookmarks in Word
 Categories for Outlook items
 controlling in Excel
 controlling in Word
 in Excel object model
 fields in Word
 files in Word
 folder selection
 options property in Word
 tabs in Word
Diffgram form, dataset in
Direction parameter, Collapse method of Word Range object
Dirty state
 custom property pages and
 preserving in documents
 PropertyPage interface in Outlook
Display
 controlling save alerts in quitting Excel
 displaying message in status bar in Excel
 displaying Outlook item in Inspector window
 settings associated with Excel Window object
Display method
 Dialog object
 Explorer object
 Inspector object
 MAPIFolder object
DLLs [See also Assemblies.]
 AddinLoader.dll
 assemblies and
 COM add-ins 2nd 3rd
 mscoree.dll [See mscoree.dll.]
 Smart Tag 2nd 3rd 4th 5th
 strong names and DLL hell
 XLL
DocEvents interface, Worksheet objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DocEvents interface, Worksheet objects
Document collections, Word
 accessing document in collection
 closing all open documents
 creating new document
 iterating over open documents
 opening existing document
 saving all open documents
Document object
 Activate/Deactivate events
 Close event
 closing/saving
 as collection
 collections associated with document and range
 collections associated with document only
 dirty state in documents
 grammar/spelling checks in documents and ranges
 hierarchy
 interfaces in Word
 Mail Merge event
 mouse events
 New/Open events
 overview
 password protection
 Print events
 printing
 properties
 Save events
 security
 selection change events
 Sync events
 template changes
 Undo/Redo methods
 Window Sizing events
 windows
 XML events
DocumentProperty
 accessing in collection
 adding
 iterating over DocumentProperties collection
 workbooks
Documents
 Actions task pane [See Actions task pane.]
 ActiveXcontrol
 AddControl method
 blurry controls
 code behind control for
 control layout
 control state not saved in
 controls added at runtime not saved
 Controls collection
 controls in Excel document
 controls in Word document
 controls not in toolbox
 controls typed as object
 controls, adding at runtime
 controls, deleting at runtime
 data binding in Word 2nd
 Document Class in Word
 limitations of control hosting model

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 limitations of control hosting model
 modes for adding controls to
 navigating Word
 populating with data on server
 properties merged from OLEObject/OLEControl
 server-generated, for customizing Excel
 server-generated, for customizing Word
 Smart, for customizing Excel
 Smart, for customizing Word
 trusting
 Windows Forms controls added to
 Windows Forms, using on the document surface
Domain security level, in InfoPath forms
Double-Click events
 cancelable events and event bubbling
 raising in Excel
Double-clicking, as mode for adding controls
DownloadURL property
Dragging/Dropping, adding controls
Drawing, adding controls
Dummy method
Dynamic controls, in VSTO programming model
Dynamic event handling
 in Double-Click/Right-Click events
 "my button stopped working" issue
 overview
Dynamic host items, in VSTO programming model

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

E-mail
 events in Outlook
 sending workbooks via
 Smart Tags in HTML-formatted Outlook
 Smart Tags in Word
Editing
 AllowEditRanges collection, worksheet protection 2nd
 allowing/disallowing [See Protect method.]
 application manifests
 ASPX web form for editing data island
 custom event handler for editing data island
 deployment manifest
 e-mail
 embedded application manifests
 Excel Application Object
 Inspector editor types
 Range values
 security policies
 user information in Word options
Electronic postage, E-Postage event in Word
elementID, as BeforeClick event parameter
Embedded objects, using in Worksheet object
EnableEvents property
End property
 regions
 Word Range identification
 Word Range object 2nd
EndOf method, Word Range object
Enterprise policy level
Entry point, for hosted code
EntryID
 e-mail events in Outlook
 Folder/Outlook items
Enumeration
 Controls collection in VSTO
 defined
 GetEnumerator method
 of properties
 standard folders in NameSpace object
 workbook parameters
Error handling, OnValidate event in
Events
 Action events in Smart Tags
 Bookmark object
 bubbling
 in CDO
 Change events in data binding
 code response to
 declarative

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 declarative
 Document object
 dynamic handling
 Event model improvements
 Excel [See Excel events.]
 implementing from PIA interface
 InfoPath [See InfoPath events.]
 list object
 New and Getting Started document task panes in Word
 in object models 2nd
 OrientationChanged event in Actions pane
 Outlook [See Outlook events.]
 Range object
 Selection events for changing Actions pane
 Smart Tags and
 Word [See Word events.]
 Workbook object
 Worksheet object
 XMLNode/XMLNodes objects
Evidence
 assemblies and
 kinds of evidence in .NET Framework code security
Excel
 add-in solutions for
 automation executable solutions for
 chart sheet host item class and chart host control
 code behind document
 COM add-ins [See COM add-ins.]
 controls, inserting into Word
 data sources for data-bound customized spreadsheet
 data-bound controls for customized spreadsheet
 deploying [See Deploying VSTO solutions.]
 Dummy methods in
 Globals class
 host controls, adding dynamically
 NamedRange/XMLMappedRange/List object host controls
 programming [See Programming Excel.]
 Smart Tags in
 VSTO extensions to Excel object models
 workbook host item class
 worksheet host item class
 XML feature for [See XML, in Excel.]
Excel events
 Activate/Deactivate
 add-in Install/Uninstall
 additional events in VSTO
 Calculate
 Change
 Before Close
 concealable events and event bubbling
 Double-Click/Right-Click
 Follow Hyperlink
 NewWorkbook/Worksheet
 Open
 overview
 Before Print
 Before Save
 Selection Change
 summary
 toolbar/menu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 toolbar/menu
 WindowResize
 XML import/export
Excel objects
 Application object [See Application objects, Excel.]
 Document properties
 locale issue for Automation executables and COM add-ins
 Names collection/objects
 properties that return active/selected objects
 Range object [See Range object, Excel.]
 summary
 Window object
 Windows collections
 Workbook [See Workbooks.]
 Workbooks Collection
 Worksheet [See Worksheets.]
 Worksheets/Charts/Sheet collection
Exceptions
 in control removal
 data binding
 properties that throw
 ScreenUpdating property in Excel
 ScreenUpdating property in Word
Execute method
 Find/Replace properties in Word Range object
 preventing Word from executing actions
Exit method
 Word Application object
 Word Bookmarks
Expand method, Word Range object
Explorer object
 Activate/Deactivate events
 buttons/menus
 Close events
 collections
 Copy/Paste/Cut/Delete events
 folder/view/items in
 MAPIFolder in Explorer view
 new window events
 in Outlook events
 view/selection change events
 web view of folder in
 window events
 window, working with
Explorer, Outlook close events and
Export events, of XML data files
Exporting mapped XML to XML data file
Expressions, regular expressions in creating document level Smart Tags
Extended MAPI, in Outlook object model
Extenders
 aggregating onto controls in Word/Excel
 binding related extensions to host items/controls
External reference, in addressing
ExternalApplication object, in Info-Path

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

F5 shortcut, InfoPath
Files [See also Documents.]
 File converters for changing document formatting in Word Application object
 File dialog boxes in Word Application object
 file save format options in Word
 FileDialog property
 form templates as .XSF/.XSN files
 JScript/VBScript files in existing form templates
 settings in Excel
 XML file formats in populating document with data on server
 XML file Import/Export events in Excel
Finally block
 dialog boxes and alerts in Word Application object
 ScreenUpdating property in Excel
 ScreenUpdating property in Word
Find method
 Excel Range object
 Outlook items
 Word Range Object
Folders
 change events in Outlook
 FolderPath property to identify MAPIFolder
 MAPIFolder object [See MAPI.]
 in NameSpace object
 parameters in Outlook Inspectors/Explorers collections
 root folders in Outlook NameSpace object
 Select Folder Dialog box in NameSpace object
 selected folders in Explorer object
 view/selection change events in
Follow Hyperlink event, Excel
Fonts
 cell range formats
 Word Range objects
For Each
 collection iteration
 Documents collection in Word
 Explorers and Inspectors collections
 Names collection in Excel
 open sheets in Excel
 open windows in Excel
 open windows in Word
 open workbooks in Excel
 Shapes collections
 syntax in collection iteration
 Word templates
Formats
 cell ranges
 Excel dates
 Inspector objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Inspector objects
 locale issue and
 Word file save format options
 Word Range objects
 XML files
 XML schemas in Excel
 XML serialized datasets
Forms
 ASPX web form that edits data island on server
 InfoPath [See InfoPath events.]
 Windows [See Windows Forms controls.]
Forward method, of Outlook mail item
Friend visibility modifier, in Globals Excel class
FromXml, Cached Data class helper method
Full-trust security level, in InfoPath forms
FullName property
 of Word Document object
 of Workbook object
Functions
 built-in
 caching semantics
 CType
 user-defined [See User-defined functions.]
 Word Basic

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

GAC (Global Assembly Cache) 2nd
Garbage collection, button failure issue
GenerateItemsMessage, Outlook addin
GetContextNodes method, in XDocument object
GetEnumerator method
 accessing Name in collection
 iterating over open windows in Word
 iterating over open workbooks in collection
GetFolderFromID method
GetItemFromID method
GetNameSpace method
GetNewPopertyBag method
GetPageInfo method
GetSelected Nodes method
GetSpellingSuggestions method
Getting Started task pane
Global Assembly Cache (GAC) 2nd
Globals class, Excel
Globals object, for retrieving chart/worksheets
GoTo method, Word Range object
Grammar checking, Word 2nd
Groups, code [See Code groups.]
GUIDAttribute, COM add-ins

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Handles clause
 Word events
 workbook events
Handling events
 declarative event handling
 dynamic event handling
 edits data island
 in Excel [See Excel events.]
 in InfoPath
 InfoPath events
 "my button stopped working" issue in dynamic event handling
 in Word [See Word events.]
HasPassword property, Word documents
Help, for determining Word Basic functions
Helper methods
 Cached Data class
 Controls collection
 static helper methods in ServerDocument object
 Windows Forms controls
Hiding, Actions task pane
Hierarchy
 Excel objects
 of object models
 Outlook objects
 Word objects
HKEY_CURRENT_USER
 location of COM add-ins
 requirements for registering COM add-ins
HKEY_LOCAL_MACHINE
 location of COM add-ins
 requirements for registering COM add-ins
Host controls [See also Controls.]
 aggregated objects
 binding related extensions to
 connecting aggregates in
 Controls collection
 derived from Windows Forms controls
 Excel Globals class
 Excel host item class
 Excel list object
 extending to Word/Excel object models
 list object properties/methods
 removing
 saving/loading
 "tag" field in
 Windows Forms 2nd 3rd
 Word
 Word Bookmark
Host items

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Host items
 aggregated object
 binding related extensions to
 CachedDataHostItem collection
 connecting aggregates in
 dynamic
 Excel
 extending to Word/Excel object models
 "tag" field in
 Windows Forms
Hosted code
 discovery/context/entry point
 unloading
HTML-formatted e-mail, Smart Tags embedded in
HTMLBody property, Outlook item
Hyperlink, Follow Hyperlink event

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

IA (Interop assemblies) [See also Primary interop assemblies (PIAs).]
IBindableComponent
ICachedType
ID, getting Folder/Outlook item using EntryID/StoreID
IDL, definition of Word Application/Document objects
IDTExtensibility2
 in COM add-ins
 example of simple implementation of
 OnAddInsUpdate method
 OnBeginShutdown method
 OnConnection method
 OnDisconnection method
 OnStartupComplete method
 overview of
 startup order of COM add-ins 2nd
Implementation, in VSTO programming model
Import events, of XML data files
Importing
 XML data file into mapped Word document
 XML files and refreshing XML data in Excel spreadsheet
Index operator
 Explorer or Inspector in Outlook
 ItemProperties collection in Outlook item
Index parameter
 DocumentProperty in Excel
 sheet in collection in Excel
 window in collection in Excel
 window in collection in Word
 workbooks in Excel
InfoPath
 button events/view switching
 creating event handler
 data source events
 deployment location and security
 focus vs. selection
 form events/properties/methods
 form security levels
 getting started
 OnAfterChange event
 OnBeforeChange event
 OnContextChange event and custom task pane
 OnValidate event
 overriding submit/confirm/save events
 overview
 previewing
 programming
 registering form template to grant full trust
 security information
 setting security levels

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 setting security levels
 setting selection
 summary
InfoPath events
 button events/view switching
 data source
 event handler
 forms
 OnAfterChange
 OnBeforeChange
 OnContextChange
 OnValidate
 overriding submit/confirm/save events
InfoPath forms
 button events/view switching in
 creating
 deployment location and security
 event-based programming
 form events/properties/methods
 form security levels
 OnContextChange event in
 overriding Submit/Confirm/Save events
 previewing
 programming
 registering form template to grant full trust
 security information
 setting security levels
 working with
Information property, Word Range identification
Inheritance, in VSTO programming model
InitializePropertyPageSite method
InnerObject property, aggregated objects
Insert methods
 nonprinting characters/breaks into Range object
 text in Range object
Insertion behavior
 Excel
 Word
Inspector object
 Activate/Deactivate events
 adding buttons/menus to
 Close events
 collections
 displaying Outlook items in Inspector window
 editor types
 Outlook close events and
 in Outlook events
 Outlook item associated with
 window events in
 windows
Installer classes
Integers
 BeforeClick event and
 parameters
 value of collection objects
IntelliMirror
Interfaces
 Actions task pane [See Actions task pane.]
 COM add-in entry point
 dummy interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 dummy interface
 ICachedType interface in cached data control
 implemented by recognizer/action classes
 multiple application/document interfaces in Word
 multiple event interfaces in Outlook
 PIA browsing and
 PIA properties/methods/events
 PropertyPage interface in Outlook
 user interface in Excel
 user interface in Word
 Windows Forms for user-interface needs [See Windows Forms controls.]
Interop assemblies (IA) [See also Primary interop assemblies (PIAs).]
 defined
Intersection operator 2nd
Intranets, deploying VSTO solutions to
inUndoRedo parameter, XML events in Word
Invalid Type Library
InvokeVerb method, Action classes
"Is a" relationship
IsCached
IsCacheEnabled
IsCustomized method
IsDirty variable
IsFolderSelected method
IsInPlace property
ISmartTagProperties collection
ISmartTagRecognizer2 interface
IsSmartTagAction interface
Item property
 Excel cells
 Excel Range object
 Excel window in collection
 Excel workbook in collection
 Excel worksheet in collection
 Word bookmarks
 Word document in collection
 Word window in collection
Items, Excel
 using Item method for accessing Name object in collection
 workbook host item class
 worksheet host item class
Items, host [See Host items.]
Items, Outlook
 adding to collections
 adding/deleting/changing
 built-in/custom properties
 Categories dialog box
 Copy/Paste/Cut/Delete events
 copying/moving
 creating
 deleting
 displaying in Inspector window
 finding
 getting item by ID in NameSpace object
 identifying specific type
 Item objects
 iterating
 mail properties and methods associated with
 MAPIFolder object
 methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 methods
 in object model
 Open/Read/Write/Close events
 properties 2nd
 PropertyChange events
 saving
 selected items in Explorer object
Iteration
 collection objects
 DocumentProperties collection
 Excel open windows
 Excel open workbooks
 Folders collection
 Names collection
 Outlook items
 Word documents collection 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

JScript files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Key objects
Keyboard, sending keyboard commands to Excel
Keywords
 AddressOf keyword
 New
 New, in automation executables
 New, in new Word events
 WithEvents/Event keyword

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Languages
 .NET
 PIA communication
Late-bound properties, Word dialog box fields
Libraries
 old format/invalid type library error
 Schema Library dialog box 2nd
 Smart Tag class library 2nd
Lifetime
 automation executables
 button failures
Lightning-bolt icon, use for showing events
List object
 events
 host controls 2nd
ListObject
 controls
 Excel collections
Lists
 appending XML data to
 in Worksheet
Load, controls in VSTO
LoadXml
Local machine deployment
Local reference, in addressing
Locale issue
 automation executables and COM add-ins and
 DateTime for dates
 old format/invalid type library error
 overview of
 reflection to work around
 switching thread locale to English and back
Location-based policy levels
Logical operators, use in finding Outlook item
Login
Look
 controlling look of Excel
 controlling look of Word

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Machine policy level
Macro recording, in VBA
Macro sheet object, in Excel object model
MAGE (Manifest Generating and Editing)
Mail item, properties/methods
Mail Merge events
 customization that handles
 raising
MailLogoff method, workbooks
MailLogon method, workbooks
MailSession property, workbooks
Managed Automation add-in [See Automation add-ins.]
managed code, COM add-ins
Manifest Generating and Editing (MAGE)
Manifest update
Manifests, application [See Application manifests.]
Manifests, deployment [See Deployment manifests.]
MAPI
 Extended MAPI for changing readonly properties
 items in MAPIFolder object
 iteration class for MAPIFolder object
 MAPIFolder identifiers
 MAPIFolder property pages
 MAPIFolder view settings
 MAPIFolder, displaying in Explorer view
 MAPILogonComplete event
 moving MAPIFolder object
 subfolders
Mapping
 Word document with mapped XML structure
 Word schema mapping
 XML schema data types to Excel cell formats
Maximize value, in WindowState enumeration
Member variables
 in button failure issue
 in events handling
Menus
 adding to Explorer window
 menu events in Excel
 menu events in Word
Messages
 displaying Excel message in status bar
 displaying Word message in status bar
Methods
 application manifest
 CDO provided
 collection objects
 implementing from PIA interface
 object model 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 object model 2nd
 OnDisconnection method
Methods, Actions task pane
 attaching/detaching
 methods to avoid
Methods, Excel
 Add method, for document properties
 Add method, for workbooks
 aggregated host item
 aggregated Workbook object
 aggregated Worksheet object
 Application object
 Chart/Sheet/Worksheet collections
 ChartObjects
 CheckSpelling
 copying/clearing/deleting Range object
 creating/activating windows
 Dummy method
 getting Range objects
 Goto method
 iterating over open workbooks
 Names collection/object
 OLEObject
 Open/Close
 PrintOut workbooks
 protecting workbooks
 protecting worksheets
 Quit/Undo
 Save/Close
 selecting ranges
 sending workbooks as e-mail
 SendKeys
 Shapes
 text in Range object
 ToOle method for display color conversion
 windows
 worksheets
Methods, host control
 aggregated objects
 list objects
 removing controls
Methods, InfoPath
 button events/view switching
 DataDOMEvent object
 focus/selection in XDocument object
 Forms
 overriding Submit/Confirm/Save events
 RegisterSolution for granting full trust
 selections
 SelectNodes/SelectText in View object
Methods, Outlook
 active/selected objects returned
 Add method, for Inspectors/Explorers collections
 adding items to collections
 adding/removing Outlook
 Categories dialog box
 copying Application object
 copying/moving folder in MAPIFolder object
 copying/moving items
 creating items

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 creating items
 custom properties for items
 deleting item
 Display MAPIFolder object
 displaying items in Inspector window
 displaying Select Folder dialog box
 Explorer window
 finding folders in NameSpace object
 finding items
 finding items using EntryID/StoreID
 Folders methods of NameSpace object
 Inspector window
 item
 iterating over items
 mailing items
 PropertyPage interface
 Quit method for Application object
 retrieving NameSpace object
 saving items
 searching Application object
 security dialog box and
 selected folder/view/items in Explorer object
 subfolders in MAPIFolders
Methods, Server data
 cached data object model
 CachedDataHostItem collection
 CachedDataHostItem object
 CachedDataItem object
 shutting down ServerDocument object
 static helpers in ServerDocument object
Methods, Smart Tag
 action class creation
 class creation
 debugging application-level Smart Tags
 object
 recognizer class creation
Methods, Windows Forms
 AddControl method
 aggregated Range objects
 controls added at runtime
 Controls collection
 deleting controls at runtime
 extenders for implementing control in Word/Excel
Methods, Word
 aggregated Document object
 bookmarks
 closing documents
 creating document
 File Dialog boxes for Application object
 finding/replacing Range objects
 getting Range object
 grammar/spell checking
 inserting nonprinting characters/breaks into Range object
 moving Range object
 navigating documents
 navigating Range object
 NeedsFill method in data caching
 New and Getting Started document task panes
 opening documents
 protecting documents

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 protecting documents
 Range object 2nd
 research services
 saving all open documents
 saving documents
 ScreenRefresh for Application object
 showing dialog box
 showing dialog box and preventing from executing actions
 Tables collection
 Template collection
 text in Range object
 Undo/Redo
 WholeStory in Range object
 windows
 windows in collections
Minimize value, in WindowState enumeration
Modal parameter, for displaying Outlook item in Inspector window
Modal Windows Forms form
Model-View-Controller (MVC)
Modeless Windows Forms form
Models, object [See Object models.]
modifier keys, specifying in Excel with SendKeys method
Mouse pointer
 changing appearance of in Excel
 changing appearance of in Word
 raising event in Word
Move method
 Excel sheet in collection
 Excel worksheets
 MAPIFolder object
 Outlook item
 Word Range object
 Word windows
MoveAfterReturn properties, Excel Application object
MS Excel 4.0 macro sheets
MS Excel 5.0 dialog sheets
mscoree.dll
 can be disabled
 cannot be signed
 loads all COM add-ins into same domains
 managed add-ins and
 shimming as solution to mscoree.dll problems
 summary of of problems with
MSI installer
MVC (Model-View-Controller)
"My button stopped working" issue

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

NamedRange, host controls
Names
 action classes
 cell ranges
 Excel collections/objects
 Excel workbooks
 Excel worksheets
 Named-parameter approach
 recognizer classes
 Word documents
 Word Range object
NameSpace object, Outlook
 address books/entries in
 checking if Outlook is offline
 current user
 getting folder or item by ID
 getting standard folders in
 root folders
 Select Folder Dialog box in
 Store added to/removed from
 working with
NeedsFill, data caching
.NET
 ADO.NET data binding
 ASP.NET custom handler
 ASP.NET server
 classes
 code security [See Code security, .NET Framework.]
 data programming [See Data programming.]
 security policy for Smart Tag class library
 using ServerDocument and ASP.NET
.NET Framework
 advantages of
 code security [See Code security, .NET Framework.]
 deployment prerequisites for .NET Framework 2.0
 disadvantages of
Network connections, disconnected strategy in datasets
New document, Word
 creating
 working with New Document task pane
New events
 new window event in Outlook
 NewDocument event in Word
 NewWorkbook/Worksheet events in Excel 2nd
New keyword
 automation executables and
 defined
 new Word event
newFolder parameter, Outlook change events

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

newFolder parameter, Outlook change events
NewValue property, DataDOMEvent object
newView parameter, Outlook change events
NewWindow method
Next method
 Word document navigation
 Word Range objects
Nodes
 event handlers for
 InfoPath Data source events in data nodes
 in InfoPath forms
 Word XMLNode and host control classes
NoPromt parameter, Word documents
Normal templates
 Normal.dot template
 NormalTemplate property to change template attached to Word Document object
 NormalTemplate property with Word templates
Normal value, in WindowState enumeration
NOT, use in finding Outlook item
Notepad, editing deployment manifest
Nothing value
 in cached data removal
 defined
 "my button stopped working" issue and
NumberFormat property, in cell range formatting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Object models
 cached data
 CDO
 collections
 declarative event handling
 dynamic event handling
 events
 Excel
 Excel events [See Excel events.]
 methods in
 objects in
 Outlook
 overview
 parameterized properties
 parameterless properties
 PIAs for communication
 PIAs installed in
 PIAs referenced in
 security
 ServerDocument
 VSTO extensions to Word/Excel object models
 VSTO programming [See Programming model, VSTO.]
 Word
 Word events [See Word events.]
Objects
 application manifest
 cached data objects in ServerDocument object model
 CachedDataHostItem object
 CachedDataItem object
 Excel [See Excel objects.]
 InfoPath [See InfoPath.]
 Outlook [See Outlook objects.]
 Word [See Word objects.]
Office
 add-ins in
 changing COM add-in project to be Office-specific
 object models [See Object models.]
 primary interop assemblies (PIAs) [See Primary interop assemblies (PIAs).]
 programming [See Programming, in Office.]
 Service Pack One
 XML features limited to Professional Edition 2nd
Office Document Membership Condition
Office solutions
 automation executable overview
 code-behind solution
 creating console application to automate Word
 creating Outlook add-in in VSTO
 Office add-ins
 overview

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 overview
 summary
Offline property, NameSpace object
Old Format error, locale issue in Excel
OldValue property, DataDOMEvent object
Ole color format
OLEControl
 positioning ActiveX controls in Word
 properties merged from
OLEObject
 positioning ActiveX controls in Excel
 properties merged from
 Worksheet objects and
OnAddInsUpdate method, IDTExtensibility2
OnAfterChange event, InfoPath 2nd
OnBeforeChange event, InfoPath 2nd
OnBeginShutdown method, IDTExtensibility2
OnConnection method, IDTExtensibility2
OnContextChange event, InfoPath
OnDisconnection method
 IDTExtensibility2
 Outlook shut down problems related to COM add-ins
OnLoad event handler, InfoPath
OnStartupComplete method, IDTExtensibility2
OnSubmitRequest event, overriding Submit/Confirm/Save events
OnValidate event, InfoPath 2nd
Open dialog box, Word Application objects
Open events
 Excel
 in object models
 Word
Open method
 Word documents
 Word templates
 workbooks
Operation property, of DataDOMEvent object
Operators
 CType operator [See CType operator.]
 index operator for getting Explorer or Inspector
 index operator for ItemProperties collection
 Intersection operator 2nd
 logical operators for finding items
 TypeOf operator 2nd
 union operator 2nd
Optimistic concurrency, in data adapters
Optional parameters [See also Parameters.]
 defined
 in methods
Options dialog box, Word
 bookmarks
 user information in
Options property, in Word Application object
OptionsPagesAdd event
OR, use in finding Outlook items
Ordered parameter approach
OrientationChanged event, Actions pane
OriginalFormat parameter
 closing all open Word documents
 exiting Word
Outlook

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Outlook
 add-ins [See VSTO add-ins.]
 close events
 programming [See Programming Outlook.]
 shut down problems related to COM add-ins
Outlook events
 Activate/Deactivate
 additional events
 application level
 attachment
 Close
 custom action
 e-mail
 folder change
 item addition/deletion/change
 Item Copy/Paste/Cut/Delete events
 Item Open/Read/Write/Close events
 Item PropertyChange events
 multiple event interfaces
 new window
 OptionsPagesAdd
 overview
 start-up/quit
 summary
 view and selection change
 window
Outlook objects
 Application object copy method
 Application object methods/properties
 Application object quit method
 Application object search method
 Application object, properties returning collections
 Explorer collection
 Explorer objects, selected folder/view/items in
 Explorer window
 Explorer window, buttons/menus added to
 Extended MAPI
 Inspector collection
 Inspector object
 Item [See Items, Outlook.]
 iterating over items in folders
 MAPIFolder identifiers
 MAPIFolder items
 MAPIFolder view settings
 MAPIFolder, displaying in Explorer view
 MAPIFolder, moving objects
 MAPIFolder, subfolders
 NameSpace object, adding/removing Stores from
 NameSpace object, address books/entries in
 NameSpace object, checking if Outlook is offline
 NameSpace object, current user
 NameSpace object, getting folder or item by ID
 NameSpace object, root folders
 NameSpace object, standard folders in
 NameSpace object, working with
 overview
 security
 Select Folder Dialog box
 web view associated with folder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Pages parameter, custom property pages
Paragraphs object
 as collection
 in object models
Parameters [See also Properties.]
 cancelable events and event bubbling and
 for constructing Smart Tag objects
 in events
 file-access parameter in ServerDocument
 InfoPath
 in methods
 in parameterized properties
Parameters, Excel
 addressing
 BeforeDoubleClick/BeforeRight-Click events
 cancel parameter in Before Close events
 cancel parameter in Before Print events
 cells
 Change events
 Chart/Sheet/Worksheet collections
 DocumentProperties
 Find method
 names in collection
 OLEObject
 Open/Close methods
 printing workbook
 protecting workbooks
 protecting worksheets
 Range properties
 Before Save events
 Save/Close workbook
 Wait parameter
 Windows collections
 workbooks
 worksheets
Parameters, Outlook
 adding/removing Stores
 attachment events
 Copy method for Application object
 Copy/Paste/Cut/Delete events
 copying/moving folders
 copying/moving items
 custom action events
 custom property pages
 displaying items in Inspector window
 e-mail events
 folder change events
 Folder/item ID
 Inspectors/Explorers collections

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Inspectors/Explorers collections
 item events
 items added to collections
 iterating over items
 MailMerge event
 search methods for Application object
 standard folders in NameSpace object
 subfolders in MAPIFolder
 view/selection change events
 window events
Parameters, Word
 Add method for document collections
 Bookmarks
 closing all open documents
 closing/saving Document object
 Collapse method for Range object
 CommandBars events
 Document activation events
 Document Close events
 Document Print events
 document printing
 Document Save events
 document saving
 Find/Replace properties for Range object
 getting a Range
 identifying Ranges
 mouse events
 moving Ranges
 navigating Ranges
 New/Open events
 opening existing document
 Print events
 quit settings
 Range object
 saving all open documents
 selection events
 Tables collection
 windows in Word 2nd
 Word dialog box
 XML events
Parentheses [()], index operator 2nd
Partial classes
 creating custom property pages
 creating VSTO add-ins
 in VSTO code construction
Passwords
 data source security and
 protecting documents
 protecting workbooks
Paste event, Outlook
Permissions [See also Outlook objects, security.]
Persona menu Smart Tags, customizing Outlook
Pessimistic concurrency, in data adapters
PIAs (Primary interop assemblies) [See Primary interop assemblies (PIAs).]
Pointer, changing mouse pointer in Excel
Policies, security [See Security policies.]
Pop-up menus, using Smart Tags to display
Prerequisites, deploying VSTO solutions
Previewing, InfoPath forms
Previous method, Word document navigation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Previous method, Word document navigation
Primary interop assemblies (PIAs)
 browsing
 deployment prerequisites
 finding VSTO extensions to Word/Excel object models in
 for InfoPath
 installing
 overview
 references for creating console to automate Word
 referencing
Printing
 documents
 Before Print events in Excel
 Before Print events in Word
 printer settings in Excel
 workbooks
Private keys
Professional developers
ProgID
 action classes
 COM add-ins
 recognizer classes
Programming Excel
 automation executables
 building managed automation addin
 COM/automation add-ins
 creating user-defined functions
 debugging user-defined functions
 deploying managed automation addins
 Excel object model and
 research services
 server-generated documents
 Smart Documents/XML Expansion Packs
 Smart Tags
 summary
 using managed automation add-in
 VSTO code behind
 XLA add-ins
Programming InfoPath
 introduction to
 previewing
Programming model, VSTO
 adding host controls dynamically
 aggregation and windows forms console
 aggregation/inheritance/implementation
 Bookmark host control
 connecting aggregates
 controls collection
 Document class
 dynamic controls
 dynamic controls in VSTO
 dynamic host items
 enumerating/searching Controls collection
 event model improvements
 extensions to Word/Excel object models
 Globals class in
 host item class and host control
 inspecting generated code
 Model-View-Controller
 NamedRange/XMLMappedRange/List object host controls

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NamedRange/XMLMappedRange/List object host controls
 obtaining aggregated object
 overview
 removing controls
 saving/loading controls
 separating data and view
 startup/shutdown sequences
 summary
 "Tag" field
 workbook host item class
 worksheet host item class
 XMLNode and host control classes
Programming Outlook
 add-ins
 automation executables
 Collaboration Data Objects (CDO) and
 custom property pages
 Outlook object model
 Persona menu Smart Tags
 Smart Tags embedded in HTMLformatted e-mail
 Smart Tags when Word is e-mail editor
 summary
Programming Word
 automation executables
 COM add-in
 creating simple research service
 getting started with research services
 programming research services
 registering research service
 research service resources
 server-generated documents
 Smart Documents/XML Expansion Packs
 Smart Tags
 summary
 using research service
 VSTO code behind
 Word object model
Programming, in Office
 advanced
 advantages of
 browsing PIAs
 collections
 declarative event handling
 dynamic event handling
 enumeration
 events
 installing PIAs
 methods
 object models
 objects
 parameterized properties
 PIA overview
 properties
 referencing PIAs
 summary
Project, creating InfoPath project in VSTO
Properties [See also Parameters.]
 aggregation 2nd
 application manifest
 in CDO object model

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 in CDO object model
 collections
 data binding and 2nd
 DataMember
 implementing from PIA interface
 implementing using extenders
 list object host control
 objects
 OLEObject/OLEControl
 parameterized
Properties, Action task pane
 AutoScroll
 avoiding
 showing/hiding
Properties, Excel
 active/selected objects in Application objects
 active/selected objects in Workbook objects
 Address properties of Range object
 Application Object
 area of Range object
 Calculation/WorksheetFunction
 ChartObject
 collections in Application object
 collections in Workbook object
 Cursor property of Application Object
 CustomProperties for worksheets
 danger of EnableEvents property
 document properties of workbooks
 DocumentProperties of workbooks
 embedding Excel in another application
 file/printer properties
 formatting cell ranges
 Item/Count properties in workbook collection
 ListObject
 naming cell ranges
 OLEObject
 Range Object
 regions
 Save when quitting
 Save workbooks
 ScreenUpdating property of Application Object
 Shapes property
 StatusBar property
 Value property for ranges
 Window object
 Windows collections
 worksheet management
 worksheet protection
Properties, InfoPath
 button events/view
 form properties
 OnBeforeChange event
 Site/Source properties in DataDOMEvent object
Properties, Outlook
 active/selected objects
 additional properties associated with items
 address books/entries
 built-in/custom properties of items
 changing items properties
 Class property for identifying item type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Class property for identifying item type
 collections in Application object
 CommandBars property in Explorer window
 CommandBars property in Inspector window
 common to items
 CurrentUser property of NameSpace object
 custom property pages
 Explorer object
 Explorer window
 Extended MAPI for changing readonly properties
 finding items
 Folders property of NameSpace object
 getting item using ID properties
 identifying MAPIFolder
 Inspector window
 items in MAPIFolder
 iterating over items
 mail properties of items
 MailMerge object
 MailSession property
 Name object
 Offline property of NameSpace object
 retrieving NameSpace object
 security dialog box and
 selected folder/view/items of Explorer object
 View properties of MAPIFolder objects
Properties, Server data
 cached data object model
 cached data properties
 CachedDataHostItem collection
 CachedDataHostItem object
 CachedDataItem object
 ServerDocument object
Properties, Smart Tag
 action classes
 Action events
 Actions property
 custom class
 object
 recognizer classes
 wise use of
Properties, Word
 active/selected objects Application object
 aggregated Document objects
 Bookmarks property
 Browser property
 Cached property
 collections associated with Document and Range
 collections associated with only Document
 collections in Application object
 CustomizationContext property
 DefaultTab property
 dialog box fields
 DisplayAlerts property
 Document collection
 document formatting in Application object
 Document object 2nd
 document printing
 Document windows
 E-Postage Properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 E-Postage Properties
 File Dialog boxes in Application object
 Find/Replace properties for Range objet
 formatting Range object
 grammar/spell checking
 Mouse Pointer in Application object
 NewDocument property
 NextStoryRange property in Range object
 Options property of Application object
 properties that identify Range object
 Properties window for adding event handlers
 quit settings
 Range object 2nd
 Saved property of Document object
 ScreenUpdating property in Application Object
 StatusBar property
 Tables collection
 templates 2nd
 text from Range object
 user information in Application object
 user interface
 windows
Property Page, using custom property pages for programming Outlook
Protect method
 Word documents
 workbook
 worksheet 2nd
Proxies, using binding sources
Public keys
Public-key cryptography
Public-key tokens
Publish Wizard
 for deploying VSTO solutions
 generating/updating deployment manifests with
 VSTO Outlook add-ins and
Publisher certificates
 CA (Certificate Authority) and
 combining with stong names
 expiration of
 license to code
 obtaining
 overview of
PublishURL, in InfoPath form registration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Query method, Word research services
Quitting
 closing all open Word documents
 Quit method for exiting Excel
 Quit method for exiting Word
 raising Quit event in Outlook
 raising Quit event in Word

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

R1C1-style references, in addressing
Range object, Excel
 addresses
 areas
 cells
 copying/clearing/deleting ranges
 creating new ranges
 editing range values
 finding text in ranges
 formatting range of cells
 getting Range object for cell or range of cells
 object model and
 Range.Locked property for worksheet protection
 regions
 rows/columns
 selecting and activating range of cells
Range object, Word
 changing ranges
 collapsing ranges
 collections associated with
 find and replace
 formatting
 getting a range
 identifying ranges
 inserting nonprinting characters/breaks
 moving ranges
 navigating ranges
 overview
 stories and
 text from
 text in
Range parameter
 Change events
 Double-Click/Right-Click events
Range properties
 parameters of
 Smart Tag Action events
 Word Tables collection
RCW (Runtime Callable Wrapper)
 COM add-ins and
 role in button failure issue
Read only properties, using Extended MAPI to change
Reading pane, Smart Tags in HTMLformatted Outlook e-mail displayed in
RecentFiles property, Excel file/printer properties
Recipient object, NameSpace object
Recognize method
 creating recognizer classes
 custom Smart Tag class
Recognizers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recognizers
 adding to PIAs
 creating recognizer Class
 in Excel
 registering Recognizer class
 in Word
Redo method, in Word Document object
References
 addressing
 Range object
 service for mapping cookies onto host objects
RefersTo properties, Name object
Reflection, work around for locale issue
regasm.exe
Regions, Range Object
RegisterSolution method, InfoPath forms
Registration method, Word research services
Registry
 Automation add-ins in
 COM add-ins
 finding Outlook add-ins in
 installing COM add-ins
 location of COM add-ins
 Smart Tag classes
 VSTO add-ins 2nd
 Word research services
Regular expression, using to add Smart Tags
Relative address, compared with absolute address
ReleaseCOMObject
Removal method
 controls at runtime
 New and Getting Started document task panes in Word
Remove event, Outlook item
RemoveCustomization helper method, in ServerDocument object model
Removed method, in Folders collection
RemoveHandler statement, in dynamic event handling
Replace method, Range Object in Word
Reply method, Outlook mail item
ReportError method, in DataDOMEvent object
Research services
 creating simple
 customizing in Excel
 customizing in Word
 getting started with
 registering with Word
 resources for
 working with
Research task pane, registering Smart Tags to recognize text in
ResetSideBySideWith method, Word windows
Resize events, Excel
Resize method, controlling Windows in Word
Response parameter, Outlook 2nd
Restrict method, finding Outlook item
Restricted security level, in InfoPath forms
Return values
 of methods
 of parameterized properties
 of parameterless properties
ReturnStatus property, of DataDOMEvent object
Right-Click events

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Right-Click events
 cancelable events and event bubbling
 raising in Excel
Role-based security
 overview of
 vs. code-access security
Root folders, NameSpace object
RouteDocument, closing all open Word documents
RowIndex parameter
Rows property
 Range objects 2nd
 Word Tables
Runtime Callable Wrapper (RCW)
 COM add-ins and
 role in button failure issue
Runtime Security Policy

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Save
 controls added at runtime are not saved
 controls in control hosting model
 controls in VSTO
 Outlook items
 properties in quitting Excel
 properties in quitting Word
 ServerDocument object
 Word file save format options
 workbook Name properties
 workbooks
 XML Options dialog box
Save dialog box, Word Application object
Save events
 Document collection in Word
 Document object in Word
 in Excel
 overriding in InfoPath
 in Word
Save method, Word Document object
saveAsUI parameter
 Excel
 Word
SaveChanges parameter
 closing all open Word documents
 exiting Word
Schema Library dialog box 2nd
Schema properties
Schemas [See XML, in Excel.]
ScreenRefresh method Word Application object
ScreenUpdating property
 in Excel Application Object
 in Word Application object
Scrolling, in the Actions task pane
Searching [See also Find method.]
 AdvancedSearch method
 Controls collection
 search methods for Application object
 searching research services
Secondary collection
Security
 .NET 1.1 security policy
 Confirm/SaveAs and
 Context property and
 DataDOMEvent object and
 deploying VSTO solutions and
 deployment security in InfoPath
 document passwords
 form security levels in InfoPath

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 form security levels in InfoPath
 full trust in InfoPath
 information security in InfoPath
 Outlook object model
 setting in InfoPath
 VSTO add-ins and
 VSTO control hosting model and
Security policies
 AppDomain level
 based on identity
 combining levels
 deploying to user machines
 Enterprise level
 location-based levels
 modifying
 User Policy level
 viewing and editing levels
Select Case statement
Select methods
 Excel ranges 2nd
 SelectFolder method in Explorer objects
 SelectNodes method in InfoPath View object
 SelectText method in InfoPath View object
 Word ranges
Selection Change events
 Excel
 Outlook
 Word
Selection events, Actions task pane
Selection object, Explorer
Selection property, Explorer
Send method, of Outlook mail item
SendKeys method, Excel
Serializing
 in cached datasets
 SerializeDataInstance method
Server data scenarios
 cached data object model
 cached data objects/methods/properties
 CachedDataHostItem collection
 CachedDataHostItem object
 CachedDataItem object
 cautionary note about XML
 client-side ServerDocument utility
 custom handler for
 populating document with data on server
 saving/closing documents
 ServerDocument and ASP.NET
 ServerDocument class constructors
 ServerDocument object model
 setting up server
 static helper methods
 summary
Server-generated documents
 customizing Excel
 customizing Word
ServerDocument object
Service Packs, InfoPath
Service providers, mapping cookies onto host object
Session object, in CDO

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Session object, in CDO
Session property
SetDataBinding method
SetRange method
Setup packages
Shapes
 in Excel object model
 OLEObject and
 working with worksheet shapes
Shared Add-In Wizard
Sheets
 accessing collection
 Activate/Deactivate events in
 adding to workbooks
 Calculate events
 Change events
 ChartObjects
 collection in Excel object model
 copying/moving
 Double-Click/Right-Click events
 events raised in
 Follow Hyperlink event
 host items and host controls
 iterating over open
 NewWorksheet events
 selection change events
 SheetsInNewWorkbook property
Shift, specifying in Excel
Shimming, as solution to mscoree.dll problems
Show Advanced XML Error Messages, XML Options dialog box
Show method
 File Dialog boxes in Word Application object
 Word dialog box
Show Placeholder Text for All Empty Elements, XML Options dialog box
Showing, in the Actions task pane
ShowItemCount property, MAPIFolder
Shutdown
 problems related to COM add-ins
 raising Shutdown event in Outlook
 raising Shutdown event in Word
 sequences in VSTO programming model
Signature validation
Signing authority
 assemblies and
 dangers of skipping signature validation
 designating
Site property, of DataDOMEvent object
Slashes (//), using to create submenus
Smart Documents
 Actions task pane in
 customizing Excel
 customizing Word
Smart Tags
 action class
 actions in creating document level
 configuring
 creating application level
 creating application level class library
 creating document level
 custom class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 custom class
 customizing Excel
 customizing Outlook when Word is e-mail editor
 customizing Word
 debugging application-level
 embedded in HTML-formatted e-mail
 introduction
 persistent tagging
 Persona menu
 properties
 recognizer class
 registering/trusting application-level class library
 regular expressions in creating document level
 running/testing application-level
 summary
 terms in creating document level
Solutions, Office [See Office solutions.]
Sort method, Outlook items
Source property, of DataDOMEvent object
Sources
 data sources and security best practices
 overview
 using binding sources as proxies
Space (as intersection operator) 2nd
Spell checking
 Excel
 Word 2nd
Spreadsheets [See also Sheets.]
 creating data-bound spreadsheets
 data source for creating data-bound customized
 data-bound controls for customized
 importing XML files and refreshing XML data in
 XML data in
Start Action, COM add-ins
Start parameter, Word Range object
Start property, Word Range object 2nd
StartCaching
StartOf method, Word Range object
Startup
 calling Startup method in InfoPath
 raising Startup event in Outlook
 running code after
 sequences in VSTO programming model
 in Word
Startup order, Com add-ins
Statements
 in dynamic event handling
 Select Case statement
Status bar
 displaying message in Excel
 displaying message in Word
StopCaching
Store, adding/removing Outlook Store
StoreID, getting Folder/Outlook item using
Story
 defined
 Range object in Word and
Strings
Strong names
 child code group

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 child code group
 creating stong-name code group
 implementing
 overview of
 public keys and public-key tokens
 publisher certificates combined with
 shortcomings of
 strong-named assemblies
Structure parameter, for protecting workbooks
Style property
 Word Range object
 Word Tables collection
Subfolders, accessing in MAPIFolder object
Submit event, InfoPath
Sync events, Word
SyncScrollingSideBySide property, Word windows
System.Security namespace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Tab
 lack of support for TabIndex property in control hosting model
 selecting tab on dialog box in Word
Table
 working with in Word
 writing code to create
"Tag" field, in VSTO programming model
Tags, Smart [See Smart Tags.]
Task panes
 Actions task pane [See Actions task pane.]
 creating custom task panes in Info-Path
 working with New and Getting Started document task panes in Word
Templates
 InfoPath forms, creating
 InfoPath forms, registering
 Word Application object
 Word Document object
Templates and Add-Ins 2nd
Terms, document level Smart Tags
Text
 changing insertion behavior
 getting from Word Range object
 setting in Word Range object
 Smart Tags for recognizing [See Smart Tags.]
Thread locale
Time, in Excel locale issue
TimeOut parameter, Word dialog box
TLBIMP
Tokens, public-key
Toolbars
 positioning in VSTO
 toolbar events in Excel
 toolbar events in Word
Toolbox, for dataset components
ToOle method, window display color conversion
Toolkits
 Microsoft Office InfoPath Toolkit for Visual Studio 2005
 Research Services Development Extras Toolkit for Office
ToXml, helper method Cached Data class
Transforms, XSLT file acting on WordML
Tree view
Trust
 full and partial trusts
 trusting documents
Try block
 dialog boxes and alerts in Word Application object
 ScreenUpdating property in Excel
Type parameter, Chart/Sheet/Worksheet collections
Type property, of Word Document object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Type property, of Word Document object
Typed datasets, in data programming
TypeOf operator 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Undo method
 Excel
 Word
Union operator (,)
 creating new ranges using operators
 use in Range Object
Unloading code, in different development patterns
UnReadItemCounty property, MAPIFolder
Untyped datasets, in data programming
Updates
 controlling screen updates in Excel Application Object
 controlling screen updates in Word Application object
 Update event in toolbar/menu events
URLs (uniform resource locators), Info-Path forms 2nd
URN deployment, InfoPath forms
User controls
 in ActionsPane architecture
 adding custom user control to Actions task pane
 custom property pages in Outlook
User IDs, data source security and
User information, for Word Application object
User interface
 Actions task pane as custom user interface [See Actions task pane.]
 controlling look of Excel
 controlling look of Word
 Windows Forms for meeting needs of [See Windows Forms controls.]
User Policy level
User, determining current user in NameSpace object
User-defined functions
 applying managed automation addin to
 building managed automation add-in for
 creating
 debugging
Utilities, client-side ServerDocument utility

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Validation
 XML Options dialog box
 XML schemas
Values
 collection object
 DataDOMEvent object
 enumeration
 Excel Range Object
 FileDialog property
 in methods
 Mouse Pointer in Word Application object
 Nothing value and button failure issue
 object properties
 Range Value properties
 ScreenUpdating property and
Variables
 in button failure issue
 custom property pages
 events handling
 identifying Outlook item type
 object model hierarchy
VBA (Visual Basic for Applications)
 in Office programming
 use of code-behind solution
VBScript
Verb properties, Action classes
View options, XML Options dialog box
Views
 data-bound master-detail view on Excel spreadsheets
 data-bound master-detail view on Word documents
 focus vs. selection in InfoPath XDocument object
 InfoPath forms
 MAPIFolder object view settings
 Model-View-Controller (MVC) in VSTO
 selected in Explorer object
 separating data and view
 switching in InfoPath
 view events in Outlook
Visibility
 Word documents
 Worksheets
Visual Basic 2005 language
 advantages of
 use with PIAs
Visual Basic for Applications (VBA)
 in Office programming
 use of code-behind solution
Visual Studio 2005
 combining schema creation with Excel schema mapping

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 combining schema creation with Excel schema mapping
 creating XML schema for use in Word
 creating XML schemas
 support for XML schemas
 writing COM add-ins
Visual Studio 2005 Tools (VSTO)
 additional Excel events raised in
 additional Word events raised in
 advantages of
 cached data vs. custom properties with Worksheet objects
 code behind in Excel
 code behind in Word
 combining XML mapping with VSTO data binding
 customization and trust
 data programming [See Data programming.]
 deployment runtime prerequisites
 derived from Windows Forms controls
 introduction to
 LoadXml method
 locale issue and
 Outlook add-ins and
 programming model [See Programming model, VSTO.]
 Smart Tag support
 support for Word schema mapping
 support for WordML file format
 support for XML schema mapping
 supported/unsupported XML schemas
 XLA add-ins and
 XML schema added to VSTO project
 XMLNode control
 XMLNodes control
VSTO add-ins
 add-ins
 compared with COM add-ins
 creating 2nd
 improvements to COM add-ins
 installing
 manifest update and
 Outlook shut down problems related to COM add-ins
 ReleaseCOMObject, avoiding
 security and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Wait parameter, in SendKeys method
WdWindowState enumeration
Web caching, deploying VSTO solutions and
Web forms, ASPX
Web pages, associating web view with folder in Explorer object
Web sites, deploying VSTO solutions to
What parameter, Word Range object
Which parameter, Word Range object
WholeStory method, Word Range object
Wiki
Window caption, Word
Windows
 accessing window in Excel collection
 accessing window in Word collection
 Actions task pane [See Actions task pane.]
 Activate/Deactivate in Excel 2nd
 Activate/Deactivate in Word
 adding buttons/menus to Explorer window
 arranging in Excel
 arranging in Word
 creating in Word
 display settings in Excel
 Document object in Word
 Explorer 2nd
 Inspector
 iterating over open windows in Excel
 iterating over open windows in Word
 parameters for workbook protection
 positioning in Excel
 Window Sizing events in Excel
 window sizing events in Word
 windows events in Outlook
Windows Forms controls
 AddControl method
 adding at runtime
 adding to Actions task pane
 adding to documents
 blurry
 code behind
 collection
 in collection typed as object
 control state not saved
 controls added at runtime not saved
 deleting at runtime
 on document surface
 hosting ActiveX control
 inserting into Excel
 inserting into Word
 layout on document/worksheet surface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 layout on document/worksheet surface
 limitations of control hosting model
 Modal/Modeless
 modes for adding
 moving from ActiveX controls to
 not in toolbox
 overview
 programming [See Programming model, VSTO.]
 properties merged from OLEObject/OLEControl
 security
 in Smart Documents
 summary
 VSTO controls derived from
WithEvents keyword
 declarative event handling
 dynamic event handling
 workbook event handling
Word
 add-in solutions for
 adding host controls dynamically
 Bookmark host control
 COM add-ins in
 console application for automating
 data binding in Word documents
 deploying [See Deploying VSTO solutions.]
 Document class
 inserting Word controls into Excel
 Smart Tags in
 Smart Tags when Word is Outlook e-mail editor
 VSTO extensions to Word object models
 XML in [See XML, in Word.]
 XMLNode and host control classes
Word Basic
Word events
 Close Document
 CommandBar
 Document activation
 E-Postage
 Mail Merge
 mouse
 New/Open Document
 Print document
 Save document
 selection
 Start-up/Shutdown
 summary
 Sync
 Visual Studio event handlers
 in VSTO
 window sizing
 Word object model and
 XML
Word objects
 Application object [See Application objects, Word.]
 Bookmarks
 Dialog Object
 Document collection [See Document collections, Word.]
 Document object [See Document object.]
 Range object [See Range object, Word.]
 summary

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 summary
 Tables collection
 templates
 Windows
WordML file format
 overview of
 VSTO support for
 XSLT file transform and
Workbook events
 Activate/Deactivate
 Calculate
 Change
 Before Close
 Double-Click/Right-Click
 Follow Hyperlink
 NewWorkbook
 Open
 Before Print
 raising
 Resize events
 Before Save
Workbooks
 accessing document properties
 accessing in collection
 adding XML schemas to
 creating new
 creating/activating windows
 embedding Excel in another application
 host item class
 iterating over open workbooks in collection
 mapping schemas to
 object default properties
 opening existing/closing all workbooks in collection
 printing
 properties that return active/selected objects
 properties that return collections
 protecting
 saving
 saving in XLA format
 sending as e-mail
Worksheets [See also Sheets.]
 accessing in collection
 adding controls to [See Windows Forms controls.]
 adding to collection
 built-in WorksheetFunction property
 Change events
 ChartObjects in
 copying/moving
 custom properties
 Excel object model and
 host item class
 iterating over open sheets in collection
 layout of controls on worksheet surface
 lists
 managing
 names
 New Worksheet events
 OLEObjects
 properties
 protecting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 protecting
 range of cells [See Range object, Excel.]
 shapes
Wrappers, using PIAs to communicate
Write-only property, in object model methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

XDocument object
 button events/view switching in forms
 focus vs. selection methods
 in InfoPath
 OnContextChange event in
XLA add-ins
 customizing Excel
 Install/Uninstall events
XML
 caution in using ServerDocument object model to manipulate cache
 Import/Export events in XML data files
 manipulating serialized XML directly
 XML file formats for server data
 XML-based forms in InfoPath
XML Document task pane
XML Expansion Packs
 for customizing Excel
 for customizing Word
XML Map Properties dialog box
 appending XML data to lists
 data formatting and layout for XML-mapped lists
 schema validation settings
XML maps
 defined
 in Smart Documents
 using to change Actions pane contents
XML Options dialog box
 Ignore Mixed Content check box
 overview of
 save options
 Show Advanced XML Error Messages
 Show Placeholder Text for All Empty Elements
 validation options
 view options
XML schemas
 adding to VSTO project
 adding to Word document
 adding to workbook
 combining Visual Studio schema creation with Excel schema mapping
 combining Visual Studio schema creation with Word schema mapping
 creating for Excel
 creating for Word
 mapping schema data type to Excel cell formats
 mapping to Word documents
 mapping to workbooks
 supported/unsupported in Excel
 validating in Excel
 VSTO support for Excel schema mapping
 VSTO support for Word schema mapping

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 VSTO support for Word schema mapping
 XSLT file associated with
XML Source task pane
XML Structure task pane 2nd
XML, in Excel
 adding schemas to workbooks
 adding schemas VSTO project
 appending data to lists
 combining Visual Studio schema creation with Excel schema mapping
 combining XML mapping with VSTO data binding
 creating schemas with Visual Studio 2005
 data formatting and layout
 features
 importing XML files and refreshing XML data in spreadsheets
 ListObject controls
 mapping XML schema data types to Excel cell formats
 mapping XML schemas to workbooks
 supported/unsupported schemas
 validating XML schemas
 VSTO support for XML schema mapping
 XMLMappedRange controls
XML, in Word
 adding schema to Word documents
 attributes
 combining Visual Studio schema creation with Word schema mapping
 creating and mapping schema into Word document
 creating document with mapped XML structure
 creating schemas with Visual Studio 2005
 creating XSLT file
 data view only
 exporting mapped XML to XML data file
 features
 importing XML data file into mapped document
 LoadXml for loading XML programmatically
 manually converting book-order XML file using XSLT file
 raising XML events
 saving XML document
 VSTO support for Word schema mapping
 VSTO support for WordML file format
 XML data view only
 XML Options dialog box 2nd
 XMLNode control
 XMLNodes control
 XSLT file applied automatically to XML file
XMLMappedRange controls 2nd
XMLNode control
 dynamic creation of host controls in Word/Excel
 Word XML 2nd
XMLNodes control
XSD files
.XSF files
XSLT file
 applied automatically to XML file
 creating
 manually converting book-order XML file using XSLT file
 transform of WordML
.XSN files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Zones, code groups

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

A1-style references, in Range Object
Absolute address
Action classes, Smart Tags
 creating
 registering
Action events
 creating document level Smart Tags
 custom
 handling
Actions
 creating document level Smart Tags
 Smart Tag components in Excel
 Smart Tag components in Word
Actions pop-up menus
Actions task pane
 architecture of
 attaching/detaching
 contextually changing
 custom user control added to
 customizing with XML
 detecting orientation of
 introduction to
 methods/properties to avoid
 modeless Windows Form with
 scrolling
 showing/hiding
 Windows Forms controls added to 2nd
Activate events
 raising in Excel
 raising in Outlook
 raising in Word
Activate method
 activating window in workbook
 as simplest method form
 worksheet management
ActiveX controls
 blurry
 derived from Windows Forms control
 hosting in Actions task pane
 hosting managed
 limitations of hosting model
 not saving at runtime
 security implications of hosting model
 Windows Forms control hosting
Adapters
 dataset programming
 overview
Add method
 accessing Name in Names collection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 accessing Name in Names collection
 CachedDataHostItem object
 custom property pages
 DocumentProperty
 files objects
 Folders collection
 Outlook events
 Outlook Inspectors/Explorers collections
 window
 Word bookmarks
 Word documents
 Word Tables collection
 work/chart sheet to collection
 workbooks
Add Schema button 2nd
Add-ins
 Automation [See Automation add-ins.]
 COM [See COM add-ins.]
 creating Outlook
 customizing Excel
 customizing Outlook
 defined
 hosted code
 Install/Uninstall events
 multiple
 overview
 programming Excel
 running/unloading code
 template installed as
 VSTO [See VSTO add-ins.]
 Word e-postage
AddControl method 2nd
AddCustomization method
AddHandler statement
 Activate/Deactivate events
 Calculate events
 dynamic event handling
 Quit events
 selection change events
 Workbook events
Address books/entries, accessing in Outlook
Addresses, in Excel Range Object
AddressOf keyword, dynamic event handling
ADO classic
ADO.NET [See also Data programming.]
AdvancedSearch method, Outlook
After parameter 2nd
Aggregation
 connecting aggregates
 obtaining aggregated objects
 overview of
 Windows Forms controls
Alerts
 Excel
 Save Alerts in Excel
 Word
Aliasing, in Word
All Code group
AllowEditRanges collection, worksheet protection 2nd
Alt

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Alt
 searching research services
 specifying with SendKeys method
Ampersand (&)
 identifying accelerators in menus
 in Smart Tag actions
AND
app variable 2nd
AppDomain policy level
Application Manifest Editor
Application manifests
 editing
 objects, methods, and properties
 overview of
 reading/editing embedded
 relationship with deployment manifest
Application objects
 AppDomain policy level
 in InfoPath
 in object models
 properties
Application objects, Excel
 changing mouse pointer
 controlling dialog boxes and alerts
 controlling editing
 controlling file/printer settings
 controlling screen updates
 controlling workbook calculation/using built-in functions
 danger of using EnableEvents property
 displaying message in status bar
 properties that return active/selected objects
 properties that return important collections
 Quitting/Undo methods
 selecting and activating range of cells
 sending keyboard commands
 sending workbook in e-mail
 spell checking
Application objects, Excel events
 Activate/Deactivate
 Calculate
 Change
 Before Close
 Double-Click/Right-Click
 Follow Hyperlink
 NewWorkbook
 Open
 Before Print
 Before Save
 XML file Import/Export
Application objects, Outlook
 copy method
 methods/properties that return active/selected objects
 Outlook security and trusted/untrusted objects
 overview
 properties that return important collections
 Quit method
 search methods
 using Session property of to retrieve NameSpace object
Application objects, Outlook events
 Activate/Deactivate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Activate/Deactivate
 Close
 new window
 raising
 Start-up/Quit
 view and selection change
 window
Application objects, Word
 changing mouse pointer
 checking grammar/spelling
 controlling dialog boxes and alerts
 controlling look of Word
 controlling screen updates
 customizing Mail Merge
 displaying messages in status bar or window caption
 exiting Word
 File dialog boxes
 file save format options
 multiple application/document interfaces in Word
 navigating document
 New and Getting Started document task panes
 overview
 properties that return active/selected objects
 properties that return important collections
 user information
 working with Word's options
Application objects, Word events
 Document Activation/Deactivation events
 Document Close events
 Document Print events
 Document Save events
 Mail Merge event
 mouse events
 NewDocument event
 selection change events
 Startup/Shutdown events
 WindowSize events
 XML events
Apply method, of PropertyPage interface in Outlook
AppManifest object
Area, Range objects and
arg1, BeforeClick event parameter
arg2, BeforeClick event parameter
Argument, ActionEventArgs
Arrange method
 Excel windows
 Word windows
ASP.NET
 custom handler
 server setup
 ServerDocument and
Assemblies
 code groups and
 delay-sign
 determining location from deployment manifest
 signing
 strong-named
 trusting in Local Machine zone
Attachment events, Outlook
Attributes, InfoPath events

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Attributes, InfoPath events
Authentication
AutoFit method, Word tables
Automation add-ins
 customizing Excel 2nd
 debugging
 deploying
 managed
 user-defined functions provided by
Automation executables
 customizing Excel
 customizing Outlook
 customizing Word 2nd
 defined
 in InfoPath
 locale issue [See Locale issue.]
 overview
 unloading code in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Bibsrc. Bibliography

Security

Office Programming

Data Programming

Forms Programming

Infrastructure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Security
Howard, Michael, and David LeBlanc. Writing Secure Code. 2d ed. Redmond, WA: Microsoft Press, 2003.

LaMacchia, Brian, Sebastian Lange, Matthew Lyons, Rudi Martin, and Kevin T. Price. .NET Framework Security. Boston:
Addison-Wesley, 2002.

Lippert, Eric . Visual Basic .NET Code Security Handbook. Birmingham, UK: Wrox Press, 2002.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Office Programming
Mosher, Sue . Microsoft Outlook Programming. Burlington, MA: Digital Press, 2002.

Whitechapel, Andrew . Microsoft .NET Development for Microsoft Office. Redmond, WA: Microsoft Press, 2004.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Data Programming
Homer, Alex, Dave Sussman, and Mark Fussell . A First Look at ADO.NET and System.Xml v. 2.0. Boston: Addison-
Wesley, 2004.

Wildermuth, Shawn . Pragmatic ADO.NET. Boston: Addison-Wesley, 2003.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Forms Programming
Sells, Chris . Windows Forms Programming in C#. Boston: Addison-Wesley, 2004.

Sells, Chris, and Justin Gehtland . Windows Forms Programming in Visual Basic .NET. Boston: Addison-Wesley, 2004.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Infrastructure
Box, Don, Aaron Skonnard, and John Lam . Essential XML: Beyond Markup. Boston: Addison-Wesley, 2000.

Hejlsberg, Anders, Scott Wiltamuth, and Peter Golde . The C# Programming Language. Boston: Addison-Wesley, 2004.

Nathan, Adam. .NET and COM: The Complete Interoperability Guide. Indianapolis: Sams Publishing, 2002.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Back-end data source [See also Sources.]
Base class, extending to Word/Excel object models
Batch files
Before Close events
 Excel
 Word 2nd
Before parameter, worksheets 2nd
Before Print events
 Excel
 Word
Before Save events
 Excel
 Word
BeforeCaptionShow event
BeforeDouble-Click events
 cancelable events and event bubbling and
 Excel
 Word
BeforeRight-Click events
 cancelable events and event bubbling and
 Excel
 Word
Binding data [See Data programming.]
Binding source
 in advanced ADO.NET data binding
 as proxies
 working with
Blocks
 controlling dialog boxes and alerts in Word
 ScreenUpdating property in Excel
 ScreenUpdating property in Word
BodyFormat property, Outlook mail folder
Bookmarks
 changing Actions pane contents
 data-bound customized Word document using
 host control
 Word
Booleans
 cancel parameter [See cancel parameter.]
 defining properties
 saveAsUI parameter 2nd
 in UndoRedo parameter
Boxing
Breaks, Word Range object
BreakSideBySide method, Word windows
Browsers
 browsing PIAs
 navigating Word document
 navigating Word Range object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 navigating Word Range object
Btn
Built in properties, Outlook
BuiltinDocumentProperties, workbooks
Businesses, programming for
Buttons
 adding to Explorer window
 failure issue in dynamic event handling
 in InfoPath

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

C
C# 2nd
C++
CA (Certificate Authority)
Cached data [See also Server data scenarios.]
 CachedDataHostItem collection
 CachedDataHostItem object
 CachedDataItem object
 caching in data island
 caching own data types
 dynamically adding/removing from data island
 ICachedType and
 methods/properties in ServerDocument object model
 object model
 Worksheet objects and
Calculate events, Excel
Calculation property, workbooks
"Can act like" relationship
cancel parameter
 attachment events
 cancelable events and event bubbling and
 Before Close events
 Close events
 Copy/Paste/Cut/Delete events in Outlook
 custom action events in Outlook
 Document Print events
 Double-Click/Right-Click events
 e-mail events in Outlook
 exiting Word
 mouse events
 Outlook window events
 Before Print events
 Before Save events
 Save events in Word
 view/selection change events in Outlook
Cancelable events
CapsLock property
Caption property, Action classes
caspol.exe
Catch block, ScreenUpdating property in Excel
Categories dialog box, Outlook items
CDO (Collaboration Data Objects)
Cells, Excel
 Address properties of cell ranges
 insertion behavior
 mapping XML schema data type to Excel cell formats
 naming cell ranges
 Range objects 2nd
 selecting and activating

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 selecting and activating
Cells, Word tables
Certificate Authority (CA)
Certificates
certmgr.exe
Change events
 data binding and
 Excel
 Outlook
 selection change events in Excel
 selection change events in Word
 toolbar/menu events
 Word documents
ChangeFileOpenDirectory method, Word
Characters, inserting nonprinting characters into Range object
Charts
 accessing in collection
 Activate/Deactivate events
 adding to workbooks
 Calculate events
 Chart object in Excel 2nd
 copying/moving sheets in chart collection
 Double-Click/Right-Click events in
 host item class and host control
 iterating over open sheets in chart collection
 selection change events in
CheckedChange event, Outlook
CheckSpelling
 Excel
 Word
Child code group
Classes
 action
 always connected to database
 code behind 2nd
 compiling into PIAs
 custom Smart Tag
 customization for dynamic event handling
 Excel host item
 Outlook item
 PIA browsing and
 properties/methods/events
 recognizer class
 ServerDocument [See Server data scenarios.]
 Smart Tag class library 2nd
 VSTO add-ins
Clauses, handles [See Handles clause.]
Clauses, workbook events
Clear method
 helper method Cached Data class
 in Range object
Click events
 cancelable events and event bubbling and
 Excel
 handling in Smart Tag Action objects
 "my button stopped working" issue in
 toolbar/menu events
 Word
ClickOnce
 application manifest and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 application manifest and
 deployment manifest and
ClipboardContent parameter, Outlook Paste events
Close events, Outlook
Close methods
 close and save Excel workbooks
 Before Close events in Excel
 closing all open Excel workbooks
 closing all open Word documents
 ServerDocument object
 Word documents 2nd
CLR [See Common Language Runtime (CLR).]
Coclass, PIA browsing and
Code
 hosted
 inspecting generated
 running after start-up
 unloading hosted
Code groups
 assemblies and
 creating stong-name code group
 granting trust and
 reasons for creating child code groups
 zones
Code security, .NET Framework
 access security
 AppDomain policy level
 deploying policies to user machines
 Enterprise policy level
 evidence types
 full and partial trusts
 location-based policy levels
 Machine policy level
 overview
 policy levels, combining
 publisher certificates
 role-based security vs. code-access security
 strong names [See Strong names.]
 trusting documents and
 User Policy level
Code-access security
Code-behind
 controls
 customizing Excel
 customizing Word
 Excel document
 Excel locale issue and
 InfoPath forms
 running/unloading code
 solution
CodeName cookie
Collaboration Data Objects (CDO)
Collapse method, Word Range objects
Collections
 CachedDataHostItem
 defined
 VSTO controls
Collections, Excel
 application object properties that return important collections
 Chart/Sheet/Worksheet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Chart/Sheet/Worksheet
 DocumentProperties
 ListObject
 Names
 OLEObject
 Shapes
 Windows
 workbook properties that return collections
 Workbooks
Collections, Outlook
 adding item to
 AddressEntries
 application object properties that return important collections
 Explorers/Inspectors collections
 Folders collection in NameSpace object
Collections, Smart Tags
 ISmartTagProperties
 Regular expressions
 Terms
Collections, Windows Forms
 Controls
 controls in collection typed as object
 enumerating/searching Controls collection in VSTO
Collections, Word [See also Document collections, Word.]
 application object properties that return important collections
 Document and Range collections
 Document only
 StoryRanges
 Template
Colon (:), range operator 2nd
Columns
 Excel Range object 2nd
 Word Tables collection
COM
 communicating with PIAs
 hosted code solutions
 implementation and multiple interfaces in Word
 problems with PIA browsing and
 referencing PIAs using
 running/unloading COM code
COM Add-In Wizard
COM add-ins
 COM interop and regasm.exe
 customizing Excel
 customizing Outlook
 customizing Word
 in Excel 2nd
 IDTExtensibility2 and
 introduction to
 locale issue and [See Locale issue.]
 mscoree.dll and
 Office-specific
 OnAddInsUpdate method
 OnBeginShutdown method
 OnConnection method
 OnDisconnection method
 OnStartupComplete method
 Quit/Startup events in Outlook and
 registry entries required for
 registry location of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 registry location of
 scenarios for use of
 shimming as solution to mscoree.dll problems
 simple example
 Start Action
 startup order
 troubleshooting
 VSTO add-ins for Outlook compared with
 in Word
 writing with Visual Studio
COM interop
Comma (,)
 creating new ranges
 as union operator
CommandBars
 adding buttons/menus to Explorer window
 adding buttons/menus to Inspector window
 Excel
 when Excel is embedded in another application
 Word
Commands
 sending keyboard commands to Excel
 VSTO commands for InfoPath form code development
CommitSmartTag method
Common Language Runtime (CLR)
 assembly loader
 mscoree.dll and
 RCW objects created by
CompareSideBySideWith method
 Excel windows
 Word windows
Complex data binding
Concurrencies, in data adapters
Configuration files, deploying
Confirm event, overriding in InfoPath
Connections, dataset
Console application, creating to automate Word
Constructors, of ServerDocument class
Container property, embedding Excel in other application
Container, control hosting model
Context
 binding
 changes
Controls [See also Actions task pane; Host controls.]
 AddControl method
 added at runtime not saved
 adding at runtime
 adding custom user control to Actions task pane
 adding host controls dynamically
 adding to documents
 adding Windows Forms controls to Actions task pane
 ADO.NET data binding and
 bindable
 binding to proxies
 blurry
 code behind
 Controls collection 2nd
 data binding and
 deleting at runtime
 deriving from Windows Forms controls

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 deriving from Windows Forms controls
 dynamic
 enumerating/searching Controls collection
 Excel host
 hosted in Actions task pane
 insertion in Excel
 insertion in Word
 layout on document/worksheet surface
 limitations of control hosting model
 modes for adding
 not in toolbox
 OLE
 removing
 saving/loading
 security implications of control hosting model
 state not saved
 typed as objects
 Windows Forms host control
 Word Bookmark host control
 Word XMLNode and host control classes
Cookie, identifying aggregated objects
Copy event, Outlook
Copy method
 folders in MAPIFolder object
 Outlook items
 Range objects and
 sheets in collection
 worksheet management
Count parameter/property
 action classes
 Chart/Sheet/Worksheet collections
 Excel cells
 Excel workbooks in collections
 recognizer classes
 Word documents in collections
 Word Range objects
Creatable objects
CreateItem method, Outlook
Cryptography
Ctrl
 specifying in Excel with SendKeys method
 using to select multiple discontinuous cells
CType function
CType operator
 Activate/Deactivate events
 Calculate events
 Close event
 NewWorkbook event
 Outlook item type and
 Quit event 2nd
 selection change events
Currency manager, ADO.NET data binding
CurrentFolder property, Explorer object
CurrentRegion property, Range Objects
CurrentView property
 Explorer object
 MAPIFolder object
Cursor property
 mouse pointer in Excel
 mouse pointer in Word

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 mouse pointer in Word
Custom action events, Outlook
Custom handler, editing data island
Custom properties
 Outlook
 Outlook items 2nd
 Smart Tags storing
 workbooks
 worksheets
Custom task pane, InfoPath
Custom views, Explorer object
Customization methods, ServerDocument object model
Customization, VSTO
 deploying [See Deploying VSTO solutions.]
 location and trust
 publisher certificates and
 signing authority and
 strong names and
 trusting assemblies
 trusting documents
Cut event, Outlook

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1. An Introduction to Office Programming

Why Office Programming?

Office Object Models

Properties, Methods, and Events

The Office Primary Interop Assemblies (PIAs)

Conclusion

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Why Office Programming?
The family of Office 2003 applications covered by this bookExcel 2003, Word 2003, Outlook 2003, and InfoPath
2003represents an attractive platform on which to build solutions. You can customize and extend applications by
developing solutions against their object models. By building a solution using the Office System, you can reuse some of
the most feature-rich and popular applications available. A solution that analyzes or displays data can take advantage of
the formatting, charting, calculation, and analysis features of Excel. A solution that creates documents can use the
capability of Word to generate, format, and print documents. A solution that manipulates business information can
present it in an Outlook folder or in an InfoPath form. It is far better to reuse the applications that you already know
than to build these features from scratch.

Information workers use the Office environment on a daily basis. A solution built using Office can become a seamless
part of that environment. Too frequently, users must go to a Web page or some other corporate application to get data
that they want to cut and paste into an Excel workbook or a Word document anyway. Many users want to use Outlook
as their business information portal. By integrating a solution with Office, you enable users to get the information they
need without having to switch to another application.

Office Programming and the Professional Developer

Historically, most Office programming has been done via Visual Basic for Applications (VBA) and the macro recording
features built into some Office applications. Users would record a macro to automate a repetitive task within an Office
application. Sometimes, the code created by recording a macro would be further modified using VBA and turned into
more complicated departmental solutionsoften by users who were not trained as programmers and whose primary job
was not programming. These solutions would sometimes make their way up the corporate food chain and get taken
over by professional developers and turned into business solutions.

Unfortunately, VBA and its focus on macro recording sometimes resulted in Office solutions that were too limited for
corporate and professional developers. It can be difficult for professional developers to make a VBA solution scale to an
entire enterprise. VBA solutions were difficult to update after they were deployed. Often, the professional developer
wanted to use a language other than VBA to continue to grow the solution. The ease of use of VBA, although a boon to
users who were just getting started with coding, felt limiting to the professional developer who desired a richer
programming environment.

Why .NET for Office?

The .NET Framework and its associated class libraries, technologies, and languages address many of the concerns that
professional developers had with Office development. Today's Office development can be done using Visual Studio
2005, which is a rich programming environment for professional developers. Developers can use .NET languages such
as Visual Basic 2005 or C#. The primary interop assemblies (PIAs) allow .NET code to call the unmanaged object
models that Office applications expose. The rich .NET class libraries enable developers to build Office solutions using
technologies such as Windows Forms to show user interface (UI) and Web Services to connect to corporate data
servers.

Why Visual Studio Tools for Office?

Visual Studio 2005 Tools for Office (VSTO) adds .NET support for Word, Excel, Outlook, and InfoPath programming to
Visual Studio. VSTO turns the Word or Excel document being programmed against into a .NET class, replete with data
binding support, controls that can be coded against much like a Windows Forms control, and other .NET features. It
makes integrating .NET code into Outlook easy. It enables developers to put .NET code behind InfoPath forms.
Developers can even program against key Office objects without having to traverse the entire Office object model.

How .NET Is It?

This book discusses many new .NET ways of programming against Office applications. Some aspects of Office
programming remain awkward using .NET, however. Most of these awkward areas are attributable to the fact that the
Office object models were designed to work with a technology called COM. Although .NET code can talk to the Office
object models via PIAs, the object models sometimes do not feel very .NET-friendly. Furthermore, the Office object
models do not always follow the naming conventions or design patterns of classes that were designed for .NET.

In the future, many of the Office object models will likely be redesigned for .NET, and the object models will feel
friendlier to a .NET developer. For now, developers must live in a transitional period in which some aspects of Office
programming feel like they were designed for .NET and other aspects do not. This book discusses some of the most
difficult problems developers encounter when using .NET with Office and how to work around these problems.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Visual Basic Advantage

This edition of the book focuses on using the Visual Basic 2005 language to program against Office. Visual Basic is a
much easier language to use for Office development than the C# language. The Visual Basic language and the Office
object models "grew up" together over the years, and as a result, the Visual Basic language deals much more easily
with features of the Office object models, like optional parameters and loose typing, than C# does. If you compare the
Visual Basic edition of this book with the C# edition, you will often find the code samples are simpler than the C#
samples because of the way Visual Basic simplifies calling the Office object models.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Office Object Models
Almost all Office programming involves writing code that uses the object model of an Office application. The object
model is the set of objects provided by the Office application that running code can use to control the Office application.
The object model of each Office application is organized hierarchically, with the object called Application forming the
root of the hierarchy. From the Application object, other objects that make up the object model of the Office application
can be accessed.

As an example of how object model objects are related in the object model hierarchy, Figure 1.1 shows some of the
most important objects in the Word object model. The root object is the Application object. Also shown in this diagram
are some other objects, including Documents, Document, Paragraphs, and Paragraph. The Application object and
Documents object are related because the Documents object is returned via a property on the Application object. Other
objects are not directly accessible from the root Application object but are accessible by traversing a path. The
Paragraphs object, for example, is accessed by traversing the path from Application to Documents to Document to
Paragraphs. Figure 1.2 shows a similar diagram for some major objects in the Excel object model hierarchy.

Figure 1.1. Hierarchy in the Word object model.

Figure 1.2. Hierarchy in the Excel object model.

Objects

Each Office application's object model consists of many objects that you can use to control the Office application. Word
has 248 distinct objects; Excel has 196; and Outlook has 67. Objects tend to correspond to features and concepts in the
application itself. Word, for example, has objects such as Document, Bookmark, and Paragraphall of which correspond
to features of Word. Excel has objects such as Workbook, Worksheet, Font, Hyperlink, Chart, and Seriesall of which
correspond to features of Excel. As you might suppose, the most important and most used objects in the object models
are the ones that correspond to the application itself; the document; and key elements in a document, such as a range
of text in Word. Most solutions use these key objects and only a small number of other objects in the object models.
Table 1.1 lists some of the key objects in Word, Excel, and Outlook, along with brief descriptions of what these objects
do.

Table 1.1. Key Office Object Model Objects
Object Name What It Does

All Office Applications

Application The root object of the object model. Provides properties that return other

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application The root object of the object model. Provides properties that return other
objects in the object model. Provides methods and properties to set
application-wide settings. Raises application-level events.

CommandBars Enables the developer to add, delete, and modify tool-bars, buttons, menus,
and menu items.

Window Enables the developer to position windows and modify window-specific
settings. In Outlook, the objects that perform this function are the Explorer
and Inspector objects.

Word Objects

Document Represents the Word document. Is the root object of the content-specific
part of the Word object model. Raises document-level events.

Paragraph Enables the developer to access a paragraph in a Word document.

Range Enables the developer to access and modify a range of text in a Word
document. Provides methods and properties to set the text, set the
formatting of the text, and perform other operations on the range of text.

Excel Objects

Workbook Represents the Excel workbook. Is the root object of the content-specific
part of the Excel object model. Raises workbook-level events.

Worksheet Enables the developer to work with a worksheet within an Excel workbook.

Range Enables the developer to access and modify a cell or range of cells in an
Excel workbook. Provides methods and properties to set the cell value,
change the formatting, and perform other operations on the range of cells.

Outlook Objects

MAPIFolder Represents a folder within Outlook that can contain various Outlook items,
such as MailItem, ContactItem, and so on, as well as other folders. Raises
events at the folder level for selected actions that occur to the folder or
items in the folder.

MailItem Represents a mail item within Outlook. Provides methods and properties to
access the subject and message body of the mail, along with the recipient
and other information. Raises events when selected actions occur that
involve the mail item.

ContactItem Represents a contact within Outlook. Provides methods and properties to
access the information in the contact. Raises events when selected actions
occur that involve the contact.

AppointmentItem Represents an appointment within Outlook. Provides methods and properties
to access the information in the appointment. Raises events when selected
actions occur that involve the appointment.

Where objects in an Office object model start to differ from typical .NET classes is that the vast majority of object model
objects are not creatable or "New-able." In most Office object models, the number of objects that can be created by
using the New keyword is on the order of one to five objects. In most Office solutions, New will never be used to create
an Office object; instead, an already-created Office object, typically the root Application object, is passed to the
solution.

Because most Office object model objects cannot be created directly, they are instead accessed via the object model
hierarchy. Listing 1.1, for example, shows how to get a Worksheet object in Excel starting from the Application object.
This code is a bit of a long-winded way to navigate the hierarchy because it declares a variable to store each object as it
traverses the hierarchy. The code assumes that the root Excel Application object has been passed to the code and
assigned to a variable named app. The code gets the Worksheets object, which is of type Sheets. It also uses Visual
Basic's CType function to cast the Object returned from the Worksheets collection as a Worksheet, which is necessary
because the Worksheets collection is a collection of Object for reasons described in Chapter 3, "Programming Excel."

Listing 1.1. Navigating from the Application Object to a Worksheet in Excel

Dim myWorkbooks As Excel.Workbooks = app.Workbooks
Dim myWorkbook As Excel.Workbook = myWorkbooks.Item(1)
Dim myWorksheets As Excel.Sheets = myWorkbook.Worksheets
Dim myWorksheet As Excel.Worksheet
myWorksheet = CType(myWorksheets.Item(1), Excel.Worksheet)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

myWorksheet = CType(myWorksheets.Item(1), Excel.Worksheet)

If the code does not need to cache each object model object in a variable as it goes but needs only to get a Worksheet
object, a more efficient way to write this code is as follows:

Dim myWorksheet As Excel.Worksheet
myWorksheet = CType(app.Workbooks.Item(1).Worksheets.Item(1), _
 Excel.Worksheet)

Collections

Paragraphs and Documents are examples of a type of object called a collection. A collection is a specialized object that
represents a group of objects. Typically, a collection is named so that its name is the plural of the type of the object it
contains. The Documents collection object, for example, is a collection of Document objects. Some collection objects
may be collections of other types, such as String.

Collections typically have a standard set of properties and methods. A collection has a Count property, which returns
the number of objects in the collection. A collection also has an Item property, which takes a parameter, typically a
number, to specify the index of the desired object in the collection. The Item property is typically the default property of
the collection. (Default properties are described later in this chapter.) A collection may have other properties and
methods in addition to these standard properties and methods.

Listing 1.2 shows iteration over a collection using the Count property of the collection and the Item method of the
collection. Although this is not the preferred way of iterating over a collection (you typically use For Each instead), it does
illustrate two key points. First, collections in Office object models are almost always 1-based, meaning that they start at
index 1 rather than index 0. Second, the parameter passed to the Item property is often passed as an Object, so you can
specify either a numeric index as an Integer or the name of the object within the collection as a String.

Listing 1.2. Iterating over a Collection Using the Count Property and the Item
Property with Either an Integer or a String Index

Dim myWorkbooks As Excel.Workbooks = app.Workbooks

Dim workbookCount As Integer = myWorkbooks.Count
For i As Integer = 1 To workbookCount
 ' Get the workbook by its integer index
 Dim myWorkbook As Excel.Workbook = myWorkbooks.Item(i)

 ' Get the workbook by its string index
 Dim workbookName As String = myWorkbook.Name

 Dim myWorkbook2 As Excel.Workbook = _
 myWorkbooks.Item(workbookName)
 MsgBox(String.Format("Workbook {0}", myWorkbook2.Name))
Next

If you were to look at the definition for the Workbooks collection's Item property, you would see that it takes an Object
parameter. Even though the Item property takes an Object parameter, we pass an Integer value or a String value to it in
Listing 1.2. This works because Visual Basic can automatically convert a value type such as an Integer to an Object when
you pass the value type to a method that takes an Object. This automatic conversion is called boxing. Visual Basic
automatically creates an Object instance known as a box to put the value type into when passing it to the method.

The preferred way of iterating over a collection is using the For Each syntax of Visual Basic, as shown in Listing 1.3.

Listing 1.3. Iterating over a Collection Using For Each

Dim myWorkbooks As Excel.Workbooks = app.Workbooks

For Each workbook As Excel.Workbook In myWorkbooks
 MsgBox(String.Format("Workbook {0}", workbook.Name))
Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Advanced Topic

Sometimes, you may want to iterate over a collection and delete objects from the collection by calling a
Delete method on each object as you go. This is a risky practice, because behavior of a collection in the
Office object models is sometimes undefined if you are deleting items from it as you iterate over it.
Instead, as you iterate over the Office object model collection, add the objects you want to delete to a
.NET collection you have created, such as a list or an array. After you have iterated over the Office object
model collection and added all the objects you want to delete to your collection, iterate over your
collection, and call the Delete method on each object. Listing 1.4 illustrates this technique.

Listing 1.4. Using a Secondary Collection When Deleting Objects

Dim myWorkbook As Excel.Workbook = app.ActiveWorkbook
Dim myCollection As New Collections.Generic.List(Of Excel.Name)

For Each name As Excel.Name In myWorkbook.Names
 myCollection.Add(name)
Next

For Each name As Excel.Name In myCollection
 name.Delete()
Next

Enumerations

An enumeration is a type defined in an object model that represents a fixed set of possible values. The Word object
model contains 252 enumerations; Excel, 195; and Outlook, 55.

As an example of an enumeration, Word's object model contains an enumeration called WdWindowState. WdWindowState is
an enumeration that has three possible values: wdWindowStateNormal, wdWindowStateMaximize, or wdWindowStateMinimize. These
are constants you can use directly in your code when testing for a value. Each value corresponds to an integer value.
(wdWindowStateNormal, for example, is equivalent to 0.) It is considered bad programming style, however, to make
comparisons to the integer values rather than the constant names themselves because it makes the code less readable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Properties, Methods, and Events
Objects in an Office application's object model are .NET classes that have properties, methods, and events that can be
accessed by solution code. An object in the object model is required to have at least one property, method, or event.
Most of the objects in an Office application's object model have several properties, a few methods, and no events. The
most important objects in the object model, such as Application and Document, are typically much more complex and
have a much larger number of properties and methods as well as events. Word's Application object, for example, has
about 100 properties, 60 methods, and 20 events. Table 1.2 lists some of the properties, methods, and events of the
Word Application object to give a sense of the types of functionality an object model object provides.

Table 1.2. Selected Properties, Methods, and Events from Word's
Application Object

Name What It Does

Properties
ActiveDocument Returns a Document object for the active documentthe document that is

currently being edited by the user.

ActivePrinter Gets and sets the default printer.

Caption Gets and sets the caption text for the application windowtypically, this is set
to "Microsoft Word."

Documents Returns a Documents collection that represents the collection of open Word
documents.

Methods
Activate Brings Word to the front of other windows and makes it the active window.

NewWindow Creates a new Word window that shows the same document as the active
window and returns a Window object model object representing that new
window.

Quit Closes Word.

Events
DocumentBeforeClose An event that is raised before a document is closed. The Document object

for the document being closed is passed as a parameter to the event along
with a Boolean Cancel parameter. If the code handling the event sets the Cancel
parameter to true, the document will not be closed.

DocumentOpen An event that is raised when a document is opened. The Document object
for the document being opened is passed as a parameter to the event.

WindowActivate An event that is raised when a Word window is activated by the user,
typically by clicking an inactive window, thereby making it active. The
Document object for the document being activated is passed as a parameter
to the event along with a Window object for the window that was activated
(because two windows could be showing the same document).

In Office object models, properties predominate, followed by methods and trailed distantly by events. Figure 1.3 shows
the distribution of properties, methods, and events in the Word, Excel, and Outlook object models. A couple of general
statements can be made about the Office object models as shown by Figure 1.3. The Excel object model is the biggest
of the Office object models in terms of total number of properties, methods, and events, followed closely by Word.
Word has a very small number of events. We can also say that there are many more properties in Office object models
than methods.

Figure 1.3. Distribution of properties, methods, and events in the Word, Excel, and
Outlook object models.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Outlook object models.

Properties

Properties are simple methods that allow you to read or write particular named values associated with an object. Word's
Application object, for example, has a property called CapsLock, which returns a Boolean value. If the Caps Lock is on, it
will return true; if the Caps Lock is off, it will return False. Listing 1.5 shows some code that examines this property. The
code assumes that the root Application object of the Word object model has already been assigned to a variable called
app.

Listing 1.5. A Property That Returns a Value Type: The Boolean CapsLock Property
on Word's Application Object

If app.CapsLock Then
 MsgBox("CapsLock is on")
Else
 MsgBox("CapsLock is off")
End If

Another thing to note about the CapsLock property is that it is a read-only property. That is to say, you cannot write
code that sets the CapsLock property to False; you can only get the value of the CapsLock property. Within the Office
object model, many properties are read-only. If you try to set a read-only property to some value, an error will occur
when you compile your code.

The CapsLock property returns a Boolean value. It is also possible for a property to return an enumeration. Listing 1.6
shows some code that uses the WindowState property to determine whether Word's window is maximized, minimized,
or normal. This code uses Visual Basic's Select Case statement to evaluate the WindowState property and compare its
value with the three possible enumerated value constants. Notice that when you specify enumerated values in Visual
Basic, you must specify both the enumerated type name and the enumerated value. If you used just wdWindowStateNormal
rather than Word.WdWindowState.wdWindowStateNormal, the code would not compile.

Listing 1.6. A Property That Returns an Enumeration: The WindowState Property
on Word's Application Object

Select Case app.WindowState
 Case Word.WdWindowState.wdWindowStateMaximize
 MsgBox("Maximized")
 Case Word.WdWindowState.wdWindowStateMinimize
 MsgBox("Minimized")
 Case Word.WdWindowState.wdWindowStateNormal
 MsgBox("Normal")
End Select

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Select

Properties can also return other object model objects. Word's Application object, for example, has a property called
ActiveDocument that returns the active documentthe one the user is currently editing. The ActiveDocument property
returns another object in the Word object model called Document. Document in turn also has properties, methods, and
events. Listing 1.7 shows code that examines the ActiveDocument property and then displays the Name property of the
Document object.

Listing 1.7. A Property That Returns Another Object Model Object: The
ActiveDocument Property on Word's Application Object

Dim myDocument As Word.Document = app.ActiveDocument
MsgBox(myDocument.Name)

What happens if there is no active documentif Word is running, for example, but no documents are open? In the case of
the ActiveDocument property, it throws an exception. So a safer version of the preceding code would catch the
exception and report that no active document was found. Listing 1.8 shows this safer version. An even better approach
is to check the Count property of the Application object's Documents collection to see whether any documents are open
before accessing the ActiveDocument property.

Listing 1.8. A Property That Might Throw an Exception: The ActiveDocument
Property on Word's Application Object

Dim myDocument As Word.Document
Try
 myDocument = app.ActiveDocument
 MsgBox(myDocument.Name)
Catch ex As Exception
 MsgBox(String.Format("No active document: {0}", ex.Message)
End Try

Object models sometimes behave differently in an error case in which the object you are asking for is not available or
does not make sense in a particular context. The property can return a Nothing value. The way to determine whether an
object model property will throw an exception or return a Nothing value is to consult the object model documentation for
the property in question. Excel's Application object uses this pattern for its ActiveWorkbook property. If no Excel
workbook is open, it returns Nothing instead of throwing an exception. Listing 1.9 shows how to write code that handles
this pattern of behavior.

Listing 1.9. A Property That Might Return Nothing: The ActiveWorkbook Property
on Excel's Application Object

Dim myWorkbook As Excel.Workbook = app.ActiveWorkbook

If myWorkbook Is Nothing Then
 MsgBox("No active workbook")
Else
 MsgBox(myWorkbook.Name)
End If

Parameterized Properties

The properties examined so far are parameterless. Some properties, however, require parameters. Word's Application
object, for example, has a property called FileDialog that returns a FileDialog object. The FileDialog property takes an
enumeration parameter of type MsoFileDialogType, which is used to pick which FileDialog is returned. Its possible values
are msoFileDialogOpen, msoFileDialogSaveAs, msoFileDialogFilePicker, and msoFileDialogFolderPicker.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The code in Listing 1.10 uses the FileDialog property and passes msoFileDialogFilePicker as a parameter to specify the type
of FileDialog object to be returned. Then it calls a method on the returned FileDialog object to show the dialog box.

Listing 1.10. A Parameterized Property That Takes an Enumeration Parameter and
Returns an Object Model Object: The FileDialog Property on Word's Application
Object

Dim dialog As Office.FileDialog
dialog = app.FileDialog(Office.MsoFileDialogType. _
 msoFileDialogFilePicker)
dialog.Show()

The Office object models also have properties that have optional parameters. Optional parameters are parameters that
can be omitted, and the Office application will fill in a default value for the parameter. Optional parameters are typically
of type Object because of how optional parameters are passed to the underlying COM API. In Visual Basic you can omit
optional parameters, or you can specify some optional parameters and omit others. To omit a particular optional
parameter, you just leave the parameter out. Given a property on app called SomeProp that takes three optional Integer
parameters named A, B, and C, you can call it in any of these ways:

app.SomeProp 'omit all optional parameters
app.SomeProp(5) 'omit second and third parameters
app.SomeProp(, 8) 'omit first and third parameters
app.SomeProp(, ,12) 'omit first and second parameters
app.SomeProp(, 13, 7) 'omit first optional parameter
app.SomeProp(11, ,25) 'omit second optional parameter
app.SomeProp(44, 6) 'omit third optional parameter
app.SomeProp(12, 19, 31) 'specify all optional parameters

It is also possible to use the name of the parameter to specify the optional parameters you wish to supply. Remember
that the names of the three optional Integer parameters in our example are A, B, and C. You can call SomeProp in any of
the ways shown below. When using the name of the parameter, the parameters can be specified in any order.

app.SomeProp(C:=10) 'specify the third parameter named C
app.SomeProp(B:=4, A:=15) 'specify the parameters B and A
app.SomeProp(A:=1, C:=4, B:=11) 'specify all optional parameters

Finally, you can mix the ordered-parameter and named-parameter approaches:

app.SomeProp(5, C:=10) 'specify first and C parameters

Listing 1.11 shows an example of calling a parameterized property called Range, which is found on Excel's Application
object. Calling the Range property on Excel's Application object returns the Range object in the active workbook as
specified by the parameters passed to the property. The Range property takes two parameters. The first parameter is
required, and the second parameter is optional. If you want to specify a single cell, you just pass the first parameter. If
you want to specify multiple cells, you have to specify the top-left cell in the first parameter and the bottom-right cell in
the second parameter.

Listing 1.11. A Parameterized Property with an Optional Parameter: The Range
Property on Excel's Application Object

' Omit the optional second parameter
Dim myRange As Excel.Range = app.Range("A1")

' Specify the optional second parameter
Dim myRange2 As Excel.Range = app.Range("A1", "B2")

Properties Common to Most Objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because all the object model objects have Object as their base class, you will always find the methods GetType,
GetHashCode, Equals, and ToString on every object model object. You will also often find a property called Application
that will return the Application object associated with the object. This is provided as a quick way to get back to the root
of the object model. Many objects have a property called Creator, which gives you a code indicating which application
the object was created in. Finally, you will often find a Parent property that returns the object that is the parent in the
object model hierarchy.

Default Parameterized Properties

Earlier in this chapter, we presented this code as a simple way of navigating the object hierarchy of Excel to get a
Worksheet object:

Dim myWorksheet As Excel.Worksheet
myWorksheet = CType(app.Workbooks.Item(1).Worksheets.Item(1), _
 Excel.Worksheet)

There is an even simpler way to write this code. It can be rewritten like this:

Dim myWorksheet As Excel.Worksheet
myWorksheet = CType(app.Workbooks(1).Worksheets(1), _
 Excel.Worksheet)

In this more efficient example, the code uses a feature of Visual Basic called default properties that makes the code a
little simpler. Many collections and even some objects in the Office object models have a parameterized property
designated as the default property. The most common use of a default property is with a collection such as Workbooks
or Worksheets where the default property is the Item property of the collection, which takes a parameter specifying
which item in the collection you want returned. A default property must have at least one parameter. Default properties
allow the code to omit specifying the Item property and instead just pass the parameters. When the property name is
omitted in this way, Visual Basic will call the default property with the specified parameters. Therefore, these two lines
of code are equivalent. In the first line, the Item property is explicitly called. In the second line, the Item property is
implicitly called, as Item is the default property specified by the object that Visual Basic uses when it is omitted.

app.Workbooks.Item(1).Worksheets.Item(1)
app.Workbooks(1).Worksheets(1)

You can inspect an object or collection using the object browser of Visual Studio to determine whether it has a default
property. The default property always has the special name of "_Default" and is an alias to the parameterized property of
the object that has been marked as the default property.

Methods

A method is typically more complex than a property and represents a "verb" on the object that causes something to
happen. It may or may not have a return value and is more likely to have parameters than a property.

The simplest form of a method has no return type and no parameters. Listing 1.12 shows the use of the Activate
method from Word's Application object. This method activates the Word application, making its window the active
window (the equivalent of clicking the Word window in the taskbar to activate it).

Listing 1.12. A Method with No Parameters and No Return Type: The Activate
Method on Word's Application Object

MsgBox("Activating the Word window.")

app.Activate()

Methods may also have parameters and no return type. Listing 1.13 shows an example of this kind of method. The
ChangeFileOpenDirectory method takes a String that is the name of the directory you want Word to default to when the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ChangeFileOpenDirectory method takes a String that is the name of the directory you want Word to default to when the
Open dialog box is shown. For a method this simple, you might wonder why a property was not used instead; you can
imagine Word's having a FileOpenDirectory property, for example. In this case, the ChangeFileOpenDirectory changes
the default open directory only temporarilyfor the lifetime of the current Word session. When you exit Word and then
restart Word, the default will no longer be what you set with this method. Perhaps for this reason, this functionality was
exposed via a method rather than a property. A second reason why object models sometimes use a simple method
such as this rather than a property is because some values exposed in an object model are "write-only"that is, they can
be set but cannot be read. It is common to create a read-only property but not common to create a write-only property.
So when a write-only property is needed, a simple method is often used instead.

Listing 1.13. A Method with Parameters and No Return Type: The
ChangeFileOpenDirectory Method on Word's Application Object

app.ChangeFileOpenDirectory("c:\temp")

MsgBox("Will open out of temp for this session.")

Methods can have no parameters and a return type. Listing 1.14 shows an example of this kind of method. The
DefaultWebOptions method returns the DefaultWebOptions object, which is then used to set options for Word's Web
features. In this case, DefaultWebOptions really should have been implemented as a read-only property as opposed to
a method.

Listing 1.14. A Method with No Parameters and a Return Type: The
DefaultWebOptions Method on Word's Application Object

Dim options As Word.DefaultWebOptions = app.DefaultWebOptions()

MsgBox(String.Format("Pixels per inch is {0}.", _
 options.PixelsPerInch))

Methods can have parameters and a return type. Listing 1.15 shows an example of this kind of method. The
CentimetersToPoints method takes a centimeter value and converts it to points, which it returns as the return value of
the method. Points is a unit often used by Word when specifying spacing in the document.

Listing 1.15. A Method with Parameters and a Return Type: The
CentimetersToPoints Method on Word's Application Object

Dim centimeters As Single = 15.0

Dim points As Single = app.CentimetersToPoints(centimeters)

MsgBox(String.Format("{0} centimeters is {1} points.", _
 centimeters, points))

Methods can also have optional parameters. Optional parameters do not need to be specified directly to call the
method. You can omit any parameters you do not want to specify. Listing 1.16 shows a method called CheckSpelling in
Excel that has optional parameters. Listing 1.16 illustrates the syntax you use to omit parameters you do not want to
specify. The CheckSpelling method takes a required Stringthe word you want to check the spelling ofalong with two
optional parameters. The first optional parameter enables you to pick a custom dictionary to check the spelling against.
The second optional parameter enables you to tell the spell checker to ignore words in all uppercasesuch as an
acronym. In Listing 1.16, we check a phrase without specifying any of the optional parameters; we omit the optional
parameters. We also check a second phrase that has an acronym in all uppercase, so we omit the first optional
parameter because we do not want to use a custom dictionary, but we specify the second optional parameter to be true
so the spell checker will ignore the words in all uppercase.

Listing 1.16. A Method with Optional Parameters and a Return Type: The
CheckSpelling Method on Excel's Application Object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CheckSpelling Method on Excel's Application Object

Dim phrase1 As String = "Thes is spelled correctly."
Dim phrase2 As String = "This is spelled correctly AFAIK."

Dim isCorrect1 As Boolean = app.CheckSpelling(phrase1)
Dim isCorrect2 As Boolean = app.CheckSpelling(phrase2, , True)

Events

You have now read about the use of properties and methods in some detail; these are both ways that your code
controls the Office application. Events are the way the Office application talks back to your code and enables you to run
additional code in response to some condition that occurred in the Office application.

In the Office object models, there are far fewer events than there are methods and properties. There are 36 events in
Word and 84 in Excel, for example. Some of these events are duplicated on different objects. When the user opens a
Word document, both the Application object and the newly created Document object raise Open events. If you wanted
to handle all Open events on all documents, you would handle the Open event on the Application object. If you had
code associated with a particular document, you would handle the Open event on the corresponding Document object.

In most of the Office object models, events are raised by a handful of objects. The only objects that raise events in the
Word object model are Application, Document, and OLEControl. The only objects that raise events in the Excel object
model are Application, Workbook, Worksheet, Chart, OLEObject, and QueryTable. Outlook is a bit of an exception:
About half of the objects in the Outlook object model raise events. Most of these objects raise the same set of events,
however, making the total number of unique events small in Outlook as well.

Table 1.3 shows all the events raised by Excel's Application object. This table represents almost all the events raised by
Excel, because events prefaced by Sheet are duplicated on Excel's Worksheet object, and events prefaced by Workbook
are duplicated on Excel's Workbook object. The only difference in these duplicated events is that the Application-level
Sheet and Workbook events pass a parameter of type Sheet or Workbook to indicate which worksheet or workbook
raised the event. Events raised by a Workbook object or Sheet object do not have to pass the Sheet or Workbook
parameter, because it is implicitly determined from which Workbook or Sheet object you are handling events for.

Table 1.3. Events Raised by Excel's Application Object
Event Name When It Is Raised

NewWorkbook When a new workbook is created

SheetActivate When any worksheet is activated

SheetBeforeDoubleClick When any worksheet is double-clicked

SheetBeforeRightClick When any worksheet is right-clicked

SheetCalculate After any worksheet is recalculated

SheetChange When cells in any worksheet are changed by the user

SheetDeactivate When any worksheet is deactivated

SheetFollowHyperlink When the user clicks a hyperlink in any worksheet

SheetPivotTableUpdate After the sheet of a PivotTable report has been updated

SheetSelectionChange When the selection changes on any worksheet

WindowActivate When any workbook window is activated

WindowDeactivate When any workbook window is deactivated

WindowResize When any workbook window is resized

WorkbookActivate When any workbook is activated

WorkbookAddinInstall When any workbook is installed as an add-in

WorkbookAddinUninstall When any workbook is uninstalled as an add-in

WorkbookAfterXmlExport After data in a workbook is exported as an XML data file

WorkbookAfterXmlImport After data in a workbook is imported from an XML data file

WorkbookBeforeClose Before any workbook is closed

WorkbookBeforePrint Before any workbook is printed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WorkbookBeforeSave Before any workbook is saved

WorkbookBeforeXmlExport Before data in any workbook is exported as an XML data file

WorkbookBeforeXmlImport Before data in any workbook is imported from an XML data file

WorkbookDeactivate When any workbook window is deactivated

WorkbookNewSheet When a new worksheet is created in any workbook

WorkbookOpen When any workbook is opened

WorkbookPivotTableCloseConnection After a PivotTable report connection has been closed

WorkbookPivotTableOpenConnection After a PivotTable report connection has been opened

WorkbookSync When a workbook that is part of a document workspace is synchronized with
a copy on the server

Declarative Event Handling

Visual Basic provides two ways to handle events. The first way is to handle an event declaratively. Consider the Excel
Application object, which has the events described in Table 1.3. By declaring an instance of the Excel Application object
using the WithEvents keyword, you tell the Visual Basic compiler that it is an object that can raise events:

Public WithEvents app As Excel.Application

When you have declared the Excel Application object as an object that can raise events, you can declare a method that
handles an event raised by the Excel application object. To handle the events raised by Office object models, you must
first declare a handler method in your code that matches the signature expected by the event being raised. The
WindowActivate event raised by the Application object in Excel expects a handler method to match this signature:

Event WindowActivate(_
 ByVal Wb As Excel.Workbook, _
 ByVal Wn As Excel.Window)

To handle this event, you must declare a handler method in your code that matches the expected signature. Below, we
declare a method called app_WindowActivate that handles the WindowActivate event. Note that the Event keyword shown in
the signature above is omitted in our handler method because we are not defining a new event typejust implementing
an existing one defined by the Office object model. The declaration includes a Handles clause that gives the name of the
object instance raising the event (app) and the event that is being handled (WindowActivate).

Private Sub app_WindowActivate(ByVal Wb As Excel.Workbook, _
 ByVal Wn As Excel.Window) Handles app.WindowActivate

 MsgBox("The window " & Wn.Caption & " was just activated.")

End Sub

The one piece we are missing is some code to set the app object to an instance of the Excel Application object. Listing
1.17 shows a VSTO customization that puts it all together. VSTO provides code items where you can write code that
accesses member variables that are connected to objects in the Office object model. VSTO raises the Sheet1_Startup event
automatically. We have added some code to this event handler to set the app member variable we have declared, using
the WithEvents keyword to an instance of the Excel Application object. In this case, the code uses a property in the base
class of Sheet1 called Application to get an instance of the Excel Application object. With app set to an instance of the
Excel Application object, the event handler app_WindowActivate is called whenever a window is activated within Excel.

Listing 1.17. A VSTO Customization That Handles the Excel Application Object's
WindowActivate Event

Public Class Sheet1

 Public WithEvents app As Excel.Application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Public WithEvents app As Excel.Application

 Private Sub app_WindowActivate(ByVal Wb As Excel.Workbook, _
 ByVal Wn As Excel.Window) Handles app.WindowActivate

 MsgBox("The window " & Wn.Caption & " was just activated.")

 End Sub

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 End Sub

End Class

Visual Studio helps make this process simpler by generating the event handler method for you automatically. When you
declare a member variable such as app with the WithEvents keyword, Visual Studio lists that variable in the left drop-
down list above the code-editing window, as shown in Figure 1.4.

Figure 1.4. Selecting a member variable declared using WithEvents.

[View full size image]

When you have selected app in the left drop-down list, drop down the list on the right to pick the event you want to
handle. In Figure 1.5, all events raised by the app variable are displayed, and we select the WindowActivate event as the
event we want to handle.

Figure 1.5. Selecting an event to handle for a member variable declared using
WithEvents.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you select the WindowActivate event, Visual Studio will automatically generate a handler for that event, or if a
handler has already been created, it will move the cursor to that handler. This greatly simplifies the process of writing
handlers for events.

Advanced Topic: Handling Events Dynamically

There is a second way to handle events when declarative event handling falls short. You may want to
handle an event for a short time and then unregister your event handler so it does not get called again.
Although it is not possible to do this declaratively, it is possible to do it dynamically using Visual Basic's
AddHandler and RemoveHandler statements.

The AddHandler and RemoveHandler statements are passed the event to be handled and the event handler
method that will handle the event. The AddressOf keyword is used when specifying the event handler
method. The following code uses AddHandler to add dynamically the event handler MyWindowActivateHandler to
handle the app object's WindowActivate event:

AddHandler app.WindowActivate, _
 AddressOf Me.MyWindowActivateHandler

At some point later in the execution of the code, you can use the RemoveHandler statement to remove the
event handler method from handling the event by using an almost-identical syntax:

RemoveHandler app.WindowActivate, _
 AddressOf Me.MyWindowActivateHandler

As with dynamic event handlers, the event handler signature must match the expected signature of the
event. The Handles keyword, however, is not used in the event handler signature when you are handling
events dynamically. So the dynamic event handler for the WindowActivate event looks like the
declarative event handler but omits the Handles clause:

Private Sub app_WindowActivate(ByVal Wb As Excel.Workbook, _
 ByVal Wn As Excel.Window)

 MsgBox("The window " & Wn.Caption & " was just activated.")

End Sub

Listing 1.18 shows a complete implementation of dynamic event handling in a simple VSTO
customization class. The code declares an app variable as in Listing 1.17 but does not use the WithEvents
keyword. Sheet1_Startup is called automatically when the VSTO customization class starts up. In the
Sheet1_Startup method, we set app to an instance of the Excel Application object as before. Then the
AddHandler statement dynamically adds the event handler method MyWindowActivateHandler to handle the
WindowActivate event raised by the app variable. In the event handler, after displaying a message box
showing the name of the window that was activated, the RemoveHandler statement dynamically removes
the event handler from handling future WindowActivate events.

Listing 1.18. A VSTO Customization That Dynamically Adds and Removes
an Event Handler for the Excel Application Object's WindowActivate
Event

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Event

Public Class Sheet1

 Public app As Excel.Application

 Private Sub MyWindowActivateHandler(ByVal Wb As _
 Excel.Workbook, ByVal Wn As Excel.Window)

 MsgBox("The window " & Wn.Caption & " was just activated.")
 RemoveHandler app.WindowActivate, _
 AddressOf Me.MyWindowActivateHandler

 End Sub

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application
 AddHandler app.WindowActivate, _
 AddressOf Me.MyWindowActivateHandler

 End Sub

End Class

The "My Button Stopped Working" Issue

One issue commonly encountered when dynamically handling Office events in .NET is known as the "my
button stopped working" issue. A developer will write some code to handle a Click event raised by a
CommandBarButton in the Office toolbar object model. This code will sometimes work temporarily but
then stop. The user will click the button, but the Click event appears to have stopped working.

The cause of this issue is connecting an event handler method to an object whose lifetime does not
match the desired lifetime of the event. This typically occurs when the object to which you are
connecting an event handler goes out of scope or gets set to Nothing so that it gets garbage collected.
Listing 1.19 shows an example of code that makes this mistake. In this case, an event handler called
btn_Click is connected to a newly created CommandBarButton called btn. btn is declared as a local variable,
however, so as soon as the ConnectEvents function exits and garbage collection occurs, btn gets
garbage-collected, and the event connected to btn is not called.

The complete explanation of this behavior has to do with btn being associated with something called a
Runtime Callable Wrapper (RCW), which is described in Chapter 24, "Creating Outlook Add-Ins with
VSTO." Without going into too much depth, btn holds on to an RCW that is necessary for the event to
propagate from the unmanaged Office COM object to the managed event handler. When btn goes out of
scope and is garbage-collected, the reference count on the RCW goes down, and the RCW is
disposedthereby breaking the event connection.

Listing 1.19. A Class That Fails to Handle the CommandBarButton Click
Event

Imports Excel = Microsoft.Office.Interop.Excel
Imports Office = Microsoft.Office.Core

Class SampleListener
 Private app As Excel.Application

 Public Sub New(ByVal application As Excel.Application)
 app = application
 End Sub

 ' This appears to connect to the Click event but
 ' will fail because btn is not put in a more permanent
 ' variable.
 Public Sub ConnectEvents()
 Dim bar As Office.CommandBar = app.CommandBars("Standard")

 Dim btn As Office.CommandBarButton = bar.Controls.Add(1)

 If btn IsNot Nothing Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If btn IsNot Nothing Then
 btn.Caption = "My Button"
 btn.Tag = "SampleListener.btn"
 AddHandler btn.Click, AddressOf Me.btn_Click
 End If
 End Sub

 ' The Click event will never reach this handler.
 Public Sub btn_Click(ByVal ctrl As Office.CommandBarButton, _
 ByRef cancelDefault As Boolean)

 MessageBox.Show("Button was clicked")
 End Sub

End Class

Listing 1.20 shows a second example of a failed event listener class that is attempting to connect to
Outlook's NewInspector event, which is raised by Outlook's Inspectors object. This event is raised
whenever an inspector window opens (a window where you are viewing or editing an Outlook item). This
code will also fail to handle any events. In this case, it is more subtle because the event handler is
connected to the Inspectors object, which is temporarily created in the line of code that begins with
app.Inspectors. Because the Inspectors object returned by app.Inspectors is not stored in a permanent
variable, the temporarily created Inspectors object is garbage-collected, and the event connected to it
will never get called.

Listing 1.20. A Class That Fails to Handle the Outlook Inspectors
Object's NewInspectorEvent

[View full width]
Imports Outlook = Microsoft.Office.Interop.Outlook

Class SampleListener
 Private app As Outlook.Application

 Public Sub New(ByVal application As Outlook.Application)
 app = application
 End Sub

 ' This will appear to connect to the NewInspector event, but
 ' will fail because Inspectors is not put in a more permanent
 ' variable.
 Public Sub ConnectEvents()
 AddHandler app.Inspectors.NewInspector, _
 AddressOf Me.MyNewInspectorHandler
 End Sub

 ' The NewInspector event will never reach this handler.
 Public Sub MyNewInspectorHandler(ByVal inspector As Outlook

.Inspector)
 MessageBox.Show("New inspector.")
 End Sub
End Class

The fix for this issue is to declare a variable whose lifetime matches the lifetime of your event handler
and set it to the Office object for which you are handling the event. Listing 1.21 shows a rewritten class
that successfully listens to the CommandBarButton Click event. This class works because instead of using
the method-scoped variable btn, it uses a class-scoped member variable called myBtn. This ensures that
the event handler will be connected for the lifetime of the instance when ConnectEvents is called.

Listing 1.21. A Class That Succeeds in Handling the CommandBarButton
Click Event Because It Stores the CommandBarButton Object in a Class
Member Variable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Member Variable

Imports Excel = Microsoft.Office.Interop.Excel
Imports Office = Microsoft.Office.Core

Class SampleListener
 Private app As Excel.Application
 Private myBtn As Office.CommandBarButton

 Public Sub New(ByVal application As Excel.Application)
 app = application
 End Sub

 Public Sub ConnectEvents()
 Dim bar As Office.CommandBar = app.CommandBars("Standard")

 myBtn = bar.Controls.Add(1)

 If myBtn IsNot Nothing Then
 myBtn.Caption = "My Button"
 myBtn.Tag = "SampleListener.btn"
 AddHandler myBtn.Click, AddressOf Me.myBtn_Click
 End If
 End Sub

 Public Sub myBtn_Click(ByVal ctrl As Office.CommandBarButton, _
 ByRef cancelDefault As Boolean)

 MessageBox.Show("Button was clicked")
 End Sub

End Class

Listing 1.22 shows a similar fix for our failed Outlook example. Here, we declare a class-level variable
called myInspectors that we assign to app.Inspectors. This ensures that our event handler will be connected
for the lifetime of the instance when ConnectEvents is called because the lifetime of myInspectors now
matches the lifetime of the instance.

Listing 1.22. A Class That Succeeds in Handling the Outlook Inspectors
Object's NewInspector Event Because It Stores the Inspectors Object in
a Class Member Variable

Imports Outlook = Microsoft.Office.Interop.Outlook

Class SampleListener
 Private app As Outlook.Application
 Private myInspectors As Outlook.Inspectors

 Public Sub New(ByVal application As Outlook.Application)
 app = application
 End Sub

 Public Sub ConnectEvents()
 myInspectors = app.Inspectors
 AddHandler myInspectors.NewInspector, _
 AddressOf Me.MyNewInspectorHandler
 End Sub

 Public Sub MyNewInspectorHandler(_
 ByVal inspector As Outlook.Inspector)
 MessageBox.Show("New inspector.")
 End Sub
End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Office Primary Interop Assemblies (PIAs)
Before learning any more about how to build Office solutions, you need to understand in more detail the managed
assemblies that you use to talk to the Office object model in .NET. The managed assemblies used to talk to Office are
called the Office primary interop assemblies (PIAs).

As mentioned previously, when you are talking to an Office object model in .NET, you talk to it through a .NET
technology called COM interop. The Office object models are all written in unmanaged code (C and C++) that exposes
COM interfaces. To talk to these COM interfaces from managed code (C# or Visual Basic), you talk via a wrapper that
allows managed code to interoperate with the unmanaged COM interfaces of Office. This wrapper is a set of .NET
classes compiled into an assembly called a PIA.

The word primary is used when describing these assemblies because they are the Office-approved wrappers for talking
to the Office object models. This designation is needed because you could create your own wrapper for the Office COM
object models by using a tool provided with .NET called TLBIMP. A wrapper you create on your own is called an interop
assembly (IA) rather than a primary interop assembly. Even though you might be tempted to go play with TLBIMP and
build your own interop assemblies, you should never use anything other than the Office-provided interop assemblies to
do Office development. If every developer created his or her own sets of wrappers for Office development, no Office
solution could interoperate with anyone else's solution; each interop wrapper class of, say, Worksheet created by each
developer would be considered a distinct type. Even though the interop assembly I created has a Worksheet object, and
the interop assembly you created has a Worksheet object, I cannot pass you my Worksheet object, and you cannot
pass me your Worksheet object. We both need to be using the same interop assembly: the primary interop assembly.

A second reason to not build your own interop assemblies is that Office has made special fixes to the PIAs to make
them work better when doing Office development. If you generate your own, you are likely to run into issues that are
fixed in the PIAs.

Installing the PIAs

The Office 2003 PIAs are available through the Office 2003 installer. The Office 2003 PIAs are also available as a
Microsoft Windows Installer package that you can redistribute with your application. To install the Office 2003 PIAs
through the Office 2003 Installer, when you do a setup, check the Choose Advanced Customization of Applications
check box in the first step of the Office 2003 Setup Wizard. Then, in the tree control that appears in the next screen of
the wizard, you will see a .NET Programmability Support node under each application for which PIAs are available, as
shown in Figure 1.6. Click each of these .NET programmability support nodes, and make sure that you set Run from My
Computer. Also, under the Office Tools node in the tree, you might want to turn on Microsoft Forms 2.0 .NET
Programmability Support and Smart Tag .NET Programmability support. A second method of getting the Office 2003
PIAs is to do a Complete install of Office 2003; all the .NET programmability support will be turned on for you
automatically.

Figure 1.6. Installing the Office 2003 PIAs.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Office PIAs get installed to the Global Assembly Cache (GAC). The GAC is usually in the Assembly subdirectory of
the Windows directory.

A number of Office PIAs are available; Table 1.4 lists some of the most common ones. One PIA listed here that is of
note is the Office.dll PIA, which is where common types that are shared between the Office applications (such as
CommandBar) are found.

Table 1.4. Common Office PIAs
Description Assembly Name Namespace

Microsoft
Excel 11.0
Object
Library

Microsoft.Office.Interop.Excel.dll Microsoft.Office.Interop. Excel
(Typically aliased to Excel namespace
using Import)

Microsoft
Graph 11.0
Object
Library

Microsoft.Office.Interop.Graph.dll Microsoft.Office.Interop.Graph
(Typically aliased to Graph
namespace using Import)

Microsoft
Office 11.0
Object
Library

Office.dll Microsoft.Office.Core (Typically
aliased to Office namespace using
Import)

Microsoft
Outlook
11.0 Object
Library

Microsoft.Office.Interop.Outlook.dll Microsoft.Office.Interop.Outlook
(Typically aliased to Outlook
namespace using Import)

Microsoft
SmartTags
2.0 Type
Library

Microsoft.Office.Interop.SmartTag.dll Microsoft.Office.Interop.SmartTag
(Typically aliased to SmartTag
namespace using Import)

Microsoft
Word 11.0
Object
Library

Microsoft.Office.Interop.Word.dll Microsoft.Office.Interop.Word
(Typically aliased to Word
namespace using Import)

Referencing the PIAs

Adding a reference to a PIA is not necessary for most VSTO projects because the reference is automatically added for
you. The console application examples in this book, such as the ones that automate Excel, can be typed into a Visual
Studio console project and compiled, but you must first add a reference to the necessary PIA. To add a reference, right-
click the project node in the Visual Studio Solution Explorer, as shown in Figure 1.7. Choose Add Reference from the
menu that pops up when you right-click the project node.

Figure 1.7. Adding a reference to a project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1.7. Adding a reference to a project.

Choose the COM tab of the Add Reference dialog box that appears, as shown in Figure 1.8. The COM references are
listed by component name, which matches the Description column in Table 1.4. So to add a reference to the Excel PIA,
you choose the Microsoft Excel 11.0 Object Library and click the OK button to add the Excel 2003 PIA reference to your
project, as shown in Figure 1.8.

Figure 1.8. The Add Reference dialog box.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note in Figure 1.8 that the Path column in the COM tab of the Add References dialog box displays the path to the COM
library that the PIA wraps. The Microsoft Excel 11.0 Object Library, for example, points to the location on your machine
of the excel.exe executable. When you select these references and close the dialog box, you can examine the properties
of the actual references that were added by expanding the References folder in the project, right-clicking the references
that you added, and choosing Properties. You will see that Visual Studio figures out the PIA managed object in the GAC
that corresponds to the COM object you selected. In this case, you will not get a reference to the excel.exe executable
but instead to the Microsoft.Office.Interop.Excel.dll in the GAC.

Finally, note that even though you did not explicitly add a reference to the Microsoft Office 11.0 Object Library
(office.dll), a reference is added for you. This is because the Excel 11.0 Object Library uses types from the Microsoft
Office 11.0 Object Library. Visual Studio detects this and adds the required Office PIA to your project references
automatically.

Advanced Topic: Browsing the PIAs

When you look at the PIA you have referenced in the object browser in Visual Studio with Show Hidden
Types and Members turned on, you might find yourself very confused. The object browser shows many
helper objects that are created as part of the interop wrapper. Consider, for example, what .NET Interop
does to the seemingly simple Excel Application object. It turns it into a multiple-headed (8 heads, to be
exact; 36 if you count each delegate individually) monster. All of the following are public types that you
see in the browser related to the Excel Application object:

Interfaces

_Application

AppEvents

AppEvents_Event

Application

IAppEvents

Delegates

AppEvents_*EventHandler (29 of them)

Classes

AppEvents_SinkHelper (AppEvents)

ApplicationClass (_Application, Application, AppEvents_Event)

This pattern repeats for Chart, OLEObject, QueryTable, Worksheet, and Workbook.

Let's try to untangle this mess by working our way backward from the original COM definition of the
Excel Application object. The COM coclass for the Application object looks like this: It has two interfaces,
a primary interface called _Application and an event interface called AppEvents. You can think of a
coclass as something that defines the interfaces that a COM class implements.

coclass Application {
 [default] interface _Application;
 [default, source] dispinterface AppEvents;
 };

TLBIMP (which is used to process the COM type library for Excel and make the PIA) directly imports the
_Application and AppEvents interfaces, so this explains where two of the eight types come from. But the
AppEvents interface is not very useful; it seems like an artifact of the TLBIMP conversion in some ways.
It has to be processed further to create another interface described later in this chapter, called
AppEvents_Event, to be of any use.

When TLBIMP processes the COM coclass, it creates a .NET class called ApplicationClass, which is named

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When TLBIMP processes the COM coclass, it creates a .NET class called ApplicationClass, which is named
by taking the coclass name and appending Class. It also creates a .NET interface with the same name as
the coclass called Application for our example. If you look at Application in the browser, it has no
properties and methods of its own, but it derives from the other two interfaces associated with the
coclass: _Application and AppEvents_Event.

We have not yet explained where the AppEvents_Event interface comes from. When TLBIMP processes
the AppEvents event interface on the coclass, it creates several helper types. First, it creates
AppEvents_Event, which looks like AppEvents but with events and delegate types replacing the methods
in AppEvents. It also creates delegates named AppEvents_*EventHandler, where * is the method name
for each method on the original AppEvents interface. Finally, it creates an AppEvents_SinkHelper, which
can be ignored.

That leaves only the IAppEvents interface unexplained. TLBIMP imports this interface directly because it
is a public type in the Excel type library. You can ignore this also. This is effectively a duplicate of
AppEvents, except that AppEvents is declared as a dispinterface in the type library, and IAppEvents is
declared as a dual interface type.

So which of these do you really use? Basically, you should use in your code only the Application interface
(which derives from _Application and AppEvents_Events) and the delegates. You can usually pretend that
the others do not exist. The one exception to this rule is when a method and event name collide, as
described earlier in this chapter. To disambiguate between a method and an event, you must cast to the
_Application interface when you want to call the method or the AppEvents_Event interface when you
want to connect to the event. Table 1.5 presents a summary.

Table 1.5. Interfaces, Delegates, and Events Associated with the
Application Object in Excel

Name Description

Interfaces
_Application Direct import from type library. (Ignore. Typically, you do not use this

directly unless a method and event name collide; Application interface
derives from this.)

AppEvents Direct import from type library. (Ignoreartifact that is not used in real
coding.)

AppEvents_Event Created while processing the AppEvents event interface (Ignore. Typically,
you do not use this directly unless a method and event name collide;
Application interface derives from this.)

Application Created while processing the Application coclass. (Use this interface.)

IAppEvents Dual interface version of AppEvents in the type library (Ignoreartifact that
is not used in real coding.)

Delegates
AppEvents_*EventHandler
(29 of them)

Created while processing the AppEvents event interface. (Use these. You
use these when declaring delegates to handle events.)

Classes
AppEvents_SinkHelper Created while processing the AppEvents event interface (Ignore.)

ApplicationClass Created while processing the Application coclass (Ignore. This is used
behind the scenes to make it look like you can "New" an Application
interface.)

The Application interface that is created by TLBIMP for the coclass behaves in an interesting way. You
can write code that makes it look like you are creating an instance of the Application interface, which we
all know is impossible:

Dim myApp As New Excel.Application

Really, this is syntactical sugar that is using the ApplicationClass behind the scenes (the Application
interface is attributed to associate it with the ApplicationClass) to create an Excel Application object and
return the appropriate interface.

Finally, we mentioned earlier that this pattern repeats for Chart, OLEObject, QueryTable, Worksheet, and
Workbook. The mapping to Chart is straightforward; replace Application with Chart and AppEvents with
ChartEvents, and you'll get the general idea. Worksheet is a bit different. Its coclass looks like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ChartEvents, and you'll get the general idea. Worksheet is a bit different. Its coclass looks like this:

coclass Worksheet {
 [default] interface _Worksheet;
 [default, source] dispinterface DocEvents;
 };

So for Worksheet, replace Application with Worksheet but replace AppEvents with DocEventsyielding
DocEvents_*EventHandler as the delegates for WorkSheet events.

QueryTable is even weirder. Its coclass looks like this:

coclass QueryTable {
 [default] dispinterface _QueryTable;
 [default, source] dispinterface RefreshEvents;
 };

So for QueryTable, replace Application with QueryTable and replace AppEvents with
RefreshEventsyielding RefreshEvents_*EventHandler as the delegates for QueryTable events.

Dummy Methods

When you look at the Excel PIA in the object browser in Visual Studio with Show Hidden Types and
Members turned on, you might notice a slew of methods with the text Dummy in them. There's even an
interface called IDummy.

No, this is not Excel's way of insulting your intelligence. Everything with Dummy in it is a test method
that actually has a legitimate purpose and more descriptive names in Microsoft's internal "debug" version
of Excel. Application.Dummy6, for example, is called Application.DebugMemory in the debug version of
Excel. Each method was renamed Dummy in the retail version of Excel. All 508 of these Dummy methods
actually do something in debug Excel, but in the retail version of Excel, they do nothing except raise an
error when called.

Excel has marked these as "hidden," but the C# object browser shows hidden methods by default. When
you view the PIA in the C# object browser, you will see these Dummy methods. If you create a Visual
Basic project, the Visual Basic object browser will hide methods and properties with this attribute.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter introduced the Office object models and examined the basic structure followed by object models. You
learned how to work with objects, collections, and enumerationsthe basic types found in any object model. You also
learned how to use properties, methods, and events exposed by objects and collections in the Office object models.

This chapter introduced the Office primary interop assemblies that expose the Office object models to .NET code. You
learned how to use and reference Office PIAs in a Visual Studio project. This chapter also described what you can ignore
when viewing the PIA in the object browser.

The next chapter begins examining the basic patterns of development used in Office programming and provides
examples of each.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2. Introduction to Office Solutions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Three Basic Patterns of Office Solutions
Now that you understand the basic pattern of the Office object models, this chapter explains how developers pattern
and build their Office solutions. Most solutions built using Office follow one of three patterns:

Office automation executable

Office add-in

Code behind an Office document

An automation executable is a program separate from Office that controls and automates an Office application. An
automation executable can be created with development tools such as Visual Studio. A typical example is a stand-alone
console application or Windows Forms application that starts an Office application and then automates it to perform
some task. To start a solution built this way, the user of the solution starts the automation executable, which in turn
starts the Office application. Unlike the other two patterns, the automation code does not run in the Office process but
runs in its own process and talks cross-process to the Office process being automated.

An add-in is a class in an assembly (DLL) that Office loads and creates when needed. An add-in runs in process with the
Office application instead of requiring its own process separate from the Office application process. To start a solution
built this way, the user of the solution starts the Office application associated with the add-in. Office detects registered
add-ins on startup and loads them. An add-in can customize an Office application in the same ways that code behind a
document can. Code behind a document, however, unloads when the document associated with the code is closed; an
add-in can remain loaded throughout the lifetime of the Office application.

The code-behind pattern was popularized by Visual Basic for Applications (VBA)the development environment included
with Office that enables the developer to write Visual Basic code against the object model of a particular Office
application and associate that code with a particular document or template. A document can be associated with C# or
Visual Basic code behind using VSTO. To start a solution built this way, the user of the solution opens a document that
has code behind it or creates a new document from a template that has code behind it. The code behind the document
will customize the Office application in some way while the document is open. Code behind the document might add
menu items that are present only when the document is open, for example, or associate code with events that occur
while the document is open.

We discuss two advanced patterns later in this book. The server document pattern involves running code on a server to
manipulate data stored in an Office document without starting the Office application. VSTO makes this scenario possible
through a feature called cached data. Chapter 18, "Server Data Scenarios," discusses this pattern. The XML and XSLT
pattern is similar to the server document pattern and involves writing code to generate Word or Excel documents in
WordprocessingML or SpreadsheetML format without starting the Office application. You can also generate these
formats by applying an XSLT transform to some XML data. Chapter 21, "Working with XML in Excel," and Chapter 22,
"Working with XML in Word," discuss these scenarios.

Hosted Code

The add-in and code-behind patterns are sometimes called hosted code, which means that your code runs in the same
process as the Office application.

Discovery of Hosted Code

For code to run in the Office application process, the Office application must be able to discover your code, load the
code into its process space, and run your code. Office add-ins are registered in the Windows registry so that Office can
find and start them. Using the registry seems a little non-.NET, but this is necessary because Office 2003 talks to add-
ins as though they were COM objects through COM interop.

The code behind a document pattern does not require a registry entry. Instead, code is associated with a document by
adding some special properties to the document file. Office reads these properties when the document opens and then
Office loads the code associated with the document.

Context Provided to Hosted Code

It is critical that your hosted code get context; it needs to get the Application object or Document object for the Office
application into which it is loading. COM add-ins are provided with context through an interface implemented by the
add-in class. Outlook add-ins in VSTO are provided with context through a class created in the project that represents
the application being customized. Code behind a document in VSTO is provided with context through a class created in
the project that represents the document being customized.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the project that represents the document being customized.

Entry Point for Hosted Code

At startup, Office calls into an entry point where your code can run for the first time and register for events that might
occur later in the session. For a COM add-in, this entry point is the OnConnection method of the IDTExtensibility2
interface implemented by the COM add-in. For a VSTO Outlook add-in and VSTO code behind a document, this entry
point is the Startup event handler.

How Code Gets Run After Startup

After hosted code starts up, code continues to run in one or more of the following ways.

Code Runs in Response to Events Raised by Office

The most common way that code runs after startup is in response to events that occur in the Office application. Office
raises events when a document opens or a cell in a spreadsheet changes, for example. Listing 1.17 in Chapter 1 shows
a simple class that listens to the WindowActivate event that Excel's Application object raises. Typically, you will connect
event listeners declaratively by using the WithEvents keyword to specify a member variable that raises events and the
Handles keyword to tell Visual Basic that a particular method handles a particular event.

Interface Methods Called on Objects Provided to Office

Objects such as the startup class for a COM add-in implement an interface called IDTExtensibility2 that has methods
that Office calls during the run of the Office application. If the user turns off the COM add-in, for example, Office calls
the OnDisconnection method on the IDTExtensibility2 interface implemented by the COM add-in. In this way, additional
code runs after the initial entry point has run.

Events Raised on Code Behind Classes

The classes generated in VSTO projects that represent the customized application or document handle the Startup and
Shutdown events. After the constructor of the class executes, Office raises the Startup event. When the document is
about to be closed, Office raises the Shutdown event.

How Code Gets Unloaded

Your code gets unloaded in a number of ways, depending on the development pattern you are using. If you are using
the automation-executable pattern, your code unloads when the automation executable you have written exits. If you
are using the add-in pattern, your code unloads when the Office application exits or when the user turns off the add-in
via an add-in management dialog box. If you are using the code-behind pattern, your code unloads when the document
associated with your code is closed.

In the hosted patterns of running code, there is some method that is called or event that is raised notifying you that
you are about to be unloaded. For COM add-ins, Office calls the OnDisconnection method. For VSTO code behind
documents and Outlook add-ins, Office raises the Shutdown event before your code is unloaded.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Office Automation Executables
This section considers each of these three patterns of Office solutions in more detail. Office solutions that use the
automation-executable pattern start an Office application in a very straightforward manner: by creating a new instance
of the Application object associated with the Office application. Because the automation executable controls the Office
application, the automation executable runs code at startup and any time thereafter when executing control returns to
the automation executable.

When an automation executable uses New to create an Application object, the automation executable controls the
lifetime of the application by holding the created Application object in a variable. The Office application determines
whether it can shut down by determining the reference count or number of clients that are using its Application object.

In Listing 2.1, as soon as New is used to create the myExcelApp variable, Excel starts and adds one to its count of clients
that it knows are holding a reference to Excel's Application object. When the myExcelApp variable goes out of scope (when
Main exits), .NET garbage collection releases the object, and Excel is notified that the console application no longer
needs Excel's Application object. This causes Excel's count of clients holding a reference to Excel's Application object to
go to zero, and Excel exits because no clients are using Excel anymore.

When you create an Office application by creating a new instance of the Application object, the application starts up
without showing its window, which proves useful because you can automate the application without distracting the user
by popping up windows. If you need to show the application window, you can set the Visible property of the Application
object to TRue. If you make the main window visible, the user controls the lifetime of the application. In Excel, the
application will not exit until the user quits the application and your variable holding the Excel Application object is
garbage-collected. Word behaves differently; the application exits when the user quits the application even if a variable
is still holding an instance of the Word Application object.

Listing 2.1 sets the status bar of Excel to say "Hello World" and opens a new blank workbook in Excel by calling the Add
method of Excel's Workbooks collection. Chapters 3 through 5"Programming Excel," "Working with Excel Events", and
"Working with Excel Objects", respectivelycover the Excel object model in more detail.

Listing 2.1. Automation of Excel via a Console Application

Imports Excel = Microsoft.Office.Interop.Excel

Module Module1

 Private exitXL As Boolean = False
 Dim WithEvents myExcelApp As Excel.Application

 Sub Main()

 myExcelApp = New Excel.Application
 myExcelApp.Visible = True
 myExcelApp.StatusBar = "Hello World"
 myExcelApp.Workbooks.Add()

 While exitXL = False
 System.Windows.Forms.Application.DoEvents()
 End While

 End Sub

 Private Sub myExcelApp_SheetBeforeDoubleClick(ByVal sheet _
 As Object, ByVal target As Excel.Range, ByRef cancel _
 As Boolean) Handles myExcelApp.SheetBeforeDoubleClick

 exitXL = True

 End Sub

End Module

Listing 2.1 also illustrates how an automation executable can yield time back to the Office application. A reference to
the System.Windows.Forms assembly must be added to the project. After event handlers are connected,
System.Windows.Forms.Application.DoEvents() is called in a loop to allow the Excel application to run normally. If the user
double-clicks a cell, Office yields time back to the event handler in the automation executable. In the handler for the
Double-Click event, the static variable exitXL is set to TRue, which will cause the loop calling DoEvents to exit and the
automation executable to exit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

automation executable to exit.

You can see the lifetime management of Excel in action by running the automation executable in Listing 2.1 and exiting
Excel without double-clicking a cell. Excel will continue to run in a hidden state, waiting for the console application to
release its reference to Excel's Application object.

Creating a Console Application That Automates Word

This section walks you through the creation of a simple console application that automates Word to create a table
specified in wiki text format. A wiki is a kind of online encyclopedia that users can contribute to. For an example, see
www.officewiki.net for a wiki that documents the Office primary interop assemblies (PIAs). Wikis use simple, easy-to-
edit text files that any visitor to the wiki can edit without having to know HTML. These text files have simple
representations of even complex elements such as tables. Our console application will read a simple text file that
specifies a table in wiki text format. Then it will automate Word to create a Word table that matches the text file
specification.

In the wiki text format, a table that looks like Table 2.1 is specified by the text in Listing 2.2.

Table 2.1. A Simple Table Showing the Properties and Methods of
Word's Add-In Object

Property or Method Name Return Type

Property Application Application

Property Autoload Boolean

Property Compiled Boolean

Property Creator Int32

Method Delete Void

Property Index Int32

Property Installed Boolean

Property Name String

Property Parent Object

Property Path String

Listing 2.2. A Wiki Text Representation of Table 2.1

	Property or Method		Name		Return Type	
	Property		Application		Application	
	Property		Autoload		Boolean	
	Property		Compiled		Boolean	
	Property		Creator		Int32	
	Method		Delete		Void	
	Property		Index		Int32	
	Property		Installed		Boolean	
	Property		Name		String	
	Property		Parent		Object	
	Property		Path		String	

We will use Visual Studio 2005 to create a console application. After launching Visual Studio, choose New Project from
the File menu. The New Project dialog box shows a variety of project types. Choose the Visual Basic node from the list
of project types, and choose the Windows node under the Visual Basic node. This is slightly counterintuitive because an
Office node is available, too, but the Office node shows only VSTO code behind document projects and the VSTO
Outlook add-in project.

After you choose the Windows node, you will see in the window to the right the available templates. Choose the Console
Application template. Name your project and then click the OK button to create your project. In Figure 2.1, we have
created a console application called WordWiki. Note that the New Project dialog box can have a different appearance
from the one shown in Figure 2.1, depending on the profile you are using. In this book, we assume that you are using
the Visual Basic Development Settings profile. You can change your profile by choosing Import and Export Settings from
the Tools menu.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the Tools menu.

Figure 2.1. Creating a console application from the New Project dialog box.

[View full size image]

When you click the OK button, Visual Studio creates a console application project for you. Visual Studio displays the
contents of the project in the Solution Explorer window, as shown in Figure 2.2.

Figure 2.2. The console application project WordWiki shown in Solution Explorer.

By default, a newly created console application references the assemblies System, System.Data, and System.Xml. We
also need to add a reference to the Word 2003 PIA. We do this by right-clicking the project node in Solution Explorer
and choosing Add Reference from the pop-up menu that appears. This shows the Add Reference dialog box in Figure
2.3. Click the COM tab; choose the Microsoft Word 11.0 Object Library to add a reference to the Word 2003 PIA; and
then click the OK button.

Figure 2.3. Adding a reference to the Microsoft Word 2003 PIA.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual Studio adds the reference to the Word 2003 PIA (Microsoft.Office.Interop.Word.dll) and adds additional
references to the Visual Basic for Applications Extensibility PIA (Microsoft.Vbe.Interop.dll) and the Office 11.0 Object
Library PIA (office.dll), as shown in Figure 2.4. These additional PIAs are ones that the Word PIA depends on.
Microsoft.Vbe.Interop.dll is the PIA for the object model associated with the VBA editor integrated into Office. Office.dll
is the PIA for common functionality shared by all the Office applications, such as the object model for the toolbars and
menus.

Figure 2.4. When you add the Word 2003 PIA, dependent PIA references are
automatically added to the project.

[View full size image]

Now that the proper references have been added to the console application, let's start writing code. Double-click
Module1.vb in the Solution Explorer window to edit the main source-code file for the console application. Add the
following three Imports directives so that you can more easily use types from the Word PIA and the Office 11.0 Object
Library PIA, as well as classes in the System.IO namespace. The Office 11.0 Object Library PIA has its types in the
Microsoft.Office.Core namespace. The Word PIA has its types in the Microsoft.Office.Interop.Word namespace.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Microsoft.Office.Core namespace. The Word PIA has its types in the Microsoft.Office.Interop.Word namespace.

Imports Office = Microsoft.Office.Core
Imports Word = Microsoft.Office.Interop.Word
Imports System.IO

We alias some of these namespaces so we do not have to type the entire namespace, such as Microsoft.Office.Interop.Word,
every time we want to declare a Word object. With the alias in place, we can type just Word to specify the namespace.
We keep an alias namespace in place for Word and Office instead of typing Imports Microsoft.Office.Interop.Word and importing
all the types into global scope. This is because Word and Office define hundreds of types, and we do not want all these
type names potentially colliding with types we define in our code or with other referenced types. Also, for the purposes
of this book, the code is clearer when it says Word.Application rather than Application, so you know what namespace the
Application type is coming from.

We are ready to write some code that automates Word to create a table after reading a text input file in the wiki table
format. Listing 2.3 (on page 58) shows the entire listing of our program. Rather than explain every line of code in that
listing, we focus on the lines of code that automate Word. We assume that the reader has some knowledge of how to
read a text file in .NET and parse a string via the Split method. We briefly touch on some objects in the Word object
model here, but Chapters 6 through 8"Programming Word," "Working with Word Events," and "Working with Word
Objects," respectivelycover the Word object model in much more detail.

The first thing we do in Listing 2.3 is declare a new instance of the Word application object by adding this line of code to
the Main method of our program class:

Dim theApplication As New Word.Application

Although Word.Application is an interface, we are allowed to create a new instance of this interface because the
compiler knows that the Word.Application interface is associated with a COM object that it knows how to start. When
Word starts in response to an automation executable creating a new instance of its Application object, it starts without
showing any windows. You can automate Word in this invisible state when you want to automate Word without
confusing the user by bringing up the Word window. For this example, we want to make Word show its main window,
and we do so by adding this line of code:

theApplication.Visible = True

Next, we want to create a new, empty Word document into which we will generate our table. We do this by calling the
Add method on the Documents collection returned by Word's Application object. The Add method takes four optional
parameters that we want to omit. The code calls the Add method and omits all four optional parameters:

Dim theDocument As Word.Document = theApplication.Documents.Add()

With a document created, we want to read the input text file specified by the command-line argument passed to our
console application. We want to parse that text file to calculate the number of columns and rows. When we know the
number of columns and rows, we use the following line of code to get a Range object from the Document object. When
we omit the optional parameters, the Range method will return a range that includes the entire text of the document.

Dim range As Word.Range = theDocument.Range()

Then we use our Range object to add a table by calling the Add method of the Tables collection returned by the Range
object. We pass the Range object again as the first parameter to the Add method to specify that we want to replace the
entire contents of the document with the table. We also specify the number of rows and columns we want:

Dim table As Word.Table = range.Tables.Add(range, _
| rowCount, columnCount)

The Table object has a Cell method that takes a row and column, and returns a Cell object. The Cell object has a Range
property that returns a Range object for the cell in question that we can use to set the text and formatting of the cell.
The code that sets the cells for a row of the table is shown here. Note that as in most of the Office object models, the
indices are 1-based, meaning that they start with 1 as the minimum value rather than being 0-based and starting with
0 as the minimum value:

For columnIndex = 1 To columnCount
 Dim cell As Word.Cell = table.Cell(rowIndex, columnIndex)
 cell.Range.Text = splitRow(columnIndex)
Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next

Code to set the formatting of the table as shown below sets the table to size to fit contents and bolds the header row.
We use the Row object returned by table.Rows(1), which alsohas a Range property that returns a Range object for the row
in question. Also, we encounter code that sets the first row of the table to be bolded. One would expect to be able to
write the code table.Rows(1).Range.Bold = True, but Word's object model expects an Integer value (0 for false and 1 for true)
rather than a Boolean. The Bold property doesn't return a Boolean because the range of text could be all bold, all not bold,
or partially bold. Word uses the enumerated constant WdConstants.WdUndefined to specify the partially bold case.

' Format table
table.Rows(1).Range.Bold = 1
table.AutoFitBehavior(Word.WdAutoFitBehavior.wdAutoFitContent)

Finally, some code at the end of the program forces Word to quit without saving changes:

theApplication.Quit(False);

If you do not write this code, Word will stay running even after the console application exits. When you show the Word
window by setting the Application object's Visible property to TRue, Word puts the lifetime of the application in the hands
of the end user rather than the automating program. So even when the automation executable exits, Word continues
running. To force Word to exit, you must call the Quit method on Word's Application object. If this program didn't make
the Word window visiblefor example, it created the document with the table and then saved it to a file without showing
the Word windowit would not have to call Quit, because Word would exit when the program exited and released all its
references to the Word objects.

To run the console application in Listing 2.3, you must create a text file that contains the text in Listing 2.2. Then pass
the name of the text file as a command-line argument to the console application. You can set up the debugger to do
this by right-clicking the WordWiki project in Solution Explorer and choosing Properties. Then click the Debug tab and
set the Command Line Arguments field to the name of your text file.

Listing 2.3. The Complete WordWiki Implementation

Imports System.Collections.Generic
Imports System.Text
Imports System.IO
Imports Office = Microsoft.Office.Core
Imports Word = Microsoft.Office.Interop.Word

Module Module1
 Sub Main(ByVal args As String())

 Dim theApplication As New Word.Application
 theApplication.Visible = True
 Dim theDocument As Word.Document
 theDocument = theApplication.Documents.Add()

 Dim reader As TextReader
 reader = New System.IO.StreamReader(args(0))

 Dim separators(1) As String
 separators(0) = "||"
 Dim rowCount As Integer = 0
 Dim columnCount As Integer = 0

 ' Read rows and calculate number of rows and columns
 Dim rowList As New System.Collections.Generic.List(Of String)
 Dim row As String = reader.ReadLine()
 While row IsNot Nothing
 rowCount += 1
 rowList.Add(row)

 ' If this is the first row,
 ' calculate the number of columns
 If rowCount = 1 Then
 Dim splitHeaderRow As String() = _
 row.Split(separators, StringSplitOptions.None)

 ' Ignore the first and last separator
 columnCount = splitHeaderRow.Length - 2
 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 row = reader.ReadLine()
 End While

 ' Create a table
 Dim range As Word.Range = theDocument.Range()
 Dim table As Word.Table = range.Tables.Add(range, _
 rowCount, columnCount)

 ' Populate table
 Dim columnIndex As Integer = 1
 Dim rowIndex As Integer = 1

 For Each r As String In rowList
 Dim splitRow As String() = r.Split(separators, _
 StringSplitOptions.None)

 For columnIndex = 1 To columnCount
 Dim cell As Word.Cell = table.Cell(rowIndex, columnIndex)
 cell.Range.Text = splitRow(columnIndex)
 Next
 rowIndex += 1
 Next

 ' Format table
 table.Rows(1).Range.Bold = 1
 table.AutoFitBehavior(_
 Word.WdAutoFitBehavior.wdAutoFitContent)

 ' Wait for input from the command line before exiting
 System.Console.WriteLine("Table complete.")
 System.Console.ReadLine()

 ' Quit without saving changes
 theApplication.Quit(False)
 End Sub
End Module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Office Add-Ins
The second pattern used in Office development is the add-in pattern. This book covers several types of Office add-ins.
These include VSTO add-ins for Outlook, COM add-ins for Excel and Word, and automation add-ins for Excel:

VSTO add-ins for Outlook This new VSTO feature makes it extremely easy to create an add-in for Outlook
2003. The model is the most ".NET" of all the add-in models and is very similar to the VSTO code-behind model
for documents. Chapter 24, "Creating Outlook Add-Ins with VSTO," describes this model in detail.

COM add-ins for Excel and Word A Visual Basic class in a class library project can implement the
IDTExtensibility2 interface and register in the registry as a COM object and COM add-in. Through COM interop,
Office creates the Visual Basic class and talks to it. Chapter 23, "Developing COM Add-Ins for Word and Excel,"
describes the creation of COM add-ins and some issues that make COM add-in development problematic.

Automation add-ins for Excel These managed classes expose public functions that Excel can use in formulas.
The Visual Basic class must register in the registry as a COM object. Through COM interop, Excel can create an
automation add-in and use its public methods in formulas. Automation add-ins and their use in Excel formulas
are discussed in Chapter 3, "Programming Excel."

This book does not discuss some Office add-in technologies. Smart Documents add-ins are not discussed because VSTO
provides a much easier way of accessing Smart Document functionality, albeit at the document or template level rather
than at the application level. For more information on VSTO's support for Smart Documents, see Chapter 15, "Working
with the Actions Pane."

Creating an Outlook Add-In in VSTO

To create an Outlook add-in project in VSTO, choose Project from the New submenu of the File menu in Visual Studio.
Select the Visual Basic node from the list of project types, and select the Office node under the Visual Basic node. The
Outlook add-in project appears in the list of templates. Type a name for your new Outlook add-in project; pick a
location for the project; then click the OK button as shown in Figure 2.5.

Figure 2.5. Creating a new Outlook add-in project.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSTO creates a project with references to the Outlook 2003 PIA, the core Office PIA, and other needed references, as
shown in Figure 2.6. VSTO also creates a setup project for the Outlook add-in. In the main project, VSTO adds a project
item to the project called ThisApplication.vb. This project item contains a Visual Basic class that you will add to when
implementing your Outlook add-in.

Figure 2.6. The Outlook add-in project in Solution Explorer.

If you double-click the ThisApplication.vb project item, you will see the code shown in Listing 2.4. There is a simple
Startup and Shutdown event handler where you can write code that executes on the startup and shutdown of the add-
in. The ThisApplication class derives from an aggregate of the Outlook Application object. This allows you to access
properties and methods of the Outlook Application object by writing code such as Me.Inspectors.Count in the ThisApplication
class.

Listing 2.4. The Initial Code in the ThisApplication Class in an Outlook Add-In
Project

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 End Sub

 Private Sub ThisApplication_Shutdown(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Shutdown

 End Sub

End Class

Looking at Listing 2.4, you might wonder how such a simple class is connected and run. VSTO uses partial classes,
which are a new feature of .NET that enables you to define part of a class in one file and another part of a class in a
second file and then compile them together as one class. VSTO uses this feature to hide from you some additional
generated code associated with the ThisApplication class to reduce the complexity of the class where you write your
code. The final ThisApplication class is compiled from the partial class in Listing 2.4 and additional code in a partial class
generated by VSTO that is hidden from you.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We are going to add to the code in Listing 2.4 to create an add-in that will solve an annoying problem: people replying
inadvertently to an e-mail sent out to a mailing alias that contains a large number of people. Unless you have "Vice
President" in your title, you probably do not want to be sending e-mail to more than, say, 25 people at any given time.
We are going to create an add-in that will warn you if you do this and give you the "This is a potentially career-limiting
move. Are you sure you want to send this e-mail to 25,000 people?" message.

Outlook's Application object has an ItemSend event that is raised whenever a user sends an e-mail. We will add an
event handler for the ItemSend event, as shown in Listing 2.5, declared with the handles clause Handles Me.ItemSend.
Because the ThisApplication class derives from an aggregate of Outlook's Application object, we can write the code
Me.ItemSend because ItemSend is an event raised by the ThisApplication base class. The ItemSend event handler takes
an Object parameter called item, which is the Outlook item being sent. Because item could be any of a number of things,
such as a meeting request or an e-mail message, item is passed as an Object rather than as a specific type. The
ItemSend event handler also has a Boolean parameter passed by reference, called cancel, that can be set to true to
prevent the Outlook item from being sent.

In our ItemSend event handler, we need to check to see whether the item parameter that is passed as an Object is
actually an e-mail. The easiest way to achieve this is to use the TypeOf and Is keywords to determine whether the item
parameter is an Outlook.MailItem. If the item is an Outlook.MailItem, we use CType to cast the item parameter to an
Outlook.MailItem. Then we can iterate through the Recipients collection on the MailItem object and check to see
whether we are sending to any recipient lists that include more than 25 people. Each Recipient object in the Recipients
collection has an AddressEntry property that returns an AddressEntry object. The AddressEntry object has a Members
property that returns a collection that we can check the count of. If we find the count to be more than 25, we will show
a dialog box and ask the user whether she really wants to send the mail. If the user clicks the No button, we will set the
cancel parameter of the ItemSend event to TRue to cancel the sending of career-limiting e-mail.

Listing 2.5. A VSTO Outlook Add-In That Handles the ItemSend Event and Checks
for More Than 25 Recipients

Imports Outlook = Microsoft.Office.Interop.Outlook

Public Class ThisApplication
 Private Sub ThisApplication_ItemSend(ByVal item As Object, _
 ByRef cancel As Boolean) Handles Me.ItemSend

 Dim myItem As Outlook.MailItem

 If TypeOf item Is Outlook.MailItem Then
 myItem = CType(item, Outlook.MailItem)
 For Each recip As Outlook.Recipient In myItem.Recipients
 If recip.AddressEntry.Members.Count > 25 Then
 ' Ask the user if she really wants to send this e-mail
 Dim message As String
 message = "Send mail to {0} with {1} people?"
 Dim caption As String = "More than 25 recipients"
 Dim buttons As MessageBoxButtons
 buttons = MessageBoxButtons.YesNo
 Dim result As DialogResult

 result = MessageBox.Show(String.Format(message, _
 recip.AddressEntry.Name, _
 recip.AddressEntry.Members.Count), _
 caption, buttons)

 If result = DialogResult.No Then
 cancel = True
 Exit For
 End If
 End If
 Next
 End If

 End Sub
End Class

When you run the project with the code shown in Listing 2.4, Outlook launches, and the add-in loads. Try sending a
mail to an alias that includes more than 25 people; you might want to go offline first, in case you mistyped the code. If
everything works right, the add-in will display a dialog box warning you that you are sending an e-mail to more than 25
people, and you will be able to cancel the sending of the e-mail. Exit Outlook to end your debugging session.

Chapter 24, "Creating Outlook Add-Ins with VSTO," discusses VSTO Outlook add-ins in more detail. Chapters 9 through
11"Programming Outlook," "Working with Outlook Events," and "Working with Outlook Objects," respectivelydiscuss the
Outlook object model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Outlook object model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Code Behind a Document
VSTO supports code behind a document by requiring that the developer use classes generated in a VSTO project that
have preconnected context and preconnected events. These classes are sometimes called code-behind classes because
they are code associated with a particular document or worksheet. In Word, there is one code-behind class
corresponding to the document. In Excel, there are multiple code-behind classesone for the workbook and one for each
worksheet or chart sheet in the workbook.

The first time your code runs in a VSTO code-behind-the-document project is when Office raises the Startup event
handled by any of the code-behind classes created for you. VSTO provides context via the base class of the code-behind
class you are writing code in. A VSTO code-behind class customizing an Excel worksheet derives from a base class that
aggregates all the methods, properties, and events of an Excel worksheet. This enables you to write code such as this
in the Startup method of a worksheet class:

MsgBox(String.Format("{0} is the sheet name", Me.Name))

By using Me.Name, you are referring to the Name property of the Excel Worksheet object inherited from the base class.
Listing 2.6 shows a VSTO code-behind class for an Excel Worksheet. VSTO code-behind document classes also use
partial classes to hide some additional code generated by VSTO.

Listing 2.6. A VSTO Excel Workbook Customization

Imports Excel = Microsoft.Office.Interop.Excel
Imports Office = Microsoft.Office.Core

Public Class Sheet1
 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 ' Initial entry point.
 ' This code gets run first when the code behind is created
 ' The context is implicit in the Sheet1 class
 MsgBox("Code behind the document running.")
 MsgBox(String.Format("{0} is the sheet name.", Me.Name))

 End Sub

End Class

In this section, we create some simple code behind a document in Excel using VSTO. First, start VSTO, and choose File
> New > Project. As you have seen previously, navigate to the Office node under the Visual Basic root.

We will create an Excel workbook project using Visual Basic as shown in Figure 2.7. If you already have a workbook
that you want to add VSTO customization code behind, you can specify its location in the dialog box shown in Figure 2.8
that appears after you click OK in the New Project dialog box. This time, we will start from scratch, creating a new,
blank workbook.

Figure 2.7. Using the New Project dialog box to create an Excel Workbook project.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.8. Selecting the workbook to associate with your code behind.

After we have created the project, the design view appears, as shown in Figure 2.9.

Figure 2.9. The design view for VSTO Excel code behind.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice a few interesting things in Figure 2.9. First, Excel is running inside Visual Studio 2005 as a designer, just the
same as a Windows Forms designer would when developing a Windows Forms project.

Second, look at the menu bar shown in Figure 2.10. VSTO merges the Visual Studio menus (Build, Debug, and so on)
and the Excel menu items (Format, Data, and so on). Menu items that appear in both Visual Studio and Excel (Tools, for
example) merge by adding a submenu to the Visual Studio menu, such as Microsoft Office Excel Tools, that can be
selected to show the Excel Tools menu.

Figure 2.10. The merging of Visual Studio and Excel menus.

Third, notice in Figure 2.9 that the toolbox contains a new category: Excel Controls. When designing a document using

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Third, notice in Figure 2.9 that the toolbox contains a new category: Excel Controls. When designing a document using
Visual Studio, you can create named ranges and list objects using the Excel menu items familiar to Excel users or the
toolbox idiom familiar to Visual Studio users.

Fourth, notice that the Properties window shows the properties of the selected objectin this case, Sheet1. You can use
the Properties window to edit properties of Excel's objects the same way that you would edit properties of controls and
forms in a Windows Forms project.

Fifth, notice that the Solution Explorer has four classes in it already. Each underlying Excel Worksheet and Workbook
object is represented by a .NET class that you can extend and customize. As you make changes to the document in the
designer, the code behind updates automatically. Drag a list object from the toolbox onto the Sheet1 designer, for
example, and draw it to be ten rows by four columns, as shown in Figure 2.11.

Figure 2.11. Creating a list object in the designer.

[View full size image]

As you can see from the Properties window, the designer has chosen a default name for the new list object. We could
edit it, but in this example, we will keep the default name List1.

Let's take a look at the code behind this worksheet and make some simple changes to it. Right-click Sheet1.vb in
Solution Explorer, and choose View Code. We are going to briefly illustrate two VSTO features: support for the
Document Actions pane and list object data binding. We will declare a Windows Forms button as a member variable of
the class and call it myButton. In the Startup event handler, we will show that button in the Document Actions task pane
of Excel by adding it to the ActionsPane's Controls collection. Doing so will cause Excel to show the Document Actions
task pane and display our button. We will also handle the Click event of the button, and when the button is clicked, we
will data-bind our list object to a randomly generated DataTable. Listing 2.7 shows this code.

Listing 2.7. A VSTO Customization That Adds a Control to the Document Actions
Task Pane and Data-Binds a ListObject Control to a DataTable

Imports Excel = Microsoft.Office.Interop.Excel
Imports Office = Microsoft.Office.Core

Public Class Sheet1
 Private WithEvents myButton As New Button
 Private table As DataTable

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 myButton.Text = "Databind!"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 myButton.Text = "Databind!"
 Globals.ThisWorkbook.ActionsPane.Controls.Add(myButton)

 End Sub

 Private Sub myButton_Click(ByVal sender As Object, _
 ByVal e As EventArgs) Handles myButton.Click

 List1.DataSource = Nothing
 table = New DataTable
 Dim r As New Random

 For i As Integer = 0 To 3
 table.Columns.Add("Col" & i.ToString())
 Next

 For j As Integer = 0 To 19
 table.Rows.Add(r.NextDouble(), r.NextDouble(), _
 r.NextDouble(), r.NextDouble())
 Next

 List1.DataSource = table

 End Sub
End Class

Build and run the code, and sure enough, Excel starts; the Startup event is raised for the sheet; and the button is
added to the actions pane. Click the button, and a random DataTable is generated and bound to the list object, as
shown in Figure 2.12. Exit Excel to end your debugging session.

Figure 2.12. The result of running Listing 2.7 and clicking the button we added to
the Document Actions task pane.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We have briefly illustrated VSTO's support for the Document Actions task pane and the ability to bind data that VSTO
adds to Excel's list object. For more information on VSTO's support for the Document Actions task pane, see Chapter
15, "Working with the Actions Pane." For more information on VSTO's support for data binding, see Chapter 17, "VSTO
Data Programming."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter introduced the three basic patterns of Office solutions: an automation executable, an add-in, and code
behind a document. The chapter also introduced how to build solutions following these three basic patterns using Visual
Studio 2005 and Visual Studio 2005 Tools for Office.

Now that you know how to create a basic automation-executable, add-in, and code-behind-the-document solution, you
will use these skills in the next chapters as the focus turns to specific functionality of Excel, Word, Outlook, and InfoPath
that you can use in your solutions.

This chapter has served only as an introduction to add-ins and code behind documents. Chapter 24, "Creating Outlook
Add-Ins with VSTO," covers VSTO add-ins for Outlook. Chapter 23, "Developing COM Add-Ins for Word and Excel,"
covers COM add-ins for Word and Excel. Chapter 3, "Programming Excel," covers automation add-ins for Excel.
Chapters 13 through 17"The VSTO Programming Model," "Using Windows Forms in VSTO," "Working with the Actions
Pane," "Working with Smart Tags in VSTO," and "VSTO Data Programming," respectivelycover the code-behind-
document model of VSTO in detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3. Programming Excel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ways to Customize Excel
Excel is the application most frequently programmed against in the Office family. Excel has a very rich object model,
with 196 objects that combined have more than 4,500 properties and methods. It supports several models for
integrating your code, including add-ins and code-behind documents. Most of these models were originally designed to
allow the integration of COM components written in Visual Basic 6, Visual Basic for Applications (VBA), C, or C++.
Through COM interop, however, managed objects written in C# or Visual Basic can masquerade as COM objects and
participate in most of these models. This chapter briefly considers several of the ways that you can integrate your code
with Excel and refers you to other chapters that discuss these approaches in more depth. This chapter also explores
building user-defined functions for Excel and introduces the Excel object model.

Automation Executable

As mentioned in Chapter 2, "Introduction to Office Solutions," the simplest way to integrate with Excel is to start Excel
from a console application or Windows Forms application and automate it from that external program. Chapter 2
provides a sample of an automation executable that automates Word.

COM Add-Ins

Excel can load a COM add-in that is a DLL that contains a class that implements IDTExtensibility2. The class that
implements IDTExtensibility2 must be registered in the registry so that it can be discovered and talked to like other
COM add-ins that extend Excel.

A COM add-in is typically written to add application-level functionalityfunctionality that is available to any workbook
opened by Excel. You might write a COM add-in that adds a menu item to convert a currency in the selected Excel
worksheet cell to another currency based on current exchange rates, for example.

Excel has a COM Add-Ins dialog box that enables users to turn COM add-ins on and off. Note that the dialog box that
you access by choosing Add-Ins from the Tools menu is not the COM Add-Ins dialog box. That dialog box is used to turn
on and off automation add-ins and XLA add-ins, which are discussed later in this chapter. To access the COM Add-Ins
dialog box, you must perform the following steps:

1. Right-click a menu or toolbar in Excel, and choose Customize from the pop-up menu; or from the Tools menu,
choose Customize. The Customize dialog box displays.

2. Click the Commands tab of the Customize dialog box.

3. Choose Tools from the list of Categories.

4. Scroll down the list of commands until you see a command that says COM Add-Ins.

5. Drag the COM Add-Ins command and drop it on a toolbar.

6. Close the Customize dialog box.

After completing these steps, click the COM Add-Ins toolbar button you added to a toolbar. Figure 3.1 shows the COM
Add-Ins dialog box.

Figure 3.1. The COM Add-Ins dialog box in Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can add COM add-ins by using the Add button and remove them by using the Remove button. Typically, you will
not have your users use this dialog box to manage COM add-ins. Instead, you will install and remove a COM add-in by
manipulating registry settings with the installer you create for your COM add-in.

Excel discovers the installed COM add-ins by reading from the registry. You can view the registry on your computer by
going to the Windows Start menu and choosing Run. In the Run dialog box, type regedit for the program to run and then
click the OK button. Excel looks for COM add-ins in the registry keys under HKEY_CURRENT_USER\Software\Microsoft\
Office\Excel\Addins. Excel also looks for COM add-ins in the registry keys under
HKEY_LOCAL_MACHINE\Software\Microsoft\Office\ Excel\Addins. COM add-ins registered under HKEY_LOCAL_MACHINE
are not shown in the COM Add-Ins dialog box and cannot be turned on or off by users. It is recommended that you do
not register your COM add-in under HKEY_LOCAL_MACHINE because it hides the COM add-in from the user.

COM add-ins are discussed in detail in Chapter 23, "Developing COM Add-Ins for Word and Excel."

Automation Add-Ins

Automation add-ins are classes registered in the registry as COM objects that expose public functions that can be used
in Excel formulas. Automation add-ins that have been installed are shown in the Add-Ins dialog box, which you can
display by choosing Add-Ins from the Tools menu. This chapter examines automation add-ins in more detail during the
discussion of how to create user-defined Excel functions for use in Excel formulas.

Visual Studio Tools for Office Code Behind

VSTO enables you to put C# or Visual Basic code behind Excel templates and workbooks. VSTO was designed from the
ground up for C# and Visual Basicso this model is the most ".NET" of all the models used to customize Excel. This
model is used when you want to customize the behavior of a particular workbook or a particular set of workbooks
created from a common template. You might create a template for an expense-reporting workbook that is used
whenever anyone in your company creates an expense report, for example. This template can add commands and
functionality that are always available when the workbook created with it is opened.

VSTO's support for code behind a workbook is discussed in detail in Part III of this book.

Smart Documents and XML Expansion Packs

Smart Documents are another way to associate your code with an Excel template or workbook. Smart Documents rely
on attaching an XML schema to a workbook or template and associating your code with that schema. The combination
of the schema and associated code is called an XML Expansion Pack. An XML Expansion Pack can be associated with an
Excel workbook by choosing Data > XML > XML Expansion Packs. Figure 3.2 shows the XML Expansion Packs dialog
box.

Figure 3.2. The XML Expansion Packs dialog box in Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When an XML Expansion Pack is attached to a workbook, Excel loads the associated code and runs it while that
workbook is opened. Smart Document solutions can create a custom user interface in the Document Actions task pane.
You can view the task pane in Excel by choosing Task Pane from the View menu. Figure 3.3 shows a custom Document
Actions task pane in Excel.

Figure 3.3. A custom Document Actions task pane in Excel.

It is possible to write Smart Document solutions "from scratch" in C# or Visual Basic. This book does not cover this
approach. Instead, this book focuses on the VSTO approach, which was designed to make Smart Document
development much easier and to allow you to create a custom Document Actions task pane by using Windows Forms.
Chapter 15, "Working with the Actions Pane," discusses this capability in more detail.

Smart Tags

Smart Tags enable displaying a pop-up menu that contains actions relevant for a recognized piece of text in a
workbook. You can control the text that Excel recognizes and the actions that are made available for that text by
creating a Smart Tag DLL or by using VSTO code behind a document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

creating a Smart Tag DLL or by using VSTO code behind a document.

A Smart Tag DLL contains two types of components that are used by Excel: a recognizer and associated actions. A
recognizer determines what text in the workbook is recognized as a Smart Tag. An action corresponds to a menu
command displayed in the pop-up menu.

A recognizer could tell Excel to recognize stock-ticker symbols (such as the MSFT stock symbol) and display a set of
actions that can be taken for that symbol: buy, sell, get the latest price, get history, and so on. A "get history" action,
for example, could launch a Web browser to show a stock-history Web page for the stock symbol that was recognized.

When a recognizer recognizes some text, Excel displays a little triangle in the bottom-right corner of the associated cell.
If the user hovers over the cell, a pop-up menu icon appears next to the cell; the user can click this icon to drop down a
menu of actions for the recognized piece of text. Figure 3.4 shows an example menu. When an action is selected, Excel
calls back into the associated action to execute your code.

Figure 3.4. Smart Tags in Excel.

Smart Tags are managed from the Smart Tags tab of the AutoCorrect dialog box, as shown in Figure 3.5. You can
display the Smart Tags tab by choosing AutoCorrect Options from the Tools menu. Here, the user can turn on and off
individual recognizers, as well as control other options relating to how Smart Tags display in the workbook.

Figure 3.5. The Smart Tags tab of the AutoCorrect dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSTO provides a simple model for creating a Smart Tag that works at the workbook or template level. Chapter 16,
"Working with Smart Tags in VSTO," describes the VSTO model for working with Smart Tags in more detail.

It is possible to write Smart Tag recognizer and action classes in a DLL that work at the application level, but it is much
more complex than the VSTO model. Chapter 16 also describes that approach.

XLA Add-Ins

Also available in the Add-Ins dialog box (shown by selecting Add-Ins from the Tools menu) are XLA add-ins. An XLA
add-in starts life as a workbook that has VBA code behind it. The developer can then save the workbook as an XLA or
Excel add-in file by choosing Save As from the File menu and selecting XLA as the file format. An XLA file acts as an
application-level add-in in the form of an invisible workbook that stays open for the lifetime of Excel. Although it is
possible to save a workbook customized with VSTO as an XLA file, many of the features of VSTO do not work when the
workbook is converted to an XLA file. Some of the features that do not work include VSTO's support for the Document
Actions task pane and for Smart Tags. For this reason, Microsoft does not support or recommend saving a workbook
customized with VSTO as an XLA file. Therefore, this book does not cover the topic further.

Server-Generated Documents

VSTO enables you to write code on the server that populates an Excel workbook with data without starting Excel on the
server. You might create an ASP.NET page that reads some data out of a database and then puts it in an Excel
workbook and returns that workbook to the client of the Web page. VSTO provides a class called ServerDocument that
makes it easy to do this. You can also use the XML file formats of Office to generate Excel documents in XML formats on
the server, but this procedure is much more complex. In addition, the Excel XML file format is lossy, meaning that you
cannot represent everything in an Excel spreadsheet in the Excel XML format. For this reason, we prefer the
ServerDocument approach when generating documents on the server over the Excel XML file format.

Chapter 18, "Server Data Scenarios," describes generating documents on the server with ServerDocument.

Research Services

Excel has a Research task pane that enables you to enter a search term and search various sources for that term.
Figure 3.6 shows the Research task pane.

Figure 3.6. The Research task pane.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Excel enables developers to write a special Web service called a research service that implements a set of Web methods
defined by Excel. A research service can be registered with Excel and used in Office's Research task pane. You might
write a research service that searches for a search term in a company database, for example.

Chapter 6, "Programming Word," discusses creating a research service in more detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming User-Defined Functions
Excel enables the creation of user-defined functions that can be used in Excel formulas. A developer must create a
special kind of DLL called an XLL. Excel also allows you to write custom functions in VBA that can be used in Excel
formulas. Unfortunately, Excel does not support or recommend writing an XLL that uses managed code.

Building a Managed Automation Add-In That Provides User-Defined Functions

Fortunately, there is an easier way to create a user-defined function that does not require you to create an XLL. Excel
2003 supports a customization technology called an automation add-in that can easily be created in C# or Visual Basic.

First, launch Visual Studio, and create a new Visual Basic class library project. Name the project AutomationAddin. In
the Class1.vb file created for you in the new project, enter the code shown in Listing 3.1. This code defines a class
called MyFunctions that implements a function called MultiplyNTimes. We will use this function as a custom formula. Our class
also implements RegisterFunction and UnregisterFunction, which are attributed with the ComRegisterFunction attribute and
ComUnregisterFunction attribute, respectively. The RegisterFunction will be called when the assembly is registered for COM
interop. The UnregisterFunction will be called when the assembly is unregistered for COM interop. These functions put a
necessary key in the registry that allows Excel to know that this class can be used as an automation add-in.

Listing 3.1. A Visual Basic Class Called MyFunctions That Exposes a User-Defined
Function MultiplyNTimes

Imports System
Imports System.Runtime.InteropServices
Imports Microsoft.Win32

<ClassInterface(ClassInterfaceType.AutoDual), ComVisible(True)> _
Public Class MyFunctions

 Public Function MultiplyNTimes(ByVal number1 As Double, _
 ByVal number2 As Double, ByVal timesToMultiply As Double) _
 As Double

 Dim result As Double = number1
 For i As Double = 0 To timesToMultiply
 result = result * number2
 Next

 Return result
 End Function

 <ComRegisterFunctionAttribute()> _
 Public Shared Sub RegisterFunction(ByVal type As Type)
 Registry.ClassesRoot.CreateSubKey(GetSubKeyName(type))
 End Sub
 <ComUnregisterFunctionAttribute()> _
 Public Shared Sub UnregisterFunction(ByVal type As Type)
 Registry.ClassesRoot.DeleteSubKey(GetSubKeyName(type), False)
 End Sub

 Private Shared Function GetSubKeyName(ByVal type As Type) _
 As String
 Dim s As New System.Text.StringBuilder()

 s.Append("CLSID\{")
 s.Append(type.GUID.ToString().ToUpper())
 s.Append("}\Programmable")

 Return s.ToString()
 End Function

End Class

With this code written, you need to modify the project so that it will automatically register this class for COM interop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With this code written, you need to modify the project so that it will automatically register this class for COM interop
when it is built. First, show the properties for the project by right-clicking the project node in Solution Explorer and
choosing Properties. In the properties designer that appears, click the Build tab, and check the Register for COM Interop
check box, as shown in Figure 3.7. Then choose Build Solution from the Build menu to build the class library project.
Your actions will result in your class library project's being built as well as registered in the registry as an automation
add-in. Now Excel will be able to see your Visual Basic class and use it.

Figure 3.7. Setting Build options to register for COM interop.

[View full size image]

Using Your Managed Automation Add-In in Excel

Launch Excel, and choose Add-Ins from the Tools menu to display the Add-Ins dialog box. In the Add-Ins dialog box,
click the Automation button. You can find the class you created by looking for AutomationAddin.MyFunctions in the list of
automation servers, as shown in Figure 3.8.

Figure 3.8. Selecting AutomationAddin.MyFunctions from the Automation Servers
dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

By clicking OK in this dialog box, you add the AutomationAddin.MyFunctions class to the list of installed automation add-ins,
as shown in Figure 3.9. You may get an error message about Excel's not being able to find mscoree.dll. If you get this
message, be sure to click the No button; otherwise, Excel removes your add-in from the list of installed automation
add-ins.

Figure 3.9. AutomationAddin.MyFunctions is now installed.

Now try to use the function MultiplyNTimes in an Excel formula. First, create a simple spreadsheet that has a number, a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now try to use the function MultiplyNTimes in an Excel formula. First, create a simple spreadsheet that has a number, a
second number to multiply the first by, and a third number for how many times you want to multiply the first number
by the second number. Figure 3.10 shows the spreadsheet.

Figure 3.10. A simple spreadsheet to test the custom formula in.

Click an empty cell in the workbook below the numbers and then click the Insert Function button (the button with the
"fx" label) in the formula bar. In the dialog box of available formulas, drop down the Or Select a Category drop-down
list, and choose AutomationAddin.MyFunctions. Then click the MultiplyNTimes function, as shown in Figure 3.11.

Figure 3.11. Picking MultiplyNTimes from the Insert Function dialog box.

When you click the OK button, Excel pops up a dialog box to help select function arguments from cells in the
spreadsheet, as shown in Figure 3.12.

Figure 3.12. Setting the function arguments.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3.12. Setting the function arguments.

After you have selected function arguments from the appropriate cells, click OK to create the final spreadsheet, shown
in Figure 3.13, with the custom formula in cell C5.

Figure 3.13. The final spreadsheet.

Creating Additional User-Defined Functions

You might experiment with other functions that could be used in an Excel formula. Listing 3.2 shows several other
functions you could add to your MyFunctions class, for example. To use Listing 3.2, you must add a reference to the Excel
11.0 Object Library and also add the code Imports Excel = Microsoft.Office.Interop.Excel to the top of your class file. Note in
particular that when you declare a parameter as an object, Excel passes you a Range object. Also note how optional
parameters are supported by the AddNumbers function. When a parameter is omitted, System.Type.Missing is passed as the
value of the parameter.

Listing 3.2. Additional User-Defined Function That Could Be Added to the
MyFunctions Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MyFunctions Class

Public Function GetStars(ByVal number As Double) As String
 Dim s As New System.Text.StringBuilder()
 s.Append("*", number)
 Return s.ToString()
End Function
Public Function AddNumbers(ByVal number1 As Object, _
 Optional ByVal number2 As Object = Nothing, _
 Optional ByVal number3 As Object = Nothing) As Double

 Dim result As Double = number1

 If number2 <> System.Type.Missing Then
 Dim r2 As Excel.Range = number2
 Dim d2 As Double = Convert.ToDouble(r2.Value2)
 result += d2
 End If

 If number3 <> System.Type.Missing Then
 Dim r3 As Excel.Range = number3
 Dim d3 As Double = Convert.ToDouble(r3.Value2)
 result += d3
 End If

 Return result

End Function

Public Function CalculateArea(ByVal range As Object) As Double
 If TypeOf range Is Excel.Range Then
 Dim r As Excel.Range = CType(range, Excel.Range)
 Return Convert.ToDouble(r.Width) + Convert.ToDouble(r.Height)
 End If
End Function

Public Function NumberOfCells(ByVal range As Object) As Double
 If TypeOf range Is Excel.Range Then
 Dim r As Excel.Range = CType(range, Excel.Range)
 Return r.Cells.Count
 End If
End Function

Public Function ToUpperCase(ByVal input As String) As String
 Return input.ToUpper()
End Function

Debugging User-Defined Functions in a Managed Automation Add-In

You can debug a Visual Basic class library project that is acting as an automation add-in by setting Excel to be the
program your class library project starts when you debug. Show the properties for the project by right-clicking the
project node in Solution Explorer and choosing Properties. In the properties designer that appears, click the Debug tab,
and click the Start external program radio button. In the Start External Program text box, type the full path to
excel.exe, as shown in Figure 3.14. Now set a breakpoint on one of your user functions, press F5, and use the function
in the spreadsheet. The debugger will stop in the implementation of your user function where the breakpoint was set.

Figure 3.14. Setting Debug options to start Excel.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deploying Managed Automation Add-Ins

To deploy an automation add-in, right-click the solution node in Solution Explorer, and choose New Project from the
Add menu. In the Add New Project dialog box, choose Setup Project from Other Project Types\Setup and Deployment in
the Project Types tree.

Right-click the added setup project in Solution Explorer, and choose Project Output from the Add menu. In the Add
Project Output Group dialog box, choose the AutomationAddin project, and select Primary Output, as shown in Figure
3.15.

Figure 3.15. Adding the Primary output of the Automation Addin project to the
setup project.

Because we told the project to register our managed object for COM interop, the setup project should already be set up

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because we told the project to register our managed object for COM interop, the setup project should already be set up
correctly to register the managed object for COM interop at install time, too. To verify this, click the Primary output
from AutomationAddin node in the setup project. In the Properties window for the primary output (our Visual Basic
DLL), make sure that Register is set to vsdrpCOM.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction to the Excel Object Model
Regardless of the approach you choose to integrate your code with Excel, you will eventually need to talk to the Excel
object model to get things done. It is impossible to describe the Excel object model completely in this book, but we try
to make you familiar with the most important objects in the Excel object model and show some of the most frequently
used methods, properties, and events of these objects.

The first step in learning the Excel object model is getting an idea of the basic structure of the object model hierarchy.
Figure 3.16 shows the most critical objects in the Excel object model and their hierarchical relationship.

Figure 3.16. The basic hierarchy of the Excel object model.

A Workbook object has a collection called Sheets. The Sheets collection can contain objects of type Worksheet or Chart.
A Chart is sometimes called a chart sheet because it covers the entire area that a worksheet would cover. You can
insert a chart sheet into a workbook by right-clicking the worksheet tabs in the bottom-left corner of the Excel
workbook and choosing Insert. Figure 3.17 shows the dialog box that appears. Note that two additional objects are in
the Sheets collection: MS Excel 4.0 macro sheets and MS Excel 5.0 dialog sheets. If you insert a macro sheet or dialog
sheet into an Excel workbook, it is treated as a special kind of worksheet; no special object model type corresponds to a
macro sheet or a dialog sheet.

Figure 3.17. Inserting various kinds of sheets into an Excel Workbook.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because a workbook can contain these various kinds of objects, Excel provides several collections off the Workbook
object. The Worksheets collection contains just the Worksheet objects in the workbook. The Charts collection contains
just the chart sheets in the workbook. The Sheets collection is a mixed collection of both. The Sheets collection returns
members of the collection as type Object; you must cast the returned object to a Worksheet or Chart. In this book, when
we talk about an object that could be either a Worksheet or a Chart, we refer to it as a sheet.

Figure 3.18 shows a more complete hierarchy tree with the major objects associated with the objects in Figure 3.16.
This starts to give you an idea of the extensive hierarchy of objects that is the Excel object model, especially when you
realize that this diagram shows fewer than half of the objects available. The objects shown in gray are coming from the
Microsoft.Office.Core namespace, which is associated with the Microsoft Office 11.0 PIA (office.dll). These objects are
shared by all the Office applications.

Figure 3.18. A more detailed hierarchy of some major objects in the Excel object
model.

[View full size image]

Figure 3.19 shows the object hierarchy associated with Range, a very important object in Excel that represents a range
of cells you want to work with in your code. We used the Range object in Listing 3.2

Figure 3.19. A more detailed hierarchy of objects associated with Range in the
Excel object model.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3.20 shows the object hierarchy associated with Shape. A Shape represents things that float on the worksheet
that are not cells, such as embedded buttons, drawings, and comment bubbles.

Figure 3.20. A more detailed hierarchy of objects associated with Shape in the
Excel object model.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter introduced the various ways you can integrate your code into Excel. The chapter described how to build
automation add-ins to create user-defined functions for Excel. You also learned the basic hierarchy of the Excel object
model. Chapter 4, "Working with Excel Events," discusses the events in the Excel object model. Chapter 5, "Working
with Excel Objects," covers the most important objects in the Excel object model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4. Working with Excel Events

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Events in the Excel Object Model
Understanding the events in the Excel object model is critical because this is often the primary way that your code is
run. This chapter examines all the events in the Excel object model, when they are raised, and the type of code you
might associate with these events.

Many of the events in the Excel object model are repeated on the Application, Workbook, and Worksheet objects. This
repetition allows you to decide whether you want to handle the event for all workbooks, for a particular workbook, or
for a particular worksheet. If you want to know when any worksheet in any open workbook is double-clicked, for
example, you would handle the Application object's SheetBeforeDoubleClick event. If you want to know when any
worksheet in a particular workbook is double-clicked, you would handle the SheetBeforeDoubleClick event on that
Workbook object. If you want to know when one particular sheet is double-clicked, you would handle the
BeforeDoubleClick event on that Worksheet object. When an event is repeated on the Application, Workbook, and
Worksheet object, it typically is raised first on Worksheet, then on Workbook, and finally on Application.

New Workbook and Worksheet Events

Excel's Application object raises a NewWorkbook event when a new, blank workbook is created. This event is not raised
when a new workbook is created from a template or an existing document. Excel also raises events when new
worksheets are created in a particular workbook. Similarly, these events are raised only when a user creates a new
worksheet. They are never raised on subsequent opens of the workbook.

This discussion focuses on the various ways in which new workbook and worksheet events are raised:

Application.NewWorkbook is raised when a new, blank workbook is created. Excel passes the new Workbook
object as a parameter to this event.

Note

NewWorkbook is the name of both a method and an event on the Workbook object. Because of this
collision, you will have to use the CType operator to cast the Workbook object to the
WorkbookEvents_Event interface when adding an event handler dynamically using the AddHandler
statement as shown in Listing 4.1. If you are adding an event handler declaratively, using WithEvents
and Handles, you do not have to worry about this issue.

Application.WorkbookNewSheet is raised when a new sheet is created in any open workbook. Excel passes
the Workbook object that the new sheet was created in as a parameter to this event. It also passes the new
sheet object. Because a workbook can contain both worksheets and chart sheets, the new sheet object is
passed as an Object. Then you can cast it to either a Worksheet or a Chart.

Workbook.NewSheet is raised on a workbook that has a new sheet created in it. Excel passes the new sheet
object as a parameter to this event. The new sheet object is passed as an Object that you can cast to either a
Worksheet or a Chart.

Listing 4.1 shows a console application that handles the Application object's NewWorkbook and WorkbookNewSheet
events. It also creates a new workbook and handles the NewSheet event for that workbook. The console application
handles the Close event for the workbook, so when you close the workbook, the console application will exit and Excel
will quit. Listing 4.1 shows several other common techniques. For the sheets passed as Object, we use the CType operator
to cast the Object to a Worksheet or a Chart. Also, we handle the NewWorkbook event dynamically by using AddHandler,
which forces us to cast app to an Excel.AppEvents_Event interface to distinguish between the method called
NewWorkbook and the event called NewWorkbook. You can avoid this issue if you handle the NewWorkbook event
declaratively (using WithEvents and Handles) rather than using the AddHandler statement.

Listing 4.1. A Console Application That Handles New Workbook and Worksheet
Events

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Events

Imports Excel = Microsoft.Office.Interop.Excel
Imports System.Windows.Forms

Module Module1

 Private WithEvents app As Excel.Application
 Private WithEvents workbook As Excel.Workbook
 Private exitXL As Boolean = False

 Sub Main()
 app = New Excel.Application()
 app.Visible = True

 ' We cast to AppEvents_Event when adding an event handler
 ' dynamically using AddHandler because NewWorkbook
 ' is the name of both a property and an event.
 AddHandler CType(app, Excel.AppEvents_Event).NewWorkbook, _
 AddressOf App_NewWorkbook

 workbook = app.Workbooks.Add()

 While exitXL = False
 System.Windows.Forms.Application.DoEvents()
 End While

 app.Quit()
 End Sub
 Private Sub App_NewWorkbook(ByVal workbook As Excel.Workbook)
 Console.WriteLine(String.Format(_
 "Application.NewWorkbook({0})", workbook.Name))
 End Sub

 Private Sub App_WorkbookNewSheet(ByVal workbook As _
 Excel.Workbook, ByVal sheet As Object) _
 Handles app.WorkbookNewSheet

 If TypeOf sheet Is Excel.Worksheet Then
 Dim worksheet As Excel.Worksheet
 worksheet = CType(sheet, Excel.Worksheet)
 Console.WriteLine(String.Format(_
 "Application.WorkbookNewSheet({0},{1})", _
 workbook.Name, worksheet.Name))
 End If

 If TypeOf sheet Is Excel.Chart Then
 Dim chart As Excel.Chart = CType(sheet, Excel.Chart)
 Console.WriteLine(String.Format(_
 "Application.WorkbookNewSheet({0},{1})", _
 workbook.Name, chart.Name))
 End If

 End Sub

 Private Sub Workbook_NewSheet(ByVal sheet As Object) _
 Handles workbook.NewSheet

 If TypeOf sheet Is Excel.Worksheet Then
 Dim worksheet As Excel.Worksheet
 worksheet = CType(sheet, Excel.Worksheet)
 Console.WriteLine(String.Format(_
 "Workbook.NewSheet({0})", worksheet.Name))
 End If

 If TypeOf sheet Is Excel.Chart Then
 Dim chart As Excel.Chart = CType(sheet, Excel.Chart)
 Console.WriteLine(String.Format(_
 "Workbook.NewSheet({0})", chart.Name))
 End If

 End Sub

 Private Sub Workbook_BeforeClose(ByRef cancel As Boolean) _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub Workbook_BeforeClose(ByRef cancel As Boolean) _
 Handles workbook.BeforeClose

 exitXL = True

 End Sub

End Module

As you consider the code in Listing 4.1, you might wonder how you will ever remember the syntax of complicated lines
of code such as this one:

Private Sub App_WorkbookNewSheet(ByVal workbook _
 As Excel.Workbook, ByVal sheet As Object) _
 Handles app.WorkbookNewSheet

Fortunately, Visual Studio 2005 helps by generating this code for you. When you have declared the app member variable
as having events by using the WithEvents keyword, Visual Studio will display the app variable in the left drop-down list of
the code editor. Select app from the left drop-down list; then select the event that is raised by app that you want to
handle from the right drop-down listin this case, WorkbookNewSheet (see Figure 4.1). When you select the event you
want to handle, Visual Studio generates the event handler method automatically.

Figure 4.1. Visual Studio generates event handler code for you if you use the left
and right drop-down lists in the code editor.

[View full size image]

If you are using VSTO, you can also use the Properties window to add event handlers to your workbook or worksheet
classes. Double-click the project item for your workbook class (typically called ThisWorkbook.vb) or one of your
worksheet classes (typically called Sheet1.vb, Sheet2.vb, and so on). Make sure that the Properties window is visible; if
it is not, choose Properties Window from the View menu. Make sure that the workbook class (typically called
ThisWorkbook) or a worksheet class (typically called Sheet1, Sheet2, and so on) is selected in the combo box at the top
of the Properties window. Then click the lightning-bolt icon to show events associated with the workbook or worksheet.
Type the name of the method you want to use as an event handler in the edit box to the right of the event you want to
handle.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

handle.

Activation and Deactivation Events

Sixteen events in the Excel object model are raised when various objects are activated or deactivated. An object is
considered activated when its window receives focus or it is made the selected or active object. Worksheets, for
example, are activated and deactivated when you switch from one worksheet to another within a workbook. Clicking the
tab for Sheet3 in a workbook that has Sheet1 selected raises a Deactivate event for Sheet1 (it is losing focus) and an
Activate event for Sheet3 (it is getting focus). You can activate/deactive chart sheets in the same manner. Doing so
raises Activate and Deactivate events on the Chart object corresponding to the chart sheet that was activated or
deactivated.

You can also activate/deactivate worksheets. Consider the case where you have the workbooks Book1 and Book2 open
at the same time. If you are editing Book1, and you switch from Book1 to Book2 by choosing Book2 from the Window
menu, the Deactivate event for Book1 is raised, and the Activate event for Book2 is raised.

Windows are other examples of objects that are activated and deactivated. A workbook can have more than one
window open that is showing the workbook. Consider the case where you have the workbook Book1 opened. If you
choose New Window from the Window menu, two windows will open in Excel viewing Book1. One window has the
caption Book1:1, and the other window has the caption Book1:2. As you switch between Book1:1 and Book1:2, the
WindowActivate event is raised for the workbook. Switching between Book1:1 and Book1:2 does not raise the
Workbook Activate or Deactivate event, because Book1 remains the active workbook.

Note that Activate and Deactivate events are not raised when you switch to an application other than Excel and then
switch back to Excel. You might expect that if you had Excel and Word open side by side on your monitor, switching
focus by clicking from Excel to Word would raise Deactivate events inside Excel. This is not the case. Excel does not
consider switching to another application to be a deactivation of any of its workbooks, sheets, or windows.

The discussion now turns to the various ways in which Activate and Deactivate events are raised:

Application.WorkbookActivate is raised whenever a workbook is activated within Excel. Excel passes the
Workbook object that was activated as a parameter to this event.

Workbook.Activate is raised on a particular workbook that is activated. No parameter is passed to this event
because the activated workbook is the Workbook object raising the event.

Note

Activate is the name of both a method and an event on the Workbook object. Because of this
collision, you will have to use the CType operator to cast the Workbook object to the
WorkbookEvents_Event interface when adding an event handler dynamically using the AddHandler
statement as shown in Listing 4.1. If you are adding an event handler declaratively using WithEvents
and Handles, you do not have to worry about this issue.

Application.WorkbookDeactivate is raised whenever any workbook is deactivated within Excel. Excel passes
the Workbook object that was deactivated as a parameter to this event.

Workbook.Deactivate is raised on a particular workbook that is deactivated. No parameter is passed to this
event because the deactivated workbook is the Workbook object raising the event.

Application.SheetActivate is raised whenever a worksheet is activated within Excel. Excel passes the sheet
object that was activated as a parameter to this event. Because a workbook can contain both worksheets and
chart sheets, the activated sheet is passed as an Object. Then you can cast it to either a Worksheet or a Chart.

Workbook.SheetActivate is raised on a workbook that has a sheet that was activated. Excel passes the sheet
object that was activated as a parameter to this event. Because a workbook can contain both worksheets and
chart sheets, the activated sheet is passed as an Object. Then you can cast it to either a Worksheet or a Chart.

Worksheet.Activate and Chart.Activate are raised on an activated worksheet or chart sheet. No parameter
is passed to these events because the activated sheet is the Worksheet or Chart object raising this event.

Note

Activate is the name of both a method and an event on the Worksheet and the Chart object.
Because of this collision, you will have to use the CType operator to cast the Worksheet object to the
DocEvents_Event interface and cast the Chart object to the ChartEvents_Events interface when
adding an event handler dynamically using the AddHandler statement. If you are adding an event
handler declaratively using WithEvents and Handles, you do not have to worry about this issue.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

handler declaratively using WithEvents and Handles, you do not have to worry about this issue.

It is strange that the interface you cast the Worksheet object to is called DocEvents_Event. This is
due to the way the primary interop assemblies (PIAs) are generated; the event interface on the
COM object Worksheet was called DocEvents rather than WorksheetEvents. The same
inconsistency occurs with the Application object; it has an event interface called AppEvents rather
than ApplicationEvents.

Application.SheetDeactivate is raised whenever any worksheet is deactivated within Excel. Excel passes the
sheet object that was deactivated as a parameter to this event. Because a workbook can contain both
worksheets and chart sheets, the deactivated sheet is passed as an Object. Then you can cast it to either a
Worksheet or a Chart.

Workbook.SheetDeactivate is raised on a workbook that has a sheet that was deactivated. Excel passes the
sheet object that was deactivated as a parameter to this event. Because a workbook can contain both
worksheets and chart sheets, the deactivated sheet is passed as an Object. Then you can cast it to either a
Worksheet or a Chart.

Worksheet.Deactivate and Chart.Deactivate are raised on a deactivated worksheet or chart sheet. No
parameters are passed to these events because the deactivated sheet is the Worksheet or Chart object raising
this event.

Application.WindowActivate is raised whenever a window is activated within Excel. Excel passes the
Workbook object corresponding to the window that was activated as a parameter to this event. Excel also
passes the Window object that was activated.

Workbook.WindowActivate is raised on a workbook that has a window that was activated. Excel passes the
Window object that was activated as a parameter to this event.

Application.WindowDeactivate is raised whenever a window is deactivated within Excel. Excel passes the
Workbook object corresponding to the window that was deactivated as a parameter to this event. Excel also
passes the Window object that was deactivated.

Workbook.WindowDeactivate is raised on a workbook that has a window that was deactivated. Excel passes
the Window object that was deactivated as a parameter to this event.

Listing 4.2 shows a class that handles all these events. It is passed an Excel Application object to its constructor. The
constructor creates a new workbook and gets the first sheet in the workbook. Then it creates a chart sheet. It handles
events raised on the Application object, as well as the created workbook, the first worksheet in the workbook, and the
chart sheet that it adds to the workbook. Because several events pass as a parameter a sheet as an Object, a helper
method called ReportEventWithSheetParameter is used to determine the type of sheet passed and to display a message to the
console.

Listing 4.2. A Class That Handles Activation and Deactivation Events

Imports Excel = Microsoft.Office.Interop.Excel

Public Class TestEventHandler

 Private WithEvents app As Excel.Application
 Private WithEvents workbook As Excel.Workbook
 Private WithEvents worksheet As Excel.Worksheet
 Private WithEvents chart As Excel.Chart

 Public Sub New(ByVal application As Excel.Application)
 Me.app = application
 workbook = application.Workbooks.Add()
 worksheet = workbook.Worksheets(1)
 chart = workbook.Charts.Add
 End Sub

 Private Sub ReportEventWithSheetParameter(_
 ByVal eventName As String, ByVal sheet As Object)

 If TypeOf sheet Is Excel.Worksheet Then
 Dim worksheet As Excel.Worksheet
 worksheet = CType(sheet, Excel.Worksheet)
 Console.WriteLine(String.Format("{0} ({1})", _
 eventName, worksheet.Name))
 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If TypeOf sheet Is Excel.Chart Then
 Dim chart As Excel.Chart = CType(sheet, Excel.Chart)
 Console.WriteLine(String.Format("{0} ({1})", _
 eventName, chart.Name))
 End If

 End Sub

 Private Sub App_WorkbookActivate(_
 ByVal workbook As Excel.Workbook) _
 Handles app.WorkbookActivate

 Console.WriteLine(String.Format(_
 "Application.WorkbookActivate({0})", _
 workbook.Name))

 End Sub

 Private Sub Workbook_Activate() Handles workbook.Activate
 Console.WriteLine("Workbook.Activate()")
 End Sub

 Private Sub App_WorkbookDeactivate(_
 ByVal workbook As Excel.Workbook) _
 Handles app.WorkbookDeactivate

 Console.WriteLine(String.Format(_
 "Application.WorkbookDeactivate({0})", _
 workbook.Name))

 End Sub

 Private Sub Workbook_Deactivate() Handles workbook.Deactivate
 Console.WriteLine("Workbook.Deactivate()")
 End Sub

 Private Sub App_SheetActivate(ByVal sheet As Object) _
 Handles app.SheetActivate

 ReportEventWithSheetParameter("Application.SheetActivate", _
 sheet)

 End Sub

 Private Sub Workbook_SheetActivate(ByVal sheet As Object) _
 Handles workbook.SheetActivate

 ReportEventWithSheetParameter("Workbook.SheetActivate", _
 sheet)

 End Sub

 Private Sub Worksheet_Activate() Handles worksheet.Activate
 Console.WriteLine("Worksheet.Activate()")
 End Sub

 Private Sub Chart_Activate() Handles chart.Activate
 Console.WriteLine("Chart.Activate()")
 End Sub

 Private Sub App_SheetDeactivate(ByVal sheet As Object) _
 Handles app.SheetDeactivate

 ReportEventWithSheetParameter(_
 "Application.SheetDeactivate", sheet)

 End Sub

 Private Sub Workbook_SheetDeactivate(ByVal sheet As Object) _
 Handles workbook.SheetDeactivate

 ReportEventWithSheetParameter(_
 "Workbook.SheetDeactivate", sheet)

 End Sub

 Private Sub Worksheet_Deactivate() Handles worksheet.Deactivate
 Console.WriteLine("Worksheet.Deactivate()")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Console.WriteLine("Worksheet.Deactivate()")
 End Sub

 Private Sub Chart_Deactivate() Handles chart.Deactivate
 Console.WriteLine("Chart.Deactivate()")
 End Sub

 Private Sub App_WindowActivate(_
 ByVal workbook As Excel.Workbook, _
 ByVal window As Excel.Window) _
 Handles app.WindowActivate

 Console.WriteLine(String.Format(_
 "Application.WindowActivate({0}, {1})", _
 workbook.Name, window.Caption))

 End Sub

 Private Sub Workbook_WindowActivate(_
 ByVal window As Excel.Window) _
 Handles workbook.WindowActivate

 Console.WriteLine(String.Format(_
 "Workbook.WindowActivate({0})", _
 window.Caption))

 End Sub

 Private Sub App_WindowDeactivate(_
 ByVal workbook As Excel.Workbook, _
 ByVal window As Excel.Window) _
 Handles app.WindowDeactivate

 Console.WriteLine(String.Format(_
 "Application.WindowDeactivate({0}, {1})", _
 workbook.Name, window.Caption))

 End Sub

 Private Sub Workbook_WindowDeactivate(_
 ByVal window As Excel.Window) _
 Handles workbook.WindowDeactivate

 Console.WriteLine(String.Format(_
 "Application.WindowActivate({1})", _
 window.Caption))

 End Sub

End Class

DoubleClick and RightClick Events

Several events are raised when a worksheet or a chart sheet is double-clicked or right-clicked (clicked with the right
mouse button). Double-click events occur when you double-click in the center of a cell in a worksheet or on a chart
sheet. If you double-click the border of the cell, no events are raised. If you double-click column headers or row
headers, no events are raised. If you double-click objects in a worksheet (Shape objects in the object model), such as
an embedded chart, no events are raised. After you double-click a cell in Excel, Excel enters editing mode for that cell;
a cursor displays in the cell, allowing you to type in the cell. If you double-click a cell in editing mode, no events are
raised.

The right-click events occur when you right-click a cell in a worksheet or on a chart sheet. A right-click event is also
raised when you right-click column headers or row headers. If you right-click objects in a worksheet, such as an
embedded chart, no events are raised.

The right-click and double-click events for a chart sheet do not raise events on the Application and Workbook objects.
Instead, BeforeDoubleClick and BeforeRightClick events are raised directly on the Chart object.

All the right-click and double-click events have "Before" in their names. This is because Excel is raising these events
before Excel does its default behaviors for double-click and right-clickfor example, displaying a context menu or going
into edit mode for the cell you double-clicked. All these events have a Boolean parameter that is passed by a reference
called cancel, which allows you to cancel Excel's default behavior for the double-click or right-click that occurred by
setting the cancel parameter to true.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Many of the right-click and double-click events pass a Range object as a parameter. A Range object represents a range
of cells; it can represent a single cell or multiple cells. If you select several cells and then rightclick the selected cells,
for example, a Range object is passed to the right-click event that represents the selected cells.

Double-click and right-click events are raised in various ways, as follows:

Application.SheetBeforeDoubleClick is raised whenever any cell in any worksheet within Excel is double-
clicked. Excel passes as an Object the Worksheet that was double-clicked, a Range for the range of cells that was
double-clicked, and a Boolean cancel parameter passed by reference. The cancel parameter can be set to true by
your event handler to prevent Excel from executing its default double-click behavior. This is a case where it
really does not make sense that Worksheet is passed as Object because a Chart is never passed. You will always
have to cast the Object to a Worksheet.

Workbook.SheetBeforeDoubleClick is raised on a workbook that has a cell in a worksheet that was double-
clicked. Excel passes the same parameters as the Application-level SheetBeforeDoubleClick.

Worksheet.BeforeDoubleClick is raised on a worksheet that is double-clicked. Excel passes a Range for the
range of cells that was double-clicked and a Boolean cancel parameter passed by reference. The cancel parameter
can be set to TRue by your event handler to prevent Excel from executing its default double-click behavior.

Chart.BeforeDoubleClick is raised on a chart sheet that is double-clicked. Excel passes as Integer an elementID
and two parameters called arg1 and arg2. The combination of these three parameters allows you to determine
what element of the chart was double-clicked. Excel also passes a Boolean cancel parameter by reference. The
cancel parameter can be set to TRue by your event handler to prevent Excel from executing its default double-
click behavior.

Application.SheetBeforeRightClick is raised whenever any cell in any worksheet within Excel is right-clicked.
Excel passes as an Object the Worksheet that was right-clicked, a Range for the range of cells that was right-
clicked, and a Boolean cancel parameter passed by reference. The cancel parameter can be set to true by your event
handler to prevent Excel from executing its default right-click behavior. This is a case where it really does not
make sense that Worksheet is passed as an Object because a Chart is never passed. You will always have to cast
the Object to a Worksheet.

Workbook.SheetBeforeRightClick is raised on a workbook that has a cell in a worksheet that was right-
clicked. Excel passes the same parameters as the Application-level SheetBeforeRightClick.

Worksheet.BeforeRightClick is raised on a worksheet that is right-clicked. Excel passes a Range for the
range of cells that was right-clicked and a Boolean cancel parameter passed by reference. The cancel parameter can
be set to true by your event handler to prevent Excel from executing its default right-click behavior.

Chart.BeforeRightClick is raised on a chart sheet that is right-clicked. Strangely enough, Excel does not pass
any of the parameters that it passes to the Chart.BeforeDoubleClickEvent. Excel does pass a Boolean cancel
parameter by reference. The cancel parameter can be set to true by your event handler to prevent Excel from
executing its default right-click behavior.

Listing 4.3 shows a VSTO Workbook class that handles all these events. This code assumes that you have added a chart
sheet to the workbook and that this chart sheet is called Chart1. In VSTO, you do not have to keep a reference to the
Workbook object or to the Worksheet or Chart objects when handling events raised by these objects because they are
already being kept by the project items generated in the VSTO project. You do need to keep a reference to the
Application object when handling events raised by the Application object because it is not being kept anywhere in the
VSTO project.

The ThisWorkbook class generated by VSTO derives from a class that has all the members of Excel's Workbook object, so
we can add workbook event handlers by adding code that refers to Me, as shown in Listing 4.3. We can get an
Application object by using Me.Application because Application is a property of Workbook. Because the returned application
object is not being held as a reference by any other code, we must declare a class member variable to hold on to this
Application object so that our events handlers will work. Chapter 1, "An Introduction to Office Programming," discusses
this issue in more detail.

To get to the chart and the worksheet that are in our VSTO project, we use VSTO's Globals object, which lets us get to
the classes Chart1 and Sheet1 that are declared in other project items. We do not have to hold these objects in class
member variables because they have lifetimes that match the lifetime of the VSTO code behind.

We also declare two helper functions in Listing 4.3. One casts the sheet that is passed as an Object to a Worksheet and
returns the name of the worksheet. The other gets the address of the Range that is passed to many of the events as
the target parameter.

All the handlers for the right-click events set the Boolean cancel parameter that is passed by reference to TRue. This will
make it so that Excel will not perform its default behavior on right-click, which typically is to pop up a menu.

Note also that the code uses dynamic event handling to handle the events raised by Sheet1; the AddHandler statement is
used to connect these event handlers. This illustrates dynamic event handling, but the code could just as easily been
written using declarative event handling.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 4.3. A VSTO Workbook Customization That Handles Double-Click and Right-
Click Events

Imports Excel = Microsoft.Office.Interop.Excel
Imports Office = Microsoft.Office.Core

Public Class ThisWorkbook

 Private WithEvents app As Excel.Application

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 AddHandler Globals.Sheet1.BeforeDoubleClick, _
 AddressOf Sheet1_BeforeDoubleClick
 AddHandler Globals.Chart1.BeforeDoubleClick, _
 AddressOf Chart1_BeforeDoubleClick
 AddHandler Globals.Sheet1.BeforeRightClick, _
 AddressOf Sheet1_BeforeRightClick
 AddHandler Globals.Chart1.BeforeRightClick, _
 AddressOf Chart1_BeforeRightClick

 End Sub
 Private Function RangeAddress(ByVal target As Excel.Range) _
 As String
 Return target.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1)
 End Function

 Private Function SheetName(ByVal sheet As Object) As String
 If TypeOf sheet Is Excel.Worksheet Then
 Dim worksheet As Excel.Worksheet
 worksheet = CType(sheet, Excel.Worksheet)
 Return worksheet.Name
 Else
 Return String.Empty
 End If
 End Function

 Private Sub App_SheetBeforeDoubleClick(_
 ByVal sheet As Object, _
 ByVal target As Excel.Range, ByRef cancel As Boolean) _
 Handles app.SheetBeforeDoubleClick

 MsgBox(String.Format(_
 "Application.SheetBeforeDoubleClick({0},{1})", _
 SheetName(sheet), RangeAddress(target)))

 End Sub

 Private Sub ThisWorkbook_SheetBeforeDoubleClick(_
 ByVal sheet As Object, ByVal target As Excel.Range, _
 ByRef cancel As Boolean) Handles Me.SheetBeforeDoubleClick

 MsgBox(String.Format(_
 "Workbook.SheetBeforeDoubleClick({0}, {1})", _
 SheetName(sheet), RangeAddress(target)))

 End Sub

 Private Sub Sheet1_BeforeDoubleClick(_
 ByVal target As Excel.Range, _
 ByRef cancel As Boolean)

 MsgBox(String.Format(_
 "Worksheet.SheetBeforeDoubleClick({0})", _
 RangeAddress(target)))

 End Sub

 Private Sub Chart1_BeforeDoubleClick(_
 ByVal elementID As Integer, _
 ByVal arg1 As Integer, _
 ByVal arg2 As Integer, ByRef cancel As Boolean)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal arg2 As Integer, ByRef cancel As Boolean)

 MsgBox(String.Format(_
 "Chart.SheetBeforeDoubleClick({0}, {1}, {2})", _
 elementID, arg1, arg2))

 End Sub

 Private Sub App_SheetBeforeRightClick(_
 ByVal sheet As Object, _
 ByVal target As Excel.Range, ByRef cancel As Boolean) _
 Handles app.SheetBeforeRightClick

 MsgBox(String.Format(_
 "Application.SheetBeforeRightClick({0},{1})", _
 SheetName(sheet), RangeAddress(target)))
 cancel = True

 End Sub

 Private Sub ThisWorkbook_SheetBeforeRightClick(_
 ByVal sheet As Object, ByVal target As Excel.Range, _
 ByRef cancel As Boolean) Handles Me.SheetBeforeRightClick

 MsgBox(String.Format(_
 "Workbook.SheetBeforeRightClick({0},{1})", _
 SheetName(sheet), RangeAddress(target)))
 cancel = True

 End Sub

 Private Sub Sheet1_BeforeRightClick(_
 ByVal target As Excel.Range, _
 ByRef cancel As Boolean)

 MsgBox(String.Format(_
 "Worksheet.SheetBeforeRightClick({0})", _
 RangeAddress(target)))
 cancel = True
 End Sub

 Private Sub Chart1_BeforeRightClick(ByRef cancel As Boolean)
 MsgBox("Chart.SheetBeforeRightClick()")
 cancel = True
 End Sub

End Class

Cancelable Events and Event Bubbling

Listing 4.3 raises an interesting question: What happens when multiple objects handle an event such as
BeforeRightClick at multiple levels? Listing 4.3 handles the BeforeRightClick event at the Worksheet, Workbook, and
Application levels. Excel first raises the event at the Worksheet level for all code that has registered for the Worksheet-
level event. Remember that other add-ins could be loaded in Excel handling Worksheetlevel events as well. Your code
might get the Worksheet.BeforeRightClick event first, followed by some other add-in that also is handling the
Worksheet.BeforeRightClick event. When multiple add-ins handle the same event on the same object, you cannot rely
on any determinate order for which will get the event first. Therefore, do not write your code to rely on any particular
ordering.

After events are raised at the Worksheet level, they are raised at the Workbook level and finally at the Application level.
For a cancelable event, even if one event handler sets the cancel parameter to true, the events will continue to be raised
to other event handlers. So even though the code in Listing 4.3 sets the cancel parameter to true in Sheet1_BeforeRightClick,
Excel will continue to raise events on other handlers of the worksheet BeforeRightClick and then handlers of the
Workbook.SheetBeforeRightClick, followed by handlers of the Application.SheetBeforeRightClick.

Another thing you should know about cancelable events is that you can check the incoming cancel parameter in your
event handler to see what the last event handler set it to. So in the Sheet1_BeforeRightClick handler, the incoming cancel
parameter would be False, assuming that no other code is handling the event. In the ThisWorkbook_SheetBeforeRightClick
handler, the incoming cancel parameter would be true because the last handler, Sheet1_BeforeRightClick, set it to true. This
means that as an event bubbles through multiple handlers, each subsequent handler can override what the previous
handlers did with respect to canceling the default right-click behavior in this example. Application-level handlers get the
final sayalthough if multiple Application-level handlers exist for the same event, whether the event gets canceled is
indeterminate, because no rules dictate which of multiple Applicationlevel event handlers gets an event first or last.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Calculate Events

Four events are raised when formulas in the worksheet are recalculated. The worksheet is recalculated whenever you
change a cell that affects a formula referring to that cell or when you add or modify a formula:

Application.SheetCalculate is raised whenever any sheet within Excel is recalculated. Excel passes the sheet
as an Object that was recalculated as a parameter to this event. The sheet object can be cast to a Worksheet or
a Chart.

Workbook.SheetCalculate is raised on a workbook that has a sheet that was recalculated. Excel passes the
sheet as an Object that was recalculated as a parameter to this event. The sheet object can be cast to a
Worksheet or a Chart.

Worksheet.Calculate is raised on a worksheet that was recalculated.

Note

Calculate is the name of both a method and an event on the Worksheet object. Because of this
collision, you will have to use the CType operator to cast the Worksheet object to the
DocEvents_Event interface when adding an event handler dynamically using the AddHandler
statement. If you are adding an event handler declaratively using WithEvents and Handles, you do not
have to worry about this issue.

Chart.Calculate is raised on a chart sheet that was updated because data it referenced changed. This event
does not occur until the chart is forced to redrawso if the chart is not currently visible because it is not selected
or displayed in its own window, the event will not be raised until the chart is visible.

Listing 4.4 shows a console application that handles all the calculation events. The console application creates a new
workbook, gets the first worksheet in the workbook, and creates a chart in the workbook. The console application also
handles the Close event for the created workbook to cause the console application to exit when the workbook is closed.
To get Excel to raise worksheet and workbook Calculate events, add some values and formulas to the first worksheet in
the workbook. To raise the Chart object's Calculate event, you can right-click the chart sheet that you are handling the
event for, and choose Source Data from the pop-up menu. Then click the button to the right of the Data Range text
box, switch to the first worksheet, and select a range of values for the chart sheet to display. When you change those
values and switch back to the chart sheet, the Chart's Calculate event will be raised.

Listing 4.4. A Console Application That Handles Calculate Events

Imports System.Windows.Forms
Imports Excel = Microsoft.Office.Interop.Excel

Module Module1

 Private WithEvents app As Excel.Application
 Private WithEvents workbook As Excel.Workbook
 Private WithEvents worksheet As Excel.Worksheet
 Private WithEvents chart As Excel.Chart
 Private exitXL As Boolean = False

 Sub Main()
 app = New Excel.Application
 app.Visible = True

 workbook = app.Workbooks.Add()
 worksheet = workbook.Sheets(1)
 chart = workbook.Charts.Add()

 While exitXL = False
 System.Windows.Forms.Application.DoEvents()
 End While

 app.Quit()
 End Sub

 Private Sub Workbook_BeforeClose(ByRef cancel As Boolean) _
 Handles workbook.BeforeClose

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 exitXL = True

 End Sub

Private Function SheetName(ByVal sheet As Object) As String
 If TypeOf sheet Is Excel.Worksheet Then
 Dim worksheet As Excel.Worksheet
 worksheet = CType(sheet, Excel.Worksheet)
 Return worksheet.Name
 End If

 If TypeOf sheet Is Excel.Chart Then
 Dim chart As Excel.Chart = CType(sheet, Excel.Chart)
 Return chart.Name
 End If

 Return String.Empty
 End Function

 Private Sub App_SheetCalculate(ByVal sheet As Object) _
 Handles app.SheetCalculate

 Console.WriteLine(String.Format(_
 "Application.SheetCalculate({0})", SheetName(sheet)))
 End Sub

 Private Sub Workbook_SheetCalculate(ByVal sheet As Object) _
 Handles workbook.SheetCalculate

 Console.WriteLine(String.Format(_
 "Workbook.SheetCalculate({0})", SheetName(sheet)))

 End Sub

 Private Sub Worksheet_Calculate() Handles worksheet.Calculate
 Console.WriteLine("Worksheet.Calculate()")

 End Sub

 Private Sub Chart_Calculate() Handles chart.Calculate
 Console.WriteLine("Chart.Calculate()")
 End Sub

End Module

Change Events

Excel raises several events when a cell or range of cells is changed in a worksheet. The cells must be changed by a user
editing the cell for change events to be raised. Change events can also be raised when a cell is linked to external data
and is changed as a result of refreshing the cell from the external data. Change events are not raised when a cell is
changed because of a recalculation. They are not raised when the user changes the formatting of the cell without
changing the value of the cell. When a user is editing a cell and is in cell-edit mode, the change events are not raised
until the user exits cell-edit mode by leaving that cell or pressing the Enter key:

Application.SheetChange is raised when a cell or range of cells in any workbook is changed by the user or
updated from external data. Excel passes the sheet as an Object where the change occurred as a parameter to
this event. You can always cast the sheet parameter to a Worksheet because the Change event is not raised for
chart sheets. Excel also passes a Range as a parameter for the range of cells that was changed.

Workbook.SheetChange is raised on a workbook when a cell or range of cells in that workbook is changed by
the user or updated from external data. Excel passes the sheet as an Object where the change occurred as a
parameter to this event. You can always cast the sheet parameter to a Worksheet because the Change event is
not raised for chart sheets. Excel also passes a Range as a parameter for the range of cells that was changed.

Worksheet.Change is raised on a worksheet when a cell or range of cells in that worksheet is changed by the
user or updated from external data. Excel passes a Range as a parameter for the range of cells that was
changed.

Listing 4.5 shows a class that handles all the Change events. It is passed an Excel Application object to its constructor.
The constructor creates a new workbook and gets the first worksheet in the workbook. It handles events raised on the
Application object, the workbook, and the first worksheet in the workbook.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application object, the workbook, and the first worksheet in the workbook.

Listing 4.5. A Class That Handles Change Events

Imports Excel = Microsoft.Office.Interop.Excel

Public Class ChangeEventHandler

 Private WithEvents app As Excel.Application
 Private WithEvents workbook As Excel.Workbook
 Private WithEvents worksheet As Excel.Worksheet

Public Sub New(ByVal application As Excel.Application)
 Me.app = application
 workbook = app.Workbooks.Add()
 worksheet = workbook.Worksheets(1)
 End Sub

 ' Change events only pass worksheets, never charts.
 Private Function SheetName(ByVal sheet As Object) As String
 If TypeOf sheet Is Excel.Worksheet Then
 Dim worksheet As Excel.Worksheet
 worksheet = CType(sheet, Excel.Worksheet)
 Return worksheet.Name
 End If
 End Function

 Private Function RangeAddress(_
 ByVal target As Excel.Range) As String
 Return target.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1)
 End Function

 Private Sub App_SheetChange(ByVal sheet As Object, _
 ByVal target As Excel.Range) Handles app.SheetChange

 Console.WriteLine(String.Format(_
 "Application.SheetChange({0},{1})", _
 SheetName(sheet), RangeAddress(target)))

 End Sub

 Private Sub Workbook_SheetChange(ByVal sheet As Object, _
 ByVal target As Excel.Range) Handles workbook.SheetChange

 Console.WriteLine(String.Format(_
 "Workbook.SheetChange({0},{1})", _
 SheetName(sheet), RangeAddress(target)))

 End Sub

 Private Sub Worksheet_Change(ByVal target As Excel.Range) _
 Handles worksheet.Change

 Console.WriteLine(String.Format("Worksheet.Change({0})",_
 RangeAddress(target)))

 End Sub

End Class

Follow Hyperlink Events

Excel raises several events when a hyperlink in a cell is clicked. You might think this event is not very interesting, but
you can use it as a simple way to invoke an action in your customization. The trick is to create a hyperlink that does
nothing and then handle the FollowHyperlink event and execute your action in that event handler.

To create a hyperlink that does nothing, right-click the cell where you want to put your hyperlink, and choose Hyperlink.
For our example, we select cell C3. In the dialog box that appears, click the Place in This Document icon on the left side
of the dialog box (see Figure 4.2). In the Type the Cell Reference text box, type C3 or the reference of the cell to which

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of the dialog box (see Figure 4.2). In the Type the Cell Reference text box, type C3 or the reference of the cell to which
you are adding a hyperlink. The logic behind doing this is that Excel will select the cell that C3 is linked to after the
hyperlink is clicked and after your event handler runs. If you select a cell other than the cell the user clicked, the
selection will move, which is confusing. So we effectively link the cell to itself, creating a do-nothing link. In the Text to
Display text box, type the name of your commandthe name you want displayed in the cell. In this example, we name
the command Print.

Figure 4.2. The Insert Hyperlink dialog box.

[View full size image]

The following events are raised when a hyperlink is clicked:

Application.SheetFollowHyperlink is raised when a hyperlink is clicked in any workbook open in Excel. Excel
passes a Hyperlink object as a parameter to this event. The Hyperlink object gives you information about the
hyperlink that was clicked.

Workbook.SheetFollowHyperlink is raised on a workbook when a hyperlink is clicked in that workbook. Excel
passes a Hyperlink object as a parameter to this event. The Hyperlink object gives you information about the
hyperlink that was clicked.

Worksheet.FollowHyperlink is raised on a worksheet when a hyperlink is clicked in that worksheet. Excel
passes a Hyperlink object as a parameter to this event. The Hyperlink object gives you information about the
hyperlink that was clicked.

Listing 4.6 shows a VSTO customization class for the workbook project item. This class assumes a workbook that has a
Print hyperlink in it, created as shown in Figure 4.2 The customization does nothing in the handlers of the Application or
Workbook-level hyperlink events but log to the console window. The Worksheet-level handler detects that a hyperlink
named Print was clicked and invokes the PrintOut method on the Workbook object to print the workbook.

Listing 4.6. A VSTO Workbook Customization That Handles Hyperlink Events

Imports Excel = Microsoft.Office.Interop.Excel
Imports Office = Microsoft.Office.Core

Public Class ThisWorkbook

 Private WithEvents app As Excel.Application

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 AddHandler Globals.Sheet1.FollowHyperlink, _
 AddressOf Sheet_FollowHyperlink

 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

 Private Function SheetName(ByVal sheet As Object) As String
 If TypeOf sheet Is Excel.Worksheet Then
 Dim worksheet As Excel.Worksheet
 worksheet = CType(sheet, Excel.Worksheet)
 Return worksheet.Name
 Else
 Return String.Empty
 End If
 End Function

 Private Sub App_SheetFollowHyperlink(ByVal sheet As Object, _
 ByVal target As Excel.Hyperlink) _
 Handles app.SheetFollowHyperlink

 MsgBox(String.Format(_
 "Application.SheetFollowHyperlink({0},{1})", _
 SheetName(sheet), target.Name))

 End Sub

 Private Sub Workbook_SheetFollowHyperlink(_
 ByVal sheet As Object, _
 ByVal target As Excel.Hyperlink) _
 Handles Me.SheetFollowHyperlink

 MsgBox(String.Format(_
 "Workbook.SheetFollowHyperlink({0},{1})", _
 SheetName(sheet), target.Name))

 End Sub

 Private Sub Sheet_FollowHyperlink(_
 ByVal target As Excel.Hyperlink)
 If target.Name = "Print" Then
 Me.PrintOut()
 End If
 End Sub

End Class

Selection Change Events

Selection change events occur when the selected cell or cells change or, in the case of the Chart. Select event, when
the selected chart element within a chart sheet changes:

Application.SheetSelectionChange is raised whenever the selected cell or cells in any worksheet within Excel
change. Excel passes the sheet upon which the selection changed to the event handler. The event handler's
parameter is typed as Object, however, so it must be cast to a Worksheet if you want to use the properties or
methods of the Worksheet. You are guaranteed to be able to cast the argument to Worksheet because the
SheetSelectionChange event is not raised when selection changes on a Chart. Excel also passes the range of
cells that is the new selection.

Workbook.SheetSelectionChange is raised on a Workbook whenever the selected cell or cells in that
workbook change. Excel passes as an Object the sheet where the selection changed. You can always cast the
sheet object to a Worksheet because this event is not raised for selection changes on a chart sheet. Excel also
passes a Range for the range of cells that is the new selection.

Worksheet.SelectionChange is raised on a Worksheet whenever the selected cell or cells in that worksheet
change. Excel passes a Range for the range of cells that is the new selection.

Chart.Select is raised on a Chart when the selected element within that chart sheet changes. Excel passes as
Integer an elementID and two parameters called arg1 and arg2. The combination of these three parameters allows
you to determine what element of the chart was selected.

Note

Select is the name of both a method and an event on the Chart object. Because of this collision, you will
have to use the CType operator to cast the Chart object to the ChartEvents_Events interface when adding
an event handler dynamically using the AddHandler statement. If you are adding an event handler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

an event handler dynamically using the AddHandler statement. If you are adding an event handler
declaratively using WithEvents and Handles, you do not have to worry about this issue.

WindowResize Events

The WindowResize events are raised when a workbook window is resized. These events are raised only if the workbook
window is not maximized to fill Excel's outer application window (see Figure 4.3). Events are raised if you resize a
nonmaximized workbook window or minimize the workbook window. No resize events occur when you resize and
minimize the outer Excel application window.

Figure 4.3. Window Resize events are raised only if the workbook window is not
maximized to fill the application window.

Two events are raised when a window is resized. One event is raised on the Application object, and the other, on the
Workbook object:

Application.WindowResize is raised when any nonmaximized workbook window is resized or minimized.
Excel passes the Window object corresponding to the window that was resized or minimized as a parameter to
this event. Excel also passes the Workbook object that was affected as a parameter to this event.

Workbook.WindowResize is raised on a Workbook when a nonmaximized window associated with that
workbook is resized or minimized. Excel passes the Window that was resized or minimized as a parameter to
this event.

Add-In Install and Uninstall Events

You can save a workbook in a special add-in format (XLA file) by selecting Save As from the File menu and then picking
Microsoft Office Excel Add-in as the desired format. The workbook will then be saved to the Application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Microsoft Office Excel Add-in as the desired format. The workbook will then be saved to the Application
Data\Microsoft\AddIns directory, located in the user's document and settings directory. It will appear in the list of
available add-ins that displays when you choose Add-Ins from the Tools menu. When you click the check box to enable
the add-in, the workbook loads in a hidden state, and the Application.AddinInstall event is raised. When the user clicks
the check box to disable the add-in, the Application.AddinUninstall event is raised.

Although theoretically you can save a workbook customized by VSTO as an XLA file, Microsoft does not support this
scenario because many VSTO features, such as support for the Document Actions task pane and Smart Tags, do not
work when a workbook is saved as an XLA file.

XML Import and Export Events

Excel supports the import and export of custom XML data files by allowing you to take an XML schema and map it to
cells in a workbook. Then you can export or import those cells to an XML data file that conforms to the mapped schema.
Excel raises events on the Application and Workbook objects before and after an XML file is imported or exported,
allowing the developer to customize and control this feature further. Chapter 21, "Working with XML in Excel," discusses
in detail the XML-mapping features of Excel.

Before Close Events

Excel raises events before a workbook is closed. These events give your code a chance to prevent the closing of the
workbook. Excel passes a Boolean cancel parameter to the event. If your event handler sets the cancel parameter to true,
the pending close of the workbook is canceled, and the workbook remains open.

These events cannot be used to determine whether the workbook is actually going to close. Another event handler
might run after your event handlerfor example, an event handler in another add-inand that event handler might set the
cancel parameter to true, preventing the closing of the workbook. Furthermore, if the user has changed the workbook and
is prompted to save changes when the workbook is closed, the user can click the Cancel button, causing the workbook
to remain open.

If you need to run code only when the workbook is actually going to close, VSTO provides a Shutdown event that is not
raised until all other event handlers and the user have allowed the close of the workbook:

Application.WorkbookBeforeClose is raised before any workbook is closed, giving the event handler the
chance to prevent the closing of the workbook. Excel passes the Workbook object that is about to be closed.
Excel also passes by reference a Boolean cancel parameter. The cancel parameter can be set to true by your event
handler to prevent Excel from closing the workbook.

Workbook.BeforeClose is raised on a workbook that is about to be closed, giving the event handler a chance
to prevent the closing of the workbook. Excel passes by reference a Boolean cancel parameter. The cancel
parameter can be set to TRue by your event handler to prevent Excel from closing the workbook.

Before Print Events

Excel raises events before a workbook is printed. These events are raised when the user chooses Print or Print Preview
from the File menu or clicks the Print toolbar button. Excel passes a Boolean cancel parameter to the event. If your event
handler sets the cancel parameter to TRue, the pending print of the workbook will be canceled and the Print dialog box or
Print Preview view will not be shown. You might want to do this because you want to replace Excel's default printing
behavior with some custom printing behavior of your own.

These events cannot be used to determine whether the workbook is actually going to be printed. Another event handler
might run after your event handler and prevent the printing of the workbook. The user can also click the Cancel button
in the Print dialog box to stop the printing.

Two events are raised before a workbook is printed. One event is raised on the Application object, and the other on the
Workbook object:

Application.WorkbookBeforePrint is raised before any workbook is printed or print previewed, giving the
event handler a chance to change the workbook before it is printed or change the default print behavior. Excel
passes as a parameter the Workbook that is about to be printed. Excel also passes by reference a Boolean cancel
parameter. The cancel parameter can be set to true by your event handler to prevent Excel from performing its
default print behavior.

Workbook.BeforePrint is raised on a workbook that is about to be printed or print previewed, giving the
event handler a chance to change the workbook before it is printed or change the default print behavior. Excel
passes by reference a Boolean cancel parameter. The cancel parameter can be set to TRue by your event handler to
prevent performing its default print behavior.

Before Save Events

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Excel raises cancelable events before a workbook is saved, allowing you to perform some custom action before the
document is saved. These events are raised when the user chooses Save, Save As, or Save As Web Page commands.
They are also raised when the user closes a workbook that has been modified and chooses to save when prompted.
Excel passes a Boolean cancel parameter to the event. If your event handler sets the cancel parameter to TRue, the save will
be cancelled and the Save dialog box will not be shown. You might want to do this because you want to replace Excel's
default saving behavior with some custom saving behavior of your own.

These events cannot be used to determine whether the workbook is actually going to be saved. Another event handler
might run after your event handler and prevent the save of the workbook. The user can also press Cancel in the Save
dialog box to stop the save of the workbook.

Application.WorkbookBeforeSave is raised before any workbook is saved, giving the event handler a chance
to prevent or override the saving of the workbook. Excel passes as a parameter the Workbook that is about to
be saved. Excel also passes a Boolean saveAsUI parameter that tells the event handler whether Save or Save As
was selected. Excel also passes by reference a Boolean cancel parameter. The cancel parameter can be set to TRue
by your event handler to prevent Excel from performing its default save behavior.

Workbook.BeforeSave is raised on a workbook that is about to be saved, giving the event handler a chance
to prevent or override the saving of the workbook. Excel passes a Boolean saveAsUI parameter that tells the event
handler whether Save or Save As was selected. Excel passes by reference a Boolean cancel parameter. The cancel
parameter can be set to TRue by your event handler to prevent Excel from performing its default save behavior.

Open Events

Excel raises events when a workbook is opened or when a new workbook is created from a template or an existing
document. If a new, blank workbook is created, the Application.WorkbookNew event is raised:

Application.WorkbookOpen is raised when any workbook is opened. Excel passes the Workbook that is
opened as a parameter to this event. This event is not raised when a new, blank workbook is created. The
Application.WorkbookNew event is raised instead.

Workbook.Open is raised on a workbook when it is opened.

Listing 4.7 shows a console application that handles the BeforeClose, BeforePrint, BeforeSave, and Open events. It sets
the cancel parameter to true in the BeforeSave and BeforePrint handlers to prevent the saving and printing of the
workbook.

Listing 4.7. A Console Application That Handles Close, Print, Save, and Open
Events

Imports System.Windows.Forms
Imports Excel = Microsoft.Office.Interop.Excel

Module Module1

 Private WithEvents app As Excel.Application
 Private WithEvents workbook As Excel.Workbook
 Private exitXL As Boolean = False

 Sub Main()
 app = New Excel.Application
 app.Visible = True
 workbook = app.Workbooks.Add()

 While exitXL = False
 System.Windows.Forms.Application.DoEvents()
 End While

 app.Quit()
 End Sub

 Private Sub App_WorkbookBeforeClose(_
 ByVal workbook As Excel.Workbook, ByRef cancel As Boolean) _
 Handles app.WorkbookBeforeClose

 Console.WriteLine(String.Format(_
 "Application.WorkbookBeforeClose({0})", workbook.Name))

 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub Workbook_BeforeClose(ByRef cancel As Boolean) _
 Handles workbook.BeforeClose

 Console.WriteLine("Workbook.BeforeClose()")
 exitXL = True

 End Sub

 Private Sub App_WorkbookBeforePrint(_
 ByVal workbook As Excel.Workbook, ByRef cancel As Boolean) _
 Handles app.WorkbookBeforeprint

 Console.WriteLine(String.Format(_
 "Application.WorkbookBeforePrint({0})", _
 workbook.Name))
 cancel = True ' Don't allow printing

 End Sub

 Private Sub Workbook_BeforePrint(ByRef cancel As Boolean) _
 Handles workbook.BeforePrint

 Console.WriteLine("Workbook.BeforePrint()")
 cancel = True ' Don't allow printing

 End Sub

 Private Sub App_WorkbookBeforeSave(_
 ByVal workbook As Excel.Workbook, _
 ByVal saveAsUI As Boolean, _
 ByRef cancel As Boolean) Handles app.WorkbookBeforeSave

 Console.WriteLine(String.Format(_
 "Application.WorkbookBeforeSave({0},{1})", _
 workbook.Name, saveAsUI))
 cancel = True ' Don't allow saving

 End Sub

 Private Sub Workbook_BeforeSave(_
 ByVal saveAsUI As Boolean, _
 ByRef cancel As Boolean) Handles workbook.BeforeSave

 Console.WriteLine(String.Format(_
 "Workbook.BeforeSave({0})", saveAsUI))
 cancel = True ' Don't allow saving

 End Sub

 Private Sub App_WorkbookOpen(_
 ByVal workbook As Excel.Workbook) _
 Handles app.WorkbookOpen

 Console.WriteLine(String.Format(_
 "Application.WorkbookOpen({0})", workbook.Name))

 End Sub

End Module

Toolbar and Menu Events

A common way to run your code is by adding a custom toolbar button or menu item to Excel and handling the click
event raised by that button or menu item. Both a toolbar and a menu bar are represented by the same object in the
Office object modelan object called CommandBar. Figure 4.4 shows the hierarchy of CommandBarrelated objects. The
Application object has a collection of CommandBars that represent the main menu bar and all the available toolbars in
Excel. You can see all the available toolbars in Excel by choosing Customize from the Tools menu.

Figure 4.4. The hierarchy of CommandBar objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4.4. The hierarchy of CommandBar objects.

You make the CommandBar objects available to your application by adding a reference to the Microsoft Office 11.0
Object Library PIA (office.dll). The CommandBar objects are located in the Microsoft.Office.Core namespace.

A CommandBar has a collection of CommandBarControls that contains objects of type CommandBarControl. A
CommandBarControl can often be cast to a CommandBarButton, CommandBarPopup, or CommandBarComboBox. It is
also possible to have a CommandBarControl that cannot be cast to one of these other typesfor example, it is just a
CommandBarControl and cannot be cast to a CommandBarButton, CommandBarPopup, or CommandBarComboxBox.

Listing 4.8 shows some code that iterates over all the CommandBars available in Excel. The code displays the name or
caption of each CommandBar and associated CommandBarControls. When Listing 4.8 gets to a CommandBarControl, it
first checks whether it is a CommandBarButton, a CommandBarComboBox, or a CommandBarPopup and then casts to
the corresponding object. If the CommandBarControl is not any of these object types, the code uses the
CommandBarControl properties. Note that a CommandBarPopup has a Controls property that returns a
CommandBarControls collection. Our code uses recursion to iterate the CommandBarControls collection associated with
a CommandBarPopup control.

Listing 4.8. A Console Application That Iterates over All the CommandBars and
CommandBarControls in Excel

Imports Excel = Microsoft.Office.Interop.Excel
Imports Office = Microsoft.Office.Core
Imports System.Text

Module Module1

 Private WithEvents app As Excel.Application

 Sub Main()
 app = New Excel.Application()
 Dim bars As Office.CommandBars = app.CommandBars

 For Each bar As Office.CommandBar In bars
 Console.WriteLine(String.Format(_
 "CommandBar: {0}", bar.Name))
 DisplayControls(bar.Controls, 1)
 Next

 Console.ReadLine()
 End Sub

 Private Sub DisplayControls(_
 ByVal ctls As Office.CommandBarControls, _
 ByVal indentNumber As Integer)

 Dim sb As New System.Text.StringBuilder()
 sb.Append(" ", indentNumber)

 For Each ctl As Office.CommandBarControl In ctls
 If TypeOf ctl Is Office.CommandBarButton Then
 Dim btn As Office.CommandBarButton
 btn = CType(ctl, Office.CommandBarButton)
 sb.Append("CommandBarButton: ")
 sb.Append(btn.Caption)
 Console.WriteLine(sb.ToString())

 ElseIf TypeOf ctl Is Office.CommandBarComboBox Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ElseIf TypeOf ctl Is Office.CommandBarComboBox Then
 Dim box As Office.CommandBarComboBox
 box = CType(ctl, Office.CommandBarComboBox)
 sb.Append("CommandBarComboBox: ")
 sb.Append(box.Caption)
 Console.WriteLine(sb.ToString())

 ElseIf TypeOf ctl Is Office.CommandBarComboBox Then
 Dim pop As Office.CommandBarPopup
 pop = CType(ctl, Office.CommandBarPopup)
 DisplayControls(pop.Controls, indentNumber + 1)

 Else
 sb.Append("CommandBarControl: ")
 sb.Append(ctl.Caption)
 Console.WriteLine(sb.ToString())
 End If
 Next

 End Sub

End Module

Excel raises several events on CommandBar, CommandBarButton, and CommandBarComboBox objects:

CommandBar.OnUpdate is raised when any change occurs to a CommandBar or associated
CommandBarControls. This event is raised frequently and can even raise when selection changes in Excel.
Handling this event could slow Excel, so you should handle this event with caution.

CommandBarButton.Click is raised on a CommandBarButton that is clicked. Excel passes the
CommandBarButton that was clicked as a parameter to this event. It also passes by reference a Boolean
cancelDefault parameter. The cancelDefault parameter can be set to true by your event handler to prevent Excel from
executing the default action associated with the button. You could handle this event for an existing button such
as the Print button, for example. By setting cancelDefault to true, you can prevent Excel from doing its default print
behavior when the user clicks the button and replace that behavior with your own.

CommandBarComboBox.Change is raised on a CommandBarComboBox that had its text value changedeither
because the user chose an option from the drop-down list or because the user typed a new value directly into
the combo box. Excel passes the CommandBarComboBox that changed as a parameter to this event.

Listing 4.9 shows a console application that creates a CommandBar, a CommandBarButton, and a
CommandBarComboBox. It handles the CommandBarButton.Click event to exit the application. It also displays changes
made to the CommandBarComboBox in the console window. The CommandBar, CommandBarButton, and
CommandBarComboBox are added temporarily; Excel will delete them automatically when the application exits. This is
done by passing true to the Temporary parameter of the CommandBarControls.Add method.

Listing 4.9. A Console Application That Adds a CommandBar and a
CommandBarButton

Imports Office = Microsoft.Office.Core
Imports Excel = Microsoft.Office.Interop.Excel

Module Module1

 Private WithEvents app As Excel.Application
 Private close As Boolean = False
 Private WithEvents btn As Office.CommandBarButton
 Private WithEvents box As Office.CommandBarComboBox

 Sub Main()
 app = New Excel.Application()
 app.Visible = True

 Dim bars As Office.CommandBars = app.CommandBars
 Dim bar As Office.CommandBar = bars.Add(_
 "My Custom Bar", Temporary:=True)
 bar.Visible = True

 btn = bar.Controls.Add(_
 Office.MsoControlType.msoControlButton, Temporary:=True)
 btn.Caption = "Stop Console Application"
 btn.Tag = "ConsoleApplication.btn"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 btn.Tag = "ConsoleApplication.btn"
 btn.Style = Office.MsoButtonStyle.msoButtonCaption

 box = bar.Controls.Add(_
 Office.MsoControlType.msoControlComboBox, Temporary:=True)
 box.AddItem("Choice 1", 1)
 box.AddItem("Choice 2", 2)
 box.AddItem("Choice 3", 3)
 box.Tag = "ConsoleApplication.box"

 While close = False
 System.Windows.Forms.Application.DoEvents()
 End While
 End Sub

 Private Sub Btn_Click(ByVal ctrl As Office.CommandBarButton, _
 ByRef cancelDefault As Boolean) Handles btn.Click

 close = True

 End Sub

 Private Sub Box_Change(_
 ByVal ctrl As Office.CommandBarComboBox) _
 Handles box.Change

 Console.WriteLine("Selected " & ctrl.Text)

 End Sub

End Module

Additional Events

Several other, less commonly used events in the Excel object model are listed in Table 4.1. Figure 4.5 shows the
envelope UI that is referred to in this table.

Table 4.1. Additional Excel Events
Events Description

Application.SheetPivotTableUpdate Raised when a sheet of a Pivot Table report
has been updated

Workbook.SheetPivotTableUpdate

Worksheet.PivotTableUpdate
Application.WorkbookPivotTableCloseConnection Raised when a PivotTable report connection is

closed

Workbook.PivotTableCloseConnection
Application.WorkbookPivotTableOpenConnection Raised when a PivotTable report connection is

opened

Workbook.PivotTableOpenConnection
Application.WorkbookSync Raised when a workbook that is part of a

document workspace is synchronized with the
server

Workbook.Sync
Chart.DragOver Raised when a range of cells is dragged over a

chart

Chart.DragPlot Raised when a range of cells is dragged and
dropped on a chart

Chart.MouseDown Raised when the user clicks the mouse button
while the cursor is over a chart

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chart.MouseMove Raised when the user moves the mouse cursor
within the bounds of a chart

Chart.MouseUp Raised when the user releases the mouse
button while the cursor is over a chart

Chart.Resize Raised when the chart is resized

Chart.SeriesChange Raised when the user changes the data being
displayed by the chart

MsoEnvelop.EnvelopeShow Raised when the envelope UI is shown inside
Excel (see Figure 4.5)

MsoEnvelope.EnvelopeHide Raised when the envelope UI is hidden (see
Figure 4.5)

OLEObject.GotFocus Raised when an OLEObjectan embedded
ActiveX control OLE objectgets focus

OLEObject.LostFocus Raised when an OLEObjectan embedded
ActiveX control OLE objectloses focus

QueryTable.AfterRefresh Raised after a QueryTable is refreshed

QueryTable.BeforeRefresh Raised before a QueryTable is refreshed

Figure 4.5. The envelope UI inside Excel.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Events in Visual Studio 2005 Tools for Office
Several events are found in Visual Studio 2005 Tools for Office objects that are not found when using the Excel PIA
alone. Table 4.2 lists these events. Almost all these events are events from the Excel PIA that are raised again on
different objects. In the Excel PIA, for example, there is no BeforeDoubleClick event on a Range object; in fact, there
are no events on the Range object at all. In VSTO, the two objects that VSTO defines that represent a Range
(NamedRange and XMLMappedRange) have a BeforeDoubleClick event. VSTO adds the BeforeDoubleClick event to
these objects and raises the event whenever the Worksheet.BeforeDoubleClick event is raised and passed a Range
object that matches the given NamedRange or XMLMappedRange object.

Table 4.2. Events That Are Added in VSTO
Events Raised Again From

NamedRange Object (Aggregates Range)

BeforeDoubleClick Worksheet.BeforeDoubleClick

BeforeRightClick Worksheet.BeforeRightClick

Change Worksheet.Change

SelectionChange Worksheet.SelectionChange

Selected Worksheet.SelectionChange

Deselected Worksheet.SelectionChange

XmlMappedRange Object (Aggregates Range)

BeforeDoubleClick Worksheet.BeforeDoubleClick

BeforeRightClick Worksheet.BeforeRightClick

Change Worksheet.Change

SelectionChange Worksheet.SelectionChange

Selected Worksheet.SelectionChange

Deselected Worksheet.SelectionChange

Workbook

New Application.NewWorkbook

Startup New event raised by VSTO

Shutdown New event raised by VSTO

ChartSheet (Aggregates Chart)

Startup New eventraised by VSTO

Shutdown New event raised by VSTO

Worksheet

Startup New event raised by VSTO

Shutdown New event raised by VSTO

ListObject

BeforeAddDataBoundRow New event raised by VSTO

BeforeDoubleClick Worksheet.BeforeDoubleClick

BeforeRightClick Worksheet.BeforeRightClick

Change Worksheet.Change

DataBindingFailure New event raised by VSTO

DataMemberChanged New event raised by VSTO

DataSourceChanged New event raised by VSTO

Deselected Worksheet.SelectionChange

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deselected Worksheet.SelectionChange

ErrorAddDataBoundRow New event raised by VSTO

OriginalDataRestored New event raised by VSTO

Selected Worksheet.SelectionChange

SelectedIndexChanged New event raised by VSTO

SelectionChange Worksheet.SelectionChange

Another case where VSTO changes events is in the naming of the Activate event and the Select event on the Worksheet
object. Both of these event names conflict with method names on Worksheet. To prevent this conflict, VSTO renames
these events ActivateEvent and SelectEvent.

There are also some new events, such as the Startup and Shutdown events, raised on VSTO project host items such as
Workbook, Worksheet, and ChartSheet. ListObject also has several new events that are raised when a ListObject is data
bound.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter examined the various events raised by objects in the Excel object model. The chapter also introduced
some of the major objects in the Excel object model, such as Application, Workbook, and Document. You also learned
the additional events that are raised by VSTO objects in Excel.

Chapter 5, "Working with Excel Objects," discusses in more detail how to use the major objects in the Excel object
model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5. Working with Excel Objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Application Object
This chapter covers some of the major objects in the Excel object model, starting with the Application object. The major
objects in the Excel object model have many methods and properties, and it is beyond the scope of this book to
describe these objects completely. Instead, this chapter focuses on the most commonly used methods and properties.

The Application object has the largest number of methods, properties, and events of any object in the Excel object
model. The Application object is also the root object in the Excel object model hierarchy. You can access all the other
objects in the object model by starting at the Application object and accessing its properties and the properties of
objects it returns. The Application object also has a number of useful application-level settings.

Controlling Excel's Screen Updating Behavior

When your code is performing a set of changes to a workbook, you may want to set the ScreenUpdating property to
False to prevent Excel from updating the screen while your code runs. Setting it back to TRue will refresh the screen and
allow Excel to continue updating the screen.

Beyond the cosmetic benefit of not forcing the user to watch Excel change cells while your code runs, the
ScreenUpdating property proves very useful for speeding up your code. Repainting the screen after each operation can
be quite costly. Be sure to set this property back to true when your code is finished; otherwise, the user will be left with
an Excel that does not paint. As you will see below, a try-Finally block is a handy way to ensure that the property is reset
even if an exception is thrown.

An even better convention to follow than just setting the ScreenUpdating property back to true is to save the value of
the ScreenUpdating property before you change it and set it back to that value when you are done. An important thing
to remember when doing Office development is that your code is not going to be the only code running inside a
particular Office application. Add-ins might be running, as well as other code behind other documents, and so on. You
need to think about how your code might affect other code also running inside Excel.

As an example, another add-in might be running a long operation of its own, and that add-in might have set the
ScreenUpdating property to False to accelerate that operation. That add-in does an operation that triggers an event that
is handled by your code. If your code sets the ScreenUpdating property to False, does something, and then sets the
ScreenUpdating property to true when it is done, you have defeated the add-in's attempt to accelerate its own long
operation because you have turned screen updating back on. If instead you store the value of ScreenUpdating before
you set it to False and later set ScreenUpdating back to its original value, you coexist better with the other code running
inside Excel.

Listing 5.1 shows an example of using the ScreenUpdating property with VSTO.

Note

Because it is important that you set ScreenUpdating back to its original value after your code runs, you
should use Visual Basic's support for exception handling to ensure that even if an exception occurs in your
code, ScreenUpdating will be set back to its original value.

Visual Basic supports TRy, Catch, and Finally blocks to deal with exceptions. You should put the code to set
ScreenUpdating back to its original value in your Finally block because this code will run both when an
exception occurs and when no exception occurs.

Listing 5.1. A VSTO Customization That Sets the ScreenUpdating Property

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim oldScreenUpdatingSetting As Boolean
 oldScreenUpdatingSetting = Me.Application.ScreenUpdating

 Try
 Me.Application.ScreenUpdating = False
 Dim r As Random = New Random()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim r As Random = New Random()

 Dim i As Integer
 For i = 1 To 1000
 Dim address As String = String.Format("A{0}", i)
 Dim xlRange As Excel.Range = Range(address)
 xlRange.Value2 = r.Next()
 Next
 Finally
 Me.Application.ScreenUpdating = oldScreenUpdatingSetting
 End Try

 End Sub

End Class

Controlling the Dialog Boxes and Alerts That Excel Displays

Occasionally, the code you write will cause Excel to display dialog boxes prompting the user to make a decision or
alerting the user that something is about to occur. If you find this happening while a section of your code runs, you
might want to prevent these dialog boxes from being displayed.

You can set the DisplayAlerts property to False to prevent Excel from displaying dialog boxes and messages when your
code is running. Setting this property to False causes Excel to choose the default response to any dialog boxes or
messages that might be shown. Be sure to get the original value of this property and set the property back to its
original value after your code runs. Use try, Catch, and Finally blocks to ensure that you always set the property back to its
original value, as shown in Listing 5.1.

Changing the Mouse Pointer

During a large operation, you might want to change the appearance of Excel's mouse pointer to an hourglass to let
users know that they are waiting for something to complete. The Cursor property is a property of type XlMousePointer that
allows you to change the appearance of Excel's mouse pointer. It can be set to the following values: xlDefault, xlIBeam,
xlNorthwestArrow, and xlWait.

Be sure to get the original value of Cursor before changing it and set it back to its original value using TRy, Catch, and
Finally blocks. Listing 5.2 shows the use of the Cursor property.

Listing 5.2. A VSTO Customization That Sets the Cursor Property

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim originalCursor As Excel.XlMousePointer
 originalCursor = Me.Application.Cursor

 Try
 Me.Application.Cursor = Excel.XlMousePointer.xlWait
 Dim r As Random = New Random()
 Dim i As Integer
 For i = 1 To 2000
 Dim address As String = String.Format("A{0}", i)
 Dim xlRange As Excel.Range = Me.Range(address)
 xlRange.Value2 = r.Next()
 Next
 Finally
 Me.Application.Cursor = originalCursor
 End Try

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Displaying a Message in Excel's Status Bar

StatusBar is a property that allows you to set the message displayed in Excel's status bar, located in the bottom-left
corner of the Excel window. You can set the StatusBar property to a String representing the message you want to display
in the status bar. You can also set StatusBar to False to display Excel's default status bar message. If Excel is displaying
the default status bar message, the StatusBar property returns a False value.

As with the other application properties in this section, you want to save the original value of the StatusBar property
before changing it, and be sure to set it back to its original value using try, Catch, and Finally blocks. Remember to save
the value of the StatusBar property to an Object variable because it can return a String or a Boolean value. Listing 5.3
shows an example.

Listing 5.3. A VSTO Customization That Uses the StatusBar Property to Show
Progress

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim oldValue As Object = Me.Application.StatusBar

 Try
 Dim r As Random = New Random()
 Dim i As Integer
 For i = 1 To 2000
 Dim address As String = String.Format("A{0}", i)
 Dim xlRange As Excel.Range = Me.Range(address)
 xlRange.Value2 = r.Next()
 Dim status As String = String.Format(_
 "Updating {0} of 2000...", i)
 Me.Application.StatusBar = status
 Next
 Finally
 Me.Application.StatusBar = oldValue
 End Try

 End Sub

End Class

A Property You Should Never Use

Excel provides a property called EnableEvents that can be set to False to prevent Excel from raising any of its events.
Although you might be tempted to use this property, don't do it. Think again about the fact that your code is almost
never going to be running by itself in Excel. Other developers will be creating add-ins and code behind documents that
will also be running inside Excel. By setting this property to False, you effectively break all the other code that is loaded
inside Excel until you set it back to TRue.

The problem that this property is trying to fix is the problem of your code calling a method that in turn raises an event
on your code. You might not want that event to be raised because you called the method; therefore, you do not want
your code to be notified of something it already knows.

Your code might call a method such as Close on Workbook that will cause Excel to raise the BeforeClose event, for
example. If you want to prevent your BeforeClose event handler from running in this case, you have several options
that are better than using EnableEvents. The first option is to stop listening to the BeforeClose event before you call the
Close method. A second option is to create a guard variable that you can set before you call Close. Your event handler
for BeforeClose can check that guard variable and return immediately if the guard variable is set.

Controlling the Editing Experience in Excel

Excel provides a number of properties that you can use to control the editing experience. To understand the part of the
Excel editing experience that these properties control, launch an instance of Excel, and create a blank worksheet. Click
a cell in that worksheet, and type a number. Notice that Excel lets you type in the cell or in the formula bar at the top
of the window. You can move the insertion point inside the cell to edit the contents of the cell further. When you press
the Enter key after editing the cell, Excel moves to the next cell down. (Your editing settings might differ, but this
explanation represents the default behavior of Excel 2003.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

explanation represents the default behavior of Excel 2003.)

Excel enables you to control whether the contents of the cell can be edited directly inside the cell through the Edit
Directly in Cell option in the Edit tab of the Options dialog box. The EditDirectlyInCell property lets you change this
setting in your code. Setting this property to False makes it so the user can edit the contents of a cell only using the
formula bar.

When you press Enter after editing a cell, Excel typically moves to the cell below the cell you were editing. You can
control this behavior in the Edit tab of the Options dialog box. The MoveAfterReturn property and
MoveAfterReturnDirection property enable you to control this behavior in your code. By setting MoveAfterReturn to true,
you tell Excel to change the selected cell after the user presses Enter. MoveAfterReturnDirection controls the cell Excel
moves to after the user presses Enter if MoveAfterReturn is set to true. MoveAfterReturnDirection can be set to a
member of the XlDirection enumeration: xlDown, xlToLeft, xlToRight, or xlUp.

Controlling the Look of Excel

You can control the look of Excel through the properties listed in Table 5.1.

Table 5.1. Properties That Control Elements of the Excel User Interface
Property Name Type What It Does

DisplayFormulaBar Boolean Controls whether Excel displays the formula bar.

DisplayFullScreen Boolean Shows Excel in full-screen mode.

DisplayScrollBars Boolean Controls whether Excel displays the horizontal and
vertical scroll bars for workbooks.

DisplayStatusBar Boolean Controls whether Excel displays the status bar in the
bottom-left corner of the Excel window.

Height Double Sets the height in pixels of the main Excel window when
WindowState is set to XlWindowState.xlNormal.

Left Double Sets the left position in pixels of the main Excel window
when WindowState is set to XlWindowState.xlNormal.

ShowToolTips Boolean Controls whether Excel shows tooltips for toolbar
buttons.

ShowWindowsInTaskbar Boolean Controls whether Excel shows open Excel windows with
one taskbar button in the Windows taskbar for each open
window.

Top Double Sets the top position in pixels of the main Excel window
when WindowState is set to XlWindowState.xlNormal.

Visible Boolean Sets whether the Excel application window is visible.

Width Double Sets the width in pixels of the main Excel window when
WindowState is set to XlWindowState.xlNormal.

WindowState XlWindow-State Sets whether the main Excel window is minimized
(xlMinimized), maximized (xlMaximized), or normal (xlNormal).
The Width, Height, Top, and Left settings work only
when WindowState is set to XlWindowState.xlNormal.

Controlling File and Printer Settings

You can configure the behavior when a new, blank workbook is created through the SheetsInNewWorkbook property.
This property takes an Integer value for the number of blank worksheets that should be created in a new workbook. The
default is three blank worksheets. As with most of these settings, you can also set this property in the General tab of
Excel's Options dialog box.

The DefaultFilePath property corresponds to the default file location setting in the General tab of Excel's Options dialog
box. You can set this to a String representing the file path that you want Excel to use by default when opening and
saving files.

You can set the default file format you want Excel to use when saving files by using the DefaultSaveFormat property.
This property is of type XlFileFormatan enumeration that has values for the various file formats Excel supports. To save
Excel files by default in Excel 5 format, for example, you set this property to xlExcel5.

Another useful property when dealing with files is the RecentFiles property, which returns a collection of strings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Another useful property when dealing with files is the RecentFiles property, which returns a collection of strings
containing the names of all the recently opened files.

Properties That Return Active or Selected Objects

The Application object has a number of properties that return active objectsobjects representing things that are active
or selected within Excel. Table 5.2 shows some of these properties.

Table 5.2. Application Properties That Return Active Objects
Property Name Type What It Does

ActiveCell Range Returns the top-left cell of the active selection in the
active window. If there isn't a worksheet with an active
cell, or if no workbooks are open, this property throws
an exception.

ActiveChart Chart Returns the active chart sheet. If no chart sheet is
active, this property returns Nothing.

ActiveSheet Object Returns the active worksheet or a chart sheet. The Object
returned can be cast to either a Worksheet or a Chart.

ActiveWindow Window Returns the active Window. If no windows are open, this
property returns Nothing.

ActiveWorkbook Workbook Returns the workbook that is associated with the active
window. If no workbooks are open, this property returns
Nothing.

Charts Sheets Returns all the chart sheets in the active workbook. If no
workbooks are open, this property returns Nothing.

Names Names Returns all the names associated with the active
workbook.

Selection Object Returns the current selection in the active window. This
can return a Range when cells are selected. If other
elements are selected (such as a chart or an autoshape),
it can return other types. You can use the Is TypeOf
operators in Visual Basic to determine the returned type.

Sheets Sheets Returns all the sheets in the active workbook. This
collection can contain both worksheets and chart sheets.
Objects returned from this collection can be cast to
either a Worksheet or a Chart.

Properties That Return Important Collections

The Application object is the root object of the object model and has properties that return several important
collections. The Workbooks property returns the collection of open workbooks in Excel. The Windows property returns a
collection representing the open windows in Excel. Both the Workbooks and Windows collections are discussed in more
detail later in this chapter.

Controlling the Calculation of Workbooks

Excel provides a number of settings and methods that correspond to some of the options in the Calculation tab of the
Options dialog box. The Application object provides a Calculation property of type XlCalculation that you can use to set
Excel's calculation behavior. By default, Calculation is set to automatic calculation or xlCalculationAutomatic. You can also set
Calculation to xlCalculationSemiautomatic, which means to calculate all dependent formulas except data tables. Finally,
Calculation can be set to xlCalculationManual, which means that Excel recalculates the workbook only when the user or your
code forces a calculation.

If you have set Calculation to xlCalculationManual or xlCalculationSemiautomatic, you can force a complete recalculation of all
open workbooks with the Calculate method. Using manual calculation may be another way to speed your code if you
are updating a large number of cells that are referred to by formulas. As with other application-level properties, you
should restore the original value of the property in a Finally block, as shown earlier in this chapter.

Using Built-In Excel Functions in Your Code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The WorksheetFunction property returns a WorksheetFunction object that enables you to call the built-in Excel formulas
from your code. It provides access to more than 180 formulas. Listing 5.4 illustrates three of them.

Listing 5.4. A VSTO Customization That Uses the WorksheetFunction Object

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim func As Excel.WorksheetFunction
 func = Me.Application.WorksheetFunction
 Dim result As Double = func.Acos(0.1)
 Dim result2 As Double = func.Atan2(0.1, 0.2)
 Dim result3 As Double = func.Atanh(0.1)

 End Sub

End Class

Selecting and Activating a Range of Cells

Goto is a method that causes Excel to select a range of cells and activate the workbook associated with that range of
cells. It takes an optional Object parameter that can be either a String containing a cell reference (in "Sheet1!R1C1" format)
or a Range object. We talk more about cell reference formats such as "Sheet1!R1C1" in the section "Working with the
Range Object" later in this chapter. It also takes an optional Object parameter that can be set to true to tell Excel to scroll
the window so that the selection is at the top-left corner of the window. Listing 5.5 shows some examples of calling the
Goto method.

Listing 5.5. A VSTO Customization That Uses the Goto Method

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim app As Excel.Application = Me.Application

 app.Goto("R3C3")
 app.Goto("Sheet2!R10C5", True)
 app.Goto(Me.Range("A1"), True)
 app.Goto(Me.Range("A1", "B2"), True)

 End Sub

End Class

Spell Checking

Excel provides a method called CheckSpelling that you can use to check the spelling of a single word. It takes a
required String parameter containing the word to check. It also takes an optional Object parameter that can be set to a
String for the filename of the custom dictionary to use. Finally, it takes an optional Object parameter that can be set to true
to ignore uppercase words when spell checking. CheckSpelling returns False if the word passed to it is misspelled. Listing
5.6 shows an example of calling the CheckSpelling method.

Listing 5.6. A VSTO Customization That Uses the CheckSpelling Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 5.6. A VSTO Customization That Uses the CheckSpelling Method

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim app As Excel.Application = Me.Application

 If Not app.CheckSpelling("funtastic") Then
 MsgBox("Funtastic was not spelled correctly.")
 End If

 If Not app.CheckSpelling("fantastic") Then
 MsgBox("Fantastic was not spelled correctly.")
 End If

 If Not app.CheckSpelling("FUNTASTIC", _
 IgnoreUppercase:=True) Then
 MsgBox("FUNTASTIC was not spelled correctly.")
 End If

 End Sub

End Class

Sending a Workbook in E-Mail

Excel provides a simple way to send a workbook as an e-mail message using three methods called MailLogon,
Workbook.SendMail, and MailLogoff. MailLogon logs on to the mail system and takes the username as a String, the user's
password as a String, and whether to download new mail immediately as a Boolean. It is also important to check the
MailSession property to make sure that a mail session is not already established. If MailSession is not Nothing, you do
not need to call the MailLogon method. Workbook's SendMail method takes the recipients as a required String if there is
only one recipient or as an array of strings if there are multiple recipients. It also takes a subject for the message as a
String and whether to request a read receipt as a Boolean. Listing 5.7 shows a simple example that mails a workbook.

Listing 5.7. A VSTO Customization That Mails a Workbook

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim app As Excel.Application = Me.Application

 If app.MailSession Is Nothing Then
 app.MailLogon("DOMAIN\JOHN", "JOHN")
 End If
 Me.SendMail("bar@domain.com", "Test message")
 app.MailLogoff()

 End Sub

End Class

Quitting Excel

You can use the Quit method to exit Excel. If any unsaved workbooks are open, Excel prompts the user to save each
unsaved workbook. You can suppress the prompts by setting the DisplayAlerts property to False, which causes Excel to
quit without saving workbooks. You can also check the Workbook.Saved property on each workbook and call
Workbook.Save to save each unsaved workbook. Remember that when users are prompted to save, they get a dialog
box that looks like the one shown in Figure 5.1. If the user clicks the Cancel button, or if any code is running that
handles the BeforeClose event and sets the cancel parameter to TRue, Excel will not quit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.1. Excel prompts when you call Quit and a workbook needs to be saved.

Undo in Excel

Excel has an Undo method that can be used to undo the last few actions taken by the user. Excel does not support
undoing actions taken by your code, however. As soon as your code touches the object model, Excel clears the undo
history, and it does not add to the undo history any of the actions your code performs.

Sending Keyboard Commands to Excel

Excel provides a method called SendKeys that you can use as a last resort when you cannot find a way to accomplish a
command through the object model but know how to accomplish it through a keyboard command. It takes the keys you
want to send to the application as a string and a Wait parameter that, if set to true, causes Excel to wait for the
keystrokes to be processed by Excel before returning control to your code. You can specify modifier keys like Alt, Ctrl,
and Shift by prefacing the keystroke you want to send with another character. To send an Alt+T key command, for
example, you call SendKeys("%t") because % is the symbol SendKeys recognizes as Alt. The symbol SendKeys recognizes
as Ctrl is ^, and Shift is +. In addition, special strings correspond to keys such as the down arrow. To send a down-
arrow keystroke to Excel, you call SendKeys("{DOWN}"). Table 5.3 lists the other special strings that correspond to common
keys.

Table 5.3. Codes Used by SendKeys
Key Key Code

Backspace {BACKSPACE} or {BS}

Break {BREAK}

Caps Lock {CAPSLOCK}

Clear {CLEAR}

Delete or Del {DELETE} or {DEL}

Down arrow {DOWN}

End {END}

Enter ~ (tilde)

Enter (numeric keypad) {ENTER}

Esc {ESCAPE} or {ESC}

F1 through F15 {F1} through {F15}

Help {HELP}

Home {HOME}

Ins {INSERT}

Left arrow {LEFT}

Num Lock {NUMLOCK}

Page Down {PGDN}

Page Up {PGUP}

Return {RETURN}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Right arrow {RIGHT}

Scroll Lock {SCROLLLOCK}

Tab {TAB}

Up arrow {UP}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Range Object
The Range object represents a range of cells in a spreadsheet. A range can contain one cell, multiple contiguous cells,
and even multiple discontiguous cells. You can select multiple discontiguous cells by holding down the Ctrl key as you
select in Excel.

Getting a Range Object for a Particular Cell or Range of Cells

Excel provides a variety of ways to get a Range object. The Range object is the object you use when you want to work
with a cell or range of cells in an Excel worksheet. Two ways to get a Range object were mentioned in the description of
the Application object earlier in this chapter. Application.ActiveCell returns the top-left cell of the active selection in the
active window. Application.Selection returns an Object that represents the active selection in the active window. If the
active selection is a range of cells, you can cast Application.Selection to a Range object. If something else is selected in
the active window, such as a shape or a chart, Application.Selection returns that selected object instead.

Worksheet also provides several ways to get a Range object. The Worksheet.Range property is the most common way
to get a Range object from a Worksheet. This property takes a required Object parameter to which you can pass a String.
It has a second optional parameter to which you can pass a second String. The strings you pass are in what is called A1-
style reference format. The easiest way to explain the A1-style reference format is to give several examples.

The reference A1 specifies the cell at row 1, column A. The reference D22 specifies the cell at row 22, column D. The
reference AA11 specifies the cell at row 11, column AA (column 27).

The reference A1 also refers to the cell at row 1, column A. If you use $ signs in an A1-style reference, they are
ignored.

You can use the range operator (:) to specify a range of cells where the first A1-style reference is the top-left corner of
the range, followed by a colon operator, followed by a second A1-style reference for the bottom-right corner of the
range. The reference A1:B1 refers to the two cells at row 1, column A, and at row 1, column B. The reference A1:AA11
refers to all 297 cells in the block whose top-left corner is at row 1, column A and whose bottom-right corner is at row
11, column AA (column 27).

You can use the union operator (,) to specify multiple cells that could be discontiguous. The reference A1,C4, for
example, specifies a range of two cells where the first cell is at row 1, column A, and the second cell is at row 4, column
C. Users can select discontiguous ranges of cells by holding down the Ctrl key as they select various cells. The reference
A1,C4,C8,C10 is another valid A1-style reference that specifies four different cells.

The intersection operator (a space) lets you specify the intersection of cells. The reference A1:A10 A5:A15, for example,
resolves to the intersecting six cells starting at row 5, column A, and ending at row 10, column A. The reference A1:A10
A5:A15 A5 resolves to the single cell at row 5, column A.

You can also use any names you have defined in the worksheet in your A1-style reference. Suppose that you defined a
named range called foo that refers to the cell A1. Some valid A1-style references using your name would include foo:A2,
which refers to the cells at row 1, column A, and at row 2, column A. The reference foo,A5:A6 refers to the cells at row 1,
column A; row 5, column A; and row 6, column A.

As mentioned earlier, the Range property takes a second optional parameter to which you can pass a second A1-style
reference string. The first parameter and the second parameter are effectively combined using the range operator. So
the range that Range returns when you call Range("A1", "A2") is equivalent to the range you get when you call
Range("A1:A2").

A second way to get a Range object is to use the Worksheet.Cells property, which returns a Range for all the cells in the
worksheet. Then you can use the same Range property on the returned Range object and pass A1-style references to
select cells in the same way you do using Range from the Worksheet object. So Cells.Range("A1:A2") is equivalent to
Range("A1:A2"). A more common use of the Cells property is to use it in conjunction with Range's Item property, which
takes a row index and an optional column index. Using Item is a way to get to a particular cell without using the A1-
style reference. So Cells.Item(1,1) is equivalent to Range("A1").

Another way to get a Range object is by using the Worksheet.Rows or Worksheet.Columns properties. These return a
Range that acts differently from other Range objects. If you take the Range returned by Columns and display the count
of cells in the range, for example, it returns 256the number of columns. But if you call the Select method on the
returned Range, Excel selects all 16,772,216 cells in the worksheet. The easiest way to think of the ranges returned by
Rows and Columns is that they behave similarly to how column and row headings behave in Excel.

Listing 5.27 shows several examples of using the Range property and the Cells, Rows, and Columns properties. We use
the Value property of Range to set every cell in the range to the string value specified. Figure 5.7 shows the result of
running the program in Listing 5.27.

Listing 5.27. A VSTO Customization That Gets Range Objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 5.27. A VSTO Customization That Gets Range Objects

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim r1 As Excel.Range = Me.Range("A1")
 r1.Value = "r1"
 Dim r2 As Excel.Range = Me.Range("B7:C9")
 r2.Value = "r2"
 Dim r3 As Excel.Range = Me.Range("C1,C3,C5")
 r3.Value = "r3"
 Dim r4 As Excel.Range = Me.Range("A1:A10 A5:A15")
 r4.Value = "r4"
 Dim r5 As Excel.Range = Me.Range("F4", "G8")
 r5.Value = "r5"
 Dim r6 As Excel.Range = Me.Rows.Item(12)
 r6.Value = "r6"
 Dim r7 As Excel.Range = Me.Rows.Item(5)
 r7.Value = "r7"

 End Sub

Figure 5.7. Result of running Listing 5.27.

Working with Addresses

Given a Range object, you often need to determine what cells it refers to. The Address property returns an address for
the range in either A1 style or R1C1 style. You have already learned about A1-style references. R1C1-style references
support all the same operators as discussed with A1-style references (colon for range, comma for union, and space for
intersection). R1C1-style references have row and column numbers prefaced by R and C, respectively. So cell A4 in
R1C1 style would be R4C1. Figure 5.8 shows a range that consists of three areas that we consider in this section.

Figure 5.8. A range with three discontiguous areas.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The address for the range in Figure 5.8 is shown here in A1 style and in R1C1 style:

A15:F28,H3:J9,L1
R15C1:R28C6,R3C8:R9C10,R1C12

Another option when getting an address is whether to get an external reference or a local reference. The addresses we
have already shown for Figure 5.8 are local references. An external reference includes the name of the workbook and
sheet where the range is. Here is the range in Figure 5.8 expressed as an external reference in A1 style and R1C1
style:

[Book1]Sheet1!A15:F28,H3:J9,L1
[Book1]Sheet1!R15C1:R28C6,R3C8:R9C10,R1C12

For our example, the workbook we created the range in was not saved. When we save it as Book1.xls, the addresses
look like this:

[Book1.xls]Sheet1!A15:F28,H3:J9,L1
[Book1.xls]Sheet1!R15C1:R28C6,R3C8:R9C10,R1C12

Another option when getting an address is whether to use an absolute address or a relative one. The addresses we
have already considered have been absolute. The same addresses in relative format (relative to cell A1) look like this:

R[14]C:R[27]C[5],R[2]C[7]:R[8]C[9],RC[11]
A15:F28,H3:J9,L1

For an R1C1-style address, you can also specify the cell you want your address to be relative to. If we get an R1C1-
style for our range in Figure 5.4 relative to cell B2, we get the following result:

R[13]C[-1]:R[26]C[4],R[1]C[6]:R[7]C[8],R[-1]C[10]

The Address property takes five optional parameters that control the way the reference is returned, as described in
Table 5.17.

Table 5.17. Optional Parameters for Address
Parameter Name Type What It Does

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RowAbsolute Object Pass true to return the row part of the address as an
absolute reference (A1). If you pass False, the row
reference will not be absolute ($A1). The default is true.

ColumnAbsolute Object Pass true to return the column part of the address as an
absolute reference (A1). If you pass False, the column
reference will not be absolute (A$1). The default is true.

ReferenceStyle XlReference-Style Pass xlA1 to return an A1-style reference. Pass xlR1C1 to
return an R1C1-style reference.

External Object Pass true to return an external reference. The default is
False.

RelativeTo Object Pass a Range object representing the cell that you want
an R1C1-style reference to be relative to. Has no effect
when used with A1-style references.

Listing 5.28 shows several examples of using Address with our example range.

Listing 5.28. A VSTO Customization That Uses Address

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim range1 As Excel.Range
 range1 = Me.Range("A15:F28,H3:J9,L1")

 Dim sb As System.Text.StringBuilder
 sb = New System.Text.StringBuilder()

 sb.AppendLine("A1Style Addresses:")
 sb.AppendFormat("Default: {0}" & vbCrLf, _
 range1.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1))
 sb.AppendFormat("Relative rows: {0}" & vbCrLf, _
 range1.Address(False, _
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1))
 sb.AppendFormat("Row & Column Relative: {0}" & vbCrLf, _
 range1.Address(False, False, _
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1))
 sb.AppendFormat("External: {0}" & vbCrLf, _
 range1.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1, _
 External:=True))

 sb.AppendLine()
 sb.AppendLine("R1C1-Style Addresses:")
 sb.AppendFormat("Default: {0}" & vbCrLf, _
 range1.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlR1C1))
 sb.AppendFormat(_
 "Row & Column Relative to C5: {0}" & vbCrLf, _
 range1.Address(False, False, _
 ReferenceStyle:=Excel.XlReferenceStyle.xlR1C1, _
 RelativeTo:=Me.Range("C5")))
 sb.AppendFormat("External: {0}", _
 range1.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlR1C1, _
 External:=True))

 MsgBox(sb.ToString())

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating New Ranges Using Operators

We have discussed several "operators" that can be used in address strings, including the union operator (a comma) and
the intersection operator (a space). You can also apply these operators through the Application.Union and
Application.Intersection methods.

It is also possible to take a Range and get a new Range that is offset from it by some number of rows and columns by
using the Offset property. This method takes a row-and-column value to offset the given range by and returns the
newly offset range. So calling Offset(5, 5) on the example range in Figure 5.8 returns a range with this A1-style address:

"F20:K33,M8:O14,Q6"

Listing 5.29 shows an example of using these operators. Note that Union and Intersection take a lot of optional
parameters, allowing you to union or intersect more than just two ranges.

Listing 5.29. A VSTO Customization That Uses Union, Intersection, and Offset

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim app As Excel.Application = Me.Application

 Dim range1 As Excel.Range = Me.Range("A15:F28")
 Dim range2 As Excel.Range = Me.Range("H3:J9")
 Dim range3 As Excel.Range = Me.Range("L1")
 Dim range4 As Excel.Range = Me.Range("A11:G30")

 Dim rangeUnion As Excel.Range
 rangeUnion = app.Union(range1, range2, range3)
 Dim rangeIntersection As Excel.Range
 rangeIntersection = app.Intersect(range1, range4)
 Dim rangeOffset As Excel.Range = rangeUnion.Offset(5, 5)

 MsgBox(String.Format("Union: {0}", _
 rangeUnion.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1)))
 MsgBox(String.Format("Intersection: {0}", _
 rangeIntersection.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1)))
 MsgBox(String.Format("Offset: {0}", _
 rangeOffset.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1)))

 End Sub

End Class

Working with Areas

When there are multiple discontiguous ranges of cells in one Range, each discontiguous range is called an area. If there
are multiple discontiguous areas in the Range, use the Areas property to access the each area (as a Range) via the
Areas collection. The Areas collection has an Areas.Count property and an Areas.Item property that takes an Integer
parameter representing the 1-based index into the array. Listing 5.30 shows an example of iterating over our example
range (which has three areas) and printing the address of each area.

Listing 5.30. A VSTO Customization That Works with Areas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 5.30. A VSTO Customization That Works with Areas

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim range1 As Excel.Range
 range1 = Me.Range("A15:F28,H3:J9,L1")
 MsgBox(String.Format(_
 "There are {0} areas", range1.Areas.Count))

 Dim area As Excel.Range
 For Each area In range1.Areas
 MsgBox(String.Format("Area address is {0}", _
 area.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1)))
 Next

 End Sub

End Class

Working with Cells

The Count property returns the number of cells in a given Range. You can get to a specific single-cell Range within a
Range by using the Item property. The Item property takes a required row index and an optional column index. The
column index can be omitted when the range is a one-dimensional array of cells because it has cells from only one
column or one row; in this case, the parameter called RowIndex really acts like an array index. If the Range has multiple
areas, you must get the area you want to work with first; otherwise, Item returns cells out of only the first area in the
Range.

Listing 5.31 shows an example of using Item.

Listing 5.31. A VSTO Customization That Uses Item

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim range1 As Excel.Range = Me.Range("A15:F28")

 Dim rowCount As Integer = range1.Rows.Count
 Dim columnCount As Integer = range1.Columns.Count
 Dim i As Integer
 Dim j As Integer

 For i = 1 To rowCount
 For j = 1 To columnCount
 Dim cell As Excel.Range = range1.Item(i, j)
 Dim address As String = cell.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1)
 cell.Value2 = String.Format("Item({0},{1})", i, j)
 Next
 Next

 End Sub

End Class

Working with Rows and Columns

Given a Range object, you can determine the row and column numbers of the top-left corner of its first area using the
Row and Column properties. The row and column numbers are returned as Integer values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Row and Column properties. The row and column numbers are returned as Integer values.

You can also determine the total number of rows and columns in the first area using the Rows and Columns properties.
These properties return special ranges that you can think of as corresponding to the row or column headers associated
with the range. When we get Rows.Count from our example range in Figure 5.8, it returns 14, and Columns.Count
returns 6. This makes sense because the first area in our selection (A15:F28) spans 6 columns and 14 rows.

To get the row-and-column position of the bottom-right corner of the first area, you can use the rather awkward
expressions shown in Listing 5.32. Listing 5.32 also illustrates the use of Item, which takes the row-and-column index
(relative to the top of the given range) and returns the cell (as a Range) at that row-and-column index. When you get a
Rows or a Columns range, these ranges are one-dimensional; hence, the parameter called RowIndex acts like an array
index in this case.

Listing 5.32. A VSTO Customization That Gets Row and Column Positions

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim range1 As Excel.Range = Me.Range(_
 "A15:F28,H3:J9,L1")
 Dim area As Excel.Range = range1.Areas.Item(1)

 Dim topLeftColumn As Integer = area.Column
 Dim topLeftRow As Integer = area.Row
 Dim bottomRightColumn As Integer = _
 area.Columns.Item(area.Columns.Count).Column()
 Dim bottomRightRow As Integer = _
 area.Rows.Item(area.Rows.Count).Row()

 MsgBox(String.Format(_
 "Area Top Left Column {0} and Row {1}", _
 topLeftColumn, topLeftRow))
 MsgBox(String.Format(_
 "Area Bottom Right Column {0} and Row {1}", _
 bottomRightColumn, bottomRightRow))

 MsgBox(String.Format(_
 "Total Rows in Area = {0}", area.Rows.Count))
 MsgBox(String.Format("Total Columns in Area = {0}", _
 area.Columns.Count))

 End Sub

End Class

Working with Regions

The CurrentRegion property returns a Range that is expanded to include all cells up to a blank row and blank column.
This expanded Range is called a region. So, for example, you might have a Range that includes several cells in a table.
To get a Range that encompasses the entire table (assuming that the table is bordered by blank rows and columns),
you would use the CurrentRegion property on the smaller Range to return the entire table.

The End property works against the region associated with a Range. The End property takes a member of the XlDirection
enumeration: xlDown, xlUp, xlToLeft, or xlToRight. This property, when passed xlUp, returns the top-most cell in the region in
the same column as the top-left cell of the Range. When passed xlDown, it returns the bottom-most cell in the region in
the same column as the top-left cell of the Range. When passed xlToLeft, it returns the left-most cell in the region in the
same row as the top-left cell of the Range. And when passed xlToRight, it returns the rightmost cell in the region in the
same row as the top-left cell of the Range.

Selecting a Range

You can make a range the current selection using the Select method on a Range. Remember that calling Select changes
the user's current selection, which is not a very nice thing to do without good reason. In some cases, however, you
want to draw the user's attention to something, and in those cases, selecting a Range is reasonable to do.

Editing the Values in a Range

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Two methods are typically used to get and set the values in a range. The first way is to use the property Value. The
second way is to use the property Value2. Value2 and Value differ in that the Value2 property returns cells that are
currency or dates as a Double value. Also, Value takes an optional parameter of type XlRangeValueDataType. If you pass
XlRangeValueData.xlRangeValueDefault, you will get back an Object representing the value of the cell for a single cell Range. For
both Value2 and Value, if the Range contains multiple cells, you will get back an array of objects corresponding to the
cells in the Range.

Listing 5.33 shows several examples of using Value2, including an example of passing an array of values to Value2.
Setting the values of the cells in a Range all at once via an array is more efficient than making multiple calls to set each
cell individually.

Listing 5.33. A VSTO Customization That Uses Value2

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim range1 As Excel.Range = Me.Range("A15:F28")
 range1.Value2 = "Test"

 Dim rowCount As Integer = range1.Rows.Count
 Dim columnCount As Integer = range1.Columns.Count

 Dim array(,) As Object
 array = New Object(rowCount, columnCount) {}

 Dim i As Integer
 For i = 0 To rowCount - 1
 Dim j As Integer
 For j = 0 To columnCount - 1
 array(i, j) = i * j
 Next
 Next
 range1.Value2 = array

 End Sub

End Class

Copying, Clearing, and Deleting Ranges

Excel provides a number of methods to copy, clear, and delete a Range. The Copy method takes a Destination parameter
that you can pass the destination of the copied range. The Clear method clears the content and formatting of the cells
in the range. ClearContents clears just the values of the cells in the range, and ClearFormats clears just the formatting.
The Delete method deletes the range of cells and takes as a parameter the direction in which to shift cells to replace
deleted cells. The direction is passed as a member of the XlDeleteShiftDirection enumeration: xlShiftToLeft or xlShiftUp.

Finding Text in a Range

The Find method allows you to find text in a Range and return the cell within the Range where the text is found. The
Find method corresponds to the Find and Replace dialog box, shown in Figure 5.9. If you omit parameters when calling
the Find method, it uses whatever settings were set by the user the last time the Find and Replace dialog box was used.
Furthermore, when you specify the parameters, the settings you specified appear in the Find dialog box the next time
the user opens it.

Figure 5.9. The Find and Replace dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.9. The Find and Replace dialog box.

The Find method takes a number of parameters, described in Table 5.18. Find returns a Range object if it succeeds and
Nothing if it fails to find anything. You can find the next cell that matches your find criteria by using the FindNext method.
FindNext takes an optional After parameter to which you need to pass the last found Range to ensure that you do not
just keep finding the same cell over and over again. Listing 5.34 shows an example of using the Find and FindNext
method where we search for any cells containing the character "2" and bold those cells.

Table 5.18. Parameters for the Find Method
Parameter Name Type What It Does

What Object Pass the data to search for as a required String.

After Object Pass a single cell after which you want the search to
begin as a Range. The default is the top-left cell if this is
omitted.

LookIn Object Pass the type to search.

LookAt XlLookAt Pass xlWhole to match the whole cell contents, xlPart to
match parts of the cell contents.

SearchOrder XlSearchOrder Pass xlByRows to search by rows, xlByColumns to search by
columns.

SearchDirection XlSearchDirection Pass xlNext to search forward, xlPrevious to search
backward.

MatchCase Object Pass true to match case.

MatchByte Object Pass true to have double-byte characters match only
double-byte characters.

SearchFormat Object Set to TRue if you want the search to respect the
FindFormat options. You can change the FindFormat
options by using the Application.FindFormat.

Listing 5.34. A VSTO Customization That Uses Find and FindNext

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim range1 As Excel.Range = Me.Range("A15:F28")

 Dim rowCount As Integer = range1.Rows.Count
 Dim columnCount As Integer = range1.Columns.Count
 Dim array(,) As Object = New Object(rowCount, columnCount) {}
 Dim i As Integer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim i As Integer
 Dim j As Integer
 For i = 0 To rowCount - 1
 For j = 0 To columnCount - 1
 array(i, j) = i * j
 Next
 Next
 range1.Value2 = array

 Dim foundRange As Excel.Range = range1.Find("2", _
 range1.Item(1, 1), LookAt:=Excel.XlLookAt.xlPart, _
 SearchDirection:=Excel.XlSearchDirection.xlNext)

 While foundRange IsNot Nothing
 foundRange.Font.Bold = True
 foundRange = range1.FindNext(foundRange)
 End While

 End Sub

End Class

Formatting a Range of Cells

Excel provides several methods and properties to format a range of cells. Among the most useful is the NumberFormat
property, which you can set to format strings corresponding to the strings in the Custom category of the Format Cells
dialog box. You can set NumberFormat to General to set no specific number format, for example. Setting
NumberFormat to m/d/yyyy sets a date format, and 0% sets the format to a percentage format. When using
NumberFormat, be sure to consider the locale issue discussed in the section "Special Excel Issues" later in this chapter
if you are building a console application or an add-in, because reading and setting this string can cause problems when
running in different locales. If you are using a VSTO Excel Workbook or Template project you do not have to worry
about the locale issue.

The Font property returns a Font object that can be used to set the Font to various sizes and styles. Listing 5.34
showed an example of the Font object used to bold the font of a cell.

Excel also enables you to create styles associated with a Workbook and apply those styles to a Range. You can create
styles using Workbook.Styles. Listing 5.35 shows an example of creating a style and applying it to a Range.

Listing 5.35. A VSTO Customization That Creates and Applies Styles

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim range1 As Excel.Range = Me.Range("A15:F28")
 range1.Value2 = "Hello"

 Dim style As Excel.Style
 style = Globals.ThisWorkbook.Styles.Add("My Style")
 style.Font.Bold = True
 style.Borders.LineStyle = Excel.XlLineStyle.xlDash
 style.Borders.ColorIndex = 3
 style.NumberFormat = "General"

 range1.Style = "My Style"

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Special Excel Issues
You need to be aware of several special considerations when using the Excel object model with .NET. This section
examines two of the most important: working with multiple locales and working with Excel dates.

The Excel Locale Issue for Automation Executables and COM Add-Ins

When you program against the Excel object model using managed code in an automation executable or a COM add-in,
Excel methods and properties can behave differently, depending on the locale of the current thread. Note that this
problem does not occur in code-behind-the-document solutions built with VSTO. If you want to set a formula for a
Range, for example, and you are in the French locale, Excel requires you to use the localized French formula names and
formatting:

sheet.Range("A1").Formula = "=SOMME(3; 4)"

This behavior differs from Visual Basic for Applications (VBA) and VSTO code-behind solutions that work independently
of locale. VBA and VSTO always tell Excel that the locale is U.S. English (locale ID 1033). In VBA and VSTO code-behind
solutions, you do not have to think about locale when talking to Excel. You can write this code and have it work even in
a French locale:

sheet.Range("A1").Formula = "=SUM(3, 4)"

When managed code calls into the Excel object model, it tells Excel the locale it is running under (the locale of the
current thread), which causes Excel to expect that you will provide formulas and other values in the localized format of
that locale. Excel will also return formulas and other values in the localized format of that locale. Excel expects localized
strings for such things as date formats, NumberFormat strings associated with a Range, color names associated with
NumberFormat strings, and formula names.

Using DateTime for Dates

As an example of the badness that can ensue if you do not think about this issue, consider what the following code
does:

sheet.Range("A1").Value2 = "03/11/02"

Depending on the locale of the current thread, Excel may interpret this value as March 11, 2002; November 3, 2002; or
November 2, 2003.

For dates, you have a clear workaround. Do not pass dates as literal strings to Excel. Instead, construct a date using
the System.DateTime object, and pass it to Excel using DateTime's ToOADate method, as shown in Listing 5.36. The
ToOADate method converts a DateTime to an OLE Automation date, which is the kind of date format that the Excel
object model expects.

Listing 5.36. A VSTO Customization That Passes a Date Properly to Excel

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim range1 As Excel.Range = Me.Range("A1")
 ' March 11, 2002
 Dim date1 As System.DateTime
 date1 = New System.DateTime(2002, 3, 11)

 range1.Value2 = date1.ToOADate()

 End Sub

End Class

Switching the Thread Locale to English and Back

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You might think that a solution to the problems associated with setting or getting Range.NumberFormat and
Range.Formula is to save the locale of the thread; temporarily switch the locale of the thread to English (locale ID
1033); execute code that sets or gets a locale-affected property, such as NumberFormat or Formula; and then switch
back to the saved locale. This approach is not recommended because it affects other add-ins that will not be expecting
the locale switch.

Consider the following example. Your add-in is running on a French machine. Your add-in switches the locale to 1033
and sets a formula value. Another add-in is handling the Change event and displays a dialog box. That dialog box
displays in English rather than French. So by changing the thread locale, you have changed the behavior of another
add-in and have been a bad Office citizen in general.

Using Reflection to Work Around the Locale Issue

The recommended workaround for COM add-ins or automation executables encountering the locale issue (when they
access properties affected by the current locale, such as the NumberFormat or Formula property) is to access these
properties via reflection. Reflection enables you to specify an English locale to Excel and write code that will work
regardless of the current thread locale. Listing 5.37 illustrates how to use reflection to set the NumberFormat and
Formula properties.

Listing 5.37. Using Reflection to Work Around the Locale Issue in Excel

Imports Excel = Microsoft.Office.Interop.Excel

Module Module1

 Sub Main()

 Dim application As Excel.Application
 application = New Excel.Application()
 application.Visible = True

 Dim workbook As Excel.Workbook = application.Workbooks.Add()
 Dim sheet As Excel.Worksheet = workbook.Worksheets.Add()
 Dim range1 As Excel.Range = sheet.Range("A1")

 ' Set Formula in English (US) using reflection
 GetType(Excel.Range).InvokeMember("Formula", _
 System.Reflection.BindingFlags.Public Or _
 System.Reflection.BindingFlags.Instance Or _
 System.Reflection.BindingFlags.SetProperty, _
 Nothing, range1, New Object() {"=SUM(12, 34)"}, _
 System.Globalization.CultureInfo.GetCultureInfo(1033))

 ' Set NumberFormat in English (US) using reflection
 GetType(Excel.Range).InvokeMember("NumberFormat", _
 System.Reflection.BindingFlags.Public Or _
 System.Reflection.BindingFlags.Instance Or _
 System.Reflection.BindingFlags.SetProperty, _
 Nothing, range1, _
 New Object() {"General"}, _
 System.Globalization.CultureInfo.GetCultureInfo(1033))

 End Sub

End Module

Old Format or Invalid Type Library Error

A second issue that further complicates the Excel locale issue is that you can get an "Old format or invalid type library"
error when using the Excel object model in an English Excel installation on a machine where the locale is set to a non-
English locale. Excel is looking for a file called xllex.dll in Program Files\Microsoft Office\OFFICE11\1033 and cannot find
it. The solution to this problem is to install the xllex.dll file or to install the MUI language packs for Office. You can also
make a copy of excel.exe, rename it xllex.dll, and copy it to the 1033 directory.

VSTO and the Excel Locale Issue

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSTO code-behind-the-document solutions solve the Excel locale issue by using a transparent proxy object that sits
between you and the Excel object model. This proxy always tells Excel that the locale is U.S. English (locale ID 1033),
which effectively makes VSTO match VBA behavior. If you are using VSTO code-behind-the-document solutions, the
Excel locale issue is solved for you, and you do not have to worry about it further. If you are building a managed COM
add-in for Excel or an automation executable, the issue still exists.

There are some caveats to VSTO's solution to the Excel locale issue. The VSTO transparent proxy can slow your code
slightly. It also causes Excel objects to display slightly differently when inspected in the debugger. Finally, if you
compare a proxied Excel object such as Application with an unproxied Application object using the Equals operator, the
objects will not evaluate to be equal.

If you want to bypass VSTO's transparent proxy for a particular object, you can use the
Microsoft.Office.Tools.Excel.ExcelLocale1033Proxy.Unwrap method and pass the Excel object that you want to bypass
the proxy for. This method removes the proxy and returns the raw PIA object, which exposes you once again to the
locale issue. You can also set the assembly-level attribute ExcelLocale1033 in a VSTO project's AssemblyInfo.vb file to
False to turn the transparent proxy off for the entire Excel solution. To do this, you must show hidden files in Solution
Explorer by clicking the Show Hidden Files button at the top of the Solution Explorer window. Then expand the My
Project folder, and double-click the AssemblyInfo.vb file. At the bottom of this file, you will find the ExcelLocale1033
attribute. Change the value of this attribute from TRue to False.

If you navigate to objects from another PIA and then navigate back to the Excel PIA, you can lose the transparent
proxy. If you get a CommandBar object from the Microsoft.Office.Core PIA namespace from the
Application.CommandBars collection, for example, and then use the CommandBar.Application property to get back to
the Excel Application object, you have lost the proxy, and the locale issue will occur again.

Finally, if you create a new instance of Excel from a Word VSTO code-behind solution, you are talking directly to the
Excel PIA with no transparent proxy object, and the locale issue will continue to be in effect.

Converting Excel Dates to DateTime

Excel can represent dates in either of two formats: the 1900 format or the 1904 format. The 1900 format is based on a
system where, when converted to a number, it represents the number of elapsed days since January 1, 1900. The 1904
format is based on a system where, when converted to a number, it represents the number of elapsed days since
January 1, 1904. The 1904 format was introduced by early Macintosh computers because of a problem with the 1900
format that we describe later. You can determine which format a workbook is using by checking the
Workbook.Date1904 property, which returns TRue if the workbook is using the 1904 format.

If an Excel workbook is using the 1904 format, and you convert a date from that workbook into a DateTime directly,
you will get the wrong value. The date will be off by four years and two leap days, because DateTime is expecting the
1900 format, where the value of the Excel date represented by a number is the number of elapsed days since January
1, 1900not January 1, 1904. So this code would give a bad DateTime if you are using the 1904 format in your
workbook.

Dim excelDate As Object = myRange.Value
Dim possiblyBadDateIfExcelIsIn1904Mode As DateTime = _
 CType(excelDate, DateTime)

To get a 1904-format date into a DateTime format, you must add to the 1904-format date four years and two leap days
(to make up for the fact that the 1904 has its zero in 1904 rather than 1900). So if you write this code instead, and use
the function ConvertExcelDateToDate in Listing 5.38, you will get the right result if you use the 1904 date system.

Dim excelDate As Object = myRange.Value
Dim goodDate As DateTime = ConvertDateToExcelDate(excelDate)

Listing 5.38. Converting Excel Dates to DateTime and Back Again

Private ReadOnly march1st1900 As DateTime
march1st1900 = New DateTime(1900, 3, 1)
Private ReadOnly december31st1899 As DateTime = _
 New DateTime(1899, 12, 31)
Private ReadOnly january1st1904 As DateTime
january1st1904 = New DateTime(1904, 1, 1)
Private ReadOnly date1904adjustment As TimeSpan = _
 New TimeSpan(4 * 365 + 2, 0, 0, 0, 0)
Private ReadOnly before1stMarchAdjustment As TimeSpan = _
 New TimeSpan(1, 0, 0, 0)
Private isDate1904 As Boolean = ActiveWorkbook.Date1904

Private Function ConvertDateToExcelDate(_

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Function ConvertDateToExcelDate(_
 ByVal date1 As DateTime) As Object

 Dim languageSettings As Office.LanguageSettings = _
 Application.LanguageSettings
 Dim lcid As Integer = _
 languageSettings.LanguageID(_
 Office.MsoAppLanguageID.msoLanguageIDUI)
 Dim officeUICulture As Globalization.CultureInfo = _
 New Globalization.CultureInfo(lcid)
 Dim dateFormatProvider As Globalization.DateTimeFormatInfo
 dateFormatProvider = officeUICulture.DateTimeFormat()
 Dim dateFormat As String
 dateFormat = dateFormatProvider.ShortDatePattern

 If isDate1904 = True Then
 If date1 >= january1st1904 Then
 Return date1 - date1904adjustment
 Else
 Return date1.ToString(dateFormat, dateFormatProvider)
 End If
 End If

 If date1 >= march1st1900 Then
 Return date1
 End If

 If (date1 < march1st1900 And _
 date1 > december31st1899) Then
 Return date1 - before1stMarchAdjustment
 End If

 Return date1.ToString(dateFormat, dateFormatProvider)
End Function

Private Function ConvertExcelDateToDate(_
 ByVal excelDate As Object) _
 As DateTime

 Dim date1 As DateTime = CType(excelDate, DateTime)

 If isDate1904 Then
 Return date1 + date1904adjustment
 End If

 If date1 < march1st1900 Then
 Return date1 + before1stMarchAdjustment
 End If

 Return date1
End Function

Listing 5.38 also has a correction for 1900-format dates. It turns out that when Lotus 1-2-3 was written, the
programmers incorrectly thought that 1900 was a leap year. When Microsoft wrote Excel, Microsoft wanted to make
sure it kept compatibility with existing Lotus 1-2-3 spreadsheets by making it so that Excel calculated the number of
days elapsed since December 31, 1899, rather than January 1, 1900. When DateTime was written, its creators did not
try to back up to December 31, 1899; they calculated from January 1, 1900. So to get an Excel date in 1900 format
that is before March 1, 1900, into a DateTime properly, you have to add one day.

Finally, Excel cannot represent days before January 1, 1900, when in 1900 format, or days before January 1, 1904,
when in 1904 format. Therefore, when you are converting a DateTime to an Excel date, you have to pass a string
rather than a number representing the datebecause these dates cannot be represented as dates in Excel (only as
strings).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter explored some of the most important objects in the Excel object model. We use many of these objects in
the Excel examples in subsequent chapters. We also consider some additional Excel object model objects used to work
with XML in Excel in Chapter 21, "Working with XML in Excel."

This chapter described these objects as defined by the PIAs for Excel. You should be aware that VSTO extends some of
these objects (Workbook, Worksheet, Range, Chart, ChartObject, and ListObject) to add some functionality, such as
data binding support. Part III of this book examines those extensions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Workbooks Collection
The Workbooks collection, available from the Application object's Workbooks property, contains a collection of the
Workbook objects that are open in the application. It also has methods used to manage open workbooks, create new
workbooks, and open existing workbook files.

Iterating over the Open Workbooks

Collections implement a special method called GetEnumerator that allows them to be iterated over. You never have to
call the GetEnumerator method directly because the For Each keyword in Visual Basic uses this method to iterate over a
collection of Workbooks. See Listing 5.8 for an example of using For Each.

Listing 5.8. A VSTO Customization That Iterates over the Workbooks Collection
Using For Each

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim workbooks As Excel.Workbooks = Me.Application.Workbooks
 For Each workbook As Excel.Workbook In workbooks
 MsgBox(workbook.Name)
 Next

 End Sub

End Class

Accessing a Workbook in the Workbooks Collection

To access a Workbook in the Workbooks collection, you use the Item property, which returns a Workbook object. The
Item property has an Index parameter that is of type Object. You can pass an Integer representing the 1-based index of
the Workbook in the collection you want to access. (Almost all collections in the Office object models are 1-based.)

Alternatively, you can pass a String representing the name of the Workbook you want to access. The name for a
workbook is the name of the file, if it has been saved (for example, "Book1.xls"). If the workbook has not yet been saved,
it will be the temporary name that Excel creates for a new workbooktypically, Book1, with no file extension.

Because Item is the default property of a collection, you can omit actually writing out the property name Item and
instead just pass the Index parameter; you can write code like workbooks(1) instead of workbooks.Item(1). Listing 5.9 shows
an example of calling Item with both kinds of indexing and omitting writing the property name Item by using the default
property feature of Visual Basic.

Listing 5.9. A VSTO Customization That Gets a Workbook Using Item (the Default
Property) with an Integer and String Index

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup
 Dim workbooks As Excel.Workbooks = Me.Application.Workbooks
 If workbooks.Count > 0 Then
 ' Get the first workbook in the collection (1-based)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Get the first workbook in the collection (1-based)
 Dim wb As Excel.Workbook = workbooks(1)
 MsgBox(wb.Name)

 ' Get the same workbook by passing name of workbook
 Dim wb2 As Excel.Workbook = workbooks(wb.Name)
 MsgBox(wb2.Name)
 End If

 End Sub

End Class

You can also use the Workbooks collection's Count property to determine the number of open workbooks. You should
check the Count property before accessing a workbook by index to make sure your index is within the bounds of the
collection.

Creating a New Workbook

To create a new workbook, you can use the Workbooks collection's Add method. The Add method returns the newly
created Workbook object. It takes as an optional parameter an Object that can be set to a String specifying the filename
of an existing workbook to use as a template. Alternatively, you can pass a member of the XlWBATemplate enumeration
(xlWBATChart or xlWBATWorksheet) to specify that Excel should create a workbook with a single chart sheet or a single
worksheet. If you omit the parameter, Excel will create a new, blank workbook with the number of worksheets specified
by Application.SheetsInNewWorkbook property. Listing 5.10 shows several ways to create a new workbook.

Listing 5.10. A VSTO Customization That Creates New Workbooks Using
Workbooks.Add

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim workbooks As Excel.Workbooks = Me.Application.Workbooks

 ' Create a new workbook using mytemplate.xls as a template
 Dim workbook1 As Excel.Workbook = workbooks.Add("c:\mytemplate.xls")
 ' Create a new workbook with one chart sheet
 Dim workbook2 As Excel.Workbook
 workbook2 = workbooks.Add(Excel.XlWBATemplate.xlWBATChart)

 ' Set default number of new sheets to create in a
 ' new blank workbook to 10
 Me.Application.SheetsInNewWorkbook = 10

 ' Create a blank workbook with 10 worksheets
 Dim workbook3 As Excel.Workbook = workbooks.Add()

 End Sub

End Class

Opening an Existing Workbook

To open an existing workbook, you can use the Workbooks collection's Open method, which returns the opened
Workbook object. Open has one required parameter: a String representing the filename of the workbook to open. It also
has 14 optional parameters, which you can omit if you do not want to use any of them. Listing 5.11 shows the simplest
possible way of calling the Open method.

Listing 5.11. A VSTO Customization That Opens a Workbook Using the
Workbooks.Open Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Workbooks.Open Method

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim workbook As Excel.Workbook
 Workbook = Me.Application.Workbooks.Open("c:\myworkbook.xls")
 MsgBox(workbook.Name)

 End Sub

End Class

Closing All the Open Workbooks

Excel provides a Close method on the Workbooks collection to close all the open workbooks. The user is prompted to
save any unsaved workbooks unless Application.DisplayAlerts is set to False. As with Application.Quit, you cannot be
guaranteed that all the workbooks will actually be closed, because the user can click the Cancel button when prompted
to save a workbook, and other event handlers that are loaded in Excel from other add-ins can handle the BeforeClose
event and set the cancel parameter to true.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Workbook Object
The Workbook object represents an open workbook in Excel. The workbook has a Name property that returns the name
of the workbook as a String (for example, "book1.xls"). If the workbook has not yet been saved, this property returns the
temporary name of the documenttypically, Book1. This name can be passed to the Item property on the Workbooks
collection to access the workbook by name from that collection. Workbook also has a FullName property that returns
the full filename of the workbook if the workbook has been saved (for example, "c:\my documents\book1.xls"). For a new,
unsaved workbook, it returns the default name Excel gave the workbook, such as Book1.

Properties That Return Active or Selected Objects

The Workbook object has a number of properties that return active objectsobjects representing things that are selected
within the Excel workbook. Table 5.4 shows two of these properties.

Table 5.4. Workbook Properties That Return Active Objects
Property Name Type What It Does

ActiveChart Chart Returns the selected chart sheet in the workbook. If the
selected sheet is not a chart sheet, this property returns
Nothing.

ActiveSheet Object Returns the selected sheet in the workbook, which can
be either a worksheet or a chart sheet. You can cast this
to either a Worksheet or a Chart.

Properties That Return Important Collections

The Workbook object has a number of properties that return collections that you will frequently use. Table 5.5 shows
some of these properties.

Table 5.5. Workbook Properties That Return Important
Collections

Property Name Type What It Does

Charts Charts Returns the Charts collection, which contains all the
chart sheets in the workbook. The Charts collection has
methods and properties to access a particular chart or to
add a new chart sheet.

Sheets Sheets Returns the Sheets collection, which contains all the
sheets in the workbook (both worksheets and chart
sheets). The Sheets collection has methods and
properties to access a particular sheet or to add a new
sheet.

Windows Windows Returns the Windows collection, which contains all the
open windows that are showing the workbook. The
Windows collection has methods and properties to
arrange and access windows.

Worksheets Sheets Returns the Worksheets collection, which contains all the
worksheets in the workbook in a Sheets collection. The
Worksheets collection has methods and properties to
access a particular worksheet or to add a new
worksheet.

Accessing Document Properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Workbook has a BuiltinDocumentProperties property that returns an Object that can be cast to a
Microsoft.Office.Core.DocumentProperties collection representing the built-in document properties associated with the
workbook. These are the properties that you see when you choose Properties from the File menu and click the
Summary tab, including properties such as Title, Subject, Author, and Company. Table 5.6 shows the names of the
built-in document properties associated with a workbook.

Table 5.6. The Names of the Built-In Document Properties in Excel
Application name Last print date Number of pages

Author Last save time Number of paragraphs

Category Manager Number of slides

Comments Number of bytes Number of words

Company Number of characters Revision number

Creation date Number of characters (with spaces) Security

Format Number of hidden slides Subject

Hyperlink base Number of lines Template

Keywords Number of multimedia clips Title

Last author Number of notes Total editing time

Workbook also has a CustomDocumentProperties that returns an Object that can be cast to a
Microsoft.Office.Core.DocumentProperties collection representing any custom document properties associated with the
workbook. These are the custom properties that you see when you choose Properties from the File menu and click the
Custom tab. Custom properties can be created by your code and used to store name-and-value pairs in the workbook.
The DocumentProperties collection is discussed in more detail in the section "Working with Document Properties" later
in this chapter.

Saving an Excel Workbook

The Workbook object has a number of properties and methods that are used to save a workbook, detect whether a
workbook has been saved, and get the path and filename of a workbook.

The Saved property returns a Boolean value that tells you whether the latest changes to the workbook have been saved.
If closing the document will cause Excel to prompt the user to save, the Saved property will return False. If the user
creates a new, blank workbook and does not modify it, the Saved property will return true until the user or your code
makes a change to the document. You can set the Saved property to true to prevent a workbook from being saved, but
be careful: Any changes made in that document may be lost because the user will not be prompted to save when the
document is closed.

A more common use of the Saved property is to try to keep the state of the Saved property the same as before your
code ran. Your code might set or create some custom document properties, but if the user does not make any changes
to the document while it is open, you might not want the user to be prompted to save. Your code can get the value of
the Saved property, make the changes to the document properties, and then set the value of Saved back to the value
before your code changed the workbook. This way, the changes your code made will be saved only if the user makes an
additional change to the document that requires a save. Listing 5.12 shows this approach.

Listing 5.12. A VSTO Customization That Manipulates Document Properties
Without Affecting the Saved Property

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim oldSaved As Boolean = Me.Saved

 Try
 Dim props As Office.DocumentProperties
 Props = Me.BuiltinDocumentProperties
 props("Author").Value = "Mark Twain"
 Finally
 Me.Saved = oldSaved

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Me.Saved = oldSaved
 End Try

 End Sub

End Class

To save a workbook, you can use the Save method. If the workbook has already been saved, Excel just overwrites the
file from the previous save. If the workbook is newly created and has not been saved yet, Excel tries to create a
filename (such as "Book2.xls" if the new workbook was called Book2) and save it to the default file path set by
Application.DefaultFilePath.

If you want to specify a filename to save the workbook to, you must use the SaveAs method. SaveAs takes the
filename as a String parameter. It also takes a number of optional parameters that you can omit.

If you want to save a copy of the workbook, use the SaveCopyAs method, and pass it the copy's filename as a String
parameter. SaveCopyAs creates a backup copy of the workbook. It does not affect the filename or save location of the
workbook it is called on.

You can also save the workbook while closing it by using the Close method. If you omit all the optional parameters, the
user will be prompted to save the workbook if it has been changed since it was created or opened. If you pass False to
the SaveChanges parameter, it will close the workbook without saving changes. If you set the SaveChanges parameter to true
and pass a filename as a String for the Filename parameter, it will save the workbook to the filename you specified.

Several additional properties are used to access the filename and location of the workbook, as shown in Table 5.7.

Table 5.7. Workbook Properties That Return Filename and Path
Information

Property Name Type What It Does

FullName String Returns the full name of the workbook, including the
path. For a saved workbook, it returns the full filename
of the workbook. For a new, unsaved workbook, it
returns the default name Excel gave the workbook, such
as Book1.

FullName-URLEncoded String Returns as a URL-encoded string the full name of the
workbook, including the path.

Path String Returns the full path to the workbook (for example,
"C:\Documents and Settings\Eric Carter\My Documents"). If the
workbook has not yet been saved, this property returns
an empty string.

Name String Returns the name of the workbook (for example,
"book1.xls"). If the workbook has not yet been saved, this
property returns the temporary name of the
documenttypically, Book1. This can be passed to Item on
the Workbooks collection to access this workbook.

Table 5.8 shows a number of other properties related to saving.

Table 5.8. Workbook Properties Related to Saving an Excel Workbook
Property Name Type What It Does

CreateBackup Boolean Sets whether a backup is created when the workbook is saved.

EnableAutoRecover Boolean Sets whether the autosave feature of Excel is enabled. If enabled,
Excel saves the workbook on a timed interval so that if Excel
should crash or the system should fail, a backed-up file is
available.

FileFormat XlFileFormat Returns the file format this workbook is saved as.

ReadOnly Boolean Returns true if the file was opened as read-only.

Naming Ranges of Cells

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Excel enables you to associate a name (a String identifier) with any range of cells. You can define a name for a range of
cells by writing code or by using the Define Name dialog box that is shown when you choose Insert > Name > Define.
You can also select a cell or range of cells you want to associate a name with and then type the name in the Name Box
to the left of the formula bar, as shown in Figure 5.2. When you type the name in the Name Box, you need to press the
Enter key after typing to set the name.

Figure 5.2. Naming a range of cells myCells using the Name Box.

The Names property returns the Names collection, which you can use to access any ranges you have named within the
workbook. The Names collection also enables you to create new named ranges. The Names collection is discussed in
more detail in the section "Working with the Names Collection and Name Object" later in this chapter.

When Excel Is Embedded in Another Application

CommandBars, Container, and IsInPlace are properties used when the workbook is opened inside another application,
such as Internet Explorer or Word. IsInPlace is a property that returns a Boolean value that tells you whether the
workbook has been opened inside another application. The CommandBars property returns the
Microsoft.Office.Core.CommandBars collection that is used when a document is in place. The Container property returns
an Object that can be used to access the object model of the containing application.

Creating and Activating Windows

The Workbook class has a NewWindow method that you can use to create a new window on the workbook. Although
you might expect the way to create new windows to involve calling Add on the Windows collection, it does not. The only
way to create a new window is to use this method.

There is also an Activate method that activates the workbook by making the first window associated with the workbook
the active window. You can activate a window other than the first window associated with the workbook by using the
Windows collection and the Window object. For more information on the Windows and Window objects, see the section
"Working with the Window Object" later in this chapter.

Printing a Workbook

The PrintOut method prints the workbook. It takes eight optional parameters, as shown in Table 5.9.

Table 5.9. The Optional Parameters of the PrintOut Method
Parameter Name Type What It Does

From Object Sets the page number at which to start printing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To Object Sets the last page number to print

Copies Object Sets how many copies to print

Preview Object Set to TRue to show print preview

ActivePrinter Object Set to a String representing the printer to print to

PrintToFile Object Set to true to print to a file

Collate Object Set to true to collate multiple copies

PrintToFileName Object Set to a String representing the file name to print to if
PrintToFile is set to true

Protecting a Workbook

Excel enables you to protect two things at the workbook level: the order of the worksheets in a workbook, and the size
and positioning of the windows associated with a workbook. The Protect method takes three optional parameters:
Password, Structure, and Windows. Password is an optional parameter that you can pass a String for the password for the
workbook. Structure is an optional parameter that can be set to true to protect the sheet order so that the user cannot
rearrange the order of the sheets in the workbook.

Windows is an optional parameter that can be set to true to protect the windows associated with the workbook from being
moved or resized. You could have two "tiled" windows showing a workbook, for example; locking them prevents the
user from moving them from the tiled positions. (See the section "Arranging Windows" later in this chapter for more
information about tiling windows.)

Although all these parameters are optional, workbook protection does not really do anything unless you set the Structure
or Windows parameter to true. If you want to protect cells in the workbook from being edited, you must use the
Worksheet.Protect method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Worksheets, Charts, and Sheets Collections
The Worksheets, Charts, and Sheets collections are very similar, so this section covers them together. They differ
mainly in whether they contain worksheets (Worksheets), chart sheets (Charts), or both (Sheets). In this section, as in
the rest of the chapter, we use the word sheet to refer to either a chart sheet or a worksheet.

Iterating over the Open Sheets

These collections have a GetEnumerator method that allows them to be iterated over using a For Each loop in Visual
Basic, as shown in Listing 5.13.

Listing 5.13. A VSTO Customization That Iterates over the Worksheets, Charts, and
Sheets Collections

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim app As Excel.Application = Me.Application
 Me.Charts.Add()

 Dim sheet As Excel.Worksheet
 For Each sheet In Me.Worksheets
 MsgBox(String.Format("Worksheet {0}", sheet.Name))
 Next

 Dim chart As Excel.Chart
 For Each chart In Me.Charts
 MsgBox(String.Format("Chart {0}", chart.Name))
 Next

 Dim objSheet As Object
 For Each objSheet In Me.Sheets
 If TypeOf (objSheet) Is Excel.Worksheet Then
 MsgBox(String.Format("Worksheet {0}", objSheet.Name))
 End If
 If TypeOf (objSheet) Is Excel.Chart Then
 MsgBox(String.Format("Chart {0}", objSheet.Name))
 Next End If

 End Sub

End Class

Accessing a Sheet in the Collection

To access a sheet in the Worksheets, Charts, and Sheets collections, you use a property called Item, which returns an
Object. You need to cast the returned Object to a Worksheet or Chart. Objects returned from the Worksheets collection
can always be cast to Worksheet. Objects returned from the Charts collection can always be cast to Chart. Objects
returned from the Sheets collection should be tested using the TypeOf operator to determine whether the Object returned
is a Worksheet or a Chart. It can then be cast to a Worksheet or a Chart.

The Item property takes an Index parameter of type Object. You can pass a String representing the name of the worksheet
or chart sheet, or you can pass a 1-based index into the collection. You can check how many items are in a given
collection by using the Count property.

Adding a Worksheet or Chart Sheet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To add a worksheet or chart sheet to a workbook, you use the Add method. The Add method on the Sheets and
Worksheets collection takes four optional parameters of type Object: Before, After, Count, and Type. The Charts collection
Add method takes only the first three parameters.

The Before parameter can be set to a Worksheet or Chart representing the sheet before which the new sheet is to be
added. The After parameter can be set to the Worksheet or Chart representing the sheet after which the new sheet is to
be added. The Count parameter can be set to the number of new sheets you want to add. The Type parameter is set to
XlSheetType.xlWorksheet to add a worksheet or XlSheetType.xlChart to add a chart sheet. Note that if you try to use xlChart as the
Type parameter when using Worksheets.Add, Excel will throw an exception because Worksheets is a collection of only
Worksheet objects. You can specify either Before or After, but not both parameters. If you omit the Before and After
parameters, Excel adds the new sheet after all the existing sheets.

Listing 5.14 shows several ways of using the Add method on the various collections.

Listing 5.14. A VSTO Customization That Uses the Add Method on the Charts,
Sheets, and Worksheets Collections

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim chart1 As Excel.Chart = Me.Charts.Add()
 Dim chart2 As Excel.Chart
 chart2 = Me.Sheets.Add(Type:=Excel.XlSheetType.xlChart)
 Dim sheet1 As Excel.Worksheet
 sheet1 = Me.Sheets.Add(chart1, Count:=3)
 Dim sheet2 As Excel.Worksheet
 sheet2 = Me.Worksheets.Add(After:=chart2)

 End Sub

End Class

Copying a Sheet

You can make a copy of a sheet by using the Copy method, which takes two optional parameters: Before and After. You
can specify either Before or After, but not both parameters.

The Before parameter can be set to a Worksheet or Chart representing the sheet before which the sheet should be
copied to. The After parameter can be set to a Worksheet or Chart representing the sheet after which the new sheet
should be copied to. If you omit the Before and After parameters, Excel creates a new workbook and copies the sheet to
the new workbook.

Moving a Sheet

The Move method moves the sheet to a different location in the workbook (that is, it moves the sheet to a different tab
location in the worksheet tabs) and has two optional parameters: Before and After. You can specify either Before or After,
but not both parameters. If you omit both parameters, Excel creates a new workbook and moves the sheet to the new
workbook.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with Document Properties
The DocumentProperties collection and DocumentProperty object are located in the Microsoft Office 11.0 Object Library
(office.dll), which contains objects shared by all the Office applications. These objects are in the Microsoft.Office.Core
namespace and typically are brought into your code in an Office namespace alias as shown here:

Imports Office = Microsoft.Office.Core

Iterating over the DocumentProperties Collection

Listing 5.15 shows an example of iterating over the DocumentProperties collection returned by
Workbook.CustomDocumentProperties and Workbook.BuiltInDocumentProperties.

Listing 5.15. A VSTO Customization That Iterates over DocumentProperties
Collection

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim builtinProps As Office.DocumentProperties
 builtinProps = Me.BuiltinDocumentProperties
 Dim customProps As Office.DocumentProperties
 customProps = Me.CustomDocumentProperties

 Dim builtinProp As Office.DocumentProperty
 For Each builtinProp In builtinProps
 Try
 MsgBox(String.Format("{0} {1}", _
 builtinProp.Name, builtinProp.Value))
 Catch
 MsgBox(String.Format("{0} has not been set.", _
 builtinProp.Name))
 End Try

 Next

 Dim customProp As Office.DocumentProperty
 For Each customProp In customProps
 Try
 MsgBox(String.Format("{0} {1}", _
 customProp.Name, customProp.Value))
 Catch
 MsgBox(String.Format("{0} has not been set.", _
 customProp.Name))
 End Try
 Next

 End Sub

End Class

Accessing a DocumentProperty in the DocumentProperties Collection

To access a DocumentProperty in a DocumentProperties collection, you use the Visual Basic indexing syntax
docProperties(Object), which returns a DocumentProperty object. This syntax is actually calling the default property Item on
the DocumentProperties collection. The indexer takes an Index parameter of type Object. You can pass an Integer
representing the 1-based index of the DocumentProperty in the collection you want to access. Alternatively, you can
pass a String representing the name of the DocumentProperty you want to access. As with other collections, the Count
property returns how many DocumentProperty objects are in the collection.

A DocumentProperty object has a Name property that returns a String containing the name of the property. It also has a
Value property of type Object that returns the value of the property. You can check the type Value by using the Type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Value property of type Object that returns the value of the property. You can check the type Value by using the Type
property, which returns a member of the MsoDocProperties enumeration: msoPropertyTypeBoolean, msoPropertyTypeDate,
msoPropertyTypeFloat, msoPropertyTypeNumber, or msoPropertyTypeString.

Listing 5.16 shows how a DocumentProperty is accessed.

Listing 5.16. A VSTO Customization That Accesses a DocumentProperty Using an
Indexer

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim builtinProps As Office.DocumentProperties
 builtinProps = Me.BuiltinDocumentProperties
 Dim authorProp As Office.DocumentProperty

 authorProp = builtinProps("Author")
 MsgBox(String.Format("Property {0} is {1}", _
 authorProp.Name, authorProp.Value))

 Dim thirdProp As Office.DocumentProperty = builtinProps(3)
 MsgBox(String.Format("Property {0} is {1}", _
 thirdProp.Name, thirdProp.Value))

 End Sub

End Class

Adding a DocumentProperty

You can add a custom DocumentProperty using the Add method. The Add method takes the parameters shown in Table
5.10.

Table 5.10. Parameters for the DocumentProperties Collection's Add Method
Parameter Name Type What It Does

Name String Sets the name of the new DocumentProperty.

LinkToContent Boolean Sets whether the property is linked to the contents of the
container document.

Type optional Object Sets the data type of the property. Can be one of the following
MsoDocProperties enumerated values: msoPropertyTypeBoolean,
msoPropertyTypeDate, msoPropertyTypeFloat, msoPropertyTypeNumber, or
msoPropertyTypeString.

Value optional Object Sets the value of the property if LinkToContent is False.

LinkSource optional Object Sets the source of the linked property if LinkToContent is TRue.

Listing 5.17 shows an example of adding a custom DocumentProperty of type msoPropertyTypeString. Note that Excel will let
you set the value to a long string, but it will truncate it to 255 characters. Fortunately, VSTO provides developers a way
to store larger amounts of data in a document through a feature called cached data. For more information on the
cached-data feature of VSTO, see Chapter 18, "Server Data Scenarios."

Listing 5.17. A VSTO Customization That Adds a Custom DocumentProperty

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 5.17. A VSTO Customization That Adds a Custom DocumentProperty

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim props As Office.DocumentProperties
 props = Me.CustomDocumentProperties
 Dim prop As Office.DocumentProperty
 prop = props.Add("My Property", False, _
 Office.MsoDocProperties.msoPropertyTypeString, "My Value")

 MsgBox(String.Format("Property {0} has value {1}.", _
 prop.Name, prop.Value))

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Windows Collections
The Application.Windows property returns a Windows collection that lets you iterate and access all the windows that are
open in Excel. Similarly, the Workbook.Windows property lets you access windows that are associated with a particular
workbook. These collections provide methods to arrange the open windows. Windows collections do not have a method
to add a new window. Instead, you must call the Workbook.NewWindow method.

Iterating over the Open Windows

The Windows collection has a GetEnumerator method that allows it to be iterated over using a For Each loop in Visual
Basic, as shown in Listing 5.18.

Listing 5.18. A VSTO Customization That Iterates over the Windows Collection

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim workbooks As Excel.Workbooks = Me.Application.Workbooks
 Dim workbook1 As Excel.Workbook = workbooks.Add()
 Dim workbook2 As Excel.Workbook = workbooks.Add()

 Dim i As Integer
 For i = 1 To 10
 workbook1.NewWindow()
 workbook2.NewWindow()
 Next

 Dim window As Excel.Window
 For Each window In workbook1.Windows
 MsgBox(String.Format("Workbook1 Window: {0}", _
 window.Caption))
 Next

 For Each window In Me.Application.Windows
 MsgBox(String.Format("Application Window: {0}", _
 window.Caption))
 Next

 End Sub

End Class

Accessing a Window in the Collection

To access a Window in the Windows collection, you use a property called Item, which returns a Window. The Item
property takes an Index parameter that is of type Object. You can pass a String representing the caption of the Window, or
you can pass a 1-based index into the Windows collection. You can check how many items are in a given collection by
using the Count property. Listing 5.19 shows both getting a window by passing in a 1-based index and by passing in the
caption of the window. In the first use of Item, Item is specified explicitly (windows.Item(1)). In the second use, Item is
omitted, as it is the default property of the Windows collection and Visual Basic knows how to call it if it is omitted
(windows(caption)). Either usagespecifying Item explicitly or omitting Item and letting Visual Basic call it as the default
property of the collectionis acceptable.

Listing 5.19. A VSTO Customization That Gets a Window from the Windows
Collection Using Item

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Collection Using Item

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim caption As String = ""
 Dim windows As Excel.Windows = Me.Windows

 If windows.Count >= 1 Then
 Dim window As Excel.Window = windows.Item(1)
 caption = window.Caption
 MsgBox(caption)
 End If

 If Not String.IsNullOrEmpty(caption) Then
 Dim window2 As Excel.Window = windows(caption)
 Dim caption2 As String = window2.Caption
 MsgBox(caption2)
 End If

 End Sub

End Class

Arranging Windows

Excel has various ways of arranging windows and synchronizing those windows so that when one window scrolls, the
others scroll as well. The Arrange method lets you arrange a collection of windows as tiled, horizontal, vertical, or
cascaded. This method also lets you synchronize two or more windows that are showing the same workbook so that
when one window scrolls, the other windows scroll the same amount. Table 5.11 shows the optional parameters passed
to the Arrange method.

Table 5.11. Optional Parameters for the Arrange Method
Property Name Type What It Does

ArrangeStyle XlArrangeStyle Sets the style to use when arranging the windows:
xlArrangeStyleCascade, xlArrangeStyleTiled, xlArrange-StyleHorizontal,
xlArrange-StyleVertical.

ActiveWorkbook Boolean If set to true, arranges the windows only for the active
workbook. If set to False, arranges all open windows.

SyncHorizontal Object If set to true, when one window associated with a
workbook scrolls horizontally, the other windows
associated with the workbook also scroll.

SyncVertical Object If set to true, when one window associated with a
workbook scrolls vertically, the other windows associated
with the workbook also scroll.

The CompareSideBySideWith method allows you to synchronize the scrolling of two windows showing the same
workbook or two windows showing different workbooks. This method takes a String that represents the caption of the
window to compare the active window with. The window you want to compare with the active window must be a
member of the Windows collection you are usingso to be safe, you should use the Application.Windows collection
because it contains all open windows.

As Listing 5.20 shows, it is important to activate the workbook whose windows you want to arrange. If you do not do
this, the windows of the active workbook will be arranged, rather than those of the workbook associated with the
Windows collection.

Listing 5.20. A VSTO Customization That Arranges and Synchronizes Windows

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 5.20. A VSTO Customization That Arranges and Synchronizes Windows

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim workbooks As Excel.Workbooks = Me.Application.Workbooks
 Dim workbook1 As Excel.Workbook = workbooks.Add()
 Dim workbook2 As Excel.Workbook = workbooks.Add()
 Dim workbook1Window As Excel.Window = workbook1.NewWindow()
 workbook2.NewWindow()

 workbook1.Activate()
 workbook1.Windows.Arrange(_
 Excel.XlArrangeStyle.xlArrangeStyleTiled, True, True, True)
 MsgBox(String.Format(_
 "Workbook {0} has its windows arranged tiled.", _
 workbook1.Name))

 workbook2.Activate()
 Me.Application.Windows.CompareSideBySideWith(_
 workbook1Window.Caption)
 MsgBox(String.Format(_
 "The windows {0} and {1} are synchronized", _
 Me.Application.ActiveWindow.Caption, _
 workbook1Window.Caption))

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Window Object
The Window object represents an Excel window. You can use the Window object to position a window associated with a
workbook. You can also use the Window object to set display settings for a workbook, such as whether to display
gridlines and headings.

Positioning a Window

The Window object lets you position and change the way Excel displays a workbook within a window. Window has a
WindowState property of type XlWindowState that can be used to set the window to xlMaximized, xlMinimized, or xlNormal.

When the WindowState is set to xlNormal, you can position the window using the Left, Top, Width, and Height properties.
These properties are Double values that represent points, not screen pixels. You can use the Window's
PointsToScreenPixelsX and PointsToScreenPixelsY methods to convert points to pixels.

Display Settings Associated with a Window

A number of additional properties allow you to control the display of a window. Table 5.12 lists some of the most
commonly used ones.

Table 5.12. Window Properties That Control the Display of a Window
Property Name Type What It Does

DisplayGridline Boolean If set to False, Excel won't display gridlines around cells.

DisplayHeadings Boolean If set to False, Excel won't display the row and column
headers.

DisplayHorizontalScrollBar Boolean If set to False, Excel won't display the horizontal scroll
bar.

DisplayVerticalScrollBar Boolean If set to False, Excel won't display the vertical scroll bar.

DisplayWorkbookTabs Boolean If set to False, Excel won't display the tabs to allow the
user to switch to another worksheet.

EnableResize Boolean If set to False, Excel won't let the user resize the window
when WindowState is set to xlNormal.

GridlineColor Integer Set to the color of the gridlines. Add a reference to your
project to System. Drawing.dll, and use the System.
Drawing.ColorTranslator.ToOle method to generate a
color Excel understands from a .NET color.

ScrollColumn Integer Sets the left column that the window should scroll to.

ScrollRow Integer Sets the top row that the window should scroll to.

SplitColumn Double Sets the column number where the window will be split
into vertical panes.

SplitRow Double Sets the row number where the window will be split into
horizontal panes.

Visible Boolean Sets whether the window is visible.

Zoom Object Zooms the window; set to 100 to zoom to 100%, 200 to
zoom to 200%, and so on.

Listing 5.21 shows an example of using many of these properties. Note that we add a reference to System.Drawing.dll
so that we can use the ColorTranslator object to set the GridlineColor property. The ColorTranslator object provides a
method called ToOle, which takes a System.Drawing color and converts it to an Ole color formatthe kind of color format
that Office methods and properties that take colors expect.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 5.21. A VSTO Customization That Controls the Display Options for a
Window

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim win As Excel.Window = Me.NewWindow()

 win.WindowState = Excel.XlWindowState.xlNormal
 win.Width = 200
 win.Height = 200
 win.Top = 8
 win.Left = 8
 win.DisplayGridlines = True
 win.DisplayHeadings = False
 win.DisplayHorizontalScrollBar = False
 win.DisplayVerticalScrollBar = False
 win.DisplayWorkbookTabs = False
 win.EnableResize = False

 win.GridlineColor = System.Drawing.ColorTranslator.ToOle(_
 System.Drawing.Color.Blue)

 win.ScrollColumn = 10
 win.ScrollRow = 20
 win.Visible = True
 win.Zoom = 150

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Names Collection and Name Object
The Names collection represents a set of ranges in the workbook that have been given names so that the range can be
accessed by a name in a formula or by your code accessing the Names collection. The user can create and edit names
using the Name Box, as shown in Figure 5.2, or by using the Name menu in the Insert menu. Also, names are
sometimes created automatically by features of Excel. When the user defines a custom print area, for example, Excel
creates a named range with the name Print_Area.

Iterating over the Names Collection

The Names collection has a GetEnumerator method that allows it to be iterated over using a For Each loop in Visual Basic.
The following snippet iterates the Names collection associated with a workbook and displays the name of each Name
object, as well as the address of the range it refers to in standard format (for example, "=Sheet1!A5"):

 For Each name As Excel.Name in workbook.Names
 Console.WriteLine(String.Format(_
 "{0} refers to {1}", name.Name, name.RefersTo))
 Next

Accessing a Name in the Names Collection

To access a Name in the Names collection, you use a method called Item, which takes three optional parameters, as
shown in Table 5.13.

Table 5.13. Optional Parameters for the Item Method
Parameter Name Type What It Does

Index Object Pass the name of the Name or the index of the Name in
the Names collection.

IndexLocal Object Pass the localized name of the Name. A localized name
typically exists when an Excel feature has created the
name.

RefersTo Object Pass the standard format refers to address (=Sheet1!A5)
to get back the Name object that refers to that address.

Listing 5.22 shows some code that creates a Name and then accesses it in several ways. It creates the Name by using
the Add method that takes the name to be used for the Name object and the standard format address string (such as
"=Sheet1!A5") that the newly created name will refer to.

Listing 5.22. A VSTO Customization That Creates a Name Object and Accesses It

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim names As Excel.Names = Me.Names
 names.Add("MyName", "=Sheet1!A5")

 Dim name1 As Excel.Name
 name1 = names.Item(RefersTo:="=Sheet1!A5")
 MsgBox(String.Format(_
 "Name: {0} RefersTo: {1} RefersToR1C1: {2} Count: {3}", _
 name1.Name, name1.RefersTo, name1.RefersToR1C1, _
 name1.RefersToRange.Cells.Count))

 Dim name2 As Excel.Name = names.Item("MyName")
 MsgBox(String.Format(_

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox(String.Format(_
 "Name: {0} RefersTo: {1} RefersToR1C1: {2} Count: {3}", _
 name2.Name, name2.RefersTo, name2.RefersToR1C1, _
 name2.RefersToRange.Cells.Count))

 End Sub

End Class

The Name Object

Given a Name object, you commonly will use several properties. The Name returns the name as a String. The RefersTo
property returns the standard format address as a String that the Name refers to. The RefersToR1C1 returns the "rows
and columns" format address as a String (such as "=Sheet1!R26C9") that the Name refers to. Most important, the
RefersToRange property returns an Excel Range object representing the range of cells that the name was assigned to.

To hide the name from the Define Name dialog box and the Name Box drop-down list, you can set the Visible property
to False. To delete a Name, use the Delete method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Worksheet Object
The Worksheet object represents a worksheet inside an Excel workbook. The Worksheet has a Name property that
returns the name of the worksheet (for example, "Sheet1").

Worksheet Management

The Worksheet object has an Index property that gives a 1-based tab position for the worksheet in the tabbed
worksheet tabs shown at the bottom-left corner of a workbook window. You can move a worksheet to a different tab
position by using the Move method. The Move method takes two optional parameters: a Before parameter that you can
pass the sheet you want to move the worksheet before, and an After parameter that you can pass the sheet that you
want to come after the moved worksheet. If you omit both optional parameters, Excel creates a new workbook and
moves the worksheet to the new workbook.

It is also possible to make a copy of a worksheet using the Copy method. Like the Move method, it takes two optional
parameters: Before and After parameters, which specify where the copied worksheet should go relative to other sheets.
You can specify either Before or After, but not both parameters. If you omit both optional parameters, Excel creates a new
workbook and copies the worksheet to the new workbook.

To activate a particular worksheet, use the Activate method. This method activates the sheet by making the first
window associated with the worksheet the active window. It also selects the tab corresponding to the worksheet and
displays that worksheet in the active window.

The equivalent of right-clicking a worksheet tab and choosing Delete from the pop-up menu is provided by the Delete
method. When you use this method, Excel shows a warning dialog box. You can prevent this warning dialog box from
appearing by using the Application object's DisplayAlerts property, which is discussed in the section "Controlling the
Dialog Boxes and Alerts That Excel Displays" earlier in this chapter.

You can use the Visible property to hide a worksheet so that its tab is not shown. The Visible property is of type
XlSheetVisibility and can be set to xlSheetVisible, xlSheetHidden, and the xlSheetVeryHidden. The last value hides the worksheet so
that it can be shown again only by setting the Visible property to xlSheetVisible. Setting the Visible property to xlSheetHidden
hides the sheet, but the user can still unhide the sheet by going to the Format menu and choosing Sheet and then
Unhide.

Sometimes a sheet is hidden using the Visible property so that the sheet can be used to store additional data that an
application uses in a "scratch" worksheet that the user will not see. A better way to do this is provided by VSTO's
cached-data feature, described in Chapter 18, "Server Data Scenarios." It has the added benefit that you can
manipulate your hidden data in the Excel spreadsheet without starting Excel. This lets you prefill an Excel worksheet
with custom data on the server.

Note that a workbook must contain at least one visible worksheet, so when using the Delete method and the Visible
property, you must keep this restriction in mind. If your code tries to hide or delete the last visible sheet in a workbook,
an exception is thrown.

Listing 5.23 illustrates the usage of several of these properties and methods.

Listing 5.23. A VSTO Customization That Works with the Worksheets Collection

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim sheetA as Excel.Worksheet = Me.Worksheets.Add()
 sheetA.Name = "SheetA"
 Dim sheetB As Excel.Worksheet = Me.Worksheets.Add()
 sheetB.Name = "SheetB"
 Dim sheetC As Excel.Worksheet = Me.Worksheets.Add()
 sheetC.Name = "SheetC"

 ' Tab indexes
 Dim msg As String = "{0} is at tab index {1}"
 MsgBox(String.Format(msg, sheetA.Name, sheetA.Index))
 MsgBox(String.Format(msg, sheetB.Name, sheetB.Index))
 MsgBox(String.Format(msg, sheetC.Name, sheetC.Index))

 sheetC.Move(sheetA)
 MsgBox("Moved SheetC in front of SheetA")

 ' Tab indexes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Tab indexes
 MsgBox(String.Format(msg, sheetA.Name, sheetA.Index))
 MsgBox(String.Format(msg, sheetB.Name, sheetB.Index))
 MsgBox(String.Format(msg, sheetC.Name, sheetC.Index))

 sheetB.Copy(sheetA)

 Dim sheetD As Excel.Worksheet
 sheetD = Me.Worksheets(sheetA.Index - 1)
 CType(sheetA, Excel._Worksheet).Activate()
 MsgBox(String.Format(_
 "Copied SheetB to create {0} at tab index {1}", _
 sheetD.Name, sheetD.Index))

 sheetD.Delete()
 sheetA.Visible = Excel.XlSheetVisibility.xlSheetHidden
 MsgBox("Deleted SheetD and hid SheetA.")

 End Sub

End Class

Working with Names

As previously discussed, you can define named ranges at the workbook level by using Workbook.Names. You can also
define named ranges that are scoped to a particular worksheet by using the Names property associated with a
Worksheet object. The Names property returns a Names collection with only the names that are scoped to the
Worksheet. For more information on the Names collection, see the section "Working with the Names Collection and
Name Object" earlier in this chapter.

Working with Worksheet Custom Properties

You can add to the worksheet custom properties that have names and values. Custom properties are a convenient way
to associate additional hidden information with a worksheet that you do not want to put in a cell. Custom properties are
not shown anywhere in the Excel user interface, unlike the document properties associated with a workbook. Custom
properties at the worksheet level do not have the 256-character limit that document properties have for their value.
You can store much larger chunks of data in a worksheet custom property.

The CustomProperties property returns a collection of custom properties associated with the worksheet. You can add a
custom property by using the CustomProperties collection's Add method and passing a String for the name of the custom
property you want to create and an Object for the value you want to associate with the custom property. To get to a
particular custom property, use the CustomProperties.Item property, and pass the index of the property you want to
get. Unfortunately, the Item property takes only a 1-based index, not the name of a custom property you have added.
Therefore, you must iterate over the collection and check each returned CustomProperty object's Name property to
determine whether you have found the custom property you want. Listing 5.24 shows an example of creating a custom
property and then accessing it again.

Listing 5.24. A VSTO Customization That Accesses Custom DocumentProperty
Objects

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim sheet As Excel.Worksheet = Me.Worksheets.Add()

 ' Add a custom property
 Dim props As Excel.CustomProperties = sheet.CustomProperties
 props.Add("myProperty", "Some random value")
 props.Add("otherProperty", 1)

 ' Now, enumerate the collection to find myProperty again.
 Dim prop As Excel.CustomProperty
 For Each prop In props
 If prop.Name = "myProperty" Then
 MsgBox(String.Format(_
 "{0} property is set to {1}.", prop.Name, prop.Value))
 Exit For
 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End If
 Next

 End Sub

End Class

If you are using VSTO to associate code with a workbook, it usually is better to use cached data rather than custom
properties. The cached-data feature lets you put data sets and any XML serializable type into a data island in the
document. This data island can also be accessed on the server without starting Excel. For more information on the
cached-data feature of VSTO, see Chapter 18, "Server Data Scenarios."

Protecting a Worksheet

The Protect method protects the worksheet so that users cannot modify the worksheet. When a worksheet is protected
using the Protect method, all the cells in the workbook are automatically locked. The Protect method corresponds to the
Protect Sheet dialog box, shown in Figure 5.3. You can access this dialog box by choosing Tools > Protection > Protect
Sheet.

Figure 5.3. The Protect Sheet dialog box.

A number of optional parameters passed to the Protect method control exactly what can be modified, as shown in Table
5.14. Many of these options correspond to the checked list shown in Figure 5.3.

Table 5.14. Optional Parameters for the Protect Method
Parameter Name Type What It Does

Password Object You can pass the password as a String that you want to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Password You can pass the password as a String that you want to
use to protect the document. You must pass this same
password to the Unprotect method when you want to
unprotect the document (or type the password when you
choose to unprotect the document using Excel's
protection menu in the Tools menu). If you omit this
parameter, the worksheet can be unprotected without
requiring a password.

DrawingObjects Object Pass true to protect any shapes that are in the worksheet.
The default value is False.

Contents Object Pass true to protect the values of cells that have been
locked (Range.Locked is true) and are not in the
AllowEditRange collection (Range.AllowEdit is False). The
default value is TRue.

Scenarios Object Pass TRue to prevent scenarios from being edited. The
default value is true.

UserInterfaceOnly Object Pass true to apply the protection settings to the actions
taken by the user using the user interface. Pass False to
protect the worksheet from code that tries to modify the
worksheet. The default is False. When the workbook is
saved and closed, and then reopened later, Excel sets
protection back to apply to both user interface and code.
You must run some code each time the workbook opens
to set this option back to true if you want your code
always to be able to modify protected objects.

AllowFormatting-Cells Object Pass TRue to allow the user to format cells in the
worksheet. The default value is False.

AllowFormatting-Columns Object Pass true to allow users to format columns in the
worksheet. The default value is False.

AllowFormatting-Rows Object Pass true to allow users to format rows in the worksheet.
The default value is False.

AllowInserting-Columns Object Pass true to allow users to insert columns into the
worksheet. The default value is False.

AllowInserting-Rows Object Pass TRue to allow users to insert rows into the
worksheet. The default value is False.

AllowInserting-Hyperlinks Object Pass true to allow the user to insert hyperlinks into the
worksheet. The default value is False.

AllowDeleting-Columns Object Pass true to allow the user to delete columns from the
worksheet. The default value is False. If you pass true, the
user can delete only a column that has no locked cells.
(Range.Locked for all the cells in the column is False.)

AllowDeleting-Rows Object Pass true to allow the user to delete rows from the
worksheet. The default value is False. If you pass true, the
user can delete only a row that has no locked cells in it.
(Range.Locked for all the cells in the row is False.)

AllowSorting Object Pass true to allow the user to sort in the worksheet. The
default value is False. If you pass TRue, the user can sort
only a range of cells that has no locked cells in it
(Range.Locked is False) or that has cells that have been
added to the AllowEditRanges collection (Range.AllowEdit
is TRue).

AllowFiltering Object Pass TRue to allow the user to modify filters in the
worksheet. The default value is False.

AllowUsingPivot-Tables Object Pass true to allow the user to use pivot table reports in
the worksheet. The default value is False.

You have two ways to exclude certain ranges of cells from being locked when the worksheet is protected. The first way
is to add exclusions to protection using the AllowEditRanges collection that is returned from
Worksheet.Protection.AllowEditRanges. The AllowEditRanges collection corresponds to the Allow Users to Edit Ranges
dialog box, shown in Figure 5.4. You can access this dialog box by choosing Tools > Protection > Allow Users to Edit
Ranges.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.4. The Allow Users to Edit Ranges dialog box.

Exclusions you make using the AllowEditRanges collection must be made before you use the Protect method to protect
the worksheet. After you have protected the worksheet, no changes can be made to the AllowEditRanges collection until
you unprotect the worksheet again. Exclusions you make in this way can be given a title and will display in the Allow
Users to Edit Range dialog box. A Range that is excluded from protection in this way will return true from its
Range.AllowEdit property. Listing 5.25 shows a VSTO customization that creates two exclusions to protection using
AllowEditRanges and then protects the worksheet using the Protect method.

Listing 5.25. A VSTO Customization That Adds Exclusions to Protection Using
AllowEditRanges

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim sheet As Excel.Worksheet = Me.Worksheets.Add()
 Dim allowEdits As Excel.AllowEditRanges
 allowEdits = sheet.Protection.AllowEditRanges()
 allowEdits.Add("Editable Cell", sheet.Range("A1"))
 sheet.Protect()

 Dim protectedRange As Excel.Range = sheet.Range("A2")
 MsgBox(String.Format(_
 "A2's Locked is set to {0}", protectedRange.Locked))
 MsgBox(String.Format(_
 "A2's AllowEdit is set to {0}", protectedRange.AllowEdit))

 Try
 protectedRange.Value2 = "Should fail"
 Catch ex As Exception
 MsgBox(ex.Message)
 End Try

 Try
 allowEdits.Add("This should fail", sheet.Range("A2"))
 Catch ex As Exception
 ' You can't add to the AllowEditRanges collection
 ' when the worksheet is protected
 MsgBox(ex.Message)
 End Try

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim allowEditRange As Excel.Range = sheet.Range("A1")
 MsgBox(String.Format(_
 "A1's Locked is set to {0}", allowEditRange.Locked))
 MsgBox(String.Format(_
 "A1's AllowEdit is set to {0}", allowEditRange.AllowEdit))

 allowEditRange.Value2 = "Should succeed"

 End Sub

End Class

The second way to exclude certain ranges of cells from being locked when the worksheet is protected is to use the
Range.Locked property. Cells you exclude in this way do not show up in the Allow Users to Edit Ranges dialog box.
Listing 5.26 shows adding exclusions to protection using the Range.Locked property.

Listing 5.26. A VSTO Customization That Adds Exclusions to Protection Using
Range.Locked

Public Class ThisWorkbook

 Private Sub ThisWorkbook_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim sheet As Excel.Worksheet = Me.Worksheets.Add()
 Dim range1 As Excel.Range = sheet.Range("A2")
 range1.Locked = False
 sheet.Protect()

 MsgBox(String.Format("A2's Locked is set to {0}", _
 range1.Locked))
 MsgBox(String.Format("A2's AllowEdit is set to {0}", _
 range1.AllowEdit))

 range1.Value2 = "Should succeed"

 End Sub

End Class

After a worksheet is protected, a number of properties let you examine the protection settings of the document and
further modify protection options, as shown in Table 5.15.

Table 5.15. Properties That Let You Examine and Further Modify Document
Protection

Property Name Type What It Does

EnableAutoFilter Boolean If set to False, Excel won't display the AutoFilter arrows
when the worksheet is protected.

EnableOutlining Boolean If set to False, Excel won't display outlining symbols when
the worksheet is protected.

EnablePivotTable Boolean If set to False, Excel won't display the pivot table controls
and commands when the worksheet is protected.

EnableSelection XlEnable-Selection If set to xlNoSelection, Excel won't allow anything to be
selected on a protected worksheet. If set to xlUnlocked,
Excel will allow only unlocked cells (Range.Locked is set
to False) to be selected. If set to xlNoRestrictions, any cell on
a protected worksheet can be selected.

ProtectContents Boolean Read-only property that returns False if locked cells can
be edited in the worksheet.

ProtectDrawing Boolean Read-only property that returns False if Objects shapes in
the worksheet can be edited.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Protection Protection Returns a Protection object that has read-only properties
corresponding to most of the optional parameters passed
to the Protect method.

Protection.Allow-
EditRanges

AllowEditRanges Returns an AllowEditRanges collection that lets you work
with the ranges that users are allowed to edit.

ProtectionMode Boolean Read-only property that returns true if the worksheet is
protected.

ProtectScenarios Boolean Read-only property that returns False if scenarios in the
worksheet can be edited.

Working with OLEObjects

In addition to containing cells, a worksheet can contain embedded objects from other programs (such as an embedded
Word document) and ActiveX controls. To work with these objects, you can use the OLEObjects method on the
Worksheet object. The OLEObjects method takes an optional Index parameter of type Object that you can pass the name
of the OLEObject or the 1-based index of the OLEObject in the collection. The OLEObjects method also doubles as a way
to get to the OLEObjects collection, which can be quite confusing. If you pass it a String that represents as a name or a
1-based index as an Integer, it returns the specified OLEObject. If you omit the optional parameter, it returns the
OLEObjects collection.

Any time you add an OLEObject to a worksheet, Excel also includes that object in the Shapes collection that is returned
from the Shapes property on the Worksheet object. To get to the properties unique to an OLEObject, you use the
Shape.OLEFormat property.

It is possible to write Visual Basic code that adds ActiveX controls to a worksheet and talks to them through casting
OLEObject.Object or Shape.OLEFormat.Object to the appropriate type. You have to add a reference in your Visual Basic
project for the COM library associated with the ActiveX control you want to use. Doing so causes Visual Studio to
generate an interop assembly and add it to your project. Alternatively, if a primary interop assembly (PIA) is registered
for the COM library, Visual Studio automatically adds a reference to the pregenerated PIA. Then you can cast
OLEObject.Object or Shape.OLEFormat.Object to the correct type added by Visual Studio for the COM library object
corresponding to the ActiveX control.

VSTO enables you to add Windows Forms controls to the worksheeta much more powerful and .NET-centric way of
working with controls. For this reason, we do not consider using ActiveX controls in any more detail in this book. For
more information on VSTO's support for Windows Forms controls, see Chapter 14, "Using Windows Forms in VSTO."

Working with Shapes

The Shapes property returns a Shapes collectiona collection of Shape objects. A Shape object represents various
objects that can be inserted into an Excel spreadsheet, including a drawing, an AutoShape, WordArt, an embedded
object or ActiveX control, or a picture.

The Shapes collection has a Count property to determine how many shapes are in the Worksheet. It also has an Item
method that takes a 1-based index to get a particular Shape out of the collection. You can also enumerate over the
Shapes collection using For Each.

Several methods on the Shapes collection let you add various objects that can be represented as a Shape. These
methods include AddCallout, AddConnector, AddCurve, AddDiagram, AddLabel, AddLine, AddOLEObject, AddPicture,
AddPolyline, AddShape, AddTextbox, and AddTextEffect.

The Shape object has properties and methods to position the Shape on the worksheet. It also has properties and
methods that let you format and modify the Shape object. Some of the objects returned by properties on the Shape
object are shown in Figure 3.20 in Chapter 3, "Programming Excel."

Working with ChartObjects

In this book, we have used the phrase chart sheet when referring to a chart that is a sheet in the workbook. Figure 5.5
shows the last step of the Chart Wizard that is shown when you insert a new chart. Excel enables you to insert a chart
as a new sheetwhat we have called a chart sheetand it allows you to add a chart as an object in a sheet. The object
model calls a chart that is added as an object in a sheet a ChartObject.

Figure 5.5. The Chart Location step of the Chart Wizard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.5. The Chart Location step of the Chart Wizard.

What complicates the matter is that the object in the object model for a chart sheet is a Chart, but a ChartObject also
has a property that returns a Chart. A ChartObject has its own set of properties that control the placement of the chart
in a worksheet. But the properties and methods to manipulate the chart contents are found on the Chart object
returned by the ChartObject.Chart property.

To work with ChartObjects, you can use the ChartObjects method on the Worksheet object. The ChartObjects method
takes an optional Index parameter of type Object that you can pass the name of the ChartObject or the 1-based index of
the ChartObject in the collection. The ChartObjects method also doubles as a way to get to the ChartObjects collection,
which can be quite confusing. If you pass it a String that represents as a name or a 1-based index, it returns the
specified ChartObject. If you omit the optional parameter, it returns the ChartObjects collection.

To add a ChartObject to a worksheet, you use the ChartObjects.Add method, which takes Left, Top, Width, and Height as
Double values in points. Any time you add a ChartObject to a worksheet, Excel also includes that object in the Shapes
collection that is returned from the Shapes property on the Worksheet object.

Working with Lists

Excel 2003 introduced the ability to create a list from a range of cells. Just select a range of cells, right-click the
selection, and choose Create List. A list has column headers with drop-down options that make it easy for the user to
sort and apply filters to the data in the list. It has a totals row that can automatically sum and perform other operations
on a column of data. It has an insert row, marked with an asterisk at the bottom of the list, that allows users to add
rows to the list. Figure 5.6 shows an example of a list in Excel.

Figure 5.6. A list in Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can access the lists in a worksheet by using the ListObjects property. The ListObjects property returns the
ListObjects collection. The ListObjects collection has a Count property to determine how many lists are in the
Worksheet. It also has an Item property that takes a 1-based index or the name of the list object as a String to get a
ListObject object out of the collection. You can also enumerate over the ListObjects collection using For Each.

Table 5.16 shows some of the most commonly used properties for the ListObject object. You will read more about
ListObject in the discussion of VSTO's support for data in Chapter 17, "VSTO Data Programming."

Table 5.16. Key Properties of ListObject
Property Name Type What It Does

DataBodyRange Range Returns a Range representing the cells containing the
datathe cells between the headers and the insert row.

HeaderRowRange Range Returns a Range representing the header cells.

InsertRowRange Range Returns a Range representing the cells in the insert row.

ShowAutoFilter Boolean If set to False, the drop-down filtering and sorting lists
associated with the column headers won't be shown.

ShowTotals Boolean If set to False, the totals row won't be shown.

TotalsRowRange Range Returns a Range representing the cells in the totals row.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6. Programming Word

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ways to Customize Word
Word has a very rich object model that consists of 248 objects that combined have more than 4,200 properties and
methods. Word also supports several models for integrating your code, including add-ins and code behind documents.
Most of these models were originally designed to allow the integration of COM components written in Visual Basic 6,
Visual Basic for Applications (VBA), C, or C++. Through COM interop, however, managed objects written in C# or Visual
Basic can masquerade as COM objects and participate in most of these models. This chapter briefly considers several of
the ways that you can integrate your code with Word and refers you to other chapters that discuss these approaches in
more depth. This chapter also explores building research services and introduces the Word object model.

Automation Executable

As mentioned in Chapter 2, "Introduction to Office Solutions," the simplest way to integrate with Word is to start Word
from a console application or Windows Forms application and automate it from that external program. Chapter 2
provides a sample of an automation executable that automates Word.

COM Add-Ins

Word can load add-insin particular, COM add-ins. A COM add-in is a DLL that contains a class that implements
IDExtensibility2. The class that implements IDExtensibility2 must be registered in the registry so that it looks like a
COM object to Word. A COM add-in typically is written to add application-level functionalityfunctionality that is available
to any document opened by Word.

Word has a COM Add-Ins dialog box that enables users to turn COM add-ins on and off. To access the COM Add-Ins
dialog box, you must perform the following steps:

1. Right-click a menu or toolbar in Word, and choose Customize from the pop-up menu, or from the Tools menu,
choose Customize. The Customize dialog box displays.

2. Click the Commands tab of the Customize dialog box.

3. Choose Tools from the list of Categories.

4. Scroll down the list of commands until you see a command that says COM Add-Ins.

5. Drag the COM Add-Ins command, and drop it on a toolbar.

6. Close the Customize dialog box.

After you complete these steps, click the COM Add-Ins toolbar button you added to a toolbar. Figure 6.1 shows the COM
Add-Ins dialog box.

Figure 6.1. The COM Add-Ins dialog box in Word.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can add COM add-ins by using the Add button and remove them by using the Remove button. Typically, you will
not have your users use this dialog box to manage COM add-ins. Instead, you will install and remove a COM add-in by
manipulating registry settings with the installer you create for your COM add-in.

Word discovers the installed COM add-ins by reading from the registry. You can view the registry on your computer by
going to the Windows Start menu and choosing Run. In the Run dialog box, type regedit for the program to run and then
click the OK button. Word looks for COM add-ins in the registry keys under HKEY_CURRENT_USER\Software\Microsoft\
Office\Word\Addins. Word also looks for COM add-ins in the registry keys under
HKEY_LOCAL_MACHINE\Software\Microsoft\Office\Word\ Addins. COM add-ins registered under HKEY_LOCAL_MACHINE
are not shown in the COM Add-Ins dialog box and cannot be turned on or off by users. It is recommended you do not
register your COM add-in under HKEY_LOCAL_MACHINE because it hides the COM add-in from the user.

COM add-ins are discussed in detail in Chapter 23, "Developing COM Add-Ins for Word and Excel."

Visual Studio Tools for Office Code Behind

VSTO enables you to put C# or Visual Basic code behind Word templates and documents. VSTO was designed from the
ground up for C# and Visual Basicso this model is the most ".NET" of all the models used to customize Word. You use
this model when you want to customize the behavior of a particular document or a particular set of documents created
from a common template. You might want to create a template that is used whenever anyone in your company creates
an invoice, for example. This template can add commands and functionality that are always available when the
document created with it is opened.

Note that Word templates in VSTO do not behave the same way that templates behave in VBA. In VBA, both the code
associated with the template and the code associated with the document run concurrently. In VSTO, the code
associated with the template is associated with the document when a new document is created, and only the code
associated with the document runs.

VSTO's support for code behind a document is discussed in detail in Part III of this book.

Smart Documents and XML Expansion Packs

Smart Documents are another way to associate your code with a Word template or document. Smart Documents rely
on attaching an XML schema to a document or template and associating your code with that schema. The combination
of the schema and associated code is called an XML Expansion Pack. An XML Expansion Pack can be associated with a
Word document by choosing Templates and Add-Ins from the Tools menu and clicking the XML Expansion Packs tab of
the Templates and Add-Ins dialog box, shown in Figure 6.2.

Figure 6.2. The XML Expansion Packs tab of the Templates and Add-Ins dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When an XML Expansion Pack is attached to a document, Word loads the associated code and runs it while that
document is opened. Smart-document solutions can create a custom user interface in the Document Actions task pane
that can be brought up in Word by choosing Task Pane from the View menu.

It is possible to write smart-document solutions from scratch in C# or Visual Basic. This book does not cover this
approach. Instead, this book focuses on the VSTO approach, which was designed to make smart-document
development much easier and allow you to create a custom Document Actions task pane using Windows Forms. Chapter
15, "Working with the Actions Pane," discusses this capability in more detail.

Smart Tags

Smart Tags enable the display of a pop-up menu containing actions relevant to a recognized piece of text in a
document. You can control the text that Word recognizes and the actions that are made available for that text by
creating a Smart Tag DLL or by using VSTO code behind a document.

A Smart Tag DLL contains two types of components that Word uses: a recognizer and associated actions. A recognizer
determines what text in the document is recognized as a Smart Tag. An action corresponds to a menu command
displayed in the pop-up menu.

You could create a recognizer that tells Word to recognize stock-ticker symbols (such as the MSFT stock symbol) and
display a set of actions that can be taken for that symbol: buy, sell, get the latest price, get history, and so on. A "get
history" action, for example, could launch a Web browser to show a stock-history Web page for the stock symbol that
was recognized.

When a recognizer recognizes some text, Word displays red-dotted underlining below the recognized text, as shown in
Figure 6.3. If the user hovers over the text, a pop-up menu icon appears next to the text; the user can click this icon to
drop down a menu of actions for the recognized piece of text. Figure 6.4 shows an example menu. When an action is
selected, Word calls back into the associated action to execute your code.

Figure 6.3. Some recognized text.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6.4. Dropping down the Smart Tags menu.

Smart Tags are managed from the Smart Tags tab of the AutoCorrect dialog box, shown in Figure 6.5. To display the
Smart Tags tab, you choose AutoCorrect Options from the Tools menu. Here, the user can turn on and off individual
recognizers, as well as control other options relating to how Smart Tags display in the document.

Figure 6.5. The Smart Tags tab of the AutoCorrect dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSTO provides a simple model for creating a Smart Tag that works at the workbook or template level. Chapter 16,
"Working with Smart Tags in VSTO," describes the VSTO model for working with Smart Tags in more detail.

It is possible to write Smart Tag recognizer and action classes in a DLL that works at the application level, but it is much
more complex than the VSTO model. Chapter 16 also describes that approach.

Server-Generated Documents

VSTO enables you to write code on the server to populate a Word document with data without starting Word on the
server. You might create an ASP.NET page that reads some data out of a database, for example, and then puts it in a
Word document and returns that document to the client of the Web page. VSTO provides a class called ServerDocument
that makes it easy to do this. Chapter 18, "Server Data Scenarios," describes generating documents on the server using
the ServerDocument class.

You can also use the XML file formats of Office to generate Word documents in XML formats on the server, but this is
much more complex. Chapter 22, "Working with XML in Word," discusses VSTO support for this scenario.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Research Services
This section examines how to build research services for Word and other Office applications. Word has a task pane
called Research that enables you to enter a search term and search various sources for that term. Figure 6.6 shows the
Research task pane.

Figure 6.6. The Research task pane.

Office enables developers to write a special Web service called a research service that implements two Web methods
defined by Office: Registration and Query. Both Web methods take a String and return a String. A research service can be
registered with Office and used in Office's Research task pane. You might write a research service that searches for the
search term in a corporate database, for example.

Although the signatures of the two Web methods you must declare are simple, the actual implementation of these
methods is somewhat complex, because Word has four separate XML schemas that must be used for the request
passed to Registration, the response returned by Registration, the request passed to Query, and the response returned
by Query.

The simplest way to build research services is to use the Research Service Development Extras Toolkit for Office, which
is available for download at www.microsoft.com/downloads/details.aspx?FamilyID=8b0a4427-9cfd-493e-82a7-
16f8d88ebdc7. This toolkit provides helper classes to assist in parsing the requests and forming responses. Note that
this example uses Visual Studio 2003 because the Research Service Development Toolkit was not available for Visual
Studio 2005 at the time of this writing.

Getting Started with Research Services

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After you have downloaded and installed the Research Service Development Extras Toolkit, launch Visual Studio 2003,
and choose New Project from the File menu to display the New Project dialog box. Select Visual Basic Projects in the
Project Types list, and click the Research Service Wrapper icon in the Templates window, as shown in Figure 6.7.

Figure 6.7. Selecting the Research Service Wrapper project.

[View full size image]

When you click OK, a wizard appears, which prompts you for the information needed to create your research service, as
shown in Figure 6.8. The first step of the wizard prompts you for provider information and an ID for the provider. You
can think of a provider as being like a Web site that potentially provides multiple services. ACME Corporation, for
example, might provide a number of different research services. You can click the New Guid button to generate a
unique ID for the provider automatically.

Figure 6.8. Step 1 of the ASP.NET Research Services Wizard.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6.9 shows Step 2 of the wizard. Here, you specify the name of the service and a description of the service, and
you assign the service a category from a list of categories that are predefined by Office. You also must have a unique
ID for your service.

Figure 6.9. Step 2 of the ASP.NET Research Services Wizard.

[View full size image]

Step 3 of the wizard prompts you as to whether you require licensing for your research service. We respond No to this
step for this example. Step 4 lets you specify an OleDB data provider, a SqlDB data provider, or no data provider. We
choose no data provider. Finally, when you click the Finish button in Step 5, the research service project is created for
you.

A Simple Research Service

The wizard has created a project for our Author Information research service. Within the project is a file called
ResearchService.asmx.vb. Edit this file to produce the result shown in Listing 6.1. If the user searches for the string
"Eric Carter" or "Eric Lippert," the service will send back information listing all the authors of this book.

Listing 6.1. The ResearchService.asmx.vb File

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 6.1. The ResearchService.asmx.vb File

Imports System
Imports Microsoft.Samples.Office.ResearchService
Imports Microsoft.Samples.Office.ResearchService.Registration
Imports Microsoft.Samples.Office.ResearchService.Query

Public Class ResearchService
 Inherits ResearchWebService

 Public Overloads Overrides Function Registration(_
 ByVal request As RegistrationRequest) _
 As RegistrationResponse

 Return New RegistrationResponse

 End Function

 Public Overloads Overrides Function Query(_
 ByVal request As QueryRequest) As QueryResponse

 Dim response As New QueryResponse
 If request.QueryText = "Eric Carter" Or _
 request.QueryText = "Eric Lippert" Then

 Dim responseWriter As New DocumentResponseWriter
 responseWriter.WriteItem("Eric Carter", _
 "One of the authors of this book, " & _
 "a Lead Developer at Microsoft Corporation.")
 responseWriter.WriteItem("Eric Lippert", _
 "One of the authors of this book, " & _
 "a Developer at Microsoft Corporation.")
 response.WriteResponse(responseWriter)
 End If
 Return response

 End Function

End Class

Registering the Research Service with Word

After building the project, the next step is to register it with Word. First, launch Word. Then bring up Word's Research
task pane by choosing Task Pane from the View menu. Drop down the available task panes from the pop-up menu at
the top of the task pane, and choose Research. At the bottom of the Research task pane is some text that says
Research Options. Click that text to get the Research Options dialog box. Then click the Add Services button. The dialog
box shown in Figure 6.10 appears. In this dialog box, type the address to the Web service .asmx file; then click the Add
button.

Figure 6.10. Word's Add Services dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you click the Add button, Word displays a dialog box announcing the provider of the research service, as shown in
Figure 6.11.

Figure 6.11. Word's Provider dialog box.

Clicking Continue brings up a dialog box showing details about the research service, shown in Figure 6.12. Click Install
to install the research service.

Figure 6.12. Research Service confirmation dialog box.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Clicking Install returns you to the Research Options dialog box, which now has our Author Information research site
installed in the Research Sites category, as shown in Figure 6.13. Click OK to continue.

Figure 6.13. Research Options dialog box.

[View full size image]

Using the Research Service

Now you can type the text Eric Carter in the Research task pane, drop down the list of sites to search, and select All
Research Sites. Click the green arrow button to search. The research service is contacted, and the response displays in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Research Sites. Click the green arrow button to search. The research service is contacted, and the response displays in
the task pane, as shown in Figure 6.14. An alternate way to search for text is to type it in the document, select it, and
then click it while holding down the Alt key.

Figure 6.14. The Research task pane shows results from the new Author
Information research service.

More Research Service Resources

This has been a brief introduction to how to get started creating a research service in Visual Basic using Visual Studio.
You can do many more things with research services, including returning richer results with hyperlinks and images. For
more information about creating research services, search http://msdn.microsoft.com for the phrase "research
services."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction to the Word Object Model
Regardless of the approach you choose to integrate your code with Word, you eventually will need to talk to the Word
object model to get things done. It is impossible to describe the Word object model completely in this book, but we try
to make you familiar with the most important objects in the Word object model and show some of the most frequently
used methods, properties, and events on these objects.

The first step in learning the Word object model is getting an idea of the basic structure of the object model hierarchy.
Figure 6.15 shows the most critical objects in the Word object model and their hierarchical relationship.

Figure 6.15. The basic hierarchy of the Word object model.

The Application object is used to access application-level settings and options. It also is the root object of the object
model and provides access to the other objects in the object model. Figure 6.16 shows some of the object model
objects associated with the Application object.

Figure 6.16. Objects associated with Word's Application object.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Document object represents a Word document. Figure 6.17 shows some of the object model objects associated
with the Document object.

Figure 6.17. Objects associated with Word's Document object.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Range object represents a range of text within a document. Figure 6.18 shows some of the object model objects
associated with the Range object.

Figure 6.18. Objects associated with Word's Range object.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Shape object represents a figure, chart, picture, or other object that is embedded in a Word document. Figure 6.19
shows some of the object model objects associated with the Shape object.

Figure 6.19. Objects associated with Word's Shape object.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
The chapter introduced the various ways you can integrate your code into Word. The chapter described how to build
research services for Word and for other Office applications. You also learned the basic hierarchy of the Word object
model. Chapter 7, "Working with Word Events," discusses the events in the Word object model. Chapter 8, "Working
with Word Objects," covers the most important objects in the Word object model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7. Working with Word Events
Events in the Word Object Model

Events in Visual Studio Tools for Office

Conclusion

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Events in the Word Object Model
Understanding the events in the Word object model is critical, because this is often the primary way that your code is
run. This chapter covers all the events in the Word object model, when they are raised, and the type of code you might
associate with these events.

Some of the events in the Word object model are repeated on the Application and Document objects. This repetition
allows you to decide whether you want to handle the event for all documents or for a particular document. If you want
to know when any document is closed, for example, you would handle the Application object's DocumentBeforeClose
event. If you want to know when a particular document is closed, you would handle the Close event on a particular
Document object. When an event is repeated on the Application and Document object, it is raised first on the Document
object and then on the Application object.

Advanced Topic: Why Are There Multiple Application and Document

Event Interfaces?

When you work with the Word Object model, you will quickly notice multiple public interfaces, classes,
and delegates that contain the text "ApplicationEvents" and "DocumentEvents":

ApplicationEvents Interface

ApplicationEvents_Event Interface

ApplicationEvents_SinkHelper class

ApplicationEvents2 Interface

ApplicationsEvents2_Event Interface

ApplicationEvents2_* Delegates

ApplicationEvents2_SinkHelper class

ApplicationEvents3 Interface

ApplicationsEvents3_Event Interface

ApplicationEvents3_* Delegates

ApplicationEvents3_SinkHelper class

ApplicationEvents4 Interface

ApplicationsEvents4_Event Interface

ApplicationEvents4_* Delegates

ApplicationEvents4_SinkHelper class

DocumentEvents Interface

DocumentEvents_Event Interface

DocumentEvents_* Delegates

DocumentEvents_SinkHelper class

DocumentEvents2 Interface

DocumentEvents2_Event Interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DocumentEvents2_* Delegates

DocumentEvents2_SinkHelper class

The only items from this list that you should ever use in your code are the ones in bold:
ApplicationEvents4_Event interface, the ApplicationEvents4_* delegates, the DocumentEvents2_Event
interface, and the DocumentEvents2_* delegates. You should use the ApplicationEvents4_Event interface
and the DocumentEvents2_Event interface only when you have to cast an object declared as Application
or Document to the corresponding event interface because a method name and event name collide. An
example of this is the Document object that has both a Close method and a Close event. To distinguish
between the two, you will have to cast the Document object to the DocumentEvents2_Event interface
when you want to handle the Close event.

The reason for the other items in this list is partially explained in Chapter 1, "An Introduction to Office
Programming." This explanation, however, covers only the existence of the SinkHelper class and why
there are both an ApplicationEvents/DocumentEvents interface and an
ApplicationEvents_Event/DocumentEvents_Event interface. The reason why there are multiple numbered
event interfaces goes back to the original COM implementation of the Word object model.

The Word Application and Document COM objects are defined by the IDL definition shown in Listing 7.1.
Note that the Application object has four event interfaces and Document has two. ApplicationEvents4 is
the default event interface for Word's Application object, and DocumentEvents2 is the default event
interface for Word's Document object. ApplicationEvents, ApplicationEvents2, ApplicationEvents3, and
DocumentEvents are supported for legacy purposes. Word had to keep these older interfaces in place for
backward-compatibility reasons because older versions of Word used these interfaces.

Listing 7.1. The IDL Definition of Word's Application and Document
Objects

[
 uuid(000209FF-0000-0000-C000-000000000046),
]
coclass Application {
 [default] interface _Application;
 [source] dispinterface ApplicationEvents;
 [source] dispinterface ApplicationEvents2;
 [source] dispinterface ApplicationEvents3;
 [default, source] dispinterface ApplicationEvents4;
};
[
 uuid(00020906-0000-0000-C000-000000000046),
]
coclass Document {
 [default] interface _Document;
 [source] dispinterface DocumentEvents;
 [default, source] dispinterface DocumentEvents2;
};

Visual Studio Generation of Event Handlers

As you consider some of the code in this chapter, you might wonder how you will ever remember the syntax of
complicated lines of code such as this one:

Private Sub App_DocumentBeforeClose(_
 ByVal document As Word.Document, _
 ByRef cancel As Boolean) _
 Handles app.DocumentBeforeClose

Fortunately, Visual Studio 2005 helps by generating this code for you. When you have declared the app member variable
as having events by using the WithEvents keyword, Visual Studio displays the app variable in the left drop-down list of the
code editor. Select app from the left drop-down list; then select the event that is raised by app that you want to handle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

code editor. Select app from the left drop-down list; then select the event that is raised by app that you want to handle
from the right drop-down listin this case, DocumentBeforeClose (see Figure 7.1). When you select the event you want
to handle, Visual Studio generates the event handler method automatically.

Figure 7.1. Visual Studio generates event handler code for you if you use the left
and right drop-down lists in the code editor.

[View full size image]

If you are using VSTO, you can also use the Properties window to add event handlers to your document class. Double-
click the project item for your document class. Make sure the Properties window is visible; if it is not, choose Properties
Window from the View menu. Make sure that the document class (typically called ThisDocument) is selected in the
combo box at the top of the Properties window. Then click the lightning-bolt icon to show events associated with the
document. Type the name of the method you want to use as an event handler in the edit box to the right of the event
you want to handle.

Figure 7.2. shows the Properties window and an event handler we have added by typing the text ThisDocument_New in
the edit box next to the New event. This will cause the New event to be handled by a method called ThisDocument_New
in the document class. If the method does not already exist, Visual Studio will add the method for you.

Figure 7.2. Adding a document event handler using the Properties window in
VSTO.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Startup and Shutdown Events

Several events are raised when the application is started and shut down. The Word Application object has a Startup
event that is raised when the application starts and before any documents are loaded. This event is marked as
"restricted" in the COM object model, however, and probably should not be used. The only kind of customization that
can handle this event is an add-in. The event is raised before documents are loaded and before an automation
executable can establish an event handler. Even add-ins do not need to use this event because they already implement
OnConnection, which serves the same purpose. Our recommendation is that you not use the Application object's
Startup event.

For VSTO customizations, we recommend that you use the Startup and Shutdown events raised by VSTO on a
document project item. Startup is raised when the document is opened or created from a template. Shutdown is raised
when the document is closed. In the project item created for you by VSTO, these events are already connected for you,
as shown in Listing 7.2.

Listing 7.2. A VSTO Customization That Handles the Startup and Shutdown Events

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 End Sub

 Private Sub ThisDocument_Shutdown(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Shutdown

 End Sub

End Class

Word raises the Quit event when the application shuts down. Listing 7.3 shows an example of handling the Quit event.

Note

Quit is the name of both a method and an event on Word's Application object. Because of this collision, you
will have to use the CType operator to cast the Application object to the ApplicationEvents4_Event interface
when adding an event handler dynamically using the AddHandler statement. If you are adding an event
handler declaratively using With Events and Handles as in Listing 7.3, you do not have to worry about this
issue.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 7.3. A VSTO Customization That Handles the Quit Event

Public Class ThisDocument

 Private WithEvents app As Word.Application

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 End Sub

 Private Sub App_Quit() Handles app.Quit
 MsgBox("Quit Event Raised")
 End Sub

End Class

New and Open Document Events

Word raises a NewDocument event on the Application object and a New event on a Document object when a new
document is created by the user either as a blank document or from a template or existing document. These events are
never raised on subsequent opens of the document. Word also raises a DocumentOpen event on the Application object
and an Open event on a Document object when an existing document is opened:

Application.NewDocument is raised whenever a document is created. Word passes the Document that was
created as a parameter to this event.

Document.New is raised on a template or a new blank document. So, for example, when a document is
created from a template, you can handle the New event to set up the document for the first time. For
subsequent opens of the document, you can handle the Open event or the Startup event raised by VSTO.

Application.DocumentOpen is raised whenever an existing document is opened. Word passes the Document
that was opened as a parameter to this event.

Document.Open is raised on an existing document when it is opened.

Listing 7.4 shows a VSTO customization that handles the Application object's NewDocument event and puts into the
footer of every new document created in Word the date the document was created and the name of the user who
created the document. It also handles the Application object's DocumentOpen event to put into the header of an
existing document that is opened the date the document was opened and the name of the user who opened the
document.

Listing 7.4. A VSTO Customization That Handles the Application Object's
NewDocument and DocumentOpen Events

Public Class ThisDocument

 Private WithEvents app As Word.Application

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 End Sub

 Private Sub App_NewDocument(ByVal document As Word.Document) _
 Handles app.NewDocument

 MsgBox(String.Format("NewDocument event on {0}", _
 document.Name))

 Dim range1 As Word.Range = document.Sections(1).Footers(_
 Word.WdHeaderFooterIndex.wdHeaderFooterPrimary).Range
 range1.Text = String.Format("Created on {0} by {1}.", _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 range1.Text = String.Format("Created on {0} by {1}.", _
 System.DateTime.Now, app.UserName)

 End Sub
 Private Sub App_DocumentOpen(ByVal document As Word.Document) _
 Handles app.DocumentOpen

 MsgBox(String.Format("DocumentOpen event on {0}", _
 document.Name))

 Dim range2 As Word.Range = document.Sections(1).Headers(_
 Word.WdHeaderFooterIndex.wdHeaderFooterPrimary).Range
 range2.Text = String.Format("Last opened on {0} by {1}.",_
 System.DateTime.Now, app.UserName)

 End Sub

End Class

Listing 7.5 shows VSTO code behind a template that handles the Document object's New event to display the time in
the footer when the document is created from a template. It also handles the Document object's Open event to put into
the header the date and user who last opened the document each time the document is opened.

To understand this listing, it is important to understand how Word templates work in VSTO. You should write handlers
for the Document object's New event only in a template project. When a user creates a new document from that
template, the code associated with the template will be associated with the newly created document, and the New
event will be raised on the newly created document.

Also note that because the New event conflicts with the New keyword in Visual Basic, the Handles clause puts the New
event in square brackets so the compiler knows that New is being used as an event name rather than a keyword.

Listing 7.5. A VSTO Customization That Handles the Document Object's New and
Open Events

Public Class ThisDocument

 Private Sub ThisDocument_New() Handles Me.[New]
 MsgBox("New event")

 Dim range1 As Word.Range = Me.Sections(1).Footers(_
 Word.WdHeaderFooterIndex.wdHeaderFooterPrimary).Range
 range1.Text = String.Format("Created on {0} by {1}.", _
 System.DateTime.Now, Me.Application.UserName)
 End Sub
 Private Sub ThisDocument_Open() Handles Me.Open
 MsgBox("Open event")

 Dim range2 As Word.Range = Me.Sections(1).Headers(_
 Word.WdHeaderFooterIndex.wdHeaderFooterPrimary).Range
 range2.Text = String.Format("Opened on {0} by {1}.", _
 System.DateTime.Now, Me.Application.UserName)
 End Sub

End Class

Document Close Events

Word raises events when a document is closed. The DocumentBeforeClose event is raised on the Application object
before the document closes, which allows the handler to cancel the closing of the document. The Close event raised on
the Document object does not allow canceling the closing of the document.

Unfortunately, the Close event is raised even in cases where the document is not really going to close. The event is
raised before a dialog box is shown to the user prompting the user to save the document. Users are asked whether they
want to save with a Yes, No, and Cancel button. If the user selects Cancel, the document remains open even though a
Close event was raised. It is also possible for another add-in to handle the DocumentBeforeClose event and cancel the
close of the document. For this reason, it is better to use VSTO's Shutdown event on the document, which is not raised
until after the user and any handlers of the DocumentBeforeClose event have been given a chance to cancel the closing
of the document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of the document.

The following events are raised when documents are about to be closed:

Application.DocumentBeforeClose is raised before a document is closed. Word passes the Document that is
about to close as a parameter to this event. It also passes by reference a Boolean cancel parameter. The cancel
parameter can be set to true by your event handler to prevent Word from closing the document.

Document.Close is raised when a document is about to be closed. As discussed earlier, however, the user can
still cancel the closing of the document, so you cannot trust this event to tell you whether the document is
going to close. Use VSTO's Shutdown event instead.

Note

Close is the name of both a method and an event on Word's Document object. Because of this collision,
you will have to use the CType operator to cast the Document object to the DocumentEvents2_Event
interface when adding an event handler dynamically using the AddHandler statement. If you are adding an
event handler declaratively using WithEvents and Handles, you do not have to worry about this issue.

Listing 7.6 shows a VSTO customization that handles the Application object's DocumentBeforeClose event and the
Document object's Close event. In the handler of the DocumentBeforeClose event, the code checks to see whether the
document contains any spelling errors. If it does, a dialog box displays the number of spelling errors, and the user is
told to correct them before closing the document. The cancel parameter is set to TRue to prevent the document from
closing. Another thing to try when running this code is to click the Cancel button when you are prompted to save and
then observe that the Document object's Close event fires in this case.

Listing 7.6. A VSTO Customization That Handles the Application Object's
DocumentBeforeClose Event and the Document Object's Close Event

Public Class ThisDocument

 Private WithEvents app As Word.Application
 Private WithEvents doc As Word.Document

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application
 doc = app.Documents.Add()
 doc.Range.Text = "Lawts uf spellin errers!"

 End Sub

 Private Sub Doc_Close() Handles doc.Close
 MsgBox("Thanks for fixing the spelling errors.")
 End Sub

 Private Sub App_DocumentBeforeClose(_
 ByVal document As Word.Document, _
 ByRef cancel As Boolean) Handles app.DocumentBeforeClose
 Dim spellingErrors As Integer = document.SpellingErrors.Count
 If spellingErrors > 0 Then
 MsgBox(String.Format(_
 "There are still {0} spelling errors.", _
 spellingErrors))
 cancel = True
 End If

 End Sub

End Class

Document Save Events

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Word raises the DocumentBeforeSave event on the Application object before any document is saved. Word passes the
Document that is about to be saved as a parameter to this event. It also passes by reference a Boolean saveAsUI
parameter and a Boolean cancel parameter. If you set saveAsUI to true, the Save As dialog box displays for the document. If
you set the cancel parameter to true, the save will be canceled. Often, this event is handled to implement a custom save
routine You might cancel the DocumentBeforeSave event but call the SaveAs method on Document to enforce a
particular file format, for example.

Note that the DocumentBeforeSave event is also raised when Word does an AutoSave on a document. You should be
careful that you test your code to make sure that it works properly when AutoSave is triggered.

Listing 7.7 shows a VSTO customization that handles the DocumentBeforeSave event. If the document contains any
spelling errors, the event handler cancels the save by setting the cancel parameter to true. It also sets the saveAsUI
parameter to true to force a Save As dialog box to be shown for every save. When the DocumentBeforeSave event is
triggered for an AutoSave, the dialog box shown in Figure 7.3 displays.

Figure 7.3. The message displayed by Word when an automatic save is canceled.

Listing 7.7. A VSTO Customization That Handles the Application Object's
DocumentBeforeSave Event

Public Class ThisDocument

 Private WithEvents app As Word.Application

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 End Sub

 Private Sub App_DocumentBeforeSave(_
 ByVal document As Word.Document, _
 ByRef saveAsUI As Boolean, ByRef cancel As Boolean) _
 Handles app.DocumentBeforeSave

 saveAsUI = True

 If document.SpellingErrors.Count > 0 Then
 MsgBox(_
 "You shouldn't save a document with spelling errors.")
 cancel = True
 End If

 End Sub

End Class

Document Activation Events

Word raises several events on the Application object when the active document changes. One such event is the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Word raises several events on the Application object when the active document changes. One such event is the
DocumentChange event. The name DocumentChange makes you think that maybe this event will tell you when the
contents of the document change; unfortunately, Word does not have a general event that tells you this.

The active document changes when you create a new document; the new document becomes the active document. The
active document changes when you open an existing document; the document you opened becomes the active
document. The active document changes when you switch between open documents by clicking a document that is not
active or by selecting a document using the Window menu or the Windows taskbar.

It is also possible to have multiple windows viewing the same documentbecause the user chose New Window from the
Window menu, for example. Word raises an event called WindowActivate that tells you when a particular window
becomes the active window and an event called WindowDeactivate when a particular window is deactivated. Unlike in
Excel, switching to another application causes Word's WindowDeactivate event to be raised, and switching back to Word
causes the WindowActivate event to be raised.

The following events are raised when windows are activated and deactivated:

Application.DocumentChange is raised when the active document changes (not when the contents of the
document change). Word passes no parameters to this event. To determine the new active document, you must
use the Application object's ActiveDocument property.

Application.WindowActivate is raised when a Word window is activated. This can occur when the user
switches between windows within Word or when the user switches to another application and then switches
back to Word. Word passes the Document associated with the window that was activated as a parameter to this
event. Word also passes the Window that was activated as a parameter to this event.

Application.WindowDeactivate is raised when a Word window is deactivated. This can occur when the user
switches between windows within Word or when the user switches to another application. Word passes the
Document associated with the window that was deactivated as a parameter to this event. Word also passes the
Window that was deactivated as a parameter to this event.

Listing 7.8 shows a VSTO customization that handles the DocumentChange, WindowActivate, and WindowDeactivate
events and displays a message box when these events are raised.

Listing 7.8. A VSTO Customization That Handles the Application Object's
WindowActivate, WindowDeactivate, and DocumentChange Events

Public Class ThisDocument

 Private WithEvents app As Word.Application

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 End Sub

 Private Sub App_WindowActivate(_
 ByVal document As Word.Document, _
 ByVal window As Word.Window) Handles app.WindowActivate

 MsgBox(String.Format("Window {0} was activated.", _
 window.Caption))

 End Sub

 Private Sub App_WindowDeactivate(_
 ByVal document As Word.Document, _
 ByVal window As Word.Window) Handles app.WindowDeactivate

 MsgBox(String.Format("Window {0} was deactivated.", _
 window.Caption))

 End Sub

 Private Sub App_DocumentChange() Handles app.DocumentChange
 MsgBox(String.Format("The active document is now {0}.",_
 app.ActiveDocument.Name))
 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document Print Events

Word raises a DocumentBeforePrint event on the Application object before a document is printed. Word passes the
Document that is about to be printed as a parameter to this event. It also passes by reference a Boolean cancel
parameter. If you set the cancel parameter to true, the default printing of the document will be canceled. Often, this
event is handled to implement a custom print routine. You might cancel Word's default print behavior and use the
PrintOut method on Document to enforce a certain print format, for example.

Listing 7.9 shows a VSTO customization that handles the DocumentBeforePrint event to enforce some custom print
settings. It forces two copies to be printed and collation to be turned on when the user prints the document.

Listing 7.9. A VSTO Customization That Handles the Application Object's
DocumentBeforePrint Event

Public Class ThisDocument

 Private WithEvents app As Word.Application

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 End Sub

 Private Sub app_DocumentBeforePrint(_
 ByVal document As Word.Document, _
 ByRef cancel As Boolean) Handles app.DocumentBeforePrint

 ' Print 2 copies and collate.
 document.PrintOut(Copies:=2, Collate:=True)

 ' Cancel because we printed already
 ' and don't want Word to print again.
 cancel = True

 End Sub

End Class

Mouse Events

Word raises events when the user right-clicks or double-clicks the document area of a window. If the user right-clicks or
double-clicks in area of the window such as the ruler or the scroll bar, no events are raised.

The following events are raised when double-clicks or right-clicks occur:

Application.WindowBeforeDoubleClick is raised when the document area of a window is double-clicked.
Word passes the selection that was double-clicked. This can be a range of text or other objects in the document
such as a shape. Word also passes by reference a Boolean cancel parameter. The cancel parameter can be set to
TRue by your event handler to prevent Word from performing the default action associated with a double-click.

Application.WindowBeforeRightClick is raised when the document area of a window is right-clicked. Word
passes the selection that was right-clicked. This can be a range of text or other objects in the document such as
a shape. Word also passes by reference a Boolean cancel parameter. The cancel parameter can be set to true by
your event handler to prevent Word from performing the default action associated with a right-click.

Listing 7.10 shows a VSTO customization that handles the WindowBeforeDoubleClick and WindowBeforeRightClick
events. When the document is double-clicked, this application sets the selected range of text to be all caps. The range
of text that is selected depends on where the user double-clicked. If the user double-clicks a word, the selection
changes to be the word. If the user triple-clicks, the selection changes to be a paragraph. If the user double-clicks the
page margin, the selection changes to be the line next to where the user double-clicked.

When a range of text is right-clicked, this customization sets the range of text to be title case. Finally, if you double-
click a shape in the document, the color is set to dark red. We also set cancel to true to prevent the shape Properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

click a shape in the document, the color is set to dark red. We also set cancel to true to prevent the shape Properties
dialog box from being shown when a shape is double-clicked and to prevent the right-click menu from appearing when
a range of text is right-clicked.

Listing 7.10. A VSTO Customization That Handles the Application Object's
WindowBeforeDoubleClick and WindowBeforeRightClick Events

Public Class ThisDocument

 Private WithEvents app As Word.Application

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 End Sub
 Private Sub App_WindowBeforeRightClick(_
 ByVal selection As Word.Selection, ByRef cancel As Boolean) _
 Handles app.WindowBeforeRightClick

 If selection.Type = Word.WdSelectionType.wdSelectionNormal _
 Then
 selection.Range.Case = Word.WdCharacterCase.wdTitleWord
 cancel = True
 End If

 End Sub

 Private Sub App_WindowBeforeDoubleClick(_
 ByVal selection As Word.Selection, _
 ByRef cancel As Boolean) _
 Handles app.WindowBeforeDoubleClick

 If selection.Type = Word.WdSelectionType.wdSelectionNormal _
 Then
 selection.Range.Case = Word.WdCharacterCase.wdUpperCase
 ElseIf selection.Type = _
 Word.WdSelectionType.wdSelectionShape Then
 selection.ShapeRange.Fill.ForeColor.RGB = 3000
 cancel = True
 End If

 End Sub

End Class

Selection Events

Word raises several events when the selection changes in the active document:

Application.WindowSelectionChange is raised when the selection in a document changes. This event is also
raised when the location of the insertion point changes within the document because of clicking with the mouse
or moving via navigation keys (such as Page Up and Page Down). This event is not raised when the insertion
point is moved as a result of typing new text in the document. Word passes a Selection object representing the
new selection as a parameter to this event. If only the insertion point has moved, and no range of text is
selected, the Selection object will be passed as a one-character-long Range object containing the character
after the current location of the insertion point, and the Type property of the Selection object will return
WdSelectionType.wdSelectionIP.

Application.XMLSelectionChange is raised when the selected XML element changes in a document with XML
mappings. Chapter 22, "Working with XML in Word," discusses using XML mappings in Word. Word passes the
new Selection object as a parameter to this event. It also passes the old XMLNode object that was selected
previously and the XMLNode object that is now selected. It also passes a reason for the selection change of type
WdXMLSelectionChange, which can be wdXMLSelectionChangeReasonDelete, wdXMLSelectionChangeReasonInsert, or
wdXMLSelectionChangeReasonMove.

Listing 7.11 shows a VSTO customization that uses the Range.Start and Range.End properties to display the start and
end locations of the selection. The code first checks whether the selection type is wdSelectionIP or wdSelectionNormal. It also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

end locations of the selection. The code first checks whether the selection type is wdSelectionIP or wdSelectionNormal. It also
prints the selection type using a helpful feature of Visual Studio; when you use the ToString method associated with an
enumerated type, it displays the string name of the enumeration instead of just displaying a number.

Listing 7.11. A VSTO Customization That Handles the Application Object's
WindowSelectionChange Event

Public Class ThisDocument

 Private WithEvents app As Word.Application

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 End Sub

 Private Sub App_WindowSelectionChange(_
 ByVal selection As Word.Selection) Handles app.WindowSelectionChange

 Dim selType As Word.WdSelectionType = selection.Type
 MsgBox(String.Format("Selection type is {0}.", _
 selType.ToString()))
 If selType = Word.WdSelectionType.wdSelectionIP Or _
 selType = Word.WdSelectionType.wdSelectionNormal Then
 MsgBox(String.Format("Start is {0} and End is {1}.", _
 selection.Range.Start, selection.Range.End))
 End If

 End Sub

End Class

Window Sizing Events

Word raises a WindowSize event on the Application object when a window associated with a document is resized. Once
again, the behavior of this event is different from the window-sizing event in Excel. The WindowSize event in Word is
raised even when the document window is maximized to fill the Word application window and the Word application
window is resized. The event is not raised for the Word application window when it is resized and no documents are
open.

Word passes the Document object associated with the window that was resized as a parameter to this event. Word also
passes the Window object for the window that was resized.

XML Events

Word raises several events when XML elements have been mapped into the document using the XML Structure feature
of Word. You have already learned about the Application object's XMLSelectionChange that is raised when the selection
changes from one XML element to another. Chapter 22, "Working with XML in Word," considers Word's XML features in
more detail.

The following events are raised as part of the XML Structure feature of Word:

Application.XMLValidationError is raised when the XML in the document is not valid when compared with the
schema associated with the document. Word passes the XMLNode object corresponding to the invalid element
as a parameter to this event.

Document.XMLAfterInsert is raised after the user adds a new XML element to the document. If multiple XML
elements are added at the same time, the event will be raised for each element that was added. Word passes
the XMLNode object for the newly added element as a parameter to this event. It also passes a Boolean inUndoRedo
parameter that indicates whether the XML element was added because undo or redo was invoked.

Document.XMLBeforeDelete is raised when the user deletes an XML element from the document. If multiple
XML elements are removed at the same time, the event will be raised for each element that was removed.
Word passes a Range object representing the range of text that was deleted. If an element was deleted without
any text being deleted, the Range will be passed as Nothing. Word also passes the XMLNode object that was
deleted and a Boolean inUndoRedo parameter that indicates whether the XML element was deleted because undo or

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

deleted and a Boolean inUndoRedo parameter that indicates whether the XML element was deleted because undo or
redo was invoked.

Sync Events

Word raises the Document object's Sync event when a local document is synchronized with a copy on the server using
Word's document workspace feature. Word passes a parameter of type MsoSyncEventType that gives additional information
on the status of the document synchronization.

E-Postage Events

Word supports a feature called electronic postage, which enables you to create an envelope or label with printed
postage that is printed on an envelope or package along with the address. Figure 7.4 shows the Envelopes and Labels
dialog box, which has an Add Electronic Postage check box and an E-Postage Properties button that are used to
configure electronic postage. Word provides three events to allow third parties to create an e-postage add-in:
EPostageInsert, EPostageInsertEx, and EPostagePropertyDialog. An e-postage add-in is distinguished from other Word
add-ins by a special registry key. There can be only one active e-postage add-in installed in Word. This book does not
consider these events further because it is unlikely that you will ever need to create your own electronic postage add-
in. You can read more about e-postage add-ins by downloading the e-postage SDK at http://support.microsoft.com/?
kbid=304095.

Figure 7.4. The Envelopes and Labels dialog box with electronic postage options.

[View full size image]

Mail Merge Events

Word raises eight events associated with the mail merge feature. To understand these events, you must first
understand how mail merge works and when and why each of these events is raised.

The user starts a mail merge by choosing Tools > Letters and Mailings > Mail Merge. This causes the Application
object's MailMergeWizardStateChange event to be raised, notifying us that we are moving from Step 0 to Step 1 of the
Mail Merge Wizard. Then the Mail Merge task pane shown in Figure 7.5 displays. The Mail Merge task pane is a wizard
that can move back and forth through six steps. Whenever we move from step to step, the
MailMergeWizardStateChange event is raised. When we close the document, the MailMergeWizardStateChange event is
raised, moving from Step 6 back to Step 0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

raised, moving from Step 6 back to Step 0.

Figure 7.5. Step 1 of the Mail Merge Wizard.

Step 2 is not shown here; it prompts us as to whether we want to start from the current document or from a template
or existing document on disk. In Step 2, we will choose to use the current document. When we get to Step 3 of the Mail
Merge Wizard, we are prompted to select a data source for the mail merge. Figure 7.6 shows Step 3.

Figure 7.6. Step 3 of the Mail Merge Wizard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We choose Use an Existing List and click the Browse link to locate an Access database we have previously created called
Authors.mdb. Figure 7.7 shows the dialog box for picking a data source.

Figure 7.7. Selecting a data source.

[View full size image]

After we select the data source and click Open, the Application object's MailMergeDataSourceLoad event is raised. This
event lets us know that a data source has been chosen, and now we can examine the data source through the object
model. After the MergeDataSourceLoad event has been raised, the Mail Merge Recipients dialog box appears, as shown
in Figure 7.8. This dialog box shows each record in the data source and lets you further control which records you want
to use for the mail merge.

Figure 7.8. The Mail Merge Recipients dialog box.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Mail Merge Recipients dialog box has a button called Validate. When clicked, this button raises the Application
object's DataSourceValidate event. It raises this event only for the special e-postage add-in described earlier in this
chapter, however.

Step 4 of the Mail Merge Wizard lets you insert address blocks, greeting blocks, and other fields into the body of your
document. Step 5 lets you preview the final look of your document when Word loads the data from your data source
into the blocks you have defined.

Step 6 displays two actions you can take to complete the mail merge. The first is to print the generated letters. The
second is to create a new document and insert each letter into the new document. You can also specify a third action by
writing a line of code such as the following before Step 6 of the wizard is shown:

document.MailMerge.ShowSendToCustom = "My Custom Action..."

The MailMerge object's ShowSendToCustom property takes a String value and allows you to add a third custom action
defined by your code to do at the end of a mail merge. When the user clicks this custom action, the Application object's
MailMergeWizardSendToCustom event is raised. Figure 7.9 shows Step 6 of the Mail Merge Wizard with a custom action
called My Custom Action.

Figure 7.9. Step 6 of the Mail Merge Wizard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When the user chooses Print or Edit Individual Letters, the Application object's MailMergeBeforeMerge event is raised.
Word passes the start record and the end record that will be merged as Integer parameters. The default is to merge all
the records. When all the records are going to be merged, Word passes 1 for the start record and 16 for the end record.
Word also passes by reference a Booleancancel parameter. If you set the cancel parameter to true, the mail merge will be
canceled.

After the MailMergeBeforeMerge event is raised, Word shows a dialog box letting the user change the records to merge,
as shown in Figure 7.10. Unfortunately, if the user changes the records to be merged, Word does not raise the
MailMergeBeforeMerge event again. The next time the user does a mail merge, the user's last selection in the dialog
box will be reflected in the parameters passed to MailMergeBeforeMerge.

Figure 7.10. Selecting the records to merge.

When the user clicks the OK button in the dialog box shown in Figure 7.10, the mail merge begins in earnest. Before
Word merges a record from the data source to create a letter, it first raises the Application object's
MailMergeBeforeRecordMerge event; then it creates the letter from the record and raises the Application object's
MailMergeAfterRecordMerge event when the letter for the record has been generated. This sequence of
MailMergeBeforeRecordMerge followed by MailMergeAfterRecordMerge repeats for each record that is going to be
merged. When all the records have been merged, Word raises the Application object's MailMergeAfterMerge event and
passes the newly created Document object as a parameter if the user chose Edit Individual Letters in Figure 7.9. If the
user chose Print, Nothing will be passed for the newly created document.

Listing 7.12 shows a VSTO customization that handles all the mail merge events.

Listing 7.12. A VSTO Customization That Handles Mail Merge Events

Public Class ThisDocument

 Private WithEvents app As Word.Application

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 ' Set ShowSendToCustom so that a custom command
 ' can raise the MailMergeWizardSendToCustom event

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' can raise the MailMergeWizardSendToCustom event
 Me.MailMerge.ShowSendToCustom = "My Custom Command"

 End Sub

 Private Sub App_MailMergeAfterMerge(_
 ByVal document As Word.Document, _
 ByVal documentResult As Word.Document) _
 Handles app.MailMergeAfterMerge

 MsgBox(String.Format("MailMergeAfterMerge: Source = {0}, _
 Result = {1}", document.Name, documentResult.Name))

 End Sub

 Private Sub App_MailMergeAfterRecordMerge(_
 ByVal document As Word.Document) _
 Handles app.MailMergeAfterRecordMerge

 MsgBox(String.Format("MailMergeAfterRecordMerge for {0}",_
 document.Name))

 End Sub

 Private Sub App_MailMergeBeforeMerge(_
 ByVal document As Word.Document, _
 ByVal startRecord As Integer, _
 ByVal endRecord As Integer, ByRef cancel As Boolean) _
 Handles app.MailMergeBeforeMerge

 MsgBox(String.Format("MailMergeBeforeMerge for {0}", _
 document.Name))

 ' Word passes -16 as the EndRecord if the user
 ' chose to merge all records.
 If endRecord = -16 Then
 endRecord = document.MailMerge.DataSource.RecordCount
 End If
 MsgBox(String.Format("Merging record {0} to record {1}.",_
 startRecord, endRecord))

 End Sub

 Private Sub App_MailMergeBeforeRecordMerge(_
 ByVal document As Word.Document, ByRef cancel As Boolean) _
 Handles app.MailMergeBeforeRecordMerge

 MsgBox(String.Format(_
 "MailMergeBeforeRecordMerge for {0}.", _
 document.Name))

 End Sub

 Private Sub App_MailMergeDataSourceLoad(_
 ByVal document As Word.Document) Handles app.MailMergeDataSourceLoad

 MsgBox(String.Format("MailMergeDataSourceLoad for {0}.",_
 document.Name))
 MsgBox(String.Format("The data source is {0}.", _
 document.MailMerge.DataSource.Name))

 End Sub

 ' This event won't fire except for an e-postage add-in
 Private Sub App_MailMergeDataSourceValidate(_
 ByVal document As Word.Document, ByRef handled As Boolean) _
 Handles app.MailMergeDataSourceValidate

 MsgBox(String.Format(_
 "MailMergeDataSourceValidate for {0}.", _
 document.Name))

 End Sub

 Private Sub App_MailMergeWizardSendToCustom(_
 ByVal document As Word.Document) _
 Handles app.MailMergeWizardSendToCustom

 MsgBox(String.Format(_

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox(String.Format(_
 "MailMergeWizardSendToCustom for {0}.", _
 document.Name))

 End Sub

 Private Sub App_MailMergeWizardStateChange(_
 ByVal document As Word.Document, _
 ByRef fromState As Integer, _
 ByRef toState As Integer, ByRef handled As Boolean) _
 Handles app.MailMergeWizardStateChange
 MsgBox(String.Format(_
 "MailMergeWizardStateChange for {0}.", _
 document.Name))

 End Sub

End Class

CommandBar Events

A common way to run your code is to add a custom toolbar button or menu item to Word and handle the click event
raised by that button or menu item. Word uses the same object model as Excel to add toolbar buttons and menu items.
Chapter 4, "Working with Excel Events," discusses this model in more detail.

One difference between Excel and Word is that Word can save an added toolbar or menu item in a template or a
document. The default location that a new toolbar or menu item is saved to is the Normal template (normal.dot). You
can specify that the new toolbar or menu item be associated with another template or with a document by using the
Application object's CustomizationContext property. The CustomizationContext property takes an Object that is either a
Template object or a Document object. Subsequent calls to add toolbars or buttons (a CommandBarButton, for
example) will be saved in the template or document you set using the CustomizationContext property.

Listing 7.13 shows a listing similar to the Excel example in Listing 4.9 in Chapter 4, with two significant differences.
First, we use the CustomizationContext property to make it so the toolbar we add will be associated with a particular
document. Second, we pass true as the last parameter to the various Add methods so that the CommandBar,
CommandBarButton, and CommandBarComboBox are added permanently rather than temporarily.

Listing 7.13. A VSTO Customization That Adds a Custom CommandBar

Public Class ThisDocument

 Private WithEvents app As Word.Application
 Private WithEvents btn As Office.CommandBarButton
 Private WithEvents box As Office.CommandBarComboBox

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 ' Store the new command bar in this document.
 app.CustomizationContext = app.ActiveDocument

 Dim bars As Office.CommandBars = Me.CommandBars
 Dim bar As Office.CommandBar = bars.Add("My Custom Bar",_
 Temporary:=True)
 bar.Visible = True

 btn = bar.Controls.Add(_
 Office.MsoControlType.msoControlButton, _
 Temporary:=True)
 btn.Caption = "Display Message"
 btn.Tag = "WordDocument1.btn"
 btn.Style = Office.MsoButtonStyle.msoButtonCaption

 box = bar.Controls.Add(_
 Office.MsoControlType.msoControlComboBox, _
 Temporary:=True)
 box.Tag = "WordDocument1.box"
 box.AddItem("Choice 1", 1)
 box.AddItem("Choice 2", 2)
 box.AddItem("Choice 3", 3)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 box.AddItem("Choice 3", 3)

 End Sub

 Private Sub Btn_Click(ByVal ctrl As Office.CommandBarButton, _
 ByRef cancelDefault As Boolean) Handles btn.Click

 MsgBox("You clicked the button.")

 End Sub

 Private Sub Box_Change(_
 ByVal ctrl As Office.CommandBarComboBox) _
 Handles box.Change

 MsgBox(String.Format("You selected {0}.", ctrl.Text))

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Events in Visual Studio Tools for Office
Several events are found on VSTO objects that are not found when using the Word primary interop assembly (PIA)
alone. Table 7.1 lists these events. Almost all events are from the Word PIA that are raised again on different objects.
In the Word PIA, there is no BeforeSave event on the Document, for example, but there is a DocumentBeforeSave
event on the Application object that passes as a parameter the Document that is about to be saved. VSTO adds a
BeforeSave event to the Document object for Word. The Document object's BeforeSave event is raised whenever the
Application object's DocumentBeforeSave event is raised with the given Document object as a parameter.

Table 7.1. Events That Are Added in VSTOEvents
Events Raised Again From

Document Object
ActivateEvent Application.WindowActivate

BeforeClose Application.DocumentBeforeClose

BeforeDoubleClick Application.WindowBeforeDoubleClick

BeforePrint Application.DocumentBeforePrint

BeforeRightClick Application.WindowBeforeRightClick

BeforeSave Application.DocumentBeforeSave

CloseEvent Renamed Document.Close event to prevent
collisions

Deactivate Application.WindowDeactivate

MailMergeAfterMerge Application.MailMergeAfterMerge

MailMergeAfterRecordMerge Application.MailMergeAfterRecordMerge

MailMergeBeforeMerge Application.MailMergeBeforeMerge

MailMergeBeforeRecordMerge Application.MailMergeBeforeRecordMerge

MailMergeDataSourceLoad Application.MailMergeDataSourceLoad

MailMergeWizardSendToCustom Application.MailMergeWizardSendToCustom

MailMergeWizardStateChange Application.MailMergeWizardStateChange

SelectionChange Application.WindowSelectionChange

Startup New event raised by VSTO

Shutdown New event raised by VSTO

SyncEvent Renamed Document.Sync event to prevent
collisions

WindowSize Application.WindowSize

Bookmark Object
BeforeDoubleClick Application.WindowBeforeDoubleClick

BeforeRightClick Application.WindowBeforeRightClick

Deselected Application.WindowSelectionChange

Selected Application.WindowSelectionChange

SelectionChange Application.WindowSelectionChange

XMLNode Object
AfterInsert Document.XMLAfterInsert

BeforeDelete Document.XMLBeforeDelete

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ContextEnter Application.XMLSelectionChange

ContextLeave Application.XMLSelectionChange

Deselect Application.WindowSelectionChange

Select Application.WindowSelectionChange

ValidationError Application.XMLValidationError

XMLNodes Object
AfterInsert Document.XMLAfterInsert

BeforeDelete Document.XMLBeforeDelete

ContextEnter Application.XMLSelectionChange

ContextLeave Application.XMLSelectionChange

Deselect Application.WindowSelectionChange

Select Application.WindowSelectionChange

ValidationError Application.XMLValidationError

Another case where VSTO changes events is in the naming of the Close event and the Sync event on the Document
object. Both of these event names conflict with method names on Document. To avoid this conflict, VSTO renames
these events CloseEvent and SyncEvent.

VSTO adds events to some objects that have no events at all in the Word PIA. These objects include Bookmark,
XMLNode, and XMLNodes. Table 7.1 lists the events added to these objects. You can determine what a particular event
does by reading the documentation for the event from which it is raised again.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter covered the various events raised by objects in the Word object model. The chapter also examined how
VSTO adds some new events to Word objects. Chapter 8, "Working with Word Objects," discusses in more detail the
most important objects in the Word object model and how to use them in your code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8. Working with Word Objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Application Object
This chapter examines some of the major objects in the Word object model, starting with the Application object. Many
of the objects in the Word object model are very large, and it is beyond the scope of this book to describe these objects
completely. Instead, this discussion focuses on the most commonly used methods and properties associated with these
objects.

This chapter describes these objects as defined by the primary interop assemblies (PIAs) for Word. You should be aware
that VSTO extends some of these objects (Document, Bookmark, XMLNodes, and XMLNode) to add some functionality,
such as data binding support. Part III of this book, starting with Chapter 13, "The VSTO Programming Model," covers
those extensions.

The Application object is the largest object in the Word object model. The Application object is also the root object in
the Word object model hierarchy. You can access all the other objects in the object model by starting at the Application
object and accessing its properties and the properties of the objects it returns. The Application object also has a number
of application-level settings that prove useful when automating Word.

Controlling Word's Screen Updating Behavior

When your code is performing a set of changes to a document, you might want to set the Application object's
ScreenUpdating property to False to prevent Word from updating the screen while your code runs. Turning off screen
updating can also improve the performance of a long operation. Setting the property back to true refreshes the screen
and allows Word to continue updating the screen.

When changing an application-level property such as ScreenUpdating, always save the value of the property before you
change it, and set it back to that value when you have finished. Doing so is important because your code will almost
never be running by itself inside the Word process; it will usually run alongside other code loaded into the Word
process. Another add-in might be running a long operation on the document, for example, and that add-in might have
set the ScreenUpdating property to False to accelerate that operation. That add-in might change the document in some
way that triggers an event handled by your code. If your event handler sets the ScreenUpdating property to False and
then sets it back to true when you have finished, you have defeated the add-in's attempt to accelerate its own long
operation. If instead you save the value of ScreenUpdating before you change it, set ScreenUpdating to False, and then
set ScreenUpdating back to its original value, your code will coexist better with other code running inside Word.

The best way to do this is to use Visual Basic's support for exception handling to ensure that even if an exception occurs
in your code, the application-level property you are changing will be set back to its original value. You should put the
code to set the application-level property back to its original value in a Finally block because this code will run both when
no exception occurs and when an exception occurs. Listing 8.1 shows an example of saving the state of the
ScreenUpdating property, setting the property to False, and then restoring the original value of the property in a Finally
block.

Listing 8.1. A VSTO Customization That Uses the ScreenUpdating Property

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup
 Dim app As Word.Application = Me.Application
 Dim oldScreenUpdateSetting As Boolean = app.ScreenUpdating
 Dim range As Word.Range = Me.Range

 Try
 app.ScreenUpdating = False
 Dim r As New Random()
 Dim i As Integer

 For i = 1 To 1000
 range.Text = range.Text + r.NextDouble().ToString()
 If i Mod 333 = 0 Then
 app.ScreenRefresh()
 End If
 Next
 Finally
 app.ScreenUpdating = oldScreenUpdateSetting
 End Try

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

In addition to the ScreenUpdating property, Word's Application object has a ScreenRefresh method. You can call this
method to force a refresh of the screentypically, during an operation when you have set ScreenUpdating to False. You
might do the first few steps of an operation, for example, refresh the screen to show the user the new state of the
document, perform additional steps, and refresh the screen again.

Controlling the Dialog Boxes and Alerts That Word Displays

Occasionally, the code you write will cause Word to display dialog boxes prompting the user to make a decision or
alerting the user that something is about to occur. If you find this happening in a section of your code, you might want
to prevent these dialog boxes from being displayed so that your code can run without requiring intervention from the
user.

You can set the DisplayAlerts property to a member of the WdAlertLevel enumeration. If set to wdAlertsNone, this prevents
Word from displaying dialog boxes and messages when your code is running and causes Word to choose the default
response to any dialog boxes or messages that might display. You can also set the property to wdAlertsMessageBox to let
Word display only message boxes and not alerts. Setting the property to wdAlertsAll restores Word's default behavior.

Be sure to get the original value of this property, and set the property back to its original value after your code runs.
Use try and Finally blocks to ensure that you set the property back to its original value even when an exception occurs.

Changing the Mouse Pointer

During a long operation, you might want to change the appearance of Word's mouse pointer to an hourglass to let users
know that they are waiting for some operation to complete. Word's Application object has a System property that
returns a System object. The System object has a Cursor property of type WdCursorType that enables you to change the
appearance of Word's mouse pointer. You can set it to the following values: wdCursorIBeam, wdCursorNormal,
wdCursorNorthwestArrow, or wdCursorWait. Listing 8.2 shows the use of the Cursor property.

Listing 8.2. A VSTO Customization That Sets the Cursor Property

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles Me.Startup

 Dim app As Word.Application = Me.Application
 Dim oldCursor As Word.WdCursorType = app.System.Cursor
 Dim range As Word.Range = Me.Range

 Try
 app.System.Cursor = Word.WdCursorType.wdCursorWait

 Dim r As Random = New Random()
 Dim i As Integer
 For i = 1 To 1000
 range.Text = range.Text + r.NextDouble().ToString()
 Next
 Finally
 app.System.Cursor = oldCursor
 End Try

 End Sub

End Class

Displaying a Message in Word's Status Bar or Window Caption

Word lets you set a custom message in the Word status bar, which is at the bottom-left corner of Word's window.
StatusBar is a property that can be set to a String value representing the message you want to display in Word's status
bar. Unlike most of the other properties in this section, you cannot save the original value of the StatusBar property
and set it back after you have changed it. StatusBar is a write-only property and cannot be read.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and set it back after you have changed it. StatusBar is a write-only property and cannot be read.

You can control the text shown in Word's window caption using the Caption property. Caption is a property that can be
set to a String value representing the text you want to display in Word's window caption.

Listing 8.3 shows an example of setting the StatusBar property to inform the user of the progress of a long operation.
The operation has 1,000 steps, and after every 100 steps, the code appends an additional period (.) to the status-bar
message to indicate to the user that the operation is still in progress.

Listing 8.3. A VSTO Customization That Sets the StatusBar Property

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim app As Word.Application = Me.Application
 Dim status As String = "Creating Document..."
 app.StatusBar = status

 Dim range As Word.Range = Me.Range

 Try
 app.System.Cursor = Word.WdCursorType.wdCursorWait

 Dim r As Random = New Random()
 Dim i As Integer
 For i = 1 To 1000
 range.Text = range.Text + r.NextDouble().ToString()
 If i Mod 100 = 0 Then
 status &= "."
 app.StatusBar = status
 End If
 Next
 Finally
 app.StatusBar = String.Empty
 End Try

 End Sub

End Class

Controlling the Look of Word

Word enables you to control the Word user interface through other properties, such as those listed in Table 8.1. Listing
8.4 shows code behind a VSTO Word document that sets many of these properties.

Table 8.1. Properties That Control Elements of the Word
User Interface

Property Name Type What It Does

DisplayAutoCompleteTips Boolean Controls whether Word displays
autocomplete tips for
completing words, phrases, and
dates as you type.

DisplayRecentFiles Boolean Controls whether Word displays
recently open files in the File
menu. You can control how
many files Word displays by
using the RecentFiles object
associated with the Application
object and setting the
RecentFiles object's Maximum
property to a number between 0
and 9.

DisplayScreenTips Boolean Controls whether Word displays

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DisplayScreenTips Controls whether Word displays
pop-up tooltips for text having
comments, for footnotes and
end notes, and for hyperlinked
text.

DisplayScrollBars Boolean Controls whether Word displays
the horizontal and vertical scroll
bars for all open documents.

DisplayStatusBar Boolean Controls whether Word displays
the status bar for the active
document. The value of this
property can change when the
active document changes.

Height Integer Sets the height in points of the
main Word window when
WindowState is set to
wdWindowStateNormal.

Left Integer Sets the left position in points of
the main Word window when
WindowState is set to
wdWindowStateNormal.

ShowWindowsInTaskbar Boolean Sets whether Word creates a
window and taskbar button for
each open document (TRue),
which is also called SDI mode,
or uses one window that
contains all open document
windows (False), which is also
called MDI mode.

Top Integer Sets the top position in points of
the main Word window when
WindowState is set to
wdWindowStateNormal.

Visible Boolean Sets whether the Word
application window is visible.

Width Integer Sets the width in points of the
main Word window when
WindowState is set to
WdWindowState.wdWindowStateNormal.

WindowState WdWindowState Sets whether the main Word
window is minimized
(wdWindowStateMinimize),
maximized
(wdWindowStateMaximize), or
normal (wdWindowStateNormal).
The Width, Height, Left, and Top
settings have an effect only
when WindowState is set to
wdWindowStateNormal.

Listing 8.4. A VSTO Customization and Helper Function That Modifies the Word
User Interface

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim app As Word.Application = Me.Application

 app.DisplayAutoCompleteTips = GetBool("Autocomplete tips?")
 app.DisplayRecentFiles = GetBool("Display recent files?")
 app.DisplayScreenTips = GetBool("Display screen tips?")
 app.DisplayScrollBars = GetBool("Display scroll bars?")
 app.DisplayStatusBar = _
 GetBool("Display status bar for active document?")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 GetBool("Display status bar for active document?")

 app.ShowWindowsInTaskbar = GetBool("Multiple windows?")
 app.Visible = GetBool("Visible application window?")

 app.WindowState = Word.WdWindowState.wdWindowStateNormal
 app.Width = 200
 app.Height = 300
 app.Top = 50
 app.Left = 100

 End Sub

 Private Function GetBool(ByVal message As String) As Boolean
 Return MsgBox(message, MsgBoxStyle.YesNo, _
 "Word UI Demo") = MsgBoxResult.Yes
 End Function

Properties That Return Active or Selected Objects

The Application object has a number of properties that return active objectsobjects representing things that are active
or selected within Word. Table 8.2 shows some of these properties. Listing 8.5 shows code behind a VSTO Word
document that examines these properties.

Table 8.2. Application Properties That Return Active Objects
Property Name Type What It Does

ActiveDocument Document Returns the active Documentthe document that has
focus within Word. If there are no open documents, an
exception is thrown.

ActivePrinter String Returns a String for the active printer (for example,
"EpsonStylus COLOR 860 ESC/P 2 on LPT1:").

ActiveWindow Window Returns the active Window. If no windows are open, an
exception is thrown.

NormalTemplate Template Returns a Template object representing the Normal
template (normal.dot).

Selection Selection Returns a Selection object that represents the current
selection or insertion point in the document.

Listing 8.5. A VSTO Customization and Helper Function That Examines Active
Objects

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim app As Word.Application = Me.Application

 ShowItem("ActiveDocument", app.ActiveDocument.Name)
 ShowItem("ActivePrinter", app.ActivePrinter)
 ShowItem("ActiveWindow", app.ActiveWindow.Caption)
 ShowItem("NormalTemplate", app.NormalTemplate.Name)
 ShowItem("Selection", app.Selection.Start.ToString())

 End Sub

 Private Sub ShowItem(ByVal name As String, _
 ByVal status As String)
 MsgBox(status, MsgBoxStyle.OkOnly, name)
 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

Properties That Return Important Collections

The Application object has a number of properties that return collections you will use frequently. Table 8.3 shows
several of these properties. Listing 8.6 shows code behind a VSTO Word document that gets the count of these
collections and the first item out of each collection.

Table 8.3. Application Properties That Return Important Collections
Property Name Type What It Does

CommandBars CommandBars Returns the CommandBars collection, which lets you
modify or add to Word's toolbars and menus. Changes
made to toolbars and menus are saved in a template or
in a document; use the CustomizationContext property
to set where changes are stored.

Dialogs Dialogs Returns the Dialogs collection, which lets you access the
built-in Word dialog boxes (of which there are more than
240). You can show a particular dialog box using this
collection.

Documents Documents Returns the Documents collection, which contains all the
documents open in Word.

FontNames FontNames Returns the FontNames collection, which contains all the
fonts that are installed and available for use.

KeyBindings KeyBindings Returns the KeyBindings collection, which lets you
examine, modify, and add key shortcuts that are
assigned to Word commands.

RecentFiles RecentFiles Returns the RecentFiles collection, which lets you
examine and reopen any of the nine most recently
opened files.

TaskPanes TaskPanes Returns the TaskPanes collection, which allows you to
show or detect which of the 14 built-in task panes are
visible.

Templates Templates Returns the Templates collection, which lets you examine
the installed templates and their properties.

Windows Windows Returns the Windows collection, which represents the
windows open in Word.

Listing 8.6. A VSTO Customization and Helper Function That Examines Collections

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim app As Word.Application = Me.Application

 Show(String.Format("There are {0} command bars.", _
 app.CommandBars.Count))

 Show(String.Format("CommandBar 1 is {0}.", app.CommandBars(1).Name))
 Show(String.Format("There are {0} dialog boxes.", _
 app.Dialogs.Count))

 Show("Click OK to invoke the About dialog...")
 app.Dialogs(Word.WdWordDialog.wdDialogHelpAbout).Show()

 Show(String.Format("There are {0} open documents.", _
 app.Documents.Count))

 Dim doc As Word.Document = app.Documents.Item(1)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim doc As Word.Document = app.Documents.Item(1)

 Show(String.Format("Document 1 is {0}.", doc.Name))
 Show(String.Format("There are {0} fonts.", _
 app.FontNames.Count))
 Show(String.Format("FontName 1 is {0}.", app.FontNames(1)))
 Show(String.Format("There are {0} key bindings.", _
 app.KeyBindings.Count))

 If app.KeyBindings.Count > 0 Then
 Show(String.Format("KeyBinding 1 is {0}.", _
 app.KeyBindings(1).Command))
 End If

 Show(String.Format("There are {0} recent files.", _
 app.RecentFiles.Count))

 Show(String.Format("RecentFile 1 is {0}.", _
 app.RecentFiles(1).Name))
 Show(String.Format("There are {0} task panes.", _
 app.TaskPanes.Count))

 Show("Click OK to activate the help task pane.")

 app.TaskPanes(_
 Word.WdTaskPanes.wdTaskPaneHelp).Visible = True

 Show(String.Format("There are {0} templates.", _
 app.Templates.Count))
 Show(String.Format("Template 1 is {0}.", _
 app.Templates.Item(1).FullName))

 Show(String.Format("There are {0} windows.", _
 app.Windows.Count))
 Show(String.Format("Window 1 is {0}.", _
 app.Windows.Item(1).Caption))

 End Sub

 Private Sub Show(ByVal text As String)
 MsgBox(text, MsgBoxStyle.OkOnly, "Active Objects")
 End Sub

End Class

Navigating a Document

The Browser property returns the Browser object, which gives you access to the same functionality available in the
browser control that is shown directly below Word's vertical scroll bar, as shown in Figure 8.1.

Figure 8.1. Word's browser control.

To use the Browser object, first set the Browser object's Target property to a member of the WdBrowseTarget
enumeration, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

enumeration, as shown here:

wdBrowseComment

wdBrowseEdit

wdBrowseEndnote

wdBrowseField

wdBrowseFind

wdBrowseFootnote

wdBrowseGoTo

wdBrowseGraphic

wdBrowseHeading

wdBrowsePage

wdBrowseSection

wdBrowseTable

Then use the Browser object's Next and Previous methods to navigate from element to element. Listing 8.7 shows an
example of this.

Listing 8.7. A VSTO Customization That Uses the Browser Object

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 ' Generate some random text in the document.
 Dim r As Word.Range = Range()
 Dim builder As New System.Text.StringBuilder()
 Dim rand As New Random()

 Dim i As Integer
 For i = 0 To 1000
 builder.Append(rand.NextDouble().ToString())
 builder.Append(vbCrLf)
 Next
 r.Text = builder.ToString()

 ' Browse by page
 Application.Browser.Target = Word.WdBrowseTarget.wdBrowsePage
 Dim j As Integer
 For j = 0 To 10
 Application.Browser.Next()
 Application.Selection.Text = String.Format(_
 "<<<<<< PAGE {0} >>>>>>" & vbCrLf, j)
 Next

 End Sub

End Class

Note that using this approach also changes the selection in the document, which you often do not want to do. Later in
this chapter, you learn about the Range object and the various ways you manipulate text with the Range object without
changing the selection. The Range object's Goto, GotoNext, and GotoPrevious methods provide the same kind of
navigation control that the Browser object provides, without changing the selection.

Working with Word's Options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Options property provides access to options you might set via the Options dialog box. The Options property returns
an Options object that has more than 200 properties you can set.

Listing 8.8 shows an example that gets and then prompts the user to decide whether to change several of the
properties on the Options object. The properties set are options from the Save tab of Word's Options dialog box. Listing
8.8 also shows the Save tab in the Options dialog box after prompting the user to change options associated with that
tab.

Listing 8.8. A VSTO Customization That Uses the Options Object and Shows a Built-
In Dialog Box

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim o As Word.Options = Application.Options
 o.CreateBackup = DisplayAndSet(_
 "Always create backup copy", o.CreateBackup)
 o.AllowFastSave = DisplayAndSet(_
 "Allow fast saves", o.AllowFastSave)
 o.BackgroundSave = DisplayAndSet(_
 "Allow background saves", o.BackgroundSave)
 o.SavePropertiesPrompt = DisplayAndSet(_
 "Prompt for document properties", o.SavePropertiesPrompt)
 o.SaveNormalPrompt = DisplayAndSet(_
 "Prompt to save Normal template", o.SaveNormalPrompt)

 Application.Dialogs(_
 Word.WdWordDialog.wdDialogToolsOptionsSave).Show()

 End Sub

 Private Function DisplayAndSet(ByVal settingName As String, _
 ByVal settingValue As Boolean) As Boolean

 Dim title As String = "Options Demo"
 Dim checkState As String = "unchecked."
 Dim action As String = "check"

 If settingValue Then
 checkState = "checked."
 action = "uncheck"
 End If

 Dim message As String = String.Format(_
 "{0} is {1}." & vbCrLf & _
 "Do you want to {2} it?", settingName, checkState, action)
 Dim r As MsgBoxResult = MsgBox(message, _
 MsgBoxStyle.YesNo, title)
 If r = MsgBoxResult.Yes Then
 Return Not settingValue
 Else
 Return settingValue
 End If

 End Function

End Class

Working with the New and Getting Started Document Task Panes

The NewDocument property returns a NewFile object that lets you customize the New Document and Getting Started
task panes. The NewFile object is a shared object in the office.dll PIA that defines types in the Microsoft.Office.Core
namespace. The NewFile object is also used by Excel because it shares the same task-pane infrastructure. To get to the
NewFile object in Excel, use the Excel Application object's NewWorkbook property.

In four sections of the New Document task pane, you can add your own documents, templates, or Web addresses.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In four sections of the New Document task pane, you can add your own documents, templates, or Web addresses.
These four sections are the New section, the Templates section, the Recently Used Templates section, and the Other
Files section. Figure 8.2 shows the New Document task pane and these four sections. You can also add your own
document, template, or Web address to the Open section of the Getting Started task pane.

Figure 8.2. The New Document task pane.

The NewDocument property returns a NewFile object that has two methods of interest: Add and Remove. These
methods take a filename as a String, a member of the Office.MsoFileNewSection enumeration to specify the section you want
to add or remove from, the display name as a String that you want displayed in the task pane, and the action to take
when the user clicks the link in the task pane.

The action is specified using a member of the Office.MsoFileNewAction enumeration. Possible actions include msoOpenFile,
which opens the document or URL using Internet Explorer; msoCreateNewFile, which creates a new document based on the
existing document or template; and msoEditFile, which opens an existing document for editing in Word.

Listing 8.9 shows some code that adds a document or hyperlink to each of the four sections in the New Document task
pane. It also adds a document to the Getting Started task pane. To show the New Document task pane, the code uses
an unusual technique: It finds the command bar control for the File > New command (which has an ID of 18) and
executes that command. This is done because the New Document task pane cannot be shown in any other way; it is not
accessible through the TaskPanes object, as you would expect.

The code in Listing 8.9 also handles the Document object's BeforeClose event to remove the added commands from the
task pane. As you see in Chapter 7, "Working with Word Events," the BeforeClose event can be raised multiple times for
the same document if the user cancels the save or closing of the document or if other BeforeClose event handlers
cancel the close. In this case, even if the code in the BeforeClose event runs multiple times, the calls to
NewFile.Remove do not raise any exceptions if the item you are trying to remove does not exist.

Listing 8.9. A VSTO Customization That Adds Links to the New Document Task
Pane

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Pane

Public Class ThisDocument

 Private app As Word.Application

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 Dim Newfile As Office.NewFile = app.NewDocument

 Newfile.Add("c:\foo.doc", _
 Office.MsoFileNewSection.msoNew, _
 "msoNew msoEdit", _
 Office.MsoFileNewAction.msoEditFile)

 Newfile.Add("c:\foo.doc", _
 Office.MsoFileNewSection.msoNewfromTemplate, _
 "msoNewFromTemplate msoCreateNewFile", _
 Office.MsoFileNewAction.msoCreateNewFile)

 Newfile.Add("c:\foo.doc", _
 Office.MsoFileNewSection.msoNewfromExistingFile, _
 "msoNewFromExistingFile msoCreateNewFile", _
 Office.MsoFileNewAction.msoCreateNewFile)

 Newfile.Add("http://www.microsoft.com", _
 Office.MsoFileNewSection.msoBottomSection, _
 "msoBottomSection msoOpenFile", _
 Office.MsoFileNewAction.msoOpenFile)

 Newfile.Add("c:\foo.doc", _
 Office.MsoFileNewSection.msoOpenDocument, _
 "msoOpenDocument msoEdit", _
 Office.MsoFileNewAction.msoEditFile)

 ' Execute the "New" command found
 ' in the File menu to show
 ' the new document task pane.
 Application.CommandBars.FindControl(1, 18).Execute()

 End Sub
 Private Sub ThisDocument_BeforeClose(ByVal sender As Object, _
 ByVal e As System.ComponentModel.CancelEventArgs) _
 Handles Me.BeforeClose

 Dim NewFile As Office.NewFile = app.NewDocument

 NewFile.Remove("c:\foo.doc", _
 Office.MsoFileNewSection.msoNew, _
 "msoNew msoEdit", _
 Office.MsoFileNewAction.msoEditFile)

 NewFile.Remove("c:\foo.doc", _
 Office.MsoFileNewSection.msoNewfromTemplate, _
 "msoNewFromTemplate msoCreateNewFile", _
 Office.MsoFileNewAction.msoCreateNewFile)

 NewFile.Remove("c:\foo.doc", _
 Office.MsoFileNewSection.msoNewfromExistingFile, _
 "msoNewFromExistingFile msoCreateNewFile", _
 Office.MsoFileNewAction.msoCreateNewFile)

 NewFile.Remove("http://www.microsoft.com", _
 Office.MsoFileNewSection.msoBottomSection, _
 "msoBottomSection msoOpenFile", _
 Office.MsoFileNewAction.msoOpenFile)

 NewFile.Remove("c:\foo.doc", _
 Office.MsoFileNewSection.msoOpenDocument, _
 "msoOpenDocument msoEdit", _
 Office.MsoFileNewAction.msoEditFile)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Office.MsoFileNewAction.msoEditFile)

 End Sub

End Class

Working with the File Save Format Options

The DefaultSaveFormat property enables you to change the default format that Word saves in when the user creates a
new document and then saves it. Setting DefaultSaveFormat to "Text" will cause Word to save new files in text-only
format; for example, setting DefaultSaveFormat to an empty string will cause Word to save in the default file format.

You can also specify that one of the installed file converters be used as the default save format. The FileConverters
property returns a collection of available file converters that save in formats such as Works format. Each FileConverter
object in the FileConverters collection has a ClassName property that returns a String. You can set the
DefaultSaveFormat property to the String returned by the ClassName property of the FileConverter you want to use as
the default save format. The Works 6.0 & 7.0 FileConverter object has a ClassName property that returns "wks632".
Setting DefaultSaveFormat to "wks632" will make Works 6.0 & 7.0 the default save format.

Working with File Dialog Boxes

Word provides several properties and methods that enable you to change the directory that the Open and Save dialog
boxes default to. The ChangeFileOpenDirectory method takes a String parameter that is the new path that you want the
Open and Save dialog boxes to default to. A change made using this method lasts only until the user exits the
application or ChangeFileOpenDirectory is called again during the run of the application.

To change permanently the directory that the Open and Save dialog boxes default to, you can use the Options object's
DefaultFilePath property. Prompt the user if you change a setting like this permanently. Users usually do not appreciate
it when programs change their settings without asking their permission first.

If you need to display a customized File dialog box, you can use the FileDialog property, which returns a FileDialog
object you can customize and show to the user. The FileDialog property takes a required parameter of type
Office.MsoFileDialogType, which can be one of the following enumerated values: msoFileDialogOpen, msoFileDialogSaveAs,
msoFileDialogFilePicker, or msoFileDialogFolderPicker.

Listing 8.10 shows an example that gets a FileDialog of type msoFileDialogFilePicker and modifies it to let the user select
files from the desktop to copy to his C:\ directory. There are several things to observe in this example. First, the
FileDialog object has several properties that enable you to customize the dialog box, including AllowMultiSelect,
ButtonName, InitialFileName, InitialView, and Title.

Listing 8.10 also illustrates that showing the FileDialog using the Show method does not perform any Word action, such
as opening files, when the user clicks the default button. Instead, it returns an Integer value that is 1 if the user clicked
the default button and 0 if the user clicked the Cancel button. If the user clicks the default button, and Show returns a
1, the code iterates over the FileDialog's SelectedItems collection to get the files that the user selected to copy.

Listing 8.10. A VSTO Customization That Modifies Word's File Dialog Box

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim f As Office.FileDialog = Application.FileDialog(_
 Office.MsoFileDialogType.msoFileDialogFilePicker)

 f.AllowMultiSelect = True
 f.ButtonName = "Copy to C:\"
 f.InitialFileName = System.Environment.GetFolderPath(_
 Environment.SpecialFolder.Desktop)
 f.InitialView = _
 Office.MsoFileDialogView.msoFileDialogViewList
 f.Title = "Select files to copy to c:\"

 Dim result As Integer = f.Show()
 If result = -1 Then
 For Each s As String In f.SelectedItems
 Dim fileName As New System.IO.FileInfo(s)
 System.IO.File.Copy(fileName.FullName, _
 "c:\" + fileName.Name)
 Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Next
 End If

 End Sub

End Class

User Information

Word's Application object has several properties that return user information, including UserName, UserAddress, and
UserInitials. These String properties return the user information the user entered when installing the product. The user
can also edit this information by going to Word's Options dialog box and editing the fields in the User Information tab.

Checking Grammar and Spelling

Word provides some application-level methods that enable you to use Word's grammar and spelling engine to check
arbitrary strings. CheckGrammar is a method that takes a String and returns a Boolean value. It returns true if the string is
deemed grammatically correct by Word's grammar checker and False if it is not. CheckSpelling is a method that takes a
String and returns true if the string is spelled correctly and False if the string is not spelled correctly.

The GetSpellingSuggestions method can take a single word that is misspelled and suggest possible correct spellings for
the word. It takes a required String that is the word to check. It also takes a number of optional parameters. It returns a
SpellingSuggestions collection that contains possible correct spellings.

Listing 8.11 shows a VSTO customization that uses these application-level grammar and spelling-checking functions.

Listing 8.11. A VSTO Customization That Checks Grammar and Spelling

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim badString As String = "This are grammatically incorrect."
 Dim goodString As String = "This is grammatically correct."
 Dim badString2 As String = "I cain't spel."
 Dim goodString2 As String = "I can spell."
 Dim singleWord As String = "spel"

 MsgBox(String.Format("{0}" & vbCrLf & _
 "CheckGrammar returns {1}.", _
 badString, Application.CheckGrammar(badString)))
 MsgBox(String.Format("{0}" & vbCrLf & _
 "CheckGrammar returns {1}.", _
 goodString, Application.CheckGrammar(goodString)))

 MsgBox(SpellingHelper(badString2))
 MsgBox(SpellingHelper(goodString2))

 MsgBox(String.Format(_
 "Getting spelling suggestions for {0}.", _
 singleWord))

 Dim suggestions As Word.SpellingSuggestions = _
 Application.GetSpellingSuggestions(singleWord)
 For Each s As Word.SpellingSuggestion In suggestions
 MsgBox(s.Name)
 Next
 End Sub

 Private Function SpellingHelper(ByVal phrase As String) _
 As String
 Dim correctSpelling As Boolean
 correctSpelling = Application.CheckSpelling(phrase)
 If correctSpelling Then
 Return String.Format("{0} is spelled correctly.", phrase)
 Else
 Return String.Format(_
 "{0} is spelled incorrectly.", phrase)
 End If
 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Function

End Class

Exiting Word

The Quit method can be used to exit Word. If any unsaved documents are open, Word prompts the user to save each
unsaved document. When users are prompted to save, they get a dialog box that has a Cancel button. If the user clicks
Cancel, or if any code is running that is handling the Application.DocumentBeforeClose event sets the cancel parameter
to true, Word does not quit.

Setting the DisplayAlerts property to wdAlertsNone will not suppress Word's prompting the user to save. Fortunately, the
Quit method takes three optional parameters that can control whether Word prompts the user to save. The first
optional parameter, called SaveChanges, is of type Object and can be passed a member of the WdSaveOptions enumeration:
wdDoNotSaveChanges, wdPromptToSaveChanges, or wdSaveChanges. The second optional parameter, called OriginalFormat, is of type
Object and can be passed a member of the WdOriginalFormat enumeration: wdOriginalDocumentFormat, wdPromptUser, or
wdWordDocument. This parameter controls Word's behavior when saving a changed document whose original format was
not Word document format. The final optional parameter is called RouteDocument and is of type Object. Passing true for this
parameter routes the document to the next recipient if a routing slip is attached.

Listing 8.12 shows a VSTO application that calls Quit without saving changes.

Listing 8.12. A VSTO Customization That Calls Quit

Public Class ThisDocument

 Private app As Word.Application

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 app = Me.Application

 Range.Text = "Sample text"

 app.Quit(False)

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter explored some of the most important objects in the Word object model. We use many of these objects in
the Word examples in subsequent chapters. We also consider some additional Word object model objects used to work
with XML in Word in Chapter 22, "Working with XML in Word."

This chapter described these objects as defined by the PIAs for Word. Be aware, however, that VSTO extends some of
these objects (Document, Bookmark, XMLNodes, and XMLNode) to add some functionality, such as data binding
support. Part III of this book, starting with Chapter 13, "The VSTO Programming Model," covers those extensions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Dialog Object
This chapter has briefly considered the Dialogs collection returned by the Application object's Dialogs property. You
have also learned about the FileDialog object. Now you learn in more detail how you can use and display Word's built-in
dialog boxes by using the Dialog object.

Showing the Dialog Box and Letting Word Execute Actions

After you have a Dialog object, typically by using the Dialog collection's index operator, you can show the dialog box in
a variety of ways. The simplest way to show the dialog box associated with a Dialog object is to call the Show method,
which displays the dialog box and lets Word execute any action the user takes in the dialog box. The Show method has
an optional TimeOut parameter of type Object that takes the number of milliseconds Word will wait before closing the
dialog box automatically. If you omit the parameter, Word waits until the user closes the dialog box.

The Show method returns an Integer value that tells you what button the user chose to close the dialog box. If the return
value is 1, the user clicked the OK button. If the return value is 2, the user clicked the Close button. If the return value
is 0, the user clicked the Cancel button.

Selecting the Tab on a Dialog Box

For tabbed dialog boxes, such as Options, the Dialog object provides a DefaultTab property of type WdWordDialogTab. The
DefaultTab property can be set before showing the dialog box to ensure that the dialog box comes up with a particular
tab selected. WdWordDialogType is an enumeration that contains values for the various tabs in Word's built-in dialog boxes.

Showing the Dialog Box and Preventing Word from Executing Actions

Sometimes you will want to show a dialog box without letting Word actually execute the action associated with the
dialog box. You might want to show the Print dialog box but execute your own custom actions when the user clicks OK
in the dialog box, for example.

The Dialog object has a Display method that will show the dialog box while preventing Word from executing the action
associated with the dialog box. Just as with the Show method, the Display method takes an optional TimeOut parameter
of type Object and returns an Integer value that tells you which button the user clicked to close the dialog box.

After you use the Display method to show a dialog box, you can use the Execute method to apply the action the user
took in the dialog box that was shown using the Display method. As an example (one that would likely annoy a Word
user), you might show the Print dialog box and detect that a user clicked OK. But then you might prompt again to ask
whether the user is sure she wants to print. If the user clicks Yes, you would call the Execute method on the dialog box
to print the document, as shown in Listing 8.13.

Listing 8.13. A VSTO Customization That Uses Display and Execute to Confirm
Printing

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Range.InsertAfter("Test text")

 Dim d As Word.Dialog = Application.Dialogs(_
 Word.WdWordDialog.wdDialogFilePrint)

 Dim result As Integer = d.Display()
 If result = -1 Then
 Dim r As MsgBoxResult
 r = MsgBox("Are you sure you want to print?", _
 MsgBoxStyle.YesNoCancel, "Annoying confirmation")

 If r = MsgBoxResult.Yes Then
 d.Execute()
 End If
 End If

 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

Getting and Setting Fields in a Dialog Box

It is possible to prefill fields in a dialog box before showing it and to get fields from a dialog box after showing it.
Unfortunately, it is rather difficult and inconsistent in availability, and it relies on some obscure functionality that
originated from the original programming language for Word, called Word Basic.

The Dialog object you are working with may have several late-bound properties that can be get and set. A late-bound
property does not appear in the type definition for the Dialog object, so it cannot be seen using IntelliSense. Therefore,
in Visual Basic 2005 a late-bound property can be called directly, but you won't get help from Visual Studio's statement-
completion feature when writing the code, as it can't be determined until runtime whether a given property exists.

The available late-bound properties change depending on the type of dialog box that you got from the Dialogs
collection. So when you get a wdDialogXMLOptions dialog box, it will have one set of late-bound properties, and when you
get a wdDialogFilePrint dialog box, it will have a different set of late-bound properties.

Determining what the late-bound property names are for a particular dialog box involves some searching in older Word
Basic help files. To get the Word Basic help files, search the Web for "wrdbasic.exe" to find an installer from Microsoft
that installs Word Basic help. After you have installed the Word Basic help file, you can try to find a Word Basic function
in the help file that corresponds to the dialog box you are using.

The Word Basic function typically is named as a concatenation of the menu name and command name. The Word Basic
function for the Print dialog box in the File menu, for example, is FilePrint. By looking in the Word Basic help file for the
FilePrint method, you will find that it has 14 parameters. Table 8.4 shows some of the late-bound properties
documented in the Word Basic help file for the FilePrint (and, hence, the Print dialog box).

Table 8.4. Some Late-Bound Properties Associated with the Print
Dialog Box

Property Name Type What It Does

Range Selected Integer
values

If 1, prints the selection. If 2, prints the current page. If
3, prints the range of pages specified by From and To. If
4, prints the range of pages specified by Pages.

NumCopies Integer The number of copies to print.

Pages String The page numbers and page ranges to print, such as "1-
10, 15", which would print pages 1 through 10 and page
15.

For newer dialog boxes that were not around in Word 95 and are not listed in the Word Basic help file, you can try to
figure out how to get to a particular dialog-box option by trial and error. In the XML Options dialog box, for example,
which is new to Word 2003 (WdWordDialog.wdDialogXMLOptions), you can determine some of the properties by writing
reflection code to try to invoke names that seem reasonable based on the names of the controls in the dialog box. If the
code fails, you know that you guessed the wrong property name. If the code succeeds, you have found a property
name. In this way, you would discover that AutomaticValidation, IgnoreMixedContent, ShowAdvancedXMLErrors, and
ShowPlaceholderText are some of the properties associated with the XML Options dialog box. At this point, however,
you are really out there on your own. A search on the Web for "ShowAdvancedXMLErrors," for example, returned no
hits; you might be the first person and the last person in the world to use this late-bound property.

Listing 8.14 shows a VSTO customization that prepopulates the Print dialog box with a page range and number of
copies to print. It sets and gets the late-bound properties Range, NumCopies, and Pages on the Dialog object. The code
in Listing 8.14 will display the Print dialog box without allowing Word to execute any actions. The user can change
values in the dialog box. The code shows the values of Range, NumCopies, and Pages after the dialog box has been
displayed.

Listing 8.14. A VSTO Customization That Accesses Late-Bound Properties on a
Dialog Box

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Create 20 pages
 Dim r As Word.Range = Range()

 Dim i As Integer
 For i = 1 To 20
 r.InsertBreak(Word.WdBreakType.wdPageBreak)
 Next

 Dim d As Word.Dialog = Application.Dialogs(_
 Word.WdWordDialog.wdDialogFilePrint)

 ' Set late-bound properties
 d.Range = 4
 d.NumCopies = 2
 d.Pages = "1-10, 15"

 Dim result As Integer = d.Display()

 ' Get late-bound properties
 MsgBox(String.Format("Range is {0}.", d.Range))
 MsgBox(String.Format("NumCopies is {0}.", d.NumCopies))
 MsgBox(String.Format("Pages is {0}.", d.Pages))

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with Windows
The Application object has several properties that are used to control Word's windows. We have already considered
several properties, including Width, Height, WindowState, Top, Left, Windows, ActiveWindow, and
ShowWindowsInTaskBar.

Word provides some additional methods on the Application object that prove useful for managing windows. The
Application object's Activate method is used to make Word the active application when another application has focus.
The Application object's Move method is used to move the active window when the WindowState is set to
wdWindowStateNormal and takes Top and Left parameters in pixels. The Application object's Resize method is used to resize
the active window when the WindowState is set to wdWindowStateNormal and takes Width and Height parameters in pixels.

Creating New Windows

The Application object's NewWindow method creates a new window for the active document and returns the newly
created Window. This is the equivalent of choosing New Window from the Window menu.

You can also create a new window using the Windows collection's Add method. This method takes an optional Window
parameter by reference, which tells Word which document to create a new Window for. If you omit the Window
parameter, Word will create a new window for the active document.

Iterating over the Open Windows

The Windows collection returned by the Windows property of the Application object has a GetEnumerator method that
allows it to be iterated over using a For Each loop in Visual Basic 2005, as shown in Listing 8.15.

Listing 8.15. A VSTO Customization That Iterates over the Open Windows

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup
 ' Create 20 windows
 Dim i As Integer
 For i = 0 To 20
 Application.NewWindow()
 Next

 For Each w As Word.Window In Application.Windows
 MsgBox(w.Caption)
 Next

 End Sub

End Class

Accessing a Window in the Collection

To access a Window in the Windows collection, you use a parameterized property called Item, which returns a Window.
The Item property takes an Index parameter by reference that is of type Object. You can pass a String representing the
caption of the Window, or you can pass a 1-based index into the Windows collection. You can check how many items
are in a given collection by using the Count property. Listing 8.16 shows both getting a window using a 1-based index
and using the caption of a window. Because Item is also the default property for a collection, you can omit Item and
instead pass the parameter, as shown in line of code app.Windows(stringIndex).

Listing 8.16. A VSTO Customization That Uses Item to Get a Window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 8.16. A VSTO Customization That Uses Item to Get a Window

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim app As Word.Application = Me.Application

 ' Create some windows
 app.NewWindow()
 app.NewWindow()
 Dim stringIndex As String = app.NewWindow().Caption

 MsgBox(String.Format("There are {0} windows.", _
 app.Windows.Count))
 Dim w As Word.Window = app.Windows.Item(1)
 MsgBox(w.Caption)
 Dim w2 As Word.Window = app.Windows(stringIndex)
 MsgBox(w2.Caption)

 End Sub

End Class

Arranging Windows

Word has various ways of arranging windows and synchronizing those windows so that when one window scrolls, other
windows scroll as well. The Arrange method enables you to arrange a collection of windows and is the equivalent of
selecting Arrange All from the Windows menu. This method takes an optional Object parameter by reference that can be
passed a member of the WdArrangeStyle enumeration: wdIcons or wdTiled. Passing wdTiled makes sense only when you have
put Word into MDI mode by setting the Application object's ShowWindowsInTaskbar to False. You also have to set the
WindowState of each Window object to wdWindowStateMinimize if Arrange is to do anything when passed wdTiled.

The CompareSideBySideWith method enables you to synchronize the scrolling of two windows showing two different
documents. This method is the equivalent of choosing Compare Side by Side With from the Window menu when you
have multiple documents open in Word. The CompareSideBySideWith method takes a Document parameter that is the
document you want to compare with the active document. To change the active document before you call this method,
you can use the Document object's Activate method.

After you have established side-by-side mode, you can control it further by calling the ResetSideBySideWith method,
which takes a Document parameter that is the document you want to reset side by side with against the active
document. The SyncScrollingSideBySide property tells you whether you are in side-by-side mode and lets you disable
the synchronization of scrolling temporarily. The BreakSideBySide method turns side-by-side mode off.

Listing 8.17 shows an example of first arranging two document windows and then establishing side-by-side mode.

Listing 8.17. A VSTO Customization That Uses the Arrange and
CompareSideBySideWith Methods

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 ' Create a second document
 Dim doc2 As Word.Document = Application.Documents.Add()

 Dim r1 As Word.Range = Me.Range
 Dim r2 As Word.Range = doc2.Range

 ' Fill both documents with random text
 Dim rand As New Random()
 Dim i As Integer
 For i = 0 To 1000
 Dim randomNumber As String = rand.NextDouble().ToString()
 r1.InsertAfter(randomNumber & vbCrLf)
 r2.InsertAfter(randomNumber & vbCrLf)
 Next

 ' Arrange windows

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Arrange windows
 Application.Windows.Arrange()
 MsgBox("Windows are tiled.")

 ' Activate this document and synchronize with doc2
 Me.Activate()

 Application.Windows.CompareSideBySideWith(doc2)
 MsgBox("Windows are in side by side mode.")

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with Templates
The Templates property on the Application object returns the Templates collection. The Templates collection provides
you access to the templates available in Word. As in most other collections in Word, you can use For Each to iterate over
each Template in the Templates collection. You can also use the Templates collection's Item property to get to a
particular template in the collection, passing a String for the name of the template or an Integer for the 1-based index into
the collection.

You can also get to a Template object by using the Application object's NormalTemplate property, which returns a
Template object for normal.dotthe global template that is always open and associated with a document when you have
not specified a different template. If you have a Document object and you want to determine what template is
associated with it, you can use the Document object's AttachedTemplate. When you get the value of AttachedTemplate,
it returns an Object that you can cast to a Template object. When you set the value of AttachedTemplate, you can pass
either a Template object or a String containing the filename of the template.

The Template object's OpenAsDocument method enables you to open a template as a document and edit it. The Name
property is a String property that returns the name of the template, such as "Template.dot". FullName is a String property
that returns the complete filename of the template, such as "c:\mytemplates\Template.dot". Path is a String property that
returns the folder the template is in, such as "c:\my templates".

The Template object's Type property returns a member of the WdTemplateType enumeration that designates the type of
the template. A template can be one of three types. Figure 8.3 shows the Templates and Add-ins dialog box, which
illustrates two of the three types. A template can be attached to a document; in this case, the template AWtemplate.dot
is attached to the active document. A template attached to a document has a type of wdAttachedTemplate. The Templates
collection will contain an attached template only while the document the template is attached to is opened. When the
document associated with the template is closed, the Template object attached to that document will no longer be in
the Templates collection (unless, of course, it is attached to another document that is still open).

Figure 8.3. The Templates and Add-ins dialog box, showing the attached template
and global templates.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A template can also be installed as a global template or add-in. In Figure 8.3, the template SnagIt Add-in.dot is a global
add-in template. A global template has a type of wdGlobalTemplate. Templates installed in this way are often acting as a
simple add-in, providing toolbars or additional menu commands to Word. A template of this type will always be in the
Templates collection until it is uninstalled or removed using the Templates and Add-ins dialog box.

The third type of template is not shown in this dialog box. The normal.dot template is always open in Word and is of
type wdNormalTemplate. This template is always present in the Templates collection.

The Templates collection does not have an Add method. Templates are added indirectly through actions you take with
other objects. Setting the Document's AttachedTemplate property to change the template attached to a document, for
example, adds the template to the Templates collection if it is not already there. Opening a document that has an
attached template not already in the Templates collection adds the attached template to the Templates collection.
Templates with type wdAttachedTemplate are removed from the Templates collection when all documents that are using the
attached template are closed. You can also add templates of type wdGlobalTemplate to the Templates collection using the
Add method of the AddIns collection.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with Documents
The Documents collection, available from the Application object's Documents property, contains a collection of
Document objects open in Word. It also has methods used to access a Document in the collection, create a new
document, open an existing document, close all the documents, and save all the documents.

Iterating over the Open Documents

The Documents collection can be iterated over using a For Each loop in Visual Basic 2005. Listing 8.18 shows a simple
example of iterating over the open documents in Word and printing the name of each document to the console.

Listing 8.18. Iterating over the Documents Collection Using For Each

For Each doc As Word.Document In Application.Documents
 Console.WriteLine(doc.Name)
Next

Accessing a Document in the Documents Collection

To access a Document in the Documents collection, you use the Item property, which returns a Document object. The
Item property has an Index parameter passed by reference that is of type Object. You can pass an Integer representing the
1-based index of the document in the collection you want to access.

Alternatively, you can pass a String representing the name of the document you want to access. The name you pass for
a document is the full name of the file, if it has been saved (for example, "c:\Documents and Settings\John\Desktop\Doc1.doc"). If
the document has not yet been saved, the name to pass is the temporary name that Word creates for a new document.
This temporary name is typically something like Document1, with no file extension. Listing 8.19 shows an example of
calling Item with a 1-based index and a String index.

Listing 8.19. A VSTO Customization That Uses Item to Get a Document

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 ' Add 5 documents
 Dim i As Integer
 For i = 0 To 5
 Application.Documents.Add()
 Next

 ' Iterate over the open documents using For Each
 For Each doc As Word.Document In Application.Documents
 MsgBox(doc.Name)
 Next

 ' Get a document by 1-based index.
 Dim index As Integer = 2
 Dim doc1 As Word.Document = Application.Documents.Item(index)
 MsgBox(String.Format("The document at index {0} is {1}.", _
 index, doc1.FullName))

 ' Get a document by full name
 Dim doc2 As Word.Document = Application.Documents.Item(index)
 MsgBox(String.Format(_
 "The document at string index {0} is {1}.", _
 doc1.FullName, doc2.FullName))

 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

You can also use the Count property to determine the number of open documents. You should check the Count property
before accessing a document by index.

Creating a New Document

To create a new document, you can use the Documents collection's Add method. The Add method returns the newly
created Document object. It takes four optional by reference parameters of type Object, as described in Table 8.5.

Table 8.5. Optional Parameters for the Documents Collection's Add
Method

Parameter
Name What It Does

Template Pass the short name of the template to be used (for example, "mytemplate.dot")
if the template is in the Templates collection. If the template is not in the
Templates collection, pass the full filename to the template (for example,
"c:\mytemplates\template1.dot"). If you omit this parameter, Word uses the
Normal template.

NewTemplate Pass the Boolean value TRue if the document should be opened as a template.
The default is False.

DocumentType Pass a member of the WdNewDocumentType enumeration: wdNewBlankDocument,
wdNewEmailMessage, wdNewFrameset, or wdNewWebPage. The default is
wdNewBlankDocument.

Visible Pass the Boolean value true if the document should be opened in a visible
window. The default is true.

Opening an Existing Document

To open an existing document, use the Documents collection's Open method, which returns the opened Document
object. The Open method takes one required Object parameter, to which you pass the String representing the filename to
open. The Open method also takes 15 optional by reference parameters of type Object, as described in Table 8.6.

Table 8.6. Optional Parameters for the Documents Collection's Open
Method

Parameter Name What It Does

ConfirmConversions Pass true to display the Convert File dialog box if the filename
passed to Open is not in Microsoft Word format.

ReadOnly Pass TRue to open the document as read-only. If the
document is already set to read-only on disk, passing False will
not affect the read-only status of the document. The default is
False.

AddToRecentFiles Pass true to add the filename to the list of recently used files
in the File menu. The default is TRue.

PasswordDocument Pass a String representing the password for opening the
document if the document is password-protected.

PasswordTemplate Pass a String representing the password for opening the
template if the template is password-protected.

Revert If the document you are opening with the Open method is
already open in Word, pass true to discard any unsaved
changes in the already-open document. Pass False to activate
the already-open document.

WritePasswordDocument Pass a String representing the password for saving changes to
the document if the document is password-protected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WritePasswordTemplate Pass a String representing the password for saving changes to
the template if the template is password-protected.

Format Pass a member of the WdOpenFormat enumeration specifying
the file conversion to be used when opening the document.

Encoding Pass a member of the Office.MsoEncoding enumeration specifying
the code page or character set to be used when you open the
document.

Visible Pass true to open the document in a visible window. The
default is true.

OpenConflictDocument Pass true to open the conflict file for a document that has
offline conflicts.

OpenAndRepair Pass true to try to repair a corrupted document.

DocumentDirection Pass a member of the WdDocumentDirection enumeration
specifying the horizontal flow of text in the opened document.

NoEncodingDialog Pass true to prevent Word from displaying the Encoding dialog
box if the text encoding of the document cannot be
determined.

Listing 8.20 shows the simplest possible way to call the Open method to open a document.

Listing 8.20. A VSTO Customization That Uses the Open Method to Open a
Document

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim doc As Word.Document = Application.Documents.Open("c:\test.doc")
 MsgBox(String.Format("Just opened {0}.", doc.Name))

 End Sub

End Class

Closing All Open Documents

The Close method on the Documents collection closes all the open documents in Word. It takes three optional
parameters of type Object by reference. The first optional parameter, called SaveChanges, is of type Object and can be
passed a member of the WdSaveOptions enumeration: wdDoNotSaveChanges, wdPromptToSaveChanges, or wdSaveChanges. The
second optional parameter, called OriginalFormat, is of type Object and can be passed a member of the WdOriginalFormat
enumeration. The second parameter controls Word's behavior when saving a changed document whose original format
was not Word document format. This parameter can be passed wdOriginalDocumentFormat, wdPromptUser, or wdWordDocument.
The final optional parameter is called RouteDocument and is of type Object. Passing true for this parameter routes the
document to the next recipient if a routing slip is attached.

It is also possible to close an individual document using the Document object's Close method, as discussed later in this
chapter. You have already learned how to use the Application object's Quit method as a third way to close all open
documents and quit Word. The Quit method takes the same parameters as Documents.Close and Document.Close.

Saving All Open Documents

The Save method on the Documents collection saves all the open documents in Word. It takes two optional parameters.
The first optional parameter, called NoPrompt, is of type Object and can be set to true to have Word automatically save all
open documents without prompting the user. The second optional parameter, called OriginalFormat, is of type Object and
can be passed a member of the WdOriginalFormat enumeration. The second parameter controls Word's behavior when
saving a changed document whose original format was not Word document format.

It is also possible to save an individual document using the Document object's Save or SaveAs method, as discussed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It is also possible to save an individual document using the Document object's Save or SaveAs method, as discussed
later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with a Document
The Document object represents an open document in Word. The Document object has a Name property that returns a
String representing the name of the document (for example, "doc1.doc"). If the document has not yet been saved, this
property returns the temporary name of the documenttypically, something like Document1.

Document also has a FullName property that returns a String representing the full filename of the document if the
document has been saved. Once again, if the document has not been saved, this property returns the temporary name
of the document, such as Document1. The FullName of the document can be passed to the Item property of the
Documents collection to access the document by name from that collection. The Path property returns a String
representing the path to the folder where the document is stored. A document with FullName "c:\mydocuments\doc1.doc"
returns "c:\mydocuments" for the Path property, for example. If the document has not yet been saved, the Path returns an
empty string.

The Type property is of type WdDocumentType and can be used to determine whether the document is a Word document
or a Word template file. A Word document returns the enumerated value wdTypeDocument. A template returns the value
wdTypeTemplate.

Preserving the Dirty State of a Document

Saved is a Boolean property that tells you whether a document needs to be saved. A document that has not been
changed, such as a new document that has not been typed in yet or a document that has been opened but not edited,
returns TRue for Saved. A document that has been changed returns False until the user or code saves the document and
thereby resets the Saved property to true. A document that has been changed but not saved is often referred to as a
dirty document.

You can also set the value of the Saved property so that a change made by your code does not dirty the document. You
might make a change through code to a document, for example, but you do not want to save the change made by your
code unless the user makes some additional change to the document. This is often desirable because when users open
a document and do not edit it, they are confused when they are prompted to save because code associated with the
document changed the state of the document in some way. You can get the value of the Saved property, make the
change to the document, and then set the value of Saved back, as shown in Listing 8.21.

Listing 8.21. A VSTO Customization That Preserves the Dirty State of the
Document by Using the Saved Property

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim oldSaved As Boolean = Me.Saved

 Try
 Dim props As Office.DocumentProperties = _
 Me.CustomDocumentProperties

 Dim prop As Office.DocumentProperty = props.Add(_
 "My Property", False, _
 Office.MsoDocProperties.msoPropertyTypeString, _
 "My Value")
 Finally
 Me.Saved = oldSaved
 End Try

 End Sub

End Class

Closing and Saving a Document

The Close method enables you to close a document. The Close method takes three optional Object parameters passed by
reference. The first optional parameter, called SaveChanges, is of type Object and can be passed a member of the
WdSaveOptions enumeration: wdDoNotSaveChanges, wdPromptToSaveChanges, or wdSaveChanges. The second optional parameter,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WdSaveOptions enumeration: wdDoNotSaveChanges, wdPromptToSaveChanges, or wdSaveChanges. The second optional parameter,
called OriginalFormat, is of type Object and can be passed a member of the WdOriginalFormat enumeration. The second
parameter controls Word's behavior when saving a changed document whose original format was not Word document
format. This parameter can be passed wdOriginalDocumentFormat, wdPromptUser, or wdWordDocument. The final optional
parameter is called RouteDocument and is of type Object. Passing true for this parameter routes the document to the next
recipient if a routing slip is attached.

The Save method saves the document and does the same thing that choosing Save from the File menu would do. If the
document has already been saved, it saves the document to the location it was last saved to. If the document has not
yet been saved, it brings up the Save As dialog box so that the user can select a place to save the document.

The SaveAs method takes 16 optional Object parameters passed by reference. It gives you full control over the filename
to save to, as well as the file format and several other options. Table 8.7 lists the optional parameters of type Object that
are passed by reference to the SaveAs method.

Table 8.7. Optional Parameters for the Document Object's SaveAs
Method

Parameter Name What It Does

FileName Pass a String representing the filename to use for the
document. The default is the current FullName of the
document.

FileFormat Pass a member of the WdSaveFormat enumeration to
specify the file format to save as.

LockComments Pass TRue to lock the document for comments. The
default is False.

Password Pass the password for opening the document as a String.

AddToRecentFiles Pass true to add the filename to the list of recently used
files in the File menu. The default is true.

WritePassword Pass the password for saving changes to the document
as a String.

ReadOnlyRecommended Pass true to have Word always suggest that the document
be opened as read-only. The default is False.

EmbedTrueTypeFonts Pass true to save TrueType fonts in the document. If
omitted, Word will use the value of
Document.EmbedTrueTypeFonts.

SaveNativePictureFormat Pass true to save pictures imported from the Mac in their
Windows version.

SaveFormsData Pass true to save the data entered by the user entered in
a form as a data record.

SaveAsAOCELetter Pass true to save the document as an AOCE letter if the
document has an attached mailer.

Encoding Pass a member of the Office.MsoEncoding enumeration
specifying the code page or character set to be used
when you save the document.

InsertLineBreaks If the document is saved in a text format (for example,
you passed WdSaveFormat.wdFormatText to the FileFormat
parameter), pass TRue to insert line breaks at the end of
each line of text.

AllowSubstitutions If the document is saved in a text format, pass TRue to
convert some symbols with text that looks similar.
Replace the symbol © with (c), for example.

LineEnding If the document is saved in a text format, pass a
member of the WdLineEndingType enumeration to specify
the way Word marks line and paragraph breaks.

AddBiDiMarks If you pass true, Word adds control characters to the file
to preserve the bidirectional layout of the document.

Working with Windows Associated with a Document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A particular document can have one or more windows associated with it. Even when a document is opened with False
passed to the Visible parameter of the Documents collection's Open method, it still has a window associated with it, albeit
a window whose Visible property is False. When a document has multiple windows associated with it, you can use the
Windows property to return the collection of windows associated with that document. You can determine which of the
windows will have the focus when the document is active by using the ActiveWindow property. To activate a particular
document and make its ActiveWindow the one with focus, use the Activate method.

Changing the Template Attached to a Document

A document always has a template associated with it. By default, the template is the Normal template (normal.dot),
also available from the Application object's NormalTemplate property. A document might be associated with some other
template, usually because it was created from a particular template.

If you have a Document object and you want to determine what template is associated with it, you can use the
AttachedTemplate property. When you get the value of AttachedTemplate, it returns an Object that you can cast to a
Template object. When you set the value of AttachedTemplate, you can pass either a Template object or a String
containing the filename of the template.

Important Collections Associated with Both Document and Range

The Document and Range objects share a number of properties that return collections you will frequently use. Rather
than consider these properties both in this section and in the section on Range later in this chapter, we cover both of
them here only. Table 8.8 shows these properties associated with both Range and Document that return important
collection objects.

Table 8.8. Properties Associated with Both Document and Range
That Return Important Collections

Property Name Type What It Does

Bookmarks Bookmarks Returns the Bookmarks collection. Bookmarks can be
used to mark certain areas of a document and then
return easily to those areas of the document. Bookmarks
are discussed in more detail in the section "Working with
Bookmarks" later in this chapter.

Characters Characters Returns the Characters collection, which enables you to
work with a Document or Range at the level of an
individual character. The Characters collection returns
one-character-long Range objects.

Comments Comments Returns the Comments collection, which enables you to
access comments made by reviewers in the Document or
Range.

Endnotes Endnotes Returns the Endnotes collection, which enables you to
access the endnotes associated with a Document or
Range.

Fields Fields Returns the Fields collection, which enables you to
access the fields used in a Document or Range.

Footnotes Footnotes Returns the Footnotes collection, which enables you to
access the footnotes used in a Document or Range.

Hyperlinks Hyperlinks Returns the Hyperlinks collection, which enables you to
access hyperlinks in a Document or Range.

InlineShapes InlineShapes Returns the InlineShapes collection, which enables you
to access an InlineShape (an InlineShape can include a
drawing, an ActiveX control, and many other types of
objects enumerated in the Office.MsoShapeType
enumeration) that has been inserted inline with the text
in a Document or Range.

Paragraphs Paragraphs Returns the Paragraphs collection, which enables you to
access individual Paragraph objects associated with the
Document or Range.

Revisions Revisions Returns the Revisions collection, which enables you to
access a Revision made in the Document or Range.

Sections Sections Returns the Sections collection, which enables you to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sections Sections Returns the Sections collection, which enables you to
access a Section within the Document or Range. A new
Section can be added using the Break command from
the Insert menu.

Sentences Sentences Returns the Sentences collection, which enables you to
work with a Document or Range at the level of an
individual sentence. The Sentences collection returns a
Range object for each sentence.

Tables Tables Returns the Tables collection, which enables you to
access a Table within the Document or Range.

Words Words Returns the Words collection, which enables you to work
with a Document or Range at the level of an individual
word. The Words collection returns a Range object for
each word.

Note that the Characters, Sentences, and Words collections are special collections that return Range objects when you
iterate over them. Listing 8.22 shows a VSTO customization that uses these collections, as well as the Paragraphs
collection. It creates a document with some text in it and then a second document to output information about the first
document.

Listing 8.22. A VSTO Customization That Uses the Characters, Paragraphs,
Sentences, and Words Collections

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup
 Dim r As Word.Range = Me.Range()
 r.Text = "Whether I shall turn out to be the hero " & _
 "of my own life, or whether that station will be " & _
 "held by anybody else, these pages must show. To " & _
 "begin my life with the beginning of my life, I " & _
 "record that I was born (as I have been informed " & _
 "and believe) on a Friday, at twelve o'clock at " & _
 "night. It was remarked that the clock began " & _
 "to strike, and I began to cry, simultaneously."

 Dim reportDoc As Word.Document
 reportDoc = Me.Application.Documents.Add()
 Dim report As Word.Range = reportDoc.Range
 report.InsertAfter(_
 String.Format("There are {0} paragraphs." & _
 vbCrLf, _
 Me.Paragraphs.Count))

 For Each paragraph As Word.Paragraph In Me.Paragraphs
 report.InsertAfter(String.Format("{0}\" & vbCrLf, _
 paragraph.Range.Text))
 Next

 report.InsertAfter(String.Format(_
 "There are {0} sentences." & _
 vbCrLf, Me.Sentences.Count))

 For Each sentence As Word.Range In Me.Sentences
 report.InsertAfter(String.Format(_
 "{0}" & vbCrLf, sentence.Text))
 Next

 report.InsertAfter(String.Format(_
 "There are {0} words." & vbCrLf, _
 Me.Words.Count))

 For Each word As Word.Range In Me.Words
 report.InsertAfter(String.Format(_
 "{0}" & vbCrLf, word.Text))
 Next

 report.InsertAfter(String.Format(_
 "There are {0} characters." & _
 vbCrLf, Me.Characters.Count))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 vbCrLf, Me.Characters.Count))

 For Each character As Word.Range In Me.Characters
 report.InsertAfter(String.Format(_
 "{0}" & vbCrLf, character.Text))
 Next

 End Sub

End Class

Important Collections Associated with Document Only

Some properties return collections associated only with Document, not with Range. Table 8.9 shows several of these
properties.

Table 8.9. Properties Associated with Document That Return
Important Collections

Property Name Type What It Does

CommandBars CommandBars Returns the CommandBars collection. The CommandBars
collection is used to add new toolbars, buttons, and
menus to Word.

Shapes Shapes Returns the Shapes collection. The Shapes collection
contains Shape objects (a Shape can include a drawing,
an ActiveX control, and many other types of objects
enumerated in the Office.MsoShapeType enumeration) that
are not inline with text but are free floating in the
document.

StoryRanges StoryRanges Returns the StoryRanges collection. The StoryRanges
collection provides a way to access ranges of text that
are not part of the main body of the document, including
headers, footers, footnotes, and so on. The StoryRanges
collection's Item property is passed a member of the
enumeration WdStoryType.

Versions Versions Returns information about the different versions of the
document if the document is being checked in and out of
a workspace.

Working with Document Properties

Document has a BuiltinDocumentProperties property that returns an Object that can be cast using CType to an
Office.DocumentProperties collection representing the built-in document properties associated with the document.
These are the properties that you see when you choose Properties from the File menu and click the Summary tab.
These include properties such as Title, Subject, Author, and Company. Table 8.10 shows the names of all the document
properties associated with a document.

Table 8.10. The Names of the Built-In Document Properties in Word
Application Name Last print date Number of pages

Author Last save time Number of paragraphs

Category Manager Number of slides

Comments Number of bytes Number of words

Company Number of characters Revision number

Creation date Number of characters (with spaces) Security

Format Number of hidden slides Subject

Hyperlink base Number of lines Template

Keywords Number of multimedia clips Title

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Keywords Number of multimedia clips Title

Last author Number of notes Total editing time

Document also has a CustomDocumentProperties property that returns an Object that can be cast to an
Office.DocumentProperties collection representing any custom document properties associated with the document.
These are the custom properties that you see when you choose Properties from the File menu and click the Custom tab.
Custom properties can be created by your code and used to store name-and-value pairs in the document.

The DocumentProperties collection and DocumentProperty object are located in the Microsoft Office 11.0 Object Library
(office.dll), which contains objects shared by all the Office applications. These objects are in the Microsoft.Office.Core
namespace and typically are brought into Office projects in an Office namespace as shown here:

Imports Office = Microsoft.Office.Core

Listing 8.23 shows an example of iterating over the DocumentProperties collection returned by the
CustomDocumentProperties and BuiltInDocumentProperties properties. We get the value of the built-in properties in a
try/Catch block because some built-in properties throw exceptions when their values are accessed.

Listing 8.23. A VSTO Customization That Iterates over DocumentProperties
Collections

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim cProps As Office.DocumentProperties = _
 Me.CustomDocumentProperties

 Dim bProps As Office.DocumentProperties = _
 Me.BuiltInDocumentProperties

 Dim doc As Word.Document = Me.Application.Documents.Add()
 Dim range As Word.Range = doc.Range

 range.InsertAfter(_
 "Built-in Document Properties" & vbCrLf & vbCrLf)

 For Each bProp As Office.DocumentProperty In bProps
 Dim name As String = bProp.Name
 Dim value As Object = Nothing
 Try
 value = bProp.Value
 Catch ex As Exception
 value = ex.Message
 End Try

 range.InsertAfter(String.Format("{0} - {1}" & _
 vbCrLf, name, value))

 Next

 range.InsertAfter(_
 "Custom Document Properties" & vbCrLf & vbCrLf)

 For Each cProp As Office.DocumentProperty In cProps
 range.InsertAfter(String.Format("{0} - {1}" & _
 vbCrLf, cProp.Name, cProp.Value))
 Next

 End Sub

End Class

To access a DocumentProperty in a DocumentProperties collection, you use the indexing syntax (docProperties(Object)),
which returns a DocumentProperty object. The indexer takes an Index parameter of type Object. You can pass an Integer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

which returns a DocumentProperty object. The indexer takes an Index parameter of type Object. You can pass an Integer
representing the 1-based index of the DocumentProperty in the collection you want to access. Alternatively, you can
pass a String representing the name of the DocumentProperty you want to access. As with other collections, the Count
property returns how many DocumentProperty objects are in the collection.

A DocumentProperty object has a Name property that returns a String containing the name of the property. It also has a
Value property of type Object that returns the value of the property. You can check what the type is of Value by using the
Type property that returns a member of the Office.MsoDocProperties enumeration: msoPropertyTypeBoolean, msoPropertyTypeDate,
msoPropertyTypeFloat, msoPropertyTypeNumber, or msoPropertyTypeString.

Listing 8.24 shows how a DocumentProperty is accessed.

Listing 8.24. A VSTO Customization That Accesses a DocumentProperty Using an
Indexer

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim bProps As Office.DocumentProperties = _
 Me.BuiltInDocumentProperties

 Dim author As Office.DocumentProperty = bProps("Author")
 MessageBox.Show(String.Format(_
 "Property {0} is set to {1}.", _
 author.Name, author.Value))

 Dim third As Office.DocumentProperty = bProps(3)
 MessageBox.Show(String.Format(_
 "Property {0} is set to {1}.", _
 third.Name, third.Value))

 End Sub

End Class

You can add a custom DocumentProperty to a DocumentProperties collection by using the Add method. The Add method
takes the parameters shown in Table 8.11.

Table 8.11. The DocumentProperties Collection's Add Method
Parameters

Parameter
Name Type What It Does

Name String Sets the name of the new property.

LinkToContent Boolean Sets whether the property is linked to the contents of
the container document.

Type optional Object Sets the data type of the property. Can be one of the
following Office.MsoDocProperties enumerated values:
msoPropertyTypeBoolean, msoPropertyTypeDate,
msoPropertyTypeFloat, msoPropertyTypeNumber, or
msoPropertyTypeString.

Value optional Object Sets the value of the property if LinkToContent is False.

LinkSource optional Object Sets the source of the linked property if LinkToContent is
TRue.

Listing 8.25 shows an example of adding a custom DocumentProperty of type msoPropertyTypeString. Note that Word will
let you set the value to a long String, but it will truncate that value to 255 characters. Fortunately, VSTO enables
developers to store larger amounts of data in a document through a feature called cached data. For more information
on the cached-data feature of VSTO, see Chapter 18, "Server Data Scenarios."

Listing 8.25. A VSTO Customization That Adds a Custom DocumentProperty

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 8.25. A VSTO Customization That Adds a Custom DocumentProperty

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim props As Office.DocumentProperties
 props = Me.CustomDocumentProperties
 Dim prop As Office.DocumentProperty
 Prop = props.Add("My Property", _
 False, Office.MsoDocProperties.msoPropertyTypeString, _
 "My Value")

 MsgBox(String.Format("Property {0} is set to {1}.", _
 prop.Name, prop.Value))

 End Sub

End Class

Checking Spelling and Grammar in Documents and Ranges

You can control the grammar checking in a Document or Range by using the following methods and properties.
GrammarChecked is a Boolean property that returns TRue if the grammar in the document or range has been checked. If
the grammar has not yet been checked, you can force a grammar check by calling the CheckGrammar method. You can
control whether Word shows the grammatical errors in the document by setting the ShowGrammaticalErrors property to
TRue or False. The GrammaticalErrors property returns a ProofreadingErrors collection, which is a collection of Range
objects containing the ranges of grammatically incorrect text.

A similar set of methods and properties exists for checking spelling. SpellingChecked is a Boolean property that returns
true if the spelling in the document or range has been checked. If the spelling has not yet been checked, you can force a
spelling check by calling the CheckSpelling method. The CheckSpelling takes 12 optional Object parameters passed by
reference that you can omit unless you want to specify additional custom dictionaries to check the spelling against.

You can control whether Word shows the spelling errors in the document by setting the ShowSpellingErrors property to
true or False. The SpellingErrors property returns a ProofreadingErrors collection, which is a collection of Range objects
containing the ranges of incorrectly spelled text.

Listing 8.26 shows an example that uses many of these properties and methods.

Listing 8.26. A VSTO Customization That Checks Grammar and Spelling

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Me.Range.Text = "This are a test of the emegency " & _
 "broadcastin system."

 If Not Me.GrammarChecked Then
 Me.CheckGrammar()
 End If

 If Not Me.SpellingChecked Then
 Me.CheckSpelling()
 End If

 Me.ShowGrammaticalErrors = True
 Me.ShowSpellingErrors = True

 For Each range1 As Word.Range In Me.GrammaticalErrors
 MsgBox(String.Format(_
 "Grammatical error: {0}", range1.Text))
 Next

 For Each range2 As Word.Range In Me.SpellingErrors
 MsgBox(String.Format(_
 "Spelling error: {0}", range2.Text))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "Spelling error: {0}", range2.Text))
 Next

 End Sub

End Class

Printing a Document

The Document object has a PageSetup property that returns a PageSetup object that has several properties for
configuring the printing of a document. The PrintOut method can be used to print a document. It has 18 optional Object
parameters passed by reference. Table 8.12 lists some of the most commonly used optional parameters for PrintOut.

Table 8.12. Some of the Optional Parameters for PrintOut
Parameter
Name What It Does

Background Pass TRue to have PrintOut return immediately and let the code continue
while Word prints in the background.

Range Pass a member of the WdPrintOutRange enumeration: wdPrintAllDocument,
wdPrintCurrentPage, wdPrintFromTo, wdPrintRangeOfPages, or wdPrintSelection.

OutputFileName Pass the full filename of the file you want to print to when PrintToFile is
passed TRue.

From Pass the starting page number to print from when Range is set to
wdPrintFromTo.

To Pass the ending page number to print to when Range is set to wdPrintFromTo.

Copies Pass the number of copies to print.

Pages When Range is set to wdPrintRangeOfPages, pass a String representing the page
numbers and page ranges to print (for example, "1-5, 15").

PageType Pass a member of the WdPrintOutPages enumeration: wdPrintAllPages,
wdPrintEvenPagesOnly, or wdPrintOddPagesOnly.

PrintToFile Pass true to print to a file. Used in conjunction with the OutputFileName
parameter.

Collate Pass true to collate.

Listing 8.27 shows a simple example that sets some page-margin options using the PageSetup property and then calls
PrintOut specifying that two copies be printed.

Listing 8.27. A VSTO Customization That Uses the PrintOut Method

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Me.Range.Text = "This is a test of printing."

 ' Margins are specified in points.
 PageSetup.LeftMargin = 72.0F
 PageSetup.RightMargin = 72.0F
 Me.PrintOut(Copies:=2)

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with Document Protection

Document protection enables you to protect a Word document so the document can be edited only in certain ways by
certain people. Document protection in Word works on the principle of exclusions; you first protect the whole document
as read-only and then mark certain areas of the document as exclusions. This allows your users to edit only the parts of
the document that you specify as exclusions.

Figure 8.4 shows the Protect Document task pane that is shown when you choose Protect Document from the Tools
menu. The Allow Only This Type of Editing in the Document check box has been checked, and the drop-down list has
been set to not allow any changes. You can optionally allow users to make comments in the document, fill out forms, or
make tracked changes to the document.

Figure 8.4. The Protect Document task pane.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Given a basic protection level for the document, you can then add some exceptions by selecting the parts of the
document that should be editable and checking either a Groups or Individuals check box to allow that group or
individual to edit the selection. Word always provides an Everyone group, but you can add groups and individuals by
clicking the More Users link in the task pane. Clicking this link brings up a dialog box that lets you enter a Windows
username (DOMAIN\username), Windows user group (DOMAIN\usergroup), or e-mail address.

After you have selected the parts of the document you want to be exceptions and checked the check box next to the
groups or individuals you want to be able to edit those parts of the document, click the Yes, Start Enforcing Protection
button to protect the document to bring up the Start Enforcing Protection dialog box, shown in Figure 8.5. Word
prompts you for an optional password if you want to require a password to remove the document protection. Word can
also use user authentication to protect and encrypt the document to protect it further.

Figure 8.5. The Start Enforcing Protection dialog box.

With protection enforced, Word highlights the area of the document that you are allowed to edit based on the exception
set for the document. Figure 8.6 shows a document that has been protected but has the first sentence as an editing
exception for the Everyone group. Word highlights the regions that you are allowed to edit in the document and
provides a task pane for navigating between regions you are allowed to edit.

Figure 8.6. A document with protection enforced but with an exception to allow
editing of the first sentence.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document-protection settings apply to code that is talking to the Word object model, too. If the user is not allowed to
edit any sentence but the first sentence, code is also restricted to being able to change only the first sentence. If you
run code that tries to change protected parts of the document, an exception is raised.

Word provides several properties and methods that enable you to protect the document programmatically and examine
protection settings, as listed in Table 8.13.

Table 8.13. Properties and Methods Used with Document Protection
Name Type What It Does

ProtectionType WdProtectionType Returns the protection type for the document:
wdAllowOnlyComments, wdAllowOnlyFormFields, wdAllowOnlyReading,
wdAllowOnlyRevisions, or wdNoProtection.

Permission Permission The Permission object lets you work with IRM
(Information Rights Management) permissions. This type
of protection via IRM permissions is more secure than
simple document protection because it involves more
validation of identity and encryption of the document.

Protect(...) The Protect method lets you apply protection
programmatically.

Unprotect(...) The Unprotect method lets you remove protection
programmatically.

Range.Editors Editors Given a Range that is an exclusion, Range.Editors will
return an Editors collection, which lets you inspect the
groups and individuals allowed to edit that Range.

Working with Password Protection

In addition to a password that may be associated with document protection, a Word document can have a password
that must be entered to open the document. It can also have a second password associated with it that must be
entered to modify or write to the document. These passwords can be set by choosing the Tools menu in the Save As
dialog box and picking Security Options. Figure 8.7 shows the Security dialog box.

Figure 8.7. The Security dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8.7. The Security dialog box.

The Document object's HasPassword property returns TRue if the document has been protected with a password that
must be entered to open the document. The Password property is a write-only property that can be set to a String value
representing the password for the document. Word also has the notion of a password to allow the user to modify or
write to the document. If the WriteReserved property returns true, the document has been protected with a password
that must be entered to modify or write to the document. The WritePassword property is a write-only property that can
be set to a String value representing the write and modify password for the document.

Undo and Redo

Unlike Excel, Word adds the changes you make with your code to the undo stack. You can undo and redo actions your
code or a user has taken using the Document object's Undo and Redo methods. Both methods take by reference an
optional object parameter that you can set to the number of undo steps or redo steps you want to take. The UndoClear
method clears the undo stack, making it so the user can neither undo nor redo any recent actions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Range Object
The Range object in the Word object model is the primary way to interact with the content of the document. A Range
represents a range of contiguous text and provides a way to interact with that range of text, along with any additional
elements that are contained in that range of text, such as tables, shapes, lists, and bookmarks. You can get and use as
many Range objects as you need in your code.

Working with a Range does not change the selection in the document unless you use Range's Select method, which will
make the Range you have defined the active selection. If you are interested in working with the active selection, you
can use the Selection object, which shares many properties and methods with the Range object.

A Range has a start and end that are specified in units of characters in the document and include characters that do not
print, such as the carriage returns between paragraphs. A Range whose start and end are the same is sometimes called
a collapsed Range and can be thought of as the equivalent of an insertion point at a particular location in the document.

Word also has the concept of a story, which is the part of the document that the Range comes from. Most commonly,
you work with the main text story, which is the main body of the document. You might also want to get to other text
elements in the document, such as headers, footers, comments, footnotes, and endnotes. These other text elements
are different stories from the main text story.

Getting a Range

You have several ways to get a Range. We have already considered several document-level collections, such as
Sentences, Words, and Characters, that return Range objects. The most common way to get a Range is to use the
Range method on the Document object. The Range method takes two optional Object parameters passed by reference: a
Start and an End position. You can pass an Integer value to Start and End representing the start and end position of the
Range you want to get within the document. If you omit the Start parameter, the parameter defaults to 0, which is the
first position in the document. If you omit the End parameter, it defaults to the last position in the document.

Listing 8.28 shows an example of getting a Range object using the Document object's Range method. The Range
retrieved has a start index of 0 and an end index of 9. As Figure 8.8 shows, the retrieved Range includes nonprinting
paragraph marks.

Listing 8.28. A VSTO Customization That Works with a Range Object

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim r As Word.Range = Me.Range
 r.Text = "This" & vbCrLf & "is" & vbCrLf & _
 "a" & vbCrLf & "test."

 Dim r2 As Word.Range = Me.Range(0, 9)
 r2.Select()

 Dim result As String = r2.Text
 MsgBox(result.Length.ToString())
 MsgBox(r2.Text)

 End Sub

End Class

Figure 8.8. The result of running Listing 8.28: a range of length 9, including
nonprinting paragraph characters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

nonprinting paragraph characters.

Another way to get a Range is to use the Document object's StoryRanges collection. The StoryRanges collection enables
you to get a Range that is not part of the main document, such as a Range within headers, footers, or endnotes. This
collection has an index operator that takes a member of the WdStoryType enumeration that specifies what StoryRange
you want to access. Listing 8.29 shows some code that iterates over the StoryRanges in the document and displays the
type of each StoryRange.

Listing 8.29. A VSTO Customization That Iterates over the StoryRanges in the
Document

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim mainTextStory As Word.Range = Me.StoryRanges(_
 Word.WdStoryType.wdMainTextStory)

 For Each range As Word.Range In Me.StoryRanges
 MsgBox(String.Format("Story range {0} has length {1}.", _
 range.StoryType.ToString(), range.StoryLength))
 Next

 End Sub

End Class

Another way to a get a Range is to get it from the current selection. The Application object's Selection property returns
the active selection in the active document as a Selection object. The Selection object has a Range property that
returns a Range object that you can work with without affecting the selection (unless you change the Range in some
way that forces the selection to reset, such as by replacing the text in the selection). Before getting a Range from a
Selection object, verify that the Selection contains a valid Range by checking the Selection object's Type property. The
user could have selected a shape in the document, for example, in which case the Range would not be applicable when
retrieved from Selection.Range. Listing 8.30 shows an example that checks the Selection.Type property before using
Selection.Range. It also checks whether Selection is Nothing, which is a bit of overkill for this example. This case would
arise only if no documents are open.

Listing 8.30. A VSTO Customization That Gets a Range Object from a Selection
Object

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup
 Dim s As Word.Selection = Me.Application.Selection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim s As Word.Selection = Me.Application.Selection
 If s IsNot Nothing Then
 If s.Type = Word.WdSelectionType.wdSelectionNormal Then
 Dim r As Word.Range = s.Range
 MsgBox(r.Text)
 End If
 End If

 End Sub

End Class

Identifying a Range

A Range has several properties to help identify it. The Start and End property return the start and end character index
of the Range. The Document property returns the document object the Range is associated with. The StoryType
property returns a member of the WdStoryType enumeration identifying the StoryRange with which the Range is
associated.

The Information property takes a parameter of type WdInformation and returns information as an Object about the Range
depending on the enumerated value that is passed to the method. Listing 8.31 shows an example of getting the
information associated with a range. If you call the Information property on a Range with an enumerated type that is
not applicable, Information will return 1 as a return value.

Listing 8.31. A VSTO Customization That Gets Information About a Range

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim r As Word.Range = Me.Range
 r.Text = "This" & vbCrLf & "is" & vbCrLf & "a" & _
 vbCrLf & "test."

 Dim r2 As Word.Range = Me.Range(0, 9)
 r2.InsertAfter(vbCrLf)
 Dim i As Integer
 For i = 1 To 27
 GetInfo(r2, i)
 Next
 End Sub

 Private Sub GetInfo(ByVal r As Word.Range, _
 ByVal info As Word.WdInformation)

 Dim result As String = String.Format(_
 "Range.Information({0}) returns {1}." & vbCrLf, _
 info.ToString(), r.Information(info))
 r.InsertAfter(result)

 End Sub

End Class

Changing a Range

Given a Range object, a number of properties and methods enable you to change what a Range refers to. A simple way
to modify a Range object is to set the values of the Start and End properties. In addition, you can use several methods
to change the Range in other ways.

The Expand method expands a Range so that it encompasses the units of the enumeration WdUnits: wdCharacter, wdWord,
wdSentence, wdParagraph, wdSection, wdStory, wdCell, wdColumn, wdRow, or wdTable. The Expand method takes a range that only
partially covers one of these units and expands it so that the range includes the unit specified.

Consider Figure 8.9, for example. For this figure and subsequent figures, we have turned on Word's formatting marks

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Consider Figure 8.9, for example. For this figure and subsequent figures, we have turned on Word's formatting marks
(Tools > Options > View > Formatting Marks > All) so that you can see clearly the spaces and any paragraph marks in
the text. The original Range is shown in white text on a black background. The expanded Range after calling Expand
with wdWord is shown by the larger border. The original Range contained only e quithe last part of the word The and the
first part of the word quick. Calling Expand with wdWord expands the range so that it covers complete words. The
expanded Range after calling Expand contains The quick as well as the space after the word quick.

Figure 8.9. Result of calling Expand(WdUnits.wdWord) on a Range.

Figure 8.10 shows another example where only three characters of a word are selected. Calling Expand with wdWord
expands the Range so that it covers the complete word quick as well as the space after the word quick.

Figure 8.10. Result of calling Expand(WdUnits.wdWord) on a Range.

Note that calling Expand repeatedly on a Range passing wdWord does not expand the Range to cover additional words.
After a Range no longer contains any partial words, calling Expand with wdWord has no effect. It also follows that a
Range that does not start or end with any partial words to start with will not be changed when you call Expand and pass
wdWord. This applies to the other members of the WdUnits enumeration. When a Range does not contain any partial
sentences, for example, calling Expand with wdSentence has no effect.

Figure 8.11 shows an example of calling Expand passing wdSentence. The original Range contains parts of two sentences.
The result of calling Expand is that two complete sentences are made part of the Range.

Figure 8.11. Result of calling Expand(WdUnits.wdSentence) on a Range.

Figure 8.12 shows another example of calling Expand passing wdSentence. The original Range contains just dog.
Expanding the Range adds the rest of the sentence plus the spaces after the sentence.

Figure 8.12. Result of calling Expand(WdUnits.wdSentence) on a Range.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8.12. Result of calling Expand(WdUnits.wdSentence) on a Range.

The Expand method can change both the start and the end of a Range. The EndOf method works in a similar way to the
Expand method but changes only the end of a Range. The EndOf method takes by reference two optional parameters of
type Object: Unit and Extend. The Unit parameter can be passed a member of the WdUnits enumeration. The Extend
parameter can be passed a member of the WdMovementType enumeration: wdMove or wdExtend. If you pass wdExtend, the
EndOf method acts like the Expand method would if it were not allowed to change the start of a Range. Figure 8.13
shows an example of calling EndOf passing wdWord and wdExtend. It expands the Range to cover the partial word at the
end of the Range but does not expand to cover the partial word at the beginning of the Range.

Figure 8.13. Result of calling EndOf(WdUnits.wdWord, WdMovementType.wdExtend) on a
Range.

If you pass wdMove for the second parameter (which is the default if you omit the parameter), EndOf returns a Range
whose start and end is equaleffectively returning you an insertion point at the end of the expansion. Figure 8.14 shows
a Range that partially covers two words initially. Calling EndOf on this Range and passing wdMove for the second
parameter yields a Range whose start and end is 10at the end of the second word.

Figure 8.14. Result of calling EndOf(WdUnits.wdWord, WdMovementType.wdMove) on a
Range.

The StartOf method works like the EndOf method but changes only the start of the range. The StartOf method takes by
reference two optional parameters of type Object: Unit and Extend. The Unit parameter can be passed a member of the
WdUnits enumeration. The Extend parameter can be passed a member of the WdMovementType enumeration: wdMove or
wdExtend. If you pass wdExtend, the StartOf method acts like the Expand method would if it were not allowed to change
the end of a range. Figure 8.15 shows an example of calling StartOf passing wdWord and wdExtend. It expands the Range
to cover the partial word at the beginning of the Range but does not expand to cover the partial word at the end of the
Range.

Figure 8.15. Result of calling StartOf(WdUnits.wdWord, WdMovementType.wdExtend) on a
Range.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As with EndOf, the StartOf method when passed wdMove for the second parameter returns a Range whose start and end
is equaleffectively returning you an insertion point at the beginning of the expansion. Figure 8.16 shows a Range
containing a word at the end of a sentence. Calling StartOf and passing wdSentence and wdMove yields a Range where start
and end are 0effectively an insertion point at the beginning of the sentence.

Figure 8.16. Result of calling StartOf(WdUnits.wdSentence, WdMovementType.wdMove) on a
Range.

Moving a Range

The Move method can be called repeatedly to move a Range by WdUnits through the document. It does not expand the
Range but instead moves the Range, creating a Range whose start and end are equal. The Move method takes by
reference optional Unit and Count parameters of type Object. For Unit, you pass the member of the WdUnits enumeration
that you want to move by. The default value of Unit is wdCharacter. For Count, you pass a positive or negative Integer
specifying how many units you want to move forward or backward. The Move method returns the number of units by
which the Range was moved or returns 0 if the Range was not moved.

Figure 8.17 shows an example of calling Move passing wdWord and 1. Figure 8.18 shows an example of calling Move
passing wdWord and 1. In the first case, the Range moves to the start of the next word. In the latter case, the Range
moves to the beginning of the partially selected word.

Figure 8.17. Result of calling Move(WdUnits.wdWord, 1) on a Range containing h from
The.

Figure 8.18. Result of calling Move(WdUnits.wdWord, -1) on a Range containing h from
The.

The Next method works like Move when passed a positive count. Instead of modifying the Range directly, it returns a
new Range that would be the result after calling Move. The Previous method works like Move when passed a negative
count and also returns a new Range instead of modifying the existing Range. In the case where the Move method would
have returned 0 because the Move was not possible, Next and Previous returns Nothing.

The MoveUntil method takes a required Object by reference parameter to which you can pass a String containing the
characters that you want to find. It takes a second optional Object parameter by reference to which you can pass the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

characters that you want to find. It takes a second optional Object parameter by reference to which you can pass the
number of characters after the Range to search. If MoveUntil cannot find a specified character within the number of
characters you pass, it will not change the Range. You can pass a negative number of characters to search the
characters before the range. You can also pass to the second optional Object parameter the constant WdConstants.wdForward
or WdConstants.wdBackward to specify to search forward or backward without specifying a limit on the number of characters
to search.

Figure 8.19 shows the result of calling MoveUntil passing "abc" as the String and WdConstants.wdForward for the second
parameter. It searches forward until it finds character a, b, or c. The first of those it finds is the c in the word quick. It
sets the start and end of the Range to 7.

Figure 8.19. Result of calling MoveUntil("abc", WdConstants.wdForward) on a Range
containing h from The.

Range has a MoveStart and MoveUntilStart method that work like Move and MoveUntil but affect only the start position
of the Range unless the start is moved forward to a position beyond the end, in which case Start and End are set to the
same value. Similarly, Range has a MoveEnd and MoveUntilEnd method that work like Move and MoveUntil but affect
only the end position of the Range.

The SetRange method takes a Start and End parameter as an Integer to set the start and end position of the Range in
characters. Using the SetRange is the equivalent of setting the Start and End properties on Range.

Ranges and Stories

Given a Range, you can expand the range to include the full story associated with the Range using the WholeStory
method. Some stories are split into multiple linked text elements in a document (text-box stories can be linked, and
header and footer stories can be linked), so calling WholeStory cannot give you each of the multiple linked text
elements. For these cases, you can use the NextStoryRange property to get the next linked story of the same type.

Navigating a Range

Earlier in this chapter you read about the Browser object, which lets you access the same functionality that is available
in the browser control shown in Figure 8.1. The Browser object enables you to go easily to the next element of a
particular type in a document, such as the next bookmark, comment, or field. The Browser object affects the selection
in the document, however, which is often undesirable.

To go to the next element of a particular type without affecting the selection, you can use the GoTo method of the
Range object. GoTo does not affect the Range object it is called on but instead returns a new Range object that
represents the resulting Range after calling GoTo. The GoTo method takes by reference four optional Object parameters.
The first parameter, the What parameter, can be passed a member of the WdGoToItem enumeration:

wdGoToBookmark

wdGoToComment

wdGoToEndnote

wdGoToEquation

wdGoToField

wdGoToFootnote

wdGoToGrammaticalError

wdGoToGraphic

wdGoToHeading

wdGoToLine

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

wdGoToObject

wdGoToPage

wdGoToPercent

wdGoToProofreadingError

wdGoToRevision

wdGoToSection

wdGoToTable

The second parameter, the Which parameter, can be passed a member of the WdGoToDirection enumeration: wdGoToAbsolute,
wdGoToFirst, wdGoToLast, wdGoToNext, wdGoToPrevious, or wdGoToRelative. The wdGoToAbsolute value can be used to go to the nth
item of the type specified by the What parameter.

The third parameter, the Count parameter, is passed the number of the item to get and is affected by the second
parameter. If What is passed wdGoToLine and Count is passed 1, for example, depending on the Which parameter, GoTo
could go to the next line after the Range (wdGoToNext), the first line in the document (wdGoToAbsolute), or the line previous
to the current Range (wdGoToPrevious).

The fourth parameter, the Name parameter, can be passed a name if the What argument specifies an element identifiable
by name: wdGoToBookmark, wdGoToComment, or wdGoToField.

GoToNext and GoToPrevious are simpler versions of the GoTo method that take only the What parameter and go to the
next or previous instance of the type of object specified by the What parameter.

Listing 8.32 shows an example of using the GoTo method on a Range to navigate the pages in a document and display
the first sentence on each page. We also use Information to get the page count and Expand to expand the collapsed
Range returned by GoTo to include the first sentence on the page.

Listing 8.32. A VSTO Customization That Uses the GoTo Method

Public Class This Document

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 ' Generate some random text in the document.
 Dim r As Word.Range = Range()
 Dim builder As New System.Text.StringBuilder()
 Dim rand As New Random()

 Dim i As Integer
 For i = 0 To 200
 builder.AppendLine(rand.NextDouble().ToString())
 Next
 r.Text = builder.ToString()

 Dim maxPage As Integer = _
 r.Information(Word.WdInformation.wdNumberOfPagesInDocument)

 ' GoTo to navigate the pages
 Dim page As Integer
 For page = 1 To maxPage
 Dim r2 As Word.Range = r.GoTo(Word.WdGoToItem.wdGoToPage, _
 Word.WdGoToDirection.wdGoToAbsolute, page)

 r2.Expand(Word.WdUnits.wdSentence)
 MsgBox(String.Format(_
 "First sentence is {0} starting at position {1}.", _
 r2.Text, r2.Start))
 Next

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Collapsing a Range

We have already mentioned several times the concept of a collapsed Rangea Range whose start and end is equal. The
Collapse method takes a Range and collapses it. It takes by reference an optional parameter Direction of type Object. You
can pass a member of the WdCollapseDirection enumeration: wdCollapseEnd, which makes Start equal to End, or wdCollapseStart,
which makes End equal to Start. If you omit the Direction parameter, the default is wdCollapseStart.

Getting Text from a Range

The Text property returns a String containing the text in the Range. The behavior of the Text property can be changed
by using the TextRetrievalMode property, which returns a TextRetrievalMode object. Setting the TextRetrievalMode
object's IncludeFieldCodes property to TRue makes it so the Text property returns field codes. The default is the setting
of the Field Codes check box in the View tab of the Options dialog box.

Setting the TextRetrievalMode object's IncludeHiddenText property to true makes it so the Text property returns hidden
text in the document. The default is the setting of the Hidden Text check box in the View tab of the Options dialog box.

The TextRetrievalMode object's ViewType property can also affect what the Text property returns. The ViewType
property can be set to a member of the WdViewType enumeration: wdMasterView, wdNormalView, wdOutlineView, wdPrintPreview,
wdPrintView, wdReadingView, or wdWebView. When set to wdOutlineView, for example, Text returns only the text visible in outline
view.

Listing 8.33 shows the creation of some text in a document that includes a field and some hidden text. Then the Text
property is used in several ways, showing the effect of changing TextRetrievalMode settings.

Listing 8.33. A VSTO Customization That Modifies TextRetrievalMode Settings

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 ' Generate some random text in the document.
 Dim r As Word.Range = Range()
 r.Text = "Hello "

 ' Add a field
 r.Collapse(Word.WdCollapseDirection.wdCollapseEnd)
 r.Fields.Add(r, Word.WdFieldType.wdFieldDate)

 ' Hide some text
 r.SetRange(1, 2)
 r.Font.Hidden = 1

 r = Range()
 r.TextRetrievalMode.IncludeFieldCodes = False
 r.TextRetrievalMode.IncludeHiddenText = False
 MsgBox(r.Text)

 r.TextRetrievalMode.IncludeFieldCodes = True
 MsgBox(r.Text)

 r.TextRetrievalMode.IncludeHiddenText = True
 MsgBox(r.Text)

 End Sub

End Class

Setting the Text in a Range

Setting the Text property to a string value is the most basic way to set text in a Range. Setting the Text property
replaces the text in the Range with the string value and changes the end of the Range so the start and end cover the
length of the new string. If the Range is collapsed, setting the Text property does not replace any existing text, but it
inserts the new string at the location of the Range and changes the end of the Range so that the start and end cover
the length of the new string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the length of the new string.

Setting the Text property only changes the characters of the Range, not the formatting. If you have one Range
formatted a particular way and a second Range you want to copy both the text of the first Range and its formatting to,
you can use the FormattedText property, which takes a Range. Listing 8.34 shows an example of using the
FormattedText property to take one Range that is formatted and to set the text and formatting of a second Range to
the first.

Listing 8.34. A VSTO Customization That Uses FormattedText to Set Text and
Formatting

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim r As Word.Range = Range()
 r.Text = "Hello Hello Happy"
 r = Range(0, 5)
 r.Bold = 1
 Dim r2 As Word.Range = Range(12, 17)
 r2.FormattedText = r

 End Sub

End Class

Each time you set the Text property, it replaces the existing Range and changes the end of the Range so that the start
and end cover the new string. The InsertAfter method lets you add text immediately after the Range without replacing
the existing Range. The InsertAfter method takes a String for the text you want to insert after the Range. InsertAfter
changes the end of the Range so that the start and end cover the old Range and the string you have added after the
Range.

The InsertBefore method lets you add text immediately before the Range without replacing the existing Range. The
InsertBefore method takes a String for the text you want to insert before the Range. InsertBefore changes the end of the
Range so that the start and end cover the old Range and the string you have added before the Range.

Inserting Nonprinting Characters and Breaks

You have several ways to insert nonprinting characters, such as tabs and paragraph marks. A simple way is to use
constants provided for you by Visual Basic 2005. In a string, you can specify a tab with the constant vbTab. You can
specify a paragraph mark (a new line) by using vbCrLf. Listing 8.35 shows some examples of using these constants to
insert nonprinting characters. Figure 8.20 shows the result of running Listing 8.35 with nonprinting characters showing.

Listing 8.35. A VSTO Customization That Uses Visual Basic Constants and the Text
Property

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim r As Word.Range = Range()
 r.Text = "Item" & vbTab & "Name" & vbCrLf
 r.InsertAfter("111" & vbTab & "1/4"" pipe" & vbCrLf)
 r.InsertAfter("112" & vbTab & "1/2"" pipe" & vbCrLf)
 r.InsertAfter(vbCrLf & vbCrLf)
 r.InsertAfter("File path: c:\\Temp\\Doc1.doc")

 End Sub

End Class

Figure 8.20. Result of running Listing 8.35.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8.20. Result of running Listing 8.35.

It is also possible to insert paragraphs using the InsertParagraph method. The InsertParagraph method inserts a new
paragraph at the start position of the Range, replacing the current Range. It changes the Range so that it covers the
start position and the newly inserted paragraph mark. InsertParagraph is the equivalent of setting the Text property to
vbCrLf. InsertParagraphBefore inserts a new paragraph at the start position of the Range and changes the end of the
Range to expand it to cover the old Range and the newly inserted paragraph mark. InsertParagraphBefore is the
equivalent of calling the InsertBefore method and passing vbCrLf. InsertParagraphAfter is the equivalent of calling the
InsertAfter method and passing vbCrLf.

Figure 8.21 shows some additional kinds of breaks that a user can insert into a document using the Break command
from the Insert menu. These types of breaks can be inserted programmatically using Range's InsertBreak method. The
InsertBreak method takes by reference an optional parameter of type Object to which you can pass a member of the
WdBreakType enumeration. The members of the WdBreakType enumeration correspond to the breaks in Figure 8.21:
wdPageBreak, wdColumnBreak, wdTextWrappingBreak, wdSectionBreakNextPage, wdSectionBreakContinuous, wdSectionBreakEvenPage, and
wdSectionBreakOddPage. InsertBreak works like setting the Text property would; the current Range is replaced with the
break, or if the Range is collapsed, the break is inserted at the position of the Range.

Figure 8.21. The Break dialog box.

Working with Formatting

The Font property returns a Font object that controls font settings for the Range. Many of the properties associated with
Font, such as the Bold property, that you would expect to be of type Boolean are instead of type Integer. This is because a
particular Range could be all bold, partially bold, or not bold, for example. If the Range is partially bold, it returns
WdConstants.wdUndefined. If the Range is not bold, it returns a 0. If the Range is all bold, it returns a 1. This is another
example where the COM implementation of the Word object model peeks through, because 1 corresponds to a true

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

example where the COM implementation of the Word object model peeks through, because 1 corresponds to a true
value in COM object models. This can cause confusion, because the Boolean value for TRue in .NET when cast to an
integer is 1, not 1. So when checking the value of these properties, remember to not make the mistake of comparing to
1 or the Boolean value of true cast to an Integer because this will cause your code to fail to detect the state properly.
Instead, always compare to 0 or the Boolean value of False cast to an Integer.

Table 8.14 lists several of the most frequently used properties associated with the Font object.

Table 8.14. Frequently Used Properties Associated with the Font
Object

Property Name Type What It Does

AllCaps Integer Set to 1 to format the font as all capital letters

Bold Integer Set to 1 to format the font as bold

Color WdColor Set to a member of the WdColor enumeration to set the
color of the font

ColorIndex WdColorIndex Set to a member of the WdColorIndex enumeration to set
the color of the font

Hidden Integer Set to 1 to hide the text of the Range

Italic Integer Set to 1 to format the font as italic

Name String Set to a String representing the name of the font

Size Single Set to a size in points

SmallCaps Integer Set to 1 to format the font as small caps

Underline WdUnderline Set to a member of the WdUnderline enumeration to set
the underline format of the font

Another way to set the formatting of a Range is to use the Style property. The Style property takes by reference an
Object parameter. You can pass a String representing the name of the style you want to use to format the Range.

Listing 8.36 shows some formatting of a Range using Font properties and the Style property. Figure 8.22 shows the
document created by Listing 8.36.

Listing 8.36. A VSTO Customization That Formats a Range

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim r As Word.Range = Range()
 r.Text = "Item" & vbTab & "Name" & vbCrLf
 r.Font.Name = "Verdana"
 r.Font.Size = 20.0F

 r.Collapse(Word.WdCollapseDirection.wdCollapseEnd)
 r.InsertAfter("111" & vbTab & "1/4"" pipe" & vbCrLf)
 r.HighlightColorIndex = Word.WdColorIndex.wdGray25
 r.Italic = -1
 r.Font.Size = 10.0F
 r.Font.Name = "Times New Roman"

 r.Collapse(Word.WdCollapseDirection.wdCollapseEnd)
 r.InsertAfter("112" & vbTab & "1/2"" pipe" & vbCrLf)
 r.Shading.BackgroundPatternColor = Word.WdColor.wdColorBlack
 r.Font.Color = Word.WdColor.wdColorWhite
 r.Font.Size = 10.0F
 r.Font.SmallCaps = -1
 r.Font.Name = "Verdana"

 r.Collapse(Word.WdCollapseDirection.wdCollapseEnd)
 r.InsertAfter("This should be a heading.")
 r.Style = "Heading 1"

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

Figure 8.22. Result of running Listing 8.36.

Find and Replace

The Find property returns a Find object that you can use to search a Range. The Find object allows you to set options
similar to the ones you find in Word's Find dialog box. The Find object's Text property can be set to the String you want
to search for. The Find object's MatchWholeWord property can be set to False to allow matching of the string against a
partial word in the Range. After the find options have been set up, the Find object's Execute method executes the find
against the Range. Execute takes a number of optional parameters by referencesome of which correspond to properties
on the Find object. So, you have an option of either presetting Find properties and then calling Execute and omitting the
optional parameters, or skipping presetting Find properties and passing optional parameters to the Execute method. In
Listing 8.36, we take the former approach. Execute returns TRue if it is able to find the text specified and modifies the
Range so that it covers the found text. In Listing 8.37, calling Execute modifies the Range to have a start of 20 and an
end of 24.

Listing 8.37. A VSTO Customization That Uses the Find Object

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim r As Word.Range = Range()
 r.Text = "The quick brown fox jumps over the lazy dog."

 Dim f As Word.Find = r.Find()
 f.Text = "jump"
 f.MatchWholeWord = False

 If f.Execute() Then
 MsgBox(String.Format("Found {0} at position {1},{2}.", _
 f.Text, r.Start, r.End))
 End If

 End Sub

End Class

It is also possible to iterate over multiple found items using the Find object's Found property instead of checking the
return value of Execute each time. Listing 8.38 shows an example of iterating over every occurrence of the string "jump"
in a document. This example bolds every instance of jump that it finds in the document.

Listing 8.38. A VSTO Customization That Uses the Find Object's Found Property to
Iterate over Found Items

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Iterate over Found Items

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim r As Word.Range = Range()
 r.Text = "Jumping lizards! Jump on down to " & _
 "Mr. Jumpkin's jumpin' trampoline store."

 Dim f As Word.Find = r.Find()
 f.Text = "jump"
 f.MatchWholeWord = False

 f.Execute()
 While f.Found
 MsgBox(String.Format("Found {0} at position {1},{2}.", _
 f.Text, r.Start, r.End))
 r.Font.Bold = -1
 f.Execute()
 End While

 End Sub

End Class

The Find object has a Replacement property that returns a Replacement object, which allows you to set options for
doing a find and replace. The Replacement object's Text property lets you set the text you want to use to replace found
text with. In addition, to perform a replacement, you must pass a member of the WdReplace enumeration to the Replace
parameter of the Execute method (the 11th optional parameter). You can pass wdReplaceAll to replace all found
occurrences or wdReplaceOne to replace the first found occurrence. In Listing 8.39, we use the Replacement.Text property
to set the replace string and then call Execute passing wdReplaceAll to the Replace parameter.

Listing 8.39. A VSTO Customization That Performs a Replace

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim r As Word.Range = Range()
 r.Text = "The quick brown fox jumps over the lazy dog."

 Dim f As Word.Find = r.Find()
 f.Text = "jump"
 f.MatchWholeWord = False
 f.Replacement.Text = "leap"

 If f.Execute(Replace:=Word.WdReplace.wdReplaceAll) Then
 MsgBox(String.Format("Replaced {0} at position {1},{2}.", _
 f.Text, r.Start, r.End))
 End If

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with Bookmarks
Bookmarks provide you a way to name and keep track of a particular Range. The user can even edit the Range, and the
modified Range will still be accessible by its name unless the user deletes the Range.

To create and manage bookmarks, you can use Word's Bookmark dialog box. You can select some text in the
document, choose Bookmark from the Insert menu, give the range of text a name, and then click the Add button to add
a bookmark, as shown in Figure 8.23. Existing bookmarks can be selected and navigated to using the Go To button.
They can also be removed using the Delete button.

Figure 8.23. The Bookmark dialog box.

VSTO provides some additional tools for creating bookmarks. You can drag a bookmark control from the Visual Studio
control toolbox to the Word document to create a bookmark, for example. VSTO also adds any bookmarks in the
document as named class member variables of the ThisDocument class. VSTO support for bookmarks is described in
more detail in Chapter 13, "The VSTO Programming Model."

If you check the Bookmarks check box in the View tab of Word's Options dialog box, Word shows gray brackets around
any bookmarks defined in your document. Figure 8.24 shows the brackets Word displays. Here, we have created a
bookmark that includes the word brown and the space after brown.

Figure 8.24. Result of checking the Bookmarks check box in the View tab of Word's
Options dialog box.

To create and manage bookmarks programmatically, you can use the Document object's Bookmarks property or the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To create and manage bookmarks programmatically, you can use the Document object's Bookmarks property or the
Range object's Bookmarks property. Both return a Bookmarks collection. The former returns all the bookmarks defined
in the document; the latter returns just the bookmarks defined within the Range you are working with.

The Bookmarks collection's Add method adds a bookmark. It takes a required Name parameter to which you pass a String
representing the name you want to use for the bookmark. The Name parameter must be one word. The Add method also
takes by reference an optional Object parameter to which you pass the Range you want to create a bookmark for. The
method returns the newly added Bookmark object.

The Bookmarks collection's Exists method takes a String representing the name of a bookmark and returns a Boolean
value indicating whether the bookmark exists in the document. The Item property allows you to get to a bookmark
given its name or 1-based index in the Bookmarks collection. The Item property takes by reference an Object parameter
that can be set to a String representing the name of the bookmark or the 1-based index. Given a Bookmark object, you
can get the Range it refers to by using the Bookmark object's Range property.

Listing 8.40 shows an example of working with bookmarks. It first creates several bookmarks and then gets them again
using the Item property.

Listing 8.40. A VSTO Customization That Works with Bookmarks

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim r As Word.Range = Range()
 r.Text = "The quick brown fox "
 Me.Bookmarks.Add("FirstHalf", r)
 r.Collapse(Word.WdCollapseDirection.wdCollapseEnd)
 r.Text = "jumps over the lazy dog."

 Me.Bookmarks.Add("SecondHalf", r)
 If Me.Bookmarks.Exists("FirstHalf") = True Then
 MsgBox("FirstHalf exists")
 End If

 Dim b As Word.Bookmark = Me.Bookmarks.Item("FirstHalf")
 MsgBox(String.Format(_
 "FirstHalf starts at {0} and ends at {1}.", _
 b.Range.Start, b.Range.End))

 End Sub

End Class

Bookmarks are easily deleted from the document. Setting the Text property of the Range associated with a bookmark,
for example, replaces the Range and in the process deletes the bookmark associated with the Range. VSTO extends
Bookmark and adds some functionality to preserve the bookmark even when you set the Text property. For more
information on VSTO's support for bookmarks and the Bookmark control, see Chapter 13, "The VSTO Programming
Model."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with Tables
As mentioned earlier, both the Document and Range object have a Tables property that returns the Tables collection,
which contains tables in the Document or Range. To add a Table, you can use the Tables collection's Add method, which
takes a Range where you want to add the table, the number of rows and number of columns in the table, and two
optional Object parameters passed by reference that specify the autofit behavior of the table. The Add method returns
the newly added table.

Listing 8.41 shows code that adds and populates a small table. It uses the returned Table object's Rows property to get
the Rows collection. It uses the index operator () on the Rows collection to get an individual Row object. It uses the
Row object's Cells property to get the Cells collection. It uses the index operator on the Cells collection to get to an
individual Cell object. Finally, it uses the Cell object's Range property to get a Range corresponding to the Cell object
and uses the Range object's Text to property set the value of the cell.

Listing 8.41. A VSTO Customization That Creates and Populates a Simple Table

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim r As Word.Range = Range()
 Dim t As Word.Table = r.Tables.Add(r, 5, 5)

 Dim i As Integer
 For i = 1 To 5
 Dim j As Integer
 For j = 1 To 5
 t.Rows(i).Cells(j).Range.Text = _
 String.Format("{0}, {1}", i, j)
 Next
 Next

 End Sub

End Class

The Table object's Cell method provides an easier way of getting to a Cell. The Cell method takes an Integer row-and-
column parameter and returns a Cell object. Listing 8.42 shows the use of the Cell method, along with the use of
several autoformatting techniques as we create a simple multiplication table. The Columns object's AutoFit method is
used to resize the column widths to fit the contents of the cells. The Table object's Style property takes an Object by
reference that is set to the name of a table style as found in the Table AutoFormat dialog box. The Table object's
ApplyStyleLastRow and ApplyStyleLastColumn properties are set to False in Listing 8.42 to specify that no special style
be applied to the last row or last column in the table.

Listing 8.42. A VSTO Customization That Creates a Multiplication Table

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup
 Dim r As Word.Range = Range()
 Dim t As Word.Table = r.Tables.Add(r, 12, 12)

 Dim i As Integer
 For i = 1 To 12
 Dim j As Integer
 For j = 1 To 12
 Dim c As Word.Cell = t.Cell(i, j)
 If i = 1 And j = 1 Then
 c.Range.Text = "X"
 ElseIf i = 1 Then
 c.Range.Text = j.ToString()
 ElseIf j = 1 Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ElseIf j = 1 Then
 c.Range.Text = i.ToString()
 Else
 Dim result As Integer = i * j
 c.Range.Text = result.ToString()
 End If
 Next
 Next

 t.Columns.AutoFit()
 t.Style = "Table Classic 2"
 t.ApplyStyleLastRow = False
 t.ApplyStyleLastColumn = False

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9. Programming Outlook

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ways to Customize Outlook
Outlook has an object model that consists of 67 objects that combined have more than 1,700 properties and methods.
The Outlook object model is about a third as big as the Excel and Word object models and tends to give you less control
over Outlook than you would expect. Outlook does have a larger number of events compared with the Word and Excel
object modelsmore than 300 events. The large number of events, however, is due mainly to 16 events that are
duplicated on 15 Outlook objects.

The main way that you will integrate your code into Outlook is via add-ins. This model was originally designed to allow
the integration of COM components written in Visual Basic 6, Visual Basic for Applications, C, or C++. Through COM
interop, however, a managed object can masquerade as a COM object and participate in the Outlook add-in model.

Automation Executable

As mentioned in Chapter 2, "Introduction to Office Solutions," you can start Outlook from a console application or
Windows application and automate it from that external program. The problem with this approach is that you cannot
add your automation executable to the exclusion list of the Outlook object model security guard.

The Outlook object model security guard prevents code from accessing sensitive parts of the Outlook object model,
such as the address book or the send mail functionality. Its purpose is to protect Outlook from code that might spread
as an e-mail worm or virus. Outlook has a mechanism to trust a particular installed add-in and let it bypass the Outlook
object model guard that is discussed in Chapter 11, "Working with Outlook Objects." It does not have a mechanism to
trust an automation executable and let an automation executable bypass the guard.

Add-Ins

When building add-ins for Outlook, you have two choices: You can build either a COM add-in or a VSTO Outlook add-in.
A VSTO Outlook add-in solves many of the problems associated with COM add-in development and is the preferred
model for Outlook 2003 add-in development. You can read about this model for Outlook add-ins in Chapter 24,
"Creating Outlook Add-Ins with VSTO." The only time you would want to consider building a COM add-in instead is when
you need to target versions of Outlook that are older than Outlook 2003. You can read about building COM add-ins in
Chapter 23, "Developing COM Add-Ins for Word and Excel."

Outlook has a COM add-ins dialog box that enables users to enable and disable add-ins. Both VSTO add-ins and COM
add-ins appear in the COM Add-Ins dialog box. This dialog box is very well hidden. To access the COM Add-Ins dialog
box, you must follow these steps:

1. Choose Options from the Tools menu to bring up the Options dialog box.

2. Click the Other tab.

3. Click the Advanced Options button to bring up the Advanced Options dialog box.

4. Click the COM Add-Ins button to bring up the COM Add-Ins dialog box, shown in Figure 9.1.

Figure 9.1. The COM Add-Ins dialog box in Outlook.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can add and remove COM add-ins in the dialog box by using the Add and Remove buttons. VSTO add-ins cannot be
added using the Add button but can be removed using the Remove button. Each add-in has a check box that can be
checked and unchecked to enable or disable the add-in while leaving it in the list of available add-ins. Typically, you will
not use this dialog box to add and remove add-insonly to disable and enable available add-ins. The addition and
removal of add-ins is handled by the installer of your COM add-in or VSTO add-in.

Outlook discovers the add-ins that are installed by reading the registry keys under My
Computer\HKEY_CURRENT_USER\Software\Microsoft\Office\Outlook\Addins in the registry. You can view the registry
on your computer by going to the Windows Start menu and choosing Run. In the Run dialog box, type regedit for the
program to run; then click the OK button. You can also register add-ins for Outlook under My
Computer\HKEY_LOCAL_MACHINE\Software\Microsoft\Office\Outlook\Addins. Add-ins registered under
HKEY_LOCAL_MACHINE do not appear in the COM Add-Ins dialog box and cannot be enabled or disabled by users.

Smart Tags

Smart Tags are a feature that enables the display of a pop-up menu with actions for a given piece of text on the screen.
Outlook supports Smart Tags in several ways.

Smart Tags When Word Is the E-Mail Editor

First, if Word is used as the e-mail editor in Outlook, Smart Tags appear when you edit e-mail messages. To set Word
as the e-mail editor, you can use the Options command in the Tools menu to display Outlook's Options dialog box. On
the Mail Format tab, check Use Microsoft Office Word 2003 to Edit E-Mail Messages, as shown in Figure 9.2.

Figure 9.2. Specifying Word as the e-mail editor.

In addition to specifying Word as the e-mail editor, you must configure Word's Smart Tag options as described in
Chapter 6, "Programming Word." Then, when you create a new e-mail message, you will be able to see Smart Tags in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6, "Programming Word." Then, when you create a new e-mail message, you will be able to see Smart Tags in
your message, as shown in Figure 9.3.

Figure 9.3. Smart Tags in an e-mail message when Word is the e-mail editor.

Smart Tags in the Research Task Pane When Word Is the E-Mail Editor

You can register Smart Tags to recognize text in the Research task pane. If Word is being used as the e-mail editor, the
user can select some text in the e-mail, right-click the text, and choose Look Up to bring up the Research task pane.
Results in the Research task pane may include text that is tagged by Smart Tags.

Smart Tags Embedded in HTML-Formatted E-Mail and Displayed in the Reading Pane

A third way Smart Tags are supported in Outlook is when you use Word as the e-mail editor and send e-mail in HTML
format. If Word's send format is configured appropriately, Smart Tags can be embedded in the HTML-formatted
message. Users who read the messages that have Smart Tags installed and have Outlook's security settings set to
allow them will be able to see Smart Tags in Outlook's reading pane. Outlook's reading pane is effectively an HTML Web
browser.

To configure this use of Smart Tags, you must first specify Word as the e-mail editor and choose the send format to be
HTML, as shown in Figure 9.2 earlier in this chapter. To configure Word to be able to embed Smart Tags in HTML, you
must choose Options from the Tools menu of Word to bring up Word's Options dialog box. In this dialog box, select the
General tab, and click the E-Mail Options button. This brings up the E-Mail Options dialog box, shown in Figure 9.4. In
the General tab of this dialog box, you must set the HTML filtering options to None or Medium and check the Save
Smart Tags in E-Mail check box.

Figure 9.4. E-mail options to enable the embedding of Smart Tags in HTML e-mail
messages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

messages.

Finally, you must ensure that the security settings of Outlook will allow Smart Tags to appear. In Outlook's Options
dialog box, select the Security tab, and make sure that Zone is set to Internet, as shown in Figure 9.5.

Figure 9.5. Internet zone security required to allow Smart Tags to be displayed in
e-mail messages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With all these settings configured, you should be able to type an e-mail message and send it, and when it is received,
you can see the Smart Tag in the reading pane, as shown in Figure 9.6. The Smart Tag looks a little different because
the reading pane uses Internet Explorer's menu style rather than the Office menu style.

Figure 9.6. A Smart Tag displayed in the reading pane.

[View full size image]

Persona Menu Smart Tags

The final way Smart Tags are supported in Outlook is via the Persona menu. This menu appears on e-mail items and
other Outlook items when you click the Persona icon shown in many Outlook views. Figure 9.7 shows the Persona icon
and the menu that appears when you click it. Smart Tag actions appear in the Additional Actions submenu that is shown
in Figure 9.7.

Figure 9.7. The Persona menu in Outlook. Smart Tag actions appear in the
Additional Actions submenu.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSTO cannot be used to provide Smart Tags for Outlook because VSTO supports Smart Tags only for code behind a
document. The Outlook uses of Smart Tags are not at the document level but at the application level. Chapter 16,
"Working with Smart Tags in VSTO," describes how to create an application-level Smart Tag in Visual Basic that could
be used in e-mail when Word is your e-mail editor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Custom Property Pages
An Outlook add-in can add a custom property page to the Properties dialog box for a folder or to Outlook's Options
dialog box. We walk through how this is done using a VSTO Outlook add-in. First, create a VSTO Outlook add-in project
in VSTO by following the instructions in Chapter 24, "Creating Outlook Add-Ins with VSTO."

After you create a basic VSTO Outlook add-in project, you need to add a user control project item to the project. A user
control is a special kind of Windows Forms control that is useful for inserting into another window. To add a user control
to your project, click the project node in Solution Explorer and then choose Add User Control from the Project menu.
When you double-click the newly added user control project item, you will see the user control designer, shown in
Figure 9.8. You can resize the user control using the drag handle in the bottom-right corner. Resize it to about 410 x
355 pixels, which is the size of a property page in Outlook. With the user control resized, use the controls toolbox
(choose Toolbox from the View menu if it is not already showing) to add controls to your user control surface. In Figure
9.8, we have added several check boxes, radio buttons, and buttons to the user control surface.

Figure 9.8. The user control designer.

To use this user control as a custom property page, we must make some modifications to the code behind it. Right-click
the user control project item in Solution Explorer, and choose View Code. First, we must implement an interface
required by Outlook called PropertyPage. The PropertyPage interface has two methods and a property. The Apply
method is called on our PropertyPage implementation when the user clicks the Apply button in the Outlook Options or
Folder Properties dialog box. The GetPageInfo method gets a help filename and help context so that you can provide
help for your custom property page. The Dirty property is a Boolean property that you can use to let Outlook know
whether the user has changed any settings in your custom property page. When Dirty returns true, Outlook knows to
enable the Apply button in the dialog box so that the user can apply changes made in the custom property page.

Second, we must add a property that Outlook will call to get the caption for the property page tab. This property must
be marked with a DispId attribute that Outlook uses to identify which property will return the caption for the property
page tab. The name of the property does not matter as long as it returns a String; in Listing 9.1, we name the property
PageCaption.

Listing 9.1 shows what your class should look like after you have made these modifications. Because user controls use
the partial class feature in Visual Studio, all the code that is specific to how many buttons or controls you added should

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the partial class feature in Visual Studio, all the code that is specific to how many buttons or controls you added should
not show up in this file, but in the other hidden part of the partial class. Note that the code uses the
System.Runtime.InteropServices namespace for the DispID attribute on the Caption property. The code also declares a
constant called captionDispID that is set to the ID Outlook expects will be associated with the Caption property.

Listing 9.1. First Version of the Modified User Control Class

Imports Outlook = Microsoft.Office.Interop.Outlook
Imports System.Runtime.InteropServices

Public Class UserControl1
 Implements Outlook.PropertyPage

 Const captionDispID As Integer = -518
 Private isDirty As Boolean = False

 Public Sub Apply() Implements _
 Microsoft.Office.Interop.Outlook.PropertyPage.Apply

 MsgBox("The user clicked the Apply button.")

 End Sub

 Public ReadOnly Property Dirty() As Boolean _
 Implements Outlook.PropertyPage.Dirty

 Get
 Return isDirty
 End Get

 End Property

 Public Sub GetPageInfo(ByRef HelpFile As String, _
 ByRef HelpContext As Integer) _
 Implements Outlook.PropertyPage.GetPageInfo

 End Sub
 <DispId(captionDispID)> _
 Public ReadOnly Property PageCaption() As String
 Get
 Return "Test Page"
 End Get
 End Property

End Class

With the user control created, two event handlers must be added. The first event handler is for the Application object's
OptionsPagesAdd event. This event is raised when Outlook is ready to add custom property pages to the Outlook
Options dialog box, which is shown when the user chooses Options from the Tools menu. The event handler is passed a
pages parameter of type PropertyPages that has an Add method that can be used to add a user control as a custom
property page.

The second event handler is for the NameSpace object's OptionsPages Add event. This event is raised when Outlook is
ready to add custom property pages when a Properties dialog box for a folder is displayed. The Properties dialog box for
a folder is shown when the user right-clicks a folder and chooses Properties from the pop-up menu. The event handler
is passed a pages parameter of type PropertyPages that has an Add method that can be used to add a user control as a
custom property page. The event handler is also passed a folder parameter of type MAPIFolder that specifies the folder
for which the Properties dialog box will be shown.

Listing 9.2 shows an implementation of a VSTO ThisApplication class that handles these two events. In the event handlers
for the Application object's OptionsPagesAdd event and the NameSpace object's OptionsPagesAdd event, an instance of
the user control in Listing 9.1 is created and passed as the first parameter to the PropertyPages.Add method. The
second property is passed an empty string because the caption for the custom property page is retrieved by Outlook
calling the PageCaption property on the user control that has been attributed with a DispID known to Outlook.

Listing 9.2. A VSTO Outlook Add-In That Handles the OptionsPagesAdd Event on
Application and Namespace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application and Namespace

Imports Microsoft.VisualStudio.Tools.Applications.Runtime
Imports Outlook = Microsoft.Office.Interop.Outlook
Public Class ThisApplication

 Private nameSpace1 As Outlook.NameSpace

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 AddHandler Me.OptionsPagesAdd, _
 AddressOf ThisApplication_OptionsPagesAdd

 nameSpace1 = Me.Session
 AddHandler nameSpace1.OptionsPagesAdd, _
 AddressOf NameSpace_OptionsPagesAdd

 End Sub

 Private Sub ThisApplication_OptionsPagesAdd(_
 ByVal pages As Outlook.PropertyPages)

 pages.Add(New UserControl1(), "")

 End Sub

 Private Sub NameSpace_OptionsPagesAdd(_
 ByVal pages As Outlook.PropertyPages, _
 ByVal folder As Outlook.MAPIFolder)

 pages.Add(New UserControl1(), "")

 End Sub

End Class

If you compile and run this VSTO add-in, you will get the result shown in Figure 9.9 when you show Outlook's Options
dialog box and click the Test Page tab.

Figure 9.9. A custom property page added to Outlook's Options dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you right-click a folder and choose Properties, you can also see that the custom property page is added to the folder's
Properties dialog box, as shown in Figure 9.10.

Figure 9.10. A custom property page added to a folder's Properties dialog box.

If you play with these dialog boxes a bit, you will notice that the Apply button never gets enabled when you change the
check boxes or radio buttons in the custom property page. Also note that the Apply method that was implemented as
part of implementing the PropertyPage interface is never called. To fix this, the implementation of the user control is
modified as shown in Listing 9.3 so that when a check box or radio button is changed, it changes the value of the class
variable isDirty to true. In addition, the code notifies Outlook that the property page state has changed by connecting to
Outlook's PropertyPageSite object. The code declares a propertyPageSite class member variable and sets it by calling the
InitializePropertyPageSite method in the Load event handler. The Load event handler must use reflection to get the
PropertyPageSite object.

With the PropertyPageSite connected, the code defines a method called SetIsDirty that changes the state of the isDirty
variable and then calls Outlook's PropertyPageSite.OnStatusChange method. This notifies Outlook that it needs to call
into the PropertyPage interface to get the new state of the custom property page. A complete implementation would
detect any changes made to the property page that could change the dirty state and potentially detect when a change
is undone and clear the dirty state back to false.

Finally, the code raises the CheckedChanged event of the first check box on the custom property page. When the
changed state changes, the code calls SetIsDirty to set the dirty state to true and notifies Outlook that the state has
changed.

Listing 9.3. Second Version of a User Control Class That Handles Dirty State
Properly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Properly

Imports Outlook = Microsoft.Office.Interop.Outlook
Imports System.Runtime.InteropServices

<ComVisible(True)> _
Public Class UserControl1
 Implements Outlook.PropertyPage

 Const captionDispID As Integer = -518
 Private isDirty As Boolean = False
 Private propertyPageSite As Outlook.PropertyPageSite = Nothing

 Public Sub Apply() Implements _
 Microsoft.Office.Interop.Outlook.PropertyPage.Apply

 MsgBox("The user clicked the Apply button.")

 End Sub

 Public ReadOnly Property Dirty() As Boolean _
 Implements Outlook.PropertyPage.Dirty
 Get
 Return isDirty
 End Get

 End Property

 Public Sub GetPageInfo(ByRef HelpFile As String, _
 ByRef HelpContext As Integer) _
 Implements Outlook.PropertyPage.GetPageInfo

 End Sub

 <DispId(captionDispID)> _
 Public ReadOnly Property PageCaption() As String
 Get
 Return "Test Page"
 End Get
 End Property

 Private Sub SetIsDirty(ByVal value As Boolean)
 isDirty = value
 propertyPageSite.OnStatusChange()
 End Sub

 Private Sub CheckBox1_CheckedChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles CheckBox1.CheckedChanged

 SetIsDirty(True)

 End Sub

 Private Sub UserControl1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 InitializePropertyPageSite()

 End Sub

 Private Sub InitializePropertyPageSite()
 Dim windowsFormsStrongName As String = _
 Type.GetType("System.Windows.Forms.Form"). _
 Assembly.FullName.ToString()

 Dim objType As Type = GetType(System.Windows.Forms.Form)
 Dim windowsFormsStrongName As String = _
 objType.Assembly.FullName.ToString()

 Dim oleObjectType As Type = Type.GetType(_
 System.Reflection.Assembly.CreateQualifiedName(_
 windowsFormsStrongName, _
 "System.Windows.Forms.UnsafeNativeMethods")). _
 GetNestedType("IOleObject")

 Dim getClientSiteMethodInfo As System.Reflection.MethodInfo
 getClientSiteMethod Info = _
 oleObjectType.GetMethod("GetClientSite")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 oleObjectType.GetMethod("GetClientSite")

 propertyPageSite = CType(getClientSiteMethodInfo.Invoke(_
 Me, Nothing), Outlook.PropertyPageSite)

 End Sub

End Class

Now when you run the add-in and change the checked state of the first check box in the custom property page, the
dirty state is changed, and Outlook's PropertyPageSite is notified. The result is that the Apply button is enabled. Clicking
the Apply button invokes the test dialog box in Listing 9.3's implementation of the Apply method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction to the Outlook Object Model
Regardless of the approach you choose to integrate your code with Outlook, you eventually will need to talk to the
Outlook object model to get things done. This section introduces the Outlook object model. Chapter 10, "Working with
Outlook Events," and Chapter 11, "Working with Outlook Objects," describe some of the most frequently used
properties, methods, and events. This chapter also briefly examines another object model you can use with Outlook:
Collaboration Data Objects (CDO).

The first step in learning the Outlook object model is getting an idea of the basic structure of the object model
hierarchy. Figure 9.11 shows some of the most critical objects in the Outlook object model and their hierarchical
relationships.

Figure 9.11. The basic hierarchy of the Outlook object model.

[View full size image]

The Outlook object model has the notion of an Outlook item. An Outlook item is represented in the object model as an
Object and can be cast to one of the 15 Outlook item types shown in Table 9.1. Some objects in the object model, such
as the MAPIFolder object, contain an Items collection that can contain instances of any of the 15 Outlook item types;
therefore, the folder may contain a mixture of MailItem objects, TaskRequestItem objects, and so on. When you iterate
over a collection of Items, Outlook returns each item to you as an Object that you must cast to one of the 15 Outlook
item types before using it.

Table 9.1. Outlook Item Types
Object Description

ContactItem A contact item typically found in the Contacts folder

DistListItem A distribution list typically found in the Contacts folder

DocumentItem A document that you have added to an Outlook folder by dragging
and dropping it from the file system into the Outlook folder

JournalItem A journal entry typically found in the Journal folder

MailItem A mail message typically found in the Inbox folder

MeetingItem A meeting request typically found in the Inbox folder

NoteItem A note typically found in the Notes folder

PostItem A post in an Outlook folder

RemoteItem A mail message that has not yet been fully retrieved from the
server but has the subject of the message, the received date and
time, the sender, the size of the message, and the first 256
characters of the message body

ReportItem A mail delivery report, such as a report when mail delivery failed,
typically found in the Inbox folder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

typically found in the Inbox folder

TaskItem A task typically found in the Tasks folder

TaskRequestAcceptItem A response to a TaskRequestItem typically found in the Inbox
folder

TaskRequestDeclineItem A response to a TaskRequestItem typically found in the Inbox
folder

TaskRequestItem A task request sent to another user typically found in the Inbox
folder

TaskRequestUpdateItem An update to a TaskRequestItem typically found in the Inbox folder

Another example of an Outlook object model object that is associated with multiple Outlook item types is the Inspector
object. The Inspector object represents a window providing a detail view for one of the 15 Outlook item types. It could
be providing a view on a NoteItem, a MeetingItem, and so on. Inspector has a CurrentItem property that returns the
Outlook item it is displaying as an Object. You must cast the Object returned by CurrentItem to one of the Outlook item
types in Table 9.1 before using it. Chapter 11, "Working with Outlook Objects," discusses Outlook items in more detail.

Figure 9.12 shows a more complete view of the Outlook object model. (All the objects considered Outlook items are
gray.) Note in this diagram that the Inspector object and the Items object points to a gray circle, which represents any
of the Outlook items colored gray.

Figure 9.12. Some of the objects in the Outlook object model. All gray objects are
"Outlook items."

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction to the Collaboration Data Objects
The Outlook object model is complemented by another object model, called Collaboration Data Objects (CDO). This
section briefly discusses this object model and the reasons you might have to use it.

CDO provides some functionality unavailable in the Outlook object model. CDO works against the underlying data that
Outlook is connected to rather than working against UI elements specific to Outlook. CDO exposes some properties of
folders and Outlook items that the Outlook object model does not expose. CDO also provides methods unavailable in
the Outlook object model. For example:

CDO lets you delete an Outlook item permanently without first routing it to the Deleted Items folder, whereas
Outlook always routes Outlook items you delete to the Deleted Items folder.

CDO lets you programmatically show the Select Names dialog box, which can be used to choose recipients for
an e-mail message.

CDO lets you read and write several properties that are either not available in the Outlook object model or are
read-only in the Outlook object model.

The connection between the Outlook object model and CDO is that every Outlook item is in an information store
represented in Outlook by a root folder in Outlook's Folder List view. An information store can be an Exchange mailbox
on a server or a local PST file. Every information store is identified by a StoreID. Within that information store, an
Outlook item is identified by an EntryID. So if you can get the StoreID and EntryID associated with an Outlook item via
the Outlook object model, you can write CDO code to get to that same Outlook item using the StoreID and EntryID.

Before we show some code that illustrates navigating from an Outlook item to a CDO item, let's consider how to add a
reference to the CDO object model. Given that you have a project in Visual Studio, right-click the Project node in
Solution Explorer; then click the References tab in the Project Properties dialog box and choose Add to add a reference.
In the Add Reference dialog box, shown in Figure 9.13, click the COM tab, select the component Microsoft CDO 1.21
Library, and then click the OK button.

Figure 9.13. Adding a reference to CDO.

The result of clicking OK in the dialog box shown in Figure 9.13 is that a reference is added to the CDO library. The CDO

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The result of clicking OK in the dialog box shown in Figure 9.13 is that a reference is added to the CDO library. The CDO
library is contained in a namespace called MAPI. No pregenerated primary interop assembly (PIA) for the CDO library
existsso Visual Studio creates an interop assembly (IA) for the CDO library.

Listing 9.4 shows a VSTO Outlook add-in that navigates from an Outlook MailItem to the corresponding CDO Message
object. It handles the Inspectors.NewInspector event and displays a dialog box showing the subject using both an
Outlook Item object and CDO's Message object.

Also illustrated in this code is the use of CDO's root object, called the Session object. In the Startup method, the code
creates a new instance of the Session object and then calls the Session.Logon method to initialize the Session object. In
the Shutdown method, the code calls Logoff on the Session object to clean it up properly.

The GetMessageFromOutlookItem method gets the CDO Message object that corresponds to an Outlook Item object. It
gets several property values in a late-bound way. It gets an EntryID and a StoreID, and then uses the GetMessage
method on Session to get a CDO Message object. The GetOutlookItemFromMessage takes a CDO Message and gets the
corresponding Outlook Item object. It gets an EntryID and StoreID using properties on CDO's Message object. Then it
uses the GetItemFromID method on Outlook's NameSpace object to get an Outlook Item object.

Listing 9.4. Getting from an Outlook MailItem to a CDO Message Object

Imports Outlook = Microsoft.Office.Interop.Outlook

Public Class ThisApplication

 Private nameSpace1 As Outlook.NameSpace
 Private mapiSession As MAPI.Session
 Private inspectors1 As Outlook.Inspectors

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 nameSpace1 = Me.Session
 mapiSession = New MAPI.Session()
 mapiSession.Logon(ShowDialog:=False, NewSession:=False)

 inspectors1 = Me.Inspectors
 AddHandler inspectors1.NewInspector, _
 AddressOf Inspectors_NewInspector

 End Sub

 Private Sub ThisApplication_Shutdown(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Shutdown

 mapiSession.Logoff()

 End Sub

 Private Function GetMessageFromOutlookItem(_
 ByVal outlookItem As Object) As MAPI.Message

 ' Late Bound Properties
 Dim entryID As Object = outlookItem.EntryID
 Dim parentFolder As Object = outlookItem.Parent
 Dim storeID As Object = parentFolder.StoreID

 Return CType(mapiSession.GetMessage(entryID, storeID), MAPI.Message)

 End Function

 Private Function GetOutlookItemFromMessage(_
 ByVal message As MAPI.Message) As Object

 Dim entryID As String = CType(message.ID, String)
 Dim storeID As String = CType(message.StoreID, String)
 Return nameSpace1.GetItemFromID(entryID, storeID)

 End Function

 Private Sub Inspectors_NewInspector(_
 ByVal inspector As Outlook.Inspector)

 Dim inspectedItem As Object = inspector.CurrentItem

 Dim message As MAPI.Message = _
 GetMessageFromOutlookItem(inspectedItem)
 MsgBox(String.Format("message.Subject={0}", message.Subject))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim outlookItem As Object
 outlookItem = GetOutlookItemFromMessage(message)
 MsgBox(String.Format(_
 "outlookItem.Subject={0}", _
 outlookItem.Subject))

 End Sub

End Class

Figure 9.14 shows a diagram of the objects in the CDO object model. This book does not cover the CDO object model in
any additional depth.

Figure 9.14. The CDO object model.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter introduced the various ways you can integrate your code into Outlook. You learned about Outlook's ability
to add a custom property page to the Outlook Option's dialog box or to a folder's Properties dialog box. This chapter
also introduced the basic hierarchy of the Outlook object model and briefly considered the Collaboration Data Objects
object model. Chapter 10, "Working with Outlook Events," describes the events in the Outlook object model. Chapter
11, "Working with Outlook Objects," describes the most important objects in the Outlook object model. Chapter 24,
"Creating Outlook Add-Ins with VSTO," describes building VSTO Outlook add-ins.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10. Working with Outlook Events

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Events in the Outlook Object Model
Understanding the events in the Outlook object model is critical because this is often the primary way that your code is
run. This chapter covers many of the events in the Outlook object model, when they are raised, and the type of code
you might associate with these events.

Outlook associates the same set of events with all the Outlook item object types listed in Table 10.1. In this chapter, we
will refer to Item events, but there is no Item object per se in the Outlook object model. Instead, you will find the same
set of Item events (defined by ItemEvents_10_Event interface) on each of the 16 Outlook object model objects listed in
Table 10.1.

Table 10.1. Outlook Item Objects
Object Description

AppointmentItem An appointment item typically found in the
Calendar folder

ContactItem A contact item typically found in the Contacts
folder

DistListItem A distribution list typically found in the
Contacts folder

DocumentItem A document that you have added to an Outlook
folder by dragging and dropping it from the file
system into the Outlook folder

JournalItem A journal entry typically found in the Journal
folder

MailItem A mail message typically found in the Inbox
folder

MeetingItem A meeting request typically found in the Inbox
folder

NoteItem A note typically found in the Notes folder

PostItem A post in an Outlook folder

RemoteItem A mail message that has not yet been fully
retrieved from the server but has the subject
of the message, the received date and time,
the sender, the size of the message, and the
first 256 characters of the message body

ReportItem A mail delivery report, such as a report when
mail delivery failed, typically found in Outlook's
Inbox folder

TaskItem A task typically found in the Tasks folder

TaskRequestAcceptItem A response to a TaskRequestItem typically
found in the Inbox folder

TaskRequestDeclineItem A response to a TaskRequestItem typically
found in the Inbox folder

TaskRequestItem A task request sent to another user typically
found in the Inbox folder

TaskRequestUpdateItem An update to a TaskRequestItem typically
found in the Inbox folder

Advanced Topic: Why Are There Multiple Event Interfaces?

When you work with the Outlook object model, you will quickly notice multiple public interfaces, classes,
and delegates associated with events:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and delegates associated with events:

ApplicationEvents interface

ApplicationEvents_Event interface

ApplicationEvents_* delegates

ApplicationEvents_SinkHelper class

ApplicationEvents_10 interface

ApplicationsEvents_10_Event interface

ApplicationEvents_10_* delegates

ApplicationEvents_10_SinkHelper class

ApplicationEvents_11 interface

ApplicationsEvents_11_Event interface

ApplicationEvents_11_* delegates

ApplicationEvents_11_SinkHelper class

ExplorerEvents interface

ExplorerEvents_Event interface

ExplorerEvents_* delegates

ExplorerEvents_SinkHelper class

ExplorerEvents_10 interface

ExplorerEvents_10_Event interface

ExplorerEvents_10_*delegates

ExplorerEvents10_SinkHelper class

ExplorersEvents interface

ExplorersEvents_Event interface

ExplorersEvents_*delegates

ExplorersEvents_SinkHelper class

FoldersEvents interface

FoldersEvents_Event interface

FoldersEvents_* delegates

FoldersEvents_SinkHelper class

InspectorEvents interface

InspectorEvents_Event interface

InspectorEvents_* delegates

InspectorEvents_SinkHelper class

InspectorEvents_10 interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

InspectorEvents_10_Event interface

InspectorEvents_10_* delegates

InspectorEvents_10_SinkHelper class

ItemEvents interface

ItemEvents_Event interface

ItemEvents_* delegates

ItemEvents_SinkHelper class

ItemEvents_10 interface

ItemEvents_10_Event interface

ItemEvents_10_* delegates

ItemEvents_10_SinkHelper class

ItemsEvents interface

ItemsEvents_Event interface

ItemsEvents_* delegates

ItemsEvents_SinkHelper class

NameSpaceEvents interface

NameSpaceEvents_Event interface

NameSpaceEvents_* delegates

NameSpaceEvents_SinkHelper class

OutlookBarGroupsEvents interface

OutlookBarGroupsEvents_Event interface

OutlookBarGroupsEvents_* delegates

OutlookBarGroupsEvents_SinkHelper class

OutlookBarPaneEvents interface

OutlookBarPaneEvents_Event interface

OutlookBarPaneEvents_* delegates

OutlookBarPaneEvents_SinkHelper class

OutlookBarShortcutsEvents interface

OutlookBarShortcutsEvents_Event interface

OutlookBarShortcutsEvents_* delegates

OutlookBarShortcutsEvents_SinkHelper class

ReminderCollectionEvents interface

ReminderCollectionEvents_Event interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ReminderCollectionEvents_* delegates

ReminderCollectionEvents_SinkHelper class

ResultsEvents interface

ResultsEvents_Event interface

ResultsEvents_* delegates

ResultsEvents_SinkHelper class

SyncObjectEvents interface

SyncObjectEvents_Event interface

SyncObjectEvents_* delegates

SyncObjectEvents_SinkHelper class

ViewsEvents interface

ViewsEvents_Event interface

ViewsEvents_* delegates

ViewsEvents_SinkHelper class

The only elements from this list that you should ever use in your code are the ones in bold text. The
*_Event interfaces in bold should be used only when you have to cast an object to its corresponding
event interface because a method name and event name collide. An example of this is the Inspector
object, which has both a Close method and a Close event. To distinguish between the two when you are
handling an event dynamically, you have to cast the Inspector object to InspectorEvents_10_Event when
you want to handle the Close event.

Chapter 1, "An Introduction to Office Programming," briefly explains the reason for the other items in
this list. This explanation, however, explains only the SinkHelper class and why there are both an Object
Events interface and an Object Events_Event interface. The reason there are multiple numbered events
associated with some objects goes back to the original COM implementation of the Outlook object model.

Outlook's Application, Explorer, Inspector, and Item COM objects have had their event interfaces defined
over multiple versions. Consider the Application events, for example. Events defined in Outlook XP for
the Application object are on the interface named ApplicationEvents_Event. Events that were new in
Outlook 2000 are on the interface named ApplicationEvents_10_Events. (Outlook 2000 was known
internally at Microsoft as Outlook 10.) ApplicationEvents_10_Events also contains all the events that are
in the ApplicationEvents_Event. Events that were new in Outlook 2003 are on the interface named
ApplicationEvents_11_Events. (Outlook 2003 was known internally at Microsoft as Outlook 11.) The
ApplicationEvents_11_Events interface includes all the events defined in Outlook XP and Outlook 2000.
Because ApplicationEvents_11_Events contains all the events defined for Application, this is the only
interface you should use for Outlook 2003 development.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ApplicationLevel Events
This section covers events that occur at the Application level. This includes both events raised on the Application object
and events that are raised on the main Outlook windows. The two primary windows displayed by Outlook are
represented in the Outlook object model by the Explorer object and the Inspector object. An Explorer object represents
the main Outlook window in which the contents of folders display. An Inspector object represents the Outlook window
that appears when you doubleclick an Outlook itemfor example, when you doubleclick a mail item in your inbox. Figure
10.1 shows representative Explorer and Inspector windows.

Figure 10.1. An Explorer window and an Inspector window.

[View full size image]

It is possible to have zero or more Explorer and zero or more Inspector windows open at any time. If you rightclick a
document in the My Documents folder and choose Mail Recipient from the Send To menu, for example, Outlook
launches with only an Inspector window open. If you launch Outlook by picking it from the Start menu, it typically starts
with just the main Outlook window open, which is an Explorer window. If you rightclick a folder within Outlook and
choose Open in New Window, doing so creates an additional Explorer window to display that folder. Outlook can also
run in a mode with neither an Explorer nor an Inspector window runningfor example, when it is started by the
ActiveSync application shipped by Microsoft for syncing phones and PDAs to Outlook.

Startup and Quit Events

Outlook raises several events during startup and shutdown:

Application.Startup is raised when Outlook has completely started. This event is raised after add-ins have
been loaded so that an add-in can handle this eventthat is, it is not raised before add-ins are loaded (as are
some events in Word and Excel).

Application.MAPILogonComplete is raised after Outlook has logged on to the mail services to which it is
configured to connect.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

configured to connect.

Application.Quit is raised when Outlook is about to exit. This event is raised before add-ins have been
unloaded so that an add-in can handle this event. A VSTO Outlook add-in is unloaded before the Quit event is
raised and should use the Shutdown event instead.

Note

Quit is the name of both a method and an event on the Application object. Because of this collision, you
will have to use the CType operator to cast the Application object to the ApplicationEvents_11_Event
interface when adding an event handler dynamically using the AddHandler statement. If you are adding an
event handler declaratively using WithEvents and Handles, you do not have to worry about this issue.

The order in which IDTExtensibility2 methods associated with a COM add-in (described in Chapter 23, "Developing COM
AddIns for Word and Excel") and Outlook's Startup, Quit, and MAPILogonComplete events occur is shown here:

User launches Outlook.

- OnConnection method of IDTExtensibility2 is called.

- OnStartupComplete method of IDTExtensibility2 is called.

- Startup event is raised.

- MAPILogonComplete event is raised.

User quits Outlook.

- Quit event is raised.

- OnBeginShutdown of IDTExtensibility2 is called.

- OnDisconnection of IDTExtensibility2 is called.

Listing 10.1 shows an add-in that handles these three events dynamically using AddHandler. In most of the other
examples in this book, we handle events declaratively using WithEvents and Handles. Listing 10.1 also displays message
boxes when the methods of IDTExtensibility2 are called.

Note

For simplicity, the COM add-in listings in this chapter do not include the fix described in Chapter 24,
"Creating Outlook AddIns with VSTO," that is required to get Outlook always to shut down reliably when
loading a COM add-in.

Even though this book includes some COM add-in samples, our recommendation is that you create VSTO
Outlook add-ins rather than COM add-ins to avoid the issues described in Chapter 24.

Listing 10.1. A COM AddIn That Handles the Application Object's Quit, Startup, and
MAPILogonComplete Events

Imports Extensibility
Imports Outlook = Microsoft.Office.Interop.Outlook
Imports System.Windows.Forms
Imports System.Runtime.InteropServices

<GuidAttribute("9D71C9DB-BB7A-45D4-9AE2-13E58D05FD1B"),_
ProgIdAttribute("MyAddin2.Connect")>_
Public Class Connect
 Implements Extensibility.IDTExtensibility2

 Dim applicationObject As Outlook.Application
 Dim addInInstance As Object

 Public Sub OnConnection(ByVal application As Object, _
 ByVal connectMode As Extensibility.ext_ConnectMode, _
 ByVal addInInst As Object, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal addInInst As Object, _

 ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnConnection

 applicationObject = CType(application, Outlook.Application)
 addInInstance = addInInst

 AddHandler applicationObject.Startup, _
 AddressOf ApplicationObject_Startup
 AddHandler applicationObject.Quit, _
 AddressOf ApplicationObject_Quit
 AddHandler applicationObject.MAPILogonComplete, _
 AddressOf ApplicationObject_MAPILogonComplete

 MsgBox("OnConnection")

 End Sub

 Public Sub OnDisconnection(_
 ByVal RemoveMode As Extensibility.ext_DisconnectMode, _
 ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnDisconnection

 MsgBox("OnDisconnection")

 End Sub

 Public Sub OnAddInsUpdate(ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnAddInsUpdate
 End Sub

 Public Sub OnStartupComplete(ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnStartupComplete

 MsgBox("OnStartupComplete")

 End Sub

 Public Sub OnBeginShutdown(ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnBeginShutdown

 MsgBox("OnBeginShutdown")

 End Sub

 Public Sub ApplicationObject_Startup()
 MsgBox("Startup Event")
 End Sub

 Public Sub ApplicationObject_MAPILogonComplete()
 MsgBox("MAPILogonComplete Event")
 End Sub

 Public Sub ApplicationObject_Quit()
 MsgBox("Quit Event")
 End Sub

End Class

The order in which a VSTO Outlook add-in's Startup and Shutdown event handlers and Outlook's Startup, Quit, and
MAPILogonComplete events occur is shown here:

User launches Outlook.

- VSTO Startup event is raised.

- Outlook Application object's Startup event is raised.

- Outlook Application object's MAPILogonComplete event is raised.

User quits Outlook.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

- Outlook Application object's Quit event is raised. The VSTO add-in system uses this event to control
how the add-in unloads, so you may not see this event. Your code should handle the Shutdown event
instead.

- VSTO Shutdown event is raised.

Activation Events

When an Explorer or Inspector window becomes the active window (activates) or loses focus to another window
(deactivates), events are raised:

Explorer.Activate is raised on an Explorer object when the window it corresponds to becomes the active
window.

Inspector.Activate is raised on an Inspector object when the window it corresponds to becomes the active
window.

Note

Activate is the name of both a method and an event on the Explorer and Inspector object. Because
of this collision, you will have to use the CType operator to cast the Explorer object to the
ExplorerEvents_10_Event interface and the Inspector object to the InspectorEvents_10_Event
when adding an event handler dynamically using the AddHandler statement. If you are adding an
event handler declaratively using WithEvents and Handles, you do not have to worry about this issue.

Explorer.Deactivate is raised on an Explorer object when the window it corresponds to loses focus to another
window.

Inspector.Deactivate is raised on an Inspector object when the window it corresponds to loses focus to
another window.

Listing 10.2 shows a VSTO Outlook add-in that handles Activate and Deactivate events for the Explorer object. In this
listing, the events are handled declaratively using WithEvents and Handles.

Note

For simplicity, future VSTO Outlook add-in listings in this chapter omit the Imports lines of code at the
beginning of the VSTO This Application class and the Shutdown event handler.

Listing 10.2. A VSTO AddIn That Handles the Explorer Object's Activate and
Deactivate Events

Imports Outlook = Microsoft.Office.Interop.Outlook

Public Class ThisApplication

 Private WithEvents explorer As Outlook.Explorer

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 explorer = Me.ActiveExplorer

 End Sub

 Private Sub Explorer_Activate() Handles explorer.Activate
 Debug.Print(String.Format(_
 "The explorer with caption {0} was activated.", _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "The explorer with caption {0} was activated.", _
 explorer.Caption))
 End Sub

 Private Sub Explorer_Deactivate() Handles explorer.Deactivate
 Debug.Print(String.Format(_
 "The explorer with caption {0} was deactivated.", _
 explorer.Caption))
 End Sub

End Class

New Window Events

When a new Explorer or Inspector window is created, Outlook raises an event:

Explorers.NewExplorer is raised when a new Explorer window is created. The newly created Explorer is
passed as a parameter to this event.

Inspectors.NewInspector is raised when a new Inspector window is created. The newly created Inspector is
passed as a parameter to this event.

Listing 24.1 in Chapter 24, "Creating Outlook AddIns with VSTO," shows an example of handling these events.

Window Events

When an Explorer or Inspector window is maximized, minimized, moved, or resized, events are raised by Outlook. All
these events can be canceled to prevent the change to the window from occurring:

Explorer.BeforeMaximize is raised on an Explorer object when the window it corresponds to is about to be
maximized. Outlook passes by reference a Boolean cancel parameter. The cancel parameter can be set to true by
your event handler to prevent Outlook from maximizing the window.

Inspector.BeforeMaximize is raised on an Inspector object when the window it corresponds to is about to be
maximized. Outlook passes by reference a Boolean cancel parameter. The cancel parameter can be set to true by
your event handler to prevent Outlook from maximizing the window.

Explorer.BeforeMinimize is raised on an Explorer object when the window it corresponds to is about to be
minimized. Outlook passes by reference a Boolean cancel parameter. The cancel parameter can be set to true by
your event handler to prevent Outlook from minimizing the window.

Inspector.BeforeMinimize is raised on an Inspector object when the window it corresponds to is about to be
minimized. Outlook passes by reference a Boolean cancel parameter. The cancel parameter can be set to TRue by
your event handler to prevent Outlook from minimizing the window.

Explorer.BeforeMove is raised on an Explorer object when the window it corresponds to is about to be moved.
Outlook passes by reference a Boolean cancel parameter. The cancel parameter can be set to TRue by your event
handler to prevent Outlook from moving the window.

Inspector.BeforeMove is raised on an Inspector object when the window it corresponds to is about to be
moved. Outlook passes by reference a Boolean cancel parameter. The cancel parameter can be set to true by your
event handler to prevent Outlook from moving the window.

Explorer.BeforeSize is raised on an Explorer object when the window it corresponds to is about to be resized.
Outlook passes by reference a Boolean cancel parameter. The cancel parameter can be set to TRue by your event
handler to prevent Outlook from resizing the window.

Inspector.BeforeSize is raised on an Inspector object when the window it corresponds to is about to be
resized. Outlook passes by reference a Boolean cancel parameter. The cancel parameter can be set to TRue by your
event handler to prevent Outlook from resizing the window.

Close Events

When an Explorer or Inspector window is closed, Outlook raises an event:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Explorer.Close is raised on an Explorer object when the window it corresponds to has been closed.

Inspector.Close is raised on an Inspector object when the window it corresponds to has been closed.

Note

Close is the name of both a method and an event on the Explorer and Inspector object. Because of this
collision, you will have to use the CType operator to cast the Explorer object to the
ExplorerEvents_10_Event interface and the Inspector object to the InspectorEvents_10_Event when adding
an event handler dynamically using the AddHandler statement. If you are adding an event handler
declaratively using WithEvents and Handles, you do not have to worry about this issue.

Listing 24.1 in Chapter 24, "Creating Outlook AddIns with VSTO," shows an example of handling these events.

View and Selection Change Events

As you navigate from folder to folder in an Explorer window, Outlook displays a view of the items in the folder you have
selected. The user can also change the view for a particular folder by using the View menu and choosing a different
view from the Current View submenu of the Arrange By menu. Outlook raises events when the view changes or the
selection changes:

Explorer.BeforeViewSwitch is raised on an Explorer object when the user changes the view for a particular
folder by using the View menu. This event is not raised when the user simply switches from folder to folder,
thereby changing the view (but the ViewSwitch event is raised). Outlook passes a newView parameter that is of
type Object. This parameter can be cast to a String value representing the name of the view about to be switched
to. Outlook also passes by reference a Boolean cancel parameter. The cancel parameter can be set to true by your
event handler to prevent Outlook from switching to the view the user selected.

Explorer.ViewSwitch is raised on an Explorer object when the view changes either because the user changed
the view using the View menu or because the user selected another folder.

Inspector.SelectionChange is raised on an Explorer object when the selection in the Explorer window
changes.

Explorer.BeforeFolderSwitch is raised on an Explorer object before the active folder changes. Outlook passes
a newFolder parameter of type Object. This parameter can be cast to a MAPIFolder that represents what the new
active folder will be. Outlook also passes by reference a Boolean cancel parameter. The cancel parameter can be set
to true by your event handler to prevent Outlook from switching to the folder the user selected.

Explorer.FolderSwitch is raised on an Explorer object when the active folder changes.

Listing 10.3 shows a VSTO Outlook add-in that handles these events.

Listing 10.3. A VSTO AddIn That Handles View and Selection Change Events

Public Class ThisApplication

 Private WithEvents explorer As Outlook.Explorer

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 explorer = Me.ActiveExplorer

 End Sub

 Private Sub Explorer_BeforeViewSwitch(_
 ByVal NewView As Object, _
 ByRef cancel As Boolean) Handles explorer.BeforeViewSwitch

 MsgBox(String.Format("About to switch to {0}.", NewView))

 End Sub

 Private Sub Explorer_ViewSwitch() Handles explorer.ViewSwitch
 Dim view As Outlook.View = explorer.CurrentView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim view As Outlook.View = explorer.CurrentView
 If view IsNot Nothing Then
 MsgBox(String.Format(_
 "The view switched. Current view is now {0}.", _
 view.Name))
 End If
 End Sub

 Private Sub Explorer_SelectionChange() _
 Handles explorer.SelectionChange

 MsgBox(String.Format(_
 "Selection changed. {0} items selected.", _
 explorer.Selection.Count))

 End Sub

 Private Sub Explorer_BeforeFolderSwitch(_
 ByVal NewFolder As Object, _
 ByRef cancel As Boolean) Handles explorer.BeforeFolderSwitch

 Dim folder As Outlook.MAPIFolder = _
 CType(NewFolder, Outlook.MAPIFolder)

 MsgBox(String.Format("The new folder will be {0}.", _
 folder.Name))

 End Sub

 Private Sub Explorer_FolderSwitch() _
 Handles explorer.FolderSwitch
 MsgBox("Folder switch")
 End Sub

End Class

Folder Change Events

Given a collection of folders in Outlook, several events are raised when folders in that collection change:

Folders.FolderAdd is raised on a Folders collection when a new folder is added. Outlook passes a folder
parameter of type MAPIFolder representing the newly added folder.

Folders.FolderRemove is raised on a Folders collection when a folder is deleted.

Folders.FolderChange is raised on a Folders collection when a folder is changed. Examples of changes include
when the folder is renamed or when the number of items in the folder changes. Outlook passes a folder
parameter of type MAPIFolder representing the folder that has changed.

Listing 10.4 shows an add-in that handles folder change events for any subfolders under the Inbox folder. To get to a
Folders collection, we first get a NameSpace object. The NameSpace object is accessed by calling the
Application.Session property. The NameSpace object has a method called GetDefaultFolder that returns a MAPIFolder
object to which you can pass a member of the enumeration OlDefaultFolders to get a standard Outlook folder. In Listing
10.4, we pass olFolderInbox to get a MAPIFolder for the Inbox. Then we connect our event handlers to the Folders
collection associated with the Inbox's MAPIFolder object.

Listing 10.4. A VSTO AddIn That Handles Folder Change Events

Public Class ThisApplication

 Private WithEvents folders As Outlook.Folders

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim ns As Outlook.NameSpace = Me.Session
 Dim folder As Outlook.MAPIFolder = _
 ns.GetDefaultFolder(Outlook.OlDefaultFolders.olFolderInbox)
 folders = folder.Folders

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

 Private Sub Folders_FolderAdd(_
 ByVal folder As Outlook.MAPIFolder) _
 Handles folders.FolderAdd

 MsgBox(String.Format("Added {0} folder.", folder.Name))

 End Sub

 Private Sub Folders_FolderChange(_
 ByVal folder As Outlook.MAPIFolder) _
 Handles folders.FolderChange

 MsgBox(String.Format("Changed {0} folder. ", folder.Name))

 End Sub

 Private Sub Folders_FolderRemove() _
 Handles folders.FolderRemove
 MsgBox("Removed a folder.")
 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Outlook Item Events
Outlook has many events that occur at the Outlook item level. We refer to Item events in this section, but there is no
Item object per se in the Outlook object model. Instead, you will find Item events on each of the 16 Outlook object
model objects listed in Table 10.1

Item Addition, Deletion, and Change Events

Several events are raised when Outlook items are added, deleted, or changed:

Items.ItemRemove is raised when an item is deleted from the Items collection associated with a folderfor
example, when an item is deleted from the collection of items in the Inbox folder. It is raised once for each item
removed from the collection. Unfortunately, the item removed from the collection is not passed as a parameter
to this event and is difficult to determine unless you store the previous state of the items in the folder in some
way. This event is also not raised if more than 16 items are deleted at once or when the last item in a folder is
deleted if the folder is in a PST file. You can work around these limitations by using the FolderChange event
described in the "Folder Change Events" section earlier in this chapter. For example, you could store the
number of items in the folder in a variable and when handling the FolderChange event determine whether the
number of items in the folder have decreased.

Items.ItemChange is raised when an item is changed in the Items collection associated with a folderfor
example, when an item is changed in the collection of Outlook items in the Inbox folder. Outlook passes the
Outlook item that has changed as an Object parameter to this event.

Items.ItemAdd is raised when an item is added to the Items collection associated with a folderfor example,
when an item is added to the collection of Outlook items in the Inbox folder. It is raised once for each item that
is added to the collection. Outlook passes the Outlook item that was added as an Object parameter to this event.
Unfortunately, this event is not raised if a large number of items are added at once. You can work around this
limitation by using the FolderChange event described in the "Folder Change Events" section earlier in this
chapter. You could store the state of the items in the folder that you want to monitor for changes and, when
handling the FolderChange event, determine whether the new state of the items in the folder matches the state
you have stored.

Item.BeforeDelete is raised on an Outlook item when the item is deleted. The item must be deleted from an
Inspector window, however; the event is not raised if you just delete the item from a folder. Outlook passes by
reference a Boolean cancel parameter. The cancel parameter can be set to TRue by your event handler to prevent
Outlook from deleting the item.

Listing 10.5 shows some VSTO Outlook add-in code that handles these events. To get to an individual MailItem to
handle the Item.BeforeDelete event, the code first gets the NameSpace object. The NameSpace object is accessed by
calling the Application.Session property. The NameSpace object has a method called GetDefaultFolder that returns a
MAPIFolder to which you can pass a member of the enumeration OlDefaultFolders to get a standard Outlook folder. In
Listing 10.5, we pass olFolderInbox to get a MAPIFolder for the Inbox. Then we use the Items collection associated with
the Inbox's MAPIFolder to connect our event handlers to, as well as to get an individual MailItem to handle the
Item.BeforeDelete event.

Listing 10.5. A VSTO AddIn That Handles Item Addition, Change, and Delete
Events

Public Class ThisApplication

 Private WithEvents mailItem As Outlook.MailItem
 Private WithEvents items As Outlook.Items

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim ns As Outlook.NameSpace = Me.Session
 Dim inbox As Outlook.MAPIFolder = _
 ns.GetDefaultFolder(Outlook.OlDefaultFolders.olFolderInbox)

 For Each o As Object In inbox.Items
 If TypeOf o Is Outlook.MailItem Then
 mailItem = o
 Else
 Exit For
 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End If
 Next

 If mailItem Is Nothing Then
 MessageBox.Show("Couldn't find a mail item to connect to.")
 Else
 AddHandler mailItem.BeforeDelete, _
 AddressOf MailItem_BeforeDelete
 MsgBox(String.Format(_
 "Connected to the mail item with subject {0}.", _
 mailItem.Subject))
 End If

 items = inbox.Items

 End Sub

 Private Sub MailItem_BeforeDelete(ByVal item As Object, _
 ByRef cancel As Boolean)
 MsgBox(String.Format(_
 "The mail item {0} cannot be deleted.", _
 mailItem.Subject))
 cancel = True
 End Sub

 Private Sub Items_ItemRemove() Handles items.ItemRemove
 MsgBox("An item is about to be removed.")
 End Sub

 Private Sub GenerateItemMessage(ByVal item As Object, _
 ByVal operation As String)
 If TypeOf item Is Outlook.MailItem Then
 Dim mailItem As Outlook.MailItem = item
 MsgBox(String.Format(_
 "MailItem {0} was just {1}.", _
 mailItem.Subject, operation))
 Else
 MsgBox(String.Format(_
 "An Outlook item was just {0}.", operation))
 End If
 End Sub

 Private Sub Items_ItemChange(ByVal item As Object) _
 Handles items.ItemChange
 GenerateItemMessage(item, "changed")
 End Sub

 Private Sub Items_ItemAdd(ByVal item As Object) _
 Handles items.ItemAdd
 GenerateItemMessage(item, "added")
 End Sub

End Class

Copy, Paste, Cut, and Delete Events

Outlook raises several events when Outlook items are copied, cut, or pasted. These events are raised on an Explorer
object. An Explorer object has a Selection property that returns the current selected items in the Explorer. Because
many of the Explorer events telling you that a copy, cut, or paste is about to occur do not pass the items that are being
acted upon, you must examine the Selection object to determine the items that are being acted upon:

Explorer.BeforeItemCopy is raised before one or more Outlook items are copied. Outlook passes by
reference a Boolean cancel parameter. The cancel parameter can be set to true by your event handler to prevent the
item or items from being copied.

Explorer.BeforeItemCut is raised before one or more Outlook items are cut. Outlook passes by reference a
Boolean cancel parameter. The cancel parameter can be set to true by your event handler to prevent the item or
items from being cut.

Explorer.BeforeItemPaste is raised before one or more Outlook items are pasted. Outlook passes a
clipboardContent parameter as an Object. If the clipboard contains Outlook items that have been cut or copied, you
can cast the clipboardContent parameter to a Selection object and examine what is about to be pasted. Next,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

can cast the clipboardContent parameter to a Selection object and examine what is about to be pasted. Next,
Outlook passes a target parameter of type MAPIFolder. This represents the destination folder to which the item
or items will be pasted. Outlook also passes by reference a Boolean cancel parameter. The cancel parameter can be
set to true by your event handler to prevent the item or items from being pasted.

Listing 10.6 shows a VSTO Outlook add-in that handles these events. It uses a helper function called GenerateItemsMessage
that iterates over the items in a Selection object and displays a dialog box with the subject of each MailItem selected.

Listing 10.6. A VSTO AddIn That Handles Copy, Cut, and Paste Events

Public Class ThisApplication

 Private WithEvents explorer As Outlook.Explorer

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 explorer = Me.ActiveExplorer

 End Sub

 Private Sub GenerateItemsMessage(_
 ByVal selection As Outlook.Selection, _
 ByVal operation As String)

 Dim b As New System.Text.StringBuilder()
 b.AppendFormat("Items to be {0}:" & vbCrLf & _
 vbCrLf, operation)

 For Each o As Object In selection
 If TypeOf o Is Outlook.MailItem Then
 Dim mi As Outlook.MailItem = o
 b.AppendFormat("MailItem: {0}" & vbCrLf, mi.Subject)
 Else
 b.AppendLine("Other Outlook item")
 End If
 Next

 MsgBox(b.ToString())

 End Sub

 Private Sub Explorer_BeforeItemCopy(ByRef cancel As Boolean) _
 Handles explorer.BeforeItemCopy

 GenerateItemsMessage(explorer.Selection, "copied")

 End Sub

 Private Sub Explorer_BeforeItemCut(ByRef cancel As Boolean) _
 Handles explorer.BeforeItemCut

 GenerateItemsMessage(explorer.Selection, "cut")

 End Sub

 Private Sub Explorer_BeforeItemPaste(_
 ByRef clipboardContent As Object, _
 ByVal target As Outlook.MAPIFolder, _
 ByRef cancel As Boolean) _
 Handles explorer.BeforeItemPaste

 If TypeOf clipboardContent Is Outlook.Selection Then
 Dim selection As Outlook.Selection = clipboardContent
 GenerateItemsMessage(selection, "pasted")
 Else
 MsgBox("The clipboard is not a Selection object.")
 End If

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Property Change Events

A typical Outlook item has many associated properties, such as CreationTime, Importance, and LastModificationTime.
All the properties associated with an Outlook item are contained by the ItemProperties property. When any of these
properties is changed, Outlook raises the PropertyChange event. It is also possible to define additional custom
properties and associate them with an Outlook item. When custom properties are changed, Outlook raises the
CustomPropertyChange event:

Item.PropertyChange is raised when a property of an Outlook item is changed. Outlook passes a name
parameter as a String that represents the name of the property that was changed.

Item.CustomPropertyChange is raised when a userdefined property of an Outlook item is changed. Outlook
passes a name parameter as a String that represents the name of the userdefined property that was changed.

Open, Read, Write, and Close Events

Outlook raises events when an Outlook item is opened, written to, or closed:

Item.Read is raised when an Outlook item is displayed from within either an Explorer or Inspector view. This
event has nothing to do with the Read or Unread status of an itemjust whether it is being displayed in a view.

Item.Open is raised when an Outlook item is opened in an Inspector view. Outlook passes by reference a
Boolean cancel parameter. The cancel parameter can be set to true by your event handler to prevent the item from
being opened.

Item.Write is raised when an Outlook item is saved after being modified. Outlook passes by reference a Boolean
cancel parameter. The cancel parameter can be set to true by your event handler to prevent the item or items from
being written to.

Item.Close is raised when an Outlook item is closed after being opened in an Inspector view. Outlook passes
by reference a Boolean cancel parameter. The cancel parameter can be set to TRue by your event handler to prevent
the item or items from being closed.

Note

Close is the name of both a method and an event on Outlook item objects. Because of this collision, you
will have to use the CType operator to cast the Outlook item object to the Item Events_10_Event interface
when adding an event handler dynamically using the AddHandler statement. If you are adding an event
handler declaratively using WithEvents and Handles, you do not have to worry about this issue.

Listing 10.7 shows a VSTO Outlook add-in that handles these events.

Listing 10.7. A VSTO AddIn That Handles Open, Read, Write, and Close Events

Public Class ThisApplication

 Private mailItem As Outlook.MailItem

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim ns As Outlook.NameSpace = Me.Session
 Dim inbox As Outlook.MAPIFolder = ns.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 For Each o As Object In inbox.Items
 If TypeOf o Is Outlook.MailItem Then
 mailItem = o
 Else
 Exit For
 End If
 Next

 If mailItem Is Nothing Then
 MsgBox("Couldn't find a mail item to connect to.")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox("Couldn't find a mail item to connect to.")
 Else
 MsgBox(String.Format(_
 "Connected to the mail item with subject {0}.", _
 mailItem.Subject))

 AddHandler mailItem.Read, AddressOf MailItem_Read
 AddHandler mailItem.Open, AddressOf MailItem_Open
 AddHandler mailItem.Write, AddressOf MailItem_Write
 AddHandler CType(mailItem, _
 Outlook.ItemEvents_10_Event).Close, _
 AddressOf MailItem_Close
 End If

 End Sub

 Private Sub MailItem_Read()
 MsgBox("Read")
 End Sub

 Private Sub MailItem_Open(ByRef cancel As Boolean)
 MsgBox("Open")
 End Sub

 Private Sub MailItem_Write(ByRef cancel As Boolean)
 MsgBox("Write")
 End Sub

 Private Sub MailItem_Close(ByRef cancel As Boolean)
 MsgBox("Close")
 End Sub

End Class

EMail Events

Outlook raises several emailrelated events when new mail is received, when an Outlook item is sent by email, or when
an Outlook item is forwarded or replied to:

Application.NewMail is raised when new items are received in the Inbox, including mail messages, meeting
requests, and task requests.

Application.NewMailEx is raised when new items are received in the Inbox, including mail messages, meeting
requests, and task requests. An entry IDs parameter is passed as a String. The enTRyIDs parameter contains a
commadelimited list of the entry IDs of the Outlook items that were received. An entry ID uniquely identifies an
Outlook item.

Application.ItemSend is raised when an Outlook item is sentfor example, when the user has an Outlook item
open in an Inspector window and clicks the Send button. An item parameter is passed as an Object that contains
the Outlook item being sent. Outlook also passes by reference a Boolean cancel parameter. The cancel parameter
can be set to true by your event handler to prevent the item from being sent.

Item.Send is raised when an Outlook item is sentfor example, when the user has an Outlook item open in an
Inspector window and clicks the Send button. Outlook passes by reference a Boolean cancel parameter. The cancel
parameter can be set to true by your event handler to prevent the item from being sent.

Item.Reply is raised when an Outlook item is replied to. A response parameter is passed as an Object and
represents the Outlook item that was created as a response to the original Outlook item. Outlook also passes by
reference a Boolean cancel parameter. The cancel parameter can be set to true by your event handler to prevent the
item from being replied to.

Item.ReplyAll is raised when an Outlook item is replied to using the Reply All button. A response parameter is
passed as an Object and represents the Outlook item that was created as a response to the original Outlook
item. Outlook also passes by reference a Boolean cancel parameter. The cancel parameter can be set to TRue by
your event handler to prevent the item from being replied to.

Item.Forward is raised when an Outlook item is forwarded. A response parameter is passed as an Object and
represents the Outlook item that was created to forward the original Outlook item. Outlook also passes by
reference a Boolean cancel parameter. The cancel parameter can be set to TRue by your event handler to prevent
the item from being forwarded.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the item from being forwarded.

Listing 10.8 shows a VSTO Outlook add-in that handles these events.

Listing 10.8. A VSTO AddIn That Handles EMail Events

Public Class ThisApplication

 Private mailItem As Outlook.MailItem

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim ns As Outlook.NameSpace = Me.Session
 Dim inbox As Outlook.MAPIFolder = ns.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 For Each o As Object In inbox.Items
 If TypeOf o Is Outlook.MailItem Then
 mailItem = o
 Else
 Exit For
 End If
 Next

 If mailItem Is Nothing Then
 MsgBox("Couldn't find a mail item.")
 Else
 MsgBox(String.Format(_
 "Connected to the mail item {0}.", _
 mailItem.Subject))

 AddHandler mailItem.Send, AddressOf MailItem_Send
 AddHandler mailItem.Reply, AddressOf MailItem_Reply
 AddHandler mailItem.ReplyAll, AddressOf MailItem_ReplyAll
 AddHandler mailItem.Forward, AddressOf MailItem_Forward
 End If

 End Sub

 Private Sub GenerateItemMessage(ByVal item As Object, _
 ByVal operation As String)

 If TypeOf item Is Outlook.MailItem Then
 Dim mi As Outlook.MailItem = item
 MsgBox(String.Format(_
 "MailItem {0} will be {1}.", _
 mi.Subject, operation))
 Else
 MsgBox(String.Format(_
 "An Outlook item will be {0}.", _
 operation))
 End If

 End Sub

 Private Sub ThisApplication_NewMail() Handles Me.NewMail
 MsgBox("New mail was received")
 End Sub

 Private Sub ThisApplication_NewMailEx(_
 ByVal entryIDCollection As String) Handles Me.NewMailEx

 MsgBox(String.Format(_
 "NewMailEx: {0}.", _
 entryIDCollection))

 End Sub

 Private Sub ThisApplication_ItemSend(ByVal item As Object, _
 ByRef cancel As Boolean) Handles Me.ItemSend

 GenerateItemMessage(item, "sent")

 End Sub

 Private Sub MailItem_Send(ByRef cancel As Boolean)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub MailItem_Send(ByRef cancel As Boolean)
 MsgBox("MailItem Send")
 End Sub

 Private Sub MailItem_Reply(ByVal response As Object, _
 ByRef cancel As Boolean)
 GenerateItemMessage(response, "generated as a reply")
 End Sub

 Private Sub MailItem_ReplyAll(ByVal response As Object, _
 ByRef cancel As Boolean)
 GenerateItemMessage(response, "generated as a reply to all")
 End Sub

 Private Sub MailItem_Forward(ByVal forward As Object, _
 ByRef cancel As Boolean)
 GenerateItemMessage(forward, "generated as a forward")
 End Sub

End Class

Attachment Events

Outlook raises events when attachments are added to an Outlook item and when attachments associated with an
Outlook item are read or saved:

Item.AttachmentAdd is raised when an attachment is added to an Outlook item. Outlook passes an attachment
parameter that represents the attachment that was added.

Item.AttachmentRead is raised when an attachment attached to an Outlook item is opened for reading.
Outlook passes an attachment parameter that represents the attachment that was read.

Item.BeforeAttachmentSave is raised when an attachment attached to an Outlook item is about to be saved.
Outlook passes an attachment parameter that represents the attachment that is about to be saved. Outlook also
passes by reference a Boolean cancel parameter. The cancel parameter can be set to TRue by your event handler to
prevent the attachment from being saved.

Custom Action Events

Outlook enables you to associate custom actions with an Outlook item. A custom action is given a name and some
default behavior. You can create a custom action whose default behavior is to act on the original item or to create a
new reply to the existing item, for example. You can also set whether the action is shown as a button, a menu
command, or both. When the custom action is invoked from the menu or toolbar, the CustomAction event is raised on
the associated Outlook item.

Figure 10.2 shows a custom action that has been associated with an Outlook mail item called "My custom action."
Outlook displays the custom action in the Action menu when an Inspector window is opened on the mail item. It also
displays the custom action as a toolbar button.

Figure 10.2. A custom action called "My custom action."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Item.CustomAction is raised when a custom action associated with an Outlook item is invoked. Outlook
passes an action parameter as an Object that represents the custom action that was invoked. This parameter can
be cast to an Action object. Outlook passes a response parameter as an Object that represents the Outlook item
created because of the custom action. Outlook also passes by reference a Boolean cancel parameter. The cancel
parameter can be set to true by your event handler to prevent the custom action from being invoked.

Listing 10.9 shows a VSTO Outlook add-in that creates a custom action called My custom action. The CustomAction
event is handled to set the subject when the custom action is invoked.

Listing 10.9. A VSTO AddIn That Creates a Custom Action and Handles a Custom
Action Event

Public Class ThisApplication

 Private mailItem As Outlook.MailItem

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim ns As Outlook.NameSpace = Me.Session
 Dim inbox As Outlook.MAPIFolder = ns.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 For Each o As Object In inbox.Items
 If TypeOf o Is Outlook.MailItem Then
 mailItem = o
 Else
 Exit For
 End If
 Next

 If mailItem Is Nothing Then
 MsgBox("Couldn't find a mail item.")
 Else
 MsgBox(String.Format(_
 "Connected to the mail item {0}.", _
 mailItem.Subject))

 AddHandler mailItem.CustomAction, _
 AddressOf MailItem_CustomAction

 Dim action As Outlook.Action = mailItem.Actions.Add()
 action.Name = "My custom action"
 action.ShowOn = Outlook.OlActionShowOn.olMenuAndToolbar
 action.ReplyStyle = _
 Outlook.OlActionReplyStyle.olLinkOriginalItem
 End If

 End Sub

 Private Sub MailItem_CustomAction(ByVal action As Object, _
 ByVal response As Object, ByRef cancel As Boolean)
 action = CType(action, Outlook.Action)
 Dim mailItem As Outlook.MailItem = CType(response, _
 Outlook.MailItem)
 If action.Name = "My custom action" Then
 mailItem.Subject = "Created by my custom action"
 End If

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Other Events
Table 10.2 lists several other, less commonly used events in the Outlook object model. Figure 10.3 shows the Shortcuts
pane of the Outlook bar, with which several events in Table 10.2 are associated.

Figure 10.3. The Shortcuts pane, showing two groups (Shortcuts and Group1) and
two shortcuts (Outlook Today and Inbox).

Table 10.2. Additional Outlook Events
Events Description

Search Events
Application.AdvancedSearchCompleted When the AdvancedSearch method on the

Application object is invoked programmatically,
this event is raised when the search is
complete.

Application.AdvancedSearchStopped When the AdvancedSearch method on the
Application object is invoked programmatically,
this event is raised if the search is stopped by
calling Stop on the Search object returned by
the AdvancedSearch method.

Synchronization Events
SyncObject.OnError Raised when a synchronization error occurs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SyncObject.OnError Raised when a synchronization error occurs
while synchronizing the Send\Receive group
corresponding to the SyncObject.

SyncObject.Progress Raised periodically while synchronizing the
Send\Receive group corresponding to the
SyncObject.

SyncObject.SyncEnd Raised when the synchronization is complete
for the Send\Receive group corresponding to
the SyncObject.

SyncObject.SyncStart Raised when the synchronization starts for the
Send\Receive group corresponding to the
SyncObject.

Reminder Events
Application.Reminder Raised before a reminder is displayed.

Reminders.BeforeReminderShow Raised before a reminder is displayed.

ReminderCollection.ReminderAdd Raised when a reminder is added to the
ReminderCollection.

ReminderCollection.ReminderChange Raised when a reminder is changed in the
ReminderCollection.

ReminderCollection.ReminderFire Raised before a reminder in the
ReminderCollection is displayed.

ReminderCollection.ReminderRemove Raised when a reminder is removed from the
ReminderCollection.

ReminderCollection.ReminderSnooze Raised when a reminder in the
ReminderCollection is snoozed.

Outlook Bar Shortcuts Pane Events
OutlookBarGroups.BeforeGroupAdd Raised before a new group is added to the

Shortcuts pane in the Outlook bar.

OutlookBarGroups.BeforeGroupRemove Raised before a group is removed from the
Shortcuts pane in the Outlook bar.

OutlookBarGroups.GroupAdd Raised when a new group is added to the
Shortcuts pane in the Outlook bar.

OutlookBarPane.BeforeGroupSwitch Raised before the user switches to a different
group in the Shortcuts pane in the Outlook bar.

OutlookBarPane.BeforeNavigate Raised when the user clicks on a Shortcut in
the Shortcuts pane in the Outlook bar.

OutlookBarShortcuts.BeforeShortcutAdd Raised before a Shortcut is added to the
Shortcuts pane in the Outlook bar.

OutlookBarShortcuts.BeforeShortcutRemove Raised before a shortcut is removed from the
Shortcuts pane in the Outlook bar.

OutlookBarShortcuts.ShortcutAdd Raised when a shortcut is added to the
Shortcuts pane in the Outlook bar.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter covered the various events raised by objects in the Outlook object model. Chapter 11, "Working with
Outlook Objects," discusses in more detail the most important objects in the Outlook object model and how to use them
in your code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11. Working with Outlook Objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Application Object
This chapter examines some of the major objects in the Outlook object model, starting with the Application object.
Many of the objects in the Outlook object model are very large, and it is beyond the scope of this book to describe
these objects completely. Instead, this chapter focuses on the most commonly used methods and properties associated
with these objects.

The Application object is the root object in the Outlook object model hierarchy, meaning that you can access all the
other objects in the object model by starting at the Application object and accessing its properties and methods and the
properties and methods of objects it returns.

A companion object to the Application object is the NameSpace object, which is retrieved by using the Application
object's Session property. Some confusion can arise because functionality that you would expect to be on the
Application object is often found on the NameSpace object. The way to get to the root folders that are open in Outlook,
for example, is through the NameSpace object's Folders property. The Application object has no Folders property.

Methods and Properties That Return Active or Selected Objects

The Application object has a number of methods and properties that return active objectsobjects representing things
that are active or selected within Outlook. Table 11.1 shows some of these properties and methods.

Table 11.1. Application Properties and Methods That Return Active
Objects

Name Type What It Does

ActiveExplorer() Explorer Returns the active Explorer objectthe Explorer
window that has focus within Outlook. If an
inspector window is active, this returns the Explorer
window that is frontmost in the stack of Outlook
windows. If no Explorer windows are open, this
method returns Nothing.

ActiveInspector() Inspector Returns the active Inspector objectthe inspector
window that has focus within Outlook. If an Explorer
window is active, this returns the inspector window
that is frontmost in the stack of Outlook windows. If
no inspector windows are open, this method returns
Nothing.

ActiveWindow() Object Returns the active window as an Object. If no
windows are open, this method returns Nothing. The
returned Object can be cast to either an Explorer or
an Inspector object.

Session Session A property that returns the NameSpace object.

GetNameSpace() Session A method that returns the NameSpace object.
Takes the type of NameSpace to return as a string.
The only string you can pass to GetNameSpace,
however, is the string "MAPI". This is an older way to
get the NameSpace object. The newer way to
access the NameSpace object that is used in this
book is through the Session property.

Properties That Return Important Collections

The Application object has a number of properties that return collections that you will frequently use. Table 11.2 shows
several of these properties. Listing 11.1 shows some code from a VSTO Outlook add-in that works with the active object
methods and properties shown in Table 11.1 and the collections shown in Table 11.2.

Table 11.2. Application Properties That Return Important
Collections

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Collections
Property Name Type What It Does

Explorers Explorers Returns the Explorers collection, which enables you to
access any open Explorer windows

Inspectors Inspectors Returns the Inspectors collection, which enables you to
access any open inspector windows

Reminders Reminders Returns the Reminders collection, which enables you to
access all the current reminders

Listing 11.1. A VSTO Add-In That Works with Active Objects and Collections

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim activeExplorer As Outlook.Explorer = Me.ActiveExplorer()

 If activeExplorer IsNot Nothing Then
 MsgBox(String.Format("The active explorer is {0}.", _
 activeExplorer.Caption))
 End If

 Dim activeInspector As Outlook.Inspector
 activeInspector = Me.ActiveInspector()
 If activeInspector IsNot Nothing Then
 MsgBox(String.Format("The Active Inspector is {0}.", _
 activeInspector.Caption))
 End If

 Dim activeWindow As Object = Me.ActiveWindow()
 If TypeOf activeWindow Is Outlook.Explorer Then
 Dim explorer1 As Outlook.Explorer = activeWindow
 MsgBox(String.Format(_
 "The active window is an Explorer: {0}.", _
 explorer1.Caption))
 ElseIf TypeOf activeWindow Is Outlook.Inspector Then
 Dim inspector1 As Outlook.Inspector = activeWindow
 MsgBox(String.Format(_
 "The active window is an Inspector: {0}.", _
 inspector1.Caption))
 Else
 MsgBox("No Outlook windows are open")
 End If

 Dim ns As Outlook.NameSpace = Me.Session
 MsgBox(String.Format("There are {0} root folders.", _
 ns.Folders.Count))

 MsgBox(String.Format("There are {0} explorer windows.", _
 Me.Explorers.Count))

 For Each explorer As Outlook.Explorer In Me.Explorers
 MsgBox(explorer.Caption)
 Next

 MsgBox(String.Format("There are {0} inspector windows.", _
 Me.Inspectors.Count))

 For Each inspector As Outlook.Inspector In Me.Inspectors
 MsgBox(inspector.Caption)
 Next

 MsgBox(String.Format("There are {0} reminders.", _
 Me.Reminders.Count))

 Dim reminders As New System.Text.StringBuilder()

 For Each reminder As Outlook.Reminder In Me.Reminders
 reminders.AppendLine(reminder.Caption)
 Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Next
 MsgBox(reminders.ToString())

 End Sub

End Class

Performing a Search and Creating a Search Folder

Outlook provides an AdvancedSearch method on the Application object that allows you to perform a search in Outlook.
The AdvancedSearch method works asynchronously and raises the AdvancedSearchComplete event when the search
has completed. You can also save a search you perform using the AdvancedSearch method as an Outlook Search folder.
AdvancedSearch takes four parameters, as shown in Table 11.3.

Table 11.3. Parameters for the AdvancedSearch Method
Parameter
Name Type Description

Scope String Pass the name of the folder or folders that you want to
search. To search the Inbox, for example, pass the string
"'Inbox'". To search the Inbox and Calendar, pass "'Inbox',
'Calendar'".

 You can pass the full name of a folder, including the path
to the folder, to search a folder within a folder. The
scope string "'Reference\Reviews'"searches a folder called
Reviews nested in a folder called Reference in the default
Outlook Store.

 You can search a folder in another PST Outlook data file
that is open inside Outlook. The Scope string
"'\\Archive\Backup'" searches a folder called Backup in a PST
file called Archive that is open in Outlook.

Filter optional Object Pass the filter string that specifies what you want to
search for. You will learn how to construct this string
below.

SearchSubFolders optional Object Pass TRue to also search any subfolders under the folders
specified in Scope.

Tag optional Object Pass a String to name the search uniquely so that when
you handle the Application.AdvancedSearchComplete
event, you can distinguish between a search created by
you and other searches created by other loaded add-ins.
This is critical; you cannot assume that you are the only
add-in that is handling this event. You must carefully tag
your searches with a unique string to ensure that your
add-in does not act on an advanced search started by
another add-in.

Now we consider how to construct the filter string that is mentioned in Table 11.3. The easiest way to do this is to let
Outlook's built-in user interface for constructing filters build the string for you. To do this, first select the folder you
want to search. From the Arrange By menu in the View menu, choose Custom to display the Customize View dialog box
(see Figure 11.1).

Figure 11.1. The Customize View dialog box.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Click the Filter button to display the Filter dialog box. You can use this dialog box to create the filter you want. In Figure
11.2, we have simply set the filter to show messages in which the word review is in the Subject field.

Figure 11.2. The Filter dialog box.

After you have edited the filter to yield the results you want, click the SQL tab, shown in Figure 11.3. Check the Edit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After you have edited the filter to yield the results you want, click the SQL tab, shown in Figure 11.3. Check the Edit
These Criteria Directly check box. Doing so enables you to select the filter string and copy and paste it into your code.
After you have copied the filter string to the clipboard, you can cancel out of the Filter dialog box and the Customize
View dialog box.

Figure 11.3. The SQL tab of the Filter dialog box displays a filter string.

[View full size image]

Finally, paste the filter string into your code. You will want to expand all quotation marks to be double quotation marks.
For our example, the Visual Basic 2005 code would look like this:

Dim filter As String
filter = """urn:schemas:httpmail:subject"" LIKE '%review%'"

Listing 11.2 shows a complete example of using AdvancedSearch. Note that because the search proceeds
asynchronously, we must handle the AdvancedSearchComplete event to determine when the search is finished. We also
save the completed search as a search folder by calling Save on the completed Search object.

Listing 11.2. A VSTO Add-In That Uses the AdvancedSearch Method

Public Class ThisApplication

 Const searchTag As String = "'review' Search In Inbox"

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim scope As String = "'Inbox'"
 Dim filter As String
 filter = """urn:schemas:httpmail:subject"" LIKE '%review%'"
 Dim searchSubfolders As Boolean = True

 Try
 MsgBox("Starting search")
 Me.AdvancedSearch(scope, filter, searchSubfolders, _
 searchTag)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 searchTag)
 Catch ex As Exception
 MsgBox(ex.Message)
 End Try

 End Sub

 Public Sub ThisApplication_AdvancedSearchStopped(_
 ByVal searchObject As Outlook.Search) _
 Handles Me.AdvancedSearchStopped

 If searchObject.Tag = searchTag Then
 MsgBox(String.Format("Search completed. " & _
 Found {0} results.", _
 searchObject.Results.Count))

 ' Save this search as a search folder
 searchObject.Save(searchTag)
 End If

 End Sub

 Public Sub ThisApplication_AdvancedSearchComplete(_
 ByVal searchObject As Outlook.Search) _
 Handles Me.AdvancedSearchComplete

 If searchObject.Tag = searchTag Then
 MsgBox(String.Format("Search was stopped. " & _
 Found {0} results.", _
 searchObject.Results.Count))
 End If

 End Sub

End Class

Copying a File into an Outlook Folder

Outlook provides a method to copy an existing document, such as a spreadsheet on your desktop, to an Outlook folder.
The Application object's CopyFile method takes as a parameter a FilePath as a String, which is the full path to the
document you want to copy into the Outlook folder. It also takes a DestFolderPath parameter, which is the name of the
Outlook folder you want to copy the document to. Listing 11.3 shows an example of using CopyFile to put a spreadsheet
called mydoc.xls in the Inbox and a second spreadsheet called mydoc2.xls in a folder called Reviews nested within a
folder called Reference.

Listing 11.3. A VSTO Add-In That Uses the CopyFile Method

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Me.CopyFile("c:\mydoc.xls", "Inbox")
 Me.CopyFile("c:\mydoc2.xls", "Reference\Reviews")

 End Sub

End Class

Quitting Outlook

The Quit method can be used to exit Outlook. If any unsaved Outlook items are opened, Outlook prompts the user to
save each unsaved Outlook item. When users are prompted to save, they get a dialog box that gives them a Cancel
button. If the user clicks Cancel, Outlook does not quit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter examined some of the most important objects in the Outlook object model. The chapter covered the
properties and methods common to all of the 16 Outlook item types. You also learned about the Outlook object model
security issue.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Explorers and Inspectors Collections
Listing 11.1 showed how to use Visual Basic's For Each loop to iterate over the Explorers and the Inspectors collections. It
is also possible to get to an Explorer or Inspector using the index operator () and passing an index as an Object. That
index can be a 1-based index into the array of Explorers or Inspectors, or it can be a String index that is the caption of
the Explorer or inspector window in the array. Listing 11.4 illustrates using both types of indices with the Explorers and
Inspectors collections.

Listing 11.4 also illustrates how to create a new Inspector and Explorer window. Both the Explorers and Inspectors
collections have an Add method. The Explorers collection's Add method takes a Folder parameter of type MAPIFolder,
which is the folder for which to display a new Explorer window. It takes a second optional parameter of type
OlFolderDisplayMode that enables you to set the initial display used in the newly created Explorer window. The Add method
returns the newly created Explorer object. To show the newly created Explorer object, you must then call the Explorer
object's Display method.

The Inspectors collection's Add method takes an Object parameter, which is the Outlook item for which to display an
inspector window. In Listing 11.4, we get an Outlook item out of the Inbox folder and create an inspector window for it.
To show the newly created Inspector object, you must then call the Inspector object's Display method, which takes an
optional parameter called Modal of type Object to which you can pass true to show the Inspector as a modal dialog box or
False to show the Inspector as a modeless dialog box. If you omit the parameter, the parameter defaults to False.

Listing 11.4. A VSTO Add-In That Works with Explorer and Inspector Windows

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim folder As Outlook.MAPIFolder
 Folder = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 ' Create a new explorer
 Dim NewExplorer As Outlook.Explorer = Me.Explorers.Add(_
 folder, Outlook.OlFolderDisplayMode.olFolderDisplayNormal)

 NewExplorer.Display()
 Dim explorerIndex As String = NewExplorer.Caption

 ' Get explorer by passing a String and an index
 Dim exp As Outlook.Explorer = Me.Explorers(explorerIndex)
 MsgBox(String.Format("Got explorer {0}.", exp.Caption))

 exp = Me.Explorers(1)
 MsgBox(String.Format("Got explorer {0}.", exp.Caption))

 ' Create a new inspector
 Dim item As Object = folder.Items(1)
 Dim NewInspector As Outlook.Inspector
 NewInspector = Me.Inspectors.Add(item)
 NewInspector.Display(False)
 Dim inspectorIndex As String = NewInspector.Caption

 ' Get inspector by passing a String as the index
 Dim inspector As Outlook.Inspector
 Inspector = Me.Inspectors(inspectorIndex)
 MsgBox(String.Format(_
 "Got inspector {0}.", inspector.Caption))

 inspector = Me.Inspectors(1)
 MsgBox(String.Format(_
 "Got inspector {0}.", inspector.Caption))

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Explorer Object
The Explorer object represents an Outlook Explorer windowthe main window in Outlook that displays views of folders. It
is possible to open multiple Explorer windows; you can right-click a folder in one Explorer window and choose the option
Open in New Window. Doing so creates a new Explorer window with the folder you selected to open in a new window as
the active folder.

Working with the Selected Folder, View, and Items

The Explorer object has several methods and properties that enable you to work with the selected folder in the Explorer
window, the view being used to display the list of items in that folder, and the selected items.

The CurrentFolder property returns a MAPIFolder object representing the folder selected in the Explorer window. An
Explorer window always has a selected folder. To change the selected folder in an Explorer window, you can use the
Explorer object's SelectFolder method, which takes as a parameter the MAPIFolder object you want to select. You can
also determine whether a particular folder is selected by using the Explorer object's IsFolderSelected method, which
takes as a parameter the MAPIFolder object you want to check to see whether it is selected. The IsFolderSelected
method returns TRue if the folder is selected in the Explorer window and False if it is not.

Listing 11.5 shows some code that displays the name of the selected folder. Then it checks to see whether the Contacts
folder is selected. If that folder isn't selected, the code selects it. Finally, it displays the name of the newly selected
folder. Listing 11.5 uses the NameSpace object's GetDefaultFolder method to get a MAPIFolder object for the Contacts
folder.

Listing 11.5. A VSTO Add-In That Selects the Contacts Folder

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim exp As Outlook.Explorer = Me.ActiveExplorer()

 If exp IsNot Nothing Then
 MsgBox(String.Format("{0} is selected.", _
 exp.CurrentFolder.Name))

 Dim folder As Outlook.MAPIFolder
 folder = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderContacts)

 If Not exp.IsFolderSelected(folder) Then
 exp.SelectFolder(folder)
 End If

 MsgBox(String.Format("{0} is selected.", _
 exp.CurrentFolder.Name))
 End If

 End Sub

End Class

The CurrentView property returns a View object representing the view that is being used to display the items in the
folder. A folder has a number of views that can be used to display its contents, such as view by date, by conversation,
by sender, and so on. It is also possible to define custom views. You can see the views that are defined for a given
folder by selecting that folder in an Explorer window and then choosing View > Arrange By > Current View > Define
Views to display the dialog box shown in Figure 11.4.

Figure 11.4. The Custom View Organizer dialog box shows views associated with a
folder.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[View full size image]

You can change the view used by an Explorer window by setting the Explorer object's CurrentView property to a View
object associated with the folder. Listing 11.6 demonstrates this by selecting the Inbox folder and then setting the view
for the Inbox folder to one of the View objects associated with the folder.

Listing 11.6. A VSTO Add-In That Selects the Inbox Folder and Changes the View

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim exp As Outlook.Explorer = Me.ActiveExplorer()

 If exp IsNot Nothing Then
 Dim folder As Outlook.MAPIFolder
 folder = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)
 exp.SelectFolder(folder)

 Dim view As Outlook.View = folder.Views(folder.Views.Count)
 exp.CurrentView = view
 MsgBox(String.Format("The view is now {0}.", view.Name))
 End If

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to a selected folder and selected view, Outlook items can be selected in an Explorer window. A user can
select multiple items in a folder by Shift-clicking to select a range of items or holding down the Ctrl key while clicking to
select discontiguous items. To retrieve the items that are selected in an Explorer window, use the Explorer object's
Selection property. The Selection property returns a Selection collection. The Selection collection has a Count property
that gives you the number of selected Outlook items. The collection also has an Item method that allows you to get to
an individual Outlook item that was selected, or you can use the For Each loop to iterate over a Selection collection and
get back Outlook items that are selected. Outlook items are returned as type Object because they could be any of the 16
types of Outlook items (MailItem, ContactItem, and so on).

In Listing 11.7, we handle the Application object's BeforeFolderSwitch event to display the items selected in a given
folder before Outlook switches to a new folder. We use the late-bound Subject property to get the subject from each
selected Outlook item. We know that the Subject property exists on all 16 types of Outlook items, so this is a safe
property to get for any Outlook item contained in the selection. This simplifies the code so it does not have to have a
cast to all 16 Outlook item types before accessing the Subject property.

Listing 11.7. A VSTO Add-In That Iterates over the Selected Outlook Items in a
Folder

Public Class ThisApplication

 Private WithEvents explorer As Outlook.Explorer

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 explorer = Me.ActiveExplorer()

 End Sub

 Private Sub explorer_BeforeFolderSwitch1(_
 ByVal NewFolder As Object, _
 ByRef Cancel As Boolean) _
 Handles explorer.BeforeFolderSwitch

 Dim selection As Outlook.Selection = explorer.Selection
 For Each o As Object In selection
 ' Access late bound Subject property

 Dim subject As String = CType(o.Subject, String)
 MsgBox(String.Format(_
 "An Outlook Item is selected with subject {0}.", _
 subject))
 Next

 End Sub
End Class

Working with an Explorer Window

Table 11.4 lists several properties and methods used to set and get the position of an Explorer window, as well as some
other commonly used properties and methods related to the management of the window.

Table 11.4. Explorer Properties and Methods
Name Type Description

Activate() Makes the Explorer window the active window with
focus.

Caption String Read-only property that returns a String value containing
the caption of the Explorer window.

Close() Closes the Explorer window.

Height Integer Gets and sets the height of the Explorer window in
pixels. This can be set only when the WindowState is set
to OlWindowState.olNormalWindow.

Left Integer Gets and sets the left position of the Explorer window in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Left Gets and sets the left position of the Explorer window in
pixels. This can be set only when the WindowState is set
to OlWindowState.olNormalWindow.

Top Integer Gets and sets the top position of the Explorer window in
pixels. This property can be set only when the
WindowState is set to OlWindowState.olNormalWindow.

Width Integer Gets and sets the width of the Explorer window in pixels.
This can be set only when the WindowState is set to
OlWindowState.olNormalWindow.

WindowState optional Object Gets and sets the window state of the Explorer window
using the OlWindowState enumeration. Can be set to
olMaximized, olMinimized, and olNormalWindow.

Adding Buttons and Menus to an Explorer Window

The CommandBars property returns a CommandBars object, which is defined in the Microsoft Office 11.0 Object Library
primary interop assembly (PIA) object. Outlook uses the same object model used by Word and Excel to work with
buttons and menus in an Explorer window. Refer to Chapter 4, "Working with Excel Events," for more information on
the CommandBars object hierarchy and examples of using the CommandBar objects. Listing 11.8 shows a VSTO add-in
that creates a toolbar and a button, and handles the click event for the new button.

Listing 11.8. A VSTO Add-In That Adds a Toolbar and Button to an Explorer
Window

Public Class ThisApplication

 Private WithEvents btn1 As Office.CommandBarButton

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim explorer As Outlook.Explorer = Me.ActiveExplorer()

 If explorer IsNot Nothing Then
 Dim bar As Office.CommandBar = explorer.CommandBars.Add(_
 "My Command Bar", Temporary:=True)
 bar.Visible = True

 btn1 = bar.Controls.Add(_
 Office.MsoControlType.msoControlButton, Temporary:=True)

 btn1.Caption = "My Custom Button"
 btn1.Tag = "OutlookAddin1.btn1"
 btn1.Style = Office.MsoButtonStyle.msoButtonCaption
 End If

 End Sub

 Private Sub Btn1_Click(ByVal ctrl As Office.CommandBarButton, _
 ByRef cancelDefault As Boolean) Handles btn1.Click

 MsgBox("You clicked my button!")

 End Sub

End Class

Associating a Web View with a Folder

It is possible to associate with an Outlook folder an HTML Web page by right-clicking a folder, choosing Properties, and
then clicking the Home Page tab of the dialog box that appears. Figure 11.5 shows the Home Page tab of the Properties
dialog box. You can also associate a Web page with a Folder using the MAPIFolder object's WebViewURL property. If
you check Show Home Page by Default for This Folder or set the MAPIFolder object's WebViewOn property to TRue,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

you check Show Home Page by Default for This Folder or set the MAPIFolder object's WebViewOn property to TRue,
users are shown the Web page when they select the folder, rather than an Outlook view of the items in the folder.

Figure 11.5. Associating an HTML page with a folder.

You can get to the HTML document object model for the Web page displayed by a folder by using the Explorer object's
HTMLDocument property. This property returns a non-Nothing value only if the selected folder is associated with a Web
page. Interacting with the HTML document object model of a Web page through this property is an advanced topic that
is not covered further in this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Inspector Object
The inspector window is the window in Outlook that shows detailed information for a particular Outlook item. This is the
window that displays when you double-click an item in an Outlook folder. You can have multiple inspector windows open
at any time.

Working with the Outlook Item Associated with the Inspector

An inspector window is always associated with 1 of the 16 Outlook item types listed in Table 10.1 in Chapter 10,
"Working with Outlook Events." To get to the Outlook item associated with an Inspector object, use the CurrentItem
property, which returns an Outlook item as an Object. You can cast the returned Object to 1 of the 16 Outlook item types.

Working with an Inspector Window

Table 11.5 lists several properties and methods that are used to set and get the position of an inspector window, as
well as some other commonly used properties and methods related to the management of the window.

Table 11.5. Inspector Properties and Methods
Name Type Description

Activate() Makes the inspector window the active window with
focus.

Caption String Read-only property that returns a String value containing
the caption of the inspector window.

Close() Closes the inspector window.

Height Integer Gets and sets the height of the inspector window in
pixels. This can be set only when the WindowState is set
to OlWindowState.olNormalWindow.

Left Integer Gets and sets the left position of the inspector window in
pixels. This can be set only when the WindowState is set
to OlWindowState.olNormalWindow.

Top Integer Gets and sets the top position of the inspector window in
pixels. This can be set only when the WindowState is set
to OlWindowState.olNormalWindow.

Width Integer Gets and sets the width of the inspector window in
pixels. This can be set only when the WindowState is set
to OlWindowState.olNormalWindow.

WindowState optional Object Gets and sets the window state of the inspector window
using the OlWindowState enumeration. Can be set to
olMaximized, olMinimized, and olNormalWindow.

Working with Different Inspector Editor Types

In the Mail Format tab of Outlook's Options dialog box, users can set preferences for what kind of formats and editor
they want to use when editing an Outlook item. The Options dialog box, shown in Figure 11.6, can be accessed using
the Options menu command in the Tools menu. Two key options are what message format to use (HTML, Rich Text, or
Plain Text) and whether to use Word as the editor of e-mail messages and rich text.

Figure 11.6. Picking formats and editor preferences in the Options dialog box.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

These settings help determine what the Inspector object's EditorType property returns. EditorType returns a member of
the OlEditorType enumeration: olEditorHTML, olEditorRTF, olEditorText, or olEditorWord. If the EditorType returns olEditorHTML, you
can get to the HTML document object model for the inspector window by using the Inspector object's HTMLEditor
property. Using the HTML document object model is an advanced topic and is not covered in this book.

If the user has chosen to use Word as his editor, the Inspector object's IsWordMail property returns TRue. This means
that Outlook has started an instance of Word and is embedding the Word editor in the inspector window. Outlook has
also created a Word Document to edit the Outlook item in. You can access Word's Document object by using the
WordEditor property. This property returns an Object that you can cast to Word's Document object.

Adding Buttons and Menus to an Inspector Window

The Inspector object's CommandBars property returns a CommandBars object, which is defined in the Microsoft Office
11.0 Object Library PIA object. Outlook uses the same object model used by Word and Excel to work with buttons and
menus associated with an inspector window. See Chapter 4, "Working with Excel Events," for more information on the
CommandBars object hierarchy and examples of using the CommandBar objects. Listing 11.9 shows a simple VSTO
add-in that creates a toolbar and a button in an inspector window and handles the click event for the new button.

Listing 11.9. A VSTO Add-In That Adds a Toolbar and a Button to an Inspector
Window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window

Public Class ThisApplication

 Private WithEvents btn1 As Office.CommandBarButton

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim folder As Outlook.MAPIFolder
 folder = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)
 Dim inspector As Outlook.Inspector = Me.Inspectors.Add(_
 folder.Items(1))
 inspector.Display()

 Dim bar As Office.CommandBar = inspector.CommandBars.Add(_
 "My Command Bar", Temporary:=True)
 bar.Visible = True

 btn1 = bar.Controls.Add(_
 Office.MsoControlType.msoControlButton, _
 Temporary:=True)

 btn1.Caption = "My Custom Button"
 btn1.Tag = "OutlookAddin1.btn1"
 btn1.Style = Office.MsoButtonStyle.msoButtonCaption

 End Sub

 Private Sub Btn1_Click(ByVal ctrl As Office.CommandBarButton, _
 ByRef cancelDefault As Boolean) Handles btn1.Click

 MsgBox("You clicked my button!")

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the NameSpace Object
A companion object to the Application object is the NameSpace object, which is retrieved by using the Application
object's Session property. As noted earlier, some confusion can arise because functionality that you would expect to be
on the Application object is actually often found on the NameSpace object. Further increasing the confusion is the
Application.GetNameSpace method, which is an older way to get to a NameSpace object. This method takes a string for
the type of NameSpace to return, implying that you can get different types of NameSpace objects. In reality, the
GetNameSpace method accepts only one string ("MAPI"). In this chapter, we use the Application object's Session
property (added in Outlook 98) to get a NameSpace object rather than the older GetNameSpace method.

Working with the Root Folders of the Open Outlook Stores

The NameSpace object's Folders property returns a Folders collection, allowing you to iterate over all the root folders
that are open within Outlook. Each root folder is the root of what is called a Store. A root folder could correspond to an
Exchange account or some other e-mail account. It could also correspond to an Outlook data file, such as a .PST file. All
folders and Outlook items under a particular root folder share a StoreID.

You can iterate over the Folders collection using Visual Basic's For Each loop. You can also get to a particular MAPIFolder
in the Folders collection using the index operator (). The index operator can be passed a String representing the name of
the Folder in the Folders collection or a 1-based index representing the index of the Folder within the Folders collection.

Although the Folders collection provides Add and Remove methods, these methods are not applicable to root folders,
because root folders represent accounts that are added and removed by adding and removing e-mail accounts or
adding and removing Outlook data files. The following section discusses how a Store is added and removed
programmatically.

Listing 11.10 illustrates iterating over the Folders collection using For Each. It also shows how to get a MAPIFolder using
the index operator on the Folders collection. Finally, it shows how to add a new Folder to an existing store using the
Folders collection's Add method.

Listing 11.10. A VSTO Add-In That Iterates over the Root Folders and Adds a New
Folder

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 For Each folder As Outlook.MAPIFolder In Me.Session.Folders
 MsgBox(folder.Name)
 Next

 Dim rootFolder As Outlook.MAPIFolder = Me.Session.Folders(1)
 Dim NewFolder As Outlook.MAPIFolder
 NewFolder = rootFolder.Folders.Add(_
 "Test Notes Folder", _
 Outlook.OlDefaultFolders.olFolderNotes)

 MsgBox(String.Format(_
 "A new folder has been created in the store {0}.", _
 rootFolder.Name))

 End Sub

End Class

Adding and Removing Outlook Stores

To add a Store programmatically, you can use the NameSpace object's AddStore or AddStoreEx method. The AddStore
method takes a Store parameter of type Object. You can pass a String representing the complete filename of the PST file to
add. If the PST file you provide does not exist, Outlook creates the file for you. AddStoreEx takes the same Store
parameter of type Object that AddStore does. It also takes a second Type parameter of type OlStoreType. To this

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

parameter of type Object that AddStore does. It also takes a second Type parameter of type OlStoreType. To this
parameter, you can pass a member of the OlStoreType enumeration, which will control the format in which the PST file
will be created should you pass a PST file that does not exist. The possible values you can pass are olStoreDefault,
olStoreUnicode, and olStoreANSI.

Use the NameSpace object's RemoveStore method to remove a Store programmatically. RemoveStore removes the
Store from Outlook but does not delete the actual PST file or mailbox on the server associated with the Store.
RemoveStore takes a Folder parameter of type MAPIFolder. This parameter must be one of the root folders in the
NameSpace object's Folders collection.

Determining the Current User

The NameSpace object's CurrentUser property returns a Recipient object representing the logged-in user. Given a
Recipient object, you can use the Recipient object's Name property to get the name of the logged-in user.

Checking Whether Outlook Is Offline

You can determine whether Outlook is offline by getting the value of the NameSpace object's Offline property. This
property returns true if Outlook is offline and not connected to a server.

Getting Standard Folders Such As the Inbox Folder

A method already used in several examples in this chapter to get standard Outlook folders, such as the Inbox folder, is
the NameSpace object's GetDefaultFolder method. This method takes a FolderType parameter of type OlDefaultFolders and
returns a MAPIFolder object. Table 11.6 lists the members of the OlDefaultFolders enumeration that can be passed to
GetDefaultFolder and the standard Outlook folder that is returned.

Table 11.6. Members of the OlDefaultFolders Enumeration That Can
Be Passed to NameSpace Object's GetDefaultFolder Method

Enumeration Member GetDefaultFolder Result

olFolderCalendars Returns the Calendar folder

olFolderConflicts Returns the Conflicts folder

olFolderContacts Returns the Contacts folder

olFolderDeletedItems Returns the Deleted Items folder

olFolderDrafts Returns the Drafts folder

olFolderInbox Returns the Inbox folder

olFolderJournal Returns the Journal folder

olFolderJunk Returns the Junk E-Mail folder

olFolderLocalFailures Returns the Local Sync Failures folder

olFolderNotes Returns the Notes folder

olFolderOutbox Returns the Outbox folder

olFolderSentMail Returns the Sent Items folder

olFolderServerFailures Returns the Server Sync Failures folder

olFolderSyncIssues Returns the Sync Issues folder

olFolderTasks Returns the Tasks folder

olPublicFoldersAllPublicFolders Returns the Public Folders folder

Getting a Folder or Outlook Item by ID

All Outlook items and folders are uniquely identified by an EntryID and a StoreID. All Outlook items and folders within a
given Store share a StoreID. The EntryID is unique within a given Store. So the combination of an EntryID and StoreID
uniquely identifies a folder or an Outlook item. When you have created a new Outlook item using the Items collection's
Add method or the Application object's CreateItem method, the newly created Outlook item will not be assigned an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add method or the Application object's CreateItem method, the newly created Outlook item will not be assigned an
EntryID until you call the Save method on the newly created item.

Both a MAPIFolder and the 16 Outlook item types have an EntryID property that returns the EntryID for the folder or
item as a String. But only MAPIFolders have a StoreID property. To determine the StoreID that corresponds to a
particular Outlook item, you must get the parent MAPIFolder using the Parent property of an Outlook item and then
determine the StoreID from the parent folder.

The NameSpace object's GetFolderFromID method takes an EntryID parameter as a String and an optional StoreID
parameter as an Object to which you can pass the StoreID as a String. If you omit the StoreID parameter by passing
Type.Missing, Outlook assumes that it should look in the default Store (the Store in which the default Inbox and Calendar
are located). The GetFolderFromID method returns the MAPIFolder object identified by the EntryID and StoreID.

The NameSpace object's GetItemFromID method takes an EntryID parameter as a String and an optional StoreID parameter
as an Object to which you can pass the StoreID as a String. If you omit the StoreID parameter, Outlook assumes that it
should look in the default Store. The GetItemFromID method returns the Object for the Outlook item identified by the
EntryID and StoreID. Then you can cast the returned Object to 1 of the 16 Outlook item types listed in Table 10.1 in
Chapter 10, "Working with Outlook Events."

Listing 11.11 illustrates getting a folder and an Outlook item by EntryID and StoreID.

Listing 11.11. A VSTO Add-In That Uses the NameSpace Object's GetFolderFromID
and GetItemFromID Methods

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)
 Dim inboxStoreID As String = inbox.StoreID
 Dim inboxEnTryID As String = inbox.EntryID

 Dim outlookItem As Object = inbox.Items(1)
 Dim itemStoreID As String = inboxStoreID
 Dim itemEntryID As String = outlookItem.EntryID
 Dim theFolder As Outlook.MAPIFolder
 theFolder = Me.Session.GetFolderFromID(_
 inboxStoreID, inboxEnTryID)
 MsgBox(theFolder.Name)

 Dim theItem As Object = Me.Session.GetItemFromID(_
 itemEntryID, itemStoreID)
 MsgBox(theItem.Subject)

 End Sub

End Class

Accessing Address Books and Address Entries

The NameSpace object's AddressLists property returns the AddressLists collection. The AddressLists collection is a
collection containing all the available address books as AddressList objects. The AddressList object has an
AddressEntries collection, which is a collection of AddressEntry objects. Each AddressEntry object represents an address
in an address book.

Listing 11.12 iterates over the available address books and displays the name of each address book. It also displays the
name of the first address entry in each address book.

Listing 11.12. A VSTO Add-In That Iterates over Available Address Books

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 11.12. A VSTO Add-In That Iterates over Available Address Books

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim lists As Outlook.AddressLists = Me.Session.AddressLists
 For Each list As Outlook.AddressList In lists
 MsgBox(String.Format(_
 "{0} has {1} address entries.", _
 list.Name, list.AddressEntries.Count))

 If list.AddressEntries.Count > 0 Then
 MsgBox(String.Format(_
 "The first address in this address book is {0}.", _
 list.AddressEntries(1).Name))
 End If
 Next

 End Sub

End Class

Displaying the Outlook Select Folder Dialog Box

The NameSpace object provides a method that allows you to display Outlook's Select Folder dialog box, shown in Figure
11.7. The Select Folder dialog box provides a way for the user to pick a folder, as well as create a new folder. The
NameSpace object's PickFolder method displays the Select Folder dialog box as a modal dialog box. The method returns
the MAPIFolder object corresponding to the folder the user picked in the dialog box. If the user cancels the dialog box,
this method will return Nothing.

Figure 11.7. Outlook's Select Folder dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the MAPIFolder Object
This chapter has already covered how to iterate over Folders collections, how to get a MAPIFolder out of a Folders
collection using the index operator, how to access Outlook's default folders, how to get a MAPIFolder by EntryID and
StoreID, and how to use Outlook's Select Folder dialog box to get a MAPIFolder. This section examines some additional
properties and methods associated with the MAPIFolder object.

Other Identifiers for a Folder

The MAPIFolder object's Name property returns the display name of a folder as a String. The default server sync failures
folder identified by OlDefaultFolders.olFolderServerFailures, for example, returns the string "Server Failures" for its Name property.

The MAPIFolder object's FolderPath property returns the full name of the folder as a String, including the names of the
containing folders. The default server sync failures folder identified by OlDefaultFolders.olFolderServerFailures, for example,
returns the string "\\Eric Carter\Sync Issues\Server Failures" for its FolderPath property. For this example, the Server Failures
folder is contained in a folder called Sync Issues in the Store called Eric Carter.

The MAPIFolder object's Description property returns a String containing the description of the folder. This is a read/write
property that can be set to any String value. The MAPIFolder object's ShowItemCount property controls whether the
folder shows the unread item count, total item count, or no count when displayed in the Outlook Navigation pane folder
list. It can return or be set to a member of the OlShowItemCount enumeration: olNoItemCount, olShowTotalItemCount, or
olShowUnreadItemCount. If you want to determine the number of unread items in a particular folder, use the MAPIFolder
object's UnReadItemCount property, which returns an Integer value representing the unread item count.

Accessing Subfolders Contained in a Folder

A MAPIFolder may contain subfolders. The MAPIFolder object's Folders property returns a Folders collection, which
contains any additional MAPIFolder objects that are subfolders of the given folder.

As described earlier, you can iterate over the subfolders contained in the Folders collection for a MAPIFolder using
Visual Basic's For Each loop. You can also get to a particular MAPIFolder in the Folders collection by using the index
operator (). The index operator can be passed a String representing the name of the Folder in the Folders collection or a
1-based index representing the index of the Folder within the Folders collection.

The Folders collection's Add method enables you to add a new subfolder to the subfolders associated with a MAPIFolder.
The Add method takes the name of the new folder as a String parameter. It also takes as an optional Object parameter
the Outlook folder type to use for the new folder. You can pass this parameter a subset of the OlDefaultFolders constants:
olFolderCalendar, olFolderContacts, olFolderDrafts, olFolderInbox, olFolderJournal, olFolderNotes, olPublicFoldersAllPublicFolders, or olFolderTasks. If
you omit this parameter, the Outlook folder type of the newly created folder matches the folder type of the parent
folder. Also note that a folder of type olPublicFoldersAllPublicFolders can be added only somewhere under the root public
folder returned by the NameSpace object's GetdefaultFolder(olPublicFoldersAllPublicFolders).

The Folders collection's Remove method enables you to remove a subfolder by passing the 1-based index of the folder
in the Folders collection. Figuring out what the 1-based index is can be a bit of a pain; it usually is easier just to call the
Delete method on the MAPIFolder object representing the subfolder you want to remove.

Listing 11.13 shows a VSTO add-in that iterates over the subfolders of the Inbox folder and then adds a new folder
using the Folders collection's Add method. Then it deletes the newly added folder using the MAPIFolder object's Delete
method rather than the Folders collection's Remove method.

Listing 11.13. A VSTO Add-In That Iterates over Subfolders of the Inbox Folder,
Adds a New Subfolder, and Then Deletes It

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim folder As Outlook.MAPIFolder
 folder = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)
 MsgBox(String.Format(_
 "There are {0} subfolders in the Inbox.", _
 folder.Folders.Count))

 For Each subFolder As Outlook.MAPIFolder In folder.Folders

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 For Each subFolder As Outlook.MAPIFolder In folder.Folders
 MsgBox(String.Format("Sub folder {0}.", subFolder.Name))
 Next

 Dim NewSubFolder As Outlook.MAPIFolder
 NewSubFolder = folder.Folders.Add(_
 "New Temporary Folder")
 MsgBox("A new subfolder was added in the Inbox folder")

 NewSubFolder.Delete()
 MsgBox("The new subfolder was just deleted.")

 End Sub

End Class

Accessing Items Contained in a Folder

A MAPIFolder's main purpose in life is to contain Outlook items. When you create a new folder, you have to specify the
type of folder it is. This type constrains the types of Outlook items it can contain. Figure 11.8 shows Outlook's Create
New Folder dialog box, which appears when you right-click a folder or root folder (Store) in Outlook and choose New
Folder. The Create New Folder dialog box makes the user decide what kind of items the folder can contain: Calendar
Items, Contact Items, Journal Items, Mail and Post Items, Note Items, or Task Items. This constraint is enforced by
Outlook. If you try to drag a Mail item to a folder that was created to contain Calendar items, the item type will be
changed to Calendar.

Figure 11.8. Outlook's Create New Folder dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MAPIFolder object's Items property returns an Items collection containing Outlook items in the folder. Each Outlook
item in the folder is returned as an Object. You can use the fact that folders are constrained to contain certain types of
Outlook items when iterating over items in a folder. If you check the type of item that folder contains by looking at the
DefaultItemType property, you can write code that tries to cast the objects returned from the Items collection only to
the Outlook item types that are allowed in that folder. So, for example, if you are iterating over items in a Folder whose
DefaultItemType property returns olContactItem, objects returned from the Items collection can be cast to either a
ContactItem or a DistListItem.

Table 11.7 shows how the member of the OlDefaultFolders enumeration you pass in when you create the folder using
Folders.Add corresponds to the returned DefaultItemType and what possible Outlook item types could be found in that
folder.

Table 11.7. Relationship Between Folders.Add Folder Type
(OlDefaultFolders), DefaultItemType Value, and Outlook Item Types

Found in a Folder
Folder Created with
OlDefaultFolders
Enumeration Member

DefaultItemType
Returns OlItemType
Enumeration Member

Possible Outlook Item Types in
Folder

olFolderCalendar olAppointmentItem AppointmentItem

olFolderContacts olContactItem ContactItem, DistListItem

olFolderJournal olJournalItem JournalItem

olFolderInbox olFolderDrafts olMailItem MailItem, PostItem, MeetingItem,
RemoteItem, ReportItem,
DocumentItem,
TaskRequestAcceptItem,
TaskRequestDeclineItem,
TaskRequestItem,
TaskRequestUpdateItem

olFolderNotes olNoteItem NoteItem

olPublicFolders AllPublicFolders olPostItem PostItem

olFderTasks olTaskItem TaskItem

Listing 11.14 shows an add-in that iterates over the top-level folders in each open Store and iterates over the items in
each of those folders. It uses the DefaultItemType property to determine which kinds of items a particular folder might
have in it and casts the objects returned from the Items collection to one of the expected types in the folder. Note that
there is a case where the expected cast might fail. An object that is a MailItem that has restricted permissions cannot
be cast to a MailItem unless the item has been opened in Outlook in an inspector window with security permissions
verified.

Listing 11.14. A VSTO Add-In That Iterates over Items in Folders and Performs
Appropriate Casts

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim rootFolders As Outlook.Folders = Me.Session.Folders
 Dim folder As Outlook.MAPIFolder
 For Each folder In rootFolders
 Dim subFolders As Outlook.Folders = folder.Folders
 Dim subfolder As Outlook.MAPIFolder
 For Each subfolder In subFolders
 IterateFolder(subfolder)
 Next
 Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Next

 End Sub

 Public Sub IterateFolder(ByVal folder As Outlook.MAPIFolder)
 Dim subject As New System.Text.StringBuilder

 subject.AppendLine(folder.Name)
 For Each item As Object In folder.Items
 subject.AppendLine(GetSubject(item, _
 folder.DefaultItemType))
 Next
 MsgBox(subject.ToString())

 End Sub

 Public Function GetSubject(ByVal item As Object, _
 ByVal ptype As Outlook.OlItemType) As Object
 Select Case ptype
 Case Outlook.OlItemType.olAppointmentItem
 If TypeOf item Is Outlook.AppointmentItem Then
 Dim appointment As Outlook.AppointmentItem = item
 Return appointment.Subject
 End If
 Exit Select

 Case Outlook.OlItemType.olContactItem

 Case Outlook.OlItemType.olDistributionListItem
 If TypeOf item Is Outlook.ContactItem Then
 Dim contact As Outlook.ContactItem = item
 Return contact.Subject
 End If

 If TypeOf item Is Outlook.DistListItem Then
 Dim distlist As Outlook.DistListItem = item
 Return distlist.Subject
 End If
 Exit Select

 Case Outlook.OlItemType.olJournalItem
 If TypeOf item Is Outlook.JournalItem Then
 Dim journal As Outlook.JournalItem = item
 Return journal.Subject
 End If
 Exit Select

 Case Outlook.OlItemType.olMailItem
 If TypeOf item Is Outlook.MailItem Then
 Dim mail As Outlook.MailItem = item
 Return mail.Subject
 End If

 If TypeOf item Is Outlook.PostItem Then
 Dim post As Outlook.PostItem = item
 Return post.Subject
 End If

 If TypeOf item Is Outlook.MeetingItem Then
 Dim meeting As Outlook.MeetingItem = item
 Return meeting.Subject
 End If

 If TypeOf item Is Outlook.RemoteItem Then
 Dim remote As Outlook.RemoteItem = item
 Return remote.Subject
 End If

 If TypeOf item Is Outlook.ReportItem Then
 Dim report As Outlook.ReportItem = item
 Return report.Subject
 End If

 If TypeOf item Is Outlook.DocumentItem Then
 Dim doc As Outlook.DocumentItem = item
 Return doc.Subject
 End If

 If TypeOf item Is Outlook.TaskRequestAcceptItem Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If TypeOf item Is Outlook.TaskRequestAcceptItem Then
 Dim tra As Outlook.TaskRequestAcceptItem = item
 Return tra.Subject
 End If

 If TypeOf item Is Outlook.TaskRequestDeclineItem Then
 Dim trd As Outlook.TaskRequestDeclineItem = item
 Return trd.Subject
 End If

 If TypeOf item Is Outlook.TaskRequestItem Then
 Dim tr As Outlook.TaskRequestItem = item
 Return tr.Subject
 End If

 If TypeOf item Is Outlook.TaskRequestUpdateItem Then
 Dim tru As Outlook.TaskRequestUpdateItem = item
 Return tru.Subject
 End If

 Exit Select

 Case Outlook.OlItemType.olNoteItem
 Dim note As Outlook.NoteItem = item
 If note IsNot Nothing Then
 Return note.Subject
 End If
 Exit Select

 Case Outlook.OlItemType.olPostItem
 Dim post2 As Outlook.PostItem = item
 If post2 IsNot Nothing Then
 Return post2.Subject
 End If
 Exit Select

 Case Outlook.OlItemType.olTaskItem
 Dim task As Outlook.TaskItem = item
 If task IsNot Nothing Then
 Return task.Subject
 End If
 Exit Select

 End Select

 MsgBox(String.Format(_
 "Couldn't cast item with subject {0} and class {1}.", _
 item.Subject, _
 item.Class))

 Return ""

 End Function

End Class

Working with a Folder's View Settings

A MAPIFolder has a Views property that returns a Views collection. The Views collection contains all the available View
objects for a folder that correspond to the views shown in the Custom View Organizer dialog box, shown in Figure 11.4
earlier in this chapter. You can determine the view being used by the folder by accessing the MAPIFolder object's
CurrentView property, which returns a View object. The CurrentView property is read-only; you cannot change the
current view by setting the CurrentView property to another View object. Instead, you must access one of the View
objects in the Views collection and call the View object's Apply method to make the view associated with the folder the
active view.

Listing 11.15 shows add-in code that gets the name of the current view for the Inbox folder. Then it iterates over the
available views for the Inbox folder and applies each view.

Listing 11.15. A VSTO Add-In That Iterates over Available Views for the Inbox
Folder and Applies Each View

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Folder and Applies Each View

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)
 Me.ActiveExplorer().CurrentFolder = inbox

 MsgBox(String.Format("Current inbox view is {0}.", _
 inbox.CurrentView.Name))

 Dim view As Outlook.View
 For Each view In inbox.Views
 view.Apply()
 MsgBox(String.Format("Current inbox view is now {0}.", _
 inbox.CurrentView.Name))
 Next

 End Sub

End Class

Copying or Moving a Folder to a New Location

You can copy a folder and its dependent folders and items to a new location using the MAPIFolder object's CopyTo
method. The CopyTo method takes a DestinationFolder parameter of type MAPIFolder, which will be the parent folder for
the copied folder. It returns a MAPIFolder for the newly copied folder. The copy is a "deep copy" because all the items
and subfolders rooted at the folder you call the CopyTo method on are copied to the new location.

You can move a folder and its dependent folders and items to a new location using the MAPIFolder's MoveTo method.
The MoveTo method takes a DestinationFolder parameter of type MAPIFolder, which will be the parent folder for the moved
folder. The folder is moved, along with all dependent folders and items, to the new location.

Displaying a Folder in an Explorer View

You can open a MAPIFolder in a new Explorer view by calling the MAPIFolder object's Display method. To use an
existing Explorer view, you can set the Explorer object's CurrentFolder to the MAPIFolder you want to display in the
existing Explorer view. Listing 11.15 uses this approach.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Items Collection
This chapter has already covered how to iterate over the Outlook items in a MAPIFolder by using For Each with the Items
collection. This section examines some additional methods that you can use when working with the Items collection.

Iterating over Outlook Items

The Items collection's SetColumns method enables you to tell Outlook to cache certain properties when you iterate over
the Items collection so that access to those properties will be fast. An Outlook item has a number of properties
associated with itnamevalue pairs that can be accessed by using an Outlook item's ItemProperties property. A typical
MailItem has around 80 properties associated with it.

If you know that you are going to iterate using For Each over the Items collection, and you are going to be accessing the
Subject and CreationTime properties only of Outlook items in that collection, you can call the Items collection's
SetColumns method before iterating the collection and pass the string "Subject, CreationTime". Some limitations apply to
which properties can be cached (for example, properties that return objects cannot be cached); check the
documentation before using this method. After you have iterated over the collection, use the Items collection's
ResetColumns method to clear the cache of properties Outlook created.

The Items collection's Sort method enables you to apply a sort order to the Items collection before you iterate over the
collection using For Each. The method takes a Property parameter as a String, which gives the name of the property by
which to sort. You pass the name of the property enclosed in square brackets. To sort by subject, you would pass "
[Subject]". The Sort method also takes an optional Descending parameter that can be passed TRue to sort descending, False
to sort ascending. The default value if you omit the parameter is False. Some limitations apply to which properties can
sorted on; check the documentation before using this method.

Listing 11.16 illustrates using the SetColumns and Sort methods. It times the operation of iterating through all the
items in the Inbox and examining the Subject property without calling SetColumns. Then it times the operation again
but calls SetColumns first. Finally, Sort is illustrated, and the first item and last item in the sorted Items collection are
accessed using the index operator. The Items collection's Count property is also used to get the index of the last item in
the Items collection.

Listing 11.16. A VSTO Add-In That Uses the Items Collection's SetColumns and
Sort Methods

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim myItems As Outlook.Items = inbox.Items

 MsgBox("Click OK to start the test.")

 Dim startDate As System.DateTime = System.DateTime.Now
 Dim item As Object
 For Each item In myItems
 Dim subject As String = CType(item.Subject, String)
 Next
 Dim endDate As System.DateTime = System.DateTime.Now
 Dim result1 As System.TimeSpan = endDate.Subtract(startDate)

 MsgBox(String.Format(_
 "Without calling SetColumns this took {0} ticks.", _
 result1.Ticks))

 startDate = System.DateTime.Now
 myItems.SetColumns("Subject")
 For Each item In myItems
 Dim subject As String = CType(item.Subject, String)
 Next
 endDate = System.DateTime.Now
 Dim result2 As System.TimeSpan = endDate.Subtract(startDate)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox(String.Format(_
 "With SetColumns this took {0} ticks.", _
 result2.Ticks))

 myItems.ResetColumns()

 myItems.Sort("[Subject]")
 Dim firstItem As Object = myItems(1)
 Dim lastItem As Object = myItems(myItems.Count)

 MsgBox(String.Format(_
 "First item is {0}.", firstItem.Subject))
 MsgBox(String.Format("Last item is {0}.", lastItem.Subject))

 End Sub

End Class

Finding an Outlook Item

The Items collection's Find method enables you to find an Outlook item in the Items collection by querying the value of
one or more properties associated with the Outlook item. The Find method takes a String, which contains a filter to apply
to find an Outlook item. You might want to find an Outlook item in the items collection with its Subject property set to
"RE: Payroll", for example. The way you would call Find would look like this:

Dim foundItem As Object
foundItem = myItems.Find("[Subject] = ""RE: Payroll""")

The query string has the name of the property in brackets. Alternatively, you could call Find substituting apostrophes
for the quotation marks used in the first example:

Dim foundItem As Object
foundItem = myItems.Find("[Subject] = 'RE: Payroll'")

If the Items collection does not contain an Outlook item whose Subject property is equal to "RE: Payroll", the Find method
returns Nothing. If there are multiple Outlook items in the Items collection whose Subject property is equal to "RE: Payroll",
you can continue finding additional items by using the Items collection's FindNext method. The FindNext method finds
the next Outlook item in the collection that matches the filter string passed to Find. You can continue to call FindNext
until FindNext returns Nothing, indicating that no more items could be found, as shown in Listing 11.17.

Listing 11.17. A VSTO Add-In That Uses the Items Collection's Find and FindNext
Methods

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim myItems As Outlook.Items = inbox.Items

 Dim foundItem As Object = myItems.Find(_
 "[Subject] = ""RE: Payroll""")

 While foundItem IsNot Nothing
 MsgBox(String.Format(
 "Found item with EntryID {0}.", foundItem.EntryID))
 foundItem = myItems.FindNext()
 End While

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

We have illustrated a rather simple filter string that just checks to see whether a text property called Subject matches a
string. It is possible to use the logical operators AND, OR, and NOT to specify multiple criteria. The following filter
strings, for example, check both the property Subject and the property CompanyName. The first finds an Outlook item
where the Subject is "RE: Payroll" and the CompanyName is "Microsoft". The second finds an Outlook item where the
Subject is "RE: Payroll" or the CompanyName is "Microsoft". The third finds an Outlook item where the Subject is "RE: Payroll"
and the CompanyName is not "Microsoft".

Dim foundItem As Object = myItems.Find(_
 "[Subject] = 'RE: Payroll' AND [CompanyName] = 'Microsoft'")

Dim foundItem As Object = myItems.Find(_
 "[Subject] = 'RE: Payroll' OR [CompanyName] = 'Microsoft'")

Dim foundItem As Object = myItems.Find(_
 "[Subject] = 'RE: Payroll' AND NOT [CompanyName] " & _
 "= 'Microsoft'")

When searching for a property that is an integer value, it is not necessary to enclose the integer value you are
searching for in quotes. The same is true for a property that is a boolean property. This example searches for an
Outlook item whose integer property OutlookInternalVersion is equal to 116359 and whose boolean property NoAging is
set to False.

Dim foundItem As Object = myItems.Find(_
 "[OutlookInternalVersion] = 116359 AND [NoAging] = False")

Some limitations apply to which properties you can use in a filter string. Properties that return objects cannot be
examined in a filter string, for example. Check the documentation of the Outlook object model for more information.

If you are working with an Items collection that has a large number of Outlook items in it, consider using the Items
collection's Restrict method rather than Find and FindNext. The Restrict method is used in a similar way to how
SetColumns and Sort are used. You call the Restrict method on the Items collection passing the same kind of filter
string you provide to the Find method. Then you can use For Each to iterate over the Items collection, and only the
Outlook items that match the filter string will be iterated over. The Restrict method can be faster than Find and
FindNext if you have a large number of items in the Items collection and you expect to find only a few items. Listing
11.18 illustrates using the Restrict method.

Listing 11.18. A VSTO Add-In That Uses the Items Collection's Restrict Method

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim myItems As Outlook.Items = inbox.Items

 For Each foundItem As Object In myItems.Restrict(_
 "[Subject] = ""RE: Payroll""")

 MsgBox(String.Format("Found item with EntryID {0}.", _
 foundItem.EntryID))

 Next

 End Sub

End Class

Adding an Outlook Item to an Items Collection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To add a new Outlook Item to an Items collection, use the Items collection's Add method. The Add method takes an
optional Type parameter of type Object to which you can pass a member of the OlItemType enumeration: olAppointmentItem,
olContactItem, olDistributionListItem, olJournalItem, olMailItem, olNoteItem, olPostItem, or olTaskItem. If you omit the Type parameter, the
type of the item is determined by the type of folder (as determined by DefaultItemType) that you are adding the item
to. The Add method returns an Object, which can be cast to the Outlook item type corresponding to the Type parameter
that was passed in.

You must remember that you can add only an Outlook item that is compatible with the folder type the Items collection
came from. It is not possible, for example, to add a ContactItem to an Items collection from a folder that is designated
to hold MailItems and PostItems. For more information on the Outlook item types that can be contained by a particular
folder type, refer to Table 11.6 earlier in this chapter.

Listing 11.19 shows an example of using the Add method to add a PostItem and a MailItem to the Inbox folder. Note
that using the Add method is not sufficient to get the PostItem and MailItem added to the Inbox folder. For the
PostItem, we also have to call the Save method on the newly created Outlook item; otherwise, Outlook discards the
PostItem when the variable postItem that refers to it goes out of scope. We also have to call Save on the newly created
MailItem. In addition, we have to call the Move method to move the newly created MailItem into the Inbox folder. This
is necessary because Outlook puts newly created MailItems into the Drafts folder by defaulteven though we called Add
on the Items collection associated with the Inbox. Without the call to Move, the newly created MailItem remains in the
Drafts folder.

Listing 11.19. A VSTO Add-In That Adds a MailItem and a PostItem

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim myItems As Outlook.Items = inbox.Items

 Dim postItem As Outlook.PostItem = myItems.Add(_
 Outlook.OlItemType.olPostItem)
 postItem.Subject = "Test1"
 postItem.Save()

 Dim mailItem As Outlook.MailItem = myItems.Add(_
 Outlook.OlItemType.olMailItem)
 mailItem.Subject = "Test2"
 mailItem.Save()
 mailItem.Move(inbox)

 End Sub

End Class

An alternative way to create an Outlook item is to use the Application object's CreateItem method. This method takes a
Type parameter of type OlItemType that is passed a member of the OlItemType enumeration. It returns an Object
representing the newly created Outlook item. Then you must save the created item and place it in the folder you want
to store it in. Listing 11.20 shows code that uses CreateItem to do the same thing that Listing 11.19 does. In Listing
11.20, we must move the new MailItem and PostItem to the Inbox folder using the Move method on MailItem and
PostItem.

Listing 11.20. A VSTO Add-In That Uses the Application Object's CreateItem
Method to Add a MailItem and a PostItem

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim mailItem As Outlook.MailItem = Me.CreateItem(_
 Outlook.OlItemType.olMailItem)
 mailItem.Subject = "Test 1"
 mailItem.Save()
 mailItem.Move(inbox)

 Dim postItem As Outlook.PostItem = Me.CreateItem(_
 Outlook.OlItemType.olPostItem)
 postItem.Subject = "Test 2"
 postItem.Save()

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Properties and Methods Common to Outlook Items
This chapter has discussed the 16 Outlook item types: AppointmentItem, ContactItem, DistListItem, DocumentItem,
JournalItem, MailItem, MeetingItem, NoteItem, PostItem, RemoteItem, ReportItem, TaskItem,
TaskRequestAcceptItem, TaskRequestDeclineItem, TaskRequestItem, and TaskRequestUpdateItem. We group these
object model types because all these types have many common properties and methods, listed in Table 11.8. The
properties and methods in this table are found on all Outlook item types. The properties and methods marked in this
table with an asterisk are found on all Outlook item types except NoteItem. NoteItem is a special case in the Outlook
item family and has a subset of the properties and methods that the other Outlook item types share.

Table 11.8. Properties and Methods Common to All Outlook Items
Actions* Delete NoAging*

Application Display InternalVersion*

Attachments* DownloadState OutlookVersion*

AutoResolvedWinner EntryID Parent

BillingInformation* FormDescription* PrintOut

Body GetInspector Save

Categories Importance* SaveAs

Class IsConflict Saved

Close ItemProperties Sensitivity*

Companies* LastModificationTime Session

Conflicts Links ShowCategoriesDialog*

ConversationIndex* MarkForDownload Size

ConversationTopic* MessageClass Subject

Copy Mileage* UnRead*

CreationTime Move UserProperties*

Now we consider several of these common properties and methods. Even though we talk about Outlook Items as
though there were an OutlookItem type in the Outlook object model, there is no such type; the OutlookItem type is a
conceptual way of talking about the properties and methods common to the 16 Outlook item types in the Outlook object
model. So when we talk about the Save method, for example, that method is found on ContactItem, PostItem,
MailItem, and all the other Outlook item types.

Given an object that you know is 1 of the 16 Outlook item types, you can cast it to the correct Outlook item type, or
you can talk to the object via late-bound properties if you are talking to a property common to all Outlook items. Some
of the code listings in this section use late-bound properties and have illustrated this point. Usually, it is preferable to
cast the object to the specific item type rather than use late binding.

Creating an Outlook Item

You learned the two primary ways in which you can create an Outlook item earlier in this chapter, in the section "Adding
an Outlook Item to an Items Collection." You can call either the Items collection's Add method or the Application
object's CreateItem method. These methods take a member of the OlItemType enumeration and return an object that can
be cast to the Outlook item type corresponding to the OlItemType enumeration, as shown in Table 11.9.

Table 11.9. Correspondence Between OlItemType and Outlook Item
Types

OlItemType Member Outlook Item Type

olAppointmentItem AppointmentItem

olContactItem ContactItem

olDistributionListItem DistListItem

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

olMailItem MailItem

olNoteItem NoteItem

olJournalItem JournalItem

olPostItem PostItem

olTaskItem TaskItem

Notice that there are eight items in this table, which leaves out seven Outlook item types. How do you create the other
seven remaining Outlook item types? The remaining types are created by Outlook or created as a result of other actions
you take with an existing Outlook item type. Table 11.10 identifies how the other Outlook item types are created.

Table 11.10. How the Other Outlook Item Types Are Created
Outlook Item Type How Created

DocumentItem The Items collection's Add method also accepts
a member of the OlOfficeDocItemsType
enumeration: olWordDocumentItem,
olExcelWorkSheetItem, or olPowerPointShowItem.
Calling the Items collection's Add method with
any of these constants returns an Object that
can be cast to a DocumentItem. You can also
create a DocumentItem using the Application
object's CopyFile method.

MeetingItem Cannot be created directly. Created by Outlook
when AppointmentItem.MeetingStatus is set to
olMeeting and sent to one or more recipients.

RemoteItem Cannot be created directly. Created by Outlook
when you use a Remote Access System
connection.

ReportItem Cannot be created directly. Created by the mail
transport system.

TaskRequestAcceptItem Cannot be created directly. Created by Outlook
as part of the task delegation feature.

TaskRequestDeclineItem Cannot be created directly. Created by Outlook
as part of the task delegation feature.

TaskRequestItem Cannot be created directly. Created by Outlook
as part of the task delegation feature.

TaskRequestUpdateItem Cannot be created directly. Created by Outlook
as part of the task delegation feature.

Identifying the Specific Type of an Outlook Item

You can determine the specific type of an Outlook item given to you as type Object by using the TypeOf operator to
determine whether the Outlook item is a particular type, as shown in Listing 11.21. The code gets an Outlook item out
of the Inbox and then uses the TypeOf operator to determine whether it is an Outlook MailItem. If the Outlook item is a
MailItem, the code proceeds to call the late-bound subject property to display the subject of the mail message.

Listing 11.21. A VSTO Add-In That Uses the TypeOf Operator on an Outlook Item
of Type Object

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim item As Object = inbox.Items(1)

 If TypeOf item Is Outlook.MailItem Then
 MsgBox(item.Subject)
 End If

 End Sub

End Class

You can also use declare a variable to a specific Outlook item type and set the variable to the Object representing the
Outlook item. This will give you a variable that can be talked to in a strongly typed way. This technique is shown in
Listing 11.22. A second technique is to use the CType operator to cast the Object to a particular Outlook item type. This
approach is also shown in Listing 11.22.

Listing 11.22. A VSTO Add-In That Uses the Is Operator on an Outlook Item of
Type Object

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim item As Object = inbox.Items(1)

 If TypeOf item Is Outlook.MailItem Then
 ' Declaring a strongly variable and assigning technique
 Dim mailItem As Outlook.MailItem = item
 MsgBox(mailItem.Subject)

 ElseIf TypeOf item Is Outlook.PostItem Then
 ' Using CType technique
 MsgBox(CType(item, Outlook.PostItem).Subject)
 End If

 End Sub

End Class

A final way to determine the type of an Outlook item of type Object is to call the late-bound Class property, which is
found on every Outlook item type. The Class property returns a member of the OlObjectClass enumeration. Table 11.11
shows the correspondence between OlObjectClass enumerated values and Outlook item types.

Table 11.11. Correspondence Between Outlook Item Type and
OlObjectClass Enumerated Value

Outlook Item Type OlObjectClass Enumeration Member

AppointmentItem olAppointment

ContactItem olContact

DistListItem olDistributionList

DocumentItem olDocument

JournalItem olJournal

MailItem olMail

MeetingItem olMeetingRequest

NoteItem olNote

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PostItem olPost

RemoteItem olRemote

ReportItem olReport

TaskItem olTask

TaskRequestAcceptItem olTaskRequestAccept

TaskRequestDeclineItem olTaskRequestDecline

TaskRequestItem olTaskRequest

TaskRequestUpdateItem olTaskRequestUpdate

Listing 11.23 shows some add-in code that calls the Class property on an Outlook item of type Object. Then it uses a
Select Case statement, which for illustration purposes contains all the members of the OlObjectClass enumeration that
correspond to Outlook item types. The code in Listing 11.23 would be more efficient than using the IsType operator if
your code needs to cast to multiple specific Outlook item types, given an Outlook item of type Object. The code in Listing
11.15, for example, would be more efficient if it were rewritten to use the approach in Listing 11.23. The approach in
Listing 11.23 needs to make only one late-bound property call to get the Class value and then one cast to get the
specific Outlook item type.

Listing 11.23. A VSTO Add-In That Uses the Class Property to Determine the
Outlook Item Type

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim item As Object = inbox.Items(1)

 Dim objectClass As Outlook.OlObjectClass = _
 CType(item.Class, Outlook.OlObjectClass)
 MsgBox(String.Format("Class is {0}.", _
 objectClass.ToString()))

 Select Case objectClass
 Case Outlook.OlObjectClass.olAppointment
 Exit Select
 Case Outlook.OlObjectClass.olContact
 Exit Select
 Case Outlook.OlObjectClass.olDistributionList
 Exit Select
 Case Outlook.OlObjectClass.olDocument
 Exit Select
 Case Outlook.OlObjectClass.olJournal
 Exit Select
 Case Outlook.OlObjectClass.olMail
 Dim mailItem As Outlook.MailItem = item
 MsgBox(String.Format(_
 "Found mail item with subject {0}.", _
 mailItem.Subject))
 Exit Select
 Case Outlook.OlObjectClass.olMeetingRequest
 Exit Select
 Case Outlook.OlObjectClass.olNote
 Exit Select
 Case Outlook.OlObjectClass.olPost
 Dim postItem As Outlook.PostItem = item
 MsgBox(String.Format(_
 "Found post item with subject {0}.", _
 postItem.Subject))
 Exit Select
 Case Outlook.OlObjectClass.olRemote
 Exit Select
 Case Outlook.OlObjectClass.olReport
 Exit Select

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Exit Select
 Case Outlook.OlObjectClass.olTask
 Exit Select
 Case Outlook.OlObjectClass.olTaskRequest
 Exit Select
 Case Outlook.OlObjectClass.olTaskRequestAccept
 Exit Select
 Case Outlook.OlObjectClass.olTaskRequestDecline
 Exit Select
 Case Outlook.OlObjectClass.olTaskRequestUpdate
 Exit Select
 Case Else
 End Select

 End Sub

End Class

Other Properties Associated with All Outlook Items

This section covers several commonly used properties associated with all Outlook item types (with the possible
exception of NoteItem). When we say properties in the context of Outlook items, some confusion can arise. Some
properties are on the actual Outlook item type. The Subject property, for example, is a callable property on all Outlook
item object types. There are a MailItem.Subject property, PostItem.Subject, ContactItem.Subject, and so on.
Sometimes, a property that is on an Outlook item object type is also accessible via the OutlookItem.ItemProperties
collection. If you iterate over the ItemProperties collection, you will find an ItemProperty object where
ItemProperty.Name returns "Subject".

The creators of the Outlook object model exposed some of the properties in the ItemProperties collection as first-class
properties on the object types themselves. So the Subject property can be accessed by using either
OutlookItem.Subject or OutlookItem.ItemProperties("Subject"). Other properties that are more obscure were not
exposed out as properties on the objects themselves. The EnableSharedAttachments property, for example, can be
accessed only via OutlookItem.ItemProperties("EnableSharedAttachments"). You learn more about the ItemProperties
collection later in this chapter.

Table 11.12 lists several properties callable on all Outlook item object types. Properties marked with an asterisk are not
available on the NoteItem object.

Table 11.12. Properties Associated with All Outlook Items
Name Type What It Does

Body String Gets and sets the body text of the Outlook item.

Categories String Gets and sets the categories assigned to the Outlook
item. An Outlook item assigned to the Business and
Favorites category, for example, would return the string
"Business, Favorites".

ConversationIndex* String Gets an identifier for the conversation index.

ConversationTopic* String Gets the conversation topic of the Outlook item.

Importance* OlImportance Gets and sets the importance as a member of the
OlImportance enumeration: olImportanceHigh, olImportanceLow,
or olImportanceNormal.

Sensitivity* OlSensitivity Gets and sets the sensitivity as a member of the
OlSensitivity enumeration: olConfidential, olNormal, olPersonal, or
olPrivate.

CreationTime DateTime Gets the DateTime the Outlook item was created.

LastModificationTime DateTime Gets the DateTime the Outlook item was last modified.

Size Integer Gets the size in bytes of the Outlook item.

Subject String Gets and sets the subject of the Outlook item.

UnRead* Boolean Gets and sets whether the Outlook item has been
opened yet by the end user.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Copying or Moving an Outlook Item to a New Location

An Outlook item can be copied or moved from one folder to another. The Outlook item's Copy method creates a copy of
the Outlook item and returns the newly created item as an Object. The Outlook item's Move method moves an Outlook
item from one folder to another. It takes a DestFldr parameter of type MAPIFolder to which you pass the folder to which
you want to move the Outlook item.

Deleting an Outlook Item

To delete an Outlook item, call the Outlook item's Delete method. Doing so causes the Outlook item to be moved to the
Deleted Items folder, where it stays until the user empties the Deleted Items folder. If you do not want the item to
appear in the Deleted Items folder, you must call Delete twice. The first call moves the item to the Deleted Items
folder, and the second call deletes it from the Deleted Items folder, as shown in Listing 11.24.

Listing 11.24. A VSTO Add-In That Deletes an Item and Then Deletes It
Permanently by Removing It from the Deleted Items Folder

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim postItem As Outlook.PostItem = inbox.Items.Add(_
 Outlook.OlItemType.olPostItem)
 Dim subject As String = "Test Post To Be Deleted"
 postItem.Subject = subject
 postItem.Save()

 MsgBox("New post item is in inbox")
 Dim entryID1 As String = postItem.EntryID

 postItem.Delete()
 MsgBox("New post item is in deleted items")
 Dim deletedItems As Outlook.MAPIFolder = _
 Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderDeletedItems)

 Dim post As Outlook.PostItem = deletedItems.Items.Find(_
 String.Format("[Subject] = '{0}'", subject))

 If post IsNot Nothing Then
 Dim entryID2 As String = post.EntryID
 If entryID1 <> entryID2 Then
 MsgBox(entryID1)
 MsgBox(entryID2)
 MsgBox("When you delete an item its entry ID changes.")
 End If
 post.Delete()
 MsgBox("Removed post from deleted items folder.")
 End If

 End Sub

End Class

Note in Listing 11.24 that we cannot find the item we just deleted in the Deleted Items folder using the EntryID because
the EntryID changes when you delete the Outlook item. Instead, we use the Subject, which is not ideal because the
Subject is not guaranteed to be unique. A better approach to deleting an item permanently and preventing it from
showing up in the Deleted Items folder is using the Collaboration Data Objects (CDO) object model that was briefly
described in Chapter 9, "Programming Outlook." Listing 11.25 shows this approach. We assume the VSTO Outlook add-

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

described in Chapter 9, "Programming Outlook." Listing 11.25 shows this approach. We assume the VSTO Outlook add-
in has a reference to the CDO object model interop assembly that adds the MAPI name space to the project. We use the
GetMessageFromOutlookItem method, introduced in Listing 9.4 in Chapter 9.

Listing 11.25. A VSTO Add-In That Uses CDO to Delete an Outlook Item
Permanently

Public Class ThisApplication

 Private mapiSession As MAPI.Session

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 mapiSession = New MAPI.Session()
 mapiSession.Logon(ShowDialog:=False, NewSession:=False)

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim postItem As Outlook.PostItem = inbox.Items.Add(_
 Outlook.OlItemType.olPostItem)
 postItem.Subject = "Test Post To Be Deleted"
 postItem.Save()
 MsgBox("New post item is in inbox")

 Dim message As MAPI.Message
 message = GetMessageFromOutlookItem(postItem)
 message.Delete()
 MsgBox("New post item was permanently deleted.")

 End Sub

 Private Function GetMessageFromOutlookItem(_
 ByVal outlookItem As Object) As MAPI.Message

 Dim entryID As Object = outlookItem.EntryID
 Dim parentFolder As Object = outlookItem.Parent
 Dim storeID As Object = parentFolder.StoreID
 Return CType(mapiSession.GetMessage(entryID, storeID), _
 MAPI.Message)

 End Function

End Class

Displaying an Outlook Item in an Inspector Window

The Outlook item's GetInspector method gives you an Inspector object to display an Outlook item. You can configure
the inspector window before showing it by calling the Inspector object's Display method. The Display method takes an
optional Modal parameter of type Object to which you can pass TRue to show the inspector window as a modal dialog box
or False to show it as a modeless dialog box.

If you do not need to configure the inspector window before you display it, you can just use the Display method on an
Outlook item. The Display method displays an inspector window and takes an optional Modal parameter of type Object to
which you can pass TRue to show the inspector window as a modal dialog box or False to show it as a modeless dialog
box.

If an inspector window is open for a given Outlook item, you can close the inspector window by using the Close method
on the Outlook item being displayed. The Close method takes a SaveMode parameter of type OlInspectorClose. You can pass
a member of the OlInspectorClose enumeration to this parameter: olDiscard to discard changes made in the inspector
window, olPromptForSave to prompt the user to save if changes were made, and olSave to save without prompting.

Listing 11.26 creates a PostItem in the Inbox folder and calls the Display method to display an inspector window for it.
Then it calls the Close method passing OlInspectorClose.olDiscard to close the inspector window. Note that we have to cast
the PostItem to the Outlook._PostItem interface to distinguish between the Close method and the Close event, which
collide on Outlook item objects.

Listing 11.26. A VSTO Add-In That Uses the Display and Close Method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 11.26. A VSTO Add-In That Uses the Display and Close Method

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim postItem As Outlook.PostItem = inbox.Items.Add(_
 Outlook.OlItemType.olPostItem)
 postItem.Subject = "Test to be shown in inspector window."
 postItem.Save()

 postItem.Display(False)
 MsgBox("Post item is shown in inspector window.")
 CType(postItem, Outlook._PostItem).Close(_
 Outlook.OlInspectorClose.olDiscard)

 End Sub

End Class

Working with Built-In and Custom Properties Associated with an Outlook Item

The ItemProperties property returns the ItemProperties collection associated with an Outlook item. This collection
contains ItemProperty objects for each property associated with the Outlook item. By property, we mean a namevalue
pair that may or may not also have a get/set property on the Outlook item type. The ItemProperties collection can be
iterated over using the For Each loop. It also supports Visual Basic's index operator (). You can pass a String as the index
representing the name of the ItemProperty you want to access. You can also pass a 1-based index for the ItemProperty
you want to access in the collection.

Listing 11.27 shows code that gets an ItemProperty object associated with a newly created PostItem using the index
operator with a String and numeric index. Listing 11.27 also illustrates iterating over all the ItemProperty objects in the
ItemProperties collection using For Each.

Listing 11.27. A VSTO Add-In That Works with ItemProperty Objects

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim postItem As Outlook.PostItem = inbox.Items.Add(_
 Outlook.OlItemType.olPostItem)
 MsgBox(String.Format(_
 "There are {0} properties associated with this post.", _
 postItem.ItemProperties.Count))

 ' Getting an ItemProperty with a string index
 Dim subject As Outlook.ItemProperty = _
 postItem.ItemProperties("Subject")

 MsgBox(String.Format(_
 "The property 'Subject' has value {0}.", _
 subject.Value))

 ' Getting an ItemProperty with a numeric index
 Dim firstProp As Outlook.ItemProperty
 firstProp = postItem.ItemProperties(1)
 MsgBox(String.Format(_
 "The first property has name {0} and value {1}.", _
 firstProp.Name, firstProp.Value))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Iterating the ItemProperties collection with foreach
 Dim result As New System.Text.StringBuilder

 For Each iProperty As Outlook.ItemProperty In _
 postItem.ItemProperties

 result.AppendFormat(_
 "{0} of type {1} has value {2}." & vbCrLf, _
 iProperty.Name, iProperty.Type.ToString(), _
 iProperty.Value)

 Next

 MsgBox(result.ToString())

 End Sub

End Class

You can add your own custom properties to an Outlook item. Custom properties that you have added are accessed by
using the UserProperties property. An Outlook item's UserProperties property returns a UserProperties collection that
contains UserProperty objects representing custom properties you have added to an Outlook item. Just as with the
ItemProperties collection, the UserProperties collection can be iterated over using the For Each loop. A particular
UserProperty in the collection can be accessed using the index operator () to which you pass a String representing the
name of the UserProperty or the 1-based index of the UserProperty in the collection.

To add your own custom property, use the UserProperties collection's Add method. This method takes a required Name
parameter of type String to which you pass the name of the new custom property. You must also specify the type of the
new property by passing a member of the OlUserPropertyType enumeration. Common members of that enumeration you
might use include olDateTime, olNumber, olText, and olYesNo. Other types are also supported; consult the Outlook object
model documentation for more information. The Add method also takes two optional parameters that we omit:
AddToFolderFields and DisplayFormat. Note that you can add custom properties to all Outlook item types except the NoteItem
and DocumentItem types.

Listing 11.28 shows the creation of several custom properties using the UserProperties.Add method.

Listing 11.28. A VSTO Add-In That Works with Custom Properties

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim postItem As Outlook.PostItem = inbox.Items.Add(_
 Outlook.OlItemType.olPostItem)
 postItem.Subject = "User Properties Test"
 postItem.Save()

 Dim userProperties As Outlook.UserProperties = _
 postItem.UserProperties

 Dim dateProp As Outlook.UserProperty = userProperties.Add(_
 "DateProp", Outlook.OlUserPropertyType.olDateTime)
 dateProp.Value = System.DateTime.Now

 Dim numberProp As Outlook.UserProperty
 numberProp = userProperties.Add(_
 "NumberProp", Outlook.OlUserPropertyType.olNumber)
 numberProp.Value = 123

 Dim textProp As Outlook.UserProperty = userProperties.Add(_

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim textProp As Outlook.UserProperty = userProperties.Add(_
 "TextProp", Outlook.OlUserPropertyType.olText)
 textProp.Value = "Hello world"

 Dim boolProp As Outlook.UserProperty = userProperties.Add(_
 "BoolProp", Outlook.OlUserPropertyType.olYesNo)
 boolProp.Value = True

 MsgBox(String.Format("There are now {0} UserProperties.", _
 userProperties.Count))

 postItem.Save()

 End Sub

End Class

Saving an Outlook Item

As you have already seen, when you create an Outlook item, you have to call the Save method, or the newly created
item gets discarded when your variable containing the newly created item goes out of scope. You can check whether an
Outlook item needs to be saved by accessing the Saved property. In Listing 11.28, for example, if we examine the
Saved property right before we call postItem.Save at the end of the function, Saved would return False because some
changes were made to the Outlook item (user properties were added) after the Save method was invoked earlier in the
function.

The code in Listing 11.28 works even when you omit the last call to Save. Consider what happens, however, if we omit
the last call to Save. If you examine the newly created item, its Saved state is still False after this function runs. If you
double-click the newly created item to display an Inspector view and then close the Inspector view without making any
changes, Outlook prompts users to save the changes made to the item, which is confusing to users because they did
not make any changes. Outlook prompts to save because it still detects that it needs to save the changes made to the
user properties by the add-in code. If you exit Outlook, Outlook will save the changes to the newly created item, and on
the next run of Outlook, the saved state of the new item will be back to true.

Showing the Categories Dialog Box for an Outlook Item

You can show the Categories dialog box in Figure 11.9 by using the Outlook item's ShowCategoriesDialog method. This
dialog box allows the user to select categories to associate with an Outlook item. As described earlier, the Outlook
item's Categories property enables you to examine what categories an Outlook item is associated with. The Categories
property returns a String value with each category associated with the Outlook item in a comma-delimited list.

Figure 11.9. Outlook's Categories dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mail Properties and Methods

Several commonly used properties and methods are associated with items that would be found in a mail folder, such as
a MailItem or a PostItem. The BodyFormat property tells you what format the body of a mail message is in. It sets or
gets a member of the OlBodyFormat enumeration: olFormatHTML, olFormatPlain, olFormatRichText, or olFormatUnspecified. When a
message is set to have its BodyFormat in olFormatHTML, the HTML for the body of the message can be set or get via the
HTMLBody property. This property gets and sets the String value, which is the HTML content of the message.

Listing 11.29 shows add-in code that creates a PostItem using the BodyFormat and HTMLBody properties. Figure 11.10
shows the PostItem created by Listing 11.29.

Listing 11.29. A VSTO Add-In That Creates a PostItem with BodyFormat Set to
olFormatHTML

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim postItem As Outlook.PostItem = inbox.Items.Add(_
 Outlook.OlItemType.olPostItem)
 postItem.Subject = "HTML Example"
 postItem.BodyFormat = Outlook.OlBodyFormat.olFormatHTML
 postItem.HTMLBody = _
 "<HTML><BODY><H1>Heading 1</H1>Item 1" & _
 "Item 2</BODY></HTML>"
 postItem.Save()

 End Sub

End Class

Figure 11.10. PostItem created by Listing 11.29.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11.10. PostItem created by Listing 11.29.

The Forward method returns a new Outlook item that can be forwarded to a recipient. Given a MailItem, for example,
the MailItem object's Forward method returns a new MailItem. Then this MailItem can be given a recipient. Recipients
of a MailItem are accessed via the Recipients property, which returns a Recipients collection. A new Recipient can be
added by using the Recipients collection's Add method, which takes a String representing the display name of the
recipient. When a recipient is added, the Outlook item can be sent in e-mail by calling the Outlook item's Send method.

Listing 11.30 illustrates working with the Forward method, the Recipients collection, and the Send method. It creates a
PostItem that it then forwards as a MailItem to a recipient.

Listing 11.30. A VSTO Add-In That Creates a PostItem and Then Forwards It As a
MailItem

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim inbox As Outlook.MAPIFolder
 inbox = Me.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 Dim postItem As Outlook.PostItem = inbox.Items.Add(_
 Outlook.OlItemType.olPostItem)
 postItem.Subject = "HTML Example"
 postItem.BodyFormat = Outlook.OlBodyFormat.olFormatHTML
 postItem.HTMLBody = _
 "<HTML><BODY><H1>Hello World</H1></BODY></HTML>"
 postItem.Save()

 ' Forward the PostItem to someone
 Dim forwardedItem As Outlook.MailItem = postItem.Forward()
 forwardedItem.Recipients.Add("Misha Shneerson")
 forwardedItem.Send()

 End Sub

End Class

An identical pattern is followed to reply or reply all to an Outlook item. The original item has its Reply or ReplyAll

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An identical pattern is followed to reply or reply all to an Outlook item. The original item has its Reply or ReplyAll
method called, which generates a new MailItem object. The Recipients collection of the new MailItem object is modified
if needed. Finally, the new MailItem object's Send method is invoked to send the new MailItem.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Outlook Issues
This section examines two special issues relating to Outlook development. The first is the Outlook object model security
dialog box and how to prevent your add-in code from triggering it. The second Outlook-specific issue is a third object
model, called Extended MAPI, that can be used in addition to the Outlook object model and the CDO object model. We
briefly consider when you might need to resort to using it and how this is typically done.

Outlook Object Model Security

Occasionally, as you develop Outlook 2003 add-ins, you might write code that causes the Outlook object model security
dialog box to display (see Figure 11.11). This dialog box was added to prevent the spread of viruses and worms that
accessed parts of the Outlook object model, such as the address book, to spread themselves.

Figure 11.11. The Outlook object model security dialog box.

Typically, you want to prevent this dialog box from coming up, because it can distress your users. When you
understand why this dialog box appears, you can refactor your code to avoid this dialog box. If you write a COM add-in,
you are passed an Application object to the OnConnection method of IDTExtensibility2. If you write a VSTO add-in, you
can access the methods and properties of Outlook's application object through the base class of the ThisApplication
class. The Application object passed to OnConnection and the base class of VSTO's ThisApplication class are trusted in
Outlook 2003; as long as you obtain all other objects you use from these trusted objects, you never have to worry
about the object model security dialog box.

If you create a new instance of the Application object, this new instance will not be trusted, and the objects you create
or access from it will sometimes cause the Outlook object model security dialog box to appear. Also, the objects passed
into your event handlers as parameters are not trusted objects, and accessing restricted methods and properties on
these objects can cause the Outlook object model security dialog box to appear. If you trigger the Outlook object model
security dialog box by using these objects, you should find a way to get the same object through your trusted
Application object.

A handful of restricted properties and methods of the Outlook object model can cause the security dialog box to appear
when you talk to an object that was not obtained from a trusted Application object. Table 11.13 shows the complete list
of properties and methods in the Outlook object model that can cause the security dialog box to appear when you call
them on an object that was not obtained from a trusted Application object.

Table 11.13. Properties and Methods That Can Cause the Outlook
Security Dialog Box to Appear If Accessed from Objects Not

Obtained from a Trusted Application Object
Object Restricted Properties and Methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Action Execute()

AddressEntries All properties and methods

AddressEntry All properties and methods

AppointmentItem Body

 NetMeetingOrganizerAlias

 OptionalAttendees

 Organizer

 RequiredAttendees

 Resources

 Respond()

 SaveAs()

 Send()

ContactItem Body

 Email1Address

 Email1AddressType

 Email1DisplayName

 Email1EntryID

 Email2Address

 Email2AddressType

 Email2DisplayName

 Email2EntryID

 Email3Address

 Email3AddressType

 Email3DisplayName

 Email3EntryID

 IMAddress

 NetMeetingAlias

 ReferredBy

 SaveAs()

DistListItem Body

 GetMember()

 SaveAs()

Inspector HTMLEditor

 WordEditor

ItemProperties Any access of a restricted property associated

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ItemProperties Any access of a restricted property associated
with an Outlook item

JournalItem Body

 ContactNames

 SaveAs()

MailItem Bcc

 Body

 Cc

 HTMLBody

 ReceivedByName

 ReceivedOnBehalfOfName

 ReplyRecipientNames

 SaveAs()

 Send()

 SenderEmailAddress

 SenderEmailType

 SenderName

 SentOnBehalfOfName

 To

MeetingItem Body

 SaveAs()

 SenderName

NameSpace CurrentUser

 GetRecipientFromID

PostItem Body

 HTMLBody

 SaveAs()

 SenderName

Recipient All properties and methods

Recipients All properties and methods

TaskItem Body

 ContactNames

 Contacts

 Delegator

 Owner

 SaveAs()

 Send()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Send()

 StatusUpdateRecipients

 StatusOnCompletionRecipients

UserProperties Find()

UserProperty Formula

Listing 11.31 illustrates a COM add-in that uses a trusted and an untrusted Application object. The first block of code
gets a MailItem out of the Inbox using the Application object passed to OnConnection, which we have set to a class
member variable called trustedApplication. Then it tries to access the MailItem object's Body property (which is a restricted
property) on the object obtained via the trustedApplication object. This action will not cause the object model security
dialog box to appear. The second block of code uses an Application object we have created using the New keyword. This
Application object is not trusted, and the Outlook item we obtain via this unTRustedApplication variable causes the object
model security dialog box to appear when we access the restricted Body property.

Listing 11.31. A COM Add-In That Accesses a MailItem's Body Property Through a
Trusted and Untrusted Application Object

Public Sub OnConnection(ByVal application As Object, _
 ByVal connectMode As Extensibility.ext_ConnectMode, _
 ByVal addInInst As Object, ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnConnection

 applicationObject = application
 addInInstance = addInInst

 Dim trustedApplication As Outlook.Application = _
 CType(application, Outlook.Application)
 Dim untrustedApplication As New Outlook.Application()

 ' Using trusted application
 Dim inbox As Outlook.MAPIFolder = _
 trustedApplication.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 If TypeOf inbox.Items(1) Is Outlook.MailItem Then
 Dim mailItem As Outlook.MailItem = inbox.Items(1)
 MsgBox(mailItem.Body)
 End If

 ' Using untrusted application causes dialog to appear
 Dim inbox2 As Outlook.MAPIFolder = _
 untrustedApplication.Session.GetDefaultFolder(_
 Outlook.OlDefaultFolders.olFolderInbox)

 If TypeOf inbox2.Items(1) Is Outlook.MailItem Then
 Dim mailItem2 As Outlook.MailItem = inbox2.Items(1)
 MsgBox(mailItem2.Body)
 End If

End Sub

Listing 11.32 shows a VSTO add-in that has a similar problem because it tries to access a restricted property on an
Outlook item passed into an event handler as a parameter. As mentioned earlier, parameters passed into event
handlers are untrusted, and accessing properties on these parameters that are restricted causes the Outlook object
model security dialog box to appear.

Listing 11.32. A VSTO Add-In That Tries to Access the Body Property of a MailItem
Obtained from an Untrusted Event Parameter

Public Class ThisApplication

 Private Sub ThisApplication_ItemSend(ByVal Item As Object, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub ThisApplication_ItemSend(ByVal Item As Object, _
 ByRef Cancel As Boolean) Handles Me.ItemSend

 If TypeOf Item Is Outlook.MailItem Then
 Dim untrustedMailItem As Outlook.MailItem = Item
 MsgBox(String.Format("Untrusted body {0}", _
 untrustedMailItem.Body))
 End If

 End Sub

End Class

If you are developing for a version of Outlook older than 2003, the Application object provided to an add-in is not
trusted by default. Also, some installations of Outlook 2003 are configured to not trust any COM or VSTO add-ins by
default. For these cases, you have to use the Outlook security administration tools, which rely on a public exchange
folder and a form template (Outlooksecurit.oft) that can be installed and configured to provide specific add-ins with a
trusted Application object. For VSTO Add-ins, you need to use the Outlook security administration tools to trust the
AddinLoader.dll component that loads all VSTO add-ins. You also need to deploy appropriate .NET security policy, as
described in Chapter 19, ".NET Code Security."

Extended MAPI

Occasionally, you will find a property in the Outlook object model that you really want to change but that is read-only.
Sometimes, it is possible to change these properties using another API set called Extended MAPI. Extended MAPI is a
C++-oriented API that talks directly to the MAPI store that backs Outlook folders and items. The way .NET developers
typically use Extended MAPI is by creating an assembly written in managed C++. Then your existing managed code
then call the managed C++ assembly, which then can call into Extended MAPI. This is an advanced scenario that is not
covered further in this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 12. Introduction to InfoPath

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What Is InfoPath?
InfoPath is an Office application that enables users to design and fill out rich, XML-based forms. When designing a form,
you can start with a blank form or infer the form structure from an XML data file, an XML schema file, a database, or
even a Web service.

Every form can be composed of one or more views. A view is what users see when they fill out the form. Each view
consists of one or more controls that are data-bound to XML data nodes. A node is a field or group in the data source
that represents an item of the XML data behind the form.

You can add features such as conditional formatting, spell checking, and autocomplete to forms using the form's
designer, but more complex forms might require custom code to achieve the desired results. You might write code
behind a form to verify that an e-mail address is valid; to fetch a current stock quote from a Web service; or to restrict
certain views to be available only to users with a particular role, such as an administrator.

Before VSTO, code behind forms in InfoPath consisted solely of JScript and VBScript code developed with the Microsoft
Script Editor. Although easy to use, the script languages lack some of the language features that make developing and
maintaining larger, more complex customized forms easier, such as strong typing, IntelliSense, and access to the .NET
framework.

This chapter discusses how to use VSTO to create InfoPath forms with managed code behind them. The chapter starts
with a brief overview of what must be installed on your machine to develop managed code behind an InfoPath form
with VSTO and shows how Visual Studio and InfoPath work together. Then the chapter covers the InfoPath security
model, deployment model, and event-driven programming model. We consider the data events that you can handle in
your code. We also consider the InfoPath form object model and how to handle form-related events.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Getting Started
Before you can use VSTO to put code behind InfoPath forms, you must ensure that the following things are installed on
your development machine:

Visual Studio 2005

InfoPath 2003 Service Pack 1 or later

The Microsoft Office InfoPath 2003 Toolkit for Visual Studio 2005

The toolkit must be installed last because it has an explicit dependency on both Visual Studio and InfoPath.

InfoPath Service Pack 1 contains the primary interop assemblies (PIAs) for InfoPath so that managed code can
automate the InfoPath object model. Service Pack 1 also added the OnSave event, improved support for some offline
scenarios, and digital signature support. You will read more about the details later in this chapter.

After you have the toolkit installed, open Visual Studio, and choose New Project from the File Menu. Open the Visual
Basic node in the tree view; choose Office; and then choose the InfoPath Form Template project, as shown in Figure
12.1.

Figure 12.1. Creating an InfoPath project in Visual Studio.

[View full size image]

Note

The location is the location on the development machine, not the final location from which the published
form will be accessed by your users.

After you click OK, the Microsoft Office Project Wizard asks whether you want to create a new form or open a form that
you have already created with InfoPath, as shown in Figure 12.2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

you have already created with InfoPath, as shown in Figure 12.2.

Figure 12.2. Creating the project based on a blank or existing form.

To create a new, blank form, keep the default selection of Create New Form Template, and click Finish. To create a new
form template based on an XML data file, XML schema, database connection, or Web service, create the form template
in InfoPath first without using Visual Studio and then open it as an existing form template. After you have a form
template created in InfoPath, you can select the Open Existing Form Template option and browse to the form template
(.xsn) or form template definition (.xsf) file.

Note

JScript (.js) or VBScript (.vbs) files associated with an existing form template will also be imported, but the
script itself will be nonfunctional. Other scripts, such as scripts used for custom task-pane extensibility, are
not affected. If you select a form template that already has managed code, the associated code is not
included in the import; rather, you should open the Visual Studio project associated with the form
template.

After you have created your project, you can use Visual Studio as your code editor at the same time as you design the
form using the InfoPath designer window, as shown in Figure 12.3. While developing for InfoPath, you will switch
frequently between the InfoPath designer window and the Visual Studio window. In addition, when you press F5 in your
project, InfoPath starts another InfoPath window, called a "preview" window, to preview what your form would look like
at runtime. This makes for three top-level windows you might be juggling at any time. When you close the InfoPath
preview window, Visual Studio stops debugging the project. If you close the InfoPath designer window accidentally, you
can reopen it by choosing Open InfoPath from Visual Studio's Project menu.

Figure 12.3. The Visual Studio window and the InfoPath designer window run as
two separate windows.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Take a look at the Solution Explorer window on the right side of Visual Studio. Behind the scenes, a form template
consists of many files working together. By default, when you're working with just InfoPath, the XML template, XML
schemas, XSL views, and so on are hidden unless you choose Extract Form Files from the File menu and then explore
that folder in Windows Explorer. When designing the code behind a form in Visual Studio, you can see and edit all files
in the InfoPath project directly. The InfoPath designer, however, "locks" all the forms files. If you want to edit the files
in Visual Studio manually, first close the InfoPath designer window to unlock the files.

Visual Studio adds the following new commands to facilitate the development of code behind an InfoPath form:

Open InfoPath (opens the InfoPath designer window)

Publish Form (the equivalent of choosing Publish from InfoPath's File menu)

Preview > Default (previews the form you are designing in an InfoPath windowthe equivalent of creating a new
form from the template you have designed)

Preview > With Data File (previews the form you are designing with a custom XML file passed in as the initial
data the form is editing)

Preview > With User Role (previews the form with a custom role defined using InfoPath's User Roles command
in the InfoPath Tools menu)

These commands are available in the Visual Studio Project menu, the Tools menu, and in the context menu that
displays when you right-click the InfoPath Project node in the Visual Studio Solution Explorer window.

The InfoPath Project Properties dialog box, also accessible from the project's right-click menu, has two settings that
prove useful when previewing your form, as shown in Figure 12.4.

Figure 12.4. Setting InfoPath-specific project properties.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first text box, called Preview Data File Path, takes a path to a custom XML file. Without a custom XML file, InfoPath
previews with the default XML file used when filling out a new form. A custom XML file is useful for simulating what a
user would experience if an existing form, saved from a previous editing session, were reopened. You can also use the
Preview > With Data File command to achieve the same result.

The second text box, called Preview User Role, sets a preview role. You can create forms that have different views
depending on the role of the user filling out the form; an administrator might have a different view from an accountant.
These roles are defined using InfoPath's User Roles command in the InfoPath Tools menu. You can also use the Preview
> With User Role command to achieve the same result.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Form Security
Before delving into the specifics of how the InfoPath event-driven programming model works, you need to understand
how the security model works.

InfoPath was designed to be "secure by default" to provide protection for the end users using InfoPath to fill out your
forms. As an InfoPath developer, the burden is on you to ensure that your form can be deployed without problems. The
method of deployment you choose can affect which parts of the InfoPath object model your code will be allowed to use.
To understand how the method of deployment you choose can affect decisions during form development, take a look at
the InfoPath security model.

Form Security Levels

InfoPath defines three security levels: restricted, domain, and full trust. Each InfoPath form requires and is granted a
certain level. If the granted level is lower than the required level, the form will not run. This security system is enforced
regardless of whether there is code behind the form.

Forms in the restricted security level can access only resources within the form template itself. A form that requires this
security level must not attempt to access local files, for example.

Forms in the domain security level can use files and connect to resources on the machine hosting the form without
asking the user. If a form in the domain security level attempts to read or write information from a different machine,
InfoPath prompts the user to ensure that the cross-domain access is acceptable.

Forms in the full-trust security level have complete and unrestricted access to every resource that the user running the
form has access to. Only forms installed to trusted locations or digitally signed with a trusted signature are fully trusted.
(Deployment location and security are discussed later in this chapter.)

When running a form, you can see whether it was granted restricted, domain, or full-trust security level by looking at
the icon in the status bar, as shown in Figure 12.5.

Figure 12.5. The form's security level and location are shown in the status bar
when a user fills out a form. The icons shown are for the restricted, domain, and

full-trust security levels, respectively.

Automatically and Manually Setting the Required Security Level

InfoPath 2003 Service Pack 1 automatically sets the required security level as you design your form. It can do so by
determining which features the form uses and the minimum security level the form needs to function properly.

If a form on the local intranet (\\MyComputer\MyShare\Template1.xsn) posts to a Web server on the Internet
(www.contoso.com), for example, that is potentially dangerous. A malicious form might be attempting to trick you into
entering sensitive information that would then be sent across the Internet. The form would require at a minimum the
domain security level, not the restricted security level. If a user runs this form without sufficient evidence for InfoPath
to grant the form the domain security level, the form will not run. Even the form it is granted the domain security level,
at runtime, InfoPath warns the user when the form attempts to post the information to the new domain.

Note

InfoPath can determine the required security level automatically by looking at the properties of the form,
but it does not look at the code behind the form and, therefore, might set the required security level too
low. If you deploy a form that successfully requests domain trust but calls XDocument.SaveAs in an event
handler, for example, the form will load but will fail at runtime if the event handler is called. In this case,
InfoPath shows an error to the end user, explaining that there is not sufficient permission to perform the
operation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

operation.

To change the required security level of an InfoPath form manually, open the form template in design mode. Select
Form Options from the Tools menu, and click the Security tab of the Form Options dialog box, as shown in Figure 12.6.

Figure 12.6. Specifying the required security level for a form.

Deployment Location and Security

You have many options when deploying forms, and covering them completely is beyond the scope of this chapter. For
the purposes of this chapter, we discuss only the impact of deployment location on security level.

You can deploy a form in two ways: the URL and the URN. URL deployment is used by default when you use Save or
Save As from the InfoPath designer. Use URL deployment to publish the form to some shared location, such as a Web
server, SharePoint site, or shared network directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

InfoPath uses Internet Explorer security settings to determine what security level to grant to URL-deployed forms. If
Internet Explorer would classify the form's location as an Internet or local intranet site, InfoPath will grant the form the
restricted security level. If Internet Explorer thinks that the form's location is a "trusted site" or the "my computer"
domain, InfoPath will grant the domain security level. Forms from locations on Internet Explorer's "restricted sites" list
are not allowed to run at all.

URN deployment is necessary (but not sufficient) to ensure that InfoPath grants a form full trust. Choose Publish from
the File menu of InfoPath to deploy a form to a URN. A URN-published form can be installed to the local machine or
digitally signed with a trusted certificate to ensure that InfoPath fully trusts the form.

Registering a Form Template to Grant Full Trust

After you have published a form using URN deployment, the easiest way to enable a form template to be granted full
trust on your machine is to call the RegisterSolution method on the form. If called from within an InfoPath form itself,
this would require the full trust security level. This presents somewhat of a chicken-and-egg problem: We need to be
fully trusted to register a template as fully trusted.

Fortunately, InfoPath can be automated from an automation executable, much as we automated Word and Excel in
Chapter 2, "Introduction to Office Solutions." We use automation to call the RegisterSolution method; because it is not
an InfoPath form calling the method, but a fully trusted utility program, there is no chicken-and-egg problem.

Suppose that we have a mortgage application form template that we want to be a full-trust form template while we are
developing and debugging it. There are two ways to register the form template: We can register the .XSF file or the
.XSN file.

What's the difference? If you are registering the form template so that it is fully trusted on your development machine,
it makes more sense just to register the .XSF file, which can be found in the InfoPath project folder. If you are
registering a form template that is going to be published to a central location for end users to use, however, register
the .XSN file after publishing the form.

Listing 12.1 shows a console application that registers an .XSF file so it can be granted full trust. To use this code,
create a new console application, and add a reference to the InfoPath PIA.

Listing 12.1. A Console Application That Registers an .XSF File So That It Can Be
Granted Full Trust

Imports System
Imports System.XML
Imports InfoPath = Microsoft.Office.Interop.InfoPath

Module Module1

 Sub Main()

 Const xsfLocation As String = _
 "C:\InfoPathProjects\MortgageApplication\manifest.xsf"

 ' Remove the publishUrl
 Dim xsfDom As XmlDocument = New XmlDocument()
 xsfDom.PreserveWhitespace = True
 xsfDom.Load(xsfLocation)
 Dim xns As XmlNamespaceManager = _
 New XmlNamespaceManager(New NameTable())

 xns.AddNamespace("xsf", xsfDom.DocumentElement.NamespaceURI)
 Dim xDoc As XmlNode = xsfDom.SelectSingleNode(_
 "/xsf:xDocumentClass", xns)

 xDoc.Attributes.RemoveNamedItem("publishUrl")
 xsfDom.Save(xsfLocation)

 ' Register the file
 Dim ip As InfoPath.ExternalApplicationClass = _
 New InfoPath.ExternalApplicationClass()

 ip.RegisterSolution(xsfLocation, "overwrite")

 End Sub

End Module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you are registering an InfoPath form to be fully trusted, the form must not have a publishUrl. A publishUrl means
that the solution is URL-based. Remember that URN-based solutions cannot have a URL component and also be granted
full trust. The console application in Listing 12.1 removes the publishUrl (if it exists) from the .XSF form template
definition and then registers the .XSF file to enable this form to run with full-trust permissions on your machine.

Do not forget to select the Full Trust option in the Security tab of the Form Options dialog box when designing the form
on which you are going to run this console application. After you have run the console application, running the form in
full trust is as easy as double-clicking the manifest.xsf file.

More Information

A full discussion of the InfoPath security model and deployment system is beyond the scope of this book. For more
information, refer to the InfoPath SDK documents titled "Security Guidelines for Developing InfoPath Forms" and "Form
Security Model," available on MSDN at http://msdn.microsoft.com/library/en-
us/ipsdk/html/ipsdkSecureAForm_HV01083590.asp and http://msdn.microsoft.com/library/en-
us/ipsdk/html/ipsdkFormSecurityModel_HV01083562.asp.

For more information about digitally signing your form template, see the InfoPath Team Blog at
http://blogs.msdn.com/infopath/archive/2004/05/10/129216.aspx. The InfoPath SDK, also available on MSDN,
discusses using the RegForm tool to help form designers create installable form templates.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming InfoPath
InfoPath uses a declarative, per-form, event-driven approach to programming customized forms. That is, code consists
of declarations that define which event handlers are to be invoked when form elements or data elements source events.
Code in InfoPath is always written behind a specific form template; it is not possible to write "application-level" code
that is executed for all form templates. Code runs when events are raised that have been declaratively handled by
event handlers.

There are two "root" objects in the InfoPath object model. The Application object is the root of the runtime object
model; every programmable object in InfoPath can be accessed through the Application object. The other "root" object
is the ExternalApplication object. The ExternalApplication object is useful for automating InfoPath by an automation
executable rather than from code behind a form, as shown in Listing 12.1. This chapter, however, discusses only how to
create code behind a form and does not cover automation executables further.

When you create an InfoPath form template project in VSTO, Visual Studio automatically generates a FormCode.vb file
for you to add the code behind the form. It generates some boilerplate code for you to get started containing methods
called when the InfoPath form starts and shuts down, as shown in Listing 12.2.

Listing 12.2. The FormCode.vb File

Namespace PurchaseOrder

 ' <Attribute omitted)> _
 Public Class PurchaseOrder

 Private thisXDocument As XDocument
 Private thisApplication As Application

 Public Sub _Startup(ByVal app As Application, _
 ByVal doc As XDocument)
 thisXDocument = doc
 thisApplication = app

 ' You can add more initialization code here.
 End Sub

 Public Sub _Shutdown()
 End Sub

 End Class

End Namespace

When the InfoPath form starts, InfoPath calls the _Startup method and passes in an Application and XDocument object.
By default, the managed class that represents the InfoPath form stashes away references to these objects in
thisApplication and thisXDocument so that your event handlers and other code can use them later. The same
Application object is passed to all executing forms. The XDocument object is a specific instance that refers to the form
to which it is passed.

Note

Although you now have references to the Application and XDocument objects in the _Startup method, do
not make any InfoPath object model calls yet. Calling the InfoPath object model is not allowed in either the
_Startup or _Shutdown method. During these methods, calls to the object model are unavailable because
the form is either still in the process of being created or is being terminated.

Event-Based Programming

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

While users are filling out the form, various user actions directly or indirectly trigger events. Take the OnLoad event, for
example. To handle (that is, register an event handler to be called when the event occurs) the OnLoad event, select
Tools > Programming > On Load Event in the InfoPath designer window. Notice that the InfoPath designer
automatically creates a code stub and handles the event. Whenever you add an event handler to an InfoPath form, you
always do it using the InfoPath designer window and its associated menusnever by using any commands within Visual
Studio.

The code below shows a code stub generated by InfoPath to handle the OnLoad event:

<InfoPathEventHandler(EventType:=InfoPathEventType.OnLoad)> _
Public Sub OnLoad(ByVal e As DocReturnEvent)
 ' Write your OnLoad event handler code here
End Sub

You will notice immediately that an InfoPath event is not connected in the traditional .NET way of creating a new
delegate and adding that delegate to an object that raises the event using the WithEvents, Handles, or AddHandler. Instead,
InfoPath events are connected via attributes; the InfoPath runtime reflects on the attributing of methods in your code
to determine events that are handled by your code and the methods to call when an event is raised. In this case, the
attribute InfoPathEventHandler is added to your OnLoad event handler. This attribute is constructed with
EventType:=InfoPathEventType.OnLoad, which tells the InfoPath runtime to raise the OnLoad event on this attributed method.

Let's add some code to our OnLoad handler to restrict users from creating a new form outside business hours. (Note
that this does not restrict editing existing formsjust creating new ones.) Listing 12.3 shows the new OnLoad handler.

Listing 12.3. On OnLoad Handler That Restricts Creation of New Forms Outside
Business Hours

<InfoPathEventHandler(EventType:=InfoPathEventType.OnLoad)>_
Public Sub OnLoad(ByVal e As DocReturnEvent)
 If (DateTime.Now.Hour < 8 _
 Or DateTime.Now.Hour > 17 _
 Or DateTime.Today.DayOfWeek = DayOfWeek.Saturday _
 Or DateTime.Today.DayOfWeek = DayOfWeek.Sunday) _
 And thisXDocument.IsNew Then

 thisXDocument.UI.Alert("Sorry, you can only create a new" & _
 " mortgage application 8am-5pm, Monday through Friday.")
 e.ReturnStatus = False

 End If
End Sub

Note

The IsNew property and the UI.Alert method both require the domain security level.

All form events in InfoPath are cancelable through code. In this OnLoad event example, setting the ReturnStatus
property to False on the DocReturnEvent object e tells InfoPath to fail the OnLoad event (and, thus, fail loading the form)
when the event handler has returned. The default value is true.

Previewing

Press F5 or choose Start from the Debug menu in Visual Studio, and the code in Listing 12.3 will be compiled and start
running in InfoPath's preview form mode. Depending on what time and day you run the code in Listing 12.3, you may
not be able to fill out the form!

Suppose that you are working latelater than 5 p.m., at least. The OnLoad handler will not allow you to create a new
form, because thisXDocument.IsNew always returns TRue when you press F5 or choose Start from the Debug menu.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

form, because thisXDocument.IsNew always returns TRue when you press F5 or choose Start from the Debug menu.
How can you force the form to look like an existing form? If you double-click the template.xml file (located in the Visual
Studio project folder), you will start InfoPath and cause InfoPath to think that it is opening an already created form. The
template.xml file is used internally by InfoPath when creating a new form after you double-click the .XSN form
template. Opening this file directly, however, tricks InfoPath into thinking that it is opening an existing or previously
saved form.

Previewing is a very useful technique when designing and debugging a form, but it is important to realize that
previewing a form causes the following side effects:

If you choose the Tools menu and then the Preview submenu, you will see a With Data File menu item.
Previewing with a data file is never considered to be creating a new form. Instead, it is considered to be viewing
an existing form.

Previewing does not allow the user to save changes.

InfoPath will not grant the full-trust security level to a previewed formonly the domain or restricted security
level.

So in addition to previewing, you should use your form in a production environment with InfoPath running by itself to
verify that everything works properly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Data Source Events
The InfoPath object model consists of objects that expose properties, methods, and events. InfoPath's programming
model has two kinds of events: data source events and form events. Because InfoPath's programming model
emphasizes the role of events, let's take a look at the data source events first and then consider some of the useful
form events, properties, and methods of the various objects.

The number of data source events is small compared with the number of form events, but they are arguably more
powerful. Typically, most of the code behind a form involves sinking data source events.

Three data source events raise sequentially in the order listed here:

OnBeforeChange

OnValidate

OnAfterChange

Each of these events can be raised on any data node (that is, element, attribute, or group of elements) in the data
source.

Note

Although the events are always raised in this order, InfoPath does not guarantee that the events will be
raised one immediately after the other. If you have a hierarchy and have event handlers for different levels
in the hierarchy, for example, you might not see the events handled immediately after one another for a
given data source node. You might see OnBeforeChange raise for a group first, OnBeforeChange handled
next for a field, and then OnValidate for the group, and so on.

While learning about these events and their functions, keep in mind that a data source change could occur because the
text in a data node was deleted, cut, pasted, dragged, dropped, or modified in some other way. Furthermore, changes
are not limited to textual changes in single elements. Inserting, deleting, or replacing a section and repeating a table
row or list item also trigger data source events.

Suppose that we are sinking these three events for a text node called FirstName, which is bound to a text box
containing the text Jogn. If the user fixes the typo by changing the text box to John, each event for the node bound to
this text box will be raised twice: once as a delete operation (the text Jogn was deleted) and once as an insert
operation (the text John was inserted). You will learn how to handle these cases by examining the Operation property
on the DataDOMEvent object.

Furthermore, the events will not just raise on the node that changed, but also "bubble up" on the parent node of the
changed node, and on its parent, and so on until the root of the data source tree is reached.

The following sections will look at two ways to create event handlers using InfoPath. Then we will describe the purpose
of the OnBeforeChange, OnValidate, and OnAfterChange events.

Creating an Event Handler

How do you create an event handler for a particular data node? Suppose that you have a mortgage application form,
and you want to handle the OnBeforeChange event for the telephone number HomePhone. Using the InfoPath designer,
click the drop-down button on the data node called HomePhone; choose Properties; and then click the Validation and
Event Handlers tab, shown in Figure 12.7.

Figure 12.7. Selecting a data source node and showing the Properties dialog box.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

From the Events drop-down list, select the OnBeforeChange event. Then click the Edit button. Visual Studio will
automatically generate the appropriate event handler with the appropriate attributing. Remember that the correct
attributing must be in place for InfoPath to raise an event to a particular handler. These attributes are difficult to
generate by hand, which is why you should use the dialog boxes of InfoPath to create these event handlers:

<InfoPathEventHandler(_
 MatchPath:="/my:myFields/my:Email/my:Address", _
 EventType:=InfoPathEventType.OnBeforeChange)> _
Public Sub Address_OnBeforeChange(ByVal e As DataDOMEvent)
 ' Write your code here. Warning: Ensure that the constraint you
 ' are enforcing is compatible with the default value you set
 ' for this XML node.
End Sub

You might want to start from a data-bound control to get to a data node for which you want to handle an event. If the
data node is bound to a control, you can get to the same dialog box shown in Figure 12.7 by first double-clicking the
data-bound control in the view to get to its Properties dialog box, as shown in Figure 12.8.

Figure 12.8. Selecting a control's properties to handle a data event.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Click the Data Validation button to get to the dialog box shown in Figure 12.7.

The OnBeforeChange Event

The OnBeforeChange event fires before the change is made to the underlying XML data. If you want to abort the
change, the OnBeforeChange event is your only chance; by the time the OnValidate event is raised, the change has
already been made to the underlying data source.

To reject the change to the data, set the ReturnStatus property of the DataDOMEvent argument e to False. When
ReturnStatus is set to False, InfoPath will show an error dialog box informing the user that the change is not allowed.

Several additional useful properties are associated with the DataDOMEvent object. The Operation property returns a
String set to "Delete", "Update", or "Insert". This tells you whether the user is deleting data, updating data, or inserting new
data. The ReturnMessage property accepts a String that is shown in a dialog box when the change is rejected. The
NewValue property returns a String for the new value of the data node that was changed. The OldValue property returns
a String for the value of the data node before it was changed.

Listing 12.4 shows an OnBeforeChange event handler that validates that an e-mail address is in a valid format. In
Listing 12.4, we first check the DataDOMEvent object's Operation property to make sure we are not in a delete
operation. If we are in a delete operation, the NewValue property would be Nothing. Then we validate the e-mail address
returned by the NewValue property by using a regular expression. If the change is not matched by our regular
expression, we set ReturnStatus to False and set ReturnMessage to the message text we want InfoPath to use in the
error dialog box.

Listing 12.4. An OnBeforeChange Event Handler

<InfoPathEventHandler(_
 MatchPath:="/my:myFields/my:Email/my:Address", _
 EventType:=InfoPathEventType.OnBeforeChange)> _
Public Sub Address_OnBeforeChange(ByVal e As DataDOMEvent)
 If e.Operation = "Delete" Then ' only handle update and insert
 Return
 End If
 Dim newEmail As String = e.NewValue.ToString()
 If newEmail.Length > 0 Then
 Dim emailRegEx As New Regex(_
 "^[a-zA-Z][\w\.-]*[a-zA-Z0-9]@[a-zA-Z0-9][\w\.-]*" & _
 "[a-zA-Z0-9]\.[a-zA-Z][a-zA-Z\.]*[a-zA-Z]$", _
 RegexOptions.IgnoreCase)
 e.ReturnStatus = emailRegEx.IsMatch(newEmail)
 e.ReturnMessage = "Please use a valid email address."
 End If
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You cannot change the data source itself from within the event handler. You cannot set the NewValue property to a
different string, for example. InfoPath locks the data source to make it read-only for the duration of the event, to
prevent the scenario where one event handler attempts to change the data, triggering another change event handler
that might trigger yet another change event handler, and so on. Making the data source read-only while the event sink
runs prevents these "event storm" scenarios.

Note

Data source change events are fired when the form loads and the data source is first created. If you set
the DataDOMEvent object's ReturnStatus property to False during this data source creation phase, the form
will fail to load. Use caution when writing an OnBeforeChange event handler.

The OnValidate Event

By the time the OnValidate event raises, the new value has already been written into the data source. The most
common reason to sink an OnValidate event is to implement error handling.

A form error typically is shown in an InfoPath form by a red dashed "error visual" rectangle surrounding the control. If
you require that a telephone number include the area code, for example, you might use an error visual rectangle to
indicate an improper format, as shown in Figure 12.9.

Figure 12.9. A data validation error shown in InfoPath with a red dashed
rectangle.

Let's add error handling for telephone-number data using the OnValidate event. Listing 12.5 shows an OnValidate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's add error handling for telephone-number data using the OnValidate event. Listing 12.5 shows an OnValidate
handler that uses some additional features of the InfoPath object model. The code uses the DataDOMEvent object's
ReportError method to report data validation errors. The ReportError method takes the parameters listed in Table 12.1.

Table 12.1. Parameters Passed to the DataDOMEvent Object's
ReportError Method

Parameter Name Type What It Does

varNode Object The data node to associate with the error. If this
data node is bound to one or more controls, the
controls might display error visuals.

bstrShortError-Message String The short error message is the message shown in
the tooltip when the user hovers over a control that
is data-bound to the data node passed to varNode.

fSiteIndependent optional
Boolean

Set to true to tell InfoPath that the error applies to
all potentially matching nodes, which proves useful
when you add an error to a node that is repeating,
and you want to add an error to the collection of
nodes instead of a particular node. If set to False,
the error is associated with the specific node passed
to varNode and no other.

bstrDetailed-ErrorMessage optional
String

The long error message typically has more
information than the short error message and has
additional troubleshooting options.

lErrorCode optional
Integer

An error code value. It is sometimes convenient to
be able to give each error condition a number.
Setting an error code proves particularly useful if
you have an existing error reporting system whose
numeric codes you want to reuse.

bstrType optional
String

Tells InfoPath how first to reveal the error, If you
pass the string "modeless", InfoPath will passively
alert the user via an error visual on the control. If
you pass the string "modal", InfoPath will show a
dialog box prompting the user with the long error
message.

Listing 12.5 also illustrates the use of the XDocument object's Errors collection as an alternative way to report errors.
Recall from Listing 12.2 that the code generated for the InfoPath form has cached away the XDocument object in the
thisXDocument variable. The code uses the thisXDocument variable to access the XDocument object for the form. It accesses
the XDocument object's Errors collection and uses the Errors collection's Add method to associate errors with the form.
The arguments to the Errors.Add are very similar to those of ReportError, with three differences. First, Errors.Add has
no "site-independent" option. Second, Errors.Add allows you to tag an error condition with a string parameter called
bstrConditionName, as well as with an error code. This condition string is for your internal use only and does not display to
the end user. Third, you can call Errors.Add at any time in any handler, but ReportError may be called only from within
an OnValidate event handler.

Listing 12.5. An OnValidate Event Handler That Uses the DataDOMEvent Object's
ReportError Method and the XDocument Object's Errors Collection

<InfoPathEventHandler(MatchPath:="/my:myFields/my:HomePhone", _
EventType:=InfoPathEventType.OnValidate)> _
Public Sub HomePhone_OnValidate(ByVal e As DataDOMEvent)
 ' Ensure that the format is "xxx-xxx-xxxx"
 If e.NewValue Is Nothing Then
 Return
 End If

 Dim siteIndependent As Boolean = False
 Dim errorCode As Integer = 0
 Dim modal As String = "modal"
 Dim NewPhone As String = e.NewValue.ToString
 If NewPhone.Length <> 12 Then
 'Tell InfoPath what node caused the error, whether the error
 'is associated with this node, what the short and long error
 'messages should be, and whether to produce a modal or
 'modeless error dialog:

 e.ReportError(e.Site, "Phone number format error", __

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 e.ReportError(e.Site, "Phone number format error", __
 siteIndependent, "Expected format is xxx-xxx-xxxx.", _
 errorCode, "modeless")
 Else
 Dim indexOfHyphen As Integer = NewPhone.IndexOf("-")
 If indexOfHyphen <> 3 Then
 thisXDocument.Errors.Add(e.Site, "NoExpectedHyphen", _
 "No hyphen found", "Expected a hyphen after 3 digits.", _
 errorCode, modal)
 Else
 indexOfHyphen = NewPhone.IndexOf("-", indexOfHyphen + 1)
 If indexOfHyphen <> 7 Then
 thisXDocument.Errors.Add(e.Site, "NoExpectedHyphen",_
 "Second hyphen not found", _
 "Expected a hyphen after 6 digits.", _
 errorCode, modal)
 End If
 End If
 End If
End Sub

Site Versus Source

Another thing to note in Listing 12.5 is the code passes the Site property of the DataDOMEvent object to give
ReportErrors and Errors.Add the data node where the error occurred. The Site property of the DataDOMEvent object
refers to the data node currently processing the validation event (that is, the data node to which the event handler is
listening). The DataDOMEvent object's Source property refers to the data node that changed and triggered validation.
Remember that events can bubble up from child nodes to parent nodes. If you are sinking the OnValidate event of a
parent node, and the user changes a child node, the Site will refer to the parent node handling the event, and the
Source will refer to the child node that triggered the event in the first place.

Note

The Site and Source properties and the Errors.Add and ReportError methods all require the domain
security level.

The OnAfterChange Event

In OnBeforeChange and OnValidate events, the data source is read-only and cannot be modified by your event handler
code. When can your code modify the data source? Code you write in an OnAfterChange event handler is allowed to
edit the data source if InfoPath is not raising the OnAfterChange event for an undo or redo operation invoked by the
user. Your OnAfterChange event handler can detect whether an undo or redo resulted in the event being raised by
checking the DataDOMEvent's IsUndoRedo property.

If you directly update the data node that your event handler corresponds to, use caution; otherwise, you could create
infinite recursion. Listing 12.6 shows a simple OnAfterChange event handler that directly changes the data node it is
handling the event for by setting e.Site.text to a new value. It prevents recursion by first checking to see whether
e.Site.text is already set to the new value. It also checks the IsUndoRedo property to make sure OnAfterChange was
not raised as a result of an undo or redo.

Listing 12.6. An OnAfterChange Event Handler That Updates the Data in the Node
for Which It Is Handling the OnAfterChange Event

<InfoPathEventHandler(MatchPath = "/my:myFields/my:someField", _
 EventType = InfoPathEventType.OnAfterChange)> _
Public Sub someField_OnAfterChange(ByVal e As DataDOMEvent)
 If (e.IsUndoRedo) Then
 Return
 End If
 If (e.Site.text = "newFieldValue") Then
 Return ' prevents recursion
 End If
 e.Site.text = "newFieldValue"
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Form Events, Properties, and Methods
Data source events prove very useful for ensuring that data constraints are maintained and taking action when the user
makes changes to data. InfoPath also provides a form object model that you can use to customize the behavior of your
form further. Some of the scenarios the form object model enables are as follows:

Consider the earlier example of a form that displays interest-rate quotes to the user filling out the form. You
might want to create an Administrator view of the form that allows authorized people to change the quoted
interest rates.

You might want to integrate context-sensitive help as the user navigates through your form.

You might want a custom task pane to extend and further customize the experience of filling out the form.

You might want to customize how your forms are saved and submitted. Instead of submitting via a data
connection or allowing a user to save to any location, you could restrict where the form is saved.

The remainder of this chapter examines the form object model and discusses how to create a custom task pane for a
form. The InfoPath forms object model contains many events, properties, and methods. This book discusses only some
of the most commonly used parts of the InfoPath forms object model.

Button Events and View Switching

A view is a surface on which you insert controls and form content in the designer; it is what the user looks at while
filling out the form. Lengthy forms are often composed of multiple views. In addition, data being edited can be
displayed in multiple views. You may have a timecard that can be viewed in a less-detailed view for someone who
wants to enter information quickly, for example, and a more-detailed view may be available for a manager trying to
generate end-of-pay-period reports. You can find a list of available views for the data being edited in InfoPath's View
menu. A user can switch between views at will.

Switching between views might not be the desired behavior, especially if your views are supposed to be sequential or
have dependencies. While designing your form, you have an option to remove the name of a view from the View menu
and to prevent users from choosing a particular view. Then the code behind the form can switch views
programmatically by using the XDocument.View.SwitchView method.

Suppose that you have a mortgage application with two views. The first view allows the user to fill out contact
information: name, phone numbers, and so on. When all the required contact information is filled out, the user can click
the Go to Mortgage Details button. You can add a button to the form by selecting the Controls task pane in the InfoPath
form design view and dragging a button onto the form designer. If you right-click the button and choose Properties, you
can open the Properties dialog box, shown in Figure 12.10.

Figure 12.10. Creating a button with the form designer.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We want this button to switch to another view to display the mortgage details, but only if the first-name and last-name
text boxes are filled on the contact information view. We can do this by clicking the Edit Form Code button in the
Properties dialog box, which causes Visual Studio to emit an event handler for the OnClick event raised by the button.

Listing 12.7 shows code for the OnClick event handler that switches the view. Because this is not a data event but a
forms event, the event argument object DocActionsEvent does not refer to the data nodes that we are interested in
checking before we switch the view. The code gets to the data nodes by querying the XML data source using an XPATH
query and then verifies that the strings that come back are valid before changing views.

Listing 12.7 uses the XDocument object's DOM property to access an IXMLDOMDocument object. Then it uses the
IXMDOMDocument object's selectSingleNode method to get a node by passing the XPATH query strings to get to
FirstName and LastName. Finally, it examines the retrieved node's text property to see whether the FirstName and
LastName fields have been filled in.

Listing 12.7 also uses two other methods from XDocument. The XDocument object's UI property returns a UI object.
The UI object's Alert method displays a simple message box within InfoPath. The XDocument object's View property
returns a View object. The View object represents the currently active view in the form. Listing 12.7 uses the View
object's SwitchView method to change to another view if the FirstName and LastName data nodes have been entered.

Listing 12.7. An OnClick Event Handler for a Button That Switches the View

<InfoPathEventHandler(MatchPath:="GoToDetailsButton", _
 EventType:=InfoPathEventType.OnClick)> _
Public Sub GoToDetailsButton_OnClick(ByVal e As DocActionEvent)
 Const FirstNameXPath As String = "/my:myFields/my:FirstName"
 Const LastNameXPath As String = "/my:myFields/my:LastName"
 Dim mainData As IXMLDOMDocument = thisXDocument.DOM
 If String.IsNullOrEmpty(_
 mainData.selectSingleNode(FirstNameXPath).text) Or _
 String.IsNullOrEmpty(_
 mainData.selectSingleNode(LastNameXPath).text) Then

 thisXDocument.UI.Alert("Please fill in first and last name.")
 Else
 thisXDocument.View.SwitchView("Mortgage Details")
 End If
End Sub

The OnContextChange Event and the Custom Task Pane

Another way to write code to handle form changes is to use the XDocument object's OnContextChange event. Exactly
what do we mean by context?

The user can be interacting with only one control at a time; mouse clicks or key presses are handled by the control that
has the focus. The context of a form is the data source node bound to the control that has the focus.

Consider the example of a contact-information form. Each text box is bound to a particular node in the data source. As
the user filling out the form uses the mouse or keyboard to move the focus from one control to the next on the form,
context changes to a different data node, and the XDocument object's OnContextChange event is raised.

You could have more than one control bound to the same data node. In that case, if the user were to change the focus
from one control to another bound to the same data node, the context change event would not raise, because context
has not changed. In a repeating control, the OnContextChange event is raised when focus is changed from row to row.
The OnContextChange event does not indicate the new row position, however.

Creating a Custom Task Pane

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A common way to use the OnContextChange event is to integrate a dynamic help system into a form. By detecting
when the form is editing a different data node, we can provide help for the data node being edited in the task pane. The
first thing we need to do is enable the custom task pane for this form. Choose Form Options from the Tools menu of the
InfoPath designer window, and select the Advanced tab of the Form Options dialog box, as shown in Figure 12.11.

Figure 12.11. Enabling and adding resources to the custom task pane.

Using the Advanced tab, you can enable the custom task pane and add HTML files as resource files that can be displayed
in the task pane. Click the Resource Files button to bring up the Resource Files dialog box. Click the Add button to add
HTML files as resources to the InfoPath form. For this example, we add three HTML files: one named generalHelp.htm, a
second named nameHelp.htm, and a third named phoneHelp.htm. Note that as you add the HTML files, they display in
Solution Explorer in Visual Studio.

After you have added several HTML files to the form, you can handle the OnContextChange event to display the
appropriate HTML file in the task pane for a particular context. To generate a handler for the OnContextChange event,
choose the On Context Change Event command from the Programming menu in the Tools menu of the InfoPath
designer window. Listing 12.8 shows an OnContextChange event handler that switches among generalHelp.htm,
nameHelp.htm, and phoneHelp.htm in the task pane, depending on the current data node.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 12.8. An OnContextChange Event Handler That Switches the HTML Shown
in the Task Pane

<InfoPathEventHandler(_
 EventType:=InfoPathEventType.OnContextChange)> _
Public Sub OnContextChange(ByVal e As DocContextChangeEvent)
 If e.Type = "ContextNode" Then
 Dim helpTaskPane As HTMLTaskPane = _
 CType(thisXDocument.View.Window.TaskPanes(0), HTMLTaskPane)
 Dim navigateTo As String = "generalHelp.htm"
 Dim thisNodeName As String = e.Context.nodeName
 If thisNodeName = "my:FirstName" Then
 navigateTo = "nameHelp.htm"
 ElseIf thisNodeName = "my:LastName" Then
 navigateTo = "nameHelp.htm"
 ElseIf thisNodeName = "my:HomePhone" Then
 navigateTo = "phoneHelp.htm"
 ElseIf thisNodeName = "my:WorkPhone" Then
 navigateTo = "phoneHelp.htm"
 End If

 helpTaskPane.Navigate(navigateTo)
 End If
End Sub

If you preview this form, you will see that as you select different text boxes, the task pane displays the appropriate
HTML files, as shown in Figure 12.12.

Figure 12.12. The custom task pane at runtime.

[View full size image]

The code in Listing 12.8 checks the DocContextChangeEvent object's Type property to verify that it is "ContextNode".
InfoPath supports only a type of "ContextNode" as of Service Pack 1, but other values may be introduced in future versions
of InfoPath. As a result, the check for "ContextNode" is recommended for forward-compatibility reasons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of InfoPath. As a result, the check for "ContextNode" is recommended for forward-compatibility reasons.

You probably noticed that the InfoPath object model exposes an array of task panes. The custom task pane is always
located at index 0. Other indices reference built-in task panes available while filling out a form. Index 4, for example, is
the Help task pane.

Note

Forms in the restricted security level can access the task panes collection, but reading the Context property
requires at least the domain security level.

Focus Versus Selection

What if you want to determine the current context in some event handler other than an OnContextChange handler? The
XDocument's View property returns a View object. The View object has a GetContextNodes method that can be called
from any event handler. It returns a collection of all the XML nodes that are in contextnot just the node bound to the
control with the focus, but all its parent nodes in the data source tree as well.

The View object also provides a GetSelectedNodes method that returns the collection of XML nodes bound to the
selected controls. This is a subtle distinction: Only one control can have the focus at any time, but a user can select
multiple controls.

You might be tempted to use the GetSelectedNodes or GetContextNodes method in a button-click handler.
Unfortunately, this does not work; as soon as the user clicks the button, the focus and selection change to the button
itself.

Note

GetContextNodes and GetSelectedNodes both require at least the domain security level.

Setting Selection

Two other useful methods on the View object are the SelectNodes and SelectText methods. SelectText takes a single
IXMLDOMNode, and SelectNodes takes two IXMLDOMNodes (to define the start and end of a range) to determine what
to select. Consider the example earlier in this chapter in which we wrote an OnClick event handler for a button to
ensure that the FirstName and LastName fields were not blank before switching views. You could use the SelectText
method to select the text box that was blank so that the user could simply start typing in the blank text box to fix the
error.

Overriding Submit, Confirm, and Save

So far you have seen how to use data source and form events to ensure that data entered by users is valid, reacts to
users navigating around the form, and so on. This chapter has not yet discussed what happens to the data in the form
when all the information is entered and validated. Somehow, the data must be saved to disk or submitted to a server
somewhere.

Suppose that you want to prevent the user from specifying a destination for the saved data. Rather, when the user is
done with the form, you want to ensure that the data is always saved to a particular shared directory on your intranet.
You can accomplish this by handling the OnSubmitRequest event and writing code to force the data to be saved to that
location.

The first thing you need to do is to disallow users from saving. In the InfoPath designer window, choose Form Options
from the Tools menu to show the Form Options dialog box; then click the Open and Save tab. Uncheck the Save and
Save As check box, as shown in Figure 12.13.

Figure 12.13. Disabling Save and Save As for a form.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12.13. Disabling Save and Save As for a form.

The next step is to handle the OnSubmitRequest event. This event is raised when the Submit action is invoked when
filling out the form. To handle this event, choose Submitting Forms from the InfoPath Tools menu to display the
Submitting Forms dialog box. Select the Enable Submit Commands and Buttons radio button; then pick Custom Submit
Using Form Code from the Submit To drop-down list, as shown in Figure 12.14.

Figure 12.14. Creating a custom event handler for the OnSubmitRequest event.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you click the OK button, an event handler is generated for you in Visual Studio. In the OnSubmitRequest event,
use the XDocument object's SaveAs method to save the form to a specific network share and filename. In Listing 12.9,
the code saves the form to the network share \\myShare and names the file using the user's first and last names.
Listing 12.9 also uses the XDocument object's UI object. It calls the UI object's Confirm method to ask users whether
they are sure that they want to save. The code also uses the Application object's Window object and calls the Window
object's Close method to close the window associated with the form after the form is saved.

Listing 12.9. An OnSubmitRequest Event Handler That Forces the Form to Be
Saved to a Particular Network Share

<InfoPathEventHandler(_
 EventType:=InfoPathEventType.OnSubmitRequest)> _
Public Sub OnSubmitRequest(ByVal e As DocReturnEvent)
 ' If the submit operation is successful, set
 ' e.ReturnStatus = true
 ' Write your code here.
 Dim submitChoice As XdConfirmChoice
 If thisXDocument.Errors.Count > 0 Then
 submitChoice = thisXDocument.UI.Confirm(_
 "Errors exist on the form. Continue submitting?", _
 XdConfirmButtons.xdYesNo)
 Else
 submitChoice = thisXDocument.UI.Confirm(_
 "Are you sure you want to submit?", _
 XdConfirmButtons.xdYesNo)
 End If

 If submitChoice = XdConfirmChoice.xdYes Then
 Dim firstName As String
 firstName = thisXDocument.DOM.selectSingleNode(_
 "/my:myFields/my:FirstName").text
 Dim lastName As String
 lastName = thisXDocument.DOM.selectSingleNode(_
 "/my:myFields/my:LastName").text
 Dim fileName As String = firstName + "_" + lastName + ".XML"
 thisXDocument.SaveAs("\\myShare\forms$\" + fileName)
 thisXDocument.UI.Alert("Thank you, " & _
 firstName & "! You will be contacted shortly.")
 thisApplication.ActiveWindow.Close(True)
 ' No need to set ReturnStatus because InfoPath closes
 Else
 e.ReturnStatus = False
 End If
End Sub

InfoPath uses the ReturnStatus flag to determine whether the OnSubmitRequest event succeeded. It is not necessary to
set the ReturnStatus flag to true in this example when closing the form window, because the runtime is immediately

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

set the ReturnStatus flag to true in this example when closing the form window, because the runtime is immediately
shut down when the form window is closed.

Note

The call to Confirm requires the domain security level, and the call to SaveAs requires the full-trust security
level. Therefore, we will need either to sign digitally or register the form template to get full-trust
permissions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter introduced InfoPath development with VSTO. You learned how to create a new VSTO InfoPath project
based on a new form or an existing form. The chapter also covered key objects that you will code against, including
InfoPath's Application object, the XDocument object (which represents a form), the View object, and objects passed as
parameters to events such as the DataDOMEvent object.

This chapter also examined the InfoPath security model. You learned how a form is granted a particular security level,
such as restricted, domain, or full trust. The chapter also covered InfoPath's data model and key data events such as
OnBeforeChange, OnValidate, and OnAfterChange. You also read about the InfoPath's form object model and how to
handle key events, including OnLoad, a button-click handler, OnContextChange, and OnSubmitRequest.

As you no doubt discovered while working through the examples in this chapter, InfoPath development differs quite a
bit from the Excel, Word, and Outlook development experience. Whenever you add an event handler, you must do so
using the menus and commands in InfoPath; you never use Visual Studio to add an event handler. Event handlers do
not follow the traditional declarative Visual Basic 2005 event model of using WithEvents and Handles. Instead, methods that
will handle InfoPath events are attributed. These attributes are somewhat difficult to create and edit, hence the need to
have the InfoPath menus and dialog boxes generate these handlers for you. Finally, InfoPath development differs from
development in Excel and Outlook because the design view of an InfoPath form is the InfoPath application window, not
a designer that shows up in place within Visual Studio.

This book does not cover InfoPath in any additional detail. For more information on InfoPath programming, consult the
MSDN page for InfoPath at http://msdn.microsoft.com/library/en-us/odc_2003_ta/html/odc_ancInfo.asp.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13. The VSTO Programming Model

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The VSTO Programming Model
In Windows Forms programming, a form is a window that contains controls, such as buttons and combo boxes. To
implement a form, you can drag and drop controls from the Visual Studio toolbox onto the form's designer. Then the
form designer generates a customized subclass of the Form class. Because each form is implemented by its own class,
you can customize the form code further by adding properties and methods of your own to the class. And because all
the controls are added as properties on the form class, you can use IntelliSense to program those custom methods
more rapidly.

The system of host items and host controls in VSTO is directly analogous to Windows Forms. By host, we mean the
applicationWord or Excelthat hosts the customization. Host items are like forms: programmable objects that contain
user interface elements called host controls. The Workbook, Worksheet, and Chartsheet objects are host items in Excel;
the Document object is the sole host item in Word. In Outlook, the Outlook Application object is exposed as a host item.

As we saw back in Chapter 2, "Introduction to Office Solutions," the Visual Studio Excel and Word designers create
custom classes that extend the Worksheet and Document base classes. As you place host controls such as lists, named
ranges, charts and buttons onto the worksheet, they are exposed as fields on the customized subclass.

Separation of Data and View

Some people use spreadsheet software solely for its original purpose: to lay out financial data on a grid of cells that
automatically recalculates sums, averages, and other formulas as they update the data. You might have a simple Excel
spreadsheet that calculates the total expenses for a wedding given all the costs involved, for example. Similarly, some
people use word-processing software solely for its original purpose: to typeset letters, memos, essays, books and other
written material automatically.

In a business setting, however, spreadsheets and documents have evolved to have both high internal complexity and
external dependencies. Unlike a spreadsheet containing a wedding budget, a spreadsheet containing an expense report
or a document containing an invoice is likely to be just one small part of a much larger business process. This fact has
implications for the design of a programming model. Consider this Visual Basic for Applications (VBA) code, which might
be found in a spreadsheet that is part of a larger business process:

SendUpdateEmail _
 ThisWorkbook.Sheets(1).Cells(12,15).Value2

Clearly, the unreadable snippet is sending an e-mail to someone, but because the Excel object model emphasizes how
the spreadsheet represents the data, not what the data represents, it is hard to say what exactly this is doing. The code
is not only hard to read, but also brittle; redesigning the spreadsheet layout could break the code. We could improve
this code by using a named range rather than a hard-coded direct reference to a particular cell:

SendUpdateEmail _
 ThisWorkbook.Names("ApproverEmail").RefersToRange.Value2

Better, but it would be even nicer if the particular range showed up in IntelliSense. VSTO builds a convenient custom
object model for each work sheet, workbook, or document so that you can more easily access the named items
contained therein:

SendUpdateEmail(ExpenseReportSheet.ApproverEmail.Value2)

A more readable, maintainable, and discoverable object model is a welcome addition. Even in the preceding snippet,
however, the VSTO programming model still does not address the more fundamental problem: We are manipulating the
data via an object model that treats it as part of a spreadsheet. The spreadsheet is still the lens through which we see
the data; instead of writing a program that manipulates ice cream sales records, we wrote a program that manipulates
a list and a chart.

The crux of the matter is that Word and Excel are editors; they are for designing documents that display data.
Therefore, their object models thoroughly conflate the data itself with the "view": the information about how to display
them. To mitigate this conflation, the VSTO programming model was designed to enable developers to separate view
code logically from data code. Host items and host controls represent the view elements; host items and host controls
can be data bound to classes that represent the business data.

Model-View-Controller

If you're familiar with design patterns, you will have already recognized this as based on the Model-View-Controller

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you're familiar with design patterns, you will have already recognized this as based on the Model-View-Controller
(MVC) design pattern, shown in Figure 13.1. In the MVC pattern, the data model code represents the business data and
the processes that manipulate that data. The view code reads the data, listens to Change events from the data, and
figures out how to display the data. The controller code mediates between the view and the data code, updating the
data based upon the gestures the user makes in the view (mouse clicks, key presses, and so on).

Figure 13.1. Model-View-Controller architecture.

[View full size image]

Benefits of Separation

Logically separating the data code from the view code leads to a number of benefits when building more complex
business documents on top of Word and Excel:

Business data and rules can be encapsulated in ADO.NET datasets and reused in different applications.

Changes to view code are less likely to break data code unexpectedly (and vice versa).

Data code can cache local copies of database state for offline processing.

Server-side code can manipulate cached data inside the document without starting Word/Excel.

Now that you know some of the design philosophy behind VSTO, let's take a look at how the host items and host
controls actually extend the Word and Excel object models. (The data side is covered in Chapter 17, "VSTO Data
Programming," and server-side data manipulation is covered in Chapter 18, "Server Data Scenarios.")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSTO Extensions to Word and Excel Objects
VSTO extends the Word and Excel object models in several ways. Although it is possible to use these features without
understanding what is actually happening behind the scenes, it is helpful to take a look back there. This section explains
by what mechanisms host items and host controls extend the Word and Excel programming models. Then the
discussion focuses on which new features are available.

Aggregation, Inheritance, and Implementation

If you create a Word project in Visual Studio and open the Object Browser window, you will see several assemblies
listed. Two are of particular interest. You already know that the Microsoft.Office.Interop.Word assembly is the primary
interop assembly (PIA), containing the definitions for the interfaces that allow managed code to call the unmanaged
Word object model. Similarly, the Microsoft.Office.Interop.Excel assembly is the PIA for the unmanaged Excel object
model.

You can find the VSTO extensions to the Word and Excel object models in the Microsoft.Office.Tools.Word and
Microsoft.Office.Tools.Excel assemblies; each contains a namespace of the same name.

From a VSTO Word document project, open the Object Browser, and take a look at the Document host item class in the
Tools namespace, shown in Figure 13.2.

Figure 13.2. Examining the Document host item class in the Object Browser.

[View full size image]

Notice that the host item class implements the properties, methods, and events defined by the Document interface
from the PIA, and extends the BindableComponent base class. Chapter 17, "VSTO Data Programming," gets into the
details of how data-bindable components work; for now, the fact that this class implements the properties, methods,
and events from the PIA interface rather than extends a base class is important. It is important to notice that even
though the Document host item class has all the methods, properties, and events of the Document interface from the
PIA, the type definition does not actually say that it implements the Document interface itself. This is a subtle
distinction that we will discuss in more detail later.

Conceptually, the difference between extending a base class and implementing the properties, methods, and events
from an interface is that the former describes an "is a" relationship, whereas the latter describes a "can act like"
relationship. A Microsoft.Office.Tools.Word.Document object really is a bindable component; it actually shares
functionalitycodewith its base class. But it merely looks like and acts like a Word Document object; it is not a Word

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

functionalitycodewith its base class. But it merely looks like and acts like a Word Document object; it is not a Word
document object as far as Word is concerned.

The Sheet1 class in Excel, for example, has your event handlers and host controls. It extends the
Microsoft.Office.Tools.Excel.Worksheet base class and implements the properties, methods, and events defined by the
Microsoft.Office.Interop.Excel.Worksheet interface.

Connecting the Aggregates

VSTO's host item and host control objects aggregate some of the underlying Word and Excel document objects (such as
the Document and Bookmark objects in Word, and the Worksheet and NamedRange objects in Excel). You have already
seen how you can call methods on the document object in a VSTO customization. Suppose that you call the
CheckGrammar method on the document. If this is not really a Word Document object but merely looks like one, how
does it work?

The aggregating object's implementation of that method checks to see whether it has obtained the aggregated
Document object already. If it has not, it makes a call into Word to obtain it (and caches away the object so that it will
be available immediately when you make a second method call). After it has the reference to the aggregated object,
the aggregating object calls CheckGrammar on the aggregated object. The great majority of the properties and
methods on the aggregating objects do nothing more than pass the arguments along to the PIA code, which then
passes them along to the unmanaged object model.

Events work in the analogous way; if your code listens to an event exposed by an aggregating object, the aggregating
object listens to the event on the aggregated object on your behalf. When the event is raised by the aggregated object,
the aggregating object's delegate is called; it raises the aggregating object's event and calls your event handling
delegate.

All the host controls are connected in a similar manner to the host items. If you have a NamedRange host control
member of a worksheet, for example, the aggregating Worksheet object itself creates an aggregating NamedRange
object. The first time you call a method on the host control, the aggregating class obtains the underlying "real" object
from Excel and passes the call along.

This might seem like a whole lot of rigmarole to go through just to add new functionality to the Word and Excel object
models. The key benefit that this system of aggregates affords is that each host item class in each project can be
customized. One spreadsheet can have an InvoiceSheet class with a CustomerNameRange property; another can have
a MedicalHistorySheet class with a CholesterolLevelChart property, and so on.

In short, VSTO extends the Word and Excel object models by aggregating the unmanaged object models with managed
objects. VSTO enables developers to customize and extend some of those objects furtherthose representing the
workbook, worksheet, chart sheet, and documentthrough subclassing.

Obtaining the Aggregated Object

Much of the time, the foregoing details about how the aggregation model works are just that: implementation details.
Whether the host item "is a" worksheet or merely "looks like" one seems to be an academic point. In some rare
scenarios, however, it does matter.

Word's and Excel's object models were not written with the expectation that managed aggregates would implement
their interfaces; when you call a method that takes a range, Excel expects that you are passing it a real range, not an
aggregated range that acts like a range.

Suppose that you have a customized worksheet with two host controls: a NamedRange member called InvoiceTotals
and a Chart object called InvoiceChart. You might want to write code something like this snippet:

Me.InvoiceChart.SetSourceData(Me.InvoiceTotals, _
 Excel.XlRowCol.xlColumns)

This code will throw an exception at runtime because the SetSourceData method on the chart aggregate must be
passed an object that implements the Range interface. It looks like at runtime, the InvoiceChart aggregate will pass
InvoiceTotals, an aggregated range, to the "real" aggregated chart. But Excel will expect that the object passed to
SetSourceData is a range, whereas in fact it is the VSTO aggregate; it merely looks like an Excel range.

When just calling methods, reading or writing properties, and listening to events, the aggregate is more or less
transparent; you can just use the object as though it really were the thing it is aggregating. If for any reason you need
to pass the aggregate to an Excel object model method that requires the real Excel object, you can obtain the real Excel
object via the InnerObject property. The code above will work properly if you rewrite it to look like this:

Me.InvoiceChart.SetSourceData(Me.InvoiceTotals.InnerObject, _
 Excel.XlRowCol.xlColumns)

Aggregation and Windows Forms Controls

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you drag and drop a Windows Forms button onto a worksheet or document, the button control is also aggregated.
Windows Forms controls, however, are aggregated slightly differently from the NamedRange, Bookmark, ListObject,
and other controls built in to Word and Excel. There are two relevant differences between Windows Forms controls and
Office's controls. First, Windows Forms controls are implemented by extensible managed classes, unlike the unmanaged
Office controls, which only expose interfaces in their PIAs. Second, Word and Excel controls inherently know how they
are situated in relation to their containing document or worksheet; non-Office controls on a worksheet do not know that
they are in a worksheet.

Word and Excel overcome the second difference by aggregating an extender onto a control sited on a document or
worksheet. Word's extender implements the properties, methods, and events of the_OLEControl interface that can be
found in the Word PIA (but as with other aggregated VSTO controls, the type definition does not actually claim to
implement the _OLEControl interface). It has five methods, all of which take no arguments and return no result:
Activate, Copy, Cut, Delete, and Select. It also exposes Single read-write properties Top, Left, Height, and Width, String
properties Name and AltHTML, and an Automation property of type Object. Excel's extender implements the properties,
methods, and events of the _OLEObject interface that can be found in the Excel PIA.

When you drop a button onto a document or worksheet, the project system adds a new field to the host item class but
types it as Microsoft .Office.Tools.Word.Controls.Button or Microsoft.Office.Tools .Excel.Controls.Button, respectively.
Because the underlying System.Windows.Forms.Button class is extensible, this time, the aggregate actually is a
subclass of the Windows Forms control. It still must aggregate the unmanaged extender interface provided by Word or
Excel, however.

As a further convenience, the managed objects representing embedded Windows Forms controls also have read-only
Right and Bottom properties aggregated onto them.

The "Tag" Field

Every host item and host control now has a field called Tag, which can be set to any value. This field is entirely for you
to use as you see fit; it is neither read nor written by any code other than your customization code. It is included
because it is very common for developers to have auxiliary data associated with a particular control, but no field on the
control itself in which to store the data. Having the object keep track of its own auxiliary data is, in many cases, more
straightforward than building an external table mapping controls onto data.

Event Model Improvements

Like VBA, VSTO encourages an event-driven programming style. In traditional VBA programming, relatively few of the
objects source events, which can make writing event-driven code cumbersome. In Word, for example, the only way to
detect when the user double-clicks a bookmark using the standard VBA object model is to declare an "events" class
module with a member referring to the application:

Public WithEvents WordApp As Word.Application

Then sink the event and detect whether the clicked range overlaps the bookmark:

Private Sub App_WindowBeforeDoubleClick(ByVal Sel As Selection, _
 Cancel As Boolean)
 If Sel.Range.InRange(ThisDocument.Bookmarks(1).Range) Then
 MsgBox "Customer Clicked"
 End If
End Sub

And initialize the event module:

Dim WordEvents As New WordEventsModule
Sub InitializeEventHandlers
 Set WordEvents.WordApp = Word.Application
End Sub

Then add code that calls the initialization method. In short, this process requires a fair amount of work to detect when
an application-level event refers to a specific document or control. The VSTO extensions to the Word and Excel object
models were designed to mitigate difficulties in some tasks, such as sinking events on specific controls. In VSTO, the
bookmark object itself sources events, so you can start listening to it as you would sink any other event.

In Chapter 2, "Introduction to Office Solutions," you saw some of the new VSTO extensions to the view object model in
action. You also read about events added by VSTO in Chapter 4, "Working with Excel Events," and Chapter 7, "Working
with Word Events." At the end of this chapter, we describe all the additions to the event model in detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dynamic Controls
In Chapter 2, "Introduction to Office Solutions," you saw that VSTO allows developers to build customized document
solutions by using Word and Excel as designers inside Visual Studio. The host item classes expose the host controls
present at design time as custom properties on a class that aggregates the underlying unmanaged object.

But what about host controls not present at design time? What if you want to create new named ranges, bookmarks,
buttons, or other controls at runtime? It would be nice to be able to use the new events and other extensions to the
programming model on dynamically generated controls. As you will see, VSTO supports adding both host items and
host controls dynamically, although the former is a little bit trickier to pull off.

Chapter 14, "Using Windows Forms in VSTO," shows how to add Windows Forms controls dynamically to Word and
Excel documents.

The Controls Collection

In a Windows Forms application, every form class has a property called Controls that refers to a collection of all the
controls hosted by the form. In VSTO, each worksheet and document class contains a similarly named property. In
Word, the document class contains an instance of Microsoft.Office.Tools.Word.ControlCollection. In Excel, each
worksheet class contains an instance of Microsoft.Office.Tools.Excel.ControlCollection. These two classes are quite
similar; the following sections discuss their differences.

Enumerating and Searching the Collection

You can use the Controls collection to enumerate the set of aggregated controls and perform actions upon all of them.
You could disable all the button controls on a sheet or document, for example:

For Each control As Object In Me.Controls
 If TypeOf control Is Button Then
 Dim button As Button = control
 button.Enabled = False
 End If
Next

The Controls collection also has some of the indexing and searching methods you would expect. Both the Excel and
Word flavors have methods with these signatures:

Public Function Contains(ByVal control As Object) As Boolean
Public Function Contains(ByVal name As String) As Boolean
Public Function Index(ByVal control As Object) As Integer
Public Function Index(ByVal name As String) As Integer

If the collection does not contain the searched-for control, IndexOf returns 1. Both collections can be enumerated via a
For Each loop; should you want to enumerate the collection yourself, you can call GetEnumerator. This method returns a
ControlCollectionEnumerator object from the Microsoft.Office.Tools.Excel or Microsoft.Office.Tools.Word namespace, as
appropriate. They are essentially identical functionally. Both classes have only three public methods:

ReadOnly Property Current() As Object

Function MoveNext() As Boolean

Sub Reset()

Current returns Nothing when moved past the final element in the collection; MoveNext moves the enumerator to the
next element; and Reset starts the enumerator over at the beginning of the collection.

Both collections also expose three index operators, which take a name as a String, an Integer index, and an Object,
respectively. The indexers throw an ArgumentOutOfRangeException if there is no such control in the collection.

Adding New Word and Excel Host Controls Dynamically

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The worksheet and document Controls collections provide methods to create host controls dynamically. In Word, you
can create aggregated bookmarks dynamically:

Public Function AddBookmark(_
 ByVal range as Microsoft.Office.Interop.Word.Range, _
 ByVal name as String) As Microsoft.Office.Tools.Word.Bookmark

This method creates a new bookmark on the given range and aggregates it with the VSTO host control class.

Note

XMLNode and XMLNodes host controls cannot be created dynamically in Word. The XMLMappedRange host
control cannot be created dynamically in Excel.

In Excel, you can create aggregated NamedRanges, ListObjects, and Chart controls dynamically. Of those, only Chart
controls can be positioned at arbitrary coordinates; all the rest must be positioned with a range object:

Public Function AddChart(_
 ByVal range As Microsoft.Office.Interop.Excel.Range, _
 ByVal name As String) As Microsoft.Office.Tools.Excel.Chart

Public Function AddChart(ByVal left As Double, _
 ByVal top As Double, _ByVal width As Double, _
 ByVal height As Double, ByVal name As String) _
 As Microsoft.Office.Tools.Excel.Chart

Public Function AddNamedRange(_
 ByVal range As Microsoft.Office.Interop.Excel.Range, _
 ByVal name As String) As _
 Microsoft.Office.Tools.Excel.NamedRange

Public Function AddListObject(_
 ByVal range As Microsoft.Office.Interop.Excel.Range, _
 ByVal name As String) _
 As Microsoft.Office.Tools.Excel.ListObject

Removing Controls

The host controls added to a worksheet or document host item class at design time are exposed as properties on the
host item class. If at runtime the user were to delete one accidentally, save the document, and then reload it, the
customization code would be unable to find the aggregated control. This would likely result in an exception because
eventually the customization would try to listen to an event or call a method on the missing aggregated control. If the
customization detects this condition, it will throw a ControlNotFoundException.

Although it is difficult to prevent end users from accidentally or deliberately deleting controls without locking the
document, the Controls collection can at least try to prevent programmatic destruction of controls added at design time.
There are four equivalent ways to remove controls from the Controls collection; all will throw a
CannotRemoveControlException if you attempt to remove a control that was not added dynamically.

The four ways to remove a dynamic control are to call Delete() on the control itself or to call Remove(ByVal control As Object),
Remove(ByVal name as String), or RemoveAt(ByVal index as Integer) on the Controls collection itself. All four of these methods
remove the control from the collection, remove the control from the document or worksheet, and destroy the extender
object.

Most collections have a Clear() method that removes every member from the collection. Because completely clearing a
Controls collection would almost always result in an exception when a design-time control was removed, this method
always throws a NotSupportedException and is hidden from IntelliSense.

Saving and Loading Controls

What happens when you add one or more dynamic controls to a document, save it, and reload it later?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dynamically created Windows Forms controls such as buttons and check boxes do not survive being saved and then
loaded. They just disappear; your customization code can create them again afresh the next time the document is
loaded.

Because "host" controls such as ranges and bookmarks are themselves part of the document, they will be persisted
along with the rest of the document. The controls do not save any information about any aggregating objects you may
have created around them, however. When the document is reloaded, the controls will still be there, but there will be
no aggregates wrapping them. You will have to add the controls back to the Controls collection to create new
aggregates for the controls. The Controls collection provides Add methods that can reconnect an aggregate to an
existing control in the document without creating a new control in the document.

Advanced Topic: Dynamic Host Items

As you have just seen, adding new aggregated host controls onto a host item is relatively
straightforward: just call the appropriate method on the controls collection for the containing host item
and the control is created, aggregated, and placed on the host item automatically.

But what if you should want to use some of the features of an aggregated host item class on a
dynamically created worksheet? To do that, you need only three lines of code. Understanding those three
lines will require us to delve somewhat deeper into how the VSTO runtime, the hosting application, and
the aggregating class all work together.

Start by creating a helper method in the ThisWorkbook class that takes in the worksheet you want to be
aggregated and returns an aggregated worksheet:

Friend Function AggregateWorksheet(_
 ByVal worksheet As Microsoft.Office.Interop.Excel.Worksheet) _
 As Microsoft.Office.Tools.Excel.Worksheet

Recall that the aggregating object obtains the aggregated object "on demand." That is, it obtains the
underlying object only when the first method is called that must be passed along to the underlying
object. That means that the aggregating object must not require the aggregated object when the
aggregating object is constructed, but it does need to be able to obtain that object at any time.
Somehow, the aggregating object must talk to the host and obtain the unique object that it is
aggregating.

It does so by passing a string called the cookie, which identifies the aggregated object to a special
service object provided by the host. In the event that an error occurs when attempting to fetch the
worksheet, the runtime will need to raise an error. It is possible that the cookie that uniquely identifies
the aggregated object might contain control characters or be otherwise unsuitable for display. Therefore,
the aggregate constructor also takes a human-readable name, used in the event that the host is unable
to find the object to be aggregated. In the case of Excel worksheets, we will use a cookie that is already
created for each worksheet by VBA, called the CodeName. To initialize that cookie, we must make a call
into the VBA engine to force the cookie to be created.

How do we obtain a reference to the service that maps cookies onto unmanaged host objects? The
already-aggregated host item has a member variable called RuntimeCallback that contains a reference to
the VSTO runtime library's service provider. Service provider is actually a bit of a misnomer; a service
provider is an object that knows how to obtain objects that provide services, not necessarily one that
provides those services itself. We identify services by the interface they implement.

Finally, to make data binding work properly, the aggregating class needs to know what object contains
this worksheet. Chapter 17, "VSTO Data Programming," covers data binding in more detail.

Let's put all this together. We need to obtain five things to create an aggregating worksheet:

A host-provided service that can obtain the aggregated object

The cookie that the host application uses to identify the worksheet

A human-readable name for the worksheet

The container of the worksheet

The VSTO runtime service provider

We obtain the service that maps the name and container to the aggregated object by passing the
appropriate interface type to the VSTO runtime service provider:

Dim hostItemProvider As IHostItemProvider
hostItemProvider = Me.RuntimeCallback.GetService(_
 GetType(IHostItemProvider))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 GetType(IHostItemProvider))

Next, we have to make a call into VBA to initialize the CodeName for the new worksheet. This line of
code does nothing except force VBA to initialize. It does not add a VBA project to the workbook or
anything else of that nature. It does access the VBProject object, however. For a solution that
dynamically creates host items in Excel, you must make sure that users of your solution have Trust
access to Visual Basic Project checked in the VBA Security dialog box (Tools > Macro > Security).
Otherwise, this line of code will fail:

Me.VBProject.VBComponents.Item(1)

We will use the name of the new Worksheet object for the human-readable name and the CodeName as
the host cookie. The container of the new worksheet is the same as the container of the current
workbook. The final function looks like this.

Friend Function AggregateWorksheet(ByVal worksheet As _
 Excel.Worksheet) As Microsoft.Office.Tools.Excel.Worksheet

 Dim hostItemProvider As IHostItemProvider

 hostItemProvider = Me.RuntimeCallback.GetService(_
 GetType(IHostItemProvider))

 Me.VBProject.VBComponents.Item(1)
 AggregateWorksheet = New Excel.Worksheet(hostItemProvider, _
 Me.RuntimeCallback, worksheet.CodeName, Me, worksheet.Name)

End Function

To use this function, put the following code in the Startup handler for Sheet1. This code creates a new
worksheet, calls the AggregateWorksheet function in the ThisWorkbook, and then adds a dynamic button
to the newly created worksheet using the aggregated worksheet returned by the function:

Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim worksheet As Excel.Worksheet = _
 Globals.ThisWorkbook.Sheets.Add()
 Globals.ThisWorkbook.AggregateWorksheet(_
 worksheet).Controls.AddButton(10, 10, 100, 100, "foo")

End Sub

Just as dynamic host controls are not re-created when a document containing them is saved and then
reloaded, dynamic host items are not re-created.

Inspecting the Generated Code

Let's take a deeper look behind the scenes at what is going on when you customize a worksheet or
document. Create a new Excel project; create a named range called MyRange; and take a look at the
code for Sheet1.vb in Listing 13.1.

Listing 13.1. The Developer's Customized Worksheet Class

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 End Sub

 Private Sub Sheet1_Shutdown(ByVal sender As Object, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub Sheet1_Shutdown(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Shutdown

 End Sub

End Class

Upon closer inspection, a few questions might come to mind. Where is the MyRange property declared
and initialized? Didn't we say earlier that the customized worksheet class extends a base class? Where is
the base class declaration?

It's Visual Basic's support for partial classes that is the key. C# and Visual Basic support a new syntax
that allows a class declaration to be split among several files. The portion that you see before you is the
home of all your developer-customized code; the automatically generated code is hidden in another
portion of the class not displayed by default.

Click the Show All Files button in Solution Explorer, and you will see that a number of normally hidden
files make up the class, as shown in Figure 13.3.

Figure 13.3. Using the Show All Files button to examine hidden code.

[View full size image]

First, notice that behind every worksheet is an XML file for the worksheet. If you look at the first few
lines of the XML, you will see that it contains a description of the contents of the worksheet and how to
represent it as a class. This "blueprint" contains information about what namespace the class should live
in, what the name of the class should be, what controls are exposed on the class, how Excel identifies
those controls, and so on.

Behind this language-independent representation of the class is another Visual Basic file that contains
the other half of the partial class, generated from the XML blueprint. It begins something like this:

[View full width]
<Microsoft.VisualStudio.Tools.Applications.Runtime. _
 StartupObjectAttribute(1), _
 System.Runtime.InteropServices.ComVisibleAttribute(False), _
 System.Security.Permissions.PermissionSetAttribute(_
 System.Security.Permissions.SecurityAction.Demand, _
 Name:="FullTrust")> _
Partial Public NotInheritable Class Sheet1
 Inherits Microsoft.Office.Tools.Excel.Worksheet
 Implements Microsoft.VisualStudio.Tools.Applications.Runtime

.IStartup

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.IStartup

 Friend WithEvents MyRange As _
 Microsoft.Office.Tools.Excel.NamedRange

As you can see, here is where the base classes are specified and the member variables declared. The
class also specifies that it is one of the startup classes in your customization assembly and that code that
calls members of this class must be fully trusted.

Plenty more code is in the hidden portion of the partial class, most of which is devoted to initializing
controls, starting data binding, and handling data caching; Chapter 17, "VSTO Data Programming,"
discusses data binding in more detail. The constructor, in particular, should look familiar:

[View full width]
Public Sub New(ByVal RuntimeCallback As _
Microsoft.VisualStudio.Tools.Applications.Runtime

.IRuntimeServiceProvider)
 MyBase.New(CType(RuntimeCallback.GetService(GetType(_
Microsoft.VisualStudio.Tools.Applications.Runtime

.IHostItemProvider)), _
Microsoft.VisualStudio.Tools.Applications.Runtime

.IHostItemProvider), _
 RuntimeCallback, "Sheet1", Nothing, "Sheet1")
 Me.RuntimeCallback = RuntimeCallback
End Sub

This is functionally the same code discussed in the previous section on creating custom host items by
calling the aggregate base class constructor.

If you ever want to debug through this code, ensure that Just My Code Debugging is turned off (via the
Tools > Options > Debugging > General dialog box). Then you can put breakpoints on any portion of the
hidden code, just like any other code.

Do not attempt to edit the hidden code. Every time you make a change in the designer that would result
in a new control's being added, or even change a control property, the hidden half of the partial class is
regenerated completely. Any changes you have made to the hidden half will be lost; that is why it is
hidden by default!

The Startup and Shutdown Sequences

You have probably noticed by now that we have been putting custom initialization code in an event
handler:

Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup
 Me.MyRange.Value = "Hello"
End Sub

But exactly what happens, in what order, as the startup classes are created and initialized? Excel
customizations typically have many startup classes, one for each sheet and one for the workbook itself.
Which ones load first?

You already saw a clue that answers the latter question. In the hidden half of the partial class, each class
declaration has an attribute:

<Microsoft.VisualStudio.Tools.Applications.Runtime. _
 StartupObjectAttribute(1), _

The Workbook class has 0 for the argument; Sheet1 has 1; Sheet2 has 2; and so on. The workbook
aggregate always has ordinal 0, and each worksheet is given its ordinal based on the order in which Excel
enumerates its sheets. The startup sequence happens in four phases, and each phase is executed on
each startup class in order of the given ordinal before the next phase begins.

In the first phase, each class is constructed using the constructor mentioned above. This simply
constructs the classes and stores the information that will be needed later to fetch the unmanaged
aggregated objects from Excel or Word.

In the second phase, the Initialize method of each startup class is calledagain, in multiclass
customizations, starting with the workbook and then each worksheet by ordinal. If you look at the hidden
half of the partial class, you will see the Initialize method:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

half of the partial class, you will see the Initialize method:

[View full width]
<Global.System.Diagnostics.DebuggerNonUserCodeAttribute(), _
 Global.System.ComponentModel.EditorBrowsableAttribute(_
 System.ComponentModel.EditorBrowsableState.Never)> _
Public Sub Initialize() Implements _
 Microsoft.VisualStudio.Tools.Applications.Runtime.IStartup

.Initialize

 Me.HostItemHost = CType(Me.RuntimeCallback.GetService(GetType(_
Microsoft.VisualStudio.Tools.Applications.Runtime

.IHostItemProvider)), _
Microsoft.VisualStudio.Tools.Applications.Runtime.IHostItemProvider)
 Me.DataHost = CType(Me.RuntimeCallback.GetService(GetType(_
Microsoft.VisualStudio.Tools.Applications.Runtime

.ICachedDataProvider)), _
 Microsoft.VisualStudio.Tools.Applications.Runtime

.ICachedDataProvider)
 Globals.Sheet1 = Me
 System.Windows.Forms.Application.EnableVisualStyles()
 Me.InitializeCachedData()
 Me.InitializeControls()
 Me.InitializeComponents()
 Me.InitializeData()
 Me.BeginInitialization()
End Sub

The attributes prevent the Initialize method from showing up in IntelliSense drop-down lists and mark
the method as being "not my code" for the Debug Just My Code feature. Then the initializer fetches
services from the host that are needed to initialize the view and data elements, sets up the global class
(discussed in more detail later in this chapter), loads cached data, and initializes all the controls.

In the third phase, data binding code is activated. Data bindings must be activated after all the classes
are initialized because a control on Sheet2 might be bound to a dataset on Sheet1.

Finally, in the fourth phase, after everything is constructed, initialized, and data-bound, each startup
class raises its Startup event, and the code in the developer's half of the partial class runs.

This multiphase startup sequence ensures that you can write handlers for the Startup event that can
assume not just that the class itself is ready to go, but also that every startup class in the customization
is ready to go.

Ideally, it would be a good idea to write Startup event handlers for each class that do not depend on the
order in which they are executed. If you must, however, you can always look at the startup attributes to
see in what order the events will be executed.

The shutdown sequence is similar but simpler. As the host applicationWord or Excelshuts down, each
host item class raises the Shutdown event. Shutdown events are raised in the same order as each phase
in the startup sequence.

The Globals Class in Excel

Suppose that you're writing code in the Sheet1 class that needs to set a property on a control hosted by Sheet2. You
are probably going to need to obtain the instance of the aggregated Sheet2 class somehow. Instead of aggregating
properties representing all the other sheets and the workbook aggregates onto each startup class, VSTO exposes all the
sheets and the workbook as static members of the Globals class:

Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Globals.Sheet2.MyRange.Value = "Hello"

End Sub

Because at least the first three phases of the startup sequence have finished at this point, you know that the Globals
class and Sheet2 have been initialized, although Sheet2's Startup event has probably not fired yet.

Notice that by default, controls aggregated onto the worksheet classes are given the Friend visibility modifier. You can

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice that by default, controls aggregated onto the worksheet classes are given the Friend visibility modifier. You can
change the visibility modifier generated for a control by selecting the control in the designer and then selecting the
Modifiers property in the Properties window. If you change the visibility of the control to Private, however, you will be
unable to access the control's field from the Globals class.

The Globals class is also constructed using partial classes, although by default, there is no visible portion. Rather, each
generated code file defines a portion of the Globals class. You can see this code at the bottom of the hidden file for each
class. Should you for some reason want to add your own custom members to the Globals class, you can always create
your own portion of the partial class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSTO Extensions to the Word and Excel Object Models
This chapter finishes with a detailed list of all new properties, events, and methods aggregated onto the Word and Excel
objects by the VSTO aggregates, with the exception of the new data binding features (which are covered in Chapter 17,
"VSTO Data Programming"). For Outlook, only the Application object is aggregated, and no new events, methods, or
properties are added to that object.

As mentioned previously, every aggregated object now has a Tag property that you can use for any purpose you choose
and an InnerObject property that you can use to access the aggregated object. In addition, each host control now has a
Delete method that removes it (if it can be added dynamically at runtime) from its document or worksheet. Because
every aggregating object has these properties and methods now, they are not mentioned again in the following topics.

The Word Document Class

VSTO Word projects have exactly one host item class. Every customized document class inherits from the aggregating
class Microsoft.Office.Tools .Word.Document and implements the properties, methods, and events defined by the
Microsoft.Office.Interop.Word.Document interface.

Document objects in VSTO source the new events shown in Table 13.1, all of which are raised by the Document object
when the Application object raises the identically named event.

Table 13.1. New Events on VSTO's Aggregated Document Object
Event Name Delegate Notes

ActivateEvent WindowEventHandler From Application, renamed
from WindowActivate

BeforeClose CancelEventHandler From Application

BeforeDoubleClick ClickEventHandler From Application

BeforePrint CancelEventHandler From Application

BeforeRightClick ClickEventHandler From Application

BeforeSave SaveEventHandler From Application

CloseEvent DocumentEvents2_CloseEventHandler From Document, renamed

Deactivate WindowEventHandler From Application

EPostageInsert EventHandler From Application

EPostagePropertyDialog EventHandler From Application

MailMergeAfterMerge MailMergeAfterMergeEventHandler From Application

MailMergeAfterRecordMerge EventHandler From Application

MailMergeBeforeMerge EventHandler From Application

MailMergeBeforeRecordMerge CancelEventHandler From Application

MailMergeDataSourceLoad EventHandler From Application

MailMergeDataSourceValidate HandledEventHandler From Application

MailMergeWindowSendTo-
Custom

EventHandler From Application

MailMergeWizardStateChange MailMergeWizardStateChangeEventHandler From Application

New DocumentEvents2_NewEventHandler From Document, delayed

Open DocumentEvents2_OpenEventHandler From Document, delayed

SelectionChange SelectionEventHandler From Application

Shutdown EventHandler
Startup EventHandler
SyncEvent DocumentEvents2_Sync-EventHandler From Application, renamed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WindowSize WindowEventHandler From Application

XMLAfterInsert DocumentEvents2_XMLAfterInsertHandler From Document

XMLBeforeDelete DocumentEvents2_XMLBeforeDeleteHandler From Document

Notice that the Sync and Close events have been renamed to prevent a naming conflict; C# does not allow a class to
have an event and a method with the same name.

The Document class now has OnStartup and OnShutdown methods that force the Document object to source the
Startup and Shutdown events.

The New and Open events are delayed so that they are not raised until the aggregate class is fully initialized. These
events normally would be raised before any user-authored code could run. If user code does not run until after the
event has been raised, however, how would you add an event handling delegate to listen to the event? Therefore, the
events are delayed until after the customization's event binding code can run.

The event delegate types could use some additional explanation. All the event delegate types that begin with
DocumentEvents2_ are from the Word PIA. The System.EventHandler, System.ComponentModel.CancelEventHandler, and
System.ComponentModel.HandledEventHandler delegates are straightforward. All the remaining delegate types are
defined in the Microsoft.Office.Tools.Word namespace and have signatures as follows:

Public Delegate Sub ClickEventHandler(ByVal sender As Object, _
 ByVal e As Microsoft.Office.Tools.Word.ClickEventArgs)

Public Delegate Sub MailMergeAfterMergeEventHandler(_
 ByVal sender As Object, ByVal e As _
 Microsoft.Office.Tools.Word.MailMergeAfterMergeEventArgs)

Public Delegate Sub MailMergeWizardStateChangeEventHandler(_
 ByVal sender As Object, ByVal e As _
 Microsoft.Office.Tools.Word.MailMergeWizardStateChangeEventArgs)

Public Delegate Sub SaveEventHandler(ByVal sender As Object, _
 ByVal e As Microsoft.Office.Tools.Word.SaveEventArgs)

Public Delegate Sub SelectionEventHandler(ByVal sender _
 As Object, ByVal e As _
 Microsoft.Office.Tools.Word.SelectionEventArgs)

Public Delegate Sub WindowEventHandler(ByVal sender As Object, _
 ByVal e As Microsoft.Office.Tools.Word.WindowEventArgs)

The arguments classes of each are as follows:

The ClickEventArgs class inherits from System.ComponentModel.CancelEventArgs and, therefore, has a Cancel
property. It also exposes the selection that was clicked:

 Public Class ClickEventArgs
 Inherits CancelEventArgs

 Public Sub New(ByVal selection As Selection, _
 ByVal cancel As Boolean)
 Public ReadOnly Property Selection As Selection
 End Class

The MailMergeAfterMergeEventArgs class exposes the new document created:

Public Class MailMergeAfterMergeEventArgs
 Inherits EventArgs

 Public Sub New(ByVal newDocument As Document)
 Public ReadOnly Property NewDocument As Document
End Class

The MailMergeWizardStateChangeEventArgs class exposes the previous, current, and handled states:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Class MailMergeWizardStateChangeEventArgs
 Inherits EventArgs

 Public Sub New(ByVal fromState As Integer, _
 ByVal toState As Integer, ByVal handled As Boolean)

 Public ReadOnly Property FromState As Integer
 Public ReadOnly Property Handled As Boolean
 Public ReadOnly Property ToState As Integer
End Class

The SaveEventArgs class allows the handler to instruct the event source whether the Save As dialog box should
display. This is also a cancelable event:

 Public Class SaveEventArgs
 Inherits CancelEventArgs

 Public Sub New(ByVal showSaveAsUI As Boolean, _
 ByVal cancel As Boolean)
 Public Property ShowSaveAsDialog As Boolean
 End Class

The SelectionEventArgs class provides the selection that was changed:

Public Class SelectionEventArgs
 Inherits EventArgs

 Public Sub New(ByVal selection As Selection)
 Public ReadOnly Property Selection As Selection
End Class

The WindowEventArgs class provides the window that was activated, deactivated, or resized:

Public Class WindowEventArgs
 Inherits EventArgs

 Public Sub New(ByVal window As Window)
 Public ReadOnly Property Window As Window
End Class

In addition to the new events, the Document object contains two new collections. First, as discussed earlier in this
chapter, the Document object aggregate contains a collection of controls. Second, the Document object now contains a
VSTOSmartTags collection (discussed further in Chapter 16, "Working with Smart Tags in VSTO").

The derived class can be customized further to add new events, methods, and properties. As you edit the document in
the Word designer, any bookmarks or other host controls (buttons, check boxes, and so on) that you drop onto the
design surface will be added as members of the document class. Similarly, any XML mapping added to the document
will be added to the document class as either an XMLNode member (if the mapping is to a single node) or an XMLNodes
member (if the mapping is to a repeatable node).

The document class has one additional new method: RemoveCustomization, which takes no arguments and has no
return value. Calling this method on the aggregated document object removes the customization information from the
document, so that after it is saved and reloaded the customization code will no longer run.

The ActiveWritingStyle and Compatibility properties from the Document PIA interface are parameterized properties.
Because C# does not support calling parameterized properties, the document class uses helper classes that enable a
C# developer to use parameterized indexers from C#. The properties ActiveWritingStyle and Compatibility use these
helper classes. The syntax you use when calling these properties changes from the syntax that you would use with the
Document object from the PIA

Me.Compatibility(_
 Word.WdCompatibility.wdAlignTablesRowByRow) = True

to the syntax that you would use with the aggregated Document class:

Me.Compatibility.Item(_
 Word.WdCompatibility.wdAlignTablesRowByRow) = True

Finally, the document class has a new property, ThisApplication, that refers to the Application object. This property
exists to help migrate VSTO 2003 code that referred to a ThisApplication object. The document class also has an
ActionsPane property, which is covered in detail in Chapter 15, "Working with the Actions Pane."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Word Bookmark Host Control

Bookmark objects in the Word object model do not source any events. The aggregated host control Bookmark in VSTO
sources the new events shown in Table 13.2.

Table 13.2. New Events on VSTO's Aggregated Bookmark Object
Event Name Delegate

BeforeDoubleClick ClickEventHandler

BeforeRightClick ClickEventHandler

Deselected SelectionEventHandler

Selected SelectionEventHandler

SelectionChange SelectionEventHandler

The delegate types and their corresponding argument classes are documented in the document class topic earlier in this
chapter.

As a convenience for both view programming and data binding, bookmark host controls also aggregate more than 150
methods and properties of the Range object that they represent. These two lines of code, for example, are functionally
identical:

columns = Me.Bookmark1.Range.Columns
columns = Me.Bookmark1.Columns

The methods and properties of the Range object aggregated onto the Bookmark object are for the most part
straightforward proxies that just call the method or property accessor on the aggregated range, so almost all the
methods will be functionally identical whether you call them from the Range or the Bookmark.

Three exceptions apply. First, setting the Text property on the Range object directly sometimes results in the bookmark
itself being deleted by Word. If you set the Text property by calling the new property added to the Bookmark
aggregate, it ensures that the bookmark is not deleted.

Second and third, the Information and XML properties from the PIA interface are parameterized properties. Because C#
does not support calling parameterized properties, the bookmark host control uses helper classes that enables a C#
developer to use parameterized indexers from C#. The properties InformationType and XMLType use these helper
classes. The syntax you use when calling these properties changes from the syntax that you would use with the Range
object from the PIA

info = Me.myBookmark.Range.Information(WdInformation.wdCapsLock)

to the syntax that you would use with the aggregated Bookmark class:

info = Me.myBookmark.Information.Item(WdInformation.wdCapsLock)

The Word XMLNode and XMLNodes Host Control Classes

When you map a schema into a Word document, element declarations that have a maxOccurs attribute in the schema
equal to 1 are represented in the host item class as XMLNode objects. All others are represented as XMLNodes objects,
because there could be more than one of them.

Table 13.3 shows the new events in VSTO that the XMLNode and XMLNodes objects source.

Table 13.3. New Events on VSTO's Aggregated XMLNode and
XMLNodes Objects

Event Name Delegate

AfterInsert NodeInsertAndDeleteEventHandler

BeforeDelete NodeInsertAndDeleteEventHandler

ContextEnter ContextChangeEventHandler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ContextEnter ContextChangeEventHandler

ContextLeave ContextChangeEventHandler

Deselect ContextChangeEventHandler

Select ContextChangeEventHandler

ValidationError EventHandler

As you can see, we have two new delegate classes and, therefore, two new event argument classes. These events are
normally sourced by the application object.

The delegates and event argument classes are all in the Microsoft .Office.Tools.Word namespace. The delegate classes
are as follows:

 Public Delegate Sub ContextChangeEventHandler(_
 ByVal sender As Object, _
 ByVal e As Microsoft.Office.Tools.Word.ContextChangeEventArgs)

 Public Delegate Sub NodeInsertAndDeleteEventHandler(_
 ByVal sender As Object, ByVal e As _
 Microsoft.Office.Tools.Word.NodeInsertAndDeleteEventArgs)

When a node is inserted or deleted, it is often interesting to know whether the change is a result of the user's
inserting or deleting the element directly, or whether this is part of an undo or redo operation. Therefore, this
flag is exposed on the event arguments class:

Public NotInheritable Class NodeInsertAndDeleteEventArgs
 Inherits EventArgs

 Public Sub New(ByVal inUndoRedo As Boolean)
 Public ReadOnly Property InUndoRedo As Boolean
End Class

When a node is selected or deselected, the appropriate event is raised. A context change is a special kind of
selection change in which the insertion point of the document moves from one XML node to another. Therefore,
the event arguments for the ContextEnter and ContextLeave events specify both the node that was until
recently the home of the insertion point and the new home:

Public Class ContextChangeEventArgs
 Inherits EventArgs

 Public Sub New(ByVal oldXMLNode As XMLNode, _
 ByVal newXMLNode As XMLNode, ByVal selection As Selection, _
 ByVal reason As Integer)

 Public ReadOnly Property NewXMLNode As XMLNode
 Public ReadOnly Property OldXMLNode As XMLNode
 Public ReadOnly Property Reason As Integer
 Public ReadOnly Property Selection As Selection
End Class

The XMLNode interface in the PIA has two parameterized properties, ValidationError and XML, that are not supported in
C#. Therefore, these properties have been redefined to return helper classes that implement parameterized indexers
instead. To specify the parameters for these parameters in Visual Basic, use the Item method as described with other
modified parameterized properties in this chapter.

XMLNode objects also implement several convenient new methods for manipulating the XML bound to the document:

Public Sub Load(ByVal fileName As String)
Public Sub LoadXml(ByVal xml As String)
Public Sub LoadXml(ByVal document As XmlDocument)
Public Sub LoadXml(ByVal xmlElement As XmlElement)

All these methods take the contents of the XML in the argument and insert it into the given node and its children. The
onus is on the caller, however, to ensure both that the XML inserted into the node corresponds to the schematized type
of the node and that any child nodes exist and are mapped into the document appropriately. These methods neither
create nor delete child nodes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

create nor delete child nodes.

As a further convenience for both view and data programming, the XMLNode object provides a property that aggregates
the Text property of the node's range:

Public Property NodeText As String

Chapter 15, "Working with the ActionsPane," Chapter 17, "VSTO Data Programming," and Chapter 22, "Working with
XML in Word," cover data binding scenarios and actions pane scenarios for XMLNode and XMLNodes objects in detail.
That sums up the VSTO extensions to the Word object model. The extensions to the Excel object models are similar but
somewhat more extensive because of the larger number of host controls.

The Excel Workbook Host Item Class

The aggregating workbook class raises the same 29 events as the aggregated workbook class, with the same delegate
types. Aside from renaming the Activate event to ActivateEvent, so as to prevent a collision with the method of the
same name, there are no changes to the events raised by the Workbook object.

The Workbook object does have two new events raised when the customization starts and shuts down:

Public Event Startup As EventHandler
Public Event Shutdown As EventHandler

The aggregated Workbook object also has two new methods, OnStartup and OnShutdown, that cause the workbook to
raise the Startup and Shutdown events.

As with the Word document class, the Excel workbook class gains a ThisApplication property, which refers to the Excel
Application object; an ActionsPane property, covered in Chapter 15, "Working with the Actions Pane"; and a
VstoSmartTags collection, covered in Chapter 16, "Working with Smart Tags in VSTO." The Workbook object also has
one additional new method: RemoveCustomization, which takes no arguments and has no return value. Calling this
method on the aggregated Workbook object removes the customization information from the spreadsheet, so that after
it is saved and reloaded, the customization code will no longer run.

There is only one other minor change to the view programming model of the workbook class. Because C# cannot use
parameterized properties, the Colors property now returns a helper class (scoped to the host item class itself) that
allows you to use a parameterized indexer.

The Excel Worksheet Host Item Class

Much like the workbook, the aggregating worksheet class does not have any major changes to its view programming
model. The aggregating worksheet class raises the same eight events as the aggregated worksheet class, with the
same delegate types. Aside from renaming the Activate event to ActivateEvent, so as to prevent a collision with the
method of the same name, there are no changes to the events raised by the Worksheet object.

The Worksheet object does have two new events raised when the customization starts and shuts down:

Public Event Shutdown As EventHandler
Public Event Startup As EventHandler

The Worksheet object has two new methods, OnStartup and OnShutdown, that cause the worksheet to raise the
Startup and Shutdown events. The worksheet also provides the Controls collection mentioned earlier in this chapter.

Worksheets classes can be customized by subclassing; the derived classes generated by the design have properties
representing charts, named ranges, XML-mapped ranges, list objects, and other controls on each sheet.

There is only one other minor change to the view programming model of the worksheet class. Because C# cannot use
parameterized properties, the Range property now returns a helper class (scoped to the worksheet class itself) that
allows you to use a parameterized indexer.

The Excel Chart Sheet Host Item Class and Chart Host Control

Chart sheet host items and chart host controls are practically identical; the only difference between them as far as
VSTO is concerned is that chart sheets are host items classes with their own designer and code-behind file. Charts, by
contrast, are treated as controls embedded in a worksheet.

Both rename the Activate and Select events (to ActivateEvent and SelectEvent, respectively) to prevent name conflicts
with the methods of the same name. The chart sheet host item class raises Startup and Shutdown events and has
OnStartup and OnShutdown methods, just as the worksheet class does.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OnStartup and OnShutdown methods, just as the worksheet class does.

Both the chart and the chart sheet have a parameterized HasAxis property that cannot be called from C#. The property,
therefore, now returns an instance of a helper class that allows you to use a parameterized indexer instead.

The Excel NamedRange, XmlMappedRange, and ListObject Host Controls

All three of these controls are special kinds of Range objects. They raise the new events shown in Table 13.4.

Table 13.4. New Events on VSTO's Aggregated NamedRange,
XmlMappedRange, and ListObject Objects

Event Name Delegate

BeforeDoubleClick DocEvents_BeforeDoubleClickEventHandler

BeforeRightClick DocEvents_BeforeRightClickEventHandler

Change DocEvents_ChangeEventHandler

Deselected DocEvents_SelectionChangeEventHandler

Selected DocEvents_SelectionChangeEventHandler

SelectionChange DocEvents_SelectionChangeEventHandler

All the event delegates are from the Microsoft.Office.Tools.Interop .Excel namespace in the Excel PIA.

The list object raises several more events in addition to those above, but because they all are primarily used to
implement data binding functionality, Chapter 17, "VSTO Data Programming," covers them.

Many parameterized properties in both the NamedRange and XmlMappedRange interfaces are not supported by C#. To
make this functionality usable more easily from C#, these properties now return helper classes (scoped to the
NamedRange or XmlMappedRange classes themselves) that expose parameterized indexers. The properties that are
changed in this way are End, AddressLocal, Address, Characters, Item, Offset, and Resize.

As a convenience for both view and data programming, NamedRange host controls also expose directly all the methods
of the associated Name object:

Public Property RefersTo As String

Public Property RefersToLocal As String

Public Property RefersToR1C1 As String

Public Property RefersToR1C1Local As String

Public ReadOnly Property RefersToRange As Range

If somehow, the NamedRange object has been bound to a non-named range, these will throw a
NotSupportedException.

The NamedRange object also has a Name property that is somewhat confusing. The property-getter returns the Name
object associated with this named range. If you pass a Name object to the setter, it will set the Name property, just as
you would expect. If you pass a String, however, it will attempt to set the Name property of the underlying Name object.

The NamedRange host control also slightly changes the exception semantics of the Name property in two ways. First, in
the standard Excel object model, setting the Name property of the name object of a named range to the name of
another named range deletes the range, oddly enough; doing the same to a VSTO NamedRange host control raises an
ArgumentException and does not delete the offending range.

Second, in the standard Excel object model, setting the Name property to an invalid string fails silently. The VSTO
NamedRange object throws an ArgumentException if the supplied name is invalid.

Note

The XMLMappedRange and ListObject host controls do not aggregate the methods of the Name object or
change the error-handling semantics of the name setter. The changes to the Name property semantics
apply only to the NamedRange object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XML mapped ranges and list objects are the Excel equivalents of the XMLNode and XMLNodes controls in Word. The
XML mapped range represents a mapped singleton element, and the list object represents a set of rows. We cover data
binding scenarios in Chapter 17, "VSTO Data Programming," and other XML scenarios in Excel in Chapter 21, "Working
with XML in Excel." In this chapter, we just discuss their use as host controls.

The list object host control has one new property:

Public ReadOnly Property IsSelected As Boolean

This property is most useful for determining whether there is an insert row. Excel does not display an insert row if the
list object's range is not selected.

The list object host control also slightly changes the error-handling semantics of the DataBodyRange, HeaderRowRange,
InsertRowRange, and TotalsRowRange. All these properties now return Nothing rather than throw an exception if you
attempt to access the property on a list object that lacks a body, header, insert row, or totals row, respectively.

Chapter 17, "VSTO Data Programming," discusses other new properties and methods added to the list object used for
data binding.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
VSTO brings the Word and Excel object models into the managed-code world by aggregating key unmanaged objects
onto managed base classes. Developers can then extend these base classes by using Word and Excel as designers in
Visual Studio.

The next chapter takes a more detailed look at how to use Windows Forms controls in VSTO.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 14. Using Windows Forms in VSTO

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
Office has a user interface that has been designed to make it as easy as possible for an end user to access the
functionality provided by each Office application. But the application you are writing that is integrated with Office will
have its own very specific user-interface requirements. The application you write will have user-interface needs that are
not met by the default Office user interface.

In previous versions of Office, Visual Basic for Applications (VBA) provided the ability to show User Forms to meet your
application user-interface requirements. You could also use custom ActiveX controls on the document surface. VSTO
adds Windows Forms control support to Office to meet your user-interface needs.

Moving from ActiveX to Windows Forms

When we started designing VSTO, being able to build applications that extended the default Office user interface was
one of our primary goals. We also wanted to ensure that developers writing managed code would not have to rely on
ActiveX controls to do so; .NET developers want to use Windows Forms controls. To address these requirements, the
team came up with a design to integrate Windows Forms deeply into Office. The vision was to allow you to use Windows
Forms controls and forms in all the places you could use ActiveX controls and User Forms in previous versions of Office.
We also wanted to make the design and coding experience similar to that of a traditional Windows Forms application.

This chapter covers how to use Windows Forms controls in your VSTO applications. You can use Windows Forms in
VSTO in three basic ways:

1. You can put a Windows Forms control on the document or spreadsheet surface.

2. You can display a custom Windows Forms form as a modal or modeless dialog box.

3. You can put Windows Forms controls in the Document Actions task pane using the ActionsPane feature of VSTO.

We cover the first two ways in this chapter. This chapter also covers how to create custom user controls that can be
used to provide solutions to some of the shortcomings of the Windows Forms support in VSTO. The third way to use
Windows Forms in VSTOusing controls in the Document Actions task paneis covered in Chapter 15, "Working with the
Actions Pane."

When to Use Windows Forms Controls on the Document Surface

VSTO enables developers to put Windows Forms controls on the document surface. Just because you can put a control
onto the document surface does not necessarily mean that it is a good idea for your particular application. When should
you use a control on a document as opposed to using a form, an intrinsic Office user-interface element such as a cell or
a hyperlink, a custom menu command or toolbar button, a Smart Tag, or the actions pane?

Think about how you expect the document or spreadsheet to be used and how you want to extend the interface. Maybe
you are going to use an Excel spreadsheet as a front end to corporate data. Many stockbrokers use Excel as their
primary input and display mechanism when trading, for example. In this scenario, the spreadsheet is very rarely e-
mailed or printed, so changing the spreadsheet interface to meet the application requirements makes a lot of sense.
Putting a Windows Forms button control on the surface of the document meets the requirement of making the
spreadsheet more interactive and provides obvious actions that are available to the user of the spreadsheet. Figure
14.1 shows two Windows Forms buttons that have been placed on a spreadsheetone that refreshes the stock quotes
and the other that trades a particular stock.

Figure 14.1. Two Windows Forms controls on a spreadsheet.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sometimes you will have data that needs to be edited with a more effective user interface than Office provides. A good
example of this is date input. Excel and Word provide a rich mechanism to display dates but do not provide an easy-to-
use mechanism for entering dates other than basic text input. Windows Forms provides a DateTimePicker control that
makes it easy for a user to enter a date. Combining the date entry interface provided by the DateTimePicker and the
display capabilities of Excel or Word results in a more effective user interface.

You could integrate the DateTimePicker into your workbook, as shown in Figure 14.2. Here, we have added a
DateTimePicker control for each cell containing a date. The DateTimePicker provides a combo-box drop-down list with a
calendar that the user can use to pick a different date.

Figure 14.2. DateTimePicker controls on a spreadsheet.

[View full size image]

The DateTimePicker may be better used in the Document Actions task pane than on the document surface, however.
The first problem you will encounter with a solution such as the one shown in Figure 14.2 is what you will put in the
spreadsheet for the values of the cells covered by the DateTimePicker controls. It would seem reasonable that the cell
covered by a particular DateTimePicker control should contain the date value being represented by the control. This
way, the date value for that cell can be used in formulas and can be found when the user searches the spreadsheet with
Excel's Find command.

The second problem is that if you put the DateTimePicker on the document surface, the control does not automatically
save its state into the Excel workbook when the document is saved. So, if in a particular session the user selects
several dates and then saves the document, the next time the user opens the workbook, all the DateTimePickers will
reset to today's date. You will lose the date the user picked in the last session unless you write code to synchronize the
DateTimePicker with the cell value covered by it on startup of the Excel workbook and whenever the DateTimePicker or
underlying cell value changes.

A third problem is keeping the DateTimePicker controls looking like the rest of the workbook formatting. If the user
changes the font of the workbook, the controls embedded in the document will not change his font. Printing is also an
issue because the control, replete with its drop-down combo widget, will be printed. In addition, the user will likely want
to add and remove rows in the list of stocks, which means that you will have to add and remove DateTimePicker
controls dynamically at runtime.

Although it is possible to work through these issues and achieve a reasonable solution, the actions pane may be an
easier mechanism to use. The actions pane can show Windows Forms controls alongside the document in the Document
Actions task pane rather than in the document. Whenever the user of your workbook has a date cell selected, for
example, the Document Actions task pane can be displayed with the DateTimePicker in it to allow the user to pick a
date, as shown in Figure 14.3. Chapter 15, "Working with the Actions Pane," discusses the actions pane.

Figure 14.3. Using the DateTimePicker control in the Document Actions task pane.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When to Use a Modal or Modeless Windows Forms Form

Another way to use Windows Forms in an Office application is to use a standard Windows Forms form shown as a dialog
box. You could handle the BeforeDoubleClick event for the worksheet, for example, and if a cell containing a date is
double-clicked, you could display a custom Windows Forms form, as shown in Figure 14.4.

Figure 14.4. Displaying a Windows Forms dialog box when the user double-clicks a
cell.

[View full size image]

This approach is also quite useful if you want to ensure that certain information is filled in before the user starts
working with a document. You might want to display a wizard during the creation of a document that fills in certain
portions of the document, for example.

A choice you must make when using Windows Forms as shown in Figure 14.4 is the modality of the form. A modal form
must be interacted with and dismissed by clicking the OK, Cancel, or Close button before the user can get back to
editing the document. A modeless Windows Forms can float above the document and still allow the user to interact with
the document even though the form has not yet been closed. When using a modeless Windows Forms dialog box, note
that an Office application can enter certain states where your modeless dialog box cannot be activated. If another
modal dialog box is displayed, for example, users must dismiss the modal dialog box before they can interact with the
modeless dialog box again. Cell-editing mode in Excel also affects modeless dialog boxes. If the user is editing a cell
value in Excel, she cannot activate the modeless form until she leaves cell-editing mode.

Listing 14.1 shows a VSTO Excel customization that displays a simple modeless form. The modeless form has a button
that, when clicked, shows a message box.

Listing 14.1. A VSTO Excel Customization That Displays a Modeless Form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 14.1. A VSTO Excel Customization That Displays a Modeless Form

Public Class Sheet1

 Public WithEvents btn1 As Button
 Public form1 As Form

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 btn1 = New Button()

 form1 = New Form()
 form1.Controls.Add(btn1)
 form1.Show()

 AddHandler Globals.ThisWorkbook.BeforeClose, _
 AddressOf ThisWorkbook_BeforeClose

 End Sub

 Private Sub btn1_Click(ByVal sender As Object, _
 ByVal e As EventArgs) _
 Handles btn1.Click

 MsgBox("You clicked me.")

 End Sub

 Private Sub ThisWorkbook_BeforeClose(ByRef Cancel As Boolean)
 form1.Close()
 End Sub

End Class

Note that using the ActionsPane feature of VSTO is often an easier way to achieve a modeless result, because it
provides all the benefits of a modeless form, with the addition of the ability to dock within the Office window space.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Adding Windows Forms Controls to Your Document
One of the key design goals for VSTO was to keep the design experience as close to existing Windows Forms
development as possible, and adding Windows Forms controls to the document is a key tenet of this goal. The great
thing about adding controls to the document or spreadsheet is that you really do not have to think about it, because
most of the design experience is almost identical to that of creating a Windows Forms form. There are some differences
in the experience, however, and we examine them in this section.

When you create a new project based on an Excel workbook or Word document, VSTO creates a project and
automatically loads the Excel or Word document surface into Visual Studio to provide a design surface for you to drag
and drop controls onto. It is easier to pin the toolbox to make it dock to the side of Visual Studio window, because it is
difficult to drag and drop from the toolbox onto Word or Excel when it is in its default auto hide mode. Why? When the
toolbox shows itself, it obscures quite a bit of the left side of the document or spreadsheet. When you drag and drop a
control onto the document surface, the toolbox does not autohide and get out of the way until the drag and drop is
over.

Modes for Adding Controls

VSTO provides three modes for adding controls to the document surface:

Dragging and dropping This involves selecting the control from the toolbox and dragging it onto the
document or worksheet. This method creates a default-size control on the document and proves particularly
useful for adding controls that tend to be a set size, such as buttons. Figure 14.5 shows this mode.

Figure 14.5. Drag and drop of a Button control from the toolbox to an Excel
worksheet.

Drawing Clicking a control in the toolbox to select it and then moving your mouse pointer over the document
or spreadsheet changes the cursor to the standard draw cursor. In this mode, you can click and drag a
rectangle, thereby drawing the control onto the document or spreadsheet. Figure 14.6 shows this mode.

Figure 14.6. Drawing a PictureBox control on a Word document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.6. Drawing a PictureBox control on a Word document.

Double-clicking Double-clicking a control in the toolbox causes a control to be added at the current insertion
point in the document or spreadsheet. The insertion point in Word behaves quite differently from the way it
behaves Excelnot surprising, given the flow-based nature of a document compared with the grid of a
spreadsheet. Double-clicking a control in the toolbox in a Word VSTO project inserts the control at the cursor in
the document. Double-clicking a control in the toolbox in an Excel VSTO project, however, inserts the control at
the center of the spreadsheet.

Controls That Are Not in the Control Toolbox

A number of Windows Forms controls do not show up in the controls toolbox for Excel and Word projects. These
controls were purposely excluded because of known issues in using them on the document surface. Some of these
issues are purely design-time-related, in that the design-time representation of the control does not work well. This
does not mean that the control cannot be used, but it might mean that the only way that you can use it on a document
is to add it programmatically at runtime or to use the control in a user control that you then add to the document.

A good example of such a control is the group box. The design-time experience of the group box does not work well in
Excel or Word, because the group-box designer requires the container to support container drag and drop, which the
Excel and Word designer does not support. You have two options to work around this limitation:

Create the group box programmatically at runtime. This approach uses VSTO's support for adding controls at
runtime, which is described later in this chapter.

Create a custom user control that contains the group box and the contained controls within the group box. After
this is built, drag the user control onto the document or spreadsheet as you would any control. The advantage
to this approach is that you get full-fidelity designer support in the user-control designer, making it easy to lay
out the controls.

Some other controls are excluded from the toolbox for the following reasons:

The control does not work with the VSTO control hosting architecture. The BindingNavigator control, for
example, relies on a container model that is not supported in the VSTO control hosting architecture to
communicate with other data components.

The control relies heavily on being hosted in a Windows Forms form. The MenuStrip control, for example,
cannot be added to a document or spreadsheetonly to a form.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cannot be added to a document or spreadsheetonly to a form.

The control has problems at design time. Because many controls were designed before the release of VSTO,
some have bugs when hosted on a document or spreadsheet surface in the designer. The RichTextBox control,
for example, has considerable issues when running inside Excel and Word at design time. In the interest of
stability, it was removed from the controls toolbox, but you can add it to a document or spreadsheet
programmatically at runtime.

Control Insertion Behavior in Word

A control added to Word is affected by the insertion settings set in Word's Options dialog box. A control can be inserted
"in line with text," which means the control is inserted into the text flow of the document and moves as the text flow
changes. It also can be inserted "in front of text," which means that the control is positioned at an absolute position in
the document that does not change when the text flow changes.

You can change the default insertion behavior in Word to be exact-position-based rather than flow-based by changing
the insert/paste pictures setting in Word's Option dialog box from the default In Line with Text to In Front of Text. After
you change this setting, all controls will be positioned where you want them instead of having to be in line with the text.
To change this setting, choose Options from the Tools menu, and click the Edit tab of the Options dialog box. Figure
14.7 shows the Insert/Paste Pictures As setting.

Figure 14.7. Changing the default insertion behavior in Word's Options dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can also change the way a control in Word is wrapped with the text by right-clicking the control in the designer and
selecting the Format Control menu option. Doing so brings up Word's Format Object dialog box, shown in Figure 14.8.
Changing the wrapping style from in line with text to in front of text provides exact positioning.

Figure 14.8. Changing the wrapping style for a control with Word's Format Object
dialog box.

From the standpoint of the Word object model, a control whose wrapping style is set to In Line with Text, Square, or
Tight is represented by the InlineShape object in Word's object model and located in the Document object's
InlineShapes collection. A control whose wrapping style is set to Behind Text or In Front of Text is represented by the
Shape object in Word's object model and located in the Document object's Shapes collection.

Control Insertion Behavior in Excel

Excel also provides options for positioning a control on the worksheet surface, with the default being to move the
control relative to the cell but not to size with the cell. This setting means that when you put a control onto the
worksheet surface, it is linked to the cell that you dropped it on; so if you insert or delete cells around that cell, the
control will stay positioned relative to the cell it was dropped on. If you resize the cell you dropped, however, the size of
the control stays the same. This is usually the behavior that you would expect when adding a control. If you want your
control to resize with the cell, you can either draw the control over the cell so that it matches the size of the cell (not
for the faint of heart) or right-click the control inside Visual Studio and select Format Control, which brings up the
Format Control dialog box, shown in Figure 14.9. Click the Properties tab, and select one of three options:

Figure 14.9. Setting object-positioning options for a control in Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.9. Setting object-positioning options for a control in Excel.

Move and Size with Cells This option ensures that the control resizes and repositions relative to the cell
resize. If your control takes up half the cell, for example, it will continue to take up half the cell when the cell is
resized.

Move but Do Not Size with Cells This is the default setting, which ensures that the control remains with the
cell it was dropped on but does not resize.

Do Not Move or Size with Cells This setting provides you exact positioning that does not change when the
cell the control that was dropped on is moved or resized.

Layout of Controls on the Document or Worksheet Surface

The Windows Forms editor in Visual Studio has some great alignment tools that make it much simpler to design
professional-looking forms without having to resort to per-pixel tweaks on each control. Unfortunately, the alignment
tools do not work on documents because the display surface is very different from that of a form. In the place of these
tools, a new toolbar provides easy access to the alignment functionality in Word and Excel. Figure 14.10 shows the
toolbar. To align controls, just select the controls you want to align and then click the button that represents the
alignment option you want.

Figure 14.10. The control-positioning toolbar in VSTO.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Writing Code Behind a Control
Writing code behind a control on a document or spreadsheet is not much different from writing code behind a normal
Windows Forms control. You can double-click a control, and the designer will add a new event handler for the default
event on the control in the partial class for the sheet or document you are working on.

Event handlers can also be generated by using the Events view in the Properties window. In this view, you can double-
click an event-handler cell to add a default named event handler for an event. Alternatively, you can enter the name of
the event-handler function you want to use. Listing 14.2 shows the code generated when you drop a button on a
spreadsheet and then double-click the event-handler cell for Click and SystemColorsChanged to generate default event
handlers for these events.

Listing 14.2. Default Event Connection and Handlers Generated by VSTO for a
Button's Click and SystemColorsChanged Events

Public Class Sheet1

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 End Sub

 Private Sub Button1_SystemColorsChanged(_
 ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles Button1.SystemColorsChanged

 End Sub

End Class

Not all the events on a Windows Forms control are raised in an Office document. The ResizeBegin and ResizeEnd
events, for example, are common across all Windows Forms controls (these events are defined on the Control base
class) but are never raised on controls on a document or worksheet because of the way that Windows Forms support in
VSTO was designed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Windows Forms Control Hosting Architecture
Typically, the implementation details of a particular technology are interesting to know but not a prerequisite for using a
feature. In the case of Windows Forms control hosting on an Office document, it is important to understand how the
feature is implemented, because you will be exposed to some implementation details as you create solutions using
controls.

The Windows Forms Control Host ActiveX Control

Windows Forms control support in Office 2003 and VSTO is based on the capability of Word and Excel to host ActiveX
controls on the document surface. When you add a Windows Forms control to a document, what actually is added is an
ActiveX control called the Windows Forms control host. The Windows Forms control host acts as a host for each
Windows Forms control added to the document. The Office application thinks that it is just hosting a basic ActiveX
control because the Windows Forms control host implements all the necessary ActiveX control interfaces.

When the customization assembly is loaded for the document or spreadsheet, the actual Windows Forms control
instance is created in the same application domain and security context as the rest of the customization code. Then
these Windows Forms control instances are parented by a special parent Windows Forms control, called the
VSTOContainerControl, that derives from UserControl. Then the VSTOContainerControl is sited to the Windows Forms
control host ActiveX control. Your controlfor example, a Trade Stock button in a spreadsheetis added as a child of the
VSTOContainerControl. Figure 14.11 shows this "sandwich" architecture.

Figure 14.11. The basic hosting architecture for Windows Forms controls on the
document.

[View full size image]

The fact that an ActiveX control is hosting the Windows Forms control on the document surface does peek through at
times. One example is in the Excel design view. When you click a managed control that you have added to the Excel
workbook surface, the formula bar shows that it is hosted by an embedded ActiveX control with ProgID
"WinForms.Control.Host," as shown in Figure 14.12.

Figure 14.12. Excel shows the ProgID of the underlying ActiveX hosting control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSTO Controls Derived from Windows Forms Controls

The fact that an ActiveX control is hosting the Windows Forms control dragged onto the document surface does not
show up immediately in your code. VSTO adds a member variable to the ThisDocument or Sheet1 class, named
something like Button1, that you can code against just as you would if you were working with a traditional Windows
Forms form. At first glance, the experience appears to be identical to working with a Windows Forms form, but the type
of the control that you added to the document is not quite what you would expect. If you drag a button from the
Windows Forms toolbox, it would be natural to expect the type of the button created on the document to be
System.Windows.Forms.Button. When you add a button to a spreadsheet, however, VSTO creates a button with type
Microsoft.Office.Tools.Excel.Controls.Button that derives from System .Windows.Forms.Button. When you add a button
to a Word document, VSTO creates a button with type Microsoft.Office.Tools.Word.Controls .Button that derives from
System.Windows.Forms.Button. Understanding why a button in VSTO derives from the standard Windows Forms button
requires some further digging into the details of how Windows Forms controls are hosted in a Word or Excel document.

Windows Forms controls, be they controls in the System.Windows.Forms namespace or custom controls written by a
third party or you, were originally designed to be added to a Windows Forms form and not an Office document. Luckily,
much of the Windows Forms control works just fine when used in an Office document. The main special case is around
the positioning of the control. If you set the Left property of a Windows Forms control hosted in a form, it sets the
distance in pixels between the left edge of the control and the left edge of its container's client area. This works fine in a
form or a container control but does not work well when the control is placed in a document or spreadsheet.

The reason why it does not work well is directly related to the hosting architecture of controls in the document, because
the control is actually hosted by the VSTOContainerControl, which is hosted by the ActiveX control. As a result, if VSTO
were to expose the raw positioning properties of the control, they would be relative to the area of the
VSTOContainerControl container, not the document. Setting the Left property of a control should actually move the
ActiveX control within the document, rather than the hosted Windows Forms control within the VSTOContainerControl.

Listing 14.3 illustrates this point. In Listing 14.3, we have a spreadsheet to which we have added some Windows Forms
buttons, as shown in Figure 14.1. The Refresh button shown in Figure 14.1 is added to Sheet1 as a member variable
called refreshButton of type Microsoft.Office.Tools.Excel.Controls.Button. We display that type in the Startup event. As
mentioned earlier, Microsoft.Office.Tools.Excel.Controls .Button derives from System.Windows.Forms.Button. The
Microsoft .Office.Tools.Excel.Controls.Button's override of Left sets the position of the ActiveX control hosting the
Windows Forms control. The code in Listing 14.3 sets this Left to 0, which causes the control to move to the left edge of
the worksheet. Casting refreshButton to a System.Windows.Forms.Button strips the override that VSTO adds for the Left
property. Setting the Left property on refreshButton when cast to a System.Windows.Forms.Button sets the Left property
of the control relative to the parent VSTOContainerControl. This listing, when run, gives the strange result shown in
Figure 14.13, where the first call to Left moved the ActiveX control to the far-left edge of the worksheet, but the
subsequent calls to Left and Top on the base class System.Windows.Forms.Button moved the managed control relative
to the VSTOContainerControl.

Listing 14.3. A VSTO Excel Customization That Exposes the Windows Forms
Control Hosting Architecture

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 MsgBox(refreshButton.GetType().ToString())

 ' Cast to a System.Windows.Forms.Button
 ' to set position on underived control
 Dim refreshButtonBase As Button = refreshButton

 MsgBox(refreshButtonBase.Parent.GetType().ToString())
 MsgBox(_
 refreshButtonBase.Parent.GetType().BaseType.ToString())

 ' Moving the control on Microsoft.Office.Tools.Button
 refreshButton.Left = 0

 ' Moving the control again on the base
 ' System.Windows.Forms.Button
 refreshButtonBase.Left = 10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 refreshButtonBase.Left = 10
 refreshButtonBase.Top = 10

 End Sub

End Class

Figure 14.13. The result of running Listing 14.3. The Refresh button has been
offset relative to the VSTOContainerControl in the VSTO hosting architecture.

To enable your code to set the position of the control relative to the document, VSTO creates a derived class for each
control that extends the class of the original Windows Forms control and overrides the positional information with the
positional information from the ActiveX control in the Office document. The object model object for Excel that provides
the properties and methods to position the ActiveX control is called OLEObject, and for Word, it is called OLEControl.
The derived classes created for each VSTO Windows Forms control effectively merges the original Windows Forms
control class and the OLEObject object for Excel or the OLEControl object for Word.

If you create a Windows Forms control of your own or use a third-party control, when you drag and drop the control to
a document or spreadsheet, VSTO automatically generates an extended class for you that merges your control with
OLEObject or OLEControl. Because the ability to add custom Windows Forms controls to a document requires the
control to be extended, you can use only controls that are not sealed. The good news is that the vast majority of third-
party controls are unsealed.

Security Implications of the VSTO Control Hosting Model

The security-minded might be wondering about the implications of having to use an ActiveX control to host managed
controls added to a document. This is something that we spent considerable time on to ensure that the ActiveX control
did not provide a vulnerability to Office. The Windows Forms control host ActiveX control, when initialized, does not
actually do anything and will not run any code until it is accessed by the customization assembly. This means that the
control is safe for initialization, and the only way for it to do anything is for code with full trust (the customization) to
call it. The control is marked safe for initialization to ensure that it will load in Office with the default security settings.

One strange side effect of the control hosting architecture is that Office requires VBA to be installed to add ActiveX
controls to a document. Adding ActiveX controls to a document does not add VBA code to that document, but it does
require the use of parts of the VBA engine. Therefore, you need to ensure that your Office installation has VBA installed
to use managed controls in the document. VBA is installed by default in all versions of Office, so it is unusual for it not
to be installed. VSTO also requires that the Trust Access to Visual Basic Project check box be checked in the Macro
Security dialog box of Office on a development machine. This check box does not have to be checked on end-user
machines unless you are adding dynamic worksheets at runtime, as described in Chapter 13, "The VSTO Programming
Model."

The macro security level in VBA can affect the loading of ActiveX controls and, hence, managed controls. If your user
sets the VBA macro security settings to Very High (it is set to High by default), any ActiveX controls in the document
will be allowed to load only in their inactive design mode state. In this state, Windows Forms controls in the document
will not function properly. Luckily, the default macro security setting of High allows controls to be loaded, assuming that
they are safe for initialization. Because all Windows Forms controls in the document are loaded by the Windows Forms
control host ActiveX control, which is marked as safe for initialization, all managed controls can load in the High setting.

Limitations of the Control Hosting Model

Each Windows Forms control on the document is contained by an instance of the Windows Forms control host ActiveX
control, which leads to some limitations. The most noticeable limitation that affects all controls is the lack of support for
a control's TabIndex property. Tab order in a Windows Forms is determined by the containing form or control. This is
not a problem with a traditional Windows Forms form because all controls on the form are contained by one container.
In VSTO, each control placed onto a document or spreadsheet is contained by it is own containerby its own unique
instance of the Windows Forms control host. The net result is that the tab index of the control is scoped to its container,
and because there is a one-to-one relationship between control and container, the TabIndex property is of little use.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and because there is a one-to-one relationship between control and container, the TabIndex property is of little use.
This can have an impact on the accessibility of your application, because users would expect to be able to tab between
fields, but nothing happens when they press the Tab key.

Another limitation is that controls such as radio buttons really require the control be contained within a container to
make the controls mutually exclusive so that only one radio button within the container can be selected at a time.
Without a common container, the radio button is not particularly useful. Adding each radio button directly onto a
document or spreadsheet causes each radio button to be hosted in its own container. There is a simple way to work
around this problem, however; you just create a user control that has a container (a group box, for example) and then
add the radio buttons to the group box within the user control. Then you can add the user control to the document as a
single control.

Control State Not Saved

We considered this limitation briefly in the introduction of this chapterthe limitation that the state of a Windows Forms
control is not saved in the document. To illustrate, imagine a solution that generates customer-service letters in Word.
One of the key pieces of information in the document is the date the customer first called customer service. To aid with
entering this date, the Word document contains a DateTimePicker, as shown in Figure 14.14.

Figure 14.14. A DateTimePicker control in a Word document.

This is great functionality for your users, but where will the date that the user picks with the DateTimePicker be stored
in the document? Consider the scenario where the user opens the document for the first time. The DateTimePicker
defaults to show today's date. Then the user picks a different date, using the DateTimePicker, and saves the document.
Now we have a problem: Windows Forms controls placed in a document do not save their state into the document when
the document is saved. The next time the document is opened, the DateTimePicker will show today's date again, rather
than the date picked by the user the last time the document was saved.

To get the DateTimePicker to remember the date picked by the user the last time the document was saved, you have to
write code to detect when the user picks a new date by handling the DateTimePicker control's ValueChanged event. You
need to store the date in the document somehow so that it will be saved when the document is saved. Some options
you have for storing the date that was picked include inserting some hidden text into the document, adding a custom
property to the document, or using the cached-data feature of VSTO to cache the date in the data island of the
document. Then you have to write some code in the Startup event handler to set DateTimePicker.Value to the saved
date.

Listing 14.4 shows some VSTO code associated with the Word document shown in Figure 14.14. The code uses the
cached-data feature of VSTO, described in Chapter 18, "Server Data Scenarios," to save the date that was picked in the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cached-data feature of VSTO, described in Chapter 18, "Server Data Scenarios," to save the date that was picked in the
DateTimePicker in a public field called lastPickedDate that has been marked with the Cached attribute. The Cached attribute
causes the value of lastPickedDate to be saved automatically in a data island in the document from session to session. The
Startup handler puts the stored value of lastPickedDate back in the DateTimePicker each time the document is reopened.

Listing 14.4. A VSTO Word Customization That Saves the Date That Was Picked
Using the Cached-Data Feature of VSTO

Public Class Sheet1

 <Cached()> _
 Public lastPickedDate As DateTime = DateTime.MinValue

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 If lastPickedDate <> DateTime.MinValue Then
 Me.DateTimePicker1.Value = lastPickedDate
 End If

 End Sub

 Private Sub DateTimePicker1_ValueChanged(_
 ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles DateTimePicker1.ValueChanged

 lastPickedDate = DateTimePicker1.Value

 End Sub
End Class

Controls Sometimes Blurry

Have you noticed that sometimes a control in Word or Excel looks a little blurred when you are in the designer, but it
snaps back into focus when you run the project? This is because the Windows Forms control host ActiveX control stores
a bitmap of the hosted Windows Forms control so that when Excel or Word first opens the document, it can display the
bitmap until the actual control is loaded. This was done because the actual control is not loaded until the customization
assembly is fully loaded. If we had not done this, the control would have an attractive red x through it until the
customization assembly loaded.

The reason it looks a bit out of focus is that Office antialiases the image when it stores it, so it is not an exact copy of
the original bitmap. So if you see a slightly out-of-focus control on your document, you know that your customization
assembly has not loaded yet, that it did not load properly, or that you have been up too late writing a book about
Windows Forms controls on Office documents!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Properties Merged from OLEObject or OLEControl
After the control has been added to the document or spreadsheet, the experience of using the control on the design
surface should be very close to that of working with a standard Windows Form. There are some differences, however.
The biggest difference appears when you click a Windows Forms control in the document and use the categorized view
in the Properties window. If you compare a Windows.Forms.Controls.Button with a
Microsoft.Office.Tools.Excel.Controls.Button, you will see the extra properties merged in from the OLEObject. These
properties are listed in the Misc category to denote that these properties are coming from OLEObject.

Excel Control Properties That Are Added from OLEObject

The OLEObject merge done for controls in the Microsoft.Office.Tools .Excel.Controls namespace adds several properties
to VSTO extended controls that are not in the base Windows.Forms controls. Table 14.1 shows the most important
properties that are added for controls in Excel.

Table 14.1. Additional Excel Control Properties
Name Type Access Description

BottomRightCell Excel.Range Read-only The Range object that
represents the cell that lies
under the bottom-right
corner of the control.

Enabled Boolean Read-write Determines whether the
control is enabled. If you
set this to False, the control
will appear grayed-out in
Excel. This enables you to
control whether the control
will accept input at
runtime.

Height Double Read-write The height, in points, of
the control.

Left Double Read-write The distance, in points,
from the left edge of the
control to the left edge of
column A.

Placement Object Read-write Determines how the
control will be placed. This
can be one of three values:
xlFreeFloating (equivalent to
the Do Not Move or Size
with Cell setting in the
Format Control dialog box),
xlMove (equivalent to the
Move but Do Not Size with
Cell setting in the Format
Control dialog box), or
xlMoveAndSize (equivalent to
the Move and Size with Cell
setting in the Format
Control dialog box).

PrintObject Boolean Read-write Determines whether the
control will print when the
worksheet is printed. This
can prove very useful if the
control you are using is
something like a button
that should not be part of
the final printed document.

Shadow Boolean Read-write Determines whether Excel
should provide a drop
shadow for the control.
When set to true, Excel will

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When set to true, Excel will
provide a simple black drop
shadow around the control.

TopLeftCell Excel.Range Read-only The Range object that
represents the cell that lies
under the top-left corner of
the control.

Top Double Read-write The distance in points from
the top edge of the control
to the top edge of row 1.

Visible Boolean Read-write Determines whether to
hide the control at runtime.

Width Double Read-write The width in points of the
control.

Word Control Properties Added from OLEControl

The OLEControl merge done for controls in the Microsoft.Office.Tools .Word.Controls namespace adds several properties
to VSTO extended controls that are not in the base Windows.Forms controls. Table 14.2 shows the most important
properties that are added for controls in Word.

Table 14.2. Additional Word Control Properties
Name Type Access Description

Bottom Single Read-only The distance in points from
the top edge of the first
paragraph on the page to
the bottom of the control

Height Single Read-write The height in points of the
control

InlineShape InlineShape Read Returns the InlineShape
object in the Word object
model corresponding to the
control; returns Nothing if
the control is not inline

Shape Shape Read Returns the Shape object
in the Word object model
corresponding to the
control; returns Nothing if
the control is inline

Left Single Read-write The distance in points from
the left edge of the control
to the left edge of the first
paragraph on the page

Name String Read-write The name of the control

Right Single Read-only The distance in points from
the right edge of the
control to the left edge of
the first paragraph on the
page

Top Single Read-write The distance in points from
the top edge of the control
to the top edge of the first
paragraph on the page

Width Single Read-write The width in points of the
control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Many of the properties for controls running in Word are dependent on the wrapping style of the control. If the control is
inline with text, the Left, Bottom, Right, Top, and Width properties will throw an exception. Why? Word represents
ActiveX controls as either Shapes or InlineShapes, depending on how the control is positioned on the document, and
the positioning properties are available only on Shapes that are controls whose wrapping style is Behind Text or In
Front of Text.

Word controls also have an InlineShape and Shape property that provide you access to the InlineShape or Shape object
in the Word object model corresponding to the control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Adding Controls at Runtime
So far, this chapter has described how to add controls to the document or worksheet at design time with the Visual
Studio control toolbox. Often, the controls needed for your application need to be added (and deleted) at runtime.
Consider again the worksheet shown in Figure 14.1 earlier in this chapter. Suppose that you want to provide a Trade
button at the end of every row that shows a stock. This would be impossible to achieve by adding buttons at design
time, because the number of stock rows will vary at runtime as the workbook is edited. You would need to add a button
to the end of the row dynamically as stock is added at runtime.

VSTO provides a mechanism to add controls at runtime via the Controls collection, present on Word's Document class
and Excel's Worksheet classes. This Controls collection works a bit differently from the Controls collection in Windows
Forms. In the Controls collection associated with a Windows Forms form class, you can add controls at runtime by
creating an instance of the control and adding it to the form's collection of controls. Then you can set positioning on the
control you created:

Dim btn As New System.Windows.Forms.Button

form1.Controls.Add(btn)

btn.Left = 100

The VSTO Controls collection cannot take this approach, because although the instance of the button could be added to
the collection, there would be no way for the developer to change any positional properties on it; the positional
properties are not available until the ActiveX control is created and connected to the Windows Forms control. There
needs to be a way to return to the developer a wrapped control that has both the original control and the OLEObject or
OLEControl. The VSTO Controls collection provides two mechanisms for adding controls:

VSTO provides a generic AddControl method that can be used with any Windows Forms control. This method
takes an instance of the Windows Forms control you want to add and returns to you the
Microsoft.Office.Tools.Excel.OLEObject or Microsoft.Office.Tools.Word.OLEControl that contains the control you
passed in. So the equivalent of the Windows Forms code above in VSTO is shown here. The main difference is
that now you have to track two objects, the Button object and the OLEObject object, and remember to set
positioning only on the OLEObject:

Dim btn As New System.Windows.Forms.Button()

Dim oleObject as Microsoft.Office.Tools.Excel.OLEObject
oleObject = Me.Controls.Add(btn, 100, 100, 150, 100, "button1")

oleObject.Left = 100

For common Windows Forms controls, a set of helper methods on the Controls collection will return the VSTO
extended control with positioning information merged in. A method called AddButton is provided on Excel's
Controls collection, for example. This method returns a Microsoft.Office.Tools.Excel.Controls.Button. The code
below does the same thing as the code shown earlier, except that it frees you from having to track two objects:

Dim btn As Microsoft.Office.Tools.Excel.Controls.Button

btn = Me.Controls.AddButton(100, 100, 150, 100, "button1")

btn.Left = 100

Listing 14.5 shows code that dynamically adds a group box to an Excel worksheet using the AddControl mechanism. It
doesn't even use the returned OLEObject, because it sets the position as part of the initial call to AddControl. Then it
goes further and adds more RadioButton controls to that group box.

Listing 14.5. A VSTO Excel Customization That Adds a Group Box to an Excel
Worksheet at Runtime

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Worksheet at Runtime

Public Class Sheet1

 Public myGroupBox As GroupBox

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 myGroupBox = New System.Windows.Forms.GroupBox()

 ' Add the group box to the controls collection on the sheet
 Me.Controls.AddControl(_
 myGroupBox, 100, 100, 150, 100, "groupbox")
 ' Set the title of the group box
 myGroupBox.Text = "Insurance type"
 ' Add the radio buttons to the groupbox
 myGroupBox.Controls.Add(New RadioButton())
 myGroupBox.Controls.Add(New RadioButton())
 ' Set the text of the radio buttons
 myGroupBox.Controls(0).Text = "Life"
 myGroupBox.Controls(1).Text = "Term"
 ' Arrange the radio buttons in the group box
 myGroupBox.Controls(0).Top = myGroupBox.Top + 25
 myGroupBox.Controls(1).Top = _
 myGroupBox.Controls(0).Bottom + 20

 ' iterate through each button in the controls collection
 Dim rb As RadioButton
 For Each rb In myGroupBox.Controls
 rb.Left = myGroupBox.Left + 10
 Next

 End Sub

End Class

Working with the Controls Collection

The Controls collection provides a simple mechanism to add controls to your document or worksheet at runtime. Before
we get into the details of the Controls collection, it is important to note that the implementation and methods exposed
are different between Word and Excel. Although the behavior of the collection is the same in each application, it was
necessary to have a different implementation to ensure that the collection takes advantage of the host application. If
you want to add a control to Excel, for example, passing in an Excel.Range object for its position makes a lot of sense.
If you want to add a control to Word, passing in a Word.Range object makes sense.

To illustrate using the collection, we start by looking at the helper methods available for all the supported Windows
Forms controls that ship with the .NET Framework. The helper methods follow a common design pattern; call the
method with positional arguments and an identifier, and the method returns you the wrapped type for the control.

Word has two overloads for each helper method:

A method that takes a Word Range object, a width and height for the control in points, and a string name for
the control that uniquely identifies it within the controls collection:

Controls.AddButton(ActiveWindow.Selection.Range, _
 100, 50, "NewButton")

A method that takes a left, top, width, and height for the control in points and a string name for the control that
uniquely identifies it within the controls collection:

Controls.AddMonthCalendar(10, 50, 100, 100, "NewCalendar")

Excel also has two overloads for each helper method:

A method that takes an Excel range object and a string name for the control that uniquely identifies it within the
controls collection. The control will be sized always to match the size of the range passed to the method:

Controls.AddButton(Range("A1"), "NewButton")

A method that takes a left, top, width, and height for the controls in points and a string name for the control
that uniquely identifies it within the controls collection:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that uniquely identifies it within the controls collection:

Controls.AddMonthCalendar(10, 50, 100, 100, "NewCalendar")

After the control has been added to the document or worksheet, you can program against it just as you do a control
added at design time. Table 14.3 shows the complete list of helper methods to add controls on the Controls collection.

Table 14.3. Add Methods on the Excel Controls
Collection

Method Name Return Type

AddButton Microsoft.Office.Tools.Excel.Controls.Button

AddChart Microsoft.Office.Tools.Excel.Chart

AddCheckBox Microsoft.Office.Tools.Excel.Controls.CheckBox

AddCheckedListBox Microsoft.Office.Tools.Excel.Controls.CheckedListBox

AddComboBox Microsoft.Office.Tools.Excel.Controls.ComboBox

AddDataGridView Microsoft.Office.Tools.Excel.Controls.DataGridView

AddDateTimePicker Microsoft.Office.Tools.Excel.Controls.DateTimePicker

AddDomainUpDown Microsoft.Office.Tools.Excel.Controls.DomainUpDown

AddHScrollBar Microsoft.Office.Tools.Excel.Controls.HScrollBar

AddLabel Microsoft.Office.Tools.Excel.Controls.Label

AddLinkLabel Microsoft.Office.Tools.Excel.Controls.LinkLabel

AddListBox Microsoft.Office.Tools.Excel.Controls.ListBox

AddListView Microsoft.Office.Tools.Excel.Controls.ListView

AddMonthCalendar Microsoft.Office.Tools.Excel.Controls.MonthCalendar

AddNumericUpDown Microsoft.Office.Tools.Excel.Controls.NumericUpDown

AddPictureBox Microsoft.Office.Tools.Excel.Controls.PictureBox

AddProgressBar Microsoft.Office.Tools.Excel.Controls.ProgressBar

AddPropertyGrid Microsoft.Office.Tools.Excel.Controls.PropertyGrid

AddRadioButton Microsoft.Office.Tools.Excel.Controls.RadioButton

AddRichTextBox Microsoft.Office.Tools.Excel.Controls.RichTextBox

AddTextBox Microsoft.Office.Tools.Excel.Controls.TextBox

AddTrackBar Microsoft.Office.Tools.Excel.Controls.TrackBar

AddTreeView Microsoft.Office.Tools.Excel.Controls.TreeView

AddVScrollBar Microsoft.Office.Tools.Excel.Controls.VScrollBar

AddWebBrowser Microsoft.Office.Tools.Excel.Controls.WebBrowser

AddControl

Unfortunately, helper methods are not available for every control on your machine, so there needs to be a way to add
controls outside the list in Table 14.3. To do this, the Controls collection provides an AddControl method that enables
you to pass in an instance of any Windows Forms control, and it will return the OLEObject (for Excel) or the OLEControl
(for Word) that can be used to position the control after it is added:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

' Declare a OLEObject variable
Dim myobj As Microsoft.Office.Interop.Excel.OLEObject

' Add the control to the A10 cell
myobj = Controls.AddControl(New UserControl1(), _
 Me.Range("A10"), "DynamicUserControl")

// Reposition it to the top of B15
myobj.Top = Me.Range("B15").Top

A common pitfall of using AddControl is forgetting to set the positioning on the OLEObject and setting it directly on the
Windows Forms control itself. If you do this, the control will change its position relative to the container rather than
move its position correctly in the document. For an example of this issue, consider Listing 14.3 and Figure 14.13.

Deleting Controls at Runtime

Now that we have some controls added to the document at runtime, it is important that there be a mechanism to delete
controls from the collection. VSTO provides three ways to achieve this:

Calling the Remove method on the Controls collection and passing in the instance or name of the control that
you want to remove from the collection

Calling the RemoveAt method on the Controls collection and passing in the index of the control to be removed

Calling the Delete method on the control itself, which will in turn delete the control

You can delete only controls that have been added at runtime. If you try to remove controls that were added at design
time, you will get an exception.

Controls Added at Runtime Not Saved

We wanted to keep the behavior of the Controls collection as close to the Windows Forms development experience so
that any control added at runtime is deleted from the document when the user saves the document. If you add controls
to a Windows Forms application at runtime, for example, you do not expect those controls just to appear the next time
you run the application without code being written to re-create those controls. We spent many hours debating the
relative merits of this approach versus the alternative, which was to allow Word or Excel to save the newly added
control when the document was saved. The main deciding argument for not saving the newly added control was to
make it easier to write dynamic control code in the document. If we had left the control in the document when the user
saved the document, it would have been very difficult to write code that could connect controls that had been added
dynamically the last time the document was open. To understand why this was difficult really involves looking into how
a control is added to the document at runtime.

When a control is added to the Controls collection, the VSTO runtime adds an instance of the ActiveX control that will
host the control and then sets it to host the provided control. This works fine when the document is running but quickly
becomes complicated when the user saves the document. If we were to save the control into the document, all that
would be stored would be the ActiveX control itself, but without any instance of the Windows Forms control, because it
must be provided by the code at runtime. The next time the document loaded up, the ActiveX control would load but
would not get an instance of the control, because the code that added the instance of the Windows Forms control would
run again and add a new instance of the ActiveX control, because it would have no link back to the saved ActiveX
control. Extrapolate this situation out over a few hundred saves of a document, and you quickly get a lot of "orphaned"
ActiveX controls that will never be used.

The solution that was implemented in VSTO was to remove all ActiveX control instances that were added as a result of
adding a control at runtime to the Controls collection. This way, there will never be any "orphaned" ActiveX controls on
the document, and it also makes your code simpler to write. Why is the code simpler to write? Imagine writing the code
to add the buttons at the end of each row containing a stock:

For Each stock As StockRow In Stocks
 ' add stock information to row here
 Me.Controls.AddButton(_
 Me.Range(currentrow, "12"), stock.Ticker + "btn")
Next

If the control were persisted with the worksheet on save, the code would have to go through each control and ensure
that the buttons added in the last run were thereand quite possibly delete and add them again, because the stock list
had changed. We believed it was more straightforward just to iterate through the stocks on every run of the workbook
and add the buttons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and add the buttons.

Controls in the Controls Collection Typed as Object

VSTO documents and worksheets can have Windows Forms controls added to them at runtime via the Controls
collection, as well as host controls such as NamedRange and ListObject. Both these types of controls act like controls in
the VSTO model. You can click a NamedRange in VSTO and display a Visual Studio property window for it, for example.
You can establish data bindings to a NamedRange just as you can with a text box or any other Windows Forms control.

As a result, the VSTO model considers both NamedRange and a Windows Forms control to be a "control" associated
with the worksheet or document. The Controls collection contains both host controls and Windows Forms controls.
Although providing a strongly typed collection was something that we would have liked to do, there was no common
type other than Object that a host control and a Windows Forms control share.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
The key to using Windows Forms controls in your Word or Excel solutions is to think about what user interface options
meet your requirements. VSTO provides you considerable flexibility for extending the user interface of Word or Excel,
and there is no one right answer as to which is the best way. Windows Forms controls allow you to extend the
capabilities that ActiveX controls provided while leveraging the ever-growing Windows Forms controls ecosystem.

This chapter described how you can use Windows Forms controls to extend your Office solutions. In particular, the
chapter examined how hosting controls on the document surface is a very powerful tool for developing applications. The
chapter also covered the architecture of hosting controls on the document surface, as well as the limitations and
differences in this model compared with traditional Windows Forms development. Chapter 15, "Working with the Actions
Pane," continues the discussion about Windows Forms and Office, specifically showing how to use Windows Forms
controls on Office's Document Actions task pane.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 15. Working with the Actions Pane

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction to the Actions Pane
Developing a solution that runs within an Office application provides considerable benefits because you can take
advantage of the functionality that already exists in Office. Sometimes, however, it is hard to design a user interface
that meets your needs, as most of the user interface space is controlled by the Office application. Office 2003 and VSTO
introduce a number of new user interface capabilities, including the ability to use Windows Forms controls on the
document. (See Chapter 14, "Using Windows Forms in VSTO," for more information on this capability.)

Placing a control on the document is not always the right paradigm for the user interface of your application. Putting a
control onto the document can often lead to issues with layout when the controls are laid out relative to a range or
paragraph, for example. If you use a button on a Word document, by default, it will be inline with the text. This means
that when you reformat the document, the button will move with the text. Obviously, being able to move a control with
the text is something that you would want if you are developing a flow-based user interface. But this model quickly
becomes difficult when you are developing more traditional user interfaces. Things get even more complex if you start
to consider what type of behavior you want when the user prints a document. Do you want your Windows Forms
controls to be printed with the rest of the document, for example?

To address these user interface challenges, Office 2003 introduced the ability to put your own custom user interface
into the Document Actions task pane of Word and Excel. The task pane is designed to provide a contextual user
interface that is complementary to the document. Word, for example, provides a task pane that shows the styles and
formats available in the current document and displays the style of the current selection in the document, as shown in
Figure 15.1. To display the task pane, choose Task Pane from the View menu.

Figure 15.1. The Styles and Formatting task pane in Word.

[View full size image]

The active task pane can be changed by making a selection from the drop-down list of available task panes at the top of
the task pane, as shown in Figure 15.2. The active task pane is a per-document setting. You can have only one task
pane visible at a time per document. The drop-down list shows several task panes that are built into Office. The task
pane acts like a toolbar when you drag it to move it to another location. It can float above the document. It can also be
docked to the left, top, right, or bottom of the application window space.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

docked to the left, top, right, or bottom of the application window space.

Figure 15.2. Selecting a task pane in Word.

Figure 15.2 lists several of the built-in task panes available in Word, including Getting Started, Help, and Clip Art. The
task pane in the list that is customizable by your VSTO Word or Excel application is called the Document Actions task
pane. In VSTO and in this book, we often refer to the Document Actions task pane as the actions pane, as kind of a
contraction between the Document Actions and the task pane. ActionsPane is the name of the control in the VSTO
programming model that you will use to put your own content in the Document Actions task pane. Note that the
Document Actions task pane is listed as an available task pane for a document that has a VSTO customization
associated with it that uses the ActionsPane control.

Listing 15.1 shows a simple VSTO Excel customization that displays a Windows Forms button control in the Document
Actions task pane. In Excel, the ActionsPane control is a member of the ThisWorkbook class. Because this code is
written in Sheet1, we use the Globals object to access the ThisWorkbook class and, from the ThisWorkbook class, to
access the ActionsPane control. The ActionsPane control has a Controls collection that contains the controls that will be
shown in the Document Actions task pane. We add to this collection of controls a Windows Forms button control we
created previously. Note that just the action of adding a control to the Controls collection causes the Document Actions
task pane to be shown at startup.

Listing 15.1. A VSTO Excel Customization That Adds a Button to the Actions Pane

Public Class Sheet1

 Public myButton As New Button

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 myButton.Text = "Hello World"
 Globals.ThisWorkbook.ActionsPane.Controls.Add(myButton)

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.3 shows the result of running Listing 15.1. The Document Actions task pane is shown with a Windows Forms
button displayed in the pane.

Figure 15.3. The result of running Listing 15.1.

Listing 15.2 shows a similar VSTO Word customization that displays a Windows Forms Button control in the Document
Actions task pane. In Word, the ActionsPane control is a member of the ThisDocument class.

Listing 15.2. A VSTO Word Customization That Uses the Actions Pane

Public Class ThisDocument

 Public myButton As New Button

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 myButton.Text = "Hello World"
 ActionsPane.Controls.Add(myButton)

 End Sub

End Class

The Document Action task pane is actually part of a larger application development platform provided in Office 2003
called Smart Documents. The vision was that Smart Documents would integrate the new XML features available in Word
and Excel and in the Document Actions task pane. This combination of XML and the Document Actions task pane
provides an application development platform that makes it easier to build documents that are "smart" about their
content and provide the appropriate user interface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

content and provide the appropriate user interface.

Smart Documents were designed primarily for the COM world. So although Smart Documents provided a powerful
platform, they did not fit easily into the .NET development methodology. Why?

1. The way you create a Smart Document is first to create a component that implements the ISmartDocument
interface. This interface is rather COM-centric.

2. To use a Smart Document, you must have XML schema mapped in your document. Although XML mapping
provides considerable functionality to your application programming (see Chapter 21, "Working with XML in
Excel," and Chapter 22, "Working with XML in Word"), not all documents need or want to use XML mapping.

3. The Document Actions task pane supports only a small set of built-in controls and ActiveX controls. To use a
Windows Forms control, you would have to register it as an ActiveX control and then attempt to get that to
work within the Document Actions task pane. This requires COM registration and COM interop.

4. The Smart Documents infrastructure requires you to create an expansion pack, which includes the following:

- Manifest.xml, which contains links to all the components within the expansion pack

- Document to be used

- Schema for the Smart Document

- Configuration XML file, which contains the definition of the controls to be used

VSTO provides the ActionsPane control to give you access to all the features provided by Smart Documents with a much
more .NET development experience. You do not have to implement the ISmartDocument interface or use schema
mapping in the document. You do not have to register Windows Forms controls in the registry so that they can act as
ActiveX controls. You do not have to create an expansion pack. Because using the ActionsPane control is so much
simpler than using Smart Documents and provides all the benefits, this book does not consider building Smart
Documents in the old COM way.

The ActionsPane feature of VSTO is actually implemented under the covers as a specialized Smart Document solution;
when you look at a customized VSTO document and examine the attached XML schemas, you will see that a schema
called ActionsPane is attached automatically. This schema provides the plumbing to connect VSTO's ActionsPane control
to the Smart Document platform. When you install the VSTO runtime (see Chapter 20, "Deployment"), the ActionsPane
schema is also installed and registered with Excel and Word, enabling the ActionsPane control to access the Document
Actions task pane.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the ActionsPane Control
A first step in understanding how VSTO's ActionsPane control works is delving a little into the architecture of VSTO's
ActionsPane support.

The ActionsPane Architecture

The Document Actions task pane is a window provided by Office that can host ActiveX controls, as shown in Figure
15.4. VSTO places a special invisible ActiveX control in the Document Actions task pane that in turn hosts a single
Windows Forms UserControl. This UserControl is represented in the VSTO programming model by the ActionsPane
controlaccessible in Word via Document.ActionsPane and accessible in Excel via Globals. This Workbook.ActionsPane.

Figure 15.4. The four layers of the ActionsPane architecture.

[View full size image]

Although the Document Actions task pane can host multiple ActiveX controls, VSTO needs to put only a single ActiveX
control and a single UserControl in the Document Actions task pane window, because the UserControl can host multiple
Windows Forms controls via its Controls collection (ActionsPane.Controls). You can add Windows Forms controls to the
ActionsPane by using the ActionsPane.Controls.Add method.

The UserControl placed in the ActionsPane window is set to expand to fit the area provided by the ActionsPane window.
If the area of the Document Actions task pane is not big enough to display all the controls hosted by the UserControl, it
is possible to scroll the UserControl by setting the AutoScroll property of ActionsPane to true.

The ActionsPane control is a wrapper around System.Windows .Forms.UserControl with most of the properties,
methods, and events of a UserControl. It also adds some properties, events, and methods specific to ActionsPane.
When you understand the architecture in Figure 15.4, you will not be too surprised to know that some properties from
UserControl that are exposed by ActionsPanesuch as position-related properties, methods, and eventsdo not do
anything. Because the position of the ActionsPane UserControl is forced to fill the space provided by the ActionsPane
window, for example, you cannot reposition the UserControl to arbitrary positions within the Document Actions task
pane window.

Adding Windows Forms Controls to the Actions Pane

The basic way you add your custom UI to the actions pane is to add Windows Forms controls to the actions pane's
Controls collection. Listing 15.1 illustrates this approach. First, it declares and creates an instance of a
System.Windows.Forms.Button control. Then this control is added to the actions pane by calling the Add method of the
Controls collection associated with the actions pane and passing the button instance as a parameter to the Add method.

The actions pane is smart about arranging controls within the ActionsPane. If multiple controls are added to the
Controls collection, the actions pane can automatically stack and arrange the controls. The stacking order is controlled
by the ActionsPane.StackOrder property, which is of type Microsoft.Office.Tools.StackStyle. It can be set to None for no
automatic positioning, or it can be set to FromTop, FromBottom, FromLeft, or FromRight. Figure 15.5 shows the effects of the
various StackOrder settings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

various StackOrder settings.

Figure 15.5. The results of changing the ActionsPane StackOrder setting, from top
left:None, FromLeft, FromBottom, FromTop, and FromRight.

[View full size image]

Listing 15.3 shows some code that adds and positions controls in the actions pane when StackOrder is set to
StackStyle.FromBottom and automatically positioned or set to StackStyle.None and manually positioned.

Listing 15.3. A VSTO Excel Customization That Adds and Positions Controls with
Either StackStyle.None or StackStyle.FromBottom

Public Class Sheet1

 Public button1 As New Button
 Public button2 As New Button
 Public button3 As New Button

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup
 button1.Text = "Button 1"
 button2.Text = "Button 2"
 button3.Text = "Button 3"

 Globals.ThisWorkbook.ActionsPane.BackColor = Color.Aquamarine

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Globals.ThisWorkbook.ActionsPane.Controls.Add(button1)
 Globals.ThisWorkbook.ActionsPane.Controls.Add(button2)
 Globals.ThisWorkbook.ActionsPane.Controls.Add(button3)

 If MsgBox("Do you want to auto-position the controls?", _
 MsgBoxStyle.YesNo, "StackStyle") = MsgBoxResult.Yes Then

 Globals.ThisWorkbook.ActionsPane.StackOrder = _
 Microsoft.Office.Tools.StackStyle.FromBottom
 Else
 Globals.ThisWorkbook.ActionsPane.StackOrder = _
 Microsoft.Office.Tools.StackStyle.None

 button1.Left = 10
 button2.Left = 20
 button3.Left = 30

 button1.Top = 0
 button2.Top = 25
 button3.Top = 50

 End If

 End Sub

End Class

Adding a Custom User Control to the Actions Pane

A more visual way of designing your application's actions pane user interface is to create a user control and add that
user control to the ActionsPane's control collection. Visual Studio provides a rich design-time experience for creating a
user control. To add a user control to your application, click the project node in Solution Explorer, and choose Add User
Control from Visual Studio's Project menu. Visual Studio will prompt you to give the User Control a filename, such as
UserControl1.vb. Then Visual Studio will display the design view shown in Figure 15.6.

Figure 15.6. The design view for creating a custom user control.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The design area for the user control has a drag handle in the bottom-right corner that you can drag to change the size
of the user control. Controls from the toolbox can be dragged onto the user control design surface and positioned as
desired. Figure 15.7 shows a completed user control that uses check boxes, text boxes, and labels.

Figure 15.7. A custom user control.

Listing 15.4 shows a VSTO Excel customization that adds this custom user control to the Document Actions task pane.
The user control created in Figure 15.7 is a class named UserControl1. Listing 15.4 creates an instance of UserControl1
and adds it to ActionPane's Controls collection using the Add method.

Listing 15.4. A VSTO Excel Customization That Adds a Custom User Control to the
Task Pane

Public Class Sheet1

 Public myUserControl As New UserControl1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Globals.ThisWorkbook.ActionsPane.Controls.Add(myUserControl)

 End Sub

End Class

Figure 15.8 shows the Document Actions task pane that results when Listing 15.4 is run.

Figure 15.8. The result of running Listing 15.4.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Contextually Changing the Actions Pane

A common application of the ActionsPane is providing commands in the Document Actions task pane that are
appropriate to the context of the document. In an order-form application, for example, the Document Actions task pane
might display a button for selecting a known customer when filling out the customer information section of the
document. When the user is filling out the order part of the document, the Document Actions task pane might display a
button for examining available inventory.

Listing 15.5 shows a VSTO Excel customization in which two named ranges have been defined. One, called orderInfo, is a
range of cells where the contents of an order are placed. The other, called customerInfo, is a range of cells specifying the
customer information for the customer placing the order. Listing 15.5 contextually adds and removes an inventoryButton
when the orderInfo range is selected and a customerButton when the customerInfo range is selected or deselected. It does this
by handling NamedRange.Selected and NamedRange.Deselected events. When the Selected event indicating the
customerInfo range of cells is selected, Listing 15.5 adds a customerButton that, when clicked, would allow the user to pick an
existing customer. Listing 15.5 removes the customerButton when the customerInfo.Deselected event is raised. It calls
ActionsPane.Controls.Remove to remove the customerButton from the actions pane.

Listing 15.5 is written in such a way that if the customerInfo range and the orderInfo range are selected at the same time,
both the customerButton and the inventoryButton would be visible in the Document Actions task pane.

Listing 15.5. A VSTO Excel Customization That Changes the Actions Pane Based on
the Selection

Public Class Sheet1

 Public customerButton As New Button
 Public inventoryButton As New Button

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 customerButton.Text = "Select a customer..."
 inventoryButton.Text = "Check inventory..."
 End Sub

 Private Sub orderInfo_Selected(_
 ByVal Target As Microsoft.Office.Interop.Excel.Range) _
 Handles orderInfo.Selected

 Globals.ThisWorkbook.ActionsPane.Controls.Add(_
 inventoryButton)

 End Sub

 Private Sub orderInfo_Deselected(_
 ByVal Target As Microsoft.Office.Interop.Excel.Range) _
 Handles orderInfo.Deselected

 Globals.ThisWorkbook.ActionsPane.Controls.Remove(_
 inventoryButton)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

 Private Sub customerInfo_Selected(_
 ByVal Target As Microsoft.Office.Interop.Excel.Range) _
 Handles customerInfo.Selected

 Globals.ThisWorkbook.ActionsPane.Controls.Add(customerButton)

 End Sub

 Private Sub customerInfo_Deselected(_
 ByVal Target As Microsoft.Office.Interop.Excel.Range) _
 Handles customerInfo.Deselected

 Globals.ThisWorkbook.ActionsPane.Controls.Remove(_
 customerButton)

 End Sub

End Class

You can also change the contents of the Document Actions task pane as the selection changes in a Word document.
One approach is to use bookmarks and change the contents of the Document Actions task pane when a particular
bookmark is selected. A second approach is to use the XML mapping features of Word and VSTO's XMLNode and
XMLNodes controls (described in Chapter 22, "Working with XML in Word") and to change the contents of the Document
Actions task pane when a particular XMLNode or XMLNodes is selected in the document.

Detecting the Orientation of the Actions Pane

ActionsPane has all the UserControl events documented in the .NET class libraries documentation and one additional
event: OrientationChanged. This event is raised when the orientation of the actions pane is changed. The actions pane
can be in either a horizontal or a vertical orientation. Figure 15.3 earlier in this chapter shows an actions pane in a
vertical orientation. Figure 15.9 shows a horizontal orientation.

Figure 15.9. The actions pane in a horizontal orientation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 15.6 shows a VSTO Excel customization that adds several buttons to the ActionsPane's Controls collection.
Listing 15.6 also handles the OrientationChanged event and displays the orientation of the ActionsPane in a dialog box.
It determines the orientation of the actions pane by checking the ActionsPane.Orientation property. The Orientation
property returns a member of the System.Windows.Forms.Orientation enumeration: either Orientation.Horizontal or Orientation.Vertical.

Listing 15.6. A VSTO Excel Customization That Handles ActionsPane's
OrientationChanged Event

Public Class Sheet1

 Public button1 As New Button
 Public button2 As New Button
 Public button3 As New Button

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 button1.Text = "Button 1"
 button2.Text = "Button 2"
 button3.Text = "Button 3"

 Globals.ThisWorkbook.ActionsPane.StackOrder = _
 Microsoft.Office.Tools.StackStyle.FromTop

 Globals.ThisWorkbook.ActionsPane.Controls.Add(button1)
 Globals.ThisWorkbook.ActionsPane.Controls.Add(button2)
 Globals.ThisWorkbook.ActionsPane.Controls.Add(button3)

 Globals.ThisWorkbook.ActionsPane.BackColor = Color.Aquamarine

 AddHandler _
 Globals.ThisWorkbook.ActionsPane.OrientationChanged, _
 AddressOf ActionsPane_OrientationChanged

 End Sub

 Private Sub ActionsPane_OrientationChanged(_
 ByVal sender As Object, _
 ByVal e As EventArgs)

 Dim orientation1 As Orientation = _
 Globals.ThisWorkbook.ActionsPane.Orientation()
 MsgBox(String.Format("Orientation is {0}.", _
 orientation1.ToString()))

 End Sub

End Class

Scrolling the Actions Pane

The AutoScroll property of the ActionsPane gets or sets a Boolean value indicating whether the actions pane should
display a scroll bar when the size of the Document Actions task pane is such that not all the controls can be shown. The
default value of AutoScroll is true. Figure 15.10 shows a Document Actions task pane with ten buttons added to it.
Because AutoScroll is set to TRue, a scroll bar is shown when not all ten buttons can be displayed, given the size of the
Document Actions task pane.

Figure 15.10. The actions pane when AutoScroll is set to true.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.10. The actions pane when AutoScroll is set to true.

Showing and Hiding the Actions Pane

The actions pane is shown automatically when you add controls to ActionsPane's Controls collection using the Add
method. To show and hide the actions pane programmatically, you need to use the Excel or Word object model. In
Excel, set the Application.DisplayDocumentActionTaskPane property to true or False. In Word, set the property
Application.TaskPanes[WdTaskPanes.wdTaskPaneDocumentActions].Visible property to true or False.

You might be tempted to call ActionsPane.Hide or set ActionsPane.Visible to False to hide the ActionsPane. These
approaches do not work, because you are actually hiding the UserControl shown in Figure 15.4 that is hosted by the
Document Actions task pane, rather than just the Document Actions task pane. You should use the object model of
Excel and Word to show and hide the actions pane.

Listing 15.7 shows a VSTO Excel customization that shows and hides the actions pane on the BeforeDoubleClick event
of the Worksheet by toggling the state of the Application.DisplayDocumentActionTaskPane property. Note that the
DisplayDocumentActionTaskPane property is an application-level property that is applicable only when the active
document has a Document Actions task pane associated with it. If the active document does not have a Document
Actions task pane associated with it, accessing the DisplayDocumentActionTaskPane property will raise an exception.

Listing 15.7. A VSTO Excel Customization That Shows and Hides the Actions Pane
When Handling the BeforeDoubleClick Event

Public Class Sheet1

 Private isVisible As Boolean = True

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim i As Integer
 For i = 1 To 10
 Dim myButton As New Button()
 myButton.Text = String.Format("Button {0}", i)
 Globals.ThisWorkbook.ActionsPane.Controls.Add(myButton)
 Next

 End Sub

 Private Sub Sheet1_BeforeDoubleClick(_
 ByVal Target As Microsoft.Office.Interop.Excel.Range, _
 ByRef Cancel As System.Boolean) Handles Me.BeforeDoubleClick

 ' Toggle the visibility of the ActionsPane on double-click.
 isVisible = Not isVisible

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 isVisible = Not isVisible
 Me.Application.DisplayDocumentActionTaskPane = isVisible

 End Sub

End Class

Listing 15.8 shows a VSTO Word application that shows and hides the actions pane on the BeforeDoubleClick event of
the Document by toggling the state of the Application.TaskPanes[WdTaskPanes.wdTaskPaneDocumentActions].Visible
property.

Listing 15.8. VSTO Word Customization That Shows and Hides the Actions Pane in
the BeforeDoubleClick Event Handler

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup
 Dim i As Integer
 For i = 1 To 10
 Dim myButton As New Button()
 myButton.Text = String.Format("Button {0}", i)
 ActionsPane.Controls.Add(myButton)
 Next

 End Sub

 Private Sub ThisDocument_BeforeDoubleClick(_
 ByVal sender As System.Object, _
 ByVal e As Microsoft.Office.Tools.Word.ClickEventArgs) _
 Handles Me.BeforeDoubleClick

 If Me.Application.TaskPanes(_
 Word.WdTaskPanes.wdTaskPaneDocumentActions).Visible Then

 Me.Application.TaskPanes(_
 Word.WdTaskPanes.wdTaskPaneDocumentActions).Visible _
 = False
 Else
 Me.Application.TaskPanes(_
 Word.WdTaskPanes.wdTaskPaneDocumentActions).Visible _
 = True

 End If

 End Sub

End Class

Attaching and Detaching the Actions Pane

Sometimes you will want to go beyond just hiding the actions pane and actually detach the actions pane from the
document or workbook. You might also want to control whether the user of your document is allowed to detach the
actions pane from the document or workbook. Recall from earlier in this chapter that the actions pane is actually a
Smart Document solution, and as such, it can be attached or detached from the document or workbook via Excel and
Word's built-in dialog boxes for managing attached Smart Document solutions.

When the actions pane is detached from the document, this means that the Document Actions task pane will not be in
the list of available task panes when the user drops down the list of available task panes, as shown in Figure 15.2
earlier in this chapter. To detach the actions pane from the document programmatically, call the ActionsPane.Clear
method. Doing so detaches the actions pane solution from the document and hides the Document Actions pane. Calling
ActionsPane.Show reattaches the actions pane and makes it available again in the list of available task panes. Note that
in Word, when you call ActionsPane.Clear, you must follow the call with a second call to the Word object model:
Document.XMLReferences["ActionsPane"].Delete.

If you want to allow the user of your document to detach the actions pane solution by using the Templates and Add-ins
dialog box in Word, shown in Figure 15.11, or the XML Expansion Packs dialog box in Excel, shown in Figure 15.12, you
must set the ActionsPane.AutoRecover property to False. By default, this property is set to TRue, which means that even

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

must set the ActionsPane.AutoRecover property to False. By default, this property is set to TRue, which means that even
when the user tries to detach the actions pane solution by deselecting it in these dialog boxes, VSTO will recover and
automatically reattach the actions pane solution.

Figure 15.11. The ActionsPane solution attached to a Word document is visible in
Word's Templates and Add-Ins dialog box and can be removed if

ActionsPane.AutoRecover is not set to TRue.

Figure 15.12. The ActionsPane solution attached to an Excel workbook is visible in
Excel's XML Expansion Packs dialog box and can be removed if

ActionsPane.AutoRecover is not set to TRue.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After an actions pane solution is attached to the document, and the user saves the document, the next time the user
opens the document, the actions pane will be available and can be selected at any time during the session. If your code
does not add controls to the actions pane until some time after startup, you might want to call the ActionsPane.Clear
method in the Startup handler of your VSTO customization to prevent the user from showing the actions pane before
your VSTO customization has added controls to the ActionsPane control.

Some Methods and Properties to Avoid

As mentioned earlier, the ActionsPane is a user control that has a fixed location and size that are controlled by VSTO.
As such, you should avoid using a number of position-related properties and methods on the ActionsPane control, as
listed in Table 15.1.

Table 15.1. Methods and Properties of ActionsPane
to Avoid

Left Top Width

Height Right Location

Margin MaximumSize MinimumSize

Size TabIndex AutoScrollMargin

AutoScrollMinSize

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
The chapter covered the ActionsPane control in VSTO and how it enables custom UI in Office's Document Actions task
pane. The chapter examined the properties, methods, and events unique to the ActionsPane control. You also learned
the basic architecture of ActionPane and how ActionsPane has the properties, methods, and events found on a Windows
Forms user control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 16. Working with Smart Tags in VSTO

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction to Smart Tags
The Smart Tags feature of Word and Excel enables you to display a pop-up menu with actions for a given piece of text
in a document or spreadsheet. A Smart Tag could recognize stock symbols (such as the MSFT stock symbol) and display
a set of actions that can be taken for that symbol, for example. When Word finds a piece of text that a Smart Tag has
recognized, it displays a red dotted underline under the recognized text. If the user hovers over the text, a pop-up
menu icon appears next to the cell, as shown in Figure 16.1. If the user clicks the pop-up menu icon, a menu of actions
displays for the recognized piece of text, as shown in Figure 16.2. When an action is selected, Word calls back into the
Smart Tag to execute the action.

Figure 16.1. Some recognized text in Word

Figure 16.2. Dropping down the Smart Tag menu in Word.

When Excel recognizes a Smart Tag, it displays a little triangle in the bottom-right corner of the associated cell. If the
user hovers over the cell, a pop-up menu icon appears next to the cell; the user can click this icon to drop down a
menu of actions for the recognized piece of text. Figure 16.3 shows an example menu. When an action is selected,
Excel calls back into the Smart Tag to execute the action.

Figure 16.3. Dropping down the Smart Tag menu in Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.3. Dropping down the Smart Tag menu in Excel.

Figure 16.4 shows some additional detail about the drop-down list that appears for recognized text. At the top of the
drop-down list, the name of the Smart Tag displays, along with the text that was recognized. The next section of the
menu shows actions that are available for the given Smart Tag. This particular Smart Tag, called Financial Symbol, has
four actions associated with it. The bottom section of the menu provides Word- or Excel-specific options for the Smart
Tag.

Figure 16.4. The Smart Tag menu.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Configuring Smart Tags in Word and Excel

Smart Tags in Word are managed from the Smart Tags tab of the AutoCorrect Options dialog box, shown in Figure
16.5. The Smart Tags tab can be displayed by choosing AutoCorrect Options from the Tools menu. Here, the user can
turn on and off individual Smart Tags, as well as control other options relating to how Smart Tags display in the
document.

Figure 16.5. Word's Smart Tags tab in the AutoCorrect dialog box.

Smart Tags in Excel are managed from the Smart Tags tab of the AutoCorrect dialog box, as shown in Figure 16.6. The
Smart Tags tab can be displayed by choosing AutoCorrect Options from the Tools menu. Here, the user can turn on and
off individual recognizers, as well as control other options relating to how Smart Tags display in the workbook.

Figure 16.6. Excel's Smart Tags tab in the AutoCorrect dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.6. Excel's Smart Tags tab in the AutoCorrect dialog box.

The Persistent Tagging Generated by Smart Tags

To understand how Smart Tags work in Office, it is helpful to have a conceptual model in your mind. Otherwise, some
of the behavior you will see when working with Smart Tags will be confusing.

A Smart Tag has a recognition engine that is passed text in the document or workbook. If the Smart Tag recognizes a
segment of text, it can tell Word or Excel to tag the text as being recognized. This tagging is stored and saved in the
document by Word or Excel. When text is tagged, it remains tagged until the user removes the tag by choosing Remove
This Smart Tag from the Smart Tag menu. So even if a Smart Tag has stopped recognizing a particular term or is no
longer active, the tagging in the document can remain.

Text that has been tagged by a Smart Tag has its tagged state saved into the document. You can see this tagging when
you save into WordML format. A document with the stock symbol MSFT has been recognized in a Word document by a
Smart Tag with Smart Tag type name customsmarttag. Also, this tag can optionally store custom properties in the
document when it recognizes a term. In this example, the Smart Tag stores the properties LongStockName and the current
StockValue. You can see all this in the WordML markup:

<st1:customsmarttag LongStockName="Microsoft" StockValue="29"
w:st="on"><w:r><w:t>MSFT</w:t></w:r></st1:customsmarttag>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating Document-Level Smart Tags with VSTO
The simplest way to create a Smart Tag is to use the support in Visual Studio 2005 Tools for Office (VSTO) for
document-level Smart Tags. VSTO provides some classes that enable you to create a Smart Tag easily. First, VSTO
provides a class called SmartTag in the Microsoft.Office.Tools.Word namespace and the Microsoft.Office.Tools.Excel
namespace. You create an instance of this SmartTag class to define a new Smart Tag. The constructor of the SmartTag
object takes two parameters: a unique identifier and the caption that will display in the Smart Tag menu. The unique
identifier is constructed using a namespace URI such as "http://vsto.aw.com" and a tag type name such as "mytagtypename"
separated by a number sign, resulting in "http://vsto.aw.com#mytagtypename".

The SmartTag object has several important properties and methods. The SmartTag object's Terms property returns a
StringCollection to which you can add words you want to recognize. The SmartTag object's Actions property must be set
to an array of Action objects representing the actions (the menu items) you want displayed for your Smart Tag. VSTO
provides a class called Action in the Microsoft.Office.Tools.Word namespace and the Microsoft.Office.Tools.Excel
namespace that you can instantiate. The constructor of the Action object takes one parameter: the caption that will
display in the Smart Tag menu for the action. After you have created an Action object for each action you want to make
available for your Smart Tag, you can set the SmartTag.Actions property to an array containing all the Action objects
you want to provide. Finally, you can handle the Action.Click event for each Action to be called back by Word or Excel
when the user selects that action from the Smart Tag menu.

After you have created a SmartTag object, set the SmartTag.Terms collection, created one or more Action objects, and
set SmartTag.Actions, you must remember to add the newly created SmartTag to the VstoSmartTags collection on the
VSTO Document object for Word and on the VSTO Workbook object for Excel.

Listing 16.1 shows a simple Word VSTO customization that illustrates these steps. First, it creates a SmartTag instance
passing "http://vsto.aw.com#fish" as the identifier and "Fish Catcher" as the caption. Then it adds two terms to recognize using
SmartTag.Terms: "Mackerel" and "Halibut". Note that a term cannot contain a space. A term such as "Eric Carter" could not
be added to the terms collection, for example.

Two actions are created: one with the caption "&Fishing///&Catch a fish" and the other with the caption "&Fishing///&Throw it
back". The ampersand (&) in these strings indicates which letter to use as an accelerator for the menu. The use of the
three forward slashes tells Word to create a menu called Fishing with a child menu called Catch a fish and a second
child menu called Throw it back. These actions are added to the SmartTag.Actions property by creating a new array of
Actions containing both actions. Click events raised by the two actions are handled by the code. Finally, the SmartTag
instance that was created is added to the VstoSmartTags collection associated with the document object.

Listing 16.1. A VSTO Word Customization That Adds a Smart Tag

Imports Microsoft.Office.Tools.Word

Public Class ThisDocument

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim mySmartTag As New SmartTag(_
 "http://vsto.aw.com#fish", "Fish Catcher")
 mySmartTag.Terms.Add("Mackerel")
 mySmartTag.Terms.Add("Halibut")

 Dim myAction As New Action("&Fishing///&Catch a fish...")
 Dim myAction2 As New Action("&Fishing///&Throw it back...")
 mySmartTag.Actions = New Action() {myAction, myAction2}
 AddHandler myAction.Click, AddressOf myAction_Click
 AddHandler myAction2.Click, AddressOf myAction2_Click

 Me.VstoSmartTags.Add(mySmartTag)

 End Sub

 Private Sub myAction_Click(ByVal sender As Object, _
 ByVal e As ActionEventArgs)
 MsgBox(String.Format(_
 "You caught a fish at position {0}.", _
 e.Range.Start))
 End Sub

 Private Sub myAction2_Click(ByVal sender As Object, _
 ByVal e As ActionEventArgs)
 MsgBox(String.Format(_
 "You threw back a fish at position {0}.", _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "You threw back a fish at position {0}.", _
 e.Range.Start))
 End Sub

End Class

The code to add a Smart Tag in Excel is very similar and is shown in Listing 16.2. The main changes are to use the
SmartTag and Action classes from the Microsoft.Office.Tools.Excel namespace and to use the VstoSmartTags collection
off the Workbook object. Because the code in Listing 16.2 is written in Sheet1, the Workbook object is accessed using
Globals.ThisWorkbook.

Listing 16.2. A VSTO Excel Customization That Adds a Smart Tag

Imports Microsoft.Office.Tools.Excel

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim mySmartTag As New SmartTag(_
 "http://vsto.aw.com#fish", "Fish Catcher")
 mySmartTag.Terms.Add("Mackerel")
 mySmartTag.Terms.Add("Halibut")

 Dim myAction As New Action("&Fishing///&Catch a fish...")
 Dim myAction2 As New Action("&Fishing///&Throw it back...")
 mySmartTag.Actions = New Action() {myAction, myAction2}

 AddHandler myAction.Click, AddressOf myAction_Click
 AddHandler myAction2.Click, AddressOf myAction2_Click

 Globals.ThisWorkbook.VstoSmartTags.Add(mySmartTag)

 End Sub

 Private Sub myAction_Click(ByVal sender As Object, _
 ByVal e As ActionEventArgs)

 MsgBox(String.Format("You caught a fish at position {0}.", _
 e.Range.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1))

 End Sub

 Private Sub myAction2_Click(ByVal sender As Object, _
 ByVal e As ActionEventArgs)

 MsgBox(String.Format(_
 "You threw back a fish at position {0}.", _
 e.Range.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1)))

 End Sub

End Class

Action Events

In Listing 16.1 and Listing 16.2, we handled the click event of the Action object. The code that handled the click event
used the ActionEventArgs argument e and accessed the ActionEventArgs. Range property to get a Word.Range object
for Word and an Excel.Range object for Excel. The Range property allows you to access the range of text that was
recognized in Word or the Excel cell that contains the recognized text.

The ActionEventArgs.Text property returns the text that was recognized. This proves useful when you are matching
multiple string values with a single Smart Tag class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

multiple string values with a single Smart Tag class.

The ActionEventArgs.Properties property allows you to access a property bag associated with the actions pane. This
property bag can be used to store additional information about the text that was recognized. We consider this further in
the "Creating a Custom Smart Tag Class" section later in this chapter.

The Action object also raises a BeforeCaptionShow event before the caption for an Action is shown in the actions pane
menu. This event is also passed an ActionEventArgs argument e, which can be used to access information about what
was recognized just as with the click event. You can use this event to change the caption of the action before it is
shown.

Listing 16.3 shows a VSTO Excel customization that handles the Click and BeforeCaptionShow event. You must add a
reference to the Microsoft Smart Tags 2.0 Type Library, as shown in Figure 16.7 later in this chapter, to access the
types associated with the property bag.

Listing 16.3. A VSTO Excel Customization That Handles the Click and
BeforeCaptionShow Events and Uses the ActionEventArgs Argument

Imports Microsoft.Office.Tools.Excel

Public Class Sheet1

 Private WithEvents myAction As Action
 Private WithEvents myAction2 As Action

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim mySmartTag As New SmartTag(_
 "http://vsto.aw.com#fish", "Fish Catcher")
 mySmartTag.Terms.Add("Mackerel")
 mySmartTag.Terms.Add("Halibut")

 myAction = New Action("&Fishing///&Catch a fish...")
 myAction2 = New Action("&Fishing///&Throw it back...")
 mySmartTag.Actions = New Action() {myAction, myAction2}

 Globals.ThisWorkbook.VstoSmartTags.Add(mySmartTag)

 End Sub

 Private Sub myAction_BeforeCaptionShow(_
 ByVal sender As Object, _
 ByVal e As ActionEventArgs) _
 Handles myAction.BeforeCaptionShow

 Dim r As New Random()

 myAction.Caption = "Test caption " & r.NextDouble()

 End Sub

 Private Sub myAction2_Click(ByVal sender As Object, _
 ByVal e As ActionEventArgs) Handles myAction2.Click

 MsgBox(String.Format(_
 "You threw back a fish at position {0}.", _
 e.Range.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1)))

 MsgBox(e.Text)
 MsgBox(e.Properties.Count.ToString())
 Dim i As Integer
 For i = 0 To e.Properties.Count - 1 Step i + 1
 MsgBox(String.Format("Prop({0},(1})", _
 e.Properties.KeyFromIndex(i), _
 e.Properties.ValueFromIndex(i)))
 Next

 End Sub

 Private Sub myAction_Click(ByVal sender As Object, _
 ByVal e As ActionEventArgs) Handles myAction.Click

 MsgBox(String.Format("You caught a fish at position {0}.",_
 e.Range.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1)))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

End Class

Using Varying Numbers of Terms

It is possible to vary the number of terms recognized at runtime by adding terms to and removing terms from the
SmartTag.Terms collection. Listing 16.4 shows this approach. Note that instances of terms that have already been
typed in the document and recognized will continue to be recognized even when you remove that term from the Terms
collection. But new instances of the removed term that you type will no longer be recognized.

Listing 16.4. A VSTO Excel Customization That Varies the Number of Terms
Recognized

Imports Microsoft.Office.Tools.Excel

Public Class Sheet1

 Private WithEvents myAction As Action
 Private mySmartTag As SmartTag

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 mySmartTag = New SmartTag(_
 "http://vsto.aw.com#variableterms", _
 "Varying Number of Terms")

 mySmartTag.Terms.Add("Hello")

 myAction = New Action("Add a new term...")
 mySmartTag.Actions = New Action() {myAction}

 Globals.ThisWorkbook.VstoSmartTags.Add(mySmartTag)

 End Sub

 Private Sub myAction_Click(ByVal sender As Object, _
 ByVal e As ActionEventArgs) Handles myAction.Click

 Dim r As New Random()
 Dim numberOfActionsToShow As Integer = r.Next(5)

 If mySmartTag.Terms.Contains(_
 numberOfActionsToShow.ToString()) Then
 mySmartTag.Terms.Remove(numberOfActionsToShow.ToString())
 MsgBox(String.Format("Removed the term {0}.", _
 numberOfActionsToShow))
 Else
 mySmartTag.Terms.Add(numberOfActionsToShow.ToString())
 MsgBox(String.Format("Added the term {0}.", _
 numberOfActionsToShow))
 End If

 End Sub

End Class

Using Regular Expressions

Although the Terms collection provides a way to recognize specific words, you will inevitably want to have more power
in the text patterns that are recognized. The SmartTag class allows you to use regular expressions to recognize text in
a Word document or Excel spreadsheet. This book does not cover how to construct a regular expression; if regular
expressions are new to you, try looking at the documentation in the .NET Framework for the Regex class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

expressions are new to you, try looking at the documentation in the .NET Framework for the Regex class.

We are going to construct a regular expression that will match stock symbols in a document. A stock symbol will be
defined as any three- or four-letter combination that is in all caps, such as IBM or MSFT. The regular expression we will
use is shown below and will match a word (\b indicates a word boundary) that is composed of three to four characters
(specified by {3,4}) composed of capital letters from A to Z ([A-Z]):

\b[A-Z]{3,4}\b

This regular expression string is passed to the constructor of a Regex object. Then the Regex object is added to the
SmartTag.Expressions collection, as shown in Listing 16.5.

Listing 16.5. A VSTO Excel Customization That Adds a Smart Tag Using a Regular
Expression

Imports Microsoft.Office.Tools.Excel
Imports System.Text.RegularExpressions

Public Class Sheet1

 Private WithEvents myAction As Action

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim mySmartTag As New SmartTag(_
 "http://vsto.aw.com#stock", "Stock Trader")
 Dim myRegex As New Regex("\b[A-Z]{3,4}\b")

 mySmartTag.Expressions.Add(myRegex)

 myAction = New Action("Trade this stock...")
 mySmartTag.Actions = New Action() {myAction}

 Globals.ThisWorkbook.VstoSmartTags.Add(mySmartTag)

 End Sub

 Private Sub myAction_Click(ByVal sender As Object, _
 ByVal e As ActionEventArgs) Handles myAction.Click

 MsgBox(String.Format(_
 "The stock symbol you selected is {0}", _
 e.Text))

 End Sub

End Class

Another great feature when you use regular expressions is VSTO's support for named groups in a regular expression.
When you create a regular expression with a named group, VSTO creates a namevalue pair in the property bag for each
recognized term with the name and value of each named group recognized by the regular expression. You can use the
ActionEventArgs object's Properties object to retrieve the value of a named group by using the group name as a key.

Using Varying Numbers of Actions

You might have wondered why the SmartTag object has an Actions property that must be set to a fixed array of
Actions. After all, wouldn't it be easier if you could write the code mySmartTag.Actions.Add(myAction)? The reason the
Actions property was designed this way is to enforce the notion that the maximum number of actions for a given Smart
Tag is fixed at the time you add the SmartTag object to the VstoSmartTags collection. This is a limitation of the Office
Smart Tags architecture.

There is a way to have a varying number of actions. There is still the limitation that the maximum number of actions is
fixed at the time you first add it to the VstoSmartTags collection. But then, at runtime, you can set actions within the
array to Nothing to vary the number of available actions up to the maximum number of actions. Listing 16.6 shows this
approach. The maximum number of actions is set to be five actions by setting the initial array of actions to contain five
actions. But each time an action is selected, the number of actions is changed by setting the items in the actions array
to Nothing or to an Action object.

Listing 16.6. A VSTO Excel Customization with a Varying Number of Actions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 16.6. A VSTO Excel Customization with a Varying Number of Actions

Imports Microsoft.Office.Tools.Excel
Imports System.Text.RegularExpressions

Public Class Sheet1

 Private WithEvents myAction As Action
 Private mySmartTag As SmartTag

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 mySmartTag = New SmartTag(_
 "http://vsto.aw.com#variableactions", _
 "Varying Number of Actions")
 Dim myRegex As New Regex("\b[A-Z]{3,4}\b")

 mySmartTag.Expressions.Add(myRegex)

 myAction = New Action("Change Number of Actions...")
 mySmartTag.Actions = New Action() _
 {myAction, myAction, myAction, myAction, myAction}

 Globals.ThisWorkbook.VstoSmartTags.Add(mySmartTag)

 End Sub

 Private Sub myAction_Click(ByVal sender As Object, _
 ByVal e As ActionEventArgs) Handles myAction.Click

 Dim r As New Random()
 Dim numberOfActionsToShow As Integer = 1 + r.Next(4)

 MsgBox(String.Format("Changing to have {0} actions.", _
 numberOfActionsToShow))

 Dim i As Integer
 For i = 0 To numberOfActionsToShow - 1
 mySmartTag.Actions(i) = myAction
 Next

 For i = numberOfActionsToShow To 4
 mySmartTag.Actions(i) = Nothing
 Next

 End Sub

End Class

Creating a Custom Smart Tag Class

When the Terms collection and the Expressions collection are not sufficient to meet your Smart Tag recognition needs,
you also have the option of creating your own custom Smart Tag class that derives from the Word or Excel SmartTag
class. This gives you some additional capability. First of all, you get to write your own code to process text that Word or
Excel passes to your Smart Tag class to recognize. Second, you can use the ISmartTagProperties collection to associate
custom Smart Tag properties in the property bag associated with each instance of recognized text.

Suppose that you are writing a Smart Tag that recognizes part numbers stored in a database. You know that part
numbers are in a format such as PN1023, with a PN preface and four following digits. Just because that pattern is found
in the text, however, does not mean that it is a valid part number; it might be a part number that has been deleted or
does not exist in the database. So after finding a match for the expected part-number format, you want to make a call
into the database to make sure that a row exists for the given part number. If the part number is not in the database,
you do not want to tag it.

You can do this by writing your own custom Smart Tag class. Your class must derive from the Word or Excel SmartTag
class in the Microsoft.Office.Tools.Word or Microsoft.Office.Tools.Excel namespace. Your class must have a constructor
that calls into the base class constructor passing the Smart Tag type name and the caption for the Smart Tag. The
custom class must also override the Recognize method of the base class shown here:

 Protected Overrides Sub Recognize(ByVal text As String, _
 ByVal site As SmartTag.ISmartTagRecognizerSite, _
 ByVal tokenList As SmartTag.ISmartTagTokenList)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal tokenList As SmartTag.ISmartTagTokenList)

The Recognize method passes the text to recognize as a String, an ISmartTagRecognizerSite object that your code will
use if it associates custom Smart Tag properties with an instance of recognized text, and a tokenList parameter. Your
implementation of Recognize could find the basic part-number format, and if a match is found, it can look up the part
number in a database to verify that it is a valid part number. If it is a valid part number, your implementation of
Recognize must call into the base class's PersistTag method to specify the index within the text where the part number
occurred, the length of the part number, and optionally specify custom Smart Tag properties to associate with the text
that will be tagged.

Custom Smart Tag properties are useful when you need to cache additional information that was determined at
recognize time and that might be used later when an action associated with a tag is executed. In our example, we have
talked to a database to get the row out of the database corresponding to the part number. Perhaps one of the actions
available will be to display the price of the part. Because we have accessed the database row for the part, we have the
price already. Rather than have to look up the price in the database again when the action displaying the price is
invoked, you could choose to create custom Smart Tag properties and add the price to the recognized text as a custom
property. You can create a custom Smart Tag properties collection of type ISmartTagProperties by calling the
GetNewPropertyBag method on the ISmartTagRecognizerSite object passed into the Recognize method. To get the
definition of ISmartTagProperties and ISmartTagRecognizerSite, you must add a reference to your project to the
Microsoft Smart Tags 2.0 Type Library, as shown in Figure 16.7

Figure 16.7. A reference to the Microsoft Smart Tags 2.0 Type Library is required
to use the ISmartTagProperties and ISmartTagRecognizerSite interfaces in your

code.

The code in Listing 16.7 illustrates these ideas by defining a custom Smart Tag class that recognizes part numbers of
the format PN1023 and uses ISmartTagRecognizerSite, ISmartTagProperties, and the PersistTag method to associate
the custom property "Price" with a part number that has been recognized. Our class CustomSmartTag derives from the
SmartTag class in the Microsoft.Office.Tools.Word namespace because this custom Smart Tag will be used with Word. It
implements a simple constructor that calls into the base constructor passing an identifier and caption. An action is
created and added to the Smart Tag that will display the part cost already stored in the tagged text. It does this by
accessing the ISmartTagProperties associated with the tagged text, using the Properties property of the
ActionEventArgs argument passed to the Action.Click event.

We override the Recognize method to write custom logic that looks for the part number and then calls IsValidPart to find
out whether the part number is in the database and to get the price of the part, if available. The implementation of
IsValidPart does not actually connect to a database for this sample but requires that a part number be greater than 1000.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IsValidPart does not actually connect to a database for this sample but requires that a part number be greater than 1000.
To simulate getting a price from a database, it generates a random price that will be saved in the document when the
text is tagged. You can easily imagine this function being rewritten to query a database instead.

Listing 16.7. A Custom Smart Tag Class for Word

Imports System
Imports System.Collections.Generic
Imports System.Text
Imports Microsoft.Office.Tools.Word
Imports System.Windows.Forms
Imports SmartTag = Microsoft.Office.Interop.SmartTag

Friend Class CustomSmartTag
 Inherits Microsoft.Office.Tools.Word.SmartTag

 Private WithEvents customAction As Action

 Friend Sub New()
 MyBase.New("http://www.aw-bc.com/VSTO#customsmarttag", _
 "Custom Smart Tag")

 customAction = New Action("Get Part Cost...")
 MyBase.Actions = New Action() {customAction}
 End Sub

 Private Sub customAction_Click(ByVal sender As Object, _
 ByVal e As ActionEventArgs) Handles customAction.Click

 Dim props As SmartTag.ISmartTagProperties = e.Properties
 Dim i As Integer

 For i = 0 To props.Count - 1
 MsgBox(String.Format("{0} - {1}", props.KeyFromIndex(i), _
 props.ValueFromIndex(i)))
 Next

 End Sub

 Protected Overrides Sub Recognize(ByVal text As String, _
 ByVal site As SmartTag.ISmartTagRecognizerSite, _
 ByVal tokenList As SmartTag.ISmartTagTokenList)

 Dim textToFind As String = "PN"

 Dim startIndex As Integer = 0
 Dim index As Integer = 0

 While text.IndexOf(textToFind, startIndex) >= 0
 index = text.IndexOf(textToFind, startIndex)
 If index + 6 < text.Length Then
 Dim partNumber As String = text.Substring(index, 6)
 Dim price As String = ""
 If IsValidPart(partNumber, price) Then
 Dim props As SmartTag.ISmartTagProperties = _
 site.GetNewPropertyBag()
 props.Write("Price", price)
 MyBase.PersistTag(index, 6, props)
 End If
 End If

 startIndex = index + textToFind.Length
 End While

 End Sub

 Private Function IsValidPart(ByVal partNumber As String, _
 ByRef price As String) As Boolean

 Dim numericPartNumber As Int32 = 0
 Try
 numericPartNumber = Convert.ToInt32(_
 partNumber.Substring(2, 4))
 Catch
 End Try

 ' Only part numbers greater than 1000 are valid

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Only part numbers greater than 1000 are valid
 If numericPartNumber > 1000 Then
 Dim rnd As New Random()
 price = rnd.Next(100).ToString()
 Return True
 End If

 price = "N/A"
 Return False

 End Function

End Class

To add this custom Smart Tag to the document, you must put this code in the Startup method of your document:

Me.VstoSmartTags.Add(New CustomSmartTag())

Using Smart Tag Properties Wisely

You must consider some other issues when using Smart Tag properties. These properties are serialized into the
document, and the recognizer is not given a chance to re-recognize text that has already been recognized. You might
type in the part number on May 1, for example, and the Recognize method runs. Then you save the document, and the
price is saved with the document. When you reopen the document on May 31 and click the Smart Tag menu to select
the Get Part Cost action, the action will go to the Smart Tag property created on May 1 and display the May 1 price.
Therefore, if the prices of parts change frequently, the part price stored as a custom property may be out of date when
the action is invoked at some time later than when the Recognize method was called.

Also, remember that any Smart Tag properties you put in the document for recognized text will be visible in the saved
document file format. So be sure not to put Smart Tag properties containing sensitive information in the document. You
could have a document full of part numbers that you send to a competitor, for example. If the custom Smart Tag in
Listing 16.7 has recognized all the part numbers in the document before you save the document and send it to the
competitor, the prices of all those parts will also be embedded in the document with each tagged part number.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating Application-Level Smart Tags
VSTO's document-level Smart Tags are great when you want to recognize a term in a particular document or a class of
document created from a template. What are your options when you want to recognize a term in all open documents?

You can control the text that Word or Excel recognizes at an application level and the actions made available for that
text by creating a Smart Tag DLL. A Smart Tag DLL contains two types of classes that are used by Office: a recognizer
class and an action class. A recognizer class tells Office the text in the workbook to recognize. The recognizer class
"tags" recognized text by creating a property bageven an empty property bagand attaching it to recognized text. An
action class corresponds to an action displayed in the pop-up menu that Office displays when a user hovers over a
recognized piece of text. Recognizer classes implement the ISmartTagRecognizer interface and optionally the
ISmartTagRecognizer2 interface. Action classes implement the ISmartTagAction interface and optionally the
ISmartTagAction2 interface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter examined VSTO's support for document-level Smart Tags. VSTO provides a simple way to get started by
using terms and actions. VSTO also supports more powerful techniques, including support for regular expressions and
support for multiple actions, as well as the ability to create your own custom Smart Tag classes.

This chapter also covered how to build an application-level Smart Tag by creating a class library project and a class that
implements ISmartTagRecognizer, along with a class that implements ISmartTagAction. You have learned how to
register an application-level Smart Tag in the registry and how to configure .NET 1.1 security policy so the Smart Tag
will run. For more information about .NET security and VSTO, see Chapter 19, ".NET Code Security."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating a Recognizer Class
Let's start by creating a class that implements ISmartTagRecognizer. Our class will be similar to the class we created in
Listing 16.7 and will recognize part numbers in a document. In the newly created project, there is already a class
created for you, called Class1, in a file called Class1.vb. Add a Imports SmartTag = Microsoft.Office.Interop.SmartTag line to the
Imports statements at the top of the class to bring the SmartTag interfaces into a namespace called SmartTag. Rename
Class1 to be a class called Recognizer, and declare the class to implement SmartTag.ISmartTagRecognizer. The class now
looks like this:

Imports System.Collections.Generic
Imports System.Text
Imports SmartTag = Microsoft.Office.Interop.SmartTag

Public Class Recognizer
 Implements SmartTag.ISmartTagRecognizer
End Class

Visual Studio provides a neat trick for implementing the ISmartTagRecognizer interface. After you type the line
Implements SmartTag.ISmartTagRecognizer, when you press the Enter key at the end of the line Visual Studio automatically
creates an initial implementation of the ISmartTagRecognizer interface, as shown in Listing 16.8.

Listing 16.8. An Initial Stub Implementation of a Smart Tag Recognizer Class

using System;
Imports System.Collections.Generic
Imports System.Text
Imports SmartTag = Microsoft.Office.Interop.SmartTag

Public Class Recognizer
 Implements SmartTag.ISmartTagRecognizer

 Public ReadOnly Property Desc(_
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagRecognizer.Desc
 Get

 End Get
 End Property

 Public ReadOnly Property Name(_
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagRecognizer.Name
 Get

 End Get
 End Property

 Public ReadOnly Property ProgId() As String _
 Implements SmartTag.ISmartTagRecognizer.ProgId
 Get

 End Get
 End Property

 Public Sub Recognize(ByVal Text As String, _
 ByVal DataType As SmartTag.IF_TYPE, _
 ByVal LocaleID As Integer, _
 ByVal RecognizerSite As SmartTag.ISmartTagRecognizerSite) _
 Implements SmartTag.ISmartTagRecognizer.Recognize

 End Sub

 Public ReadOnly Property SmartTagCount() As Integer _
 Implements SmartTag.ISmartTagRecognizer.SmartTagCount
 Get

 End Get

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Get
 End Property

 Public ReadOnly Property SmartTagDownloadURL(_
 ByVal SmartTagID As Integer) As String _
 Implements SmartTag.ISmartTagRecognizer.SmartTagDownloadURL
 Get

 End Get
 End Property

 Public ReadOnly Property SmartTagName(_
 ByVal SmartTagID As Integer) _
 As String _
 Implements SmartTag.ISmartTagRecognizer.SmartTagName
 Get

 End Get
 End Property

End Class

We must implement six properties (ProgID, SmartTagCount, Desc, Name, SmartTagDownloadURL, and SmartTagName)
and one method (Recognize). Let's start by implementing the properties.

The ProgID property is required only for COM Smart Tags. For our Smart Tag, we will return Nothing.

Public ReadOnly Property ProgId() As String _
 Implements SmartTag.ISmartTagRecognizer.ProgId

 Get
 Return Nothing
 End Get

End Property

Now let's implement the SmartTagCount property. Normally, this property should return the Integer value 1. This
property does not affect how many terms our recognizer can recognize; it affects only how many unique recognizers
our Smart Tag recognizer class provides. For simplicity, it usually is easiest to have one Smart Tag recognizer class
expose one unique recognizer:

Public ReadOnly Property SmartTagCount() As Integer _
 Implements SmartTag.ISmartTagRecognizer.SmartTagCount

 Get

 Return 1
 End Get

End Property

The Desc property takes a locale ID as an Integer and returns a String representing the description of the Smart Tag
recognizer. You can use the locale ID to provide localized descriptions, if you want to. For our purposes, the code will
return a simple description String for all locales:

Public ReadOnly Property Desc(_
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagRecognizer.Desc
 Get
 Return "Recognizes Part Numbers in PN#### format."
 End Get

End Property

The Name property takes a locale ID as an Integer and returns a String representing the name of the Smart Tag
recognizer. When the Smart Tag is listed in an Office dialog box, this name will display in parentheses to the right of the
string returned by SmartTagCaption in the Action class. Name should return a string no longer than 30 characters. We'll
return the string "English" to indicate to the user that our Smart Tag is not localized into other locales:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

return the string "English" to indicate to the user that our Smart Tag is not localized into other locales:

Public ReadOnly Property Name(_
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagRecognizer.Name

 Get
 Return "English"
 End Get

End Property

The SmartTagDownloadURL property takes a Smart Tag ID as an Integer and returns a URL as a String where Smart Tag
actions associated with this recognizer can be downloaded from. For this example, we will be providing the Smart Tag
action class in the same DLL, so we will always return Nothing.

Public ReadOnly Property SmartTagDownloadURL(_
 ByVal SmartTagID As Integer) As String _
 Implements SmartTag.ISmartTagRecognizer.SmartTagDownloadURL

 Get
 Return Nothing
 End Get

End Property

This is the first property we have seen that is passed a smartTagID as a parameter. A Smart Tag ID is an Integer value that
for this recognizer class will always be passed 1 because the code returns 1 for the SmartTagCount property. If the code
returned some other number for SmartTagCountsay, 5all methods that are passed a Smart Tag ID parameter in the
recognizer class would be called five times, once with smartTagID set to 1, then 2, then 3, and so on. This lets one
Smart Tag recognizer class provide multiple Smart Tags recognizers.

The SmartTagName property takes a Smart Tag ID as an Integer and returns a unique identifier as a String for the Smart
Tag. The identifier must be in the form namespaceURI#tagname. A valid namespace URI would be something like a
company Web site's URL followed by a unique directory for the Smart Tag name. So in our case, we will use the URL
http://www.aw-bc.com/VSTO. For the tag name, we will use our Smart Tag namespace PartNumberSmartTag. The
critical thing when constructing your Smart Tag name is to make sure that it will be unique and not conflict with Smart
Tags released by other companies or by your company:

Public ReadOnly Property SmartTagName(_
 ByVal SmartTagID As Integer) _
 As String _
 Implements SmartTag.ISmartTagRecognizer.SmartTagName

 Get
 Return "http://www.aw-bc.com/VSTO#PartNumberSmartTag"
 End Get

End Property

Now we have arrived at the method that does all the work of recognizing text in the document: the Recognize method.
The method is passed parameters very similar to those passed to Recognize in Listing 16.7. The text to be looked at by
our code is passed in as a String. The locale ID is passed in if our recognizer needs to recognize different text depending
on the locale. An instance of the ISmartTagRecognizerSite interface is passed in as well. We will use this interface to
associate a property bag with any text we recognize in the document.

Text that is recognized is marked with a property bag. The property bag can be emptybut for this example, we will stick
a namevalue pair in the property bag to store a price. When we find some text we recognize, we must create a new
property bag using ISmartTagRecognizerSite's GetNewPropertyBag method. This method returns an
ISmartTagProperties object. We can use this object to write namevalue pairs into the property bag through
ISmartTagProperties Write method that takes a key as a String and a value as a String. For this example, we will generate
a property with key of "Price" and value being the price of the part identified by the part number we locate in the
document.

To tell Office where recognized text is found, you must call ISmartTagRecognizerSite's CommitSmartTag method. This
method takes the Smart Tag name as a String (we just call our existing implementation of SmartTagName to get this),
the 1-based start position of the recognized text as an Integer, the length of the text we recognized as an Integer, and the
ISmartTagProperties object we created using the GetNewPropertyBag method. This is a little different from the
document-level custom class we created in Listing 16.7, where the start position of the recognized text was 0-based.

Listing 16.9 shows the final implementation of our Recognizer class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 16.9. The Final Implementation of a Smart Tag Recognizer Class

Imports System.Collections.Generic
Imports System.Text
Imports SmartTag = Microsoft.Office.Interop.SmartTag

Public Class Recognizer
 Implements SmartTag.ISmartTagRecognizer

 Public ReadOnly Property Desc(_
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagRecognizer.Desc

 Get
 Return "Recognizes Part Numbers in PN#### format."
 End Get

 End Property

 Public ReadOnly Property Name(_
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagRecognizer.Name

 Get
 Return "English"
 End Get

 End Property

 Public ReadOnly Property ProgId() As String _
 Implements SmartTag.ISmartTagRecognizer.ProgId

 Get
 Return Nothing
 End Get

 End Property

 Public Sub Recognize(ByVal Text As String, _
 ByVal DataType As SmartTag.IF_TYPE, _
 ByVal LocaleID As Integer, _
 ByVal RecognizerSite As SmartTag.ISmartTagRecognizerSite) _
 Implements SmartTag.ISmartTagRecognizer.Recognize

 Dim textToFind As String = "PN"
 Const length As Integer = 6 ' Found part numbers will
 ' always be 6 characters long

 Dim startIndex As Integer = 0
 Dim index As Integer = 0

 While Text.IndexOf(textToFind, startIndex) >= 0
 index = Text.IndexOf(textToFind, startIndex)
 If index + length <= Text.Length Then
 Dim partNumber As String = Text.Substring(index, length)
 Dim price As String = ""
 If IsValidPart(partNumber, price) Then
 Dim props As SmartTag.ISmartTagProperties = _
 RecognizerSite.GetNewPropertyBag()

 props.Write("Price", price)
 RecognizerSite.CommitSmartTag(SmartTagName(1), _
 index + 1, length, props)
 End If
 End If

 startIndex = index + textToFind.Length
 End While

 End Sub

 Public ReadOnly Property SmartTagCount() As Integer _
 Implements SmartTag.ISmartTagRecognizer.SmartTagCount

 Get
 Return 1
 End Get

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Get

 End Property

 Public ReadOnly Property SmartTagDownloadURL(_
 ByVal SmartTagID As Integer) As String _
 Implements SmartTag.ISmartTagRecognizer.SmartTagDownloadURL

 Get
 Return Nothing
 End Get

 End Property

 Public ReadOnly Property SmartTagName(_
 ByVal SmartTagID As Integer) As String _
 Implements SmartTag.ISmartTagRecognizer.SmartTagName

 Get
 Return "http://www.aw-bc.com/VSTO#PartNumberSmartTag"
 End Get

 End Property

 Private Function IsValidPart(ByVal partNumber As String, _
 ByRef price As String) As Boolean

 Dim numericPartNumber As Int32 = 0
 Try
 numericPartNumber = _
 Convert.ToInt32(partNumber.Substring(2, 4))
 Catch
 End Try

 ' Only part numbers greater than 1000 are valid
 If numericPartNumber > 1000 Then
 Dim rnd As New Random()
 price = rnd.Next(100).ToString()
 Return True
 End If

 price = "N/A"
 Return False

 End Function

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating an Action Class
Now that we have a complete Smart Tag recognizer class, we will create a Smart Tag action class. Right-click the class
library project in Solution Explorer, and choose Add and then Class to add a second class to the project. Visual Studio
will create a class called Class2 by default. Add a Imports SmartTag = Microsoft.Office.Interop.SmartTag line to the using
statements at the top of the class to bring the Smart Tag interfaces into a namespace called SmartTag. Rename Class2
to be a class called Action, and declare the class to implement SmartTag.ISmartTagAction. The class now looks like this:

Imports System.Collections.Generic
Imports System.Text
Imports SmartTag = Microsoft.Office.Interop.SmartTag

Public Class Action
 Implements SmartTag.ISmartTagAction

End Class

Use the Implement Interface trick again for implementing the ISmartTagAction interface. Visual Studio automatically
creates an initial implementation of the ISmartTagAction interface when you press Enter after typing the line Implements
SmartTag.ISmartTagAction, as shown in Listing 16.10.

Listing 16.10. An Initial Stub Implementation of a Smart Tag Action Class

Imports System.Collections.Generic
Imports System.Text
Imports SmartTag = Microsoft.Office.Interop.SmartTag

Public Class Action
 Implements SmartTag.ISmartTagAction

 Public ReadOnly Property Desc(_
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagAction.Desc

 Get

 End Get

 End Property

 Public Sub InvokeVerb(ByVal VerbID As Integer, _
 ByVal ApplicationName As String, ByVal Target As Object, _
 ByVal Properties As SmartTag.ISmartTagProperties, _
 ByVal Text As String, ByVal Xml As String) _
 Implements SmartTag.ISmartTagAction.InvokeVerb

 End Sub

 Public ReadOnly Property Name(_
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagAction.Name

 Get

 End Get

 End Property

 Public ReadOnly Property ProgId() As String _
 Implements SmartTag.ISmartTagAction.ProgId

 Get

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Get

 End Get

 End Property

 Public ReadOnly Property SmartTagCaption(_
 ByVal SmartTagID As Integer, _
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagAction.SmartTagCaption

 Get

 End Get

 End Property

 Public ReadOnly Property SmartTagCount() As Integer _
 Implements SmartTag.ISmartTagAction.SmartTagCount

 Get

 End Get

 End Property

 Public ReadOnly Property SmartTagName(_
 ByVal SmartTagID As Integer) As String _
 Implements SmartTag.ISmartTagAction.SmartTagName

 Get

 End Get

 End Property

 Public ReadOnly Property VerbCaptionFromID(_

 ByVal VerbID As Integer, ByVal ApplicationName As String, _
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagAction.VerbCaptionFromID

 Get

 End Get

 End Property

 Public ReadOnly Property VerbCount(_
 ByVal SmartTagName As String) As Integer _
 Implements SmartTag.ISmartTagAction.VerbCount

 Get

 End Get

 End Property

 Public ReadOnly Property VerbID(ByVal SmartTagName As String, _
 ByVal VerbIndex As Integer) As Integer _
 Implements SmartTag.ISmartTagAction.VerbID

 Get

 End Get

 End Property

 Public ReadOnly Property VerbNameFromID(_
 ByVal VerbID As Integer) As String _
 Implements SmartTag.ISmartTagAction.VerbNameFromID

 Get

 End Get

 End Property

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

We must implement ten properties (ProgID, SmartTagCount, Desc, Name, SmartTagCaption, SmartTagName,
VerbCaptionFromID, VerbCount, VerbID, and VerbNameFromID) and one method (InvokeVerb). Let's start by
implementing the properties.

The ProgID property returns Nothing because it is used only for COM Smart Tags:

Public ReadOnly Property ProgId() As String _
 Implements SmartTag.ISmartTagAction.ProgId

 Get
 Return Nothing
 End Get

End Property

Now let's implement the SmartTagCount property. As described earlier, for simplicity, it is usually easiest to return just
1. This does not affect how many available "verbs" or menu commands we can provide for a recognized part number:

Public ReadOnly Property SmartTagCount() As Integer _
 Implements SmartTag.ISmartTagAction.SmartTagCount

 Get
 Return 1
 End Get

End Property

The Desc property takes a locale ID as an Integer and returns a String representing the description of the Smart Tag
action. You can use the locale ID to provide localized descriptions, if you want to. For our purposes, the code will return
a simple description String for all locales:

Public ReadOnly Property Desc(_
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagAction.Desc

 Get
 Return "Provides actions for the part number Smart Tag."
 End Get

End Property

The Name property takes a locale ID as an Integer and returns a String representing the name of the Smart Tag action.
The name should match what you returned for your Recognizer class:

Public ReadOnly Property Name(_
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagAction.Name

 Get
 Return "The PN#### Smart Tag"
 End Get

End Property

The SmartTagName property takes a Smart Tag ID as an Integer and returns a unique identifier as a String for the Smart
Tag. The identifier should match what was returned in the Recognizer class implementation:

Public ReadOnly Property SmartTagName(_
 ByVal SmartTagID As Integer) As String _
 Implements SmartTag.ISmartTagAction.SmartTagName

 Get
 Return "http://www.aw-bc.com/VSTO#PartNumberSmartTag"
 End Get

End Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Property

The SmartTagCaption property takes a Smart Tag ID as an Integer and a locale ID as an Integer. It returns a String that will
be the caption used in the pop-up menu for the recognized text. It will also be used as the primary name of the Smart
Tag in Office's Smart Tag dialog boxes:

Public ReadOnly Property SmartTagCaption(_
 ByVal SmartTagID As Integer, _
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagAction.SmartTagCaption

 Get
 Return "Part Number Smart Tag"
 End Get

End Property

The VerbCount property returns as an Integer how many verbs or menu commands that this Action will provide to the
Smart Tag menu. It is passed as a parameter the Smart Tag name for which the verb count is requested; you can
ignore this parameter if you returned 1 for the SmartTagCount property. For this example, we provide two verbs or
menu commands: one to display the price and the other to open a Web page to the price. So the implementation of
VerbCount returns 2:

Public ReadOnly Property VerbCount(_
 ByVal SmartTagName As String) As Integer _
 Implements SmartTag.ISmartTagAction.VerbCount

 Get
 Return 2
 End Get

End Property

The VerbID property gets a unique Integer identifier called a verb ID for each verb. This property is passed a verb index
as an Integer that will be a number 1 through the number of verbs returned from the VerbCount implementation. For
simplicity, we reuse the verbIndex passed into this method as the verb ID:

Public ReadOnly Property VerbID(ByVal SmartTagName As String, _
 ByVal VerbIndex As Integer) As Integer _
 Implements SmartTag.ISmartTagAction.VerbID

 Get
 Return VerbIndex
 End Get

End Property

The VerbCaptionFromID property is passed a verb ID number as an Integer, the application name showing the Smart Tag
as a String, and the locale ID as an Integer. Because we are using the verb index as the verb ID because of how we
implemented VerbID, the verb ID passed in will be 1 through the number of verbs returned from VerbCount. The
property returns a String for the menu command caption to use for each verb supported by the action class.

Within the string, you can use three forward slashes in a row to create submenus and the ampersand (&) characters to
tell Office what to use for accelerators in the menus. Here, we have defined the return strings so we will have a Part
Number menu with two submenus: Show part price and Show part Web page. We have also indicated that N should be
the accelerator for the Part Number menu, P should be the accelerator for the Show part price submenu, and W should
be the accelerator for the Show part Web page submenu.

Public ReadOnly Property VerbCaptionFromID(_
 ByVal VerbID As Integer, ByVal ApplicationName As String, _
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagAction.VerbCaptionFromID

 Get
 Select Case VerbID
 Case 1
 Return "Part &Number///Show part &price..."
 Case 2
 Return "Part &Number///Show part &web page..."
 Case Else
 Return Nothing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Return Nothing
 End Select
 End Get

End Property

The VerbNameFromID property takes a verb ID as an Integer and returns an identifier String for each verb. We return
some unique strings for our two verbs:

Public ReadOnly Property VerbNameFromID(_
 ByVal VerbID As Integer) As String _
 Implements SmartTag.ISmartTagAction.VerbNameFromID

 Get
 Select Case VerbID
 Case 1
 Return "ShowPartPrice"
 Case 2
 Return "ShowPartWebPage"
 Case Else
 Return Nothing
 End Select
 End Get

End Property

Now we have arrived at the method that does all the work of handling a selected verb: the InvokeVerb method. This
method takes the verb ID as an Integer, the name of the application the Smart Tag is being displayed in as a String, the
property bag associated with the recognized text as an ISmartTagProperties object, the text that was recognized as a
String, and the XML that was recognized as a String.

The implementation of InvokeVerb for this example first checks what verb is passed. Because the Smart Tag returned 2
for VerbCount, it will be passed a verb ID of 1 or 2. If the verb ID is 1, the code displays the price of the item by using
the ISmartTagProperties object to read the price value the Recognizer class wrote to the property bag when it
recognized the text. If the verb ID is 2, the code displays a dialog box threatening to launch a Web page for the part
number, which is passed in as the recognized text string. Listing 16.11 shows the complete implementation of our
Action class. Because the Action class displays a message box, be sure to add a reference to the
System.Windows.Forms library.

Listing 16.11. The Final Implementation of a Smart Tag Action Class

Imports System.Collections.Generic
Imports System.Text
Imports SmartTag = Microsoft.Office.Interop.SmartTag

Public Class Action
 Implements SmartTag.ISmartTagAction

 Public ReadOnly Property Desc(_
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagAction.Desc

 Get
 Return "Provides actions for the part number Smart Tag."
 End Get

 End Property

 Public Sub InvokeVerb(ByVal VerbID As Integer, _
 ByVal ApplicationName As String, ByVal Target As Object, _
 ByVal Properties As SmartTag.ISmartTagProperties, _
 ByVal Text As String, ByVal Xml As String) _
 Implements SmartTag.ISmartTagAction.InvokeVerb

 Select Case VerbID
 Case 1
 Dim price As String = Properties.Read("Price")
 MsgBox(String.Format(_
 "The price of the part is {0}.", price))
 Exit Select
 Case 2
 MsgBox(String.Format(_
 "Launching web page for part {0}.", Text))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "Launching web page for part {0}.", Text))
 Exit Select
 End Select

 End Sub

 Public ReadOnly Property Name(_
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagAction.Name

 Get
 Return "The PN#### Smart Tag"
 End Get

 End Property

 Public ReadOnly Property ProgId() As String _
 Implements SmartTag.ISmartTagAction.ProgId

 Get
 Return Nothing
 End Get

 End Property

 Public ReadOnly Property SmartTagCaption(_
 ByVal SmartTagID As Integer, _
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagAction.SmartTagCaption

 Get
 Return "Part Number Smart Tag"
 End Get

 End Property

 Public ReadOnly Property SmartTagCount() As Integer _
 Implements SmartTag.ISmartTagAction.SmartTagCount

 Get
 Return 1
 End Get

 End Property

 Public ReadOnly Property SmartTagName(_
 ByVal SmartTagID As Integer) As String _
 Implements SmartTag.ISmartTagAction.SmartTagName

 Get
 Return "http://www.aw-bc.com/VSTO#PartNumberSmartTag"
 End Get

 End Property

 Public ReadOnly Property VerbCaptionFromID(_
 ByVal VerbID As Integer, ByVal ApplicationName As String, _
 ByVal LocaleID As Integer) As String _
 Implements SmartTag.ISmartTagAction.VerbCaptionFromID

 Get
 Select Case VerbID
 Case 1
 Return "Part &Number///Show part &price..."
 Case 2
 Return "Part &Number///Show part &web page..."
 Case Else
 Return Nothing
 End Select
 End Get

 End Property

 Public ReadOnly Property VerbCount(_
 ByVal SmartTagName As String) As Integer _
 Implements SmartTag.ISmartTagAction.VerbCount

 Get
 Return 2
 End Get

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Get

 End Property

 Public ReadOnly Property VerbID(ByVal SmartTagName As String, _
 ByVal VerbIndex As Integer) As Integer _
 Implements SmartTag.ISmartTagAction.VerbID

 Get
 Return VerbIndex
 End Get

 End Property

 Public ReadOnly Property VerbNameFromID(_
 ByVal VerbID As Integer) As String _
 Implements SmartTag.ISmartTagAction.VerbNameFromID

 Get
 Select Case VerbID
 Case 1
 Return "ShowPartPrice"
 Case 2
 Return "ShowPartWebPage"
 Case Else
 Return Nothing
 End Select
 End Get

 End Property

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Registering and Trusting an Application-Level Smart Tag Class Library
After you have implemented your Recognizer and Action class completely in your class library project, build the project
to create a class library DLL. Then copy the class library DLL that was built to a convenient directory. In this example,
we copy it to C:\PartNumberSmartTag\PartNumberSmartTag.dll.

Office can load the Smart Tag DLL we have created directly and without any of the problems associated with managed
add-ins described in Chapter 23, "Developing COM Add-Ins for Word and Excel." Office will check the .NET 1.1 security
policy to decide whether to trust the DLL. If there is a policy in place to trust the Smart Tag DLL, Office will load the
Smart Tag DLL into its own application domain.

We must do three things to get our Smart Tag to work:

1. We must register the Smart Tag recognizer class in the registry.

2. We must register the Smart Tag action class in the registry.

3. We must configure .NET 1.1 policy (not 2.0 policy) to trust the Smart Tag DLL.

The final requirement seems counterintuitive; why would we have to configure .NET 1.1 policy? After all, we built the
Smart Tag with Visual Studio 2005 against .NET 2.0. The reason is that trust decisions for managed Smart Tags loaded
by Office 2003 are made based on .NET 1.1 policy even when Office is running a newer version of .NET.

Registering the Smart Tag Recognizer Class in the Registry

To register the Smart Tag class library in the registry, we must add a registry entry for the Recognizer class and a
registry entry for the Smart Tag Recognizer class. Recognizer classes are registered under this path in the registry:

HKEY_CURRENT_USER\Software\Microsoft\Office\Common\Smart Tag\Recognizers

Under this path, we must create a new key that has as its name the full name of the managed Recognizer class. In our
case, we created a class called Recognizer in the namespace PartNumberSmartTag. Therefore, the full name of the
managed Recognizer class is PartNumberSmartTag.Recognizer. We will create a new registry key named as follows:

HKEY_CURRENT_USER\Software\Microsoft\Office\Common\Smart Tag\
 Recognizers\PartNumberSmartTag.Recognizer

Under the new PartNumberSmartTag.Recognizer registry key, we will create a string value called Filename that is set to
the full filename of the Smart Tag DLL (in our example, C:\PartNumberSmartTag\PartNumberSmartTag.dll).

We will also create under the new PartNumberSmartTag.Recognizer registry key a DWORD value called Managed that
we will set to 1.

Listing 16.12 shows the final registry settings for registering the Recognizer class when exported to a .reg file.

Listing 16.12. Registry Entries to Register the Recognizer Class

[HKEY_CURRENT_USER\Software\Microsoft\Office\Common\Smart Tag\
Recognizers\PartNumberSmartTag.Recognizer]
"Filename"="c:\\PartNumberSmartTag\\PartNumberSmartTag.dll"
"Managed"=dword:00000001

Registering the Smart Tag Action Class in the Registry

With the Recognizer class registered, the next step is to register the Smart Tag Action class in the registry. Action
classes are registered under this path in the registry:

HKEY_CURRENT_USER\Software\Microsoft\Office\Common\Smart Tag\Actions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HKEY_CURRENT_USER\Software\Microsoft\Office\Common\Smart Tag\Actions

Under this path, we must create a new key that has as its name the full name of the managed Action class. In our case,
we created a class called Action in the namespace PartNumberSmartTag. Therefore, the full name of the managed
Action class is PartNumberSmartTag.Action. We will create a new registry key named as follows:

HKEY_CURRENT_USER\Software\Microsoft\Office\Common\Smart Tag\
 Actions\PartNumberSmartTag.Action

Under the new PartNumberSmartTag.Action registry key, we will create a string value called "Filename" that is set to the
full filename of the Smart Tag DLL (in our example, C:\PartNumberSmartTag\PartNumberSmartTag.dll).

We will also create under the new PartNumberSmartTag.Action registry key a DWORD value called Managed that we will
set to 1.

Listing 16.13 shows the final registry settings for registering the Action class when exported to a .reg file.

Listing 16.13. Registry Entries to Register the Action Class

[HKEY_CURRENT_USER\Software\Microsoft\Office\Common\Smart Tag\
Actions\PartNumberSmartTag.Action]
"Filename"="c:\\PartNumberSmartTag\\PartNumberSmartTag.dll"
"Managed"=dword:00000001

Setting Up .NET 1.1 Security Policy to Trust the Smart Tag Class Library

The final step is to set up .NET 1.1 security policy to trust the Smart Tag class library. We will consider how to configure
.NET security policy in more detail in Chapter 19, ".NET Code Security." For now, we will use a command-line tool called
caspol.exe that configures .NET security policy. From the command line, navigate to the version of caspol.exe that will
be at a path such as C:\Windows\Microsoft.NET\Framework\v1.1.4322. In this directory, run the following command:

caspol -user -addgroup "All_Code" url
c:\PartNumberSmartTag\PartNumberSmartTag.dll FullTrust -name
"PartNumberSmartTag"

This command adds user-level security policy under the existing code group called All_Code, a new code group called
PartNumberSmartTag that grants full trust to our DLL C:\PartNumberSmartTag\PartNumberSmartTag.dll.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Running and Testing the Application-Level Smart Tag
Now launch Word or Excel to test the Smart Tag. Type text such as PN1234 in Word or in an Excel cell. You will see
that a Smart Tag appears. Click the Smart Tag indicator, and the menu shown in Figure 16.9 will display. Note that
because of the strings we returned from VerbCaptionFromID, a Part Number menu is shown with two submenus for our
two verbs. Also note the accelerators (indicated by an underlined letter in the menu caption) that were created because
of the use of the ampersand (&) character in the strings returned from VerbCaptionFromID.

Figure 16.9. The two verbs for the part number Smart Tag.

In addition, you can see the Smart Tag listed in the Smart Tags tab of the AutoCorrect dialog box, as shown in Figure
16.10. To bring up this dialog box in Word, choose AutoCorrect Options from the Tools menu. The part number Smart
Tag is in the list of Recognizers with the string returned from the SmartTagCaption (Part Number Smart Tag) and, in
parentheses, the string returned from Name (English).

Figure 16.10. The Part Number Smart Tag displayed in the Smart Tags tab.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Debugging an Application-Level Smart Tag
If you need to debug an application-level Smart Tag, make sure that the .pdb file that was built with your Smart Tag
DLL is copied to the same location where you put your Smart Tag DLL. With your class library project open, use the
Attach to Process command in the Debug menu of your project, and attach to the Office application that has your Smart
Tag loaded. Then set breakpoints in the methods you want to debugmost likely, ISmartTagRecognizer.Recognize and
ISmartTagAction.InvokeVerb.

If you need to attach the debugger earlierfor example, when the Smart Tag is first getting loadedright-click the class
library project node in the Solution Explorer window, and choose Properties. In the Properties window, click the Debug
tab. Change the Start Action to Start External Program, and enter the full path to the Office application you want to
debug. Then you can start debugging by choosing Start Debugging from the Debug menu. Doing so launches the Office
application you entered in the start action, and you will be able to debug the Smart Tag as it loads.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating an Application-Level Smart Tag Class Library in Visual Studio
To create a Smart Tag class library DLL, start Visual Studio. Choose New Project from the File menu, and create a new
class library project as shown in Figure 16.8.

Figure 16.8. Creating a new class library project.

[View full size image]

With the class library project created, right-click the Project node, and choose Add Reference. Click the COM tab, and
add a reference to the Microsoft Smart Tags 2.0 Type Library, as shown in Figure 16.7. Doing so gives you a definition
for the two interfaces you have to implement: ISmartTagRecognizer and ISmartTagAction.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 17. VSTO Data Programming
A FULL TREATMENT of Microsoft's ADO.NET data programming model could easily fill an entire book of its own. Therefore,
this chapter starts with an example of how to use the Visual Studio 2005 Tools for Office (VSTO) designer to create a
data-bound customized spreadsheet without writing a single line of code. After that, the chapter examines some
ADO.NET features and then delves into the Word- and Excel-specific programming model.

To understand ADO.NET in all its complexity, read Shawn Wildermuth's Pragmatic ADO.NET (Addison-Wesley, 2003)
and the data binding chapters of Windows Forms Programming in Visual Basic .NET (Addison-Wesley, 2004), by Chris
Sells and Justin Gehtland.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating a Data-Bound Customized Spreadsheet with VSTO
Creating a no-frills, data-bound, customized document using the VSTO designer requires no coding but a whole lot of
mouse clicking. What we are going to do is first tell Visual Studio about a data sourcein this case, the Northwind sample
database that comes with Officeand then drag and drop some data-bound controls onto the spreadsheet.

Defining a Data Source

Let's start Visual Studio and create a new Excel project. From Visual Studio's Data menu, choose Show Data Sources to
display the Data Sources pane. Click Add New Data Source to start the Data Source Wizard, shown in Figure 17.1.

Figure 17.1. Starting the Data Source Wizard.

[View full size image]

Choose Database, and click Next. Click New Connection when the Data Source Wizard appears. This creates the Choose
Data Source wizard, shown in Figure 17.2.

Figure 17.2. Choosing the data source.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Choose Microsoft Access Database File, and click OK to go on to the Connection dialog box, shown in Figure 17.3. The
Northwind database file typically is in the Program Files\Microsoft Office\Office11\Samples directory. If the Northwind
database file is not on your machine, customize your installation of Microsoft Access, and choose to install sample
databases. Click Browse, and find the Northwind database. No security is enforced on this database file, so the default
username Admin and a blank password are fine.

Figure 17.3. Creating the database connection.

Click OK to close the Connection Wizard and continue with the Data Source Wizard, shown in Figure 17.4.

Figure 17.4. Viewing the connection string.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note

In a real-world application with a secured database, it would be a very bad idea to have a blank
administrator password. See the section "Data Sources and Security Best Practices" later in this chapter for
more information.

As you can see in Figure 17.4, all the information about the database connection that you have just created is saved in
a connection string. In the next screen of the wizard, shown in Figure 17.5, Visual Studio asks whether you want to
save the connection string to a configuration file. For both convenience and security, it is a good idea to save that
connection string in a configuration file rather than hard-code it into your program. Again, see the section on security
best practices later in this chapter for more details.

Figure 17.5. Save the connection string in the application configuration file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The database to which we are connecting might have an enormous number of queries, tables, and columns within those
tables, and so on. To manage some of this complexity, Visual Studio enables you to choose which portions of the
database will display in Visual Studio. Let's select the entire Suppliers table and the ProductName, SupplierID,
QuantityPerUnit, and UnitPrice columns from the Products table using the final wizard screen, shown in Figure 17.6.

Figure 17.6. Choose your tables.

Finally, click Finish to exit the Data Source Wizard.

Creating Data-Bound Controls the Easy Way

The Data Sources window now contains an entry for the NorthwindDataSet. (Why dataset rather than database? We
explain exactly what we mean by dataset later in this chapter.) Expand the nodes in the tree view, as shown in Figure
17.7.

Figure 17.7. The Data Sources pane contains the dataset tree view.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice a few interesting things here. First, Visual Studio has discovered from the database that the Products table has a
relationship with the Suppliers table; the Products table appears both as a table in its own right and as a child node of
the Suppliers table. This will allow us to create master-detail views more easily.

Second, notice that the icons for the columns have "named range" icons, indicating that if you drag and drop the icon
onto the worksheet, you will get a data-bound named range to this column. The default for a column is a named range,
and the default for an entire table is a list object, but you can choose other controls by clicking the item and selecting
the drop-down list that appears. Suppose that you want to have a combo box bound to CompanyName. You can choose
ComboBox from the drop-down list as the control to use for CompanyName, as shown in Figure 17.8.

Figure 17.8. Choosing the control type.

[View full size image]

Drag the CompanyName as a combo box, the ContactName as a named range, and the entire Products table onto the
worksheet. Use the Products table that is the child of the Suppliers table in the tree view, and you will get a nice
master-detail view, shown in Figure 17.9.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 17.9. Creating the data-bound view.

[View full size image]

A whole lot of stuff has magically appeared in the component tray below the Excel designer: a dataset, two binding
sources, and two table adapters. We get into the details of what these components are for later in this chapter. For
now, compile and run the application. The result should look something like Figure 17.10. Without writing a single line
of code, you have gotten a data-bound master-detail view on an Excel spreadsheet. As you select different items from
the combo box, the named range and list object automatically update themselves.

Figure 17.10. A data-bound master-detail spreadsheet.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating a Data-Bound Customized Word Document with VSTO
We can create a similar data-bound document in Word using bookmarks rather than named ranges and a data grid
rather than an Excel List object. Create a new Word document project, and again add the Northwind database as a data
source to the Data Sources pane. Visual Studio should remember the connection string from last time, so you will not
need to configure it again.

Unfortunately, in this version of VSTO, there is no way to bind a data table to a Word table, as you can with an Excel
list object. Drag the CompanyName as a combo box, the ContactName as a Bookmark, and the entire Products table as
a data grid. Use the Products table that is the child of the Suppliers table in the tree view, and you will get a nice
master-detail view, as shown in Figure 17.11.

Figure 17.11. A data-bound master-detail Word document in the designer.

[View full size image]

When you build and run the customized Word document, again, you have a master-detail view of a data table running
in Word without writing a single line of code. The running document is shown in Figure 17.12.

Figure 17.12. The master-detail view at runtime.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Datasets, Adapters, and Sources
Now that we have seen a couple of no-coding-required examples, let's take a peek under the hood and see how data
binding actually works. Several players make data binding work, many of which can be seen on the component tray or
design surface:

A back-end data source, such as an Access database, a remote SQL Server database, a Web service, or some
other data storage and retrieval system, is where the data ultimately lives.

A dataset is a disconnected local cache of some portion of the back-end data source.

An adapter connects the dataset to the back-end data source, both to fill the dataset from the back-end source
and to update the back end with any changes. There usually is one adapter per table, which is why we saw two
adapters in the preceding example.

A binding source acts as the intermediary between the user interface control and the dataset. Although it is
possible to bind a control directly to a dataset, as discussed later in this chapter, it usually is more convenient
to go through a dedicated binding source object.

A data-bindable control provides a user interface element that enables the user to read or write the data.

The back-end data source is represented in a VSTO project by the connection string passed to the adapter; everything
else is represented by a member of the customized host item (the worksheet or document) class.

Let's take a look at these different components in more detail.

Data Sources and Security Best Practices

As you probably noticed in the Connection Wizard, all the information required to connect to the back-end data source
is stored in a connection string generated by the wizard. It typically looks something like this:

 Server=MyDataServer; Database=Customers;
 Integrated Security=true;

That is, it says where the database is located, what it is called, and how the user should be authenticated. All this
information is potentially sensitive! Use caution when embedding connection strings in your programs. Remember, even
without the source code it is very easy to figure out which strings are embedded in a managed application. This
particularly applies to connection strings in which, instead of using Windows NT integrated security, you simply embed
UserID=eric;Password=BigSecret123 directly.

Furthermore, hard-coded embedded strings in your source code make it hard for developers, testers, end users, and
database administrators to update your application should the database connection information change over time. As
discussed earlier in this chapter, Visual Studio gives you the option of embedding the connection string in the
configuration file. The automatically generated configuration file in our example above looks something like Listing 17.1.

Listing 17.1. A Typical Database Connection String in a Configuration File

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 </configSections>
 <connectionStrings>
 <add name=
 "ExcelWorkbook11.Properties.Settings.NorthwindConnectionString"
 connectionString="Provider=Microsoft.Jet.OLEDB.4.0;Data
 Source="C:\Program Files\Microsoft
 Office\OFFICE11\SAMPLES\Northwind.mdb"
 providerName="System.Data.OleDb" />
 </connectionStrings>
</configuration>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It is also a good idea to use the "principle of least privilege." This is one of the fundamental principles of secure design:
Grant exactly as much privilege as you need to get the job doneno more, no less. If your user needs to be able to read
from the database but not write to it, for example, do not specify a connection string that gives the user administrator
rights to the database. Instead, choose a connection string that specifies a username and password with read-only
access. That way, if the username and password are ever compromised, at least the attacker does not get
administrator access out of it.

Better still, do not use stored user IDs and passwords at all. Some databases use integrated Windows authentication, so
the logged-on user can use his already-authenticated credentials seamlessly. Or if your database system requires a
username and password, make the user type them rather than store them. As you'll see later in this chapter, when we
discuss adapters, you can change manually the connection string used by the adapter before it fills the dataset. That
way, you could ask the user to type his user ID and password and then generate a new connection string from that
information.

Datasets

The cornerstone of the VSTO 2005 data model, and of ADO.NET in general, is the dataset. We should motivate the
existence of datasets by describing the old way of doing data access. Back in the 20th century, you typically
communicated with a database via "ADO Classic" something like this:

1. Create and open a connection to a database.

2. Create and execute a database command (such as SELECT partnumber FROM invoices WHERE price>100).

3. Enumerate the resulting record set.

4. Close the connection.

This approach worked fairly well, but it had several drawbacks. The principal drawbacks were consequences of the fact
that this model requires a live connection to a database. If there are going to be many live connections, the server
needs to be scalable and robust, which can be expensive. Therefore, to minimize load upon the server, we want
connections to be short-lived. But because the connection is open while the user is enumerating the record set, the
connection is typically open for quite some timeas long as the user is working with the data.

Furthermore, even if the server-side expense of keeping connections open is unimportant, this model does not work
well in a world where you want to be able to work with your data even if you temporarily lack network connectivity.

A Disconnected Strategy

Database connections are both expensive and necessary; therefore, they must be managed carefully. In a typical ADO
application, much developer effort is expended writing code to ensure that the connection is open for as little time as
possible while still meeting the needs of the application's users. ADO.NET addresses the problems of ADO by going
straight to the root; if we cannot make connections inexpensive, we can at least make them less necessary. ADO.NET,
therefore, is fundamentally a disconnected strategy. A typical ADO.NET scenario goes something like this:

1. Create a DataAdapter to manage the connection to a specific database or other data source.

2. Set properties on the adapter that tell it what query to execute against the database.

3. Create a dataset to be filled.

4. Invoke a method on the adapter to take care of the details of opening a connection, executing the query, saving
the results in the dataset, and closing the connection as soon as possible.

5. Work with the data in the now-disconnected dataset.

6. When you finish working with the data, invoke a method on the adapter to reopen the connection to the
database and update it with any changes.

And indeed, as you will see later in the chapter, when we discuss adapters, VSTO does exactly this on your behalf.

Because the dataset acts much like the original database, the connection need be open only as long as it takes to fill
the dataset. After the data has been copied to the dataset, you can query and manipulate the dataset for as long as you
want without worrying that you are consuming a valuable database connection.

Furthermore, there is no reason why the data used to fill the dataset has to come from a connected database; you
could fill the dataset from an XML file, or write a program to add tables and rows to build one from scratch. Datasets
have no knowledge of where the data they contain comes from; if you need it, all that knowledge is encapsulated in the
adapter.

Note

The foregoing is not to say that old-fashioned connected data access is impossible, or even discouraged, in
ADO.NET; the DataReader class allows for traditional always-connected access to a database. Neither

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ADO.NET; the DataReader class allows for traditional always-connected access to a database. Neither
Windows Forms controls nor VSTO 2005 host items/host controls can use DataReaders for data binding,
however, so we speak of them no more in this book.

Typed and Untyped Datasets

In Solution Explorer in the Word or Excel projects we created earlier, you will find a NorthwindDataSet.xsd file
containing the database schema. This is an XML document that describes the tables, columns, and relationships that
make up the dataset. One of the child nodes in the Solution Explorer tree view is NorthwindDataSet.Designer.cs. This
file contains the automatically generated code for the dataset and table adapters.

The first line of the declaration is interesting:

Partial Class NorthwindDataSet

The generated class is partial so that if you need to add your own extensions to it, you can do so in a separate file; it is
a bad idea to edit automatically generated files. More important, this dataset extends the System.Data .DataSet class.
A System.Data.DataSet consists of a collection of data tables. As you would expect, data tables consist of a collection of
data columns and data rows. Each class exposes various collections as properties that allow you to navigate through the
dataset.

System.Data.DataSet is not an abstract class; you can create instances and fill them from any back-end data source.
But that would be an untyped dataset; the NorthwindDataSet is a typed dataset. Untyped datasets give you great
flexibility but are so general that they are somewhat harder to use.

If you were to fill an untyped dataset with data from the Northwind database file, for example, you could access a
particular datum with an expression such as this:

name = myDataSet.Tables("Products").Rows(1)("ProductName")

But that flexibility comes at a cost: You can accidentally pass in a bad table name or a bad column name, or make a
bad assumption about the type of the data stored in a column. Because none of the structure of the tables or types of
the columns is known at compile time, the compiler is unable to verify that the code will run without throwing
exceptions. Also, the IntelliSense engine is unable to provide any hints about the dataset's structure while you are
developing the code.

Typed datasets mitigate these problems. A typed dataset is a class that extends the dataset base class; it has all the
flexible, untyped features of a regular untyped dataset but also has compile-time strongly typed properties that expose
the tables by name. A typed dataset also defines typed data table and data row subclasses.

As you can see from the NorthwindDataSet.Designer.vb file, the typed dataset has public properties that enable you to
write much more straightforward code, such as this:

name = myDataSet.Products(1).ProductName

Typed datasets extend untyped datasets in many ways; some of the most important are as follows:

Tables are exposed as read-only properties typed as instances of typed data tables.

Tables have read-only properties for each column.

Tables have an indexer that returns a typed data row.

Event delegates for row change events pass typed change event arguments. Each row type has a row-changing,
a row-changed, a row-deleting, and a row-deleted event. (You may be wondering where the row-adding and
row-added events are. The changing/changed events pass a DataRowAction enumerated type to indicate whether
the row in question was newly created.)

Tables provide methods for adding and removing typed data rows.

Rows provide getters, setters, and nullity testers for each column.

In short, it is almost always a good idea to use a typed dataset. Weakly typed code is harder to read, harder to reason
about, and harder to maintain.

Adapters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Take a look at the Startup event handler in either the Word or the Excel example above. Visual Studio has generated
the code in Listing 17.2 automatically on your behalf.

Listing 17.2. Autogenerated Table-Filling Code

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 'TODO: Delete this line of code to remove the default
 'AutoFill for 'NorthwindDataSet.Products'.
 If Me.NeedsFill("NorthwindDataSet") Then
 Me.ProductsTableAdapter.Fill(Me.NorthwindDataSet.Products)
 End If
 'TODO: Delete this line of code to remove the default
 'AutoFill for 'NorthwindDataSet.Suppliers'.
 If Me.NeedsFill("NorthwindDataSet") Then
 Me.SuppliersTableAdapter.Fill(_
 Me.NorthwindDataSet.Suppliers)
 End If

 End Sub

End Class

We discuss what exactly NeedsFill is for in more detail when we discuss data caching later in this chapter and in Chapter
18, "Server Data Scenarios." But for now, this should look fairly straightforward: If the two tables need to be filled from
the back-end data source, the adapters fill the appropriate tables.

There are a number of reasons why you might want to not fill the data tables automatically in the Startup event, which
is why the comment points out that you can remove the auto-generated code. As mentioned earlier in this chapter, you
may want to require that the user enter a database password before attempting to fill the dataset. You can generate a
new connection string and then set the adapter's Connection.ConnectionString property.

Or perhaps you want to give the user the option of whether to connect to the back end. If the user is on an expensive
or slow connection, the user may want to skip downloading a large chunk of data. For any number of reasons, you may
not want to connect right away or use the default connection string, so Visual Studio allows you to modify this startup
code.

Visual Studio generates strongly typed custom adapters at the same time that it generates the typed dataset. If you
show hidden files and read through the hidden generated adapter code in NorthwindDataSet.Designers.vb, you will see
that the generated adapter has been hard-coded to connect to the database specified by the connection string in the
configuration file. The bulk of the generated adapter code consists of the query code to handle reading from the back-
end data store into the typed dataset and then taking any changes in the dataset and updating or deleting the
appropriate rows in the store.

The adapter takes care of all the details of opening the connection, executing the query, copying the data into the
dataset, and closing the connection. At this point, we have a local copy of the data, which we can use to our heart's
content without worrying about taxing the server further.

When you are done editing the local copy of the data in the dataset, you can use the adapter to update the database
with the changes by calling the Update method of the adapter. Then the adapter will take care of making the additions,
changes, and deletions to the back-end database.

Note

By default, the adapter assumes that you want optimistic concurrencythat is, other users will be able to
update the database unless you are in the process of updating the database. Other concurrency models are
possible but beyond the scope of this text. If you want either pessimistic concurrency (that is, the database
remains locked the whole time that you have the offline dataset) or destructive concurrency (that is, the
database is never locked, even when multiple people are writing at once), consult a reference on ADO.NET
to see how to configure your adapter appropriately.

Using Binding Sources As Proxies

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Why does Visual Studio bind the controls to a BindingSource proxy object, rather than binding controls directly to the
data table?

The reason is because the control can bind to the proxy even if the data in the table is not currently available. Perhaps
the data table is going to be derived from a call to a Web service, which will not happen until long after the initialization
is complete, or until the user types his password or clicks a button to start the database connection.

The proxy object is created when the customization starts, and controls can be bound to it even if no "real" data is
available. When the real data is available, the binding source updates the controls. It is essentially just a thin "shim"
that makes it easier to set up bindings before all the data is available.

As you saw in the examples, multiple controls can share the same binding source and, therefore, have the same
currencythat is, when one control is updated, every other control linked to the same binding source is also updated
automatically. Controls on different worksheets or even on the actions pane can share binding sources and thereby
share currency. You will learn about currency management in more detail later in this chapter.

Data-Bindable Controls

The last piece of the data binding puzzle is the host control or Windows Forms control on the spreadsheet or document
that actually displays the bound data. There are two flavors of data-bindable controls: simple and complex. Controls
that can bind a single datum to a particular property are simple-data-bindable. Controls that can bind multiple rows
and/or columns are complex-data-bindable.

In the preceding examples, the list object in Excel and the combo box and data grid Windows Forms controls are
complex-data-bindable; the list object and data grid display multiple rows and columns from a table, and the combo
box displays multiple rows from a single column. The bookmark and named range controls, by contrast, are simple-
data-bindable; only a single datum is bound to the Value property of the named range.

All the Windows Forms controls are simple-data-bindable, as are almost all the Word and Excel host items and host
controls. (There is one exception: The Word XMLNodes host control is neither simple- nor complex-data-bindable.) Of
the host items and host controls, only Excel's list object is complex-data-bindable.

The behind-the-scenes mechanisms by which controls implement data binding and manage currency are fairly complex;
we cover them in more detail toward the end of this chapter. But first, now that we have gotten a little context as to
what all these parts are and how they relate, let's take a look at a somewhat more labor-intensive way to do data
binding in Excel. This time, we are going to write a few lines of code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Another Technique for Creating Data-Bound Spreadsheets
Unlike our previous example, in this case we do not define ahead of time where the back-end data store is located; you
have to write a few lines of code to obtain the data.

Create a new Excel project, and choose Data > Microsoft Office Excel Data > XML > XML Source to display the XML
Source pane. As you can see, no XML schemas are mapped into this document, so click the XML Maps button, and add
the schema file shown in Listing 17.3.

Listing 17.3. A Schema for a Two-Table Dataset

<?xml version="1.0"?>
<xs:schema
 id="OrderDataSet"
 targetNamespace="http://myschemas/Order.xsd"
 xmlns="http://myschemas/Order.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Order">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Customer" type="xs:string"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="Book" minOccurs="0"
 maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Title" type="xs:string"
 minOccurs="0" />
 <xs:element name="ISBN" type="xs:string"
 minOccurs="0" />
 <xs:element name="Price" type="xs:double"
 minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

This is a dataset schema that defines an Order as consisting of a single Customer and any number of Books, where
each book has a Title, ISBN, and Price. In a database, this would be organized as two related tables, as you will see.

The structure of the XML schema then appears in the XML Source pane, and you can drag and drop elements of the
schema onto the spreadsheet. Try dragging the Customer node onto a cell. The single datum creates a named range
host control. If you then drag over the Book node, you get a List object. Also, Visual Studio has again created a dataset
source file. Visual Studio knows nothing about what the source of the data will be, however, so it does not generate any
adapters.

Next, let's add a binding source. From the Toolbox, find the binding source component in the Data category. Drag it
onto the spreadsheet. A binding source component appears in the component tray. Rename the binding source
OrderBookBindingSource, using the properties window. Then click the list object you created by dragging the Book node
onto the worksheet. In the Properties window, set the DataSource of the list object to the OrderBookBindingSource you
created.

If you compile and run the customization, not much will happen. The data binding source is just a dummy; no actual
data is in there. Also, there is no instance of the dataset on the components tray, so there is no chance that data will
ever be associated with this binding source as things stand now.

Notice in Figure 17.13 that the project system has added the schema to the project automatically; it will generate a
typed dataset for this schema and add it to the project as well. But that class is just source code; the project system
does not know yet what it is going to look like when compiled. Well, then, let's compile it. Build the project, but do not
run it.

Figure 17.13. The XML Source pane.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[View full size image]

Now if you pop open the toolbox, you will see a new set of tools under the name of the project. There should be an
OrderDataSet item. Drag it over onto the spreadsheet's component tray, and drop it; doing so adds an instance of the
typed dataset to the customized worksheet class.

Tip

Alternatively, you can add this typed dataset to your project before compiling if you open the ToolBox tab
on the left side of the designer, and drag and drop the dataset component onto the design surface. When
you drag and drop a dataset component, Visual Studio shows you a combo box that enables you to choose
among all available typed datasets referenced by or in your project. This combo box shows you the new
dataset even if you have not compiled your project.

We have gotten most of the parts we need: The binding source is connected to the list object, but the binding source
does not yet know that the dataset we have just dropped onto the component tray is important.

Click the book binding source in the component tray, and take a look at its Property pane. Start by clicking the
DataSource drop-down list, and navigate the tree view to select Other Data Sources > Sheet1 List Instances >
OrderDataSet1. Then click the DataMember property drop-down list, and select the Book table, as shown in Figure
17.4.

Figure 17.14. Setting the DataSource property of the binding source.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note

Do not forget to set the DataMember property when binding to a table. Without it, the binding data source
will attempt to extract the columns for the table from the dataset itself, not from the Book table. This will
fail at runtime.

We have gotten almost everything we need; the only thing left is to put some data in the typed dataset instance we
have added. Typically, we would fill the dataset by creating an adapter to talk to some external database. For this
example, we just fill the typed dataset manually, using the code in Listing 17.4. (You could also fill it by loading XML out
of a file or downloading XML from a Web service.)

Listing 17.4. Filling a Typed Dataset from Scratch

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 ' An order has a customer column
 Me.OrderDataSet1.Order.AddOrderRow("Vlad the Impaler")
 ' A book has a title, ISBN and price, and is associated with
 ' a particular order.
 Me.OrderDataSet1.Book.AddBookRow("Blood For Dracula", _
 "0-123-45678-9", 34.95, Me.OrderDataSet1.Order(0))
 Me.OrderDataSet1.Book.AddBookRow("Fang Attack!", _
 "9-876-54321-0", 14.44, Me.OrderDataSet1.Order(0))

 End Sub

End Class

Now build and execute the customized spreadsheet. You'll see in Figure 17.15 that when the Startup event runs and
creates the new row in the book table, the data binding layer automatically updates the list object.

Figure 17.15. The list object is bound to the data table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 17.15. The list object is bound to the data table.

Furthermore, data binding to list objects goes both ways; updating the data in the host control propagates the changes
back to the data table.

Complex and Simple Data Binding

What you have just seen is an example of complex data binding, so named not because it is particularly difficult, but
because many pieces of data are bound at once to a relatively complicated host control. Controls must be specially
written to support complex data binding. By contrast, simple data binding binds a single datum to a single property of a
host control.

Note that nothing happened to the Customer cell when we ran the code. Back in the designer, click the single-celled
range you mapped to the Customer property earlier, and take a look at its Properties pane. If you click the Advanced
DataBinding property in the Properties pane, the dialog box shown in Figure 17.16 displays.

Figure 17.16. Creating a simple data binding.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Select the property you want to bindValueand in the Binding drop-down list, you can select Other Data Sources >
Sheet1 List Instances > OrderDataSet1 > Order > Customer. Now we have binding information that associates the
Value property on the host control with the Customer field in the dataset. When we run the code, the value from the
dataset is copied automatically into the host control, and when the dataset is changed, the binding manager keeps the
host control up to date. Note in this example that we have not created a master-details relationship between the
customer and the orders; the list object will show all orders created by all customers. For an example of creating a
master-details relationship, see Chapter 21, "Working with XML in Excel."

It does not work the other way, however. Unlike in our earlier list object example, changing the value in the cell does
not propagate that change automatically back to the dataset. Why not?

In the Data Source Update Mode drop-down list in the top-left corner of the dialog box we just looked at, there are
three choices: Never, OnValidation, and OnPropertyChanged. The last choice certainly seems like a sensible choice;
when a property on the control changes, update the data source to keep it in sync.

Unfortunately, that does not work with Excel host controls. Why? Because you can create a binding to any old property
of a host control, but we cannot change the fact that the aggregated Range objects do not source any "some property
just changed" event that the binding manager can listen to. Windows Forms Controls do source such an event, but
Word and Excel host controls do not.

This means that you need to tell the binding manager explicitly that the data source needs to be updated instead of
relying on the control to inform its binding manager for you. Fortunately, doing this is simple. Double-click the mapped
range in the designer to create a Change event handler automatically, and fill it in with code that forces the binding to
update the source:

Private Sub OrderCustomerCell_Change(ByVal Target _
 As Excel.Range) Handles OrderCustomerCell.Change
 Me.OrderCustomerCell.DataBindings("Value").WriteValue()
End Sub

This line of code gets the changed data from the named range in this case back to the dataset. Next, you need to tell
the bound dataset to accept changes made to it (because of WriteValue) by calling AcceptChanges on the dataset:

 MyDataSet.AcceptChanges()

Alternatively, if you are using a BindingSource object, you can call EndEdit on the BindingSource object.

Data Binding in Word Documents

Word also supports creating XML mapped documents. Unlike the Excel designer, however, the Word designer does not
create typed datasets automatically from mapped schemas. If you want to create a typed dataset from a schema
mapped into Word, you have to add it to the project system yourself. Just add the schema XSD file to the project and
then ensure that in its Properties pane, the Custom Tool property is set to MSDataSetGenerator. Then the build system
will create the typed dataset for you.

Because simple data binding in Word is essentially the same as in Excel, and because Excel supports complex data
binding in the list object host control, this chapter does not talk much more about data binding in Word.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Caching Data in the Data Island
When a customized document with data-bound controls starts, the datasets have to be filled in somehow before the
controls display the data. As you saw at the beginning of this chapter, if you use the Data Sources pane to create data-
bound controls, Visual Studio automatically emits code to fill the datasets using custom-generated adapters:

Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 If Me.NeedsFill("NorthwindDataSet") Then
 Me.ProductsTableAdapter.Fill(Me.NorthwindDataSet.Products)
 End If

But under what circumstances would the dataset ever not need to be filled at startup? Consider a spreadsheet with a
dataset containing a single table. One worksheet has a single datum bound to a named range. If you save that
spreadsheet, only that one datum is going to be saved; all the other information in the dataset is just a structure in
memory at runtime that will be lost when the workbook is closed. The data is potentially going to have to be fetched
anew every time the worksheet host control starts.

One of the key benefits of Word and Excel documents is that they are useful even on machines that are not connected
to networks. (Working on a spreadsheet or document on a laptop on an airplane is the canonical scenario.) It would be
unfortunate indeed if a data-bound customized document required your users always to be connected.

Fortunately, VSTO solves this problem. Click the icon for the typed dataset in the component tray and then look at the
Properties pane for this component. A Cached property defaults to False. If you set it to TRue, when you save the
document, the VSTO runtime will turn the dataset into XML and store the XML in a data island inside the document.

The next time the document starts, the VSTO runtime detects that the data island contains a cached dataset and fills in
the dataset from the cache. The call to NeedsFill in the Startup event will then return False, and the startup code will not
attempt to fill in the data from the adapter. Essentially, the NeedsFill method returns False if the object was loaded from
the cache automatically, true otherwise.

Caching Your Own Data Types

You can cache almost any kind of data in the XML data island, not just datasets. To be cacheable by the VSTO runtime,
the data must meet the following criteria:

The data must be stored in a public member variable or property of a host item (a customized worksheet,
workbook, chart sheet, or document class).

If stored in a property, the property must have no parameters and must be both readable and writable.

The runtime type of the data must be dataset (or a subclass), data table (or a subclass), or any type
serializable by the System.Xml.Serialization.XmlSerializer object.

To tell Visual Studio that you would like to cache a member variable, just add the Cached attribute to its declaration.
Make sure that you check whether the member was already filled in from the cache; the first time the document is run,
there will be no data in the cache, so you have to fill in the data somehow. You could use the code in Listing 17.5, for
example.

Listing 17.5. Auto-Generated Table-Filling Code

Public Class Sheet1

 <Cached()> _
 Public CustomerName As String

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 If Me.NeedsFill("CustomerName") Then
 Me.CustomerName = "Unknown Customer"
 End If

 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Class

Dynamically Adding and Removing Cached Members from the Data Island

Cached data can be large. What if you decide that at some point you want to stop caching a particular dataset in the
data island? Or, conversely, what if you do not want to fill in a dataset automatically and store it in the cache on the
first run of the document, but you want to start caching a member based on some other criterion? It would be
unfortunate if the only way to tell VSTO to cache a member in the data island was to tag it with the Cached attribute at
design time.

Therefore, all customized view item classes generated by a VSTO project expose four handy functions that you can call
to query and manipulate the caching semantics, as follows:

Function NeedsFill(ByVal memberName As String) As Boolean

Function IsCached(ByVal memberName As String) As Boolean

Sub StartCaching(ByVal memberName As String)

Sub StopCaching(ByVal memberName As String)

NeedsFill, we have already seen. If the named member was initialized from the data island by the VSTO runtime when
the customization started, this returns False; otherwise, it returns true.

IsCached might seem like it is just the opposite of NeedsFill, but it is not. NeedsFill tells you whether the item in
question was loaded out of the data island; IsCached tells you whether the item will be saved to the data island when
the user saves the document.

StartCaching and StopCaching dynamically add members to and remove members from the set of members that will be
saved to the data island. It is illegal to call StartCaching on a member already in the cache or StopCaching on a
member not in the cache; use IsCached to double-check, if you need to. The same rules that apply to cached members
added to the cache by the Cached attribute apply to members added dynamically; only call StartCaching on public fields
or public readable/writable properties.

Note

If a cached member is set to Nothing at the time that the document is saved, the VSTO runtime assumes
that you intended to call StopCaching on the member, and it will be removed from the data island.

Advanced Topic: Using ICachedType

Suppose that you have a large cached dataset that you loaded out of the data island when the
customization started. Serializing a dataset into XML can be a time- and memory-consuming process, so
if there have been no changes to the dataset when the document is saved, the VSTO runtime is pretty
smart about skipping the serialization.

This is also important if the user closes Word or Excel without saving the document. The host application
needs to know whether to create the "Do you want to save changes?" dialog box. If the dataset is clean,
there are no changes to save, and the dialog box should not be created.

How can VSTO tell whether a custom class added to the cached members is dirty? The VSTO runtime can
track the Change events on a dataset or data table to tell whether they are dirty, but in general, any
other types simply have to be written out every time. To prevent the "Do you want to save?" dialog box,
the VSTO runtime must pessimistically serialize the object and compare it with the state that it loaded;
again, this is potentially time-consuming.

If you require more finely grained control over the caching process for a particular member, you can
implement the ICachedType interface. This interface enables you not only to hint to the VSTO runtime
whether the item needs to be reserialized, but also allows you to abort a save or load dynamically and
receive notification when the save or load is done. Listing 17.6 shows its members.

Listing 17.6. The ICachedType Interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 17.6. The ICachedType Interface

Public Interface ICachedType
 Sub AfterLoad()
 Sub AfterSave()
 Function BeforeLoad() As Boolean
 Function BeforeSave() As Boolean
 ReadOnly Property IsDirty As Boolean
End Interface

If you implement this interface on a particular class and then add a member containing an instance to
the class, the VSTO runtime will do the following:

Call your BeforeLoad method when the item is loaded out of the cache. If you return False, the
load will be aborted.

Call your AfterLoad method when the XMLSerializer is done loading your object. (If you are
tracking the dirty state of the object, this would be a good time to set it to clean.)

Call IsDirty before saving the document; if the object has no changes since it was last loaded or
saved, return False to avoid unnecessary expensive serializations.

Call BeforeSave before saving the member to the data island. If for some reason you determine
that the object is not in a state that can be saved, you can return False, and the object will be
removed from the cache.

Call AfterSave when the XMLSerializer is done saving the document to the data island. (Again,
this would be a good time to note that the object is clean.)

Manipulating the Serialized XML Directly

Chapter 18, "Server Data Scenarios," discusses how to view and edit the contents of the data island, start and stop
caching members, and so on without actually starting Word or Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Advanced ADO.NET Data Binding: Looking Behind the Scenes
The preceding section gave some of the flavor of ADO.NET data binding; we should describe more carefully what is
happening behind the scenes here. After all, you may want to write your own code to set up data binding rather than
rely on the code generated for you by the designer.

The first thing we need to do is describe what objects work together to bind data to controls. In the Excel data binding
example, many objects were involved. To begin with, there were five objects: the list object control, the XML mapped
range control, the dataset, and the two data tables. Then each of these objects was associated with more objects that
control the binding.

Each control implements IBindableComponent, so each control has a DataBindings property that returns an instance of
ControlBindingsCollection. This object maintains a collection of Binding objects, one for each simple data binding. The
collection is indexed by the name of the property, which has been simple-data-bound.

Each Binding object contains all the information necessary to describe the binding: what member of what data source is
bound to what property of what control, how the data is to be formatted, and so on.

One important member of the Binding object is the BindingManager Base property. The binding manager is the object
that actually does the work of the data binding: listening to changes in the data source and bound controls, and
ensuring that they stay synchronized.

The binding manager for data tables and other list data sources keeps track of the currency of the data source. If you
bind a list to a control that displays a single datum, the control will display the current item as determined by the
currency manager. (Because we'll almost always be talking about binding to list data sources, we use binding manager
and currency manager interchangeably throughout.)

Most of the time, each binding source has exactly one currency manager associated with it; two controls bound to the
same binding source share a currency manager and, therefore, share currency. In the event that you want to have two
controls bound to a single binding source, but with different currency, each control needs to have its own binding
context. A binding context is a collection that keeps track of pairs of binding sources and binding managers. Within each
context, every binding source has a unique binding manager, but two contexts can associate different managers with
the same source, thereby keeping two or more currencies in one binding source.

In typical scenarios, there is only one binding context, so this point is largely moot. Even when you have only one, the
binding context does have one use: In complex-data-binding, the binding context exposed by a list object lets you
obtain the currency manager for the binding source.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Binding-Related Extensions to Host Items and Host Controls
All data-bindable host items and host controls allow you to bind any single datum to any writable property. These
objects implement IBindableComponent, which defines two properties:

Property BindingContext As BindingContext

ReadOnly Property DataBindings As ControlBindings- Collection

Typically, you will have only one binding context. Should you need to have two controls bound to the same list data
source, but with different currency for each, you can create new binding contexts and assign them to the controls as
you want. Each host item and host control will raise a BindingContextChanged event if you do.

The ControlBindingsCollection object has many methods for adding and removing binding objects; there is one binding
for each bound property on the control. It also has a read-only indexer that maps the name of a property to its binding
object.

The list object aggregate in Excel has a large number of new properties, methods, and events added on to support
complex data binding. We described the view extensions earlier; now that we have covered how data binding works, we
can discuss the data model extensions.

New Data-Related List Object Host Control Properties and Methods

The two most important properties on the ListObject host control determine what data source is actually complex-data-
bound to the control:

 Public Property DataSource As Object
 Public Property DataMember As String

The reason that the list object divides this information into two properties is because some data sources contain
multiple lists, called members. You could set the DataSource property to a dataset, for example, and the DataMember
property to the name of a data table contained by the dataset.

The properties can be set in any order, and binding will not commence until both are set to sensible values. It usually is
easier, however, to use one of the SetDataBinding methods to set both properties at the same time:

Public Sub SetDataBinding(ByVal dataSource As Object)
Public Sub SetDataBinding(ByVal dataSource As Object, _
 ByVal dataMember As String)
Public Sub SetDataBinding(ByVal dataSource As Object, _
 ByVal dataMember As String, _
 ByVal ParamArray mappedColumns As String())

Notice that in the last overload, you can specify which columns in the data table are to be bound. Doing so proves quite
handy if you have a large, complicated table that you want to display only a portion of, or if you want to change the
order in which the columns display.

In some cases, the data source needs no further qualification by a data member, so you can leave it blank. In the
preceding example, the designer automatically generates code that creates a BindingSource proxy object, which needs
no further qualification. The generated code looks something like the code in Listing 17.7.

Listing 17.7. Setting up the Binding Source

Me.OrderBookBindingSource = New System.Windows.Forms.BindingSource()
Me.OrderBookBindingSource.DataMember = "Book"
Me.OrderBookBindingSource.DataSource = this.orderDataSet1
Me.BookList.SetDataBinding(Me.OrderBookBindingSource, "",
 "Title", "ISBN", "Price")

Because the binding source knows what table to proxy, the list object needs no further qualification.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note

Unlike the DataGrid control, the list object does not allow you to set the bound columns using a column
chooser in the list object's Properties pane. If you have a data-bound list object in the designer, however,
you can simply delete columns at design time; Visual Studio will update the automatically generated code
so that the deleted column is no longer bound when the code runs.

The information about which columns and tables are bound to which list objects is persisted in the document; you do
not need to rebind the list objects explicitly every time the customization starts. Should you want to ensure that all the
persisted information about the data bindings is cleared from the document, you can call the
ResetPersistedBindingInformation method:

 Public Sub ResetPersistedBindingInformation()

The data source of the list object must implement either IList or IList-Source. Should you pass an invalid object when
trying to set the data source, the list object will throw a SetDataBindingFailedException (as described later in this
chapter).

You can check whether the data source and data members have been set properly and the list object is complex-data-
bound by checking the IsBinding property:

 Public ReadOnly Property IsBinding As Boolean

Complex-data-bound list objects keep the currencythe selected row in the currency manager for the data sourcein sync
with the selected row in the host. You can set or get the currency of the data source's binding manager with this
property:

 Public Property SelectedIndex As Integer

Note that the selected index is 1-based, not 0-based; 1 indicates that no row is selected. When the selected index
changes, the list object raises the SelectedIndexChanged event. It raises IndexOutOfRangeException should you
attempt to set an invalid index.

If the AutoSelectRows property is set to TRue, the view's selection is updated whenever the currency changes:

Public Property AutoSelectRows As Boolean

Three other properties directly affect the appearance of data-bound list objects:

Public Property DataBoundFormat As XlRangeAutoFormat
Public Property DataBoundFormatSettings As FormatSettings
Public Property AutoSetDataBoundColumnHeaders As Boolean

The DataBoundFormat property determines whether Excel does automatic reformatting of the list object cells when the
data change. You have several dozen formats to choose among; the default is xlRangeAutoFormatNone. If you want no
formatting, choose xlRangeAutoFormatNone. You can also choose which aspects of the formatting you want to apply by
setting the bit flags in the DataBoundFormatSettings property (by default, all the flags are turned on):

Public Enum FormatSettings
 Alignment = 256
 Border = 4096
 Font = 16
 Number = 1
 Pattern = 65536
 Width = 1048576
End Enum

The AutoSetDataBoundColumnHeaders property indicates whether the list object data binding should automatically
create a header row in the list object that contains the column names. It is set to False by default.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

New Data-Related List Object Events

There are also several new data-related events on the List Object, listed in Table 17.1.

Table 17.1. New Events Associated with List Object
Event Name Delegate Type

DataSourceChanged EventHandler

DataMemberChanged EventHandler

SelectedIndexChanged EventHandler

DataBindingFailure EventHandler

BeforeAddDataBoundRow BeforeAddDataBoundRowEventHandler

ErrorAddDataBoundRow ErrorAddDataBoundRowEventHandler

OriginalDataRestored OriginalDataRestoredEventHandler

The DataSource and DataMember properties on the list object aggregate determine to what data source the list object
is complex-data-bound. The DataSourceChanged and DataMemberChanged events are raised when the corresponding
properties are changed.

The SelectedIndexChanged event is primarily a view event; when the user clicks a different row, the event is raised.
Note, however, that changing the selected row also changes the currency of the binding manager. This can be used to
implement master-detail event binding.

If for any reason an edit to the list object failsif the data binding layer attempts unsuccessfully to add a row or column
to the list, for example, or if a value typed in the list object cannot be copied back into the bound data sourcethe
DataBindingFailure event is raised.

The BeforeAddDataBoundRow event has two primary uses. Listing 17.8 shows its delegate.

Listing 17.8. The BeforeAddDataBoundRow Event Types

Public Delegate Sub BeforeAddDataBoundRowEventHandler(_
 ByVal sender As Object, _
 ByVal e As BeforeAddDataBoundRowEventArgs)

Public NotInheritable Class BeforeAddDataBoundRowEventArgs
 Inherits EventArgs
 Public Property Cancel As Boolean
 Public ReadOnly Property Item As Object
End Class

The item passed to the event handler is the row that is about to be added. The event can be used either to edit the row
programmatically just before it is added or to do data validation and cancel the addition should the data be somehow
invalid.

After the BeforeAddDataBoundRow event is handled, the list object attempts to commit the new row into the data
source. If that operation throws an exception for any reason, the list object deletes the offending row. Before it does so,
however, it gives you one chance to fix the problem by raising the ErrorAddDataBoundRow event. Listing 17.9 shows its
delegate.

Listing 17.9. The ErrorAddDataBoundRow Event Types

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 17.9. The ErrorAddDataBoundRow Event Types

Public Delegate Sub ErrorAddDataBoundRowEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorAddDataBoundRowEventArgs)

Public NotInheritable Class ErrorAddDataBoundRowEventArgs
 Inherits EventArgs

 Public ReadOnly Property InnerException As Exception
 Public ReadOnly Property Item As Object
 Public Property Retry As Boolean
End Class

The exception is copied into the event arguments; then the handler can analyze the exception, attempt to patch up the
row, and retry the commit operation. Should it fail a second time, the row is deleted. The exception thrown in this case
may be the new SetDataBindingFailedException, which is documented below.

A data source may have a fixed number of rows or a fixed number of columns. A data source can also contain read-only
data or read-only column names. Therefore, attempting to edit cells, add rows, remove rows, add columns, or remove
columns can all fail. In these cases, the list object disallows the change and restores the original shape. When it does
so, it raises the OriginalDataRestored event. Listing 17.10 shows its delegate.

Listing 17.10. The OriginalDataRestored Event Types

Public Delegate Sub OriginalDataRestoredEventHandler(_
 ByVal sender As Object, _
 ByVal e As OriginalDataRestoredEventArgs)

Public NotInheritable Class OriginalDataRestoredEventArgs
 Inherits EventArgs
 Public ReadOnly Property ChangeReason As ChangeReason
 Public ReadOnly Property ChangeType As ChangeType
End Class

Public Enum ChangeType
 ColumnAdded = 1
 ColumnHeaderRestored = 5
 ColumnRemoved = 2
 RangeValueRestored = 0
 RowAdded = 3
 RowRemoved = 4
End Enum

Public Enum ChangeReason
 DataBoundColumnHeaderIsAutoSet = 3
 ErrorInCommit = 4
 FixedLengthDataSource = 1
 FixedNumberOfColumnsInDataBoundList = 2
 Other = 5
 ReadOnlyDataSource = 0
End Enum

New Exception

Data binding can fail under many scenarios; the SetDataBindingFailedException is thrown in three of them:

If the data source of the list object is not a list data source

If the data source of the list object has no data-bound columns

If the list object cannot be resized when the data change

The exception class has these public methods and a Reason property, shown in Listing 17.11.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The exception class has these public methods and a Reason property, shown in Listing 17.11.

Listing 17.11. The SetDataBindingFailedException Types

Public NotInheritable Class SetDataBindingFailedException
 Inherits Exception
 Public Sub New()
 Public Sub New(ByVal message As String)
 Public Sub New(ByVal message As String, _
 ByVal innerException As Exception)
 Public ReadOnly Property Reason As FailureReason
End Class
Public Enum FailureReason
 CouldNotResizeListObject = 0
 InvalidDataSource = 1
 NoDataBoundColumnsSpecified = 2
End Enum

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
Using data binding effectively requires many objects to work well together: controls, datasets, data tables, binding
sources, binding contexts, binding managers, and so on. This chapterand indeed, this bookby no means describe all the
data binding tools at your disposal. Fortunately, the designer generates many of the objects that you need and
connects them sensibly. Still, understanding what is happening behind the scenes helps considerably when designing
data-driven applications.

The next chapter covers some more techniques for building data-driven applicationsin particular, how to manipulate the
data island programmatically without starting Word or Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 18. Server Data Scenarios

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Populating a Document with Data on the Server
Consider the following portion of an all-too-common server scenario. An authenticated user, perhaps a salesperson,
requests an Excel spreadsheet from a server. The spreadsheet is an expense report, and the server is an ASP, ASP.NET,
or SharePoint server. The server code looks up some information about the user from a database, Active Directory, or
Web service. Perhaps the server has a list of recent corporate credit card activity that it will prepopulate into the
expense list. The server starts Excel but keeps it "invisible" because there is no interactive user on the server. Then it
uses the Excel object model to insert the data into the appropriate cells, saves the result, and serves the resulting file
to the user.

This is a very suboptimal document life cycle for two reasons. First, it is completely unsupported and strongly
recommended against by Microsoft. Word and Excel were designed to be run interactively on client machines with
perhaps a few instances of each running at the same time. They were not designed to be scalable and robust in the face
of thousands of Web-server hits creating many instances on "headless" servers that allow no graphical user interfaces.

Second, this process thoroughly conflates the "view" with the data. The server needs to know exactly how the
document is laid out visually so that it can insert and remove the right fields in the right places. A simple change in the
document format can necessitate many tricky changes in the server code.

But automatically serving up documents full of a user's data is such a compelling scenario that many organizations have
ignored Microsoft's guidelines and built solutions around server-side manipulation of Word and Excel documents. Those
solutions tend to have serious scalability and robustness problems.

What can we do to mitigate these two problems?

Data-Bound VSTO Documents

As discussed in Chapter 17, "VSTO Data Programming," one way to solve this problem is to move the processing onto
the client. Just serve up a blank document that detects whether there is no cached data in its data island and fills its
datasets from the database server if so. When the client is ready to send the data back to the database, it connects
again and updates the database. No special document customization has to happen on the server at all, and the
database server is doing exactly what it was designed to do.

This solution has a major drawback, however: It requires that every user have access to the database. From a security
perspective, it might be smarter to give only the document server access to the database, thereby decreasing the
"attack surface" exposed to malicious hackers. What we really want to do is have the document ready to go with the
user data in it from the moment the user obtains the document but without having to start Word or Excel on the server.

XML File Formats

Avoiding the necessity of starting a client application on the server is key. Consider the first half of the scenario above:
The server takes an existing on-disk document and uses Excel to produce a modified version of the document. Excel is
just a means to an end; if you know what changes need to be made to the bits of the document and how to manipulate
the file format, you have no need to start the client application.

The Word and Excel binary file formats are opaque, but Word and Excel now support persisting documents in a much
more transparent XML format. It is not too hard to write a program that manipulates the XML document without ever
starting Word or Excel.

The XML file formats have some drawbacks, however. Although it certainly is faster and easier to manipulate the XML
format directly, parsing large XML files is still not blazingly fast. XML files tend to be quite a bit larger than the
corresponding binary files. And worst, although the Word XML format is full fidelity, the Excel format is not. Excel loses
information about the VSTO customization when it saves a document as XML.

Furthermore, unfortunately, the Word XML file format does not store the data island in human-readable, editable XML.
Rather, it serializes out the binary state that would have gone into the binary-file-format data island.

Also, we have not addressed the second problem that we identified earlier. Now we are not just manipulating the view;
we are manipulating the persisted state of the view to insert or extract data. It would be much cleaner if we could
simply get at the data island.

We need a way to solve these additional problems; we need a solution that works on binary non-human-readable files,
works with VSTO-customized documents, and cleanly separates view from data.

Accessing the Data Island

Chapter 17, "VSTO Data Programming," showed how to cache the state of public host item class members that contain

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 17, "VSTO Data Programming," showed how to cache the state of public host item class members that contain
data in a "data island" so that they could be persisted into the document as XML, independent of their user-interface
representation. The VSTO 2005 runtime library comes with a class, ServerDocument, that can read and write the data
island directly; it does not need to start Word or Excel on the server. The ServerDocument object can read and write
Word documents in binary or XML format and Excel documents in binary format.

Let's re-create the above document life cycle using the data island. Then we describe the advanced features of the
ServerDocument object model in more detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using ServerDocument and ASP.NET
Many pieces must be put together here, but each one is fairly straightforward. Here is what we are going to do:

1. Create an ASP.NET Web site.

2. Create a simple VSTO customized expense report spreadsheet that has a cached dataset that is data-bound to a
list object and a cached string assigned to a named range in the Startup handler.

3. Publish the expense-report template to the Web site.

4. Create an .aspx page that populates the data island (the cached dataset) before the document is served up.

5. As a bonus, we adapt that page and turn it into a custom file type handler.

In Visual Studio, select File > New > Web Site, and create a new ASP.NET site. Suppose for the sake of this example
that the server is http://accounting, and the Web site is http://accounting/expenses.

We come back to this Web site project later. For now, close it, and create a VSTO 2005 Excel spreadsheet project. Let's
start by putting together a simple customization with one named range and one list object control bound to an untyped
dataset. We will make the user's name and the expense dataset cached, so that the server can put the data in the data
island when the document is served up. Figure 18.1 shows the spreadsheet with a named range and a list object. You
can also see in Figure 18.1 the code behind Sheet1. The code defines a String called EmpName that is cached, as well as a
DataSet called Expenses that is cached. In the Startup handler for Sheet1, the code sets the Value2 property of the
NamedRange called EmployeeName to the cached value EmpName. It also data-binds the Expenses dataset to the ListObject
called List1.

Figure 18.1. A simple expense-report worksheet with two cached class members:
EmpName and Expenses.

[View full size image]

Choose Build > Publish, and use the Publishing Wizard to build the spreadsheet and put it up on
http://accounting/expenses. Doing so sets up the document so that it points to the customization on the Web server
rather than the local machine. (Chapter 20, "Deployment," covers deployment scenarios in more detail.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rather than the local machine. (Chapter 20, "Deployment," covers deployment scenarios in more detail.)

For the customization to run on the client machine, you need to have a security policy set to trust the server. Chapter
19, ".NET Code Security," covers the whys and wherefores of security policy issues in detail; for now, just trust us that
you need a security policy. On the client machine, you can use the command-line caspol.exe tool or the mscorcfg.msc
management tool to create a machine-level policy that grants full trust to the customization DLL. Here, we use
caspol.exe to add a new policy that trusts content from a directory on the accounting Web server:

> caspol -ag 1.2 -url http://accounting/expenses/* FullTrust

Microsoft (R) .NET Framework CasPol 2.0
Copyright (C) Microsoft Corporation. All rights reserved.
The operation you are performing will alter security policy.
Are you sure you want to perform this operation? (yes/no)
yes
Added union code group with "-url" membership condition to the
Machine level.
Success

Just to make sure that works, tell CASPOL to display the security policy:

> caspol -lg

Microsoft (R) .NET Framework CasPol 2.0
Copyright (C) Microsoft Corporation. All rights reserved.

Security is ON
Execution checking is ON
Policy change prompt is ON

Level = Machine

Code Groups:

1. All code: Nothing
 1.1. Zone - MyComputer: FullTrust
 1.1.1. StrongName -: FullTrust
 1.1.2. StrongName -: FullTrust
 1.2. Zone - Intranet: LocalIntranet
 1.2.1. All code: Same site Web
 1.2.2. All code: Same directory FileIO - 'Read, PathDiscovery'
 1.2.3. Url - http://accounting/expenses/*: FullTrust
 1.3. Zone - Internet: Internet
 1.3.1. All code: Same site Web
 1.4. Zone - Untrusted: Nothing
 1.5. Zone - Trusted: Internet
 1.5.1. All code: Same site Web
Success

We have not set up the handler on the server yet, but do a quick sanity check on the client to make sure that the
document can be downloaded and that the customization run on the client machine. There will not be any data in it yet;
let's take care of that next.

Setting Up the Server

Use Visual Studio to open the expenses Web site created earlier, and you will see that the deployed files for this
customized spreadsheet have shown up. Now all we need to do is write a server-side page that loads the blank
document into memory and fills in its data island before sending it out over the wire to the client. Right-click the Web
site, and choose Add New Item. Add a new .aspx Web form.

We need to add a reference to Microsoft.VisualStudio.Tools.Applications.Runtime.DLL to get at the ServerDocument
class. After we do that, the code is fairly straightforward right up until the point where we set the serialized state. We
discuss how that works in more detail later in this chapter. For now, take a look at the code in Listing 18.1.

Listing 18.1. An ASPX Web Form That Edits the Data Island on the Server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 18.1. An ASPX Web Form That Edits the Data Island on the Server

<%@ Page Language="VB" AutoEventWireup="true"%>
<%@ Import Namespace="System.Configuration" %>
<%@ Import Namespace="System.Web.Configuration" %>
<%@ Import Namespace="System.Data"%>
<%@ Import Namespace="System.Data.Common"%>
<%@ Import Namespace="System.Data.OleDb"%>
<%@ Import Namespace="System.IO"%>
<%@ Import Namespace="Microsoft.VisualStudio.Tools.Applications.Runtime"%>

<script runat=server>

 Const Forbidden As Integer = 403

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As EventArgs)
 ' If the user is not authenticated, then we do not want
 ' to give the user any expense report at all.
 If Not User.Identity.IsAuthenticated Then
 Response.StatusCode = Forbidden
 Response.End()
 Return
 End If

 ' If we do have a username, fetch the user's personal data
 ' from the database (or Web service or other data source).

 Dim dataset As DataSet = New DataSet()
 Dim datatable As DataTable = dataset.Tables.Add("Expenses")
 Dim adapter As OleDbDataAdapter = New OleDbDataAdapter()

 ' Authenticated usernames are hard to malform. If there is a
 ' chance that a string could be provided by a hostile caller,
 ' do not use string concatenation without vetting the string
 ' carefully. Better still, avoid SQL injection attacks
 ' entirely by using stored procedures.

 adapter.SelectCommand = New OleDbCommand(_
 "SELECT [Date], Description, Cost " & _
 "FROM Expenses WHERE EmployeeName = """ & _
 "User.Identity.Name""")

 ' It's a good idea to store connection strings in the
 ' web.config file both for security they can be
 ' encrypted in web.config and for convenience
 ' you can update the config file when the database server
 ' changes.

 Dim connectionString As String = _
 ConfigurationManager.ConnectionStrings(_
 "expenses").ConnectionString

 adapter.SelectCommand.Connection = _
 New OleDbConnection(connectionString)
 adapter.Fill(datatable)

 ' We do not want to modify the file on disk; instead,
 ' we'll read it into memory and add the user's
 ' information to the in-memory document before we serve it.

 Dim file As FileStream = New FileStream(_
 "c:\INetPub\WWWRoot\expenses\ExpenseReport.XLS", _
 FileMode.Open, FileAccess.Read)
 Dim template As Byte()
 Try
 template = New Byte(file.Length) {}
 file.Read(template, 0, CType(file.Length, Integer))
 Finally
 file.Close()
 End Try

 ' Finally, we'll create a ServerDocument object to
 ' manipulate the in-memory copy. Because it only has
 ' a raw array of bytes to work with, it needs to be
 ' told whether it is looking at an .XLS, .XLT, .DOC,
 ' or .DOT.

 Dim sd As ServerDocument = New ServerDocument(_
 template, ".XLS")
 Try
 sd.CachedData.HostItems("ExpenseReport.Sheet1"). _
 CachedData("EmpName").SerializeDataInstance(_
 User.Identity.Name)
 sd.CachedData.HostItems("ExpenseReport.Sheet1"). _
 CachedData("Expenses").SerializeDataInstance(dataset)
 sd.Save()

 ' "template" still has the original bytes.
 ' Get the new bytes.
 template = sd.Document
 Finally
 sd.Close()
 End Try

 Response.ClearContent()
 Response.ClearHeaders()
 Response.ContentType = "application/vnd.ms-excel"
 Response.OutputStream.Write(template, 0, template.Length)
 Response.Flush()
 Response.Close()
 End Sub

</script>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</script>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Handy Client-Side ServerDocument Utility
The ServerDocument object was aptly named. It was primarily designed for exactly the scenario we have just explored:
writing information into a document on a server. It can do a lot more, however, from reading the data back out of a
document to updating the deployment information inside a document to adding customizations to documents. We
discuss the portions of the ServerDocument object model used in deployment scenarios in Chapter 20, "Deployment,"
and spend the rest of this chapter describing the data-manipulating tools in the ServerDocument in more detail.

Let's take a look at another illustrative use of the ServerDocument object; then we'll give a more complete explanation
of all its data properties and methods. Listing 18.4 gives a handy console application that dumps out the cached data
manifest and serialized cached data in a document.

Listing 18.4. Creating a Cache Viewer with ServerDocument

Imports Microsoft.VisualStudio.Tools.Applications.Runtime
Imports System
Imports System.IO
Imports System.Text

Module Module1

 Sub Main(ByVal args As String())
 If args.Length <> 1 Then
 Console.WriteLine("Usage:")
 Console.WriteLine(" CacheViewer.exe myfile.doc")
 Return
 End If

 Dim filename As String = args(0)
 Dim doc As ServerDocument = Nothing

 Try
 doc = New ServerDocument(filename, False, FileAccess.Read)
 Console.WriteLine(vbCrLf & "Cached Data Manifest")
 Console.WriteLine(doc.CachedData.ToXml())

 Dim view As CachedDataHostItem
 For Each view In doc.CachedData.HostItems
 Dim item As CachedDataItem
 For Each item In view.CachedData
 If item.Xml <> Nothing And item.Xml.Length <> 0 Then
 Console.WriteLine(vbCrLf & "Cached Data: " & _
 view.Id & "." & item.Id & " xml" & vbCrLf)
 Console.WriteLine(item.Xml)
 End If
 If item.Schema <> Nothing And item.Schema.Length <> 0 Then
 Console.WriteLine(vbCrLf & "Cached Data: " & _
 view.Id & "." & item.Id & " xsd" & vbCrLf)
 Console.WriteLine(item.Schema)
 End If
 Next
 Next
 Catch ex As CannotLoadManifestException
 Console.WriteLine("Not a customized document:" + filename)
 Console.WriteLine(ex.Message)
 Catch ex As FileNotFoundException
 Console.WriteLine("File not found:" + filename)
 Catch ex As Exception
 Console.WriteLine("Unexpected Exception:" + filename)
 Console.WriteLine(ex.ToString())
 Finally
 If Not doc Is Nothing Then
 doc.Close()
 End If
 End Try

 End Sub

End Module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Module

After you compile this into a console application, you can run the console application on the command line and pass the
name of the document you want to view. The document must have a saved VSTO data island in it for anything
interesting to happen.

Now that you have an idea of how the ServerDocument object model is used, we can talk about it in more detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ServerDocument Object Model
The ServerDocument object model enables you to read and write all the deployment information and cached data
stored inside a customized document. This section goes through all the data properties and methods in this object
model, describing what they do, their purpose, and why they look the way they do. Chapter 20, "Deployment,"
describes the deployment portions of the object model.

Warning

Before we begin, note that the ServerDocument object model is what we like to call an "enough rope"
object model. Because this object model enables you to modify all the information about the customization,
it is quite possible to create documents with inconsistent cached data or nonsensical deployment
information. The VSTO runtime engine does attempt to detect malformed customization information and
throw the appropriate exceptions, but still exercise caution when using this object model.

ServerDocument Class Constructors

The ServerDocument class has seven constructors, but five of them are mere syntactic sugars for these two:

Public Sub New(ByVal bytes As Byte(), ByVal fileType As String)

Public Sub New(ByVal documentPath As String, _
 ByVal onClient As Boolean, ByVal access As FileAccess)

These correspond to the two primary ServerDocument scenarios: You want to read/edit a document either in memory
or on disk. Note that these two scenarios cannot be mixed; if you start by opening a file on disk, you cannot treat it as
an array of bytes in memory, and vice versa.

The in-memory version of the constructor takes a string that indicates the type of the file. Because all you are giving it
is the bytes of the file, as opposed to the name of the file, the constructor does not know whether this is an .XLS, .XLT,
.DOC, .DOT, or .XML. Pass in one of those strings to indicate what kind of document this is. If you pass in .XML, the
document you pass must be in the WordprocessingML (WordML) format supported by Word. ServerDocument cannot
read documents saved in the Excel XML format.

The byte array passed in must be an image of a customized document. The ServerDocument object model does not
support in-memory manipulation of not-yet-customized documents.

The on-disk version takes the document path, from which it can deduce the file type. The onClient flag indicates
whether your code is running in a client scenario (such as the document viewer sample above) or a server scenario
(such as the customized data-island-generation example at the beginning of this chapter).

Why does the ServerDocument care whether it is running on a client or a server? Most of the time, it does not care.
There is one important scenario, however: What if you pass in a document that does not yet have a customization?

In that case, the ServerDocument object attempts to add customization information to the uncustomized document.
Adding the customization information requires the ServerDocument class to start Word or Excel, load the document into
the application, and manipulate it using the Office object model. Because doing that is a very bad idea in server
scenarios, the ServerDocument throws an exception if given an uncustomized document on the server.

The file access parameter can be FileAccess.Read or FileAccess.ReadWrite. If it is read-only, attempts to change the document
will fail. (Opening an uncustomized document on the client in read-only mode is not a very good idea; the attempt to
customize the document will fail.)

The other in-memory constructor is provided for convenience; it simply reads the entire stream into a byte array for
you:

Public Sub New(ByVal stream As Stream, ByVal fileType As String)

Finally, the three remaining on-disk constructors act just like the three-argument constructor above, with the onClient
flag defaulting to False if omitted and the file access defaulting to ReadWrite if omitted:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

flag defaulting to False if omitted and the file access defaulting to ReadWrite if omitted:

Public Sub New(ByVal documentPath As String, _
 ByVal onClient As Boolean)
Public Sub New(ByVal documentPath As String, _
 ByVal access As FileAccess)
Public Sub New(ByVal documentPath As String)

Saving and Closing Documents

The ServerDocument object has two important methods and one property used to shut down a document:

Public Sub Save()
Public ReadOnly Property Document As Byte()
Public Sub Close()

If you opened the ServerDocument object with an on-disk document, the Save method writes the changes you have
made to the application manifest, cached data manifest, or data island to disk. If you opened the document using a
byte array or stream, the changes are saved into a memory buffer that you can access with the Document property.
Note that it is an error to read the Document property if the file was opened on disk.

It is good programming practice to close the ServerDocument object explicitly when you have finished with it. Large
byte arrays and file locks are both potentially expensive resources that will not be reclaimed by the operating system
until the object is closed (or, equivalently, disposed by either the garbage collector or an explicit call to
IDisposable.Dispose).

Server-side users of ServerDocument are cautioned to be particularly careful when opening on-disk documents for
read-write access. It is a bad idea to have multiple writers (or a single writer and one or more readers) trying to access
the same file at the same time. The ServerDocument class will do its best in this situation; it will make "shadow copy"
backups of the file so that readers can continue to read the file without interference while writers write. Making shadow
copies of large files can prove time-consuming, however.

If you do find yourself in this situation, consider doing what we did in the first example in this chapter: Read the file into
memory, and edit it in memory rather than on disk. As long as the on-disk version is only read, it will never need to be
shadow-copied and runs no risk of multiple writers overwriting one another's changes.

Static Helper Methods

Developers typically want to perform a few common scenarios with the ServerDocument object model; the class
exposes some handy static helper methods so that you do not have to write the boring boilerplate code. All these
scenarios work only with on-disk filesnot with "in-memory" files. The following static methods are associated with
ServerDocument:

Public Shared Function AddCustomization(_
 ByVal documentPath As String, ByVal assemblyName As String, _
 ByVal deploymentManifestPath As String, _
 ByVal applicationVersion As String, _
 ByVal makePathsRelative As Boolean, _
 ByRef nonpublicCachedDataMembers As String()) As String

Public Shared Sub RemoveCustomization(_
 ByVal documentPath As String)

Public Shared Function IsCustomized(_
 ByVal documentPath As String) As Boolean

Public Shared Function IsCacheEnabled(_
 ByVal documentPath As String) As Boolean

AddCustomization

AddCustomization takes an uncustomized document and adds customization information to it. It creates a new
application manifest and cached data manifest. If AddCustomization is given an already-customized document, the
customization information is destroyed and replaced with the new information. This allows you to create new
customized documents on a machine without Visual Studio; you could create the customization assemblies on a
development box and then apply the customizations to documents on a different machine.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note

AddCustomization should be called only on client machines, never on servers, because it always starts
Word or Excel to embed the customization information in the uncustomized document.

The document and assembly paths are required; the deployment manifest path may be Nothing or empty if you do not
want to use a deployment manifest to manage updating your customization.

The application version string must be a standard version string of the form "1.2.3.4". Note that this is the version
number of the customization itself, not the version number of the assembly. (It may be wise, however, to use the
version number of the assembly as the version number of your customized document application.)

If the makePathRelative flag is set to true, the assembly location written into the customization information will be relative
to the document location. If the document location is a UNC path such as \\accounting\documents\budget.doc, for
example, and the assembly location is \\accounting\documents\dlls\budget.dll, the assembly location written into the
document will be dlls\budget.dll, not the full path. Otherwise, if makePathRelative is False, the assembly location is written
exactly as it is passed in.

The AddCustomization method loads the assembly and scans it for document/worksheet classes that contain members
marked with the Cached attribute so that it can emit information into the cached data manifest indicating that these
members need to be filled when the customization starts for the first time. Because the VSTO runtime will be unable to
fill in nonpublic members of these classes, the AddCustomization method returns the names of such members to help
you catch this mistake early.

RemoveCustomization

RemoveCustomization removes all customization information from a document, including all the cached data in the data
island. It also starts Word/Excel, so do not call it on a server. Calling RemoveCustomization on an uncustomized
document results in an invalid operation exception.

IsCustomized and IsCacheEnabled

IsCustomized and IsCacheEnabled are similar but subtly different because of a somewhat obscure scenario. Suppose
that you have a customized document that contains cached data in the data island, and you use the ServerDocument
object model to remove all information about what document/worksheet classes need to be started. In this odd
scenario, the document will not run any customization code when it starts; therefore, there is no way for the document
to access the data island at runtime. Essentially, the document has become an uncustomized document with no code
behind it, but all the data is still sitting in the data island. The VSTO designers anticipated that someone might want to
remove information about the code while keeping the data island intact for later extraction via the ServerDocument
object model.

IsCustomized returns true if the document is customized and will attempt to run code when it starts. IsCacheEnabled
returns TRue if the document is customized at all and, therefore, has a data island, regardless of whether the
customization information says what classes to start when the document is loaded. (Note that IsCacheEnabled says
nothing about whether the data island actually contains any datajust whether the document supports caching.)

Cached Data Objects, Methods, and Properties

As you saw in our handy utility above, a customized document's data island contains a small XML document called the
cached data manifest, which describes the classes and properties in the cache (or, if the document is being run for the
first time, the properties that need to be filled). The cached data is organized hierarchically; the manifest consists of a
collection of view class elements, each of which contains a collection of items corresponding to cached members of the
class. Here is a cached data manifest that has one cached member of one view class. The cached data member contains
a typed DataSet:

<cdm:cachedDataManifest cdm:revision="1">
 <cdm:view cdm:viewId="ExcelCached.Sheet1">
 <cdm:dataInstance cdm:dataId="NorthwindDataSet"
 cdm:dataType="ExcelCached.NorthwindDataSet,
 ExcelCached, Version=1.0.1854.30463, Culture=neutral,
 PublicKeyToken=null" />
 </cdm:view>
</cdm:cachedDataManifest>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Having a collection of collections is somewhat more complex than just having a collection of cached items. The cached
data manifest was designed this way to avoid the ambiguity of having two host item classes (such as Sheet1 and
Sheet2) each with a cached property named the same thing. Because each item is fully qualified by its class, there is no
possibility of name collisions.

The actual serialized data is stored in the data island, not in the cached data manifest. In the object model, however, it
is more convenient to associate each data instance in the cached data manifest with its serialized state.

The Cached Data Object Model

To get at the cached data manifest and any serialized data in the data island, the place to start is the CachedData
property of the ServerDocument class. The CachedData object returns the CachedDataHostItemCollection, which
contains a CachedDataHostItem for each host item in your customized document. A CachedDataHostItem is a collection
of CachedDataItem objects that correspond to each class member variable that has been marked with the Cached
attribute. Figure 18.3 shows an object model diagram for the objects returned for the example in Figure 18.1.

Figure 18.3. The cached data object model for the example in Figure 18.1.

There are no constructors for any of the types we will be discussing. The CachedData class has four handy helper
methods (Clear, FromXml, ToXml, and ClearData) and a collection of CachedDataHostItem:

Public Sub Clear()
Public Sub FromXml(ByVal cachedDataManifest As String)
Public Function ToXml() As String
Public Sub ClearData()
Public ReadOnly Property HostItems As _
 CachedDataHostItemCollection

Like the application manifest, the Clear method throws away all information in the cached data manifest; the FromXml
method clears the manifest and repopulates it from the XML state; and the ToXml method serializes the manifest as an
XML string.

The ClearData method throws away all information in the data island but leaves all the entries in the cached data
manifest. When the document is started in the client, all the corresponding members will be marked as needing to be
filled.

The CachedDataHostItem Collection

The HostItems collection is a straightforward extension of CollectionBase that provides a simple strongly typed
collection of CachedDataHostItem objects. (It is called "host items" because these always correspond to items provided
by the hosting application, such as Sheet1, Sheet2, or ThisDocument.) The cached data host item collection has the
following methods and properties:

Public Function Add(ByVal hostItemId As String) _
 As CachedDataHostItem
Public Function Contains(ByVal hostItemId As String) As Boolean
Public Sub CopyTo(ByVal hostItems As CachedDataHostItem(), _
 ByVal index As Integer)
Public Function IndexOf(ByVal hostItem As CachedDataHostItem) _
 As Integer
Public Sub Insert(ByVal index As Integer, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Sub Insert(ByVal index As Integer, _
 ByVal value As CachedDataHostItem)
Public Sub Remove(ByVal hostItem As CachedDataHostItem)
Public Sub Remove(ByVal hostItemId As String)
Public ReadOnly Property Item(ByVal index As Integer) _
 As CachedDataHostItem
Public ReadOnly Property Item(ByVal hostItemId As String) _
 As CachedDataHostItem

The hostItemId argument corresponds to the namespace-qualified name of the host item class. Be careful when creating
new items to ensure that the class identifier is fully qualified.

The CachedDataHostItem Object

Each CachedDataHostItem object corresponds to a host item in your document and has a CachedData property that
returns a collection of CachedDataItem objects that correspond to cached members of the customized host item class:

Public Function Add(ByVal dataId As String, _
 ByVal dataType As String) As CachedDataItem
Public Function Contains(ByVal dataId As String) As Boolean
Public Sub CopyTo(ByVal items As CachedDataItem(), _
 ByVal index As Integer)
Public Function GetEnumerator() As CachedDataItemEnumerator
Public Function IndexOf(ByVal data As CachedDataItem) _
 As Integer
Public Sub Insert(ByVal index As Integer, ByVal item _
 As CachedDataItem)
Public Sub Remove(ByVal data As CachedDataItem)
Public Sub Remove(ByVal dataId As String)
Public ReadOnly Property Item(ByVal dataId As String) _
 As CachedDataItem
Public ReadOnly Property Item(ByVal index As Integer) _
 As CachedDataItem

You may wonder why it is that you must specify the type of the property when adding a new element via the Add
method. If you have a host item class declared like the following lines of code, surely the name of the class and
property is sufficient to deduce the type, right?

 Public Class Sheet1
 <Cached()> Public myData As NorthwindDataSet

In this case, it would be sufficient to deduce the compile-time type, but it would not be if the compile-time type were
Object. When the document is run in the client, and the cached members are deserialized and populated, the
deserialization code in the VSTO runtime needs to know whether the runtime type of the member is a dataset,
datatable, or other serializable type.

The CachedDataItem Object

The identifier of a CachedDataItem is the name of the property or field on the host item class that was marked with the
Cached attribute. The CachedDataItem itself exposes the type and identifier properties

Public Property DataType As String
Public Property Id As String

as well as two other interesting properties and a helper method:

Public Property Schema As String
Public Property Xml As String
Public Sub SerializeDataInstance(ByVal value As Object)

Setting the Xml and Schema properties correctly can be slightly tricky; the SerializeDataInstance method takes an Object
and sets the Xml and Schema properties for you. If you do not have an instance of the object on the server, however,
and want to manipulate just the serialized XML strings, you must understand the rules for how to set these properties
correctly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

correctly.

The first thing to note is that the Schema property is ignored if the DataType is not a DataTable or DataSet (or subclass
thereof). If you are serializing out another type via XML serialization, there is no schema, so leave it blank. On the
other hand, if you are writing out a DataSet or DataTable, you must specify the schema.

Second, the data island may contain DataSets and DataTables in either in regular raw XML form or in diffgram form.
The regular format that you are probably used to seeing XML-serialized DataSets in looks something like this:

<DataSet1 xmlns="http://www.foocorp.org/schemas/customers.xsd">
 <dbo_Customers>
 <Name>Maria Anders</Name>
 <Address>Obere Str. 57</Address>
 </dbo_Customers>
 <dbo_Customers>
 <Name>Ana Trujillo</Name>
 <Address>Avda. de la Constitución 2222</Address>
 </dbo_Customers>

And so on. A similar DataSet in diffgram form looks different:

<diffgr:diffgram>
 <NorthwindDataSet
 xmlns="http://www.foocorp.org/schemas/NorthwindDataSet.xsd">
 <Customers diffgr:id="Customers1" msdata:rowOrder="0">
 <CustomerID>ALFKI</CustomerID>
 <CompanyName>Alfreds Futterkiste</CompanyName>
 <ContactName>Maria Anders</ContactName>

You can store cached DataSets and DataTables by setting the Xml property to either format. By default, the VSTO
runtime saves them in diffgram format. Why? Because the diffgram format not only captures the current state of the
DataSet or DataTable, but also records how the object has changed because it was filled in by the data adapter. That
means that when the object's data is poured back into the database, the adapter can update only the rows that have
changed instead of having to update all of them.

Be Careful

One final caution about using the ServerDocument object model to manipulate the cache: The cache should be all or
nothing. Either the cached data manifest should have no data items with serialized XML or they should all have XML.
The VSTO runtime does not support scenarios in which some cached data items need to be filled and others do not. If,
when the client runtime starts, it detects that the cache is filled inconsistently, it will assume that the data island is
corrupted and start fresh, refilling everything. If you need to remove some cached data from a document, remove the
entire data item from the host item collection; do not just set the XML property to an empty string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
The ServerDocument object model was primarily designed to enable server-side code to edit the contents of the data
island before serving up a document, but it does much more. You can use it to read or write the data island and to add
customization assemblies to uncustomized documents. The latter requires ServerDocument to start Word or Excel,
however, so doing this on a server is a bad idea. Chapter 20, "Deployment," examines another use for the
ServerDocument: editing the deployment information inside a customized document.

The ServerDocument object model provides fine-grained control over the information stored in a document and
assumes that you know what you're doing. Be very careful, and test your scenarios thoroughly when using the
ServerDocument object model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An Alternative Approach: Create a Custom Handler
It seems a little odd to go to an .aspx page to download a spreadsheet or document. An alternative approach to solving
the problem of customizing documents on the server is to intercept requests for particular file extensions and customize
the response before it goes out to the client.

This time, instead of creating a new .aspx Web form, create a new .ashx handler (see Figure 18.2).

Figure 18.2. Creating a custom handler item.

[View full size image]

The code in Listing 18.2 is essentially identical; the only difference is that because a handler is not an instance of a Web
page, we do not have any of the standard page objects, such as Response, Request, and User. Fortunately, the context
of the page request is encapsulated in a special "context" object that is passed to the handler.

Listing 18.2. Creating a Custom Handler That Edits the Data Island

<%@ WebHandler Language="VB" Class="XLSHandler" %>

Imports System
Imports System.Data
Imports System.Data.Common
Imports System.Data.OleDb
Imports System.IO
Imports System.Web
Imports Microsoft.VisualStudio.Tools.Applications.Runtime

Public Class XLSHandler
 Implements IHttpHandler

 Const Forbidden As Integer = 403

 Public Sub ProcessRequest(ByVal context As HttpContext) _
 Implements System.Web.IHttpHandler.ProcessRequest

 If Not context.User.Identity.IsAuthenticated Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If Not context.User.Identity.IsAuthenticated Then
 context.Response.StatusCode = Forbidden
 context.Response.End()
 Return
 End If

 Dim dataset As DataSet = New DataSet()
 Dim datatable As DataTable = dataset.Tables.Add("Expenses")
 Dim adapter As OleDbDataAdapter = New OleDbDataAdapter()

 adapter.SelectCommand = New OleDbCommand(
 "SELECT [Date], Description, Cost FROM " & _
 "Expenses WHERE EmployeeName = """ & _
 "context.User.Identity.Name""")

 Dim connectionString As String = _
 ConfigurationManager.ConnectionStrings(_
 "expenses").ConnectionString
 adapter.SelectCommand.Connection = _
 New OleDbConnection(connectionString)
 adapter.Fill(datatable)

 Dim file As FileStream = New FileStream(_
 "c:\INetPub\WWWRoot\expenses\ExpenseReport.XLS", _
 FileMode.Open, FileAccess.Read)
 Dim template() As Byte
 Try
 template = New Byte(file.Length) {}
 file.Read(template, 0, CType(file.Length, Integer))
 Finally
 file.Close()
 End Try

 Dim sd As ServerDocument = New ServerDocument(_
 template, ".XLS")
 Try
 sd.CachedData.HostItems("ExpenseReport.Sheet1"). _
 CachedData("EmpName").SerializeDataInstance(_
 context.User.Identity.Name)
 sd.CachedData.HostItems("ExpenseReport.Sheet1"). _
 CachedData("Expenses").SerializeDataInstance(_
 dataset)
 sd.Save()

 ' "template" still has the original bytes.
 ' Get the new bytes.
 template = sd.Document
 Finally
 sd.Close()
 End Try

 context.Response.ContentType = "application/vnd.ms-excel"
 context.Response.OutputStream.Write(_
 template, 0, template.Length)

 End Sub

 Public ReadOnly Property IsReusable() As Boolean _
 Implements System.Web.IHttpHandler.IsReusable

 Get
 Return False
 End Get

 End Property

End Class

Finally, to turn this on, add the information about the class and assembly name for the handler to your Web.config file
in the application's virtual root, as shown in Listing 18.3. If you want to debug the server-side code, you can add
debugging information in the configuration file, too.

Listing 18.3. A Web Configuration File to Turn on the Handler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 18.3. A Web Configuration File to Turn on the Handler

<configuration>
 <system.web>
 <httpHandlers>
 <add verb="GET" path="ExpenseReport.xls"
 type="XLSHandler, XLSHandler"/>
 </httpHandlers>
 <compilation debug="true"/>
 </system.web>
</configuration>

Now when the client hits the server, the handler will intercept the request, load the requested file into memory, contact
the database, create the appropriate dataset, and serialize the dataset into the data island in the expense reportall
without starting Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 19. .NET Code Security
IN THE OLD DAYSback in the 20th centurythe primary way that we got software onto our machines went something like
this: Go to software store; buy shrink-wrapped box containing disks; insert said disks into machine; install software. If
that is the only way you put software on your machine, it is pretty hard to get a computer virusnot impossible, but
pretty hard.

That world is long gone; code in the 21st century is both highly mobile and highly componentized. Generally,
"monolithic" applications such as Word and Excel now make extensive use of third-party components and store
customized code behind documents. Many machines are constantly connected to the Internet, a worldwide network
chock full of evil hackers.

Ubiquitous networking and rich customization of everything from Web pages to spreadsheets are undoubtedly enabling
technologies, but they come with the price of an enormous increase in the size of the attack surface available to
malicious attackers. Anyone who has ever received a mass-mail virus e-mail or been infected by an Excel macro virus
knows of what we speak!

Fortunately, the .NET Framework was designed from day one to provide tools to help mitigate the vulnerabilities
inherent in modern software. This chapter starts with an overview of the .NET security system to explain some key
concepts. Then the chapter takes a detailed look at how to use the .NET security system to keep yourself and your
users productive while keeping attackers unproductive.

This discussion is especially relevant to VSTO because VSTO has the security model that no code is allowed to run by
default. You always have to configure the .NET security system to trust a VSTO customization or add-in you build before
it will run on a user's machine.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Code-Access Security Versus Role-Based Security
The immediate and obvious example of a computer security system is the one most of us encounter the first thing in
the morning: the login prompt. The purpose of the login prompt is to authenticate you, to verify your identity somehow.
After your identity has been determined, you are authorized to perform certain tasks: delete this file, run that
application, and so on.

Determining identity is a hard problem, and many strategies exist for doing so. Each strategy, however, is based on
consuming some evidence and making a decision based on it. Evidence might be based on the ability to produce a
secret (such as a password), possession of an object (such as a smart card), biometrics (such as thumbprints or retinal
scans), and so on.

After you have been authenticated, the security system knows of which groups you are a member and can enforce
policies based on identity and group membership. A policy, for example, might be "only members of the Administrators
group can modify registry keys in the Local Machine hive." Policies are implemented by access control lists and other
mechanisms in the operating system, and administered by various application programming interfaces (APIs).

The system just described is a role-based security system. In a role-based security system, the fundamental question is
"Who is running the code?" After that has been determined, the code runs with all the privileges and restrictions of the
user. A fundamental presumption of role-based security systems is that users run some code because they know what
it does and want it to succeed. When you run format.exe, the operating system presumes that you really do want to
format your hard disk and checks to ensure that you have permission to do so.

But sometimes role-based security is not enough. Consider a Web page that runs a script that tries to format the hard
disk. In that case, whether the user who started the Web browser has the right to destroy the disk in question is of
secondary importance. What is more relevant is whether the user actually intended the Web page to format the hard
disk! The fundamental presumption of role-based security no longer applies; in a world with mobile code that sits
behind Web pages, e-mails, and documents, the user does not necessarily know what the code is doing and may not
want it to succeed.

Internet Explorer, therefore, implements a code-access security system. A code-access security system consumes
evidence not about the user running the code, but about the code itself. Where did it come from? Who wrote it? What is
the user's trust relationship with the Web site? The browser can then enforce policies such as "Web pages in the
Untrusted Sites zone are not allowed to run scripts at all," and users and administrators can set policies accordingly.

The .NET security system implements both role-based and code-access security systems, but for our purposes this
discussion examines only the code-access security system. Customized documents are much more like Web pages,
where the user might not know exactly what the customization is doing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Code-Access Security in .NET
The .NET code-access security system works like this: Every time an assembly is loaded into an application domain, the
security system determines what permission set should be granted to that assembly. The .NET runtime does this by
examining evidence about the assembly. Assemblies are categorized in one or more code groups based on their
evidence. Then the policy evaluator determines which permissions to grant based on which code groups the assembly
belongs to (just as a role-based system determines which permissions to grant to users based on which user groups
they belong to).

When the code runs, if it attempts to perform some task that requires a permission (such as deleting a file), the
security system checks to ensure that the code was granted the appropriate permission. If not, it throws an exception,
and the attempt fails.

The Machine Policy Level

Let's take a look at the out-of-the-box policy. Go to your .NET Framework SDK directory, and run the mscorcfg.msc file
to pop up the management console, shown in Figure 19.1.

Figure 19.1. The .NET Runtime Security Policy management console.

[View full size image]

As you can see, under Runtime Security Policy, there are three policy levels: Enterprise, Machine, and User. (There is
also a fourth level, not shown: the Application policy level, which is discussed later in this chapter.) Open the Machine
policy level, and you'll see a tree of code groups. Each code group is associated with a particular permission set and
evidence condition.

Code that has the My Computer Zone evidence, for example, is granted the FullTrust permission set; code that is
installed on your machine is granted permission to do anything. Code that has the LocalIntranet Zone evidence is
granted the LocalIntranet permission set, which is rather more restrictive. If you run a managed assembly off a share
on your local intranet, it will be able to run, produce user-interface elements, and so on but is not granted the right to
modify your security settings or read or write to any file on your disk.

Notice that the root code group in the Machine policy level is All Code; every assembly is a member of this group
irrespective of its evidence. If you look at the permission set granted by that group, however, it grants no permissions
whatsoever. It denies the right to execute at all. What's up with that?

Within a policy level, the permission set granted to an assembly is (usually) the least-restrictive union of all the
permission sets of all the applicable code groups. Code that belongs to the All Code group (which grants nothing) and
the LocalIntranet Zone code group (which grants the LocalIntranet permission set) will be granted the permissions from
the less-restrictive group.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the less-restrictive group.

Note

We say "usually" because there are ways of creating custom policies that enforce rules other than "Take
the least-restrictive union." You could create a policy tree with the rule "Take the permission set granted
by the first matching code group, and ignore everything else." Policy trees can become quite complex.

Kinds of Evidence

So far we have seen the All Code group, which does not consider evidence at all, and various zone code groups that
consider evidence about where code comes from in a broad sense. Zones describe whether the code comes from the
local machine, the local intranet, an explicitly trusted Internet site, an explicitly untrusted Internet site, or an Internet
site of unknown trustworthiness.

When we discuss the User policy level, you will see a much more specific kind of location-based evidence; you can
create policies that grant permissions if the code is running from specific local or network directories or Web sites.

A close look at the Machine policy level shows two child code groups, subsets of the My Computer Zone code group,
that grant full trust to assemblies in the My Computer Zone and are strong-named with the Microsoft or ECMA keys.
You will learn more about strong-name evidence, and why it should always be in a child code group, later in this
chapter.

Finally, there is evidence associated with individual assemblies. Every assembly has a statistically unique hash number
associated with it; it is possible to create policies that grant permissions to specific assemblies by checking their hash
numbers. Assemblies can also be signed with a publisher certificate (such as a VeriSign code-signing certificate). When
the loader attempts to load a publisher-signed assembly, it automatically creates evidence describing the certificate.
You could create code groups that grant permissions to all assemblies signed with your internal corporate certificate, for
example.

Combining Policy Levels

Take a look at the Enterprise policy level shown in Figure 19.1. Unless your network administrator has set policy on
your machine, this policy level should be much simpler than the Machine policy level. It consists of a single code group
that matches all code and grants full trust.

But hold on a momentif the Enterprise policy is "Grant full trust to all code," how does this security system restrict
anything whatsoever?

The .NET security system determines the grant set for each policy levelEnterprise, Machine, User, and Applicationand
actually grants the permission only if a permission is granted by all four levels.

Setting the Enterprise policy level to "Everything gets full trust" cannot possibly weaken the restrictions of the other
three groups. If the Machine policy level refuses to grant, say, permission to access the file system, it does not matter
what the other three policy levels grant; that permission will not be granted to the assembly.

It works the other way, too. Suppose that the Enterprise policy level states "Grant full trust to all assemblies except for
this known-to-be-hostile Trojan horse assembly." If you accidentally install the Trojan horse on your machine, the
Machine policy level will grant full trust, but the Machine policy level cannot weaken the Enterprise policy level. Every
policy level must agree to grant a permission for it to be granted, so the evil code will not run.

We discuss later in this chapter ways to get around the requirement that a permission must be granted by all four
levels.

The User Policy Level

Take a look at your User policy level while logged in to a machine where you have been creating VSTO 2005 projects
with Visual Studio. The contents of the User policy level, shown in Figure 19.2, might be a little bit surprising.

Figure 19.2. The User policy level. VSTO automatically creates policy so that VSTO
projects are allowed to run on your development machine.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At the root, we have an All Code group that grants full trust, just like the Enterprise level. In keeping with the general
rule that a policy level grants the least-restrictive union of permissions, it would seem that any further code groups in
the policy tree for this level would be superfluous. Yet there is a child code group for VSTO projectsalso an All Code
group, although it grants no permissions. It in turn has a code group for every project you have created, which again is
an All Code group that grants no permissions. (The code group is given a GUID as its name to ensure that the group is
unique no matter how many projects you create.)

The project-level code groups have URL-based child groups for every build configuration you have built that grant only
execution permissionnothing elseto all code in the named directory. And those have children that grant full trust to the
specific customization assemblies.

What the heck is going on here? It looks like Visual Studio has gone to great lengths to ensure that the User policy level
explicitly grants full trust to your customization assemblies. Yet the User policy level's root code group already grants
full trust. How is this not redundant?

There is a good reason for this, but before we get to that, we should talk about full trust versus partial trust.

Full Trust and Partial Trust

As anyone who has ever been infected by a Word or Excel macro virus knows, the code behind a customized document
does not always do what you want, and you do not always know what it does. Fortunately, that is exactly the scenario
that code-access security systems were invented to handle. There is a problem with code-access security in Office
customizations, however. There is no way to trust partially any code that accesses the Word and Excel object models.
Trust is all or nothing.

The Internet Explorer object model was specifically designed from day one so that code running inside the Web browser
was in a "sandbox." Code can run, but it is heavily restricted. The browser's objects inherently cannot do dangerous
things such as write an arbitrary file or change your registry settings. Code is partially trusted: trusted enough to run
but not trusted enough to do anything particularly dangerous. The Word and Excel object models, by contrast, are
inherently powerful. They manipulate potentially sensitive data loaded from and saved to arbitrary files. These object
models were designed to be called only by fully trusted code. Therefore, when a VSTO customization assembly is
loaded, it must be granted full trust to run at all.

This fact has serious implications for the application domain security policy created by the VSTO runtime when a
customization starts.

The VSTO Application Domain Policy Level

Before examining the details of VSTO security policy, let's take a step back and consider why anyone has any security
policy at all.

It is the same reason why stores have merchandise-exchange policy, governments have foreign policy, and parents
have bedtime policy: Policy is a tool that enables us to make thoughtful decisions ahead of time instead of having to
make decisions on a case-by-case basis. The Enterprise, Machine, and User policy levels allow network administrators,
machine administrators, and machine users to make security decisions independently ahead of time so that the .NET
runtime can enforce those decisions without user interaction.

Decisions about policy can also be made by application domains (or AppDomains, for short). Because only those
permissions granted by all four policy levels are actually granted to the assembly, the AppDomain policy level can

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

permissions granted by all four policy levels are actually granted to the assembly, the AppDomain policy level can
strengthen the overall security policy by requiring more stringent evidence than the other policy levels.

We know that VSTO customizations must be granted full trust. By default, the Enterprise and User policy levels grant
full trust to all assemblies regardless of evidence. The Machine policy level grants full trust to all assemblies installed on
the local machine. In the absence of an App-Domain policy level, a VSTO customization copied to your local machine is
granted full trust.

That seems like a reasonable decision for an application that you have deliberately installed on your local machine.
Users typically install applications that they trustapplications that perform as expected and do what users want them to
doso it makes sense to grant full trust implicitly to assemblies in the Local Machine Zone.

But spreadsheets are not usually thought of as applications. Do users realize that by copying a customized document to
their machine, they are essentially installing an application that will then be fully trusted, capable of doing anything that
the users themselves can do? Probably not! Users do not tend to think of customized documents as applications; they
are much less careful about copying random spreadsheets to their machines than they are about copying random
executables to their machines.

Good security policies take typical usage scenarios into account. Therefore, the VSTO runtime tightens the overall
security policy by creating an AppDomain policy level that grants all the permissions of the other three policy levels
except for those permissions that would have been granted solely on the basis of membership in either an All Code
code group or a zone code group. All other permissions granted because of URL evidence, certificates, strong names,
and so on are honored.

Let's take a look at an example.

Resolving VSTO Policy

Consider a VSTO customization assembly that you have just built on your development machine that you want to run.
The customization assembly must be granted full trust by all four policy levels; otherwise, it will not run. The Enterprise
and User policy levels grant full trust to all code. The Machine policy level grants full trust to code from the My
Computer Zone. Three of the four levels have granted full trust.

What about the AppDomain policy level? It grants the same permissions as the other three policy levels except for
those permissions granted solely by All Code and zone code groups. The Enterprise policy level consists of a single All
Code code group, so it is ignored by the AppDomain policy level. The Machine policy level consists only of zone code
groups, plus two strong-name code groups for the Microsoft and ECMA strong names. Unless you happen to work for
Microsoft and have access to the code-signing hardware, it is likely that those code groups do not apply, so effectively,
the AppDomain policy level is going to ignore all of these, too. Things are not looking good; the AppDomain policy has
found nothing it can use to grant full trust yet. If the User policy level also consists solely of an All Code code group, as
it does on a clean machine, the customization will not run.

But the User policy level on your development machine has a code group that is not ignored by the AppDomain policy
level; it has a URL code group that explicitly trusts the customization assembly based on its path. The AppDomain policy
sees this and grants full trust to the assembly. Because all four policy levels have granted full trust, the code runs.

Now it should be clear why Visual Studio modified your User security policy and added a seemingly redundant code
group for the assembly. The VSTO AppDomain policy level requires that the customization assembly not only be fully
trusted, but also be fully trusted for some better reason than "We trust all code" or "We trust all code installed on the
local machine." Therefore, there has to be some Enterprise, Machine, or User code group that grants full trust on the
basis of some stronger evidence.

Because the VSTO AppDomain policy level refuses to grant full trust on the basis of zone alone, you're pretty much
forced to come up with a suitable policy to describe how you want the security system to treat VSTO customization
assemblies. Take off your softwaredeveloper hat for a moment, and think like an administrator setting security policy
for an enterprise. Let's go through a few typical security policies that you might use to ensure that customized Word
and Excel documents work in your organization while preventing potentially hostile customizations from attackers out
on the Internet from running. After discussing the pros and cons of each, we talk about how to roll out security policy
over an enterprise.

Location, Location, Location

One of the most straightforward ways to ensure that customized Word and Excel documents can run is to set a policy
stating that customization assemblies that run from a particular place are fully trusted. You may have Web servers or
file shares on your network where write access is restricted to trusted individuals; if the customization is there, that is
pretty good evidence that it is trustworthy.

You can set an Enterpriselevel policy that states that customization assemblies at a particular location are fully trusted
by right-clicking the All Code code group in the Enterprise policy level and selecting New from the menu. Doing so
causes the Create Code Group dialog box to appear, as shown in Figure 19.3.

Figure 19.3. The first step of the Create Code Group dialog box.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enter a name for the code group and a description to help others understand what the code group is intended to do.
Then click the Next button. The Create Code Group dialog box, shown in Figure 19.4, will appear. Choose a URL
membership condition from the condition-type drop-down list. For the URL, give the location to which the VSTO
customization assembly will be deployed. In Figure 19.4, we are matching any customization assemblies in the Web
folder http://accounting/customizations because we used the * wildcard in the URL.

Figure 19.4. The second step of the Create Code Group dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After you have chosen the URL condition type and entered a URL, click the Next button. The third step of the Create
Code Group dialog box displays, as shown in Figure 19.5. Select the Use Existing Permission Set radio button, and
select FullTrust as the permission set to be granted to the code group.

Figure 19.5. The third step of the Create Code Group dialog box.

But hold on a moment. Clearly, this is not going to work. Remember, the policy evaluator grants a permission only if it
is granted by all four code groups. When a user runs this customization, the Enterprise and User policy levels will grant
full trust because of their root All Code code group. The AppDomain policy level will grant full trust because the
Enterprise policy level contains a URL code group that grants full trust. But what about the Machine policy level? It will
take one look at that thing, classify it as being from the LocalIntranet Zone, and grant it the LocalIntranet permission
set. Because the customization assembly requires full trust, it will not run.

We have a problem here. You could, of course, solve this problem by setting the policy at the Machine level rather than
the Enterprise level. Or you could set it at both levels. In the system described so far, however, policy levels can only
add additional restrictions; it seems sensible that an enterprise administrator would be able to override the restrictions
of a machine administrator. We need a way for a policy level to say "Grant full trust even if another policy level
disagrees".

Fortunately, we can tweak the code group to achieve this. Rightclick the code group you just created, and choose
Properties. Take a look at the check boxes at the bottom of the Properties dialog box (see Figure 19.6).

Figure 19.6. The Properties dialog box for the AccDeptDocuments code group.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 19.6. The Properties dialog box for the AccDeptDocuments code group.

Checking the first check box makes this an exclusive code group; the regular rules about combining the permission sets
of different code groups to determine the grant set for a particular policy level cease to apply. Checking the second
check box makes this a levelfinal code group; policy levels from the lower code groups are ignored if the code's
evidence matches the membership condition for this group.

What does lower mean? The Enterprise code group is the highest, followed by Machine and User;Application Domain is
the lowest.

Note

Creating a levelfinal code group considerably weakens your security policy because it prevents lower code
groups from enforcing further restrictions. Always be careful when setting security policy, but be
particularly careful when creating level-final groups.

Location-based policies are reasonably flexible. It is easy to deploy new documents to the trusted network locations and
have them automatically be fully trusted by Enterprise policy. But there is always a tradeoff between ease of use and
security; the drawback of locationbased policies is that if some untrustworthy person does manage to install a hostile
customization on a trusted server, it will run with full permissions on user machines. The next few sections show how to
lock down the set of valid customizations even further to mitigate such vulnerabilities.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

lock down the set of valid customizations even further to mitigate such vulnerabilities.

Some problems may also arise if multiple users all try to run the customized document from the same place. If users
typically download documents to their own computers and use them there, a more local URL policy may be in order.
Instead of trusting a Web site in the policy, enter a URL such as file://c:\MyCustomizedDocuments* or another local
directory. Then users can download trusted customized documents to that folder and run them, while untrusted
customizations copied to other locations are prevented from running.

In that scenario, it may be more appropriate to roll out User or Machine policy to allow individual users or machine
administrators to change the locations of their trusted-documents folder.

Strong Names

Strong names allow you to grant full trust to only those assemblies that your organization (or other organizations that
you trust) created. Confusion abounds about what strong names are, what they are for, and how they work.

Back in the old days of "DLL hell,"dynamically linked libraries were loaded based on filename and location. This
approach has an inherent fundamental security problem: Attackers can name their evil DLLs system32.dll or
oleaut32.dll, too. Attackers could try to trick you into loading their code rather than the code that you want to load by
taking advantage of this weakness in the naming system.

The traditional DLL system suffers from other technical problems, such as versioning. When you load oleaut32.dll,
which version are you getting? Writing the code to figure it out is not rocket science, but it is not as easy as it could be.

Strong names mitigate these weaknesses. The purpose of a strong name is to provide every assembly a unique,
hardtoforge name that clearly identifies its name, version, and author. When you load an assembly based on its strong
name, you have extremely good evidence that you are actually loading the code you expect to be loading, not some
hostile version that some other author managed to slip onto your machine.

Creating a Strong-Name Code Group

Because strong names identify the customization's author, you could set a policy that states that any code by a
particular author is fully trusted. Suppose that you have a strongnamed assembly, and you want to set a policy that
says that all assemblies by this author are to be fully trusted. Again, create a new code group as a child of the location
code group created before, but this time select the Strong Name membership condition, as shown in Figure 19.7.

Figure 19.7. Creating a code group with a strong-name membership condition.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Import the public key from the strong-named assembly, and you have created a policy that trusts all assemblies by that
author. (As the dialog box notes, you can further strengthen the policy by trusting only certain names or even only
certain versions.) But what is a public key, and what does it have to do with the code's author?

How Strong Names Are Implemented

Strong naming works by using public-key cryptography. The mathematical details of how publickey cryptosystems work
would take us far off topic, but briefly, these systems work something like this: An author generates two keys,
appropriately called the public key and the private key. Assemblies can be signed with the private key, and the
signature can be verified with the public key.

Therefore, if you have a public key and an assembly, you can determine whether the assembly was signed with the
private key. Then you know that the person who signed the assembly possessed the private key. If you believe that the
author associated with that public key was not careless with the private key, you have good evidence that the assembly
in question really was signed by the author.

The signing process is highly tamper-resistant. Changing so much as a single bit of the assembly invalidates the
signature. Therefore, you also have good evidence that the assembly has not been changed postrelease by hostile
attackers out to get you.

Why Create a Child Code Group?

You may wonder why we recommended that you create your Strong Name code group as a child code group of the
location-based code group discussed earlier. And come to think of it, in the outofthebox Machine policy level, the
Microsoft Strong Name code group is a child of the Local Machine Zone code group. Why is that? Surely if having a
strong name is sufficient to grant full trust, it should be sufficient no matter where the code came from.

Code groups with membership conditions based on some fact about the assembly itself should always be children of
location-based code groups. Here is why: Suppose that you trust Foo Corporation. For the sake of argument, we
assume that this trust is justified; Foo Corporation really is not hostile toward you. Consider what would happen if your
Enterprise policy level grants assemblies signed with Foo Corporation's key full trust, period, with a level-final code
group. You impose no additional location-based requirement whatsoever.

Foo Corporation releases version 1.0 of its FooSoft library, and no matter where foosoft.dll is located, all members of
your enterprise fully trust it. Foo Corporation releases version 2.0, and then version 3.0, and so on. Everything is fine
for years.

But one day, some clever and evil person discovers a security hole in version 1.0. The security hole allows partially
trusted codesay, code from a lowtrust zone such as the Internetto take advantage of FooSoft 1.0's fully trusted status
to lure it into using its powers for evil.

Even if that flaw does not exist in the more recent versions, you are now vulnerable to it. Your policy says to trust this
code no matter where it is, no matter what version it is. Evil people could put it up on Web sites from now until forever
and write partially trusted code that takes advantage of the security hole, and you can do nothing about it short of
rolling out new policy.

If, on the other hand, you predicate fully trusting FooSoft software upon the software being in a certain location, that
scopes the potential attack surface to that location alone, not the entire Internet. All you have to do to mitigate the
problem is remove the offending code from that location, and you are done.

That explains why the Microsoft Strong Name code group is a child of the My Computer Zone code group. Should an
assembly with Microsoft's strong name ever be found to contain a security flaw, the vulnerability could be mitigated by
rolling out a patch to all affected users. If the outofthebox policy were "Trust all code signed by Microsoft, no matter
where it is," there would be no way to mitigate this vulnerability at all; the flawed code would be trusted forever, no
matter what dodgy Web site hosts it.

Note

This best practice for strong-name code groups also applies to other membership conditions that consider
only facts about the assembly itself, such as the hash and publisher certificate membership conditions.

Now that we have a child code group that grants full trust to code that is both strong-named and in a trusted location,
we can reduce the permission set granted by the outer "location" code group to nothing. That way, only code that is
both strong-named and in the correct location will run.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

both strong-named and in the correct location will run.

Implementing Strong-Named Assemblies

So far, we have been talking about the administrative problem of trusting a strongnamed assembly after you have one.
What about the development problem of creating the strong-named assembly in the first place? The process entails four
steps:

1. Designate a signing authority (that is, some highly trusted and security-conscious person in your organization
who can ensure the secrecy of the private key).

2. Create a key pair, and extract the public key from the key pair. Publicize the public key, and keep the private
key a secret.

3. Developers doing day-to-day work on the assembly should delay-sign it with the public key.

4. When you are ready to ship, the signing authority signs the assembly with the private key.

Let's take a look at each of these steps in detail.

Designate a Signing Authority

A strong name that matches a particular public key can be produced by anyone who has the private key. Therefore, the
best way to ensure that only your organization can produce assemblies signed with your private key is to keep the
private key secret. Create a small number (preferably one) of highly trusted people in your organization as signing
authorities, and make sure that they are the only people who have access to the private-key file.

Create a Key Pair

When you need a key pair for your organization, the signing authority should create a private-key file to keep to itself
and a public-key file for wide distribution. The strong-name key generation utility is sn.exe, and it is located in the bin
directory of your .NET Framework SDK:

> sn.exe -k private.snk
Microsoft (R) .NET Framework Strong Name Utility Version 2.0
Copyright (C) Microsoft Corporation. All rights reserved.

Key pair written to private.snk

> sn.exe -p private.snk public.snk
Microsoft (R) .NET Framework Strong Name Utility Version 2.0
Copyright (C) Microsoft Corporation. All rights reserved.

Public key written to public.snk

The private.snk file contains both the public and private keys; the public.snk file contains only the public key. Do
whatever is necessary to secure the private.snk file: Burn it to a CD-ROM, and put it in a safety deposit box, for
example. The public.snk file is public. You can e-mail it to all your developers, publish it on the Internet, whatever you
want. You want the public key to be widely known, because that is how people are going to identify your organization
as the author of a given strong-named assembly.

Developers Delay-Sign the Assembly

Developers working on the customization in Visual Studio will automatically get their User policy level updated so that
the assembly that they generate is fully trusted. But what if they want to test the assembly in a more realistic user
scenario, where there is unlikely to be a User-level policy that grants full trust to this specific customization assembly?
If users are going to trust the code because it is strong-named, developers and testers need to make sure that they can
run their tests in such an environment.

But you probably do not want to make every developer a signing authority; the more people you share a secret with,
the more likely that one of them will be careless. And you do not want the signing authority to sign off on every build
every single day, because prerelease code might contain security flaws. If signed-but-flawed code gets out into the
wild, you might have a serious and expensive patching problem on your hands.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can wriggle out of this dilemma in two ways. The first is to create a second key pair for a "testing purposes only"
strong name for which every developer can be a signing authority. Your test team can trust the test strong name,
making the tests more realistic. Because it is unlikely that customers ever will trust the test-only public key, there is no
worry that signed-but-buggy prerelease versions that escape your control will need to be patched.

That is considerably better than real-signing every daily build, but we can do better still; another option is to delay-sign
the assembly. When the signing authority signs the assembly, the public key and the private-key-produced signature
are embedded in the assembly; the loader reads the public key and ensures that it verifies the signature. By contrast,
when a developer delay-signs the assembly, the public key and a fake signature are embedded in the assembly; the
developer does not have the private key, and therefore the signature is not valid.

To delay-sign a customization, right-click the project in Solution Explorer, and select Properties. In the Properties pane,
click Signing and then choose the public-key file, as shown in Figure 19.8.

Figure 19.8. Delay-signing a customization.

[View full size image]

If the signature is invalid, won't the loader detect that the strong name is invalid? Yes. Therefore, developers and
testers can set their development and test machines to have a special policy that says "Skip signature validation on a
particular assembly":

> sn.exe -Vr ExpenseReporting.DLL

Note

Skipping signature validation on developer and test machines makes those machines vulnerable. If an
attacker can deduce what the name of your customization is and somehow trick a developer into running
that code, the hostile code will then be fully trusted. Developers and testers should be very careful to not
expose themselves to potentially hostile code while they have signature verification turned off. Turn it back
on as soon as testing is done.

You can turn signature validation back on with

> sn.exe -Vu ExpenseReporting.DLL

or use Vx to delete all "skip validation" policies.

Really Sign the Assembly

Finally, when you have completed development and are ready to ship the assembly to customers, you can send the
delay-signed assembly to the signing authority. The signing authority has access to the file containing both the private

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

delay-signed assembly to the signing authority. The signing authority has access to the file containing both the private
and public keys:

> sn.exe -R ExpenseReporting.DLL private.snk

Public Keys and Public-Key Tokens

One more thing about strong names and then we'll move on. A frequently asked question about strong names is
"What's the difference between a public key and a public-key token?"

The problem with public keys is that they are a little bit unwieldy. The Microsoft public key, for example, when written
out in hexadecimal, is as follows:

002400000480000094000000060200000024000052534131000400000100010
007D1FA57C4AED9F0A32E84AA0FAEFD0DE9E8FD6AEC8F87FB03766C834C9992
1EB23BE79AD9D5DCC1DD9AD236132102900B723CF980957FC4E177108FC6077
74F29E8320E92EA05ECE4E821C0A5EFE8F1645C4C0C93C1AB99285D622CAA65
2C1DFAD63D745D6F2DE5F17E5EAF0FC4963D261C8A12436518206DC093344D5
AD293

That's a bit of a mouthful. It is easier to say "I read Hamlet last Tuesday and quite enjoyed it" than "I read a play that
goes like this: Bernardo says, 'Who's there?'" and to finish four hours later with "'Go, bid the soldiers shoot,' last
Tuesday and quite enjoyed it."

Similarly, if you want to talk about a public key without writing the whole thing out, you can use the public-key token.
The public-key token corresponding to the public key above is b03f5f7f11d50a3a, which takes up a lot less space. Note,
however, that just as the title Hamlet tells you nothing about the action of the play, the public-key token tells you
nothing about the contents of the public key. It is just a useful, statistically guaranteed-unique 64-bit integer that
identifies a particular public key.

Public-key tokens usually are used when you write out a strong name. The strong name for the VSTO 2005 runtime, for
example, is this:

 Microsoft.VisualStudio.Tools.Applications.Runtime,
 Version=8.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a, ProcessorArchitecture=MSIL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Publisher Certificates
Strong names, as just described, were invented to solve a particular problem. They provide strong evidence that the
code you are loading is the code that you actually intended to load. Because the public key of the author is part of the
strong name, you can use strong names as evidence to create policies that grant full trust to code authored by
particular trusted individuals or groups.

But then what is a publisher certificate for? What is the difference between signing code with your organization's
strong-name private key and signing code with your organization's certificate?

You will note that by using strong names as evidence when setting security policy, we are essentially using strong
names to do something that they were not designed to do. Strong names were designed to solve the naming problem,
not to solve the more difficult problem of codifying trust relationships between code authors and code users.

This is not to say that strong names are not adequate; clearly, strong names are strong enough to use as evidence in
security policy. But think about some of the shortcomings of the strong-name system:

What if disaster strikes, and the private key of a trusted author is revealed? There is no standard procedure in
place to deal with this. There is no standard way even to publicize that a problem exists!

The longer a strong name's public key has been public, the longer attackers have had to attempt to determine
the corresponding private key through either brute-force or sophisticated cryptographic attacks. But strong-
name public keys have no standard mechanism for indicating expiry dates or updated keys.

Suppose that you want to add Foo Corporation's strong-name public key to your policy. How do you know that
you are adding Foo Corporation's key? If some evil hacker can convince you that his public key is actually Foo's
key, you will write a policy that trusts the evil hacker.

Amateur cryptographers often think that coming up with the "unbreakable" algorithm is the hard part. That is hard, no
doubt about it. But building a system to manage the keys effectively is often what makes or breaks an implementation.
Clearly, strong names do not have a very sophisticated system for managing keys. By contrast, publisher certificates
were designed for exactly these scenarios.

License to Code

An analogy might help. Imagine that you are reading a document, and you want to know whether it is factual or full of
lies. If the author is trustworthy, you are more likely to believe the document's contentsprovided, of course, that you
have reason to believe that the document was in fact by the stated author. Perhaps the author has signed the
document, and you recognize the signature. The details of how you come to trust the author, how you learn to
recognize the signature, and so on are left up to you.

Now suppose that you have the signed document, and you trust the author, but you do not know what the author's
signature looks like. Therefore, you cannot tell whether this document is actually trustworthy; anyone could have
signed it.

But if, in addition, you have a notarized statement from the editor-in-chief of the Encarta encyclopedia attesting to the
accuracy of the document, that might be enough. The notarized, dated statement describes the document in question,
identifies the author, and has a copy of the author's signature for comparison. You do recognize the signature of the
editor-in-chief and trust her to put her imprimatur only on trustworthy authors.

That's what a publisher certificate is like: It not only identifies the author, but also names a trusted authority who
attests to the identity and trustworthiness of the author. It indicates details such as who everyone in the chain of trust
is, when the various certificates identifying them were signed, and so on.

We use certificate-based evidence all the time in real life. A driver's license identifies the bearer by providing a
description (name, age, height, weight, eye color, hair color), a photograph, and a signature. It also attests that the
individual thereby identified has passed a driving test. To be useful as evidence, the description must match the bearer,
and it must have actually been issued by the department of motor vehicles. Furthermore, it is valid only for a certain
period of time, so out-of-date licenses become invalid.

Various organizations that need to determine the trustworthiness of individuals they know nothing about use certificate-
based evidence in their policies. If you are trying to get into a bar, any state-issued evidence that indicates your age
probably is good enough. If you are trying to rent a car, odds are pretty good that you will need a driver's license, with
its further evidence that you passed a driving test at some point. But either way, what is happening here is that
organizations are leveraging their trust of one entitythe stateto obtain evidence about the identity and trustworthiness
of an unknown individual.

Publisher certificates are essentially licenses to write code, not to drive. A publisher certificate identifies a particular
author and also identifies the certifying authority (CA), which vouches for the identity and trustworthiness of the author.

Trusting the CA to make decisions for you, of course, once more trades convenience for risk. The CA might choose

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Trusting the CA to make decisions for you, of course, once more trades convenience for risk. The CA might choose
poorly or fail to exercise due diligence in vetting its authors. You might not agree with the criteria that the CA uses to
decide who is trustworthy. In such cases, do not trust the CA! You would not rent a car to a driver who presented a
driver's license from Bob's Discount Driver's License Emporium, so trust only certifying authorities that you believe give
out certificates to trustworthy people.

Code-signing certificates, like drivers' licenses, expire after a certain date. And like driver's licenses, they can be
revoked by the CA due to bad behavior. Certifying authorities publish lists of revoked certificates; individuals can
configure their computers to download recent changes to the revocation lists automatically so that they are less likely to
be fooled by untrustworthy individuals who managed to obtain a certificate.

Obtaining Certificates

Suppose that you decide that your customizations should have publisher certificate evidence. Where you get your
publisher certificate depends on how your customers' policies are likely to be configured. Obtaining a certificate from a
CA that your customers do not trust makes it unlikely that the .NET security system will actually grant full trust to your
customization assembly. If you plan on distributing a customization widely to the public, you might consider getting a
code-signing certificate from a widely trusted CA, such as VeriSign or thawte.

On the other hand, if you are creating a customization to be rolled out inside an enterprise, you can be your own CA by
installing Microsoft Certificate Server and issuing your own code-signing certificates to your signing authority.

After you have a code-signing certificate from your CA, you can use the certmgr.exe utility to manage your certificates.
Unfortunately, there is no GUI tool in Visual Studio to sign a document with a publisher certificate automatically. That's
just as well, however. Unlike strong names, publisher certificates have no delay-signing option; an assembly is either
signed with a valid certificate or it is not. Use signcode.exe in the Framework SDK directory to attach a publisher
certificate to a customization assembly.

Tip

If you want to provide both strong-name and publisher-certificate evidence for your customization, make
sure that the signing authority real-signs the strong name first and then uses signcode.exe to apply your
publisher certificate signature to the customization. Both are designed to detect tampering with the
assembly, but because both strong-name signing and publisher-certificate signing embed signature
information in the document, you may wonder why they do not see each other as tampering with the
document. Because the strong-name system was designed after the code-signing system already existed,
the strong-name system takes this into account; adding a publisher-certificate signature to a document
does not invalidate the strong name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Trusting the Document
So far, we have been talking only about trusting the customization assembly. That makes sense; it is, after all, the
container of the code that is going to run. Something quite unusual about customized documents, however, makes
them very different from traditional forms-based applications. Here is a silly but illustrative example. Suppose that you
write a customization for a budget spreadsheet that has two named ranges with event handlers that handle their
double-click events, as shown in Figure 19.9.

Figure 19.9. A budget spreadsheet that could be exploited by an attacker.

[View full size image]

You build the customization, sign it with a strong name, ensure that companywide security policy grants full trust to
code with your strong name, and deploy the customization assembly and spreadsheet. But the text in the spreadsheet's
named ranges is just text. What is to stop some unscrupulous person from changing the text in those ranges to
whatever he wants? Anyone can swap the labels around, delete them, change the size of the range, change the font to
white letters on a white background, and so on. If the text in Figure 19.9's rows 11 and 12 is swapped, a double-click to
raise taxes will actually invoke code that will lower taxes.

In most forms-based applications, the user interface is determined by the code. Not so with customized documents. The
user interface is editable by end users, and the customization is none the wiser. Therefore, it is not enough to trust only
the customization; the document must be fully trusted as well. But how are we going to do that?

Unfortunately, all the techniques discussed thus far in this chapter for obtaining cryptographic evidence about the
customization are not going to work well with the document. The whole point of cryptographic verification is to
determine that not one bit of the assembly has been changed, but documents, by their very nature, are edited all the
time.

For this reason, although the document must be fully trusted, the AppDomain policy level does not put the same policy
restrictions on the document as it does on the assembly. A document can be fully trusted by virtue of its being in the
My Computer Zone code group or in a fully trusted All Code code group.

Consider the following policy scenario: You want to deploy your customized document on an internal Web server. The
customization is strong-named, and you have an Enterprise policy that grants full trust to code with that strong name
on that Web server. Suppose that the policy looks like this:

Enterprise

All CodeFull trust

URL: http://MyServer/customizations/* No permissions

Foo Corporation Strong NameFull trust, level-final

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Foo Corporation Strong NameFull trust, level-final

This will fully trust the customization assembly because the level-final attribute on the strong-name code group will
prevent the other three policy levels from further restricting the assembly's granted permission set.

But what about the document? The document needs to be trusted, too. In this example, the Enterprise policy level will
fully trust the document by virtue of that root All Code code group. But the out-of-the-box Machine policy level will see
only that the document is in the LocalIntranet Zone code group and will not grant full trust.

We could fix this policy by making the URL code group above also grant the full-trust permission set and make it level-
final. That fix represents a pretty serious weakening of the policy, however. Then the policy would say that all
documents and code on that Web site, regardless of whether they were associated with a customization, whether they
are strong-named or not, are fully trusted. Really, what we want to say is "All code signed with the strong name on the
server and all documents on the server are fully trusted."

We need a new membership condition that matches only Word and Excel documents. There is such a membership
condition now: the aptly named Office Document Membership Condition. Membership conditions are represented by
objects in the .NET security policy, and the assembly containing those objects has to be in the Global Assembly Cache
(GAC). If it is not already, use gacutil.exe to install msosec.dll in the GAC:

> Gacutil -i MSOSec.DLL
Microsoft (R) .NET Global Assembly Cache Utility. Version 2.0
Copyright (C) Microsoft Corporation. All rights reserved.
Assembly successfully added to the cache

Now you can create a custom security policy that trusts all Word and Excel documents on a particular server. Custom
membership conditions are represented by XML files. The Office DocumentMembership Condition has a simple
representation in XML; it contains just the name of the membership condition type and the strong name of the
assembly containing it, as shown in Figure 19.10.

Figure 19.10. Creating a code group based on the Office Document Membership
Condition.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We noted above that msosec.dll might not be in the GAC. The other VSTO assemblies are put in the GAC for you
automatically, so why not this one? There is a good reason.

A basic tenet of writing install/uninstall software is that you must uninstall what you install. If the VSTO installer installs
msosec.dll in the GAC, the uninstaller must remove it. But consider what happens if the installer installs msosec.dll, and
a user creates a security policy that uses the Office Document Membership Condition and then uninstalls VSTO.What
happens the next time that user tries to run managed code with msosec.dll deleted?

The managed-code loader will examine the security policy and discover that policy references a membership object that
no longer exists. The policy engine has no idea which assemblies would match that membership condition, so the policy
engine really has no idea what permissions ought to be granted to a given assembly! When faced with this situation,
the policy enginesimply bails out and refuses to grant any code permission to run until the situation is fixed. All
managed code on the machine would cease to run.

But if you do not install msosec.dll in the GAC in the first place, the uninstaller does not have to remove it. Users are
responsible for putting this code in the GAC and ensuring that it is not removed until they have finished with it. Be very
careful when removing security objects from the GAC.

Deploying Policy to User Machines

After you have figured out which policies you need to deploy throughout your enterprise, how are you going to get
them from your administration machine onto user machines? Fortunately, it is no different from deploying any other
application: You can create an MSI installation file, create a batch file to set up security policy from the command line,
or write a C# program.

Creating an MSI Installer

Create the Enterprise policy level you want to deploy on your machine, using the mscorcfg.msc management tool.
When you have a satisfactory policy, right-click the Runtime Security Policy node in the tree view, and select Create
Deployment Package. The dialog box shown in Figure 19.11 will appear.

Figure 19.11. Creating a code group based on the Office Document Membership
Condition.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Then the Deployment Package Wizard will create an installation script that you can deploy the same way you deploy
any other application throughout your enterprise, whether via System Management Server or Group Policy, to update
user machines automatically or simply put the installation script up on a share so users can click it themselves.

Creating a Batch File

As discussed in Chapter 18, "Server Data Scenarios," you can use the caspol.exe utility to change security policy.
Usually, caspol.exe is located in the Windows\Microsoft.NET\Framework\v2.0 directory. Generally, caspol.exe is
extremely flexible and has many options, but for our purposes, we'll discuss only how to view and edit a policy level.

To view a policy level, the syntax is as follows:

caspol.exe -<level> -listgroups

<level> can be enterprise, machine, or user. For example:

C:\> caspol -machine -listgroups

Microsoft (R) .NET Framework CasPol 2.0
Copyright (C) Microsoft Corporation. All rights reserved.
Security is ON
Execution checking is ON
Policy change prompt is ON
Level = Machine
Code Groups:
1. All code: Nothing
 1.1. Zone - MyComputer: FullTrust
 1.1.1. StrongName -: FullTrust
 1.1.2. StrongName -: FullTrust
 1.2. Zone - Intranet: LocalIntranet
 1.2.1. All code: Same site Web
 1.2.2. All code: Same directory FileIO - 'Read, PathDiscovery'
 1.3. Zone - Internet: Internet
 1.3.1. All code: Same site Web
 1.4. Zone - Untrusted: Nothing
 1.5. Zone - Trusted: Internet
 1.5.1. All code: Same site Web

As you can see, every group is numbered to indicate its position in the code group hierarchy. To add a child group, we
need to give caspol the number of the parent group, the membership condition of the group, and the permission set
granted by this group. The syntax is as follows:

caspol.exe-<level> -addgroup <parent> <condition> <permissions>

<permissions> can be Nothing, Execution, Internet, Local-Intranet, or FullTrust. The <condition> is somewhat more complicated due to
the number of possible membership conditions for a code group. Typically, you will want to pick one of the following:

-allcode (The group grants full trust to all code.)

-strong mycustomization.dll (The group grants full trust to the strong-named assembly; remember that strong-
name groups should be child groups of a location group.)

-url http://mysite/* (URL groups can also refer to directories on the local machine.)

-zone <zone> (<zone> is MyComputer, Intranet, trusted, Internet or Untrusted.)

-custom customfile.xml (This creates a custom membership condition.)

To create a code group that includes all Office documents, use this customfile.xml:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To create a code group that includes all Office documents, use this customfile.xml:

<IMembershipCondition
class="Microsoft.Office.Security.Policy.
OfficeDocumentMembershipCondition, msosec, Version=7.0.5000.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"/>

To create a level-final or exclusive code group, add levelfinal on or exclusive on to the end of the command line.

To create a policy in the Machine level that fully trusts all files on a particular intranet site, you could use caspol.exe like
this:

caspol.exe-machine -addgroup 1.2 url http://MyCorp/* FullTrust

Writing a Visual Basic Program That Modifies Security Policy

The System.Security namespace provides objects that enable you to manipulate all aspects of the security system
programmatically. To set a security policy, we first obtain the three persisted policy levels (Enterprise, Machine, and
User are saved to disk; the Application policy is created dynamically whenever an application domain is created). Then
we create a new code group by associating a membership condition with a permission set. Finally, we search the
Machine policy for the Intranet group and add a child group, as shown in the Console application in Listing 19.1.

Listing 19.1. Programmatically Modifying Security Policy

Imports System.Collections
Imports System.Security
Imports System.Security.Policy

Module Module1

 Sub Main()
 Dim enterprisePolicyLevel As PolicyLevel
 Dim machinePolicyLevel As PolicyLevel
 Dim userPolicyLevel As PolicyLevel
 Dim zone As ZoneMembershipCondition
 Dim accountingServerGroup As CodeGroup
 Dim accountingServerCondition As UrlMembershipCondition
 Dim policyStatement As PolicyStatement
 Dim fullTrust As PermissionSet
 Dim children As IList

 ' Obtain the three policy levels:

 Dim policyEnumerator As IEnumerator = _
 SecurityManager.PolicyHierarchy()
 policyEnumerator.MoveNext()
 enterprisePolicyLevel = CType(policyEnumerator.Current, PolicyLevel)
 policyEnumerator.MoveNext()
 machinePolicyLevel = CType(policyEnumerator.Current, _
 PolicyLevel)
 policyEnumerator.MoveNext()
 userPolicyLevel = CType(policyEnumerator.Current, _
 PolicyLevel)

 ' Create a new group by combining a permission set with a
 ' membership condition:

 fullTrust = machinePolicyLevel.GetNamedPermissionSet(_
 "FullTrust")
 policyStatement = New PolicyStatement(fullTrust, _
 PolicyStatementAttribute.Nothing)
 accountingServerCondition = New UrlMembershipCondition(_
 "http://accounting/*")
 accountingServerGroup = New UnionCodeGroup(_
 accountingServerCondition, policyStatement)

 ' Search the Machine policy level for the parent group:

 children = machinePolicyLevel.RootCodeGroup.Children
 ' Note that this makes a _copy_ of the children, so we'll
 ' have to copy it back when we're done editing it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' have to copy it back when we're done editing it.
 Dim codeGroup As CodeGroup
 For Each codeGroup In children
 Dim zone1 As ZoneMembershipCondition = _
 codeGroup.MembershipCondition
 If zone1 IsNot Nothing And _
 zone1.SecurityZone = SecurityZone.Intranet Then
 codeGroup.AddChild(accountingServerGroup)
 machinePolicyLevel.RootCodeGroup.Children = children
 SecurityManager.SavePolicy()
 Exit For
 End If
 Next
 End Sub

End Module

This program just gives a good starting point for building a custom policy editor; a more sophisticated program would
check to see whether the child group already existed, prompt the user before changing security policy, and so on.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
That was a lot of information; security administration can be complex. The key takeaways from this chapter include the
following:

VSTO customization code will not run under the "out-of-the-box" security policy. Some additional policy must be
applied that allows customizations to run. Choose your enterprise's security policies carefully.

The AppDomain policy level will not consider zone-based evidence for the customization assembly.

Both the customization and the document location must be fully trusted; there is no partial-trust scenario for
calling the Word and Excel object models.

Strong names and publisher certificates use similar technology but solve slightly different problems. It is
possible to use both forms of evidence in the same assembly.

A document that is opened from an intranet or Internet location must have additional policy to trust the
document location; this policy is created using the Office Document Membership Condition.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 20. Deployment
After you have built a great VSTO solution by customizing a Word document or Excel spreadsheet, you have to get the
final bits of the code to your users somehow. But how? There are two broad classifications of deployment scenarios:
local install and network install. Each has pros and cons.

Consider how this problem has traditionally been solved in the application programming world. In the traditional rich
client or thick client application, all the application logic is stored in files that somehow get copied to the local machine.
There might be a single .exe file, orthe solution might have a number of .dll files associated with it that also need to be
installed. When installing a thick client application, often the administrator or end user needs to runsome kind of setup
program to ensure that everything is registered and in the right location.

Rich client applications can take advantage of the full power of the client environment and are always available. Install
an application; unplug your laptop; hop on a plane; and your applications are still there. That very strength, however, is
also a potential weakness: You have whatever version you installed, which is not necessarily the latest version. If your
organization has many applications installed on many machines, ensuring that every machine is up to date can be a
full-time job.

Exactly the opposite is true of thin client applications, where the application logic is on a network server somewhere.
When the client logic is in the form of HTML and script downloaded fresh every time you refresh the page in the
browser, updating every client is easy; just put the latest version on the Web server, and every client will get it the
next time he or she navigates the browser to your site. But thin client applications often squander the power of modern
desktop and laptop computers by targeting a lowest-common-denominator platform that assumes nothing more than a
browser; JScript was not designed for manipulating huge datasets. Thin client applications also frequently work poorly
in disconnected scenarios, particularly if much of theapplication logic is on the server.

VSTO is all about taking full advantage of the power of locally installed Office applications. Because the customization
assembly need not be in the same location as the document itself, VSTO cleanly supports both local installs (for offline
scenarios) and network installs (for always-up-to-date scenarios). Furthermore, advanced users can take advantage of
local caching of network-installed customization assemblies to get the best of both worlds: offline access to a locally
cached customization assembly, but a guarantee that you are always using the latest version when connected.

This chapter covers how to use the Publish Wizard in Visual Studio to deploy applications toservers, how to create a
setup project for a Word or Excel project, and how to use the ServerDocument object model to edit the deployment
information inside a Word or Excel document. The chapter finishes with a discussion of some of the advanced offline-
caching scenarios.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSTO Prerequisites
No matter how your users are going to get the customized documents onto their machines, they will need some
prerequisites, as follows:

Microsoft Office Service Pack One, which can be found at http://www.microsoft.com/downloads/details.aspx?
familyid=9C51D3A6-7CB1-4F61-837E-5F938254FC47

The primary interop assemblies (PIAs), which can be found at
http://www.microsoft.com/downloads/details.aspx?familyid=3c9a983a-ac14-4125-8ba0-d36d67e0f4ad

The .NET Framework 2.0

The VSTO runtime

Those last two will also be available as stand-alone setup packages, should you want to deploy them. The VSTO runtime
redistribution setup package (vstor.exe) is available on the VSTO installation CD-ROM, as is the .NET Framework 2.0
setup package (dotnetfx.exe). The .NET Framework2.0 setup package will also be made available through Windows
Update.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deploying to an Intranet Shared Directory or Web Site
Suppose that you are ready to roll out an expense-reporting application using a customized Excel spreadsheet. You plan
to put the application up on the http://accounting Web site. Users will download the spreadsheet to their local machines
for editing, but the code will live up on the server.

As discussed in Chapter 19, ".NET Code Security," you need to ensure that users have policy that explicitly trusts the
customization assembly. The policy should explicitly trust the server; the strong name of the assembly; or, preferably,
both. See the last section of Chapter 19 for tips on how to roll out security policy.

Deploying to a Server with the Publish Wizard

Choose Publish from the Build menu to start the Publish Wizard, and give the name of the intranet Web server or
network share to which you want to publish the customization, as shown in Figure 20.1.

Figure 20.1. The Visual Studio Publish Wizard.

[View full size image]

Click Finish. It is as simple as that; Visual Studio will build the customization and copy the document and customization
assembly to the server. As you will see later in this chapter, Visual Studio also creates a deployment manifest for you.
We discuss what deployment manifests are for shortly, but first, what if you do not have write access to the server?

Some Security Questions

A few security questions may have just come to mind. What if your security-conscious administrators have not granted
you write access to the Website? What if the delay-signed assemblies must be properly strong-named by a signing
authority or signed with a publisher certificate before they are deployed?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

authority or signed with a publisher certificate before they are deployed?

The Publish Wizard creates a local copy of the files that it deploys up to the network site before it deploys them, but
unfortunately, there is no way to get the Publish Wizard to skip attempting to copy them up to the site. It is possible to
do this from the command line, however, using the msbuild.exe utility. The syntax is as follows:

MSBuild.exe /target:Publish /property:PublishUrl=<Url> <Project>

This produces the files that would be deployed and puts them in the following directory:

<ProjectFolder>\<OutputFolder>\<ProjectName>.publish

The following would produce the files to be copied to the Web server but not actually copy them there:

MSBuild.exe /target:Publish
/property:PublishUrl=http://accounting/ExpenseReport
"c:\MyProjects\ExpenseReport\ExpenseReport.vbproj"

Instead, they would be saved in the following:

c:\MyProjects\ExpenseReport\bin\Release\ExpenseReport.publish

After you have the files to be deployed on your local machine, you can get them strong-named by your signing
authority, send them to the server administrator to be copied onto the Web server, or do whatever else needs to be
done before the files become available on a live server.

Examining the Generated Files

Take a look at the contents of the network (or local) directory to which you just deployed the application. (This typically
will be a subdirectory of the c:\inetpub\wwwroot directory if you published to a Web site.) You should see a directory
structure that looks something like this:

> dir /s /b
C:\Inetpub\wwwroot\ExpenseReport\ExpenseReport.application
C:\Inetpub\wwwroot\ExpenseReport\ExpenseReport.doc
C:\Inetpub\wwwroot\ExpenseReport\ExpenseReport_1.0.0.0
C:\Inetpub\wwwroot\ExpenseReport\ExpenseReport_1.0.0.0\
 ExpenseReport.dll
C:\Inetpub\wwwroot\ExpenseReport\ExpenseReport_1.0.0.0\
 ExpenseReport.dll.manifest
C:\Inetpub\wwwroot\ExpenseReport\ExpenseReport_1.0.0.0\
 ExpenseReport.doc
C:\Inetpub\wwwroot\ExpenseReport\ExpenseReport_1.0.0.0\
 ExpenseReport.dll.config

To understand what is going on here, we need to introduce some jargon. The ExpenseReport.application file is the
deployment manifest, and the ExpenseReport.dll.manifest file is the application manifest.

Note

It is somewhat confusing that the ".application" file is not the application manifest; unfortunately, now we
are stuck with this poor choice of nomenclature.

The Deployment Manifest

The sole purpose of the deployment manifest is to point the VSTO runtime toward the most current version of the
application manifest. The application manifest, by contrast, contains information about where the customization
assembly is and which host item classes need to be created when the customization is started. There is always only one
deployment manifest, but there can be many application manifests, one for each version of the customization.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

deployment manifest, but there can be many application manifests, one for each version of the customization.

A typical automatically generated deployment manifest looks something like Listing 20.1.

Listing 20.1. The Deployment Manifest

<?xml version="1.0" encoding="utf-8"?>
<asmv1:assembly
 xsi:schemaLocation=
 "urn:schemas-microsoft-com:asm.v1 assembly.adaptive.xsd"
 manifestVersion="1.0"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xmlns="urn:schemas-microsoft-com:asm.v2"
 xmlns:asmv1="urn:schemas-microsoft-com:asm.v1"
 xmlns:asmv2="urn:schemas-microsoft-com:asm.v2"
 xmlns:xrml="urn:mpeg:mpeg21:2003:01-REL-R-NS"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <assemblyIdentity
 name="ExpenseReport.application"
 version="1.0.0.0"
 publicKeyToken="0000000000000000"
 language="neutral"
 processorArchitecture="msil"
 xmlns="urn:schemas-microsoft-com:asm.v1" />
 <description
 asmv2:publisher="Microsoft"
 asmv2:product="ExpenseReport"
 xmlns="urn:schemas-microsoft-com:asm.v1" />
 <deployment install="true" />
 <dependency>
 <dependentAssembly
 dependencyType="install"
 codebase=
 "ExpenseReport_1.0.0.0\ExpenseReport.dll.manifest"
 size="1460">
 <assemblyIdentity
 name="ExpenseReport.dll"
 version="1.0.0.0" />
 <hash>
 <dsig:Transforms>
 <dsig:Transform Algorithm=
 "urn:schemas-microsoft-com:HashTransforms.Identity" />
 </dsig:Transforms>
 <dsig:DigestMethod Algorithm=
 "http://www.w3.org/2000/09/xmldsig#sha1" />
<dsig:DigestValue>8cQI8YsGgIUaSSysgK3Ad8do9t0=</dsig:DigestValue>
 </hash>
 </dependentAssembly>
 </dependency>
</asmv1:assembly>

We have emphasized the relevant portions of the deployment manifest. What is all the rest ofthis stuff? There seem to
be some confusing things in here. Why is the root element "assembly"? Why are there two inconsistent
"assemblyIdentity" elements? And what's that digital signature?

VSTO uses the same deployment manifest format as ClickOnce, a technology designed to facilitate deployment of entire
applications, not single customizations; these oddities are a result of backward-compatibility factors from the ClickOnce
world.

The oldest of these historical factors is the root element "assembly." Explaining that strange choice requires us to go
back to a time before the version 1.0 .NET runtime shipped. When the .NET runtime was being designed, assembly
referred to all an application's files and configuration informationthat is, all the bits described by what we now call a
manifest. The manifest file format above dates from that time, and its elements were not renamed when assembly
came to mean "the smallest unit of versionable executable code."

That explains why there are two inconsistent assemblyIdentity elements. The first assemblyIdentity identifies not a DLL,
but the manifest itself. Notice that the first assemblyIdentity element names the manifest. Manifests can have their own
version numbers. Deployment manifests usually are versioned along with the customization assembly, but the
deployment manifest can haveits own version number distinct from that of the customization assembly, if you so
choose; as you will see later, it must be consistent with the application manifest but need not be consistent with the
customization assembly. VSTO considers only the name and version attributes in the first assemblyIdentity element.

The second assemblyIdentity element uses assembly in the modern sense and identifies the customization code. Notice
that the codebase attribute gives the relative path to the application manifest, and the assemblyIdentity identifies the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that the codebase attribute gives the relative path to the application manifest, and the assemblyIdentity identifies the
name and version of the customization code. We discuss the meanings and interactions of the various codebase
attributes later in this chapter.

Finally, ClickOnce supports digital signing security features in its manifests; unlike ClickOnce, VSTO does not do any
kind of digital signature verification on its manifests. VSTO will ignore these elements.

The Application Manifest

As you have seen, the deployment manifest identifies the location and current version of theapplication manifest. The
application manifest identifies the customization assembly and lists the classes that need to be created when the
customization starts. The application manifest, shown in Listing 20.2, looks somewhat similar to the deployment
manifest.

Listing 20.2. The Application Manifest

<assembly xmlns="urn:schemas-microsoft-com:asm.v1"
 xmlns:asmv2="urn:schemas-microsoft-com:asm.v2">
 <assemblyIdentity name="ExpenseReport.dll" version="1.0.0.0" />
 <asmv2:entryPoint name="Startup" dependencyName="dependency0">
 <asmv2:clrClassInvocation
 class="ExpenseReport.ThisWorkbook"/>
 </asmv2:entryPoint>
 <asmv2:entryPoint name="Startup" dependencyName="dependency0">
 <asmv2:clrClassInvocation class="ExpenseReport.Sheet1"/>
 </asmv2:entryPoint>
 <asmv2:entryPoint name="Startup" dependencyName="dependency0">
 <asmv2:clrClassInvocation class="ExpenseReport.Sheet2"/>
 </asmv2:entryPoint>
 <asmv2:entryPoint name="Startup" dependencyName="dependency0">
 <asmv2:clrClassInvocation class="ExpenseReport.Sheet3"/>
 </asmv2:entryPoint>
 <asmv2:dependency asmv2:name="dependency0">
 <asmv2:dependentAssembly>
 <assemblyIdentity name="ExpenseReport"
 version="1.0.0.0" culture="neutral" />
 <asmv2:installFrom
 codebase="ExpenseReport_1.0.0.0\ExpenseReport.DLL" />
 </asmv2:dependentAssembly>
 <asmv2:installFrom codebase=
"http://accounting/ExpenseReport/ExpenseReport.application" />
 </asmv2:dependency>
</assembly>

Again, we have assembly used in the now-obsolete sense as the root element and an assemblyIdentity element that
gives the version number of the application manifest. What is all the rest of the stuff in here?

Clearly, all the information we need to start the customization is in here, but again, the format is somewhat odd
because it tries to be similar to the ClickOnce format. We have a collection of entryPoints listing the classes that are to
be created when the customization starts. We also have a single dependency (that is, the assembly containing the
customization). Because a ClickOnce application manifest describes all the assemblies that make up an application, a
ClickOnce manifest can have many dependent assemblies. A VSTO customization always consists of a single assembly
and, therefore, has only one dependency in the application manifest.

Notice that the application manifest also refers to the location of the deployment manifest. But is not the point of the
deployment manifest to identify the location of the application manifest? What is going on here?

The Relationship Between Application and Deployment Manifests

The easiest way to explain this is to walk through a typical deployment scenario. Suppose that you develop and publish
version 1.0.0.0 of the expense-reporting solution above. Now there are four interesting files: the deployment manifest,
the application manifest, the assembly, and the document. The deployment manifest points to the application manifest;
the application manifest points to the assembly; and the document's data island contains a copy of the application
manifest.

Now you e-mail the document, without the assembly, to a user. The user loads the document into Excel. The VSTO
runtime reads the copy of the application manifest out of the document and notices a deployment manifest in the
installFrom location. The VSTO runtime downloads the deployment manifest and discovers that both the application and
deployment manifests are version 1.0.0.0. Therefore, the VSTO runtime knows that the document contains the most
recent copy of the application manifest, so it need not update it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

recent copy of the application manifest, so it need not update it.

The deployment manifest's codebase refers to the location of the server's copy of the manifest and the customization
DLL. The CLR assembly loader downloads the assembly and configuration file, caches them locally, and loads the
assembly into memory. (Although the file has been cached locally for convenience, the CLR assembly loader sets the
evidence associated with the assembly to match its original location, not its temporary location on the local disk.) Then
the VSTO runtime starts the classes named in the entryPoint elements, and the customization runs.

A few days later, you fix some bugs and roll out version 1.0.0.1 to the server, using the Publish Wizard. The next time
the user starts the document while online, the VSTO runtime contacts the server to see whether there have been any
changes in the deployment manifest.

This time, the document's copy of the application manifest is 1.0.0.0, but the deployment manifest is 1.0.0.1. The VSTO
runtime downloads the new application manifest from the server and caches a copy of it in the document. (Note that if
the user quits Excel without saving the document, the change to the cached manifest will be lost with all the other
changes.)

The CLR loader detects that the assembly's codebase is different and downloads the new assembly. Now the user is
running the latest version without ever having to download or install anything manually.

Because the local copy of the application manifest knows where the deployment manifest is, and the deployment
manifest knows where the latest application manifest is, the document always can keep itself up to date with the latest
bits.

Note

A deployment manifest's version number must match the version number of the application manifest it
refers to. If the deployment manifest's version attribute indicates that itis version 1.0.0.1, the referred-to
application manifest must also be version 1.0.0.1. If the VSTO runtime detects that the deployment
manifest refers to a mismatched application manifest, it assumes that the deployment server has been
corrupted and refuses to load the customization.

Determining the Assembly Location from a Deployment Manifest

Did you notice that between the deployment manifest and the application manifest, there were three codebase
attributes? The application manifest says this:

 <asmv2:dependency asmv2:name="dependency0">
 <asmv2:dependentAssembly>
 <assemblyIdentity name="ExpenseReport"
 version="1.0.0.0" culture="neutral" />
 <asmv2:installFrom codebase=
 "ExpenseReport_1.0.0.0\ExpenseReport.DLL" />
 </asmv2:dependentAssembly>
 <asmv2:installFrom codebase=
 "http://accounting/ExpenseReport/ExpenseReport.application" />
 </asmv2:dependency>

Whereas the deployment manifest says this:

codebase="ExpenseReport_1.0.0.0\ExpenseReport.dll.manifest"

How does the loader determine the codebase from which to load the customization assembly? In the preceding
example, the application manifest has an absolute path to the deployment manifest, so the runtime starts there. The
absolute path to the deployment manifest is combined with the codebase in the application manifest, which is relative to
the deployment manifest path for a published project. So the VSTO runtime looks for the assembly in
http://accounting/ExpenseReport/ExpenseReport_1.0.0.0/.

Had the application manifest contained an absolute path to the DLL, the VSTO runtime would ignore the deployment
manifest information for the purposes of loading the customization and just use the absolute path. You learn how to
edit the codebase and other attributes in the application and deployment manifests later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Local Machine Deployment Without a Deployment Manifest
What if you choose to eschew the convenience of having customization assemblies deployed to centralized network
locations? Perhaps there is no suitable location, or the number of users who will be using your customized document is
sufficiently small that rolling out new assemblies to all their machines is not particularly onerous. You could always stick
with the default behavior, where the customization assembly must be in the same directory as the document it
customizes.

As discussed at the beginning of this chapter, however, that leads to the inconvenience of having to copy around the
associated files every time you move the document itself. The security system imposes an additional inconvenience: If
the customization assembly is in the same location as the document, that location must be fully trusted for some reason
other than simply being in the local machine zone.

For these reasons, your users may want the convenience of having one location on their local machine for the
customization. That way, the customization need not be moved around with the document, and only one location need
be explicitly trusted.

If no deployment manifest is listed in the embedded application manifest, clearly, the VSTO runtime will not be able to
resolve the codebase relative to the nonexistent deployment manifest location. Instead, the VSTO runtime will resolve
the codebase by taking the path relative to the current document location. Of course, having a relative path to the
document again makes it difficult to move the document around without moving the assembly as well. Therefore, it is
most likely that the assembly codebase will be an absolute path.

A particularly useful feature when setting the application codebase is that the VSTO runtime will expand any
environment variables in the installFrom path. You could set the installFrom path to this, for example:

 <asmv2:installFrom codebase=
"%ProgramFiles%\ExpenseReport\ExpenseReport.dll" />

Then the VSTO runtime would replace the named environment variable with the appropriate path on the user's
machine.

But how does one go about editing these paths? The application manifest in question is embedded in the document's
data island. Fortunately, the VSTO runtime provides a convenient object model for manipulating embedded application
manifests. The ServerDocument object, which you saw used for manipulating a document's cached data in Chapter 18,
"Server Data Scenarios," will come in handy again.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Editing Manifests
You can use several tools to edit deployment and application manifests.

Using MAGE to Edit Deployment Manifests

The Visual Studio Publish Wizard will automatically generate and update a deployment manifest for you, but should you
want to edit the manifest yourself, you have two main options. First, the deployment manifest is nothing more than an
XML file sitting on a server; you can use Notepad or any other editor of your choice.

If editing raw XML is not your idea of a good time, you can use the Manifest Generating and Editing (MAGE) tool,
mage.exe (see Figure 20.2). MAGE ships with Visual Studio and provides a convenient graphical interface for editing
deployment manifests. (Look in the SDK\v2.0\BIN directory of your Visual Studio installation.)

Figure 20.2. Using mage.exe to update a deployment manifest manually torefer to
a new version of the customization.

[View full size image]

Unfortunately, the VSTO application manifest file format is sufficiently different from the ClickOnce file format that
MAGE cannot be used to edit VSTO application manifestsonly deployment manifests. To edit application manifests, you
have a couple of options: You can use the VSTO Application Manifest Editor utility, or you can write your own tools
using the ServerDocument object model.

Using the VSTO Application Manifest Editor

The VSTO SDK ships with a library of code samples, one of which is a graphical utility for editing application manifests.
Load the ApplicationManifestEditor sample solution into Visual Studio, and build it. Then you can use this utility to edit
the manifests inside spreadsheets and documents (see Figure 20.3).

Figure 20.3. Using the VSTO Application Manifest Editor to edit the manifest
embedded in a spreadsheet file.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Graphical utilities prove handy if you want to change a small number of files, but what if you want to make changes to
many customizations at the same time? Then it would be nice to be able to write programs that edit the application
manifests directly. Fortunately, the ServerDocument object model can manipulate not just the cached data inside a
document, but also the application manifest.

Using the ServerDocument Object Model to Read and Edit Embedded
Application Manifests

The ServerDocument object model, discussed in Chapter 18, "Server Data Scenarios," was primarily designed to
manipulate the cached data island on the server. You can also use it to read or edit the application manifest stored in a
customized document, however. The ServerDocument object can edit the application manifests stored in Word
documents saved in either binary or XML format, and Excel documents saved in binary format only.

Listing 20.3 shows how we can modify our cached-data viewer from Chapter 18 to display the application manifest
inside a document.

Listing 20.3. Creating an Application Manifest Viewer with ServerDocument

Imports Microsoft.VisualStudio.Tools.Applications.Runtime
Imports System.IO

Module Module1

 Sub Main(ByVal args As String())
 If args.Length <> 1 Then
 Console.WriteLine("Usage:")
 Console.WriteLine(" AppInfoViewer.exe myfile.doc")
 Return
 End If

 Dim filename As String = args(0)
 Dim doc As ServerDocument = Nothing

 Try
 doc = New ServerDocument(filename, False, FileAccess.Read)
 Console.WriteLine(vbCrLf & "Application Manifest")
 Console.WriteLine(doc.AppManifest.ToXml())
 Catch ex As CannotLoadManifestException
 Console.WriteLine("Not a customized document:" + filename)
 Console.WriteLine(ex.Message)
 Catch ex As FileNotFoundException
 Console.WriteLine("File not found:" + filename)
 Catch ex As Exception
 Console.WriteLine("Unexpected Exception:" + filename)
 Console.WriteLine(ex.ToString())
 Finally
 If Not doc Is Nothing Then
 doc.Close()
 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End If
 End Try
 End Sub

End Module

This section covers all the application-manifest-related properties and methods in the server document object model,
describing what they do, their purpose, and why they look the way they do.

Note

As mentioned in Chapter 18, "Server Data Scenarios," because this object model enables you to modify all
the information about the customization, it is quite possible to create documents with nonsensical
deployment information. The VSTO runtime engine does attempt to detect malformed customization
information and throw the appropriate exceptions, but still, exercise caution when using this object model.

Application Manifest Objects, Methods, and Properties

The ServerDocument represents the application manifest as an object of type AppManifest:

Public ReadOnly Property AppManifest As AppManifest

The AppManifest object has no public constructors; the only way to get an instance of an AppManifest is to open a
ServerDocument object. After you have one, there is an easy way to turn an XML manifest into the programmable
object model:

Public Sub Clear()
Public Sub FromXml(ByVal manifest As String)
Public Function ToXml() As String

The ToXml method turns the current state of the object model into XML. The Clear method throws away all the
information in the manifest, making it a blank slate. The FromXml method clearsthe present state of the document
before loading the information from the passed-in XML string. The AppManifest object also has four properties:

Public Property Dependency As Dependency
Public Property DeployManifestPath As String
Public ReadOnly Property EntryPoints As EntryPointCollection
Public Property Identity As AssemblyIdentity

The AssemblyIdentity property is the "assembly" identity of the manifest, not of the customization assembly. This
contains the application manifest's version number. If a deployment manifest is used, the VSTO runtime compares the
application manifest and deployment manifest versions to see whether the application manifest is out of date.

The DeployManifestPath property gives the URL to the deployment manifest. This property sets the codebase attribute
of the second installFrom element in the application manifest.

Using a deployment manifest is optional; if no deployment manifest path is set, the VSTO runtime assumes that the
embedded application manifest is always up to date.

An EntryPointCollection is a straightforward, strongly typed collection class that extends CollectionBase with these
methods:

Public Function Add(ByVal className As String) As EntryPoint
Public Function Contains(ByVal value As EntryPoint) As Boolean
Public Sub CopyTo(ByVal entryPoints As EntryPoint(), _
 ByVal index As Integer)
Public Function GetEnumerator() As EntryPointEnumerator
Public Function IndexOf(ByVal entryPoint As EntryPoint) _
 As Integer
Public Sub Insert(ByVal index As Integer, _
 ByVal value As EntryPoint)
Public Sub Remove(ByVal entryPoint As EntryPoint)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Sub Remove(ByVal entryPoint As EntryPoint)

Like the AppManifest, the EntryPointCollection and EntryPoint objects have no public constructors. Use the Add method
on the EntryPointCollection if you want to create a new EntryPoint. An EntryPoint has only one public property. It should
be the namespace-qualified name of the view class:

Public Property ClassName As String

The Dependency object has two properties:

Public Property AssemblyIdentity As AssemblyIdentity
Public Property AssemblyPath As String

To load the customization assembly, the runtime needs to know both the full name of the assembly and its location. The
AssemblyPath corresponds to the codebase attribute of the first installFrom element in the application manifest. As
mentioned previously, it may be either an absolute or a relative URL. If absolute, the assembly is loaded from that
location. If relative, the path is relative to the location of the deployment manifest's codebase, if there is one, or the
document if there is not.

The AssemblyIdentity object does have a public constructor, unlike every other object in the application manifest object
model:

Public Sub New(ByVal name As String, _
 ByVal version As FourPartVersion, _
 ByVal publicKeyToken As String)
Public Property Name As String
Public Property PublicKeyToken As String
Public Property Version As FourPartVersion

The Name property gives the name of the assembly, not the name of the file containing it; it should not end in .dll.

The PublicKeyToken property is part of the strong name. A full public key encoded as a string is a rather long and
unwieldy string. The public-key token is a much shorter statistically guaranteed-unique key that identifies the public key
used to verify a strong-named assembly. (See Chapter 19, ".NET Code Security," for more details on what a strong
name is and what the key token is for.) You can use sn.exeT myassembly.dll to give the public-key token of a strong-named
assembly.

Finally, the FourPartVersion object is a value type that keeps track of "1.2.3.4"-formatted version numbers. It has the
following properties and methods:

Public Sub New(ByVal major As Integer, ByVal minor As Integer, _
 ByVal buildNumber As Integer, ByVal revision As Integer)
Public Property BuildNumber As Integer
Public Property Major As Integer
Public Property Minor As Integer
Public Property Revision As Integer
Public Shared Function Parse(ByVal value As String) _
 As FourPartVersion
Public Shared ReadOnly Property Empty As FourPartVersion

The FourPartVersion class also overrides all the comparison operators so that you can easily compare any two.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating Setup Packages
Creating a setup package to install a VSTO customized document on a user's local machine requires us to build a couple
of custom installer classes. We need to update the application manifest stored in the document to refer to the location
on the user's machine, and we need to update the user's security policy. Let's walk through all the steps required to
add a setup package to a customized spreadsheetsay, an expense-reporting application.

Open the solution for the customized document, and right-click the solution (the root of the tree) in Solution Explorer.
Choose Add > New Project, and create a setup project as shown in Figure 20.4.

Figure 20.4. Creating a setup project.

[View full size image]

Tip

This step is not necessary if you have created an Outlook Add-In VSTO project. Visual Studio will
automatically create an installer project that installs the DLL, creates a manifest, and updates the Outlook
add-in registry key for you. You still need to ensure that the right security policy is rolled out, however,
and that the VSTO runtime assemblies are installed on the client machines.

Use the Properties pane for the setup project to customize strings such as the author, description, and so on, as shown
in Figure 20.5.

Figure 20.5. Setting setup-project properties.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We have not yet told the setup project what files it is going to be setting up. We want it to set up all the files produced
by the expense-report project in this solution.

Right-click the setup project, and select Add > Project Output to view the Add Project Output Group dialog box, shown
in Figure 20.6.

Figure 20.6. Telling the setup project which files to set up.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Select the Primary Output files associated with the ExpenseReport project, and click OK.

At this point, if you want the users to take responsibility for installing the customization to a location that they trust and
do not care that they will have to copy around the customization assembly if they want to move the spreadsheet, you
are done. You can build and execute the setup package, and it will copy the necessary files to the user's machine just
as they are on the development machine.

You probably want to set the codebase in the application manifest, however, so that it refers to the installation location
rather than the current directory. You also probably want to set the user's security policy so that the customization
location is fully trusted. That way, the user can copy the document around without worrying about dragging the
customization along with it.

To do that, we create yet another project in this solution. Right-click the solution in Solution Explorer again, and create
a new, empty Visual Basic project (in the Visual Basic > Windows branch of the tree view of the Add New Project dialog
box) called CustomSetup. When you have the project, right-click it, and select the Properties pane for the project.
Change the output type to Class Library, as shown in Figure 20.7.

Figure 20.7. Setting the custom installer class project to build a class library.

[View full size image]

Right-click the project again, and choose Add > New Item. Add a new Installer Class, as shown in Figure 20.8. In fact,
add two: one for the security change, and one for the application manifest change.

Figure 20.8. Adding custom installer classes.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Right-click the References node in the CustomSetup project's tree view, and add a reference to
Microsoft.VisualStudio.Tools.Applications.Runtime; we are going to need to create the ServerDocument class, so we
need a reference to the VSTO runtime library. Finally, right-click the application manifest installer, and select View
Code. Now the Visual Studio IDE should look something like Figure 20.9.

Figure 20.9. Editing the custom installer classes.

[View full size image]

Before we get into adding code to these custom actions, however, let's tell the installer about them. Right-click the
installer project in Server Explorer, and choose View > Custom Actions. In the Custom Actions viewer, right-click
Install, and choose Add Custom Action to view the custom action dialog box shown in Figure 20.10.

Figure 20.10. Selecting the custom install actions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 20.10. Selecting the custom install actions.

Click Application Folder and then Primary Output from CustomSetup. Doing so tells the setup project that it should look
for Installer classes decorated with the RunInstaller attribute in the assembly produced by the CustomSetup project. As
you can see from looking at the hidden partial class associated with the Installer class, both the new custom install
action classes are decorated with this attribute.

We must do one more thing to get the custom install actions working properly: They need to know the name of the
assembly, the name of the document, and where they are located. To pass these strings from the installer to the
custom action, we add the strings to the CustomActionData property of the custom action just created, as shown in
Figure 20.11.

Figure 20.11. Setting the custom action data.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The custom action data consists of a set of keys and values:

/custassembly="[TARGETDIR]\ExpenseReport.dll"
/custdoc="[TARGETDIR]\ExpenseReport.xls"

Finally, we are all set up to write the custom installation actions. First, we write the application manifest editor shown in
Listing 20.4. We get the strings passed by the main installer out of the installation context object, create a
ServerDocument on the installed document, and set the assembly path to the absolute path. Finally, because this is a
derived class, we make sure that we call the base class install method in case it does anything interesting (such as
write a success message to a log file).

Listing 20.4. Creating an Application Manifest Editor Custom Install Action with
ServerDocument

Imports System.ComponentModel
Imports System.Configuration.Install
Imports Microsoft.VisualStudio.Tools.Applications.Runtime

Public Class AppManifestInstaller
 Inherits Installer

 Public Sub New()
 MyBase.New()

 'This call is required by the Component Designer.
 InitializeComponent()
 End Sub

 Public Overrides Sub Install(_
 ByVal stateSaver As System.Collections.IDictionary)

 Dim assemblyPath As String = _
 Me.Context.Parameters("custassembly")
 Dim documentPath As String = Me.Context.Parameters("custdoc")
 Dim sd As ServerDocument = New ServerDocument(documentPath, _
 True, System.IO.FileAccess.ReadWrite)
 Try
 sd.AppManifest.Dependency.AssemblyPath = assemblyPath
 sd.Save()
 Finally
 sd.Close()
 End Try
 MyBase.Install(stateSaver)

 End Sub

End Class

Second, we write code similar to the code we wrote in Chapter 19, ".NET Code Security," to set the local security policy.
This time, we set a user security policy that trusts the installation directory explicitly, as shown in Listing 20.5.

Listing 20.5. A Custom Install Action Class to Set Local Security Policy

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 20.5. A Custom Install Action Class to Set Local Security Policy

Imports System.Collections
Imports System.ComponentModel
Imports System.Configuration.Install
Imports System.Security
Imports System.Security.Policy
Imports Microsoft.VisualStudio.Tools.Applications.Runtime

Public Class SecurityInstaller
 Inherits Installer

 Public Sub New()
 MyBase.New()

 'This call is required by the Component Designer.
 InitializeComponent()
 End Sub

 Public Overrides Sub Install(_
 ByVal stateSaver As System.Collections.IDictionary)

 Dim enterprisePolicyLevel As PolicyLevel
 Dim machinePolicyLevel As PolicyLevel
 Dim userPolicyLevel As PolicyLevel
 Dim assemblyGroup As CodeGroup
 Dim assemblyCondition As UrlMembershipCondition
 Dim policyStatement As PolicyStatement
 Dim fullTrust As PermissionSet
 Dim assemblyPath As String = _
 Me.Context.Parameters("custassembly")

 ' Obtain the three policy levels:
 Dim policyEnumerator As IEnumerator
 policyEnumerator = SecurityManager.PolicyHierarchy()
 policyEnumerator.MoveNext()
 enterprisePolicyLevel = CType(_
 policyEnumerator.Current, PolicyLevel)
 policyEnumerator.MoveNext()
 machinePolicyLevel = CType(_
 policyEnumerator.Current, PolicyLevel)
 policyEnumerator.MoveNext()
 userPolicyLevel = CType(_
 policyEnumerator.Current, PolicyLevel)

 ' Create a new group by combining a permission set with a
 ' membership condition:
 fullTrust = userPolicyLevel. _
 GetNamedPermissionSet("FullTrust")
 policyStatement = New PolicyStatement(fullTrust, _
 PolicyStatementAttribute.Nothing)
 assemblyCondition = New UrlMembershipCondition(assemblyPath)
 assemblyGroup = New UnionCodeGroup(_
 assemblyCondition, policyStatement)

 ' Add the new policy to the root:
 userPolicyLevel.RootCodeGroup.AddChild(assemblyGroup)
 SecurityManager.SavePolicy()

 MyBase.Install(stateSaver)
 End Sub

End Class

If you build all three projects, right-click the installation project, and choose Install, you will see how the Installation
Wizard allows the user to select the location, copies the files over, and then updates the user's security policy and sets
the assembly codebase in the embedded application manifest.

This section has given a bare-bones skeleton of a customized installation program, of course. A more robust installer
includes features such as custom logging, better error handling, user-interface elements, rollback/uninstall when things
go wrong, and so on.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Advanced Topic: Deploying Network Solutions to Be Cached Locally

This chapter began by noting that VSTO supports two main deployment scenarios: Local install ensures
that customizations always work, even when the user is not connected to the network, and network
installs ensure that the user always has the latest version. It would be nice to have the best of both
worlds: the latest version whenever you are online plus the ability to work offline.

If your users always need to be able to run the latest version of the customization while they are online
or offline, and also want to have one centralized point at which the customization can be updated, there
are two principal techniques for doing so: Deploy the customization to a Web server, and deploy it to an
IntelliMirror shared directory.

IntelliMirror Versus Web Caching

If the customization is deployed to a Web server, the Visual Studio runtime loader keeps a local copy of
the assembly and configuration file in the Internet Explorer cache so that the customization is available
when Internet Explorer is offline. Similarly, a locally cached IntelliMirror share makes the network
customization seamlessly available even when the network share is not available.

All other things being equal, the IntelliMirror technique is preferred over the Web server technique, for
several reasons. Suppose that you deploy your customization assembly to http://accounting, a local
intranet Web server. A user runs the customized document, which downloads the customization
assembly from the intranet site and caches a copy in the Internet Explorer cache. Then the user unplugs
his laptop from the wall, heads to the local library, and connects to the library's free wireless networking
service. Now when the user tries to run the customized document, the .NET Framework will not load the
customization assembly out of the Internet Explorer cache, because Internet Explorer believes that it is
connected to the network. Instead, the .NET Framework attempts to connect to the intranet server, fails,
and prompts the user to go offline to use the locally cached copy. Then the user faces the unfortunate
choice of either not running the customization or putting Internet Explorer into offline mode, negating
the benefits of having wireless Internet access.

Also, because the Web-server-caching scenario puts the customization assembly in the Internet Explorer
cache, anything that causes the cache to be cleared destroys the cached customization assembly along
with everything else. Many users clear their Web caches frequently when the caches get too large, and it
is very easy to delete a cached customization assembly accidentally.

Finally, a further inconvenience of the Web-caching scenario is that all customizations must have a
configuration file associated with them for the offline scenario to work. The next section discusses why.

Therefore, all other things being equal, if you want a hybrid online/offline scenario, the IntelliMirror
technique is the preferred one. IntelliMirror shares pay no attention to the state of the Internet Explorer
cache or online status.

Why Do We Need a Configuration File?

One of the goals explicitly stated earlier was to be able to have code live up on a Web server, so that it
was always up to date, yet be able to access the code when the machine is disconnected. To achieve this
goal, the first time the remote code is run, it is downloaded into a local cache. If you run the code again
while connected, VSTO checks to ensure that the latest version is downloaded; if offline, VSTO runs the
cached code.

Consider this scenario: Your customization assembly is on a Web server along with a configuration file.
The customization assembly uses version 1.0.0.0 of a strong-named assembly containing some useful
routines you have written. The first time the user runs the application, the customization assembly and
configuration file are downloaded and cached. The user goes offline, but the customization continues to
work because the cached assembly and configuration file are available.

So far, everything is good. Unfortunately, one day you discover a serious security hole in your library.
You fix it and release version 1.0.1.0 of the library. Every customization, however, still attempts to load
the old code because the customization assembly was built against the old version. You would rather not
go to the trouble of recompiling what might be hundreds or thousands of customizations against the new
library; instead, you just update their server-side configuration files to say that the new version should
be loaded when the old version is requested. While the user is offline, of course, he will still be running
the insecure code, but there's nothing anyone can do about that. When the user goes back online and
runs the code, the new configuration file can be downloaded, the new library is installed, and everyone is
happy again.

That scenario is reason enough always to use configuration files; it is very handy to be able to change
the assembly loading policy easily. But why not create a configuration file only when you find yourself in
this unfortunate situation? Why do we require you always to create a configuration file if you want to be
able to run server-side code while offline?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

able to run server-side code while offline?

Well, suppose that you did not create a configuration file; let's go through that scenario again. Your
customization assembly is on the Web, without a configuration file, and uses buggy version 1.0.0.0 of
your library assembly. The user runs the application for the first time. The loader finds the customization
assembly, caches it, and determines that there is no configuration file on the server. Then the user goes
offline. You discover your security hole and roll out a configuration file pointing the loader to version
1.0.1.0 of your library assembly. The disconnected user knows none of this and attempts to run the
customization again.

Look at this from the point of view of the CLR assembly loader: It has been asked to load a file off an
unavailable Web server. It tries to find a local copy of the assembly, and it succeeds. It tries to find a
local copy of the configuration file, but it fails. If you had cached a local copy of the configuration file, the
CLR can assume that you meant for it to use that configuration file and that you were fine with using
potentially out-of-date configuration information. But because there is no cached file, the CLR has to
assume the worst: that there is, in fact, a new and important configuration file available that it cannot
find.

Therefore, if you want to ensure that users must always be online and using the latest version of your
server-side customization, you should not create a configuration file on the server. On the other hand, if
you want to allow users to use cached assemblies and configuration files when your server is
inaccessible, ensure that you have a configuration file on the server.

To add a configuration file to your project, right-click the project in Solution Explorer, and choose Add >
New Item > Application Configuration File. Name the configuration file after the customization assembly
filename. If your assembly is ExpenseReport.dll, for example, name the configuration file
ExpenseReport.dll.config.

The configuration file need not have any loading policies in it. For now, stick with the bare minimum:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
</configuration>

Configuration files do not get any more straightforward than that. To ensure that this file is copied up to
the deployment server, make sure that the Build Action is set to Content in the Properties pane for the
configuration file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
VSTO's deployment system affords the ease of updating found traditionally in Web-based applications without
squandering the power of the rich client or compromising the strong Office offline story. The key to understanding how
the deployment system works is understanding the relationship between application manifests embedded in the
document and deployment manifests stored on servers. The application manifest refers to the deployment manifest,
which then points to the most recent copy of the application manifest and, hence, the customization.

VSTO also supports local install scenarios without deployment manifests. By default, the customization loads out of the
same directory as the document, but you can edit the embedded application manifest to point to a central machine
location (such as the user's Program Files directory). Custom installation classes can use the ServerDocument object
model to edit embedded application manifest information much as you would edit embedded cached data in the data
island.

This chapter completes our look at the fundamentals of VSTO projects using Word and Excel. The final four chapters
examine some advanced topics, such as using XML data with Word and Excel, and creating application-level managed
add-ins for Word, Excel, and Outlook.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 21. Working with XML in Excel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction to Excel's XML Features
The first thing to note about the XML features described in this chapter is that most of them are available only in
Microsoft Office Professional Edition 2003 and the stand-alone Microsoft Office Excel 2003. If you work with other Office
editionssuch as Microsoft Office Standard Edition 2003, Microsoft Office Student and Teacher Edition 2003, or Microsoft
Office Basic Edition 2003the XML features described in this chapter are not available.

Many of the XML features of Excel are accessed via Excel's XML Source task pane. To bring up the XML Source task
pane, if it is not already displayed, choose Task Pane from Excel's View menu. The task pane has a drop-down list from
which XML Source can be selected, as shown in Figure 21.1.

Figure 21.1. Selecting XML Source from the task pane drop-down list.

An alternative way of accessing the XML Source task pane is by using the XML submenu of the Data menu. The XML
submenu has an XML Source command that will show the XML Source task pane. Figure 21.2 shows the XML submenu.
This chapter examines many of the commands in the XML submenu.

Figure 21.2. Choosing Data > XML > XML Source.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After you have made the XML Source task pane visible using one of these two methods, the XML Source task pane will
appear, as shown in Figure 21.3.

Figure 21.3. The XML Source task pane.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The XML Source task pane refers to something called an XML map. An XML map is a mapping from an XML schema to
cells and/or lists in the workbook. Before you create an XML map, you must have an XML schema to work with. The
following section examines how to create an XML schema using Visual Studio 2005.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction to XML Schema Creation in Visual Studio
Visual Studio 2005 has support for creating XML schemas. Launch Visual Studio 2005. Choose File from the New menu.
The dialog box shown in Figure 21.4 appears. Pick XML Schema from this dialog box and then click the Open button.

Figure 21.4. Creating a new XML schema file.

[View full size image]

Visual Studio shows a design view for creating XML schema, as shown in Figure 21.5. The toolbox has XML schema
objects that can be dragged onto the design surface for the new XML schema.

Figure 21.5. Design view, creating a new XML schema file.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The schema object we will use most frequently in this example is element. An XML schema element defines an element
in an XML file. The simple XML file shown in Listing 21.1, for example, has an element called Order in the namespace
ns1. It also has an element called CustomerName in the namespace ns1. The CustomerName element is parented by
the Order element.

Listing 21.1. XML File Representing a Simple Order

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns1:Order xmlns:ns1="http://tempuri.org/XMLSchema.xsd">
 <ns1:CustomerName>Eric Carter</ns1:CustomerName>
</ns1:Order>

The XML schema for this simple Order XML file is created by following these steps:

1. Drag an element from the toolbox onto the schema design surface.

2. In the header row of the newly created element next to the E, type Order.

3. In the * row next to the asterisk (*), type CustomerName.

Figure 21.6 shows the resulting designer view.

Figure 21.6. Design view of a simple Order schema.

When you save this schema, use the Save As command from the File menu to save it as order.xsd. You will have to pick
XML Schema Files (*.xsd) from the Save As Type drop-down list in the Save As dialog box. The order.xsd file will look
like the one shown in Listing 21.2. You can see that an XML schema is just another XML file that defines what
constitutes a valid Order XML file. It defines two elements: Order and Customer Name. Because the Order element
contains other elements, it is defined as a complexType. It contains a sequence of CustomerName elements that are of
type string. Sequence in this case is misleading; the way the XSD file is defined it will be a sequence of one, and only
one, CustomerName element. It is possible to define a sequence that has a varying number of elements in it using the
maxOccurs and minOccurs settings, which we consider later in this chapter. By setting minOccurs to 1 and maxOccurs
to unbounded, for example, you could allow one or more CustomerName elements to be associated with an order.

Listing 21.2. XSD Schema File for a Simple Order Schema

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 21.2. XSD Schema File for a Simple Order Schema

<?xml version="1.0" encoding="utf-8"?>
<xs:schema targetNamespace="http://tempuri.org/XMLSchema.xsd"
elementFormDefault="qualified"
xmlns="http://tempuri.org/XMLSchema.xsd" xmlns:mstns="http://tempuri.org/
XMLSchema.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Order">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CustomerName"
 type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Note that this schema is defined entirely with elements. An alternative way of representing this same data is to use an
Order element and a CustomerName attribute. If CustomerName is defined as an attribute, the resultant XML is as
shown in Listing 21.3.

Listing 21.3. XML File for a Simple Order That Uses an Attribute

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns1:Order xmlns:ns1="http://tempuri.org/XMLSchema.xsd"
CustomerName="Eric Carter">
</ns1:Order>

The XML schema for an Order XML file that uses an attribute is created in Visual Studio by following these steps:

1. Drag an element from the toolbox onto the schema design surface.

2. In the header row of the newly created element next to the E, type Order.

3. In the * row next to the asterisk (*), type CustomerName.

4. Click the E next to CustomerName.

A drop-down list will appear.

5. Select an attribute from the drop-down list to convert CustomerName to an attribute.

Figure 21.7 shows the resultant designer view.

Figure 21.7. Design view of a simple Order schema that uses an attribute.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 21.4 shows the schema for an order using an attribute. Because the Order element contains other attributes, it
is defined as a complexType. It contains an empty sequence; this sequence can actually be removed without affecting
the schema. Then it defines CustomerName as an attribute of type string.

Listing 21.4. XSD Schema File for a Simple Order Schema That Uses an Attribute

<?xml version="1.0" encoding="utf-8"?>
<xs:schema targetNamespace="http://tempuri.org/XMLSchema.xsd"
elementFormDefault="qualified"
xmlns="http://tempuri.org/XMLSchema.xsd"
xmlns:mstns="http://tempuri.org/XMLSchema.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Order">
 <xs:complexType>
 <xs:sequence />
 <xs:attribute name="CustomerName" type="xs:string" />
 </xs:complexType>
 </xs:element>
</xs:schema>

Excel works equally well with schemas that use attributes or elements. Word, however, does not work very well when
you use attributes in a schema. If you are creating a schema that you need to use in Excel and Word, you should try to
use elements instead of attributes. For more information, see Chapter 22, "Working with XML in Word."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An End-to-End Scenario
This section deals with a more complex end-to-end scenario that puts together the schema-creation capabilities of
Visual Studio and the schema-mapping capabilities of Excel. When you take a schema and map it into Excel using the
XML Source task pane, you enable the exporting and importing of XML data in the spreadsheet. We are going to create
an Excel spreadsheet that can be used to record a customer's book order. The spreadsheet will support the import and
export of XML that conforms to our book-order schema. The spreadsheet will look like Figure 21.8.

Figure 21.8. An Excel spreadsheet for processing a book order.

[View full size image]

Listing 21.5 shows the XML that this spreadsheet will be able to import and export.

Listing 21.5. XML File Generated from Book-Order Spreadsheet

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns1:Order xmlns:ns1="http://tempuri.org/XMLSchema.xsd">
 <ns1:CustomerName>Eric Carter</ns1:CustomerName>
 <ns1:Date>2005-02-19</ns1:Date>
 <ns1:Book>
 <ns1:Title>Windows Forms Programming in C#</ns1:Title>
 <ns1:ISBN>0-321-11620-8</ns1:ISBN>
 <ns1:Publisher>Addison-Wesley</ns1:Publisher>
 <ns1:Price>49.99</ns1:Price>
 </ns1:Book>
 <ns1:Book>
 <ns1:Title>Effective C#</ns1:Title>
 <ns1:ISBN>0-321-24566-0</ns1:ISBN>
 <ns1:Publisher>Addison-Wesley</ns1:Publisher>
 <ns1:Price>39.99</ns1:Price>
 </ns1:Book>
 <ns1:Book>
 <ns1:Title>The C# Programming Language</ns1:Title>
 <ns1:ISBN>0-321-15491-6</ns1:ISBN>
 <ns1:Publisher>Addison-Wesley</ns1:Publisher>
 <ns1:Price>29.99</ns1:Price>
 </ns1:Book>
 <ns1:Subtotal>119.97</ns1:Subtotal>
 <ns1:Tax>10.7973</ns1:Tax>
 <ns1:Total>130.7673</ns1:Total>
</ns1:Order>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</ns1:Order>

Creating the Schema Using Visual Studio

To create this schema using Visual Studio, follow these steps:

1. Start Visual Studio 2005.

2. Create a new XSD file by choosing File > New > File or by pressing Ctrl+N.

3. Choose XML Schema from the list of Visual Studio installed templates, as shown in Figure 21.4 earlier in this
chapter; then click the Open button.

The schema design view appears, as shown in Figure 21.5 earlier in this chapter.

4. Drag an element object off the toolbox onto the design surface.

5. Type Order, and press the Enter key.

6. In the * row, type CustomerName, and press Enter.

7. In the * row, type Date, and press the Tab key; then type date for the data type, and press Enter.

8. In the * row, type Subtotal, and press the Tab key; then type float for the data type, and press Enter.

9. In the * row, type Tax, and press the Tab key; then type float for the data type, and press Enter.

10. In the * row, type Total, and press the Tab key; then type float for the data type, and press Enter.

11. Now right-click the Order element box, and choose New Element from the Add menu.

12. Type Book, and press Enter.

13. In the * row of the newly created Book element, type Title, and press Enter.

14. In the * row of the newly created Book element, type ISBN, and press Enter.

15. In the * row of the newly created Book element, type Publisher, and press Enter.

16. In the * row of the newly created Book element, type Price, and press the Tab key; then type float for the data
type, and press Enter. Now we now want to specify that multiple books can be included in an order.

17. Click the Book row in the Order element box, and show the Properties window by choosing Properties Window
from the View menu.

18. For the property maxOccurs, type unbounded; for the property minOccurs, type 1.

19. Save the schema, using the Save As command from the File menu.

20. In the Save File As dialog box, drop down the Save As Type combo box, and pick XML Schema Files (*.xsd); for
the filename, type BookOrder.xsd; and save it to a convenient place, such as the desktop.

Figure 21.9 shows what the final schema in Visual Studio should look like.

Figure 21.9. The book-order schema in Visual Studio.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 21.9. The book-order schema in Visual Studio.

Listing 21.6 shows the generated XSD file. Note that the sequence of Book elements in an Order element is now a
sequence with a minimum (minOccurs) of one Book element and a maximum (maxOccurs) of unbounded Book
elements. This will allow our schema to represent one or more Books in an Order. Also, having a sequence where
maxOccurs is greater than 1 or unbounded will help Excel know that it needs to represent the Books in an Order using
an Excel list.

Listing 21.6. Book-Order Schema XSD File

<?xml version="1.0" encoding="utf-8"?>
<xs:schema targetNamespace="http://tempuri.org/XMLSchema.xsd"
elementFormDefault="qualified"
xmlns="http://tempuri.org/XMLSchema.xsd"
xmlns:mstns="http://tempuri.org/XMLSchema.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Order">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CustomerName"
 type="xs:string" />
 <xs:element name="Date" type="xs:date" />
 <xs:element name="Book"
 maxOccurs="unbounded" minOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Title"
 type="xs:string" />
 <xs:element name="ISBN"
 type="xs:string" />
 <xs:element name="Publisher"
 type="xs:string" />
 <xs:element name="Price"
 type="xs:float" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Subtotal" type="xs:float" />
 <xs:element name="Tax" type="xs:float" />
 <xs:element name="Total" type="xs:float" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Adding a Schema to the Excel Workbook

Now that we have created a schema, let's add it to an Excel workbook. Launch Excel, and create a new, empty
workbook. Bring up the Excel XML Source task pane, as described in the first section of this chapter. You should see the
XML Source task pane with no mappings as yet in the task pane. To add an XML map, click the XML Maps button in the
XML Source task pane. Doing so brings up the dialog box shown in Figure 21.10.

Figure 21.10. The XML Maps dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 21.10. The XML Maps dialog box.

Click the Add button, and browse to wherever you saved your book-order schema. Select the schema, and click the
Open button. The XML map now appears as a loaded XML map in the workbook. Using this dialog box, you can delete
and rename an XML map. For now, we will just click the OK button to exit this dialog box.

The Excel XML Source task pane shows the XML map we just added, as shown in Figure 21.11.

Figure 21.11. The XML Source task pane with an XML map.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mapping the Schema to the Excel Workbook

The XML Source task pane represents our book-order schema in a tree view. The icon associated with Order indicates a
required parent element. The icons associated with CustomerName, Date, Title, ISBN, Publisher, Price, Subtotal, Tax,
and Total indicate required child elements. The icon associated with Book indicates a required repeating parent element.
Excel also supports other schema constructs, such as attributes and nonrequired elements and attributes. These
constructs also have their own icons.

Let's try a few different ways of mapping the schema into the workbook. The first approach we will take is to click the
root ns1:Order node in the XML Source task pane and drag it to cell A1 in the workbook. Excel creates one list to
contain all the data, as shown in Figure 21.12.

Figure 21.12. The list created when ns1:Order is dragged to cell A1.

[View full size image]

The XML Source task pane now indicates that all the elements have been mapped by bolding each element that has
been mapped, as shown in Figure 21.13. Parent elements such as Order and Book are not mapped explicitly in the
Workbook because these containing relationships do not need to be mapped directly to an Excel cell or list. You can
remove a mapping by selecting the mapped cell or list in the Workbook and pressing the Delete key. You can also right-
click the elements in the XML Source task pane that are in bold and choose Remove Element to remove the mapping.

Figure 21.13. Mapped elements are bolded in the XML Source task pane.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At the bottom of the XML Source task pane, click the Verify Map for Export link. Excel displays the dialog box shown in
Figure 21.14.

Figure 21.14. Mapping cannot be exported because of denormalized data.

To consider why this mapping cannot be exported, let's import the XML in Listing 21.5 into our current mapping. In
Excel, choose Data > XML > Import. Browse to an XML file containing the XML in Listing 21.5, and click the Import
button. Because of the mapping we have established, Excel knows how to bring the XML into the list defined in the
worksheet. Figure 21.15 shows the resulting worksheet.

Figure 21.15. Result of importing the XML in Listing 21.5.

[View full size image]

The error we got when we clicked Verify Map for Export was that the mapping contained denormalized data. In Figure
21.15, we have highlighted the data that is denormalized and redundant. If we were to try to export this list by
choosing Data > XML > Export, Excel would fail to export because it would not know how to deal with the redundant
data.

Let's clear out this mapping and try to create a mapping that can be exported successfully as XML. Select the whole
worksheet by pressing Ctrl+A and then press the Delete key. This time, we are going to drag in CustomerName, Date,
Subtotal, Tax, and Total as individual cell mappings, and we will map the Book element sequence as a list.

To prepare the spreadsheet for mapping, let's put in some labels in advance. Figure 21.16 shows the resulting
spreadsheet.

Figure 21.16. Preparing the spreadsheet for mapping.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now do the following to map the nonrepeating elements to cells in the spreadsheet:

1. Drag the CustomerName element from the XML Source task pane to cell C3.

2. Drag the Date element from the XML Source task pane to cell C4. You will be prompted that the formatting in
the cell does not match the format of the data. This is Excel noticing that the format of the cell you are mapping
to is not formatted to contain a date.

3. Click the Match Element Data Type button to continue and format the mapped cell as a date.

4. Drag the Subtotal element from the XML Source task pane to cell C9.

5. Drag the Tax element from the XML Source task pane to cell C10.

6. Drag the Total element from the XML Source task pane to cell C11.

Finally, let's map the repeating elements to a list by dragging the Book element to cell B6. Because Book is a repeating
element in a sequence with 1 to unbounded elements, this will create a list containing the elements Title, ISBN,
Publisher, and Price as column headers.

The column headers created by Excel have the format ns1:Title rather than Title. You can edit these columns in the
spreadsheet without breaking the XML mapping.

We are also going to use some features of Excel in our spreadsheet:

1. Right-click the list object that was created, and from the pop-up menu, choose Total Row from the List menu.

2. Click the bottom-right cell of the List object in the total row (cell E8).

3. Pick Sum from the drop-down list that appears next to the cell.

4. Click cell C10, and in the formula bar, type the formula =E8. This causes the total created in the total row to be
saved in the Subtotal element as well.

5. Click cell C11, and in the formula bar, type the formula =C10*.09 to calculate a 9 percent sales tax.

6. Click cell C12, and in the formula bar, type the formula =SUM(C10:C11).

This sums the cost of the books and the sales tax. Let's also do some formatting.

7. Click the cells C10 through C12, and click the $ button to format these cells as currency.

8. Also click the column header for the Price column in the list, and format this column as currency, because it is
the column where book prices will go.

Now the spreadsheet will look like the one shown in Figure 21.17. Note the blue borders around all the mapped cells or
lists. You can hide these blue borders by using the Options button in the XML Source task pane. Click the Options
button and then choose the Hide Border of Inactive Lists command from the pop-up menu.

Figure 21.17. The final mapped spreadsheet.

Now fill out the spreadsheet to make it look like Figure 21.8 earlier in this chapter. Note that when you have the list
selected, a new row marked with * displays; you can enter new items in that row. Also note that as you type prices, the
total row sums the prices in the list, and the formulas in the spreadsheet calculate the Tax and Total.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

total row sums the prices in the list, and the formulas in the spreadsheet calculate the Tax and Total.

With the spreadsheet filled out, let's export the data in the spreadsheet as XML conforming to the schema we have
mapped. We have assumed that this mapping will be exportable. To verify that, click the Verify Map for Export link in
the XML Source task pane. A dialog box should appear that says that our mapping is exportable.

Choose Data > XML > Export. Type the name of the XML file you want to export tosomething like bookorder.xml. Then,
after exporting the file, open it in a text editor such as Notepad. You should see the XML very similar to that shown in
Listing 21.5 earlier in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Advanced XML Features in Excel
We will use the mapped spreadsheet we have created to consider some other XML features in Excel.

Importing XML and Refresh XML Data

To import XML from an XML file into our mapped spreadsheet, follow these steps:

1. Clear out the rows in the Excel list and some of the mapped fields so that you can see that XML is being
imported in subsequent steps.

2. Select one of the mapped cells or the list. Note that because you can map multiple XML schemas into one
workbook, you must let Excel know which of the mappings you want to import to by selecting a cell or list
corresponding to that mapping.

3. Choose Data > XML > Import.

4. Browse to the file you exported to previously (bookorder.xml), and click the Import button.

Note that Excel brings the XML back into the spreadsheet. Next, you will edit the bookorder.xml file directly with
Notepad.

5. Change the CustomerName element to a different value, and save the bookorder.xml file.

6. Select the cell where CustomerName is mapped.

7. Choose Data > XML > Refresh XML Data.

Excel remembers the XML file you last imported, and it reimports the XML data from that file. Excel also stores
this information in the document so you can save, close, and reopen the document at a later time and choose
Refresh XML data.

Note that Excel does not remember the XML file you last imported if you uncheck Save Data Source Definition in
Workbook in the XML Map Properties dialog box (discussed in the next section).

The XML Map Properties Dialog Box

Figure 21.18 shows the XML Map Properties dialog box, which you can display by choosing Data > XML > XML Map
Properties. Note that you must select a cell in the worksheet that is mapped to XML for this menu item and some of the
other menu items in the XML menu to be available (not grayed out).

Figure 21.18. The XML Map Properties dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XML Schema Validation

The first setting we consider in this dialog box is the XML schema validation setting. With this setting unchecked, set the
price of one of the books to a value such as cat. This is clearly not a valid floating-point number. Choose Data > XML >
Export, and export the XML to a file. No error will occur. Now check the Validate Data Against Schema for Import and
Export check box in the XML Map Properties dialog box. Export the XML again. This time, you will get the error dialog
box shown in Figure 21.19 for using the value of cat in a place where a number was expected.

Figure 21.19. A schema validation error on export.

If you try to import XML that has the value cat for a floating-point number, you also get errors with the Validate Data
option checked. Figure 21.20 shows the first error dialog box that appears.

Figure 21.20. A schema validation error on import.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first line warns that some data was imported as textnamely, the value cat was imported as text rather than as a
floating-point number. When you click the second error line and click the Details button, the dialog box shown in Figure
21.21 displays.

Figure 21.21. Details of the validation error on import.

Data Formatting and Layout

The XML Map Properties dialog box provides settings for controlling the data formatting and layout of lists that are XML-
mapped. The Adjust Column Width check box, when checked, will make it so that an import of XML into a list will
automatically adjust the column width to fit the data that is imported. Excel will make a column wider up to two thirds
the width of the screen. To prevent automatically adjusting the column width of a list when XML is imported, uncheck
this check box.

The Preserve Column Filter check box, when checked, will preserve the filtering settings for a list when XML is imported
into the list. If you have the list set to show only books whose publisher is Addison-Wesley, for example, importing new
XML will preserve that setting. If you uncheck this check box, whenever XML is imported into a list, any existing filters
will be cleared.

The Preserve Number Formatting check box, when checked, will preserve any number formatting in the list that the
XML is imported into. If a column is set to display the book price in red if it is greater than $20, for example, this
setting will be preserved when XML data is imported into the list. If this check box is not checked, any number
formatting in the list will be cleared when XML data is imported into the list.

Appending Data to Lists

The XML Map Properties dialog box provides for two different behaviors when importing XML or refreshing XML and
when updating a mapped list. If you choose Overwrite Existing Data with New Data, a mapped list will be cleared of its
data before loading data from the XML data file on import or refresh. If you choose Append New Data to Existing XML
Lists, the data in the list will be preserved, and the data from the XML data file will be appended on import or refresh.
So with the append setting set, importing the XML in Listing 21.5 into a blank list generates three book orders on the
first import, and on refresh it appends the three book orders to the list, for a total of six book orders.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Excel-Friendly XML Schemas
Several characteristics make an XML schema more amenable to being mapped into Excel. First, an XML schema should
have one root element. In our example in this chapter, the root element is Order. If a schema supports more than one
root element, you must choose which element will be the root element when adding the XML map to the spreadsheet.

Unsupported XML Schema Constructs

Excel does not support several XML schema constructs. Table 21.1 lists these constructs.

Table 21.1. XML Schema Constructs That Are Not Supported by Excel
Construct What It Does

<any> Allows you to include arbitrary elements that are not declared by the
schema.

<anyAttribute> Allows you to include arbitrary attributes that are not declared by the
schema.

recursion A structure that refers to itself recursively.

abstract elements Allows an element to be declared but never usedalso uses substitution to
substitute other elements for the abstract element.

<substitutionGroup> Allows an element to be substituted for another element.

mixed content When XML elements are intermixed with non-XML elements. This proves to
be very useful for Word XML mapping.

Constructs That Can Be Mapped But Not Exported

There are also several things that can be mapped, but the generated mappings cannot be exported as XML. You have
already seen that if an XML mapping is denormalized, it cannot be exported. You also cannot export a list of items
containing a second list of items. Choice elements also cannot be exported.

The other general class of issues that prevents exporting is when a mapped element's relationship with another element
it is related to cannot be preserved by the mapping. For more information on these types of mapping issues, consult the
Excel documentation.

VSTO-Friendly Schemas

VSTO puts some additional requirements on schema mapping if you want to use a schema-mapped spreadsheet with
VSTO. First, you need to have a schema mapping that can be exported. Second, all the schema mapping must be within
a single worksheet. Although Excel will let you map some elements of the schema to Sheet1 and other elements to
Sheet2, VSTO requires that all schema mapping for a given schema be on the same sheet.

How XML Schema Data Types Are Mapped to Excel Cell Formats

As you saw earlier in this book when mapping dates, Excel can automatically pick cell formatting based on the type in
the schema. When we dragged a date into Excel, Excel prompted to change the cell formatting. Table 21.2 shows how
Excel maps schema types to Excel cell-formatting settings.

Table 21.2. XML Schema Types and Their Corresponding Excel Cell
Formatting

XML Type Excel Formatting

anytype Text

anyURI Text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

anyURI Text

base64Binary Text

boolean Boolean

byte General

date Date *3/14/2001

dateTime m/d/yyyy h:mm

decimal General

double General

duration Text

ENTITIES Text

ENTITY Text

float General

gDay Number, no decimals

gMonth Number, no decimals

gMonthDay Custom d-mmm

gYear Number, no decimals

gYearMonth Custom mmm-yy

hexBinary Text

ID Text

IDREF Text

IDREFS Text

int General

integer General

language Text

long General

Name Text

NCName Text

negativeInteger General

NMTOKEN Text

NMTOKENS Text

nonNegativeInteger General

nonPositiveInteger General

normalizedString Text

NOTATION Text

positiveInteger General

QName Text

short General

string Text

time h:mm:ss

token Text

unsignedByte General

unsignedInt General

unsignedLong General

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unsignedShort General

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSTO Support for Excel Schema Mapping
This section examines VSTO's support for Excel schema mapping. Let's create a new VSTO Excel project based on the
book-order spreadsheet we created in this chapter. Launch VSTO, and choose File > New > Project. In the New Project
dialog box, choose a Visual Basic Excel Workbook project. Give the project a name and location; then click the OK
button. A dialog box appears, asking for a document to be used for the application. Click the Copy an Existing
Document radio button. Then click the ellipsis (...) button to browse to the spreadsheet you created in this chapter that
has the book-order schema mapped in it. Click the Finish button to create the project.

We want to consider several features of the generated VSTO project. First is the creation of XMLMappedRange controls.
Second is the creation of ListObject controls. Third is the addition of the schema mapped to our spreadsheet to the
VSTO project. Finally, we will consider how to use the controls that are created and the schema that is added to the
VSTO project to connect data binding in the project.

XMLMappedRange Controls

Use the class view to browse the members associated with Sheet1. Notice as you browse that the member variables
listed in Table 21.3 have been created automatically based on the XML mapping in the spreadsheet to the book-order
schema.

Table 21.3. Sheet1 Member Variables Created from Schema
Mapping

Name Type

BookList Microsoft.Office.Tools.Excel.ListObject

OrderCustomerNameCell Microsoft.Office.Tools.Excel.XmlMappedRange

OrderDateCell Microsoft.Office.Tools.Excel.XmlMappedRange

OrderSubtotalCell Microsoft.Office.Tools.Excel.XmlMappedRange

OrderTaxCell Microsoft.Office.Tools.Excel.XmlMappedRange

OrderTotalCell Microsoft.Office.Tools.Excel.XmlMappedRange

For each nonrepeating element or attribute mapped to a cell in the Excel spreadsheet, VSTO creates an
XMLMappedRange control. We mapped the CustomerName element from the Order element into a cell, for example.
VSTO created an XMLMappedRange corresponding to this cell called OrderCustomerNameCell. An XMLMappedRange control
has all the properties and methods of an Excel Range object. In addition, it has several events that are not found on the
Excel Range object:

XMLMappedRange.BeforeDoubleClick is raised when the cell corresponding to the mapped element or
attribute is double-clicked. Excel passes a target parameter of type Range for the range of cells that was
double-clicked and a Boolean cancel parameter passed by reference. The cancel parameter can be set to true by your
event handler to prevent Excel from executing its default double-click behavior.

XMLMappedRange.BeforeRightClick is raised when the cell corresponding to the mapped element or
attribute is right-clicked. Excel passes a target parameter of type Range for the range of cells that was right-
clicked. The target parameter is provided so you can determine whether multiple cells were selected when the
right-click occurred. Excel also passes a Boolean cancel parameter by reference. The cancel parameter can be set to
true by your event handler to prevent Excel from executing its default right-click behavior.

XMLMappedRange.Change is raised when the cell corresponding to the mapped element or attribute is
changed by a user editing the cell or when a cell is linked to external data and is changed as a result of
refreshing the cell from the external data. Change events are not raised when a cell is changed as a result of a
recalculation. They are also not raised when the user changes the formatting of the cell without changing the
value of the cell. Excel passes a target parameter of type Range for the range of cells that was changed. The
target parameter is provided so you can determine whether multiple cells were changed at the same timefor
example, if the user dragged the bottom-right corner of a particular cell to drag that value across multiple cells.

XMLMappedRange.Deselected is raised when the cell corresponding to the mapped element or attribute is
deselected. Excel passes a target parameter of type Range for the range of cells that was deselected. The target
parameter is provided so you can determine whether multiple cells were deselected at the same time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

parameter is provided so you can determine whether multiple cells were deselected at the same time.

XMLMappedRange.Selected is raised when the cell corresponding to the mapped element or attribute is
selected. Excel passes a target parameter of type Range for the range of cells that was selected. The target
parameter is provided so you can determine whether multiple cells were selected at the same time.

XMLMappedRange.SelectionChange is raised when the cell corresponding to the mapped element or
attribute is deselected or selected. Excel passes a target parameter of type Range for the range of cells that was
deselected or selected. The target parameter is provided so you can determine whether multiple cells were
deselected or selected at the same time.

Listing 21.7 shows a VSTO customization that handles all the events associated with an XMLMappedRange. In this case,
we choose to handle events associated with the XMLMappedRange called OrderCustomerNameCell, which corresponds to the
CustomerName element from our book-order schema that we mapped to Sheet1 in the Excel workbook.

Listing 21.7. A VSTO Excel Customization That Handles All Events Associated with
an XML-MappedRange

Imports Excel = Microsoft.Office.Interop.Excel
Imports Office = Microsoft.Office.Core

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 End Sub

 Private Function GetAddress(_
 ByVal target As Excel.Range) As String
 Return target.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1)
 End Function

 Private Sub OrderCustomerNameCell_BeforeDoubleClick(_
 ByVal target As Excel.Range, ByRef cancel As Boolean) _
 Handles OrderCustomerNameCell.BeforeDoubleClick

 MsgBox(String.Format("{0} BeforeDoubleClick.", _
 GetAddress(target)))

 End Sub

 Private Sub OrderCustomerNameCell_BeforeRightClick(_
 ByVal target As Excel.Range, ByRef cancel As Boolean) _
 Handles OrderCustomerNameCell.BeforeRightClick

 MsgBox(String.Format("{0} BeforeRightClick.", _
 GetAddress(target)))

 End Sub

 Private Sub OrderCustomerNameCell_Change(_
 ByVal target As Excel.Range) _
 Handles OrderCustomerNameCell.Change

 MsgBox(String.Format("{0} Change.", GetAddress(target)))

 End Sub

 Private Sub OrderCustomerNameCell_Deselected(_
 ByVal target As Excel.Range) _
 Handles OrderCustomerNameCell.Deselected

 MsgBox(String.Format("{0} Deselected.", GetAddress(target)))

 End Sub

 Private Sub OrderCustomerNameCell_Selected(_
 ByVal target As Excel.Range) _
 Handles OrderCustomerNameCell.Selected

 MsgBox(String.Format("{0} Selected.", GetAddress(target)))

 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub OrderCustomerNameCell_SelectionChange(_
 ByVal target As Excel.Range) _
 Handles OrderCustomerNameCell.SelectionChange

 MsgBox(String.Format("{0} SelectionChange.", _
 GetAddress(target)))

 End Sub

End Class

ListObject Controls

As you saw in Table 21.3 earlier in this chapter, a ListObject control was created for the repeating Book element in our
mapped schema. A ListObject control is created for any repeating element. A ListObject control has all the properties
and methods of an Excel ListObject object. In addition, it has several events that are not found on the Excel ListObject
object:

ListObject.BeforeAddDataboundRow is described in Chapter 17, "VSTO Data Programming."

ListObject.BeforeDoubleClick is raised when any cell contained by the ListObject is double-clicked. Excel
passes a target parameter of type Range for the range of cells that was double-clicked and a Boolean cancel
parameter passed by reference. The cancel parameter can be set to true by your event handler to prevent Excel
from executing its default double-click behavior.

ListObject.BeforeRightClick is raised when any cell contained by the ListObject is right-clicked. Excel passes
a target parameter of type Range for the range of cells that was right-clicked. The target parameter is provided so
you can determine whether multiple cells were selected when the right-click occurred. Excel also passes a
Boolean cancel parameter by reference. The cancel parameter can be set to true by your event handler to prevent
Excel from executing its default right-click behavior.

ListObject.Change is raised when any cell contained by the ListObject is changed by a user editing the cell or
when a cell is linked to external data and is changed as a result of refreshing the cell from the external data.
Change events are not raised when a cell is changed as a result of a recalculation. They are also not raised
when the user changes the formatting of the cell without changing the value of the cell. Excel passes a target
parameter of type Range for the range of cells that was changed. The target parameter is provided so you can
determine whether multiple cells were changed at the same timefor example, if the user dragged the bottom-
right corner of a particular cell to drag that value across multiple cells.

ListObject.DataBindingFailure is described in Chapter 17.

ListObject.DataMemberChanged is described in Chapter 17.

ListObject.DataSourceChanged is described in Chapter 17.

ListObject.Deselected is raised when any cell contained by the ListObject is deselected. Excel passes a target
parameter of type Range for the range of cells that was deselected. The target parameter is provided so you can
determine whether multiple cells were deselected at the same time.

ListObject.ErrorAddDataboundRow is described in Chapter 17.

ListObject.OriginalDataRestored is described in Chapter 17.

ListObject.Selected is raised when any cell contained by the ListObject is selected. Excel passes a target
parameter of type Range for the range of cells that was selected. The target parameter is provided so you can
determine whether multiple cells were selected at the same time.

ListObject.SelectedIndexChanged is described in Chapter 17.

ListObject.SelectionChange is raised when any cell contained by the ListObject is deselected or selected.
Excel passes a target parameter of type Range for the range of cells that was deselected or selected. The target
parameter is provided so you can determine whether multiple cells were deselected or selected at the same
time.

Listing 21.8 shows a VSTO customization that handles all the events associated with a ListObject. In this case, we
choose to handle events associated with the ListObject called BookList, which corresponds to the repeating Book element
from our book-order schema that we mapped to a list in Sheet1 in the Excel workbook.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

from our book-order schema that we mapped to a list in Sheet1 in the Excel workbook.

Listing 21.8. A VSTO Excel Customization That Handles All Events Associated with
a ListObject

Imports Excel = Microsoft.Office.Interop.Excel
Imports Office = Microsoft.Office.Core

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 End Sub

 Private Function GetAddress(ByVal target As Excel.Range, _
 ByVal event1 As String) As String

 Return String.Format("{0} {1}.", _
 target.Address(_
 ReferenceStyle:=Excel.XlReferenceStyle.xlA1), _
 event1)

 End Function

 Private Sub BookList_BeforeAddDataBoundRow(_
 ByVal sender As System.Object, _
 ByVal e As Excel.BeforeAddDataBoundRowEventArgs) _
 Handles BookList.BeforeAddDataBoundRow

 MsgBox("BeforeAddDataBoundRow")

 End Sub

 Private Sub BookList_BeforeDoubleClick(_
 ByVal Target As Excel.Range, _
 ByRef Cancel As System.Boolean) _
 Handles BookList.BeforeDoubleClick

 MsgBox(GetAddress(Target, "BeforeDoubleClick"))

 End Sub

 Private Sub BookList_BeforeRightClick(_
 ByVal Target As Excel.Range, _
 ByRef Cancel As System.Boolean) _
 Handles BookList.BeforeRightClick

 MsgBox(GetAddress(Target, "BeforeRightClick"))
 End Sub

 Private Sub BookList_BindingContextChanged(_
 ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles BookList.BindingContextChanged

 MsgBox("BindingContextChanged")

 End Sub

 Private Sub BookList_Change(_
 ByVal targetRange As Excel.Range, _
 ByVal changedRanges As Excel.ListRanges) _
 Handles BookList.Change

 MsgBox(GetAddress(targetRange, "Change"))

 End Sub

 Private Sub BookList_DataBindingFailure(_
 ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles BookList.DataBindingFailure

 MsgBox("DataBindingFailure")

 End Sub

 Private Sub BookList_DataMemberChanged(_

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub BookList_DataMemberChanged(_
 ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles BookList.DataMemberChanged

 MsgBox("DataMemberChanged")

 End Sub

 Private Sub BookList_DataSourceChanged(_
 ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles BookList.DataSourceChanged

 MsgBox("DataSourceChanged")

 End Sub

 Private Sub BookList_Deselected(ByVal Target As Excel.Range) _
 Handles BookList.Deselected

 MsgBox(GetAddress(Target, "Deselected"))

 End Sub

 Private Sub BookList_ErrorAddDataBoundRow(_
 ByVal sender As System.Object, _
 ByVal e As Excel.ErrorAddDataBoundRowEventArgs) _
 Handles BookList.ErrorAddDataBoundRow

 MsgBox("ErrorAddDataBoundRow")

 End Sub

 Private Sub BookList_OriginalDataRestored(_
 ByVal sender As System.Object, _
 ByVal e As Excel.OriginalDataRestoredEventArgs) _
 Handles BookList.OriginalDataRestored

 MsgBox("OriginalDataRestored")

 End Sub

 Private Sub BookList_Selected(ByVal Target As Excel.Range) _
 Handles BookList.Selected

 MsgBox(GetAddress(Target, "Selected"))

 End Sub

 Private Sub BookList_SelectedIndexChanged(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles BookList.SelectedIndexChanged

 MsgBox("SelectedIndexChanged")

 End Sub

 Private Sub BookList_SelectionChange(_
 ByVal Target As Excel.Range) _
 Handles BookList.SelectionChange

 MsgBox(GetAddress(Target, "SelectionChange"))

 End Sub

End Class

Schema Added to the VSTO Project

The final thing to notice about our generated VSTO project is that VSTO automatically adds the schema that was
mapped into the workbook as a project item in the project, as shown in Figure 21.22. This schema is added to support
the data binding features discussed in the next section. The schema is a copy of your original schema file that is copied
to the project directory of the newly created project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to the project directory of the newly created project.

Figure 21.22. The VSTO Excel project with the Order schema.

[View full size image]

When you create an XML map, Excel grabs the schema you add and keeps a copy of it in the Excel workbook. If the
schema file you created the XML map from is changed, Excel does not detect it. So if you edit the schema in Visual
Studio, you have to save the schema, remove the XML map corresponding to the schema from the Excel worksheet,
add the XML map again by browsing to the updated schema in your project directory, and then reapply your XML
mappings.

To add and remove XML mappings without leaving Visual Studio, VSTO provides a toolbar button for displaying the XML
Source task pane quickly, as shown in Figure 21.23. The button that displays the XML Source task pane is the second
button from the left in the toolbar. As you map schemas using the XML Source task pane, VSTO automatically adds
XMLMappedRange or ListObject member variables for new mappings.

Figure 21.23. The VSTO Excel toolbar with the XML Source task pane button.

Combining XML Mapping with VSTO Data Binding

Given an XML mapping in a worksheet, you can programmatically import and export XML conforming to the schema
associated with the mapping using the Excel object model. You may also want to combine this functionality with VSTO's
support for data binding. Data binding will allow you to connect the worksheet to not just one book order, but also to a
database with many book orders. You can easily move a cursor in the database from row to row in the database and
update the contents of the worksheet.

The first step is to build the project. This will result in the creation of a typed dataset for the order schema called
NewDataSet. After you have built the project, make sure that the toolbox is showing, and expand the Data tab, as
shown in Figure 21.24. Note the component tray in Figure 21.24the empty area below the Excel worksheet. We will add
one component to the component tray and use it later to data-bind the ListObject that was created when the schema
was mapped into the workbook. From the Data tab, drag a BindingSource component to the component tray. Name this
BindingSource OrderBookConnector. We are going to ignore this component for the time being, because our initial goal
is to data-bind the XMLMappedRange controls in our worksheet.

Figure 21.24. The DataSet component and the component tray.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Drag the DataSet component from the toolbox into the component traythe empty area below the Excel worksheet. The
dialog box in Figure 21.25 will display. Pick the Typed Dataset option; then pick the NewDataSet. This is the dataset
that was created from our Order schema. Finally, click the OK button.

Figure 21.25. The Add Dataset dialog box.

This will create a component called newDataSet1 in the component tray. Right-click the newly added component, and
choose Properties from the pop-up menu. Doing so will show and activate the Visual Studio Properties window. Let's
change the name for the typed dataset component from newDataSet1 to the more descriptive name BookOrderDataSet
by typing this new name in the (Name) row in the Properties window and pressing the Enter key.

Because BookOrderDataSet is a typed dataset created from our Orders schema, as shown in Figure 21.22 earlier in this
chapter, we know that the dataset contains two tables: Order and Book. Now we want to connect the fields that come
from the Order table to the corresponding XMLMappedRange controls in Sheet1. To do that, we must add a
BindingSource component by dragging a BindingSource from the Data tab in the toolbox to the component tray. This
creates a BindingSource called bindingSource1, which we will rename OrderConnector because it will be used to connect
the Order table from the BookOrderDataSet to the XMLMappedRange controls in the workbook.

Using the Properties window, set the DataSource property of OrderConnector to BookOrderDataSet. Figure 21.26 shows
the drop-down list that appears. Note that we have to expand the Other Data Sources and Form List Instances nodes to
find the BookOrderDataSet that we have already added to the component tray.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

find the BookOrderDataSet that we have already added to the component tray.

Figure 21.26. Setting a DataSource for OrderConnector using the Properties
window.

[View full size image]

With the DataSource property set to BookOrderDataSet, now we need to set the DataMember property to the Order
table. Figure 21.27 shows the drop-down list that appears. Note that the only options available are the Order table and
the Book table. Pick the Order table.

Figure 21.27. Setting the DataMember for OrderConnector using the Properties
window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now we are ready to connect individual XMLMappedRange controls to OrderConnector. Click the cell mapped to the
CustomerName element in the Excel spreadsheet; doing so selects the XMLMappedRange associated with
CustomerName called OrderCustomerNameCell. Expand the (DataBindings) node in the Properties window, and click the
drop-down arrow associated with the property Value. You will see the drop-down list shown in Figure 21.28. Expand the
OrderConnector node, and click CustomerName. You have data-bound the Value property of OrderCustomerNameCell to
OrderConnector's CustomerName.

Figure 21.28. Setting a data binding connecting OrderCustomerNameCell.Value to
OrderConnector.CustomerName.

Now click the cell associated with Date, expand the (DataBindings) node in the Properties window for the
XMLMappedRange OrderDateCell, and data-bind the Value property to the Date field coming from OrderConnector.
Continue to do this for the cells associated with Subtotal, Tax, and Total.

Now let's connect the ListObject. Earlier, you created a BindingSource that you named OrderBookConnector. Click the
ListObject in the spreadsheet, and in the Properties window, set the ListObject's DataSource property to
OrderBookConnector. Next, we need to connect the OrderBookConnector to our data. We could connect
OrderBookConnector directly to the Book table in BookOrderDataSet, but this would not give us the behavior we want
for this example. We want to allow BookOrder DataSet to contain multiple book orders, and as we move from row to
row in the Order table via OrderConnector, we want to show only the books for that particular order. If we connect
OrderBookConnector to the Book table in BookOrderDataSet, this will result in all books in the books table being shown,
no matter what row is being shown from the Order table by OrderConnector. What we need is a way to tie
OrderBookConnector to OrderConnector.

Instead of connecting the OrderBookConnector to BookOrderDataSet, we connect it to the existing OrderConnector
corresponding to our Order table. Doing so causes what is sometimes called a master-details relationship. As the
OrderDataConnector moves from row to row in the Order table, our OrderBookConnector will display only the Books
that correspond to the order row that OrderConnector is displaying. In the Properties window, set the DataSource
property by expanding the OrderConnector node and selecting Order_Book, as shown in Figure 21.29.

Figure 21.29. Connecting OrderBookConnector to OrderConnector.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To create this relationship between the OrderConnector and the OrderBookConnector, VSTO creates a third
BindingSource, called orderBookBindingSource, that acts as an intermediate connector between OrderConnector and
OrderBookConnector. Figure 21.30 shows the resulting configuration of the DataSet and the three BindingSource
components.

Figure 21.30. The relationship among the dataset, binding sources, and data
bindings.

Now let's add some code to Sheet1's Startup event so that this application does something interesting, as shown in
Listing 21.9. We are going to populate our dataset with three orders. When the user double-clicks the Excel
spreadsheet, we will call the MoveNext method on the OrderConnector to move to the next order or row in the Order
table in the BookOrderDataSet.

Listing 21.9. A VSTO Excel Customization That Populates a Dataset and Uses the
MoveNext Method

Imports Excel = Microsoft.Office.Interop.Excel
Imports Office = Microsoft.Office.Core

Public Class Sheet1

 Private Sub Sheet1_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Dim order1 As NewDataSet.OrderRow = _
 BookOrderDataSet.Order.AddOrderRow(_
 "Eric Carter", DateTime.Now, 39.99F, 1.0F, 40.99F)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim order1book1 As NewDataSet.BookRow = _
 BookOrderDataSet.Book.AddBookRow(_
 "Effective C#", "0-321-24566-0", _
 "Addison-Wesley", 39.99F, order1)

 Dim order2 As NewDataSet.OrderRow = _
 BookOrderDataSet.Order.AddOrderRow(_
 "Andrew Clinick", DateTime.Now, 49.99F, 1.0F, 50.99F)

 Dim order2book1 As NewDataSet.BookRow = _
 BookOrderDataSet.Book.AddBookRow(_
 "Windows Forms Programming in C#", "0-321-11620-8",_
 "Addison-Wesley", 49.99F, order2)

 Dim order3 As NewDataSet.OrderRow = _
 BookOrderDataSet.Order.AddOrderRow(_
 "Eric Lippert", DateTime.Now, 29.99F, 1.0F, 30.99F)

 Dim order3book1 As NewDataSet.BookRow = _
 BookOrderDataSet.Book.AddBookRow(_
 "The C# Programming Language", "0-321-15491-6",_
 "Addison-Wesley", 29.99F, order3)

 End Sub

 Private Sub Sheet1_BeforeDoubleClick(_
 ByVal Target As Excel.Range, _
 ByRef Cancel As System.Boolean) _
 Handles Me.BeforeDoubleClick

 OrderConnector.MoveNext()

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter explored the XML schema-mapping feature of Excel. You learned how to create a schema using Visual
Studio that will work well with Excel's schema-mapping features. This chapter also covered VSTO's support for Excel
schema mapping and how to layer on top of an XML schema mapping VSTO's data binding features. The next chapter
examines Word's model for XML, which is quite different from the Excel model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 22. Working with XML in Word

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction to Word's XML Features
The first thing to note about the XML features described in this chapter is that most of them are available only in
Microsoft Office Professional Edition 2003 and the stand-alone version of Microsoft Office Word 2003. If you work with
other Office Editionssuch as Microsoft Office Standard Edition 2003, Microsoft Office Student and Teacher Edition 2003,
or Microsoft Office Basic Edition 2003the XML features described in this chapter are not available.

Many of the XML features of Word are accessed via Word's XML Structure task pane. To show the XML Structure task
pane, if it is not already displayed, choose Task Pane in Word's View menu. The task pane has a drop-down list from
which the XML Structure task pane can be selected, as shown in Figure 22.1.

Figure 22.1. Selecting the XML Structure task pane from the task pane's drop-
down list.

The XML Structure task pane prompts you to go to the Templates and Add-Ins dialog box to attach an XML schema to
the document. To get to the Templates and Add-Ins dialog box, you can click the Templates and Add-Ins hyperlink
shown in the task pane in Figure 22.2, or choose Templates and Add-Ins from the Tools menu and then click the XML
Schema tab.

Figure 22.2. The XML Structure task pane prompts you to go to the Templates and
Add-Ins dialog box to add an XML schema.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add-Ins dialog box to add an XML schema.

Figure 22.3 shows the Templates and Add-Ins dialog box. This dialog box shows available XML schemas that can be
attached to the Word document by checking the check box next to an available schema. It also provides a button to add
a new schema to the document.

Figure 22.3. The Templates and Add-Ins dialog box with the XML Schema tab
selected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To add a new schema to the document, click the Add Schema button. When you click the Add Schema button, you are
prompted to browse to the schema file you want to add to the document. Let's use the book-order schema we created
in Chapter 21, "Working with XML in Excel." After you select the schema, the Schema Settings dialog box appears, as
shown in Figure 22.4. Let's enter BookOrder as an alias or friendly name for the book-order schema.

Figure 22.4. Picking an alias for a newly added schema in the Schema Settings
dialog box.

Click OK to dismiss the Schema Settings dialog box. Doing so returns you to the Templates and Add-Ins dialog box. The
book-order schema has been added, as shown in Figure 22.5, and is attached to the current document, as shown by
the checked check box next to the BookOrder schema. The BookOrder schema can be detached from the document by
unchecking the check box.

Figure 22.5. The BookOrder schema has been attached to the Word document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now that the BookOrder schema has been added, it will be available for attachment to other documents because Word
automatically adds any added schemas to Word's schema library. To manage Word's schema library, click the Schema
Library button in the Templates and Add-Ins dialog box. The Schema Library dialog box appears, as shown in Figure
22.6. This dialog box provides the same Add Schema button that lets you add new schemas. It also can edit the
Schema Settings dialog box for an already-added schema. You can select a schema and click the Schema Settings
button to assign the book-order schema a different friendly name, for example. A Delete Schema button lets you delete
a schema from the schema library.

Figure 22.6. The Schema Library dialog box.

The bottom half of the Schema Library dialog box provides options to associate Smart Document solutions with a
document to which a particular schema is attached. In this book, we do not cover this part of Word's functionality,
because VSTO provides an easier way to build Word solutions through the ActionsPane mechanism described in Chapter
15, "Working with the Actions Pane." We do cover the ability to use the Solutions section to associate an XSLT file with
a particular schema, however.

When you close the Schema Library dialog box and the Templates and Add-Ins dialog box, the XML Structure pane is
updated to show elements from the book-order schema, as shown in Figure 22.7. With the book-order schema attached
to the document, you are ready to start applying XML elements to the document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 22.7. The XML Structure dialog box with the book-order schema attached to
the document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An End-to-End Scenario: Creating a Schema and Mapping It into a
Word Document
This section examines an end-to-end scenario that puts together the schema-creation capabilities of Visual Studio and
the schema-mapping capabilities of Word. When you take a schema and apply it in Word using the XML Structure task
pane, you enable the exporting and importing of XML data in the document. We are going to create a Word document
that can be used to record a customer's book order. The document will support the import and export of XML that
conforms to our book-order schema. The document will look like Figure 22.8.

Figure 22.8. A Word document for processing a book order.

Listing 22.1 shows the XML that this document will be able to import and export.

Listing 22.1. XML File Generated from Book-Order Document

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Order xmlns=" http://dotnet4office.com/bookorder.xsd ">
 <CustomerName>John Doe</CustomerName>
 <Date>2005-09-30</Date>
 <Book>
 <Title>Windows Forms Programming in C#</Title>
 <ISBN>0-321-11620-8</ISBN>
 <Publisher>Addison-Wesley</Publisher>
 <Price>49.99</Price>
 </Book>
 <Book>
 <Title>Effective C#</Title>
 <ISBN>0-321-24566-0</ISBN>
 <Publisher>Addison-Wesley</Publisher>
 <Price>39.99</Price>
 </Book>
 <Book>
 <Title>The C# Programming Language</Title>
 <ISBN>0-321-15491-6</ISBN>
 <Publisher>Addison Wesley</Publisher>
 <Price>29.99</Price>
 </Book>
 <Subtotal>119.97</Subtotal>
 <Tax>10.80</Tax>
 <Total>130.77</Total>
</Order>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating the Schema Using Visual Studio

To create our schema using Visual Studio, follow these steps:

1. Start Visual Studio 2005.

2. Create a new XSD file by choosing File > New > File or by pressing Ctrl+N.

3. Choose XML Schema from the list of Visual Studio installed templates; then click the Open button.

The Schema design view appears.

4. Drag an element object off the toolbox onto the design surface.

5. Type Order, and press the Enter key.

6. In the * row, type CustomerName, and press Enter.

7. In the * row, type Date, and press the Tab key; then type date for the data type, and press Enter.

8. In the * row, type Subtotal, and press Tab; then type float for the data type, and press Enter.

9. In the * row, type Tax, and press Tab; then type float for the data type, and press Enter.

10. In the * row, type Total, and press Tab; then type float for the data type, and press Enter.

11. Right-click the Order Element box, and choose New Element from the Add menu.

12. Type Book, and press Enter.

13. In the * row of the newly created Book element, type Title, and press Enter.

14. In the * row of the newly created Book element, type ISBN, and press Enter.

15. In the * row of the newly created Book element, type Publisher, and press Enter.

16. In the * row of the newly created Book element, type Price, and press the Tab key; then type float for the data
type, and press Enter. Now we need to specify that multiple books can be included in an order.

17. Click the Book row in the Order Element box, and show the Properties window by choosing Properties Window
from the View menu.

18. For the property maxOccurs, type unbounded; for the property minOccurs, type 1.

We also need to change the targetNamespace for the XML schema. Visual Studio defaults the namespace to be
http://tempuri.org/XMLSchema.xsd. This needs to be changed to some other namespace name because if you
create multiple schemas with this namespace and try to attach them to Word, Word will display an error,
because it expects the namespace from each attached schema to be unique. We will change it to
http://dotnet4office.com/bookorder.xsd.

19. Display the Properties window, if it is not already visible, by choosing Properties Window from the View window.

In the properties for the schema, you will see a row that says targetNamespace.

20. Change the targetNamespace from http://tempuri.org/XMLSchema.xsd to
http://dotnet4office.com/bookorder.xsd.

21. Now choose the Save As command from the File menu to display the Save File As dialog box; drop down the
Save As Type combo box, and pick XML Schema Files (*.xsd); for the filename, type BookOrder.xsd; and save
to a convenient place, such as the desktop.

Figure 22.9 shows the final schema as displayed by Visual Studio.

Figure 22.9. The book-order schema in Visual Studio.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 22.9. The book-order schema in Visual Studio.

Listing 22.2 shows the generated XSD file. Note that the sequence of Book elements in an Order element is a sequence
with a minimum (minOccurs) of one Book element and a maximum (maxOccurs) of unbounded Book elements. This will
allow our schema to represent one or more Books in an Order. Also, having a sequence where maxOccurs is greater
than 1 or unbounded will allow Word to know that it can represent the Books in an Order using a Word table.

Listing 22.2. Book-Order XSD Schema File

<?xml version="1.0" encoding="utf-8"?>
<xs:schema
targetNamespace="http://dotnet4office.com/bookorder.xsd"
elementFormDefault="qualified" xmlns="http://dotnet4office.com/bookorder.xsd"
xmlns:mstns="http://dotnet4office.com/bookorder.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Order">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="CustomerName"
 type="xs:string" />
 <xs:element name="Date" type="xs:date" />
 <xs:element name="Book"
 maxOccurs="unbounded" minOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Title"
 type="xs:string" />
 <xs:element name="ISBN"
 type="xs:string" />
 <xs:element
 name="Publisher"
 type="xs:string" />
 <xs:element name="Price"
 type="xs:float" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Subtotal" type="xs:float" />
 <xs:element name="Tax" type="xs:float" />
 <xs:element name="Total" type="xs:float" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

An additional point to notice about our schema file is that it is element-centric; we use XML elements and do not use
XML attributes at all in our schema. Although Word supports the mapping of XML attributes, it does so in a way that
makes it difficult for the end user to edit the attributes. The user must show the XML tags in the document, right-click
an XML tag, and use the Attributes dialog box (shown in Figure 22.10) to edit attributes. In this example, we have
mapped a book-order schema where Title, ISBN, and Publisher are attributes rather than elements. These attributes
will not show directly in the document, so it usually is best to avoid having attributes in schemas you are going to use
with Word and instead use only elements.

Figure 22.10. Word's attribute-editing dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 22.10. Word's attribute-editing dialog box.

Adding a Schema to the Word Document

Now that we have created a schema, let's add it to a Word document. Launch Word, and create a new, empty
document. Bring up the Word XML Structure task pane, as described in the first section of this chapter. You should see
the XML Structure task pane with no schema as yet associated with the document in the task pane. To add an XML
schema to the document, click the Templates and Add-Ins hyperlink in the XML Structure task pane. Then click the Add
Schema button, shown in Figure 22.3 earlier in this chapter, to add your book-order schema to the document. Give
your schema the friendly name or alias BookOrder in the Schema Settings dialog box, shown in Figure 22.4 earlier in
this chapter. Then close the Templates and Add-Ins dialog box by clicking the OK button. The XML Structure task pane
should look like Figure 22.7 earlier in this chapter.

The XML Options Dialog Box and Mixed Content

Before we start to construct the document shown in Figure 22.8, we need to consider briefly one additional dialog box:
XML Options. At the bottom of the XML Structure task pane is an XML Options hyperlink. Click this hyperlink to bring up
the XML Options dialog box. Alternatively, you can click the XML Options button in the Templates and Add-Ins dialog
box. Figure 22.11 shows the XML Options dialog box.

Figure 22.11. The XML Options dialog box. Ignore Mixed Content should be
checked.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

checked.

For the purpose of this end-to-end scenario, we need to make sure that the Ignore Mixed Content check box is checked.
Checking this box will allow us to intersperse text that is not part of our customer-order schema with text that is. Mixed
content allows us to have a structure similar to that shown in Listing 22.3, where arbitrary text (in bold) is mixed with
the tagged XML-data text.

Listing 22.3. Book-Order XML with Mixed Content in Bold

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Order xmlns=" http://dotnet4office.com/bookorder.xsd ">
 Customer Name: <CustomerName>John Doe</CustomerName>
 Date: <Date>2005-09-30</Date>

 Books that were ordered:
 <Book>
 <Title>Windows Forms Programming in C#</Title>
 <ISBN>0-321-11620-8</ISBN>
 <Publisher>Addison-Wesley</Publisher>
 <Price>49.99</Price>
 </Book>
 <Book>
 <Title>Effective C#</Title>
 <ISBN>0-321-24566-0</ISBN>
 <Publisher>Addison-Wesley</Publisher>
 <Price>39.99</Price>
 </Book>
 <Book>
 <Title>The C# Programming Language</Title>
 <ISBN>0-321-15491-6</ISBN>
 <Publisher>Addison Wesley</Publisher>
 <Price>29.99</Price>
 </Book>

Subtotal: <Subtotal>119.97</Subtotal>
 Tax: <Tax>10.80</Tax>
 Total: <Total>130.77</Total>
</Order>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</Order>

Creating a Document with Mapped XML Structure

To begin, let's construct a document with some text in it but no schema mapping. Create a document that looks like the
one shown in Figure 22.12. Create a place to put a customer name, date, subtotal, tax, and total. Create a single table
with four columns and two rows, where we will put a book with a title, ISBN, publisher, and price.

Figure 22.12. A Word document with no schema mapping.

Now we can begin mapping our schema by inserting tags into the document. The experience of mapping schema into a
Word document is quite different from mapping a schema into an Excel document. If you have ever edited an HTML
page in a text editor, you will find that mapping a schema into a Word document feels somewhat similar to the way
HTML tags are used to mark up text in an HTML page.

Make the XML Structure task pane visible, and verify that the Show XML Tags in the Document check box is checked in
the task pane. This will allow you to see the XML tags that Word is inserting into the document. Click anywhere in the
Word document. Then, in the bottom half of the XML structure task pane, you will see an element list that is identified
with the text "Choose an element to apply to your current selection." In that list is only one element: Order. Order is
the root element of our schema, so it must be mapped first.

Click Order in the element list. The dialog box shown in Figure 22.13 will appear. For this example, we will choose Apply
to Entire Document. It is possible to map multiple schemas into one document, but it is not possible to export valid XML
from such a document. VSTO also does not support the mapping of multiple schemas into one document, so we will
avoid constructing such a document.

Figure 22.13. The Apply to Entire Document dialog box.

[View full size image]

After you click the Apply to Entire Document button, the Word document looks like Figure 22.14. You can see that an
Order tag has been applied to the entire document. This will give you an idea of where we are going; effectively, we are
going to make the Word document look something like Listing 22.3 earlier in this chapter.

Figure 22.14. The Word document with an Order tag applied to the entire
document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

document.

The Order element has six child elements: CustomerName, Date, Book (which is a repeating element), Subtotal, Tax,
and Total. Let's map these elements now. Select the text John Doe in the document. In the XML Structure pane, click
CustomerName in the element list, as shown in Figure 22.15. If CustomerName does not appear in the element list
along with the other child elements of Order, toggle the List Only Child Elements of Current Element check box until it
appears.

Figure 22.15. The element list shows child elements of Order.

Select the text 2005-09-30, and click the Date element in the element list. Select the text 29.99, and click the Subtotal
element in the element list. Select the text 1.00, and click the Tax element in the element list. Select the text 30.99,
and click the Total element in the element list. If you make a mistake and tag some text with the wrong element tag,
right-click the element tag and choose the Remove Tag menu option.

Figure 22.16 shows the document with the entire schema mapped except for the Book subelements. Note the pink

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 22.16 shows the document with the entire schema mapped except for the Book subelements. Note the pink
squiggly line along the side of the document. This is Word's schema-validation feature, telling us that the mapped
document has not yet been constructed in a way that conforms to the book-order schema. This is because we have not
yet mapped the Book subelements. You can right-click the squiggly line to get the error that is occurring that will
prevent Word from exporting valid XML from this mapping.

Figure 22.16. Mappings for all elements of the book-order schema except for Book
subelements.

[View full size image]

We are going to map our repeating Book element into a table. If we map a Book element into a row of the table, Word
will be smart about this, and when rows are added to the table, Word will automatically tag the newly inserted row as a
new Book element with all related tags.

First, select the entire row with the book The C# Programming Language in it by clicking in the start of the row and
dragging across the row. It is important that you do not select beyond the edge of the rowthat you select only the
current row, as shown in Figure 22.17.

Figure 22.17. Selecting the entire row but not beyond the entire row.

With the entire row selected, click the Book element in the element list. Figure 22.18 shows the resulting tagged row.

Figure 22.18. Tagging an entire row as a Book element.

Now we need to tag the column values to mark them with the child elements of the Book element. The Book element
has four child elements: Title, ISBN, Publisher, and Price. Once again, if the elements do not appear in the element list,
toggle the List Only Child Elements of Current Element check box to make the elements appear. Select the text The C#
Programming Language, and click the Title element in the element list. Select the text 0-321-15491-6, and click the
ISBN element in the element list. Select the text Addison Wesley, and click the Publisher element in the element list.
Finally, select the text 29.99, and click the Price element in the element list. Figure 22.19 shows the resulting tagged
row.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 22.19. Completed tagging for a row in a table that represents a Book
element.

Now let's verify that we have set up the table in a way that Word will automatically tag new rows as Book elements.
Click somewhere in the table. From the Table menu, choose Insert and then choose Rows Below from the Insert
submenu. As shown in Figure 22.20, Word automatically adds tags to the new row.

Figure 22.20. Word automatically tags new rows in the table with the Book
element tags.

[View full size image]

Now fill out the remainder of the table to make it look like Figure 22.8 earlier in this chapter. After you have filled out
the table, you can hide the XML tags by unchecking the Show XML Tags in the Document check box in the XML
Structure pane or by pressing the keyboard accelerator Ctrl+Shift+X. Typically, when you deploy a document such as
this to end users, you will not want to have the XML tags showing in the document. The only complication this causes
occurs when a tag is empty; it is very hard for the user of your document to type text in the right place. To solve this
issue, use the XML Options dialog box, and check the Show Placeholder Text for All Empty Elements check box. Figure
22.21 shows the final document with XML tags showing.

Figure 22.21. The final Word document with tags showing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Also, note that the XML structure task pane shows the elements that have been mapped into the document in a tree
view, as shown in Figure 22.22. You can right-click the elements in this tree view, and a menu appears that allows you
to unmap a particular element or edit attributes associated with a particular element.

Figure 22.22. Elements mapped in the document are shown in the document tree
view.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exporting the Mapped XML in the Document to an XML Data File
With the document mapped to our XML schema, let's save this document to XML conforming to the book-order schema
we have used. First, make sure you save your document as a .doc file so that you do not lose your work. After you
have saved the document, from the File menu, choose the Save As command. From the Save As Type drop-down list,
choose XML Document. Two check boxes appear in the dialog box: Apply Transform and Save Data Only. Make sure the
Save Data Only check box is checked, as shown in Figure 22.23. Then click the Save button. Word will warn you that it
is going to save out only XML and not any formatting. If you have already saved your document as a .doc file, click the
Continue button to save as XML. When you open the saved XML, it will look like Listing 22.1 earlier in this chapter.

Figure 22.23. Saving as an XML document with Save Data Only checked.

There are some other ways to save to XML that will not generate our book-order XML. If Save Data Only is not checked,
Word will save the document in an XML format called WordprocessingML, or WordML for short. WordML is an XML file
format that Word documents can be saved in that preserves all the formatting and features of a Word document. If you
look at the WordML XML file that is generated for this example, you will notice that the WordML schema is used to
represent Word content. The book-order schema is also used in the saved WordML document to mark up any content
that we schema-mapped. In the snippet of the WordML file shown in Listing 22.4, you can see that the WordML file
format uses the CustomerName element to mark up the customer name (John Doe), but what is marked up is the
WordML representation of the customer name rather than just the simple text John Doe.

Listing 22.4. A Snippet of WordML Representing the Customer Name Label and
XML-Mapped CustomerName

<w:p>
 <w:r>
 <w:t>Customer Name: </w:t>
 </w:r>
 <w:r>
 <w:tab wx:wTab="555" wx:tlc="none" wx:cTlc="8"/>
 </w:r>
 <ns0:CustomerName>
 <w:r>
 <w:t>John Doe</w:t>
 </w:r>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </w:r>
 </ns0:CustomerName>
</w:p>

You can also use a transform when saving by checking the Apply Transform check box. A transform is an XSLT file that
acts on the WordML XML file and transforms it to some other XML format. You could create an XSLT transform that
takes a WordML XML file and transforms it to XML conforming to the book-order schema, for example. This does not
seem necessary, because clicking the Save Data Only check box already does this. There are compelling scenarios
around a similar scenario: importing XML data and applying a transform to convert it to a nicely formatted document in
WordML. The next section examines this scenario in more detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Importing an XML Data File into the Mapped Document
Let's consider the problem of how to get XML conforming to our customer-order schema, such as the XML shown in
Listing 22.1 earlier in this chapter, imported into our formatted Word document shown in Figure 22.21 earlier in this
chapter. Word does not provide a menu command to import XML, as Excel does. Instead, Word relies on something
called an XSLT file to transform XML conforming to our customer-order schema to a formatted Word document in
WordML format.

An XSLT file contains a set of instructions for transforming XML from one format to another format. Fortunately, you do
not have to understand the XSLT language or WordML to create an XSLT file. Word provides a developer tool to help
generate the XSLT file you need. Then you can use the XSLT file to transform the customer-order XML into the nicely
formatted document shown in Figure 22.21. First, we will first provide a brief checklist of the steps to do this; then we
will consider the steps in more detail.

To create the XSLT file, follow these steps:

1. Save the formatted and XML-mapped Word document shown in Figure 22.21 to the WordML file format.

2. Run the WordprocessingML Transform Inference Tool (wml2xslt.exe) on the WordML-formatted file to generate
an XSLT file.

This XSLT file will transform XML conforming to the book-order schema back to the formatted Word document in
WordML format.

To convert the book-order XML manually using the XSLT file, follow these steps:

1. Open an XML file conforming to the book-order schema in Word.

2. Use the XML Data Views feature of Word to browse to the XSLT file and transform the XML data file back to the
formatted Word document shown in Figure 22.21.

To use the XSLT file automatically when book-order XML is opened, use the Schema Library dialog box to add the XSLT
file created by the wml2xslt.exe tool as a solution associated with the book-order schema. Whenever you open book-
order XML conforming to the book-order schema, Word will automatically apply the XSLT transform to give back the
formatted Word document shown in Figure 22.21.

Creating the XSLT File

The first step in creating an XSLT file is taking the document you created as shown in Figure 22.21 and saving it in the
WordML file format. To do this, choose Save As from the File menu. From the File Type drop-down list, choose XML
Document. Then make sure that the Apply Transform and Save Data Only check boxes are not checked. Give the
resulting WordML XML file a name such as Book Sales.xml. Save the file to a location where you can find it in the next
step. Then click the Save button.

Book Sales.xml is a WordML-format document. It can be used as input to the WordprocessingML Transform Inference
Tool to create an XSLT file that can transform XML conforming to our book-order schema back to the Book Sales
formatted Word document. The WordprocessingML Transform Inference Tool is available for download at
http://www.microsoft.com/downloads/details.aspx?FamilyID=2cb5b04e-61d9-4f16-9b18-223ec626080e. Download
and install the tool on your machine. It typically will install in the directory C:\Program Files\Microsoft Office 2003
Developer Resources\Microsoft Office 2003 WordprocessingML Transform Inference Tool.

The Transform Inference Tool is a console application called wml2xslt.exe. Open a command prompt, and navigate to
the directory where wml2xslt.exe is installed. For simplicity, we have copied the Book Sales.xml WordML file to the
same directory where wml2xslt.exe is installed. At the command line, type this command:

WML2XSLT.EXE "book sales.xml" -o "book sales.xslt"

"book sales.xml" is the input WordML file. "book sales.xslt" is the output XSLT file that wml2xslt.exe creates. After this
command runs, Book Sales.xslt is created in the same directory where wml2xslt.exe is installed.

Manually Converting the Book-Order XML File Using the XSLT File

Now take the XML in Listing 22.1 and save it to a file called Book Order.xml. Edit the content of the file in some way so

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now take the XML in Listing 22.1 and save it to a file called Book Order.xml. Edit the content of the file in some way so
that it is different from the XML that was in Book Sales.xmlfor example, change the customer name and some of the
book titles. This will help convince you later that the XSLT file really works with arbitrary XML that conforms to the
book-order schema.

Now, from within Word, choose Open from the File menu. In the list of File Types, choose XML Files (*.xml). Browse to
the Book Order.xml file, and click Open. Word opens the XML file in a nice data-only view, as shown in Figure 22.24.

Figure 22.24. Opening Book Order.xml and displaying it in Word's XML data-only
view.

This view of the XML is nice and all, but we would like to get it back to the formatted document in Figure 22.21. When
you open the XML data file, the XML Document task pane automatically appears. This task pane is the key to converting
back to the formatted document view. Click the Browse option in the task pane to browse to the Book Sales.xslt XSLT
file you created using wml2xslt.exe. After you have located the XSLT file, click Open. Then Word will transform Book
Order.xml to a formatted Word document that looks like the document in Figure 22.21 but has the specific data
changes you made to the Book Order.xml file. If you go to the XML Structure pane and check the Show XML Tags in the
Document option, you will see that the formatted Word document created by using the XSLT file on the Book Order.xml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document option, you will see that the formatted Word document created by using the XSLT file on the Book Order.xml
file still has the XML mapping applied to it properly.

Automatically Applying an XSLT File When XML Conforming to the Book-Order
Schema Is Opened

Word provides a way of bypassing the extra steps of browsing to the XSLT file whenever you open the XML data file.
Using the Schema Library, you can associate an XSLT file with an XML schema so that whenever XML conforming to
that schema is opened, the XSLT file will be applied automatically to the XML. Follow these steps:

1. Choose Templates and Add-Ins from the Tools menu; then click the XML Schema tab in the Templates and Add-
Ins dialog box.

2. Click the Schema Library button to display the Schema Library dialog box, shown in Figure 22.6 earlier in this
chapter.

3. With the book-order schema selected, click the Add Solution button in the bottom half of the dialog box to
associate an XSLT file with the book-order schema. You will be prompted to browse for an XSLT file.

4. Browse to the XSLT file created by wml2xslt.exe, called Book Sales.xslt; then click the Open button.

The dialog box shown in Figure 22.25 will appear.

Figure 22.25. Adding an XSLT solution to the book-order schema.

5. Give the XSLT file the alias (friendly name) Book Order View; then click the OK button.

As shown in Figure 22.26, the XSLT file we created is now associated with the book-order schema. This will
cause Word to apply the XSLT file automatically when XML conforming to the book-order schema is opened.

Figure 22.26. The book-order view and XSLT are associated with the book-
order schema in the Schema Library.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now let's verify that the XSLT we have associated with the book-order schema will be applied automatically.

6. In Word, choose Open from the File menu to show the Open dialog box.

7. In the list of File Types, choose XML Files (*.xml).

8. Browse to the Book Order.xml file you created, and click Open. Instead of defaulting to an XML-only view, as
shown in Figure 22.24 earlier in this chapter, Word opens the XML file and automatically applies the XSLT to
display the formatted document, as shown in Figure 22.27. It also shows the XML Document task pane, which
gives the user the option to go back to the data-only view or pick some other XSLT file that can transform XML
conforming to the book-order schema into a formatted document.

Figure 22.27. Word automatically applies the book-order view solution and XSLT.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The XML Options Dialog Box
The XML Options dialog box, shown in Figure 22.11 earlier in this chapter, has three categories of options: XML Save
Options, Schema Validation Options, and XML View Options. These options are applied and saved at the document
level; different documents can have different sets of XML options. For XML Save Options, checking the Save Data Only
option makes it so when you save the document as XML, Word will save the XML mapped into the document rather than
saving the document in WordML format. The Apply Custom Transform option lets you specify an XSLT file to apply when
you save the document. This feature is the inverse of the import XSLT file we considered earlier and is beyond the
scope of this book.

The Schema Validation Options let you control the way Word validates the document against the attached schema. With
Validate Document Against Attached Schemas checked, Word validates the XML data in the document against the
attached schema. If Hide Schema Violations in This Document is not checked, Word displays squiggly lines under data
that does not conform to the schema being used in the document. In our book-order document, for example, consider
what happens if we type an invalid date for the date of the order. Word displays a squiggly line under the date. If you
right-click the squiggly line, you get a schema-validation error, as shown in Figure 22.28.

Figure 22.28. A schema-validation error for an illegal date.

We have already considered the Ignore Mixed Content option and the necessity of turning this option on when you
intermix formatting and labels with the XML that is mapped into the document. The Allow Saving As XML Even If Not
Valid option will let you save invalid XML; typically, you should not check this option. Although Word will let you
construct a document with multiple schemas attached that generate invalid XML, this prevents you from using features
such as the XSLT feature and VSTO programming model features.

The XML View Options section has some additional options for how Excel displays XML information. The Hide
Namespace Alias in XML Structure Task Pane option makes it so that the XML structure tree view does not display the
namespace prefix before element names. If the namespace is ns1 and the element is CustomerName, for example,
unchecking this option will result in Word's displaying ns1:CustomerName in the tree view. Checking this option will
result in Word's displaying CustomerName.

Show Advanced XML Error Messages shows advanced schema-validation errors. This is useful during development of
the document when you want to see the exact error message being returned by Word's XML validator. But these
messages are not very friendly for end users, so you should be sure to turn this option off before you deploy your
document. Figure 22.29 shows the error display for an illegal date when advanced XML error messages are turned on.

Figure 22.29. An advanced schema-validation error for an illegal date.

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Show Placeholder Text for All Empty Elements is an option you will almost always want to turn on before you deploy
your document to end users. In a deployed document, you typically will not want to have the XML tags displayed
because they are busy and confusing to the user of your document. But when the data within an XML tag is empty, it is
impossible for the user of your document to know where to enter data. If you turn on Show Placeholder Text for All
Empty Elements, Word displays the name of the fields that need to be filled in so the user of the document can click the
field name and type (see Figure 22.30). We have emptied all the data between tags, but the placeholder text makes it
clear to the user of the document where to enter data.

Figure 22.30. A document with Show Placeholder Text for All Empty Elements
turned on.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSTO Support for Word Schema Mapping
This section covers VSTO 2005's support for Word's schema mapping. Let's create a new VSTO 2005 Word project
based on the book-order document we created in this chapter. Launch VSTO 2005, and from the New submenu of the
File menu, choose Project. In the New Project dialog box, select a Visual Basic Word document project. Give the project
a name and location, and then click the OK button. A dialog box appears, asking for a document to be used for the
application. Click the Copy an Existing Document radio button. Then click the ellipsis (...) button to browse to the
document you created in this chapter that has the book-order schema mapped in it. Click the Finish button to create the
project.

We want to consider several features of the generated VSTO project. First is the creation of XMLNode controls. Second
is the creation of XMLNodes controls. Finally, we will consider how to use the UpdateXml methods on an XMLNode to
load XML into our document without using an XSLT file.

Use the class view to browse the members associated with ThisDocument. Notice as you browse that the member
variables listed in Table 22.1 have been created automatically, based on the XML mapping in the document to the book-
order schema.

Table 22.1. ThisDocument Member Variables Added from Schema
Mapping

Name Type

OrderNode Microsoft.Office.Tools.Word.XMLNode

OrderCustomerNameNode Microsoft.Office.Tools.Word.XMLNode

OrderDateNode Microsoft.Office.Tools.Word.XMLNode

OrderBookNodes Microsoft.Office.Tools.Word.XMLNodes

BookTitleNodes Microsoft.Office.Tools.Word.XMLNodes

BookISBNNodes Microsoft.Office.Tools.Word.XMLNodes

BookPublisherNodes Microsoft.Office.Tools.Word.XMLNodes

BookPriceNodes Microsoft.Office.Tools.Word.XMLNodes

OrderSubtotalNode Microsoft.Office.Tools.Word.XMLNode

OrderTaxNode Microsoft.Office.Tools.Word.XMLNode

OrderTotal Node Microsoft.Office.Tools.Word.XMLNode

The XMLNode Control

For each nonrepeating element mapped to the Word document, VSTO creates an XMLNode control. By mapping the
nonrepeating element CustomerName from the Order element, for example, VSTO created an XMLNode control called
OrderCustomerNameNode. An XMLNode control has all the properties and methods of a Word XMLNode object. In addition, it
has several events that are not found on the Word XMLNode object:

XMLNode.AfterInsert is raised when a new XML element is added to the document.

XMLNode.BeforeDelete is raised when an XML element is removed from the document.

XMLNode.ContextEnter is raised when the XML node has focus.

XMLNode.ContextLeave is raised when the XML node loses focus.

XMLNode.Select is raised when text within the XML node is selected.

XMLNode.Deselect is raised when text within the XML node is deselected.

XMLNode.ValidationError is raised when a validation error occurs within the XML node.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 22.5 shows a VSTO customization that handles all the events associated with an XMLNode. In this case, the code
handles events associated with the XMLNode called OrderCustomerNameNode, which corresponds to the CustomerName
element from the book-order schema mapped into the Word document.

Listing 22.5. A VSTO Word Customization That Handles All Events Associated with
an XMLNode Control

Imports Word = Microsoft.Office.Interop.Word
Imports Office = Microsoft.Office.Core

Public Class ThisDocument

 Private list As System.Windows.Forms.ListBox

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As EventArgs) Handles Me.Startup

 list = New System.Windows.Forms.ListBox

 ActionsPane.Controls.Add(list)
 ActionsPane.Show()

 End Sub

 Private Sub Display(ByVal text As String, _
 ByVal text2 As String)
 list.Items.Add(String.Format("{0} {1}", text, text2))
 End Sub

 Private Sub OrderDateNode_AfterInsert(_
 ByVal sender As Object, _
 ByVal e As _
 Microsoft.Office.Tools.Word.NodeInsertAndDeleteEventArgs) _
 Handles OrderDateNode.AfterInsert

 Dim node As Microsoft.Office.Interop.Word.XMLNode = sender
 Display("AfterInsert", node.BaseName)

 End Sub

 Private Sub OrderDateNode_BeforeDelete(_
 ByVal sender As Object, _
 ByVal e As _
 Microsoft.Office.Tools.Word.NodeInsertAndDeleteEventArgs) _
 Handles OrderDateNode.BeforeDelete

 Dim node As Microsoft.Office.Interop.Word.XMLNode = sender
 Display("BeforeDelete", node.BaseName)

 End Sub

 Private Sub OrderDateNode_BindingContextChanged(_
 ByVal sender As Object, ByVal e As EventArgs) _
 Handles OrderDateNode.BindingContextChanged

 Display("BindingContextChanged", "")

 End Sub

 Private Sub OrderDateNode_ContextEnter(_
 ByVal sender As Object, _
 ByVal e As _
 Microsoft.Office.Tools.Word.ContextChangeEventArgs) _
 Handles OrderDateNode.ContextEnter

 Display("ContextEnter", e.NewXMLNode.BaseName)

 End Sub

 Private Sub OrderDateNode_ContextLeave(_
 ByVal sender As Object, _
 ByVal e As _
 Microsoft.Office.Tools.Word.ContextChangeEventArgs) _
 Handles OrderDateNode.ContextLeave

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Display("ContextLeave", e.NewXMLNode.BaseName)

 End Sub

 Private Sub OrderDateNode_Select(ByVal sender As Object, _
 ByVal e As _
 Microsoft.Office.Tools.Word.ContextChangeEventArgs) _
 Handles OrderDateNode.Select

 Display("Select", e.Selection.Text)

 End Sub

 Private Sub OrderDateNode_Deselect(ByVal sender As Object, _
 ByVal e As _
 Microsoft.Office.Tools.Word.ContextChangeEventArgs) _
 Handles OrderDateNode.Deselect

 Display("Deselect", e.Selection.Text)

 End Sub

 Private Sub OrderDateNode_ValidationError(_
 ByVal sender As Object, _
 ByVal e As EventArgs) Handles OrderDateNode.ValidationError

 Display("ValidationError", "")

 End Sub

End Class

The XMLNodes Control

For each repeating element mapped to the Word document, VSTO creates an XMLNodes control. For the repeating
element Book from the Order element, VSTO created an XMLNodes control called OrderBookNodes. An XMLNodes control
has all the properties and methods of a Word XMLNodes object. In addition, it has several events that are not found on
the Word XMLNodes object:

XMLNodes.AfterInsert is raised when a new XML element is added to the document.

XMLNodes.BeforeDelete is raised when an XML element is removed from the document.

XMLNodes.ContextEnter is raised when an element contained by the XMLNodes control gets focus.

XMLNodes.ContextLeave is raised when an element contained by the XMLNodes control loses focus.

XMLNodes.Select is raised when text within the elements contained by the XMLNodes control is selected.

XMLNodes.Deselect is raised when text within the elements contained by the XMLNodes control is deselected.

XMLNodes.ValidationError is raised when a validation error occurs within the elements contained by the
XMLNodes control.

Listing 22.6 shows a VSTO customization that handles all the events associated with an XMLNodes control. The code
handles events associated with the XMLNodes control called OrderBooksNodes, which corresponds to the repeating Book
element from the book-order schema that was mapped into the Word document.

Listing 22.6. A VSTO Word Customization That Handles All Events Associated with
an XMLNodes Control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

an XMLNodes Control

Imports Word = Microsoft.Office.Interop.Word
Imports Office = Microsoft.Office.Core

Public Class ThisDocument

 Private list As Windows.Forms.ListBox

 Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As EventArgs) Handles Me.Startup

 list = New Windows.Forms.ListBox

 ActionsPane.Controls.Add(list)
 ActionsPane.Show()

 End Sub

 Private Sub Display(ByVal text As String, _
 ByVal text2 As String)
 list.Items.Add(String.Format("{0} {1}", text, text2))
 End Sub

 Private Sub OrderBookNodes_AfterInsert(_
 ByVal sender As Object, _
 ByVal e As _
 Microsoft.Office.Tools.Word.NodeInsertAndDeleteEventArgs) _
 Handles OrderBookNodes.AfterInsert

 Dim node As Microsoft.Office.Interop.Word.XMLNode = sender
 Display("AfterInsert", node.BaseName)

 End Sub

 Private Sub OrderBookNodes_BeforeDelete(_
 ByVal sender As Object, _
 ByVal e As _
 Microsoft.Office.Tools.Word.NodeInsertAndDeleteEventArgs) _
 Handles OrderBookNodes.BeforeDelete

 Dim node As Microsoft.Office.Interop.Word.XMLNode = sender
 Display("BeforeDelete", node.BaseName)

 End Sub

 Private Sub OrderBookNodes_ContextEnter(_
 ByVal sender As Object, _
 ByVal e As _
 Microsoft.Office.Tools.Word.ContextChangeEventArgs) _
 Handles OrderBookNodes.ContextEnter

 Display("ContextEnter", e.NewXMLNode.BaseName)

 End Sub

 Private Sub OrderBookNodes_ContextLeave(_
 ByVal sender As Object, _
 ByVal e As _
 Microsoft.Office.Tools.Word.ContextChangeEventArgs) _
 Handles OrderBookNodes.ContextLeave

 Display("ContextLeave", e.NewXMLNode.BaseName)

 End Sub

 Private Sub OrderBookNodes_Select(ByVal sender As Object, _
 ByVal e As _
 Microsoft.Office.Tools.Word.ContextChangeEventArgs) _
 Handles OrderBookNodes.Select

 Display("Select", e.Selection.Text)
 End Sub

 Private Sub OrderBookNodes_Deselect(ByVal sender As Object, _
 ByVal e As _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal e As _
 Microsoft.Office.Tools.Word.ContextChangeEventArgs) _
 Handles OrderBookNodes.Deselect

 Display("Deselect", e.Selection.Text)

 End Sub

 Private Sub OrderBookNodes_ValidationError(_
 ByVal sender As Object, _
 ByVal e As EventArgs) Handles OrderBookNodes.ValidationError

 Display("ValidationError", "")

 End Sub

End Class

Loading XML Programmatically with LoadXml

Another addition that VSTO makes to XMLNode is the LoadXml method. The LoadXml method can be used to set the
XML on the entire node tree of the XMLNode on which it is called. The LoadXml method has three overloads that take a
String of XML, an XmlElement, or an XmlDocument.

LoadXml has one major limitation: It will not decrease or increase the number of XML elements in the document. So,
given the code in Listing 22.7 that has three book elements and given a document that has only one book in the table
mapped to book elements, LoadXml will transfer only the first book to the document. Transferring the second and third
books would require the addition of elements, which LoadXml does not do. As a second example, if you have a
document that has three books in the table, and you call LoadXml passing XML with only one book, LoadXml will update
the first row of the table but will leave the two extra books there. The second and third books are left there because
LoadXml does not remove elements.

Listing 22.7. The LoadXml Method on XMLNode Object

Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

Me.OrderNode.LoadXml(_
 "<?xml version=""1.0"" " & _
 "encoding=""UTF-8"" standalone=""no""?>" & _
 "<Order " & _
 "xmlns=""http://dotnet4office.com/bookorder.xsd"">" & _
 "<CustomerName>Lah Lah</CustomerName>" & _
 "<Date>2005-03-19</Date>" & _
 "<Book>" & _
 "<Title>Windows Forms Programming in C#</Title>" & _
 "<ISBN>0-321-11620-8</ISBN>" & _
 "<Publisher>Addison-Wesley</Publisher>" & _
 "<Price>49.99</Price>" & _
 "</Book>" & _
 "<Book>" & _
 "<Title>Effective C#</Title>" & _
 "<ISBN>0-321-24566-0</ISBN>" & _
 "<Publisher>Addison-Wesley</Publisher>" & _
 "<Price>39.99</Price>" & _
 "</Book>" & _
 "<Book>" & _
 "<Title>The C# Programming Language</Title>" & _
 "<ISBN>0-321-15491-6</ISBN>" & _
 "<Publisher>Addison-Wesley</Publisher>" & _
 "<Price>29.99</Price>" & _
 "</Book>" & _
 "<Subtotal>119.97</Subtotal>" & _
 "<Tax>10.7973</Tax>" & _
 "<Total>130.7673</Total>" & _
 "</Order>")

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You frequently will want to get the XML from an XMLNode or XMLNodes. The way you do this is to use the XML property
on the Range object returned by the Range property of an XMLNode or XMLNodes. The XML property takes an optional
Boolean parameter, to which you pass TRue to get the XML data. If you pass False, you will get the WordML for the
XMLNode or XMLNodes instead. Listing 22.8 shows a simple VSTO application that displays the XML data in the
document on startup using the root XMLNode called OrderNode.

Listing 22.8. Using the XML Property

Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 MsgBox(Me.OrderNode.XML(True))

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSTO Support for the WordML File Format
VSTO has several features that support the WordML file format. Although you cannot create a new VSTO Word project
in the WordML format, you can take a Word document that has been customized in VSTO and save it as WordML.
Because WordML preserves all the features of the Word document, the document continues to work, and the VSTO
customization will run even when saved in WordML format.

VSTO's ServerDocument object can open a file in the WordML file format without starting Word on the server and
manipulate the cached data and application manifest inside the Word document. For more information on
ServerDocument, see Chapter 18, "Server Data Scenarios," and Chapter 20, "Deployment."

VSTO also supports an easy way of attaching a VSTO customization to an uncustomized WordML document. If you add
a document property to the Word document called _AssemblyName and set it to *, and add a second property to the
Word document called _AssemblyLocation and set it to the URL to a VSTO deploy manifest (as described in Chapter
20), Word will attach the customization specified in the deploy manifest when the document is opened on the client.
This feature was added because it makes it much easier to attach a VSTO customization when using a WordML
document or an XSLT transformation that transforms XML data to a WordML-format document. When using this feature,
make sure that you start with a clean document that does not have a VSTO customization already associated with it. A
document that is customized with a VSTO customization will already have its _AssemblyName and _AssemblyLocation
properties set, and it will have a hidden ActiveX control embedded in it that contains the data island. The whole point of
using this feature is to not have to deal with the embedded ActiveX control in the document, because it becomes
unwieldy when generating WordML or writing an XSLT transform.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter examined the XML schema-mapping features in Word. You learned how to create a schema using Visual
Studio that will work well with Word's schema-mapping features. This chapter also covered how to export XML from a
Word document using Word's Save Data option when saving as XML. The chapter also addressed using XSLT files to
import XML effectively into a Word document. You also learned how to work with VSTO's XMLNode and XMLNodes
controls created for a mapped schema. The end of the chapter discussed VSTO's support for the WordML format.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 23. Developing COM AddIns for Word and
Excel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction to AddIns
Office provides a number of patterns to extend the functionality of Office applications. The most common patterns are
these:

Office automation executables

Office add-ins

Code behind an Office document or template

This chapter covers how to write COM add-ins in Visual Basic for Word and Excel. It also describes how COM add-ins are
registered in the registry and why there is another step, called shimming, that must be taken before deploying a
managed COM add-in.

VSTO supports building a new kind of "VSTOstyle" add-in for Outlook 2003. The VSTO Outlook add-in project is the
preferred way to build Outlook add-ins for Outlook 2003 and is described in Chapter 24, "Creating Outlook AddIns with
VSTO." The VSTO Outlook add-in project fixes many of the issues in COM add-in development discussed in this chapter,
as well as some additional Outlookspecific issues. The only reason to write a managed COM add-in for Outlook following
the instructions in this chapter is if it must run in versions of Outlook older than Outlook 2003.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Scenarios for Using AddIns
Addins provide a mechanism to extend the core functionality of an application so that the new functionality will be
available throughout the application. The key to writing effective add-ins in Office is to develop them so that they look
and feel like natural extensions to the Office application. A few examples of what add-ins can do in Office include the
following:

Extending existing functionality If your users need to print to a color printer but often find it difficult to find
the color printer nearest to them, you could write an add-in to mitigate this issue. The add-in could add a Print
to Color Printer command to their File menu and a Print to Color Printer button to their standard toolbar. When
the user clicks the button or selects the menu item, your add-in can handle that event and print to the nearest
color printer.

Integrating with data An add-in could be written that loads into Word and Excel that pulls data from a Web
service and pastes it into the Office application. The add-in could add a Paste Sales Information menu item, for
example. When the user selects the command from within Word, it would paste a table with the data from the
Web service at the position where your cursor is in Word. In Excel, it would paste into the selected cells.

Functionality that needs to be available for only one particular document or template type is better written using the
codebehindadocument pattern. If sales information needs to be retrieved only when working with a Quarterly
Report.doc file, for example, it is better to put your code that retrieves the sales information into code behind the
template or document for the quarterly report. This is an example of choosing the right context for your code. There is
no reason to clutter the application context with commands that are used for only a particular document or template.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How a COM AddIn Is Registered
A COM add-in, from the standpoint of the Office application, is a COM component registered in a particular place in the
registry that implements the IDTExtensibility2 interface defined by Office and Visual Studio. From your standpoint as a
Visual Basic developer, you are writing a Visual Basic class that you will compile into an assembly (DLL). Through .NET's
COM interop support, your Visual Basic class can be made to look like a COM component to the Office application. You
will have to register your add-in just like any COM component to get the Office application to load it.

The registry settings and interface implementation described in this section are created for you automatically when you
create an add-in project in Visual Studio. It is still important to understand the anatomy of an add-in, however, should
you have to troubleshoot add-in issues.

Registry Location of a COM AddIn: HKEY_CURRENT_USER or
HKEY_LOCAL_MACHINE

Office determines which COM add-ins to load for a particular application by checking two places in the registry: either
under HKEY_CURRENT_ USER or under HKEY_LOCAL_MACHINE. To view the registry, choose Run from the Start menu
of Windows; type regedit.exe; and click the OK button.

The first place a COM add-in can be registered is in the registry under
HKEY_CURRENT_USER\Software\Microsoft\Office\%appname%\Addins. This is where COM add-ins installed on a
peruser basis are found, as shown in Figure 23.1. COM add-ins typically should be installed on a peruser basis so that
the add-in user settings will move with the user should the user log on to a different machine.

Figure 23.1. A registry entry for a COM add-in.

[View full size image]

Any COM add-ins registered in the registry under HKEY_CURRENT_ USER will show up in the COM AddIns dialog box for
the relevant Office application. Finding the COM AddIns dialog box in each Office application can be quite a challenge. In
all Office applications, the dialog box is not available from a menu in the default install. To add a button to show the
COM AddIns dialog box, you need to customize the toolbars in the Office application by rightclicking the command bar
and selecting Customize. Doing so causes the Customize dialog box to appear (see Figure 23.2). Click the Commands
tab, and select Tools in the Categories list. Then scroll through the list of available commands; find the COM AddIns
command; and drag this command onto an existing toolbar.

Figure 23.2. Locating the COM AddIns command in the Customize dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you click the COM AddIns button that you have added to a toolbar, the COM AddIns dialog box displays, as shown
in Figure 23.3. This dialog box shows you all the COM add-ins registered in the registry under HKEY_CURRENT_USER
for the Office application you are using.

Figure 23.3. The COM AddIns dialog box.

The second place a COM add-in can be registered is under
HKEY_LOCAL_MACHINE\Software\Microsoft\Office\%appname%\Addins. COM add-ins registered on a permachine basis
are available for all users but also are effectively hidden from the user within the Office application. If a COM add-in is
registered under HKEY_LOCAL_MACHINE, it will never show up in the COM AddIns dialog box. It is recommended that
you register your COM add-in under HKEY_LOCAL_USER so that your COM add-in is visible to end users.

Registry Entries Required for a COM AddIn

Each COM add-in registered in the registry, whether under HKEY_CURRENT_USER or HKEY_LOCAL_MACHINE, must be
registered in the following way. First, there must be a key representing the COM add-in under the Addins key. This key
is named with the ProgID of the COM add-in. A ProgID is an identifier for the COM add-in that is generated by Visual
Studio. COM uses this identifier to figure out how to create your COM add-in. The default ProgID for a Visual Studio
COM add-in project is the name of the add-in project combined with the name of the class (Connect) generated in
Visual Studio that implements IDTExtensibility2. So if you create a COM add-in project in Visual Studio called MyAddin2
for an Office application such as Outlook, the main key that Visual Studio creates in the registry for the COM add-in
would be this:

HKEY_CURRENT_USER\Software\Microsoft\Office\Outlook\Addins\
 MyAddin2.Connect

Under the key for your COM add-in, several values are required. FriendlyName is a string value that contains the name of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Under the key for your COM add-in, several values are required. FriendlyName is a string value that contains the name of
the COM add-in that will appear to the user in the COM AddIns dialog box. Description is a string value that contains a
more indepth description of the COM add-in. This description does not appear anywhere in the Office UI or COM AddIns
dialog box, but it is helpful when users or administrators are investigating, by using regedit.exe, what add-ins are
installed on a machine and what they do. LoadBehavior is a DWORD value that describes the load behavior of the COM
add-in. The values that LoadBehavior can be set to are a bitwise or of the values in Table 23.1. Typically, this should be
set to the value of 3 to load and connect the COM add-in at startup. If the LoadBehavior is set to 2, the COM add-in is
loaded, but its IDTExtensibility.OnConnection method is never called, which effectively amounts to the COM add-in's
being disabled.

Table 23.1. Possible Values for LoadBehavior
Value Description

0 Disconnected. The COM add-in is not loaded.

1 Connected. The COM add-in is loaded.

2 Load at startup. The COM add-in will be loaded and connected when the host
application starts.

8 Load on demand. The COM add-in will be loaded and connected when the
host application requires it (for example, when a user clicks a button that
uses functionality in the COM add-in).

16 Connect first time. The COM add-in will be loaded and connected the first
time the user runs the host application after registering the COM add-in.

In addition to these keys, several entries under HKEY_CLASSES_ROOT\CLSID are made for the COM add-in, as shown
in Figure 23.4. A unique ClassID (a GUID, which is a unique identifier that looks like
{FEC2B9E793664AD2AD054CF0167AC9C6}) is created by Visual Studio. This ClassID is added as a key under the
HKEY_CLASSES_ ROOT\CLSID path. This ClassID is registered so that it corresponds to the ProgID for the COM add-in
(MyAddin2.Connect, in our example). The keys and values created under the ClassID key are described in more detail
later in this chapter.

Figure 23.4. The registry entries for a COM add-in under the
HKEY_CLASSES_ROOT\CLSID path

[View full size image]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Implementing IDTExtensibility2
The key to understanding COM add-in development is the IDTExtensibility2 interface. This interface is used by all Office
applications to communicate with a COM add-in. This ensures a common initialization mechanism and an ability to pass
in the application's object model so that the COM add-in can communicate with the Office application. Listing 23.1
shows the IDTExtensibility2 interface.

Listing 23.1. The IDTExtensibility2 Interface

Public Interface IDTExtensibility2
 Sub OnAddInsUpdate(ByRef custom As Array)
 Sub OnBeginShutdown(ByRef custom As Array)
 Sub OnConnection(ByVal Application As Object, _
 ByVal ConnectMode As ext_ConnectMode, _
 ByVal AddInInst As Object, ByRef custom As Array)
 Sub OnDisconnection(ByVal RemoveMode As ext_DisconnectMode, _
 ByRef custom As Array)
 Sub OnStartupComplete(ByRef custom As Array)
End Interface

Startup Order

IDTExtensibility2 is a simple interface, but it is important to note the loading order of the COM add-in and how that
affects where you write your code. Office instantiates your COM add-in, which causes your main Connect class to be
created. But there is a key difference from normal programming practice, in that the constructor of your Connect class
cannot be used to set up your class, because the Office application context (typically, the Application object from the
Office application's object model) is not made available in the constructor. Instead, it is provided via the OnConnection
method on the IDTExtensibility2 interface. Likewise, the shutdown behavior for an add-in is determined not by the
destructor of the class, but by when the OnDisconnection method is called.

Figure 23.5 illustrates the order in which these events occur for a COM add-in. First, the COM add-in is loaded, and the
Connect class is created. This results in the Connect class's constructor being called. Then the Connect class's
implementation of IDTExtensibility2.OnDisconnection is called, and the Office application's Application object is passed
via this method. The Connect class's implementation of IDTExtensibility2.OnStartupComplete is called. Now the add-in
is loaded and connected. Then, when the application exits or the user unloads the add-in, the Connect class's
implementation of IDTExtensibility2.OnBeginShutdown is called, followed by a call to IDTExtensibilty2.OnDisconnection.

Figure 23.5. Order of COM add-in startup and shutdown.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The OnAddInsUpdate Method

The OnAddInsUpdate method is called when any COM add-in is loaded or unloaded in the Office application. This
method is somewhat of an anomaly because the contents of the custom argument are never set by Office applications.
As a result, this method really can be used only to tell you that a COM add-in has been loaded or unloaded; then you
can query the COMAddins collection in the application object model to see what has been loaded or unloaded. A good
example of using this method is if your COM add-in relies on other COM add-ins to be running to work properly. So if
one of the dependent COM add-ins is unloaded, your COM add-in can unload this:

Sub OnAddInsUpdate(ByRef custom As Array)

Parameter Description

custom An array of Object that the host application can use to provide additional data.
None of the Office applications sets this value.

The OnBeginShutdown Method

The OnBeginShutdown method is called on a connected COM add-in when the Office application is being shut down:

Sub OnBeginShutdown(ByRef custom As Array)

Parameter Description

custom An array of Object that the host application can use to provide additional data.
None of the Office applications sets this value.

The OnConnection Method

The OnConnection method is called when a COM add-in is loaded into the environment. This method is the main entry
point for the COM add-in, because it provides the Application object from the Office application's object model that the
add-in will use to communicate with the Office application:

Sub OnConnection(ByVal Application As Object, _
 ByVal ConnectMode As ext_ConnectMode, _
 ByVal AddInInst As Object, ByRef custom As Array)

Parameter Description

Application The application object of the Office application passed as an Object. Because
IDTExtensibility2 is a generalpurpose interface, this has to be an Object rather
than a strongly typed parameter. This object can be cast to the Application
object type of the Office application.

ConnectMode The ext_ConnectMode constant specifying how the COM add-in was loaded.
There are six possible values:

Constant Value Description

ext_cm_AfterStartup 0 COM add-in was loaded after the
application started. Typically, this
occurs if the user has chosen to load
an add-in from the COM AddIns
dialog box.

ext_cm_Startup 1 COM add-in was loaded at startup.

ext_cm_External 2 COM add-in was loaded externally by
another program or component.

ext_cm_CommandLine 3 COM add-in was loaded through the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ext_cm_CommandLine 3 COM add-in was loaded through the
application's command line.

ext_cm_Solution 4 COM add-in was loaded when user
loaded a solution that required it.

ext_cm_UISetup 5 COM add-in was started for the first
time since being installed.

AddInInst An Object representing the COM add-in. This can be cast to a COMAddIn
object from the office.dll primary interop assembly (PIA) in the
Microsoft.Office.Core namespace.

custom An array of Object that the host application can use to provide additional data.
None of the Office applications sets this value.

The OnDisconnection Method

The OnDisconnection method is called when a COM add-in is unloaded from the application, either because the
application is shutting down or because the user disabled the COM add-in using the COM AddIns dialog box:

Sub OnDisconnection(ByVal RemoveMode As ext_DisconnectMode, _
 ByRef custom As Array)

Parameter Description

RemoveMode The ext_DisconnectMode constant specifies why the COM add-in was unloaded.

Constant Value Description

ext_dm_HostShutdown 0 COM add-in was unloaded when the
host application was closed.

ext_dm_UserClosed 1 COM add-in was unloaded when the
user cleared its check box in the
COM AddIns dialog box or when the
Connect property of the COMAddIn
object corresponding to the COM
add-in was set to False.

ext_dm_UISetupComplete 2 COM add-in was unloaded after the
environment setup completed and
after the OnConnection method
returned.

ext_dm_SolutionClosed 3 Used only with Visual Studio COM
add-ins.

custom An array of Object that the host application can use to provide additional data.
None of the Office applications sets this value.

The OnStartupComplete Method

The OnStartupComplete method is called when the Office application has completed starting up and has loaded all the
COM add-ins that were registered to load on startup:

Sub OnStartupComplete(ByRef custom As Array)

Parameter Description

custom An array of Object that the host application can use to provide additional data.
None of the Office applications sets this value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Simple Implementation of IDTExtensibility2

Listing 23.2 shows a simple implementation of IDTExtensibility2 similar to what is generated when you create an add-in
project in Visual Studio. This implementation displays several message boxes to give you information about the
methods of IDTExtensibility2 that are being called on the Connect class. It is a COM add-in that loads into Excel, so it
casts the application object to the Microsoft.Office.Interop.Excel.Application type. It also casts the addInInst object to the
Microsoft.Office.Core.COMAddin type. Note also that the InteropServices namespace is used to add a GuidAttribute and
ProgID attribute. The values of these attributes are used when registering the add-in, as described earlier in the chapter.

Listing 23.2. An Excel COM AddIn Connect Class That Implements
IDTExtensibility2

Imports Extensibility
Imports System.Runtime.InteropServices
Imports Excel = Microsoft.Office.Interop.Excel
Imports Office = Microsoft.Office.Core

<GuidAttribute("649D6562-F01F-4117-BF2C-198CDD3E11E4"), _
ProgId("MyAddin1.Connect")> _
Public Class Connect
 Implements Extensibility.IDTExtensibility2

 Public Sub New()
 MsgBox("Connect Constructor")
 End Sub

 Public Sub OnConnection(ByVal Application As Object, _
 ByVal ConnectMode As Extensibility.ext_ConnectMode, _
 ByVal AddInInst As Object, ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnConnection

 MsgBox("OnConnection")

 Dim addin As Office.COMAddIn = AddInInst
 MsgBox("My add-in ProgID is " + addin.ProgId)

 Dim app As Excel.Application = Application
 MsgBox(String.Format(_
 "The application this loaded into is called {0}.", _
 app.Name))

 MsgBox(String.Format(_
 "Load mode was {0}.", ConnectMode.ToString()))

 End Sub

 Public Sub OnDisconnection(_
 ByVal RemoveMode As Extensibility.ext_DisconnectMode, _
 ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnDisconnection

 MsgBox("OnDisconnection")
 MsgBox(String.Format(_
 "Disconnect mode was {0}.", RemoveMode.ToString()))

 End Sub

 Public Sub OnAddInsUpdate(ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnAddInsUpdate

 MsgBox("OnAddinsUpdate")

 End Sub

 Public Sub OnStartupComplete(ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnStartupComplete

 MsgBox("OnStartupComplete")

 End Sub

 Public Sub OnBeginShutdown(ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnBeginShutdown

 MsgBox("OnBeginShutdown")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MsgBox("OnBeginShutdown")

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Writing a COM AddIn Using Visual Studio
Writing a class that implements IDTExtensibility2 is not particularly difficult, but setting up the registry settings for the
application you are targeting and creating the setup package for the COM add-in can be tricky. Luckily, Visual Studio
provides a wizard that makes writing COM add-ins considerably easier. The wizard creates two projects: one for
implementing the COM add-in and a separate setup project for the COM add-in. The COM AddIn Wizard has actually
been part of Visual Studio since version 7.0, but you might not have come across it because it is somewhat hidden in
the project hierarchy and listed as a "Shared AddIn" project.

The wizard can be displayed by choosing Other Project Types > Extensibility > Shared AddIn and is shown in Figure
23.6. The only clue that the Shared AddIn project might have something to do with Office is the Office icon included on
the Shared AddIn icon.

Figure 23.6. Creating a Shared AddIn project in Visual Studio.

[View full size image]

The Shared AddIn Wizard steps you through the process of creating a COM add-in. One of the advantages of a generic
interface such as IDTExtensibility2 is that it can be used from just about any application that has a COM object model,
and as a result, all the Office applications support loading IDTExtensibility2 COM add-ins. The wizard enables you to
select the Office application that you want your COM add-in to load into, as shown in Figure 23.7. If you select the
check boxes next to multiple Office applications, Visual Studio will register your COM add-in in a way that enables the
same COM add-in to load in multiple Office applications.

Figure 23.7. Selecting the application host.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Although it is possible to write a single COM add-in that works in all the Office applications, it actually is quite difficult to
write and even more difficult to maintain, because bugfixing different application behavior often leads to the code in the
COM add-in's becoming overcomplicated. If you want to be able to share code among COM add-ins, creating a common
library called by an applicationspecific COM add-in provides a more manageable solution.

In this example, the application host for the COM add-in will be Microsoft Word. Selecting Microsoft Word in the wizard
will result in the setup project's registering the COM add-in in the correct location for Word so that you do not have to
worry about dealing with the registry when you run the project. The registry settings for the COM add-in require a
name and description, and this information is collected in the next step of the wizard, as shown in Figure 23.8.

Figure 23.8. Setting a name and description for a COM add-in.

The final step of the wizard is used to determine the load behavior of the COM add-in and whether the COM add-in will
be installed in HKEY_CURRENT_USER or HKEY_LOCAL_MACHINE. As mentioned before, it is preferable to register the
COM add-in in HKEY_CURRENT_ USER so that it will be visible in the COM AddIns dialog box. Leaving the second check
box in Figure 23.9 unchecked will ensure this behavior.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

box in Figure 23.9 unchecked will ensure this behavior.

Figure 23.9. Setting load behavior for the COM add-in.

When the wizard has finished, a solution is created in Visual Studio containing the two projects, as shown in Figure
23.10. The main COM add-in project is a standard Visual Basic class library project that has been pre-populated with
the core references required and a class called Connect in a Connect.vb file that has a basic implementation of the
IDTExtensibility2 interface. The setup project will create an installer for the COM add-in that will include all the
dependencies detected and will register the COM add-in in the registry.

Figure 23.10. The Solution Explorer view of a default COM add-in solution.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Changing the COM AddIn Project to Be More OfficeSpecific

The COM AddIn Wizard will create a project for any application that supports IDTExtensibility2, and as a result, it
creates a very generic project. The whole point of writing a COM add-in is to integrate with a particular Office
application, so the first thing you need to do is add the appropriate primary interop assembly (PIA) for the application
the COM add-in is targeting. The COM add-in being built in this example will load into Microsoft Word, so it needs to
have a reference to the Word PIA. Then you will be able to cast the application object passed in OnConnection to the
Microsoft.Office.Interop.Word.Application object defined in the Word PIA.

Adding the PIA for Word to a project is quite straightforward; it is just a matter of adding the reference to the Microsoft
Word 11 Object Library. Rightclick the WordAddin project node in the Solution Explorer tree view, and choose Add
Reference. Doing so brings up the Add Reference dialog box, shown in Figure 23.11. Click the COM tab and then select
the Microsoft Word 11 Object Library from the list. Finally, click OK to add a reference to the Word PIA to your Visual
Studio project.

Figure 23.11. Adding a reference to the Word PIA.

The Connect class that is created by the wizard contains untyped code, so a few changes need to be made to make it
more Wordaware. By default, the project sets up two member variables within the class that are of type Object. The
addInInstance variable can be redeclared as type Microsoft.Office.Core.COMAddin object, as defined by the Microsoft Office
11.0 Object Library PIA. After you have typed the addInInstance variable as a COMAddin object, you can use it to
determine the registry settings for the COM add-in, such as the GUID, the ProgID, and the description. It also has a
Connect property of type Boolean that can be set to False to disconnect the COM add-in.

The applicationObject member variable is also of type Object. Because this COM add-in will only ever run inside Word, it can
be safely redeclared as type Microsoft.Office.Interop.Word.Application. Making this change will make developing
considerably easier and safer. After you change the declaration of the applicationObject variable, all that remains is to
change the assignment lines within the OnConnection method to cast the application argument using CType from Object to
Microsoft.Office.Interop.Word.Application and the addInInst to Microsoft.Office.Core.COMAddin. Listing 23.3 shows the
redeclaration of the addInInstance and applicationObject variables, along with the new casts in OnConnection.

Listing 23.3. Strongly Typing applicationObject and addInInstance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 23.3. Strongly Typing applicationObject and addInInstance

Public Sub OnConnection(ByVal application As Object, _
 ByVal connectMode As Extensibility.ext_ConnectMode, _
 ByVal addInInst As Object, ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnConnection

 applicationObject = CType(application, _
 Microsoft.Office.Interop.Word.Application)

 addInInstance = CType(addInInst, _
 Microsoft.Office.Core.COMAddIn)

End Sub

Private applicationObject As Word.Application
Private addInInstance As Microsoft.Office.Core.COMAddIn

Setting the Start Action

The COM add-in is almost ready to go. The last problem to solve is that the project is set to start up a new instance of
Visual Studio rather than Word. This is easily solved by changing the debug settings for the project so that the project
will start winword.exe rather than devenv.exe. To do this, bring up the properties for the project by doubleclicking the
Properties project item in the Solution Explorer window; then select the Debug tab. Doing so brings up the dialog box
with a Start Action section, as shown in Figure 23.12.

Figure 23.12. The Start Action section of the Debug tab.

[View full size image]

The start action for the project should be set to Start External Program. This value needs to change to the location of
the Word process on your machinetypically, C:\Program Files\Microsoft Office\Office11\winword.exe. Now when you run
the project, Word will be started rather than a new instance of Visual Studio.

Word will reuse existing running instances of Word when you run the project. This can cause problems with COM add-in
development. If an instance of Word is already running when you run the project, the debugger will attach to that
running instance, but your COM add-in will not be loaded into that alreadyrunning instance. A way to ensure that the
COM add-in will always be loaded in a new instance of Word is to pass the commandline switch /w, which will cause
Word always to start a new instance.

Excel automatically creates a new instance if you start it at the command line, so there is no need to do this trick for
Excel. Outlook is a singleinstance application without the ability to override this behavior, so when programming against
Outlook applications, you need to shut down Outlook after every run of the project.

When a COM AddIn Project Stops Working

A common issue that occurs in COM add-in development goes like this: "I just pressed F5 on my COM add-in project,
and nothing happened! My COM add-in doesn't appear to load. What's the deal?" Office has a system to protect itself
from COM add-ins that fail. When you understand the system, you will better understand how to protect against your
COM add-in's not loading.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COM add-in's not loading.

Office automatically disables a COM add-in if it detects that it crashed the host application while starting. When the
Office application loads and starts a COM add-in, it puts a sentinel in the registry associated with the COM add-in that it
is loading. Then it calls the COM add-in's OnConnection and method. If the COM add-in successfully returns from this
method, Office removes the sentinel in the registry, and everything works fine. If the COM add-in crashes in
OnConnection, or if you stop debugging and kill the Office process before OnConnection returns, the sentinel is still
sitting in the registry. When you relaunch the Office application, Office detects that a sentinel got left in the registry on
the last run, and it disables your COM add-in.

It is very easy to have this happen during development; you might be stepping through code invoked by your
OnConnection entry point, and you get to a line of code and say to yourself, "This line of code is completely wrong."
You stop debugging, change the code, and press F5 to rerun the COM add-in. But on the second run, the COM add-in
does not work. Office detects the sentinel in the registry left over from the last run, when you killed the process in the
middle of OnConnection, and it disables your COM add-in.

The situation is even worse for unshimmed managed COM add-ins. The sentinel put in the registry for a managed COM
add-in is the name of the DLL that bootstraps the COM add-in. In the case of a nonshimmed COM add-in, the bootstrap
DLL is always mscoree.dlla component of the CLR. mscoree.dll acts as a class factory to create COM objects
implemented in managed code for a host such as Office that expects a COM object that implements IDTExtensibility2. It
bootstraps the CLR into the Office application process; loads the managed COM add-in registered in the registry; and
gives the Office application the managed COM add-in class that implements IDTExtensibility2 and, through interop,
makes that class looks like a COM object to Office.

So suppose that you have two add-in projects: Addin1 and Addin2, both of which are unshimmed. You are debugging
Addin1's OnConnection handler, and you hit Stop Debugging in the middle of it. This leaves the sentinel in the registry
saying not that Addin1.dll crashed Office, but that mscoree.dll crashed Office. Now you open the Addin2 project and run
it, and because Addin2 is also registered with mscoree.dll as its class factory, both Addin1 and Addin2 (and any other
unshimmed managed add-ins) will be disabled.

To reenable a COM add-in that has been disabled, go to the Help > About box of the Office application, and click the
Disabled Items button. Doing so pops up a dialog box that will let you reenable mscoree.dll for an unshimmed add-in
or, for a shimmed add-in, the DLL that is shimming the add-in.

There is a second way your COM add-in can get disabled. If your COM add-in throws an exception in OnConnection code
and does not catch it, that exception propagates out to Office, and Office disables the COM add-in by setting the
LoadBehavior key to 2 (HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Office\<<Application Name>>\Addins\<<Addin
ProgID>>\LoadBehavior). There is an easy way to deal with this issue. Always put your code that handles
OnConnection inside a TRy Catch block. Do not leak any exceptions in OnConnection back to Office. To undisable a COM
add-in that has been disabled in this way, you can change the LoadBehavior key back to 3 using regedit.exe or reenable
the COM add-in using the COM AddIns dialog box.

A Simple Word COM AddIn

To understand what is possible with COM add-ins in Office applications, refer to chapters on the object models of Excel
(Chapters 35), Word (Chapters 68), and Outlook (Chapters 911). To show that the COM add-in being developed
actually works, let's add some code to the OnStartupComplete method of the COM add-in, as shown in Listing 23.4. The
code will use the application object to add a button to the standard command bar in Word and show a message box
when a user clicks the button.

Listing 23.4. A Simple Word COM AddIn

Imports Extensibility
Imports System.Runtime.InteropServices
Imports Microsoft.Office.Core
Imports Word = Microsoft.Office.Interop.Word

<GuidAttribute("F91A3358-8DDB-4F6C-850D-7B79CD6F3310"),_
ProgIdAttribute("WordAddin2.Connect")>_
Public Class Connect

 Implements Extensibility.IDTExtensibility2

 Private applicationObject As Word.Application
 Private addInInstance As Microsoft.Office.Core.COMAddIn
 Private WithEvents simpleButton As CommandBarButton

 Public Sub OnStartupComplete(ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnStartupComplete

 Dim commandBars As CommandBars
 Dim standardBar As CommandBar
 commandBars = applicationObject.CommandBars

 ' Get the standard CommandBar from Word
 standardBar = commandBars("Standard")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 standardBar = commandBars("Standard")

 Try
 ' try to reuse the button if it is not deleted
 simpleButton = CType(standardBar.Controls(_
 "Word Addin"), CommandBarButton)
 Catch
 ' If it is not there, add a new button
 simpleButton = CType(standardBar.Controls.Add(1), _
 CommandBarButton)
 simpleButton.Caption = "Word Addin"
 simpleButton.Style = MsoButtonStyle.msoButtonCaption
 End Try

 ' Make sure the button is visible
 simpleButton.Visible = True

 standardBar = Nothing
 commandBars = Nothing

 End Sub

 Private Sub simpleButton_Click(_
 ByVal Ctrl As Microsoft.Office.Core.CommandBarButton, _
 ByRef CancelDefault As Boolean) Handles simpleButton.Click

 MsgBox("You clicked on the button")

 End Sub

 Public Sub OnConnection(ByVal application As Object, _
 ByVal connectMode As Extensibility.ext_ConnectMode, _
 ByVal addInInst As Object, ByRef custom As System.Array) _
 Implements Extensibility.IDTExtensibility2.OnConnection

 applicationObject = CType(application, _
 Word.Application)

 addInInstance = CType(addInInst, _
 Microsoft.Office.Core.COMAddIn)

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Pitfalls of mscoree.dll
The Visual Studio setup project created when you create a COM add-in using the Shared AddIn Wizard provides a setup
package that you can use to deploy your COM add-in to your customers' machines. At first glance, the setup created by
Visual Studio appears to cover all the deployment requirements for COM add-ins. Alas, life is not quite that easy. A
deployed COM add-in written in managed code really needs to be shimmed. To understand what a shim is and why it is
needed, we have to dig into how a COM add-in written in managed code is actually loaded into an Office application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COM Interop and regasm.exe
The mechanism for loading COM add-ins into Office was developed long before .NET existed and relies entirely on a
technology called COM to instantiate the COM add-in. For a COM add-in written in Visual Basic to be used in Office, it
must be registered as a COM component. The ability to register a Visual Basic class as a COM component is a core
feature of the CLR called COM interop and can be achieved easily by running the regasm.exe tool on the assembly
containing your Connect class or by selecting the Register setting for the primary output assembly in the setup project.

The regasm.exe tool works by reading the declaration of your class and in particular the classlevel attributes
GuidAttribute and ProgID, shown in Listing 23.5. These classlevel attributes are defined in the
System.Runtime.InteropServices namespace. The GuidAttribute tells the regasm.exe tool what CLSID to use in the
registry for the class when registering it under HKEY_CLASSES_ROOT\CLSID. The ProgID tells the regasm.exe tool
what ProgID to use when registering the class. The regasm.exe tool writes the necessary keys only under
HKEY_CLASSES_ROOT\CLSID. The required key for the add-in with the ProgID name under
HKEY_CURRENT_USER\Software\Microsoft\Office\%appname%\Addins and associated key values are not added by
regasm.exe and must be added by custom install actions in the installer.

Listing 23.5. The Attributes in the Connect Class That Are Looked at by regasm.exe

Imports System.Runtime.InteropServices

<GuidAttribute("910322B9-AF60-4C4F-9FEE-9ABEE4A16FAE"), _
ProgIdAttribute("MyAddin1.Connect")> _
Public Class Connect

End Class

mscoree.dll and Managed AddIns

A managed component registered under HKEY_CLASSES_ROOT\CLSID differs from a typical unmanaged COM
component primarily with regard to the InProcServer32 key in the registry for the component. An unmanaged
component would set the InProcServer32 to be the DLL that implements the COM component. A managed component
cannot set this value to the name of the managed DLL, because to create an instance of the managed assembly, the
CLR needs to be loaded, and there is no guarantee that the calling application will already have loaded the CLR into
memory. In fact, it is almost certain that the calling application will not have loaded the CLR, because it is trying to load
what it thinks is a COM component. To circumvent this chickenandegg situation, the CLR provides a DLL called
mscoree.dll that loads the CLR, instantiates the class out of the managed assembly, and returns a COM Callable
Wrapper for the managed class to the calling application.

When a managed class is registered by regasm.exe, the InProcServer32 key for the assembly always has a default
value of mscoree.dll, and an additional set of registry values is set that mscoree.dll uses to load the managed class. These
additional keys provide information about the managed class and assembly that mscoree.dll will create and load. Figure
23.13 shows these values under a typical HKEY_CLASSES_ROOT\CLSID\{some guid}\InProcServer32 key for a
managed add-in class called Connect in an assembly called WordAddin1.

Figure 23.13. The values under the InProcServer32 key for a typical managed COM
add-in.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

All managed COM add-ins created by the Shared AddIn Wizard use mscoree.dll to get loaded into the Office process.
Unfortunately, this presents several problems for Office COM add-in development that have led to the need for
replacing the mscoree.dll with a different custom loadersometimes called a shimwhen building COM add-ins for Office
applications.

Note

If you are targeting Outlook 2003, you do not need to use a shim; you can use the new VSTO Outlook add-
in project type that solves the problems associated with mscoree.dll.

Problems with Using mscoree.dll to Load Your COM AddIn

Problem 1: mscoree.dll Can Be Disabled, Causing All Managed COM AddIns to Stop Loading

Office is composed of some of the most widely used applications in the world, and ensuring that the Office applications
remain as stable as possible is a key concern for the Office development team. Because Office is so widely used, a
number of COM add-ins have been designed to run inside Office applications. Unfortunately, not all of them are written
well, and they crash. When a COM add-in crashes, the hosting Office application becomes unstable or often crashes
itself, leaving the user with little or no way of knowing what on earth happened.

Microsoft invested heavily in the crashdetection and reporting system in Office XP to try to track down these crashes in
Office. While doing this, it quickly realized that many crashes were a result of thirdparty COM add-ins that were
crashing. Using this information, Microsoft introduced the ability to detect when a COM add-in crashes during
Officeapplication startup. On the next run of the application, Office displays a dialog box, such as the one shown in
Figure 23.14, offering to disable the COM add-in.

Figure 23.14. Office offers to disable a COM add-in.

[View full size image]

If the user clicks the Yes button, Office will "blacklist" the COM add-in so that it will not be loaded into Office until an
update has been received from the vendor. Although this is a great step forward for the reliability of Office applications,
the way it was implemented does not work well with the default registration mechanism for managed COM add-ins,
because Office believes that the offending DLL is mscoree.dll, which it blocks. Blocking mscoree.dll will block not only
the crashing COM add-in, but also every other managed COM add-in registered for that Office application.

Problem 2: mscoree.dll Cannot Be Signed

In the late 1990s, Office was plagued with viruses such as the Melissa virus that took advantage of the ability to run
code contained in an Office document. To defend against such attacks, Microsoft introduced several security measures
in Office XP primarily aimed at stopping malicious VBA code from running, but also to mitigate potential risks from COM
add-ins. The primary defense against an add-in was to introduce the capability to load only COM add-ins signed by a
trusted publisher. On the surface, this seems like a great idea, and indeed it is for unmanaged COM components.
Unfortunately, it does not work well with the default registration mechanism for managed COM add-ins, because Office
checks the signature of the InProcServer32 binary, which is always mscoree.dll, not the managed DLL started by
mscoree.dll, which contains the managed COM add-in. mscoree.dll is a system DLL that is not signed and is installed by
the CLR, so signing it with your own certificate is not possible. mscoree.dll cannot be signed because it cannot vouch
that the components it loads are safe.

Luckily, the default setting for Office is to trust all installed add-ins, even if they are not signed, so this problem is not
one that you will encounter in all Office installations. But it does mean that if a company or individual is particularly
security conscious and unchecks the Trust All Installed AddIns and Templates setting in the Security dialog box, shown
in Figure 23.15, your COM add-in will not run. This dialog box can be invoked by choosing the Security item from the
Macros submenu of the Tools menu in most Office applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 23.15. The Trust All Installed AddIns and Templates option in the Security
dialog box.

Problem 3: mscoree.dll Loads All COM AddIns into the Same AppDomain

Whenever managed code is loaded into an unmanaged application, the CLR must be hosted inside the application to run
the managed code. Hosting the CLR is something that can be achieved implicitly or explicitly. Implicit hosting of the CLR
is achieved by the unmanaged application's talking to mscoree.dll (which advertises itself as a COM object), which in
turn starts the CLR in the application and loads the managed code. Alternatively, the application can host the CLR
directly by using the CLR hosting APIs, which provide considerable control over how the CLR gets loaded and in
particular how assemblies get loaded. None of the Office 2003 applications hosts the CLR directly with respect to COM
add-ins (although Word and Excel do host the CLR for documentbased customizations created by Visual Studio Tools for
Office), so all COM add-ins are loaded via their InProcServer32 setting.

When the CLR is running inside a host application, it can load managed code into a unit of isolation called an
AppDomain. You can think of an AppDomain as a little miniprocess running inside the Office application process. Each
VSTO codebehinddocument solution loads into its own AppDomain. So when you have three Excel workbooks loaded in
the Excel process with VSTO code behind them, an AppDomain is created for each workbook. These AppDomains are
isolated from one another; code in one AppDomain cannot adversely affect the other AppDomains. Also, when the
workbook is closed, the AppDomain corresponding to it can be stopped and unloaded without affecting the running code
in other AppDomains.

By default, mscoree.dll loads managed COM add-ins into the same AppDomainan AppDomain known as the default
AppDomain. This is bad, because the COM add-ins are all running in the same AppDomain and can easily adversely
affect one another. Also, there is no mechanism to unload managed code that was loaded when a COM add-in was
connected but is no longer needed when the COM add-in is disconnected, because the default AppDomain cannot be
unloaded until the Office process exits. What you really want is for each COM add-in to load into its own AppDomain
instead of loading all together into the default AppDomain.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Shimming: A Solution to the Problems with mscoree.dll
Despite the gloomy picture painted for COM add-ins being loaded by mscoree.dll, a solution resolves these three
problems. The solution involves writing a custom CLR host DLL called a shim DLL (written in C++) to be the loader for
the CLR and the COM add-in instead of relying on mscoree.dll. A new shim DLL must be created for each COM add-in
you are going to deploy. Using a shim DLL leads to a number of advantages:

Integration with the Office security system Now the shim DLL will be the InProcServer32 for the COM add-
in, allowing you to sign the shim and trust it on the users' machines, which will guarantee that your COM add-in
can load irrespective of whether Trust All Installed AddIns and Templates is checked. The COM add-in is
guaranteed to load only if the user has trusted the certificate used to sign the custom shim DLL, of course.

Reliability Because the shim DLL is now the InProcServer32 for the COM add-in, if something should go wrong
with that COM add-in, the Office application will block only the shim DLL corresponding to that COM add-in,
leaving other managed COM add-ins unblocked.

Isolation The shim DLL can create an AppDomain into which the COM add-in will be loaded instead of loading
the COM add-in into the default AppDomain.

If you are building a managed COM add-in for Outlook 2003, consider using the new VSTO Outlook Addin project.
Building an add-in in this way resolves the problems with mscoree.dll, as well as some other Outlookspecific issues with
add-ins described in Chapter 24, "Creating Outlook AddIns with VSTO."

Microsoft has provided a Visual Studio COM add-in shim wizard project that works with Visual Studio 2003. It is
available at http://msdn.microsoft.com/office/default.aspx?
pull=/library/enus/dno2k3ta/html/ODC_Office_COM_Shim_Wizards.asp. At the time this book was written, no wizards
were available for Visual Studio 2005. You can use the C++ COM shim project generated by this wizard in Visual Studio
2003, however, and import it into Visual Studio 2005.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter examined the way a managed COM add-in can be created using Visual Studio. You also learned how a
managed COM add-in is registered in the registry, as well as the pitfalls of mscoree.dll for loading a managed COM add-
in. To solve the problems with mscoree.dll, we recommended using a shim DLL to load a managed COM add-in. If you
are building a COM add-in for Outlook 2003, there is a much better story for add-in development: the VSTO Outlook
AddIn project, described in Chapter 24, "Creating Outlook AddIns with VSTO."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 24. Creating Outlook AddIns with VSTO

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Moving Away from COM AddIns
Chapter 23, "Developing COM AddIns for Word and Excel," examined several issues with building COM add-ins in Visual
Basic for Office applications. In particular, the chapter considered several problems with using the default configuration
of a COM add-in where mscoree.dll loads the COM add-in:

mscoree.dll can be disabled, causing all managed COM add-ins to stop loading.

mscoree.dll cannot be signed, which makes it so your COM add-in cannot be loaded when the Trust All Installed
AddIns and Templates option is not checked.

mscoree.dll loads all COM add-ins into the same application domain, which allows COM add-ins to affect one
another adversely.

VSTO add-ins for Outlook solve these issues. VSTO also fixes some other issues in Outlook COM add-in development
that we consider here to motivate you to use the VSTO add-in technology rather than the COM add-in technology
described in Chapter 23. This chapter describes the problems with the COM add-in technology in enough detail so that if
you are forced to use a COM add-in approach, you will know how to work around these issues.

Getting Outlook to Shut Down Properly with a COM AddIn

The most troublesome issue in Outlook COM add-in development is that the OnDisconnection method you implement in
a COM add-in sometimes is not called if you have variables such as a class member variable that is holding an Outlook
object. The result is that when Outlook exits, all the Outlook windows go away, but Outlook does not shut down; the
outlook.exe process will continue running, waiting for the COM add-in to release the Outlook objects it is holding.

To get Outlook to shut down and call the COM add-in's OnDisconnection method, you must use a trick that involves
listening to Outlook events to determine when the last window has been closed. Outlook windows are represented by
two object model objects. The Explorer object in the Outlook object model represents the main Outlook window, which
consists of a view showing folders and items in folders. It is possible to open additional Explorer views by rightclicking
an Outlook folder and choosing Open in New Window. The Inspector object in the Outlook object model represents the
Outlook window that appears when you doubleclick an individual item in a folder, such as a mail item, contact item, or
other Outlook item.

The secret to getting OnDisconnection called and your COM add-in to unload is to listen to Explorer and Inspector Close
events, as well as the Application object's Quit event. When the last Explorer or Inspector has closed, or when the
Application object's Quit event is raised, you must make sure that you set all the variables that are holding Outlook
objects to Nothing. Then you should force a garbage collection after setting the variables to Nothing to ensure that your
add-in will not hold on to Outlook objects because objects are waiting to be garbagecollected.

Listing 24.1 shows a helper class that you can create and use from your main Connect class in a COM add-in. The class
takes as a parameter an Outlook Application object, as well as a delegate to a Shutdown method that you would declare
in your Connect class. The Shutdown method you declare in your Connect class would set all the class member variables in
the Connect class that are holding Outlook objects to Nothing, similar to what this helper class does in its HandleShutdown
method. Note that you do not have to use this approach or this class in VSTO Outlook add-insonly in COM add-ins. This
is one of the strong arguments for switching to VSTO Outlook add-ins.

You might also notice that the helper class holds on to the Explorers and Inspectors collection objects, as well as an
array of Explorer or Inspector objects. The helper class holds on to these things because if it does not, the event sinks it
has established on these objects will not work. This is another variant of the classic "Why has my button stopped
working?" problem described in Chapter 1, "An Introduction to Office Programming."

Listing 24.1. A Helper Class That Helps an Outlook COM AddIn Shut Down
Properly[1]

Imports Outlook = Microsoft.Office.Interop.Outlook

Public Class EventListener

 Public Delegate Sub Shutdown()

 Private application As Outlook.Application
 Private explorers As Outlook.Explorers
 Private inspectors As Outlook.Inspectors
 Private eventSinks As System.Collections.ArrayList
 Private shutdownHandlerDelegate As Shutdown

 Private Sub EventListener(_

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private Sub EventListener(_
 ByVal application As Outlook.Application, _
 ByVal shutdownHandlerDelegate As Shutdown)

 Me.application = application
 Me.shutdownHandlerDelegate = shutdownHandlerDelegate
 explorers = application.Explorers
 inspectors = application.Inspectors
 eventSinks = New System.Collections.ArrayList()

 AddHandler explorers.NewExplorer, _
 AddressOf Explorers_NewExplorer
 AddHandler inspectors.NewInspector, _
 AddressOf Inspectors_NewInspector
 AddHandler application.Quit, AddressOf Application_Quit

 Dim e As Outlook.Explorer
 For Each e In application.Explorers
 Explorers_NewExplorer(e)
 Next

 Dim i As Outlook.Inspector
 For Each i In application.Inspectors
 Inspectors_NewInspector(i)
 Next
 End Sub

 Public Sub Explorers_NewExplorer(_
 ByVal explorer As Outlook.Explorer)
 eventSinks.Add(explorer)
 Dim explorerEvents As Outlook.ExplorerEvents_Event = _
 CType(explorer, Outlook.ExplorerEvents_Event)
 AddHandler explorerEvents.Close, AddressOf Explorer_Close
 End Sub

 Public Sub Inspectors_NewInspector(_
 ByVal inspector As Outlook.Inspector)

 eventSinks.Add(inspector)
 Dim inspectorEvents As Outlook.InspectorEvents_Event = _
 CType(inspector, Outlook.InspectorEvents_Event)
 AddHandler inspectorEvents.Close, AddressOf Inspector_Close

 End Sub

 Public Sub Explorer_Close()
 If application.Explorers.Count <= 1 And _
 application.Inspectors.Count = 0 Then

 HandleShutdown()

 End If
 End Sub

 Public Sub Inspector_Close()
 If application.Explorers.Count = 0 And _
 application.Inspectors.Count <= 1 Then

 HandleShutdown()

 End If
 End Sub

 Public Sub Application_Quit()
 HandleShutdown()
 End Sub

 Private Sub HandleShutdown()
 ' Release any Outlook objects this class is holding

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Release any Outlook objects this class is holding
 application = Nothing
 explorers = Nothing
 inspectors = Nothing
 eventSinks.Clear()
 eventSinks = Nothing

 ' call client provided shutdown handler delegate
 shutdownHandlerDelegate()

 ' Force a garbage collection
 GC.Collect()
 GC.WaitForPendingFinalizers()
 GC.Collect()
 GC.WaitForPendingFinalizers()
 End Sub

End Class

[1] This class is not necessary for VSTO Outlook add-ins.

Understanding RCWs, Application Domains, and Why to Avoid Calling
ReleaseComObject

Some Outlook developers have used ReleaseComObject on class member variables holding Outlook objects instead of
setting these variables to Nothing and forcing a garbage collection, as shown in Listing 24.1. ReleaseComObject is a
function in the CLR that, if you misuse it, has some additional side effects that can adversely affect your code. It can
also affect other COM add-ins if you are not using a COM add-in shim as described in Chapter 23, "Developing COM
AddIns for Word and Excel." For this reason, we recommend against using ReleaseComObject. Because it has been
recommended in the past, it is important to describe in more detail why calling ReleaseComObject is not advised. This
will eventually lead us to VSTO Outlook add-ins and a description of why they do not have to do any of the tricks shown
in Listing 24.1.

To understand ReleaseComObject, it is necessary to understand more of what is really happening when your code runs
inside the Outlook process. The first thing you need to understand is the concept of an application domain, or
AppDomain. An application domain is an isolated environment in which your code runs within a processin this case,
within outlook.exe. You can think of an application domain as being sort of a process within a process. There can be one
or more application domains running inside a single process. There are several ways that an application domain
provides processlike isolation. An application domain can be stopped and unloaded without affecting another application
domain. Individual application domains can be configured differently with different security policy, different settings for
loading assemblies, and so on. Code running in one application domain cannot directly access code in another
application domain. In addition, faults occurring in one application domain cannot affect other application domains.

With typical console applications or Windows Forms applications, you usually will have just one application domain
where your code will run. There always is at least one application domain created automatically for any process running
managed code. The application domain the CLR creates automatically is called the default application domain. The
default application domain can be unloaded only when the process exits. This is often acceptable, because you typically
control all the code that loads into a console application or Windows Forms application that you have written.

In Office scenarios, you will want to have multiple application domains created in the same process where each add-in
loads into its own application domain. This is desirable because if you load in the same application domain as another
add-in, that add-in can adversely affect you, as discussed shortly. You also will not want to have an add-in or
customization associated with a document load into the default application domain, because the default application
domain can be unloaded and cleaned up only when the process exits. A user might want to unload an add-in or close a
document, and she will not want the customization to stick around in memory in the default application domain. Users
will want the add-in to unload and free that memory for other uses.

Figure 24.1 shows the most desirable situation for Outlook COM add-ins (and Office COM add-ins in general). If each
COM add-in is shimmed as described in Chapter 23, each add-in will load into its own application domain, providing
isolation, so that one add-in cannot affect another. Note that no add-ins load into the default application domain in
Figure 24.1. If you do not shim a COM add-in, mscoree.dll will load it into the default application domain. If we could
rule the add-in world, no add-ins would ever load into the default application domain. You should avoid loading into the
default application domain because a tested COM add-in that works fine on your developer machine might conflict with
some other add-in loading into the default application domain on a user's machine, and chaos will ensue.

Figure 24.1. An ideal situation for add-ins. Each add-in loads in its own application
domain. No add-ins load into the default application domain.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

domain. No add-ins load into the default application domain.

If you do not use a shim to load a COM add-in and instead let mscoree.dll load your add-in, you will end up with a
situation such as the one shown in Figure 24.2. COM add-ins that are not shimmed are loaded into the default
application domain by default.

Given Figure 24.1 and Figure 24.2, now we consider what happens when you use a COM object in your customization.
When you use a COM object in your customization, such as Outlook's Application object, the CLR creates an object
called a Runtime Callable Wrapper (RCW) for the COM object that your managed code talks to. The RCW in turn talks to
the actual COM object. Any time your code talks to Outlook's Application object, your code is actually talking through
the RCW.

Figure 24.2. The undesirable situation that occurs when add-ins are not shimmed
and loaded by mscoree.dll.

RCWs are scoped to an application domain. The CLR creates one RCW that all code in a given application domain will
use to talk to Outlook's Application object. Figure 24.3 shows the ideal situation for RCWs. With each add-in loaded into
its own application domain, each add-in has its own RCWs. Figure 24.3 also illustrates that when multiple variables are
declared in a particular application domain that are set to an instance of Outlook's Application object, they share an
RCW object. Note that the RCW is shared because Outlook's Application object is a singleton COM object. For
nonsingleton COM objects, the RCW is not shared, and the situation described below does not have as great an impact.

Figure 24.3. An ideal situation for add-ins. Addins should not share RCWs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now we consider what ReleaseComObject does. Suppose that you have a class variable in your add-in code called
appObject1 that is set to an instance of Outlook's Application object. You might have another class variable in another
area of your add-in called appObject2 that is also set to an instance of Outlook's Application object. Even though you have
two variables set to an instance of Outlook's Application object, these two variables will both share one RCW that is at
the application domain level.

Now suppose that appObject1 gets set to an instance of Outlook's Application object first. This causes Outlook's
Application RCW to be created. The RCW is referencecountedthat is, a count is kept of each variable that is using the
RCW. So the reference count of the RCW goes to 1. In addition, the RCW talks to the COM object for Outlook's
Application object and adds a reference count to the COM object, too. Now Outlook knows that some code is "using"
one of its objects. Later in the code, appObject2 gets set to an instance of Outlook's Application object. The CLR detects
that an RCW is already available, so it increments the reference count on the RCW and has appObject2 share the RCW
with appObject1. It does not increment the reference count on the COM object, however; the RCW will take only one
reference count on the COM object, and it will release that reference count when all the variables using the RCW are
garbagecollected.

Because Outlook is more strict about reference counts than the other Office applications are, to get Outlook to shut
down, you need to release the reference count the RCW has made on any COM objects your managed code is using
when the last Outlook window (either Explorer or Inspector) is closed or when Outlook's Application object raises the
Quit event. The right way to do this is to set all the variables you have set to Outlook objects to Nothing and then force
two garbage collections. The quickanddirty way to do this is to use ReleaseComObject. When you call
ReleaseComObject on a variable, the CLR releases the reference count on the RCW associated with that variable type.
So if you want to get rid of the RCW for Outlook's Application object and thereby release Outlook's COM object to get it
to shut down properly, you could write the following code:

Runtime.InteropServices.Marshal.ReleaseComObject(appObject1)
Runtime.InteropServices.Marshal.ReleaseComObject(appObject2)

Note that this assumes that only two variables in the application domain are using the RCW: appObject1 and appObject2. If
you forgot about a variable that was set to Outlook's Application object, or you are referencing a library that sets its
own internal variables to Outlook's Application object, this code would not result in the RCW's going away and releasing
Outlook's COM object, because the reference count on the RCW would be greater than 2.

ReleaseComObject also returns the number of reference counts left on the RCW. So, armed with this knowledge, you
could write this evenscarier code:

Dim count as Integer

Do

 count = Runtime.InteropServices.Marshal.ReleaseComObject(_
 appObject1)

Loop While count > 0

This code keeps releasing the reference count on the RCW until it goes to 0, which then causes the RCW to be released
and the COM object it is talking with to have its reference count released. This code would get rid of the RCW even in
the case where you forgot about a variable that was set to Outlook's Application object or using a library that was using
Outlook's Application object. .NET also provides another method that is the equivalent of calling ReleaseComObject in a
loop. This method is shown here:

Runtime.InteropServices.Marshal.FinalReleaseComObject(appObject1)

After the RCW has gone away because of calling ReleaseComObject, ReleaseComObject in a loop, or
FinalReleaseComObject, if you attempt to use any of the properties or methods on any variables that were set to the
Outlook Application object (for example, you try to access appObject1.Name), you will get the error dialog box shown in
Figure 24.4.

Figure 24.4. The error that occurs when you try to talk to a variable whose RCW
has been released.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

has been released.

So you probably can see that if you load into your own application domain, if you are not using any referenced libraries
that talk to Outlook's application object, and if you can avoid talking to any properties or methods of Outlook's
Application object after you have called ReleaseComObject in a loop or FinalReleaseComObjectyou could get away with
using this approach. This is only because you are in your own application domain and presumably are in control of all
the code that might load there. If you shoot anyone in the foot by using ReleaseComObject, it will be yourself and not
other developers.

Consider what happens if you are not using a shim, and you load into the default application domain. Now you have
great potential to affect adversely other add-ins that also are not shimmed and are loading into the default application
domain. Figure 24.5 shows this situation. Suppose that Addin 1 calls FinalReleaseComObject on its appObject1 object.
This will not only release the references that Addin 1 has on the RCW, but because the RCW is shared at the application
domain level and Addin 2 is also loaded in the same application domain, it will also release the references that Addin 2
has on the RCW. Now, even if Addin 1 is smart enough not to touch appObject1 anymore, Addin 2 has no way of knowing
that when it talks to appObject2 or appObject3, it will get an exception due to the RCW's going away.

Figure 24.5. Worstcase situation for add-ins: Addins share RCWs, and one add-in
calls ReleaseComObject in a loop or FinalReleaseComObject.

If, instead, Addin 1 sets appObject1 to Nothing and forces a garbage collection, .NET will make sure that the right number
of reference counts is released on the RCW without affecting other users of the RCW. Also, with appObject1 set to Nothing,
it will be clearer in your code that you are no longer allowed to talk to appObject1.

The CLR does not clean up the reference counts on the RCW until the variable you have set to Nothing is
garbagecollected. In Listing 24.1 earlier in the chapter, where we are trying to clean up the reference count
immediately after the last window is closed, we force a garbage collection immediately after setting the variables
referring to Outlook objects to Nothing. To force the garbage collection, we call GC.Collect(), followed by
GC.WaitForPendingFinalizers(). Note that then we call GC.Collect() and GC.WaitForPendingFinalizers() a second time to ensure that any
RCWs that were stored as members of objects with finalizers are cleaned up properly.

How Outlook AddIn Development Should Be: The VSTO Outlook AddIn Project

Outlook COM add-in development requires you to track any variables set to Outlook objects, sink the Close events of
the Inspector and Explorer objects, set your variables set to Outlook objects to Nothing when the last Inspector or
Explorer closes or the Application object's Quit event is raised, and force two garbage collections. This complexity is not

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Explorer closes or the Application object's Quit event is raised, and force two garbage collections. This complexity is not
required when building add-ins for other Office applications, so do not apply these techniques to Excel or Word. Excel
and Word are more robust to reference counts on their COM objects being held during the shutting down of the
application. Also, this situation never occurs in VSTO 2005 customizations because of VSTO's better model for loading
and unloading code.

If you use the VSTO Outlook add-in project, you will not have to worry about any of these Outlookspecific shutdown
problems or any of the problems that we said (in Chapter 23, "Developing COM AddIns for Word and Excel") require a
shim. The VSTO Outlook add-in project uses the VSTO model for loading and unloading an add-in. The VSTO model
always loads a customization into its own application domain. When the add-in is unloaded or the application exits,
VSTO raises a Shutdown event into the customization. The developer does not have to set any objects to Nothing or
force a garbage collection to clean up RCWs, because once the Shutdown event handler has been run, VSTO unloads
the application domain associated with the customization. When the application domain is unloaded, all the RCWs used
by that application domain and customization are cleaned up automatically, and the references on COM objects are
released appropriately. After the application domain has been unloaded, memory used by the customization is freed,
and the process can continue to run. Because VSTO Outlook add-ins apply this approach to add-ins, you never have to
worry about setting variables to Nothing, RCWs, or any of the complexity discussed in this section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating an Outlook AddIn in VSTO
To create an Outlook add-in in VSTO, choose File > New > Project. The Outlook add-in project appears in the list of
templates under the Visual Basic/Office node in the tree of project types, as shown in Figure 24.6. Type a name for
your new Outlook add-in project; pick a location for the project; then click the OK button.

Figure 24.6. Creating a new Outlook add-in project.

[View full size image]

A project is created with references to the Outlook 2003 primary interop assembly (PIA), the core Office PIA, and other
needed references, as shown in Figure 24.7. One project item, called ThisApplication.vb, is created.

Figure 24.7. The Outlook add-in project in Solution Explorer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you doubleclick the ThisApplication.vb project item, you will see a simple code view, shown in Listing 24.2, that looks
very similar to the ThisDocument.vb project item in the Word document or template VSTO project, and to the
Sheet1.vb project item in the Excel workbook or template project. There is a simple Startup and Shutdown method
where you can write code that executes on the startup and shutdown of the add-in. Startup is roughly the equivalent of
OnConnection in IDTExtensibility2based add-ins, and Shutdown is roughly the equivalent of OnDisconnection. Listing
24.2 also illustrates that the ThisApplication class derives from an aggregate of the Outlook Application object, enabling
you to access properties and methods of the Outlook Application object by writing code such as Me.Inspectors.Count.

Listing 24.2. ThisApplication.vb for an Outlook AddIn Project

Imports Office = Microsoft.Office.Core
Imports Outlook = Microsoft.Office.Interop.Outlook

Public Class ThisApplication

 Private Sub ThisApplication_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 MsgBox(String.Format(_
 "There are {0} inspectors and {1} explorers open.", _
 Me.Inspectors.Count, Me.Explorers.Count))

 End Sub

 Private Sub ThisApplication_Shutdown(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Shutdown

 MsgBox("Goodbye")

 End Sub

End Class

When you run the project with the code shown in Listing 24.2, Outlook is launched, and the add-in loads and displays a
dialog box showing the count of the Inspectors and Explorers. Now go to Outlook's COM AddIns dialog box by following
these steps:

1. Choose Options from the Tools menu to bring up the Options dialog box.

2. Click the Other tab of the Options dialog box.

3. Click the Advanced Options button to bring up the Advanced Options dialog box.

4. Click the COM AddIns button to bring up the COM AddIns dialog box.

Figure 24.8 shows the COM AddIns dialog box. The add-in you just created (OutlookAddin1) is displayed as though it
were a COM add-in. If you look at the location of the add-in, it claims to be in the C:\Program Files\Common
Files\Microsoft Shared\VSTO\8.0 directory.

Figure 24.8. The COM AddIns dialog box shows the VSTO Outlook add-in.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 24.8. The COM AddIns dialog box shows the VSTO Outlook add-in.

From the standpoint of Outlook, Outlook believes that it is loading a COM add-in, even though we know this is a VSTO
Outlook add-in project. What is going on here? To answer that, let's do a little digging in the registry to understand how
VSTO is connecting everything. If we look under HKEY_CURRENT_USER\Software\Microsoft\Office\Outlook\Addins, we
will find a registry key for the add-in we created in VSTO, called OutlookAddin1 in our example, as shown in Figure
24.9. The registry entries look just like those for an IDTExtensibility2 add-in, as described in Chapter 23, "Developing
COM AddIns for Word and Excel." These registry entries make Outlook think that it is just loading a COM add-in.

Figure 24.9. A VSTO Outlook add-in registered under the Outlook Addins subkey.

[View full size image]

If we search the registry under the HKEY_CLASSES_ROOT\CLSID key for the ProgID OutlookAddin1, we will find a key
associated with the OutlookAddin1 ProgID. Looking under the InprocServer32 key for that ProgID, we see the entries in
Figure 24.10.

Figure 24.10. The InprocServer32 under the CLSID key associated with ProgID
OutlookAddin1.

[View full size image]

Under the InprocServer32 key are several important values. First, the (Default) value is the DLL that Outlook will start
to load the VSTO Outlook add-in we created. The DLL name is AddinLoader.dll. This is a VSTOprovided replacement for
mscoree.dll that can load a managed add-in without the problems associated with mscoree.dll listed at the start of this
chapter. This DLL also solves the Outlook shutdown problem, making it so that your add-in will always shut down
cleanly and not leave Outlook running.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cleanly and not leave Outlook running.

Second, we see a ManifestLocation key. Because the VSTO Outlook add-in project uses the VSTO runtime to load the
add-in, a manifest is required to specify what to load. This manifest is identical to the manifest embedded in VSTO
customized Word documents and Excel spreadsheets. The name of the manifest is stored in the ManifestName key. If
we go to the ManifestLocation and open the file with the name ManifestName (OutlookAddin1.manifest), we will see the
XML shown in Listing 24.3.

Listing 24.3. The OutlookAddin1.manifest File

<assembly xmlns="urn:schemasmicrosoftcom:asm.v1"
xmlns:asmv2="urn:schemasmicrosoftcom:asm.v2"
manifestVersion="1.0">
 <assemblyIdentity name="OutlookAddin1.manifest"
version="1.0.0.0" />
 <asmv2:entryPoint name="Startup" dependencyName="dependency0">
 <asmv2:clrClassInvocation
class="OutlookAddin1.ThisApplication" />
 </asmv2:entryPoint>
 <asmv2:dependency asmv2:name="dependency0">
 <asmv2:dependentAssembly>
 <assemblyIdentity name="OutlookAddin1" version="1.0.0.0"
culture="neutral" />
 </asmv2:dependentAssembly>
 <asmv2:installFrom codebase="OutlookAddin1.dll" />
 </asmv2:dependency>
</assembly>

The manifest indicates that the actual managed add-in assembly that AddinLoader.dll will load is called
OutlookAddin1.dll. The path provided in codebase will be relative to the location of the manifest (specified in
ManifestLocation). So, looking at the ManifestLocation key in Figure 24.10, we can see that the VSTO runtime will load
OutlookAddin1.dll from the full path below:

C:\Visual Studio Projects\OutlookAddin1\OutlookAddin1\bin\debug\OutlookAddin1.dll

Security

VSTO Outlook add-ins use the same security model that Word and Excel VSTO customizations usethat is, no Outlook
add-in runs without .NET Framework security policy that trusts the Outlook add-in assembly and any dependent
assemblies. When you create a new Outlook add-in project, Visual Studio automatically adds this policy to trust the bin
directory for the project and any referenced assemblies that are copied locally to the project directory. When you
deploy an Outlook add-in, however, you also need to create and install .NET policy that will trust the assemblies that
are part of the Outlook add-in. Chapter 19, ".NET Code Security," and Chapter 20, "Deployment," cover this topic in
more detail.

The VSTO security model is also the key to how the Trust All Installed AddIns and Templates problem is solved. When
this check box in the Security dialog box is unchecked, Office requires the InProcServer32 registered for the add-in to
be signed. Because VSTO's security model is that no add-in runs without .NET Framework security policy to trust it,
VSTO can sign the AddinLoader.dll, because it will load only code that has been trusted by .NET Framework security
policy. This makes it so that your add-in will load even in environments where this check box is not checked.

Manifest Updating

VSTO Outlook add-ins use the same basic updating and publishing mechanism that Word and Excel VSTO
customizations use to update the manifest in a document. You can publish a VSTO Outlook add-in that embeds in the
manifest a URL to a deploy manifest. To publish an add-in, rightclick the project node in Solution Explorer, and choose
Publish from the popup menu. The Publish Wizard, shown in Figure 24.11, will appear. Here, we choose to publish to a
local directory called c:\myaddins.

Figure 24.11. Publishing a VSTO Outlook add-in.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 24.11. Publishing a VSTO Outlook add-in.

This causes a manifest to be generated that is slightly different from the manifest in Listing 24.3 earlier in this chapter.
The first difference is that now the manifest points to a deploy manifest. Each time an Outlook add-in that has been
published and that has a deploy manifest location is loaded, the deploy manifest is checked to see whether a newer
version of the manifest is available. If there is, a new version of the manifest is pulled down to the ManifestLocation
specified in the registry, and it overwrites the old manifest. The second difference is that DLLs referred to in the
application manifest are now located relative to the path to the deploy manifest instead of the application manifest. For
more information on publishing and deploy manifests, see Chapter 20, "Deployment."

Installing

VSTO Outlook add-ins differ in one important way from Word and Excel VSTO customizations: They must be registered
in the registry. This means that you will have to have an installer that installs your add-in onto a user's machine and
puts the needed registry keys in the registry.

When you create a VSTO Outlook add-in project, a setup project for the add-in is created for you automatically. This
setup project will generate an installer that puts the required registry keys in the registry and copies the manifest and
add-in DLL to the desired location. It does not install the VSTO runtime redistributable (vstor.exe) or configure .NET
security policy to trust the add-in. These steps must either be added manually to the setup project or performed as a
separate step when rolling out VSTO to an enterprise. For more information, see Chapter 20, "Deployment."

Other VSTO Features

Although it would be nice, Outlook add-ins do not support VSTO's Smart Tags or ActionsPane features, which are
available to Word and Excel customizations. They also do not support the cacheddata feature of VSTO.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
This chapter examined the Outlook shutdown problem, the dangers of ReleaseComObject, and how application domains
and RCWs are used by an add-in. This chapter also considered the VSTO Outlook add-in model as a solution to these
problems.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Copyright
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other
countries and is used under license from Microsoft.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which
may include electronic versions and/or custom covers and content particular to your business, training goals, marketing
focus, and branding interests. For more information, please contact:

 U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the U.S., please contact:

 International Sales
 international@pearsoned.com

Visit us on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data:

Carter, Eric.
 Visual studio tools for Office : using Visual Basic 2005 with Excel, Word, Outlook, and InfoPath / Eric
Carter, Eric Lippert.
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-321-41175-7 (pbk. : alk. paper)
 1. Microsoft Visual BASIC. 2. BASIC (Computer program language) 3. Microsoft Visual Studio.
4. Microsoft Office. I. Lippert, Eric. II. Title.

 QA76.73.B3C345 2006
 005.13'3dc22 2006001141

Copyright © 2006 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

 Pearson Education, Inc.
 Rights and Contracts Department
 75 Arlington Street, Suite 300
 Boston, MA 02116
 Fax: (617) 848-7047

Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts. First printing, April 2006

Dedication
To my wife, Tamsyn, and our children Jason, Hayley, Camilla, Rand, and Elizabeth.

E. C.

To Leah Lippert, for embarking with me on a fabulous adventure. And to David Lippert, who taught me
to expect the unexpected along the way.

E. L.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Data
 separating data and view in VSTO programming model
 XML data file Import/Export events
Data binding
 advanced ADO.NET
 complex
 controls
 data sources for data-bound spreadsheet
 host items and host controls
 IBindableComponent
 overview of
 simple
 sources as proxies
 spreadsheets 2nd
 in Word documents 2nd
 XML mapping combined with
Data nodes, event handlers for
Data programming
 adapters 2nd
 advanced ADO.NET data binding
 binding sources as proxies
 cached members, adding/removing from data island
 caching in data island
 caching own data types
 complex/simple data binding
 data bindable controls
 data bindable host items and host controls
 data binding in Word documents
 data sources
 data sources for data-bound spreadsheet
 data-bound controls for spreadsheets
 data-bound spreadsheets
 data-bound Word documents
 dataset disconnected strategy
 datasets
 exceptions in
 ICachedType
 list object events
 list object host control properties/methods
 overview
 serialized XML, manipulating
 summary
 typed/untyped datasets
Data server [See Server data scenarios.]
Data source events, InfoPath
Data sources
 back-end data source
 data-bound spreadsheet
 overview of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 overview of
 security
DataDOMEvent object
DataMember property
DataReader class
Datasets
 accessing data with
 adapters
 diffgram form
 disconnected strategy
 overview
 serializing, in cached datasets
 toolbox for dataset components
 typed/untyped
Dates, Excel
 converting to DateTime
 locale issue and
Deactivate event
 Excel
 Outlook
 Word
Debugging, application-level Smart Tag methods
Debugging, user-defined functions in Automation add-ins
Declarative event handling
 described
 in Double-Click/Right-Click events
 in workbooks
Default properties
 DefaultFilePath property in Word
 DefaultFileSave property in Word
 DefaultTab property in Word
 defined
 file/printer properties in Excel
Delay-sign, assemblies
Delegate types
 aggregated Document objects and
 aggregated Range objects and
 aggregated XMLNode/XMLNodes objects
 Bookmark objects and
 Excel Application objects and
 list objects and
 in Outlook object model
 in Word Document event interface
Delete events, in Outlook
Delete methods
 controls at runtime
 objects from collections
 Outlook items
 Range object
 worksheets
Deploying VSTO solutions
 application manifest
 Application Manifest Editor
 application manifest objects, methods, and properties
 configuration files and
 deployment manifest
 determining assembly location from deployment manifest
 examining generated files
 IntelliMirror and
 to Intranet or Web site

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 to Intranet or Web site
 local machine deployment
 MAGE for editing deployment manifest
 overview of
 prerequisites
 Publish Wizard for
 relationship between application manifest and deployment manifest
 security issues
 ServerDocument object for reading/editing embedded application manifests
 setup package creation
 Web caching and
Deployment manifests
 determining assembly location from
 editing with MAGE
 overview of
 relationship with application manifest
Deployment Package Wizard
Desc property
 action classes
 recognizer classes
DestFldr parameter, Outlook items
Destructive concurrency, in data adapters
Dialog object
 accessing COM add-Ins using
 actions in Word
 bookmarks in Word
 Categories for Outlook items
 controlling in Excel
 controlling in Word
 in Excel object model
 fields in Word
 files in Word
 folder selection
 options property in Word
 tabs in Word
Diffgram form, dataset in
Direction parameter, Collapse method of Word Range object
Dirty state
 custom property pages and
 preserving in documents
 PropertyPage interface in Outlook
Display
 controlling save alerts in quitting Excel
 displaying message in status bar in Excel
 displaying Outlook item in Inspector window
 settings associated with Excel Window object
Display method
 Dialog object
 Explorer object
 Inspector object
 MAPIFolder object
DLLs [See also Assemblies.]
 AddinLoader.dll
 assemblies and
 COM add-ins 2nd 3rd
 mscoree.dll [See mscoree.dll.]
 Smart Tag 2nd 3rd 4th 5th
 strong names and DLL hell
 XLL
DocEvents interface, Worksheet objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DocEvents interface, Worksheet objects
Document collections, Word
 accessing document in collection
 closing all open documents
 creating new document
 iterating over open documents
 opening existing document
 saving all open documents
Document object
 Activate/Deactivate events
 Close event
 closing/saving
 as collection
 collections associated with document and range
 collections associated with document only
 dirty state in documents
 grammar/spelling checks in documents and ranges
 hierarchy
 interfaces in Word
 Mail Merge event
 mouse events
 New/Open events
 overview
 password protection
 Print events
 printing
 properties
 Save events
 security
 selection change events
 Sync events
 template changes
 Undo/Redo methods
 Window Sizing events
 windows
 XML events
DocumentProperty
 accessing in collection
 adding
 iterating over DocumentProperties collection
 workbooks
Documents
 Actions task pane [See Actions task pane.]
 ActiveXcontrol
 AddControl method
 blurry controls
 code behind control for
 control layout
 control state not saved in
 controls added at runtime not saved
 Controls collection
 controls in Excel document
 controls in Word document
 controls not in toolbox
 controls typed as object
 controls, adding at runtime
 controls, deleting at runtime
 data binding in Word 2nd
 Document Class in Word
 limitations of control hosting model

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 limitations of control hosting model
 modes for adding controls to
 navigating Word
 populating with data on server
 properties merged from OLEObject/OLEControl
 server-generated, for customizing Excel
 server-generated, for customizing Word
 Smart, for customizing Excel
 Smart, for customizing Word
 trusting
 Windows Forms controls added to
 Windows Forms, using on the document surface
Domain security level, in InfoPath forms
Double-Click events
 cancelable events and event bubbling
 raising in Excel
Double-clicking, as mode for adding controls
DownloadURL property
Dragging/Dropping, adding controls
Drawing, adding controls
Dummy method
Dynamic controls, in VSTO programming model
Dynamic event handling
 in Double-Click/Right-Click events
 "my button stopped working" issue
 overview
Dynamic host items, in VSTO programming model

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

E-mail
 events in Outlook
 sending workbooks via
 Smart Tags in HTML-formatted Outlook
 Smart Tags in Word
Editing
 AllowEditRanges collection, worksheet protection 2nd
 allowing/disallowing [See Protect method.]
 application manifests
 ASPX web form for editing data island
 custom event handler for editing data island
 deployment manifest
 e-mail
 embedded application manifests
 Excel Application Object
 Inspector editor types
 Range values
 security policies
 user information in Word options
Electronic postage, E-Postage event in Word
elementID, as BeforeClick event parameter
Embedded objects, using in Worksheet object
EnableEvents property
End property
 regions
 Word Range identification
 Word Range object 2nd
EndOf method, Word Range object
Enterprise policy level
Entry point, for hosted code
EntryID
 e-mail events in Outlook
 Folder/Outlook items
Enumeration
 Controls collection in VSTO
 defined
 GetEnumerator method
 of properties
 standard folders in NameSpace object
 workbook parameters
Error handling, OnValidate event in
Events
 Action events in Smart Tags
 Bookmark object
 bubbling
 in CDO
 Change events in data binding
 code response to
 declarative

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 declarative
 Document object
 dynamic handling
 Event model improvements
 Excel [See Excel events.]
 implementing from PIA interface
 InfoPath [See InfoPath events.]
 list object
 New and Getting Started document task panes in Word
 in object models 2nd
 OrientationChanged event in Actions pane
 Outlook [See Outlook events.]
 Range object
 Selection events for changing Actions pane
 Smart Tags and
 Word [See Word events.]
 Workbook object
 Worksheet object
 XMLNode/XMLNodes objects
Evidence
 assemblies and
 kinds of evidence in .NET Framework code security
Excel
 add-in solutions for
 automation executable solutions for
 chart sheet host item class and chart host control
 code behind document
 COM add-ins [See COM add-ins.]
 controls, inserting into Word
 data sources for data-bound customized spreadsheet
 data-bound controls for customized spreadsheet
 deploying [See Deploying VSTO solutions.]
 Dummy methods in
 Globals class
 host controls, adding dynamically
 NamedRange/XMLMappedRange/List object host controls
 programming [See Programming Excel.]
 Smart Tags in
 VSTO extensions to Excel object models
 workbook host item class
 worksheet host item class
 XML feature for [See XML, in Excel.]
Excel events
 Activate/Deactivate
 add-in Install/Uninstall
 additional events in VSTO
 Calculate
 Change
 Before Close
 concealable events and event bubbling
 Double-Click/Right-Click
 Follow Hyperlink
 NewWorkbook/Worksheet
 Open
 overview
 Before Print
 Before Save
 Selection Change
 summary
 toolbar/menu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 toolbar/menu
 WindowResize
 XML import/export
Excel objects
 Application object [See Application objects, Excel.]
 Document properties
 locale issue for Automation executables and COM add-ins
 Names collection/objects
 properties that return active/selected objects
 Range object [See Range object, Excel.]
 summary
 Window object
 Windows collections
 Workbook [See Workbooks.]
 Workbooks Collection
 Worksheet [See Worksheets.]
 Worksheets/Charts/Sheet collection
Exceptions
 in control removal
 data binding
 properties that throw
 ScreenUpdating property in Excel
 ScreenUpdating property in Word
Execute method
 Find/Replace properties in Word Range object
 preventing Word from executing actions
Exit method
 Word Application object
 Word Bookmarks
Expand method, Word Range object
Explorer object
 Activate/Deactivate events
 buttons/menus
 Close events
 collections
 Copy/Paste/Cut/Delete events
 folder/view/items in
 MAPIFolder in Explorer view
 new window events
 in Outlook events
 view/selection change events
 web view of folder in
 window events
 window, working with
Explorer, Outlook close events and
Export events, of XML data files
Exporting mapped XML to XML data file
Expressions, regular expressions in creating document level Smart Tags
Extended MAPI, in Outlook object model
Extenders
 aggregating onto controls in Word/Excel
 binding related extensions to host items/controls
External reference, in addressing
ExternalApplication object, in Info-Path

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

F5 shortcut, InfoPath
Files [See also Documents.]
 File converters for changing document formatting in Word Application object
 File dialog boxes in Word Application object
 file save format options in Word
 FileDialog property
 form templates as .XSF/.XSN files
 JScript/VBScript files in existing form templates
 settings in Excel
 XML file formats in populating document with data on server
 XML file Import/Export events in Excel
Finally block
 dialog boxes and alerts in Word Application object
 ScreenUpdating property in Excel
 ScreenUpdating property in Word
Find method
 Excel Range object
 Outlook items
 Word Range Object
Folders
 change events in Outlook
 FolderPath property to identify MAPIFolder
 MAPIFolder object [See MAPI.]
 in NameSpace object
 parameters in Outlook Inspectors/Explorers collections
 root folders in Outlook NameSpace object
 Select Folder Dialog box in NameSpace object
 selected folders in Explorer object
 view/selection change events in
Follow Hyperlink event, Excel
Fonts
 cell range formats
 Word Range objects
For Each
 collection iteration
 Documents collection in Word
 Explorers and Inspectors collections
 Names collection in Excel
 open sheets in Excel
 open windows in Excel
 open windows in Word
 open workbooks in Excel
 Shapes collections
 syntax in collection iteration
 Word templates
Formats
 cell ranges
 Excel dates
 Inspector objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Inspector objects
 locale issue and
 Word file save format options
 Word Range objects
 XML files
 XML schemas in Excel
 XML serialized datasets
Forms
 ASPX web form that edits data island on server
 InfoPath [See InfoPath events.]
 Windows [See Windows Forms controls.]
Forward method, of Outlook mail item
Friend visibility modifier, in Globals Excel class
FromXml, Cached Data class helper method
Full-trust security level, in InfoPath forms
FullName property
 of Word Document object
 of Workbook object
Functions
 built-in
 caching semantics
 CType
 user-defined [See User-defined functions.]
 Word Basic

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

GAC (Global Assembly Cache) 2nd
Garbage collection, button failure issue
GenerateItemsMessage, Outlook addin
GetContextNodes method, in XDocument object
GetEnumerator method
 accessing Name in collection
 iterating over open windows in Word
 iterating over open workbooks in collection
GetFolderFromID method
GetItemFromID method
GetNameSpace method
GetNewPopertyBag method
GetPageInfo method
GetSelected Nodes method
GetSpellingSuggestions method
Getting Started task pane
Global Assembly Cache (GAC) 2nd
Globals class, Excel
Globals object, for retrieving chart/worksheets
GoTo method, Word Range object
Grammar checking, Word 2nd
Groups, code [See Code groups.]
GUIDAttribute, COM add-ins

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Handles clause
 Word events
 workbook events
Handling events
 declarative event handling
 dynamic event handling
 edits data island
 in Excel [See Excel events.]
 in InfoPath
 InfoPath events
 "my button stopped working" issue in dynamic event handling
 in Word [See Word events.]
HasPassword property, Word documents
Help, for determining Word Basic functions
Helper methods
 Cached Data class
 Controls collection
 static helper methods in ServerDocument object
 Windows Forms controls
Hiding, Actions task pane
Hierarchy
 Excel objects
 of object models
 Outlook objects
 Word objects
HKEY_CURRENT_USER
 location of COM add-ins
 requirements for registering COM add-ins
HKEY_LOCAL_MACHINE
 location of COM add-ins
 requirements for registering COM add-ins
Host controls [See also Controls.]
 aggregated objects
 binding related extensions to
 connecting aggregates in
 Controls collection
 derived from Windows Forms controls
 Excel Globals class
 Excel host item class
 Excel list object
 extending to Word/Excel object models
 list object properties/methods
 removing
 saving/loading
 "tag" field in
 Windows Forms 2nd 3rd
 Word
 Word Bookmark
Host items

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Host items
 aggregated object
 binding related extensions to
 CachedDataHostItem collection
 connecting aggregates in
 dynamic
 Excel
 extending to Word/Excel object models
 "tag" field in
 Windows Forms
Hosted code
 discovery/context/entry point
 unloading
HTML-formatted e-mail, Smart Tags embedded in
HTMLBody property, Outlook item
Hyperlink, Follow Hyperlink event

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

IA (Interop assemblies) [See also Primary interop assemblies (PIAs).]
IBindableComponent
ICachedType
ID, getting Folder/Outlook item using EntryID/StoreID
IDL, definition of Word Application/Document objects
IDTExtensibility2
 in COM add-ins
 example of simple implementation of
 OnAddInsUpdate method
 OnBeginShutdown method
 OnConnection method
 OnDisconnection method
 OnStartupComplete method
 overview of
 startup order of COM add-ins 2nd
Implementation, in VSTO programming model
Import events, of XML data files
Importing
 XML data file into mapped Word document
 XML files and refreshing XML data in Excel spreadsheet
Index operator
 Explorer or Inspector in Outlook
 ItemProperties collection in Outlook item
Index parameter
 DocumentProperty in Excel
 sheet in collection in Excel
 window in collection in Excel
 window in collection in Word
 workbooks in Excel
InfoPath
 button events/view switching
 creating event handler
 data source events
 deployment location and security
 focus vs. selection
 form events/properties/methods
 form security levels
 getting started
 OnAfterChange event
 OnBeforeChange event
 OnContextChange event and custom task pane
 OnValidate event
 overriding submit/confirm/save events
 overview
 previewing
 programming
 registering form template to grant full trust
 security information
 setting security levels

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 setting security levels
 setting selection
 summary
InfoPath events
 button events/view switching
 data source
 event handler
 forms
 OnAfterChange
 OnBeforeChange
 OnContextChange
 OnValidate
 overriding submit/confirm/save events
InfoPath forms
 button events/view switching in
 creating
 deployment location and security
 event-based programming
 form events/properties/methods
 form security levels
 OnContextChange event in
 overriding Submit/Confirm/Save events
 previewing
 programming
 registering form template to grant full trust
 security information
 setting security levels
 working with
Information property, Word Range identification
Inheritance, in VSTO programming model
InitializePropertyPageSite method
InnerObject property, aggregated objects
Insert methods
 nonprinting characters/breaks into Range object
 text in Range object
Insertion behavior
 Excel
 Word
Inspector object
 Activate/Deactivate events
 adding buttons/menus to
 Close events
 collections
 displaying Outlook items in Inspector window
 editor types
 Outlook close events and
 in Outlook events
 Outlook item associated with
 window events in
 windows
Installer classes
Integers
 BeforeClick event and
 parameters
 value of collection objects
IntelliMirror
Interfaces
 Actions task pane [See Actions task pane.]
 COM add-in entry point
 dummy interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 dummy interface
 ICachedType interface in cached data control
 implemented by recognizer/action classes
 multiple application/document interfaces in Word
 multiple event interfaces in Outlook
 PIA browsing and
 PIA properties/methods/events
 PropertyPage interface in Outlook
 user interface in Excel
 user interface in Word
 Windows Forms for user-interface needs [See Windows Forms controls.]
Interop assemblies (IA) [See also Primary interop assemblies (PIAs).]
 defined
Intersection operator 2nd
Intranets, deploying VSTO solutions to
inUndoRedo parameter, XML events in Word
Invalid Type Library
InvokeVerb method, Action classes
"Is a" relationship
IsCached
IsCacheEnabled
IsCustomized method
IsDirty variable
IsFolderSelected method
IsInPlace property
ISmartTagProperties collection
ISmartTagRecognizer2 interface
IsSmartTagAction interface
Item property
 Excel cells
 Excel Range object
 Excel window in collection
 Excel workbook in collection
 Excel worksheet in collection
 Word bookmarks
 Word document in collection
 Word window in collection
Items, Excel
 using Item method for accessing Name object in collection
 workbook host item class
 worksheet host item class
Items, host [See Host items.]
Items, Outlook
 adding to collections
 adding/deleting/changing
 built-in/custom properties
 Categories dialog box
 Copy/Paste/Cut/Delete events
 copying/moving
 creating
 deleting
 displaying in Inspector window
 finding
 getting item by ID in NameSpace object
 identifying specific type
 Item objects
 iterating
 mail properties and methods associated with
 MAPIFolder object
 methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 methods
 in object model
 Open/Read/Write/Close events
 properties 2nd
 PropertyChange events
 saving
 selected items in Explorer object
Iteration
 collection objects
 DocumentProperties collection
 Excel open windows
 Excel open workbooks
 Folders collection
 Names collection
 Outlook items
 Word documents collection 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

JScript files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Key objects
Keyboard, sending keyboard commands to Excel
Keywords
 AddressOf keyword
 New
 New, in automation executables
 New, in new Word events
 WithEvents/Event keyword

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Languages
 .NET
 PIA communication
Late-bound properties, Word dialog box fields
Libraries
 old format/invalid type library error
 Schema Library dialog box 2nd
 Smart Tag class library 2nd
Lifetime
 automation executables
 button failures
Lightning-bolt icon, use for showing events
List object
 events
 host controls 2nd
ListObject
 controls
 Excel collections
Lists
 appending XML data to
 in Worksheet
Load, controls in VSTO
LoadXml
Local machine deployment
Local reference, in addressing
Locale issue
 automation executables and COM add-ins and
 DateTime for dates
 old format/invalid type library error
 overview of
 reflection to work around
 switching thread locale to English and back
Location-based policy levels
Logical operators, use in finding Outlook item
Login
Look
 controlling look of Excel
 controlling look of Word

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Machine policy level
Macro recording, in VBA
Macro sheet object, in Excel object model
MAGE (Manifest Generating and Editing)
Mail item, properties/methods
Mail Merge events
 customization that handles
 raising
MailLogoff method, workbooks
MailLogon method, workbooks
MailSession property, workbooks
Managed Automation add-in [See Automation add-ins.]
managed code, COM add-ins
Manifest Generating and Editing (MAGE)
Manifest update
Manifests, application [See Application manifests.]
Manifests, deployment [See Deployment manifests.]
MAPI
 Extended MAPI for changing readonly properties
 items in MAPIFolder object
 iteration class for MAPIFolder object
 MAPIFolder identifiers
 MAPIFolder property pages
 MAPIFolder view settings
 MAPIFolder, displaying in Explorer view
 MAPILogonComplete event
 moving MAPIFolder object
 subfolders
Mapping
 Word document with mapped XML structure
 Word schema mapping
 XML schema data types to Excel cell formats
Maximize value, in WindowState enumeration
Member variables
 in button failure issue
 in events handling
Menus
 adding to Explorer window
 menu events in Excel
 menu events in Word
Messages
 displaying Excel message in status bar
 displaying Word message in status bar
Methods
 application manifest
 CDO provided
 collection objects
 implementing from PIA interface
 object model 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 object model 2nd
 OnDisconnection method
Methods, Actions task pane
 attaching/detaching
 methods to avoid
Methods, Excel
 Add method, for document properties
 Add method, for workbooks
 aggregated host item
 aggregated Workbook object
 aggregated Worksheet object
 Application object
 Chart/Sheet/Worksheet collections
 ChartObjects
 CheckSpelling
 copying/clearing/deleting Range object
 creating/activating windows
 Dummy method
 getting Range objects
 Goto method
 iterating over open workbooks
 Names collection/object
 OLEObject
 Open/Close
 PrintOut workbooks
 protecting workbooks
 protecting worksheets
 Quit/Undo
 Save/Close
 selecting ranges
 sending workbooks as e-mail
 SendKeys
 Shapes
 text in Range object
 ToOle method for display color conversion
 windows
 worksheets
Methods, host control
 aggregated objects
 list objects
 removing controls
Methods, InfoPath
 button events/view switching
 DataDOMEvent object
 focus/selection in XDocument object
 Forms
 overriding Submit/Confirm/Save events
 RegisterSolution for granting full trust
 selections
 SelectNodes/SelectText in View object
Methods, Outlook
 active/selected objects returned
 Add method, for Inspectors/Explorers collections
 adding items to collections
 adding/removing Outlook
 Categories dialog box
 copying Application object
 copying/moving folder in MAPIFolder object
 copying/moving items
 creating items

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 creating items
 custom properties for items
 deleting item
 Display MAPIFolder object
 displaying items in Inspector window
 displaying Select Folder dialog box
 Explorer window
 finding folders in NameSpace object
 finding items
 finding items using EntryID/StoreID
 Folders methods of NameSpace object
 Inspector window
 item
 iterating over items
 mailing items
 PropertyPage interface
 Quit method for Application object
 retrieving NameSpace object
 saving items
 searching Application object
 security dialog box and
 selected folder/view/items in Explorer object
 subfolders in MAPIFolders
Methods, Server data
 cached data object model
 CachedDataHostItem collection
 CachedDataHostItem object
 CachedDataItem object
 shutting down ServerDocument object
 static helpers in ServerDocument object
Methods, Smart Tag
 action class creation
 class creation
 debugging application-level Smart Tags
 object
 recognizer class creation
Methods, Windows Forms
 AddControl method
 aggregated Range objects
 controls added at runtime
 Controls collection
 deleting controls at runtime
 extenders for implementing control in Word/Excel
Methods, Word
 aggregated Document object
 bookmarks
 closing documents
 creating document
 File Dialog boxes for Application object
 finding/replacing Range objects
 getting Range object
 grammar/spell checking
 inserting nonprinting characters/breaks into Range object
 moving Range object
 navigating documents
 navigating Range object
 NeedsFill method in data caching
 New and Getting Started document task panes
 opening documents
 protecting documents

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 protecting documents
 Range object 2nd
 research services
 saving all open documents
 saving documents
 ScreenRefresh for Application object
 showing dialog box
 showing dialog box and preventing from executing actions
 Tables collection
 Template collection
 text in Range object
 Undo/Redo
 WholeStory in Range object
 windows
 windows in collections
Minimize value, in WindowState enumeration
Modal parameter, for displaying Outlook item in Inspector window
Modal Windows Forms form
Model-View-Controller (MVC)
Modeless Windows Forms form
Models, object [See Object models.]
modifier keys, specifying in Excel with SendKeys method
Mouse pointer
 changing appearance of in Excel
 changing appearance of in Word
 raising event in Word
Move method
 Excel sheet in collection
 Excel worksheets
 MAPIFolder object
 Outlook item
 Word Range object
 Word windows
MoveAfterReturn properties, Excel Application object
MS Excel 4.0 macro sheets
MS Excel 5.0 dialog sheets
mscoree.dll
 can be disabled
 cannot be signed
 loads all COM add-ins into same domains
 managed add-ins and
 shimming as solution to mscoree.dll problems
 summary of of problems with
MSI installer
MVC (Model-View-Controller)
"My button stopped working" issue

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual Studio Tools for Office: Using Visual Basic 2005 with Excel, Word, Outlook, and InfoPath
By Eric Carter, Eric Lippert
...
Publisher: Addison Wesley Professional
Pub Date: April 26, 2006
Print ISBN-10: 0-321-41175-7
Print ISBN-13: 978-0-321-41175-4
Pages: 1120

Table of Contents | Index

"With the application development community so focused on the Smart Client revolution, a book that covers VSTO
from A to Z is both important and necessary. This book lives up to big expectations. It is thorough, has tons of
example code, and covers Office programming in general termstopics that can be foreign to the seasoned .NET
developer who has focused on ASP.NET applications for years. Congratulations to Eric Lippert and Eric Carter for such
a valuable work!" Tim Huckaby, CEO, InterKnowlogy, Microsoft regional director

"This book covers in a clear and concise way all of the ins and outs of programming with Visual Studio Tools for
Office. Given the authors' exhaustive experiences with this subject, you can't get a more authoritative description of
VSTO than this book!" Paul Vick, technical lead, Visual Basic .NET, Microsoft Corporation

"Eric and Eric really get it. Professional programmers will love the rich power of Visual Studio and .NET, along with the
ability to tap into Office programmability. This book walks you through programming Excel, Word, InfoPath, and
Outlook solutions." Vernon W. Hui, test lead, Microsoft Corporation

"This book is an in-depth, expert, and definitive guide to programming using Visual Studio Tools for Office 2005. It is
a must-have book for anyone doing Office development." Siew Moi Khor, programmer/writer, Microsoft Corporation

"We don't buy technical books for light reading. We buy them as a resource for developing a solution. This book is an
excellent resource for someone getting started with Smart Client development. For example, it is common to hear a
comment along the lines of, 'It is easy to manipulate the Task Pane in Office 2003 using VSTO 2005,' but until you
see something like the example at the start of Chapter 15, it is hard to put 'easy' into perspective. This is a thorough
book that covers everything from calling Office applications from your application, to building applications that are
Smart Documents. It allows the traditional Windows developer to really leverage the power of Office 2003." Bill
Sheldon, principal engineer, InterKnowlogy, MVP

"Eric Carter and Eric Lippert have been the driving force behind Office development and Visual Studio Tools for Office
2005. The depth of their knowledge and understanding of VSTO and Office is evident in this book. Professional
developers architecting enterprise solutions using VSTO 2005 and Office System 2003 now have a new weapon in
their technical arsenal." Paul Stubbs, program manager, Microsoft Corporation

"This book is both a learning tool and a reference book, with a richness of tables containing object model objects and
their properties, methods, and events. I would recommend it to anyone considering doing Office development using
the .NET framework, especially people interested in VSTO programming." Rufus Littlefield, software design
engineer/tester, Microsoft Corporation

Visual Studio Tools for Office is both the first and the definitive book on VSTO 2005 programming, written by the
inventors of the technology. VSTO is a set of tools that allows professional developers to use the full power of Visual
Studio .NET and the .NET Framework to put code behind Excel 2003, Word 2003, Outlook 2003, and InfoPath 2003.

VSTO provides functionality never before available to the Office developer: data binding and data/view separation,
design-time views of Excel and Word documents inside Visual Studio, rich support for Windows Forms controls in a
document, the ability to create custom Office task panes, server-side programming support against Office, and much
more.

Carter and Lippert cover their subject matter with deft insight into the needs of .NET developers learning VSTO. This
book

Explains the architecture of Microsoft Office programming and introduces the object models

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Teaches the three basic patterns of Office solutions: Office automation executables, Office add-ins, and code
behind a document

Explores the ways of customizing Excel, Word, Outlook, and InfoPath, and plumbs the depths of programming
with their events and object models

Introduces the VSTO programming model

Teaches how to use Windows Forms in VSTO and how to work with the Actions Pane

Delves into VSTO data programming and server data scenarios

Explores .NET code security and VSTO deployment

Advanced material covers working with XML in Word and Excel, developing COM add-ins for Word and Excel, and
creating Outlook add-ins with VSTO.

The complete code samples are available on the book's Web page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

NamedRange, host controls
Names
 action classes
 cell ranges
 Excel collections/objects
 Excel workbooks
 Excel worksheets
 Named-parameter approach
 recognizer classes
 Word documents
 Word Range object
NameSpace object, Outlook
 address books/entries in
 checking if Outlook is offline
 current user
 getting folder or item by ID
 getting standard folders in
 root folders
 Select Folder Dialog box in
 Store added to/removed from
 working with
NeedsFill, data caching
.NET
 ADO.NET data binding
 ASP.NET custom handler
 ASP.NET server
 classes
 code security [See Code security, .NET Framework.]
 data programming [See Data programming.]
 security policy for Smart Tag class library
 using ServerDocument and ASP.NET
.NET Framework
 advantages of
 code security [See Code security, .NET Framework.]
 deployment prerequisites for .NET Framework 2.0
 disadvantages of
Network connections, disconnected strategy in datasets
New document, Word
 creating
 working with New Document task pane
New events
 new window event in Outlook
 NewDocument event in Word
 NewWorkbook/Worksheet events in Excel 2nd
New keyword
 automation executables and
 defined
 new Word event
newFolder parameter, Outlook change events

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

newFolder parameter, Outlook change events
NewValue property, DataDOMEvent object
newView parameter, Outlook change events
NewWindow method
Next method
 Word document navigation
 Word Range objects
Nodes
 event handlers for
 InfoPath Data source events in data nodes
 in InfoPath forms
 Word XMLNode and host control classes
NoPromt parameter, Word documents
Normal templates
 Normal.dot template
 NormalTemplate property to change template attached to Word Document object
 NormalTemplate property with Word templates
Normal value, in WindowState enumeration
NOT, use in finding Outlook item
Notepad, editing deployment manifest
Nothing value
 in cached data removal
 defined
 "my button stopped working" issue and
NumberFormat property, in cell range formatting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Object models
 cached data
 CDO
 collections
 declarative event handling
 dynamic event handling
 events
 Excel
 Excel events [See Excel events.]
 methods in
 objects in
 Outlook
 overview
 parameterized properties
 parameterless properties
 PIAs for communication
 PIAs installed in
 PIAs referenced in
 security
 ServerDocument
 VSTO extensions to Word/Excel object models
 VSTO programming [See Programming model, VSTO.]
 Word
 Word events [See Word events.]
Objects
 application manifest
 cached data objects in ServerDocument object model
 CachedDataHostItem object
 CachedDataItem object
 Excel [See Excel objects.]
 InfoPath [See InfoPath.]
 Outlook [See Outlook objects.]
 Word [See Word objects.]
Office
 add-ins in
 changing COM add-in project to be Office-specific
 object models [See Object models.]
 primary interop assemblies (PIAs) [See Primary interop assemblies (PIAs).]
 programming [See Programming, in Office.]
 Service Pack One
 XML features limited to Professional Edition 2nd
Office Document Membership Condition
Office solutions
 automation executable overview
 code-behind solution
 creating console application to automate Word
 creating Outlook add-in in VSTO
 Office add-ins
 overview

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 overview
 summary
Offline property, NameSpace object
Old Format error, locale issue in Excel
OldValue property, DataDOMEvent object
Ole color format
OLEControl
 positioning ActiveX controls in Word
 properties merged from
OLEObject
 positioning ActiveX controls in Excel
 properties merged from
 Worksheet objects and
OnAddInsUpdate method, IDTExtensibility2
OnAfterChange event, InfoPath 2nd
OnBeforeChange event, InfoPath 2nd
OnBeginShutdown method, IDTExtensibility2
OnConnection method, IDTExtensibility2
OnContextChange event, InfoPath
OnDisconnection method
 IDTExtensibility2
 Outlook shut down problems related to COM add-ins
OnLoad event handler, InfoPath
OnStartupComplete method, IDTExtensibility2
OnSubmitRequest event, overriding Submit/Confirm/Save events
OnValidate event, InfoPath 2nd
Open dialog box, Word Application objects
Open events
 Excel
 in object models
 Word
Open method
 Word documents
 Word templates
 workbooks
Operation property, of DataDOMEvent object
Operators
 CType operator [See CType operator.]
 index operator for getting Explorer or Inspector
 index operator for ItemProperties collection
 Intersection operator 2nd
 logical operators for finding items
 TypeOf operator 2nd
 union operator 2nd
Optimistic concurrency, in data adapters
Optional parameters [See also Parameters.]
 defined
 in methods
Options dialog box, Word
 bookmarks
 user information in
Options property, in Word Application object
OptionsPagesAdd event
OR, use in finding Outlook items
Ordered parameter approach
OrientationChanged event, Actions pane
OriginalFormat parameter
 closing all open Word documents
 exiting Word
Outlook

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Outlook
 add-ins [See VSTO add-ins.]
 close events
 programming [See Programming Outlook.]
 shut down problems related to COM add-ins
Outlook events
 Activate/Deactivate
 additional events
 application level
 attachment
 Close
 custom action
 e-mail
 folder change
 item addition/deletion/change
 Item Copy/Paste/Cut/Delete events
 Item Open/Read/Write/Close events
 Item PropertyChange events
 multiple event interfaces
 new window
 OptionsPagesAdd
 overview
 start-up/quit
 summary
 view and selection change
 window
Outlook objects
 Application object copy method
 Application object methods/properties
 Application object quit method
 Application object search method
 Application object, properties returning collections
 Explorer collection
 Explorer objects, selected folder/view/items in
 Explorer window
 Explorer window, buttons/menus added to
 Extended MAPI
 Inspector collection
 Inspector object
 Item [See Items, Outlook.]
 iterating over items in folders
 MAPIFolder identifiers
 MAPIFolder items
 MAPIFolder view settings
 MAPIFolder, displaying in Explorer view
 MAPIFolder, moving objects
 MAPIFolder, subfolders
 NameSpace object, adding/removing Stores from
 NameSpace object, address books/entries in
 NameSpace object, checking if Outlook is offline
 NameSpace object, current user
 NameSpace object, getting folder or item by ID
 NameSpace object, root folders
 NameSpace object, standard folders in
 NameSpace object, working with
 overview
 security
 Select Folder Dialog box
 web view associated with folder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Pages parameter, custom property pages
Paragraphs object
 as collection
 in object models
Parameters [See also Properties.]
 cancelable events and event bubbling and
 for constructing Smart Tag objects
 in events
 file-access parameter in ServerDocument
 InfoPath
 in methods
 in parameterized properties
Parameters, Excel
 addressing
 BeforeDoubleClick/BeforeRight-Click events
 cancel parameter in Before Close events
 cancel parameter in Before Print events
 cells
 Change events
 Chart/Sheet/Worksheet collections
 DocumentProperties
 Find method
 names in collection
 OLEObject
 Open/Close methods
 printing workbook
 protecting workbooks
 protecting worksheets
 Range properties
 Before Save events
 Save/Close workbook
 Wait parameter
 Windows collections
 workbooks
 worksheets
Parameters, Outlook
 adding/removing Stores
 attachment events
 Copy method for Application object
 Copy/Paste/Cut/Delete events
 copying/moving folders
 copying/moving items
 custom action events
 custom property pages
 displaying items in Inspector window
 e-mail events
 folder change events
 Folder/item ID
 Inspectors/Explorers collections

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Inspectors/Explorers collections
 item events
 items added to collections
 iterating over items
 MailMerge event
 search methods for Application object
 standard folders in NameSpace object
 subfolders in MAPIFolder
 view/selection change events
 window events
Parameters, Word
 Add method for document collections
 Bookmarks
 closing all open documents
 closing/saving Document object
 Collapse method for Range object
 CommandBars events
 Document activation events
 Document Close events
 Document Print events
 document printing
 Document Save events
 document saving
 Find/Replace properties for Range object
 getting a Range
 identifying Ranges
 mouse events
 moving Ranges
 navigating Ranges
 New/Open events
 opening existing document
 Print events
 quit settings
 Range object
 saving all open documents
 selection events
 Tables collection
 windows in Word 2nd
 Word dialog box
 XML events
Parentheses [()], index operator 2nd
Partial classes
 creating custom property pages
 creating VSTO add-ins
 in VSTO code construction
Passwords
 data source security and
 protecting documents
 protecting workbooks
Paste event, Outlook
Permissions [See also Outlook objects, security.]
Persona menu Smart Tags, customizing Outlook
Pessimistic concurrency, in data adapters
PIAs (Primary interop assemblies) [See Primary interop assemblies (PIAs).]
Pointer, changing mouse pointer in Excel
Policies, security [See Security policies.]
Pop-up menus, using Smart Tags to display
Prerequisites, deploying VSTO solutions
Previewing, InfoPath forms
Previous method, Word document navigation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Previous method, Word document navigation
Primary interop assemblies (PIAs)
 browsing
 deployment prerequisites
 finding VSTO extensions to Word/Excel object models in
 for InfoPath
 installing
 overview
 references for creating console to automate Word
 referencing
Printing
 documents
 Before Print events in Excel
 Before Print events in Word
 printer settings in Excel
 workbooks
Private keys
Professional developers
ProgID
 action classes
 COM add-ins
 recognizer classes
Programming Excel
 automation executables
 building managed automation addin
 COM/automation add-ins
 creating user-defined functions
 debugging user-defined functions
 deploying managed automation addins
 Excel object model and
 research services
 server-generated documents
 Smart Documents/XML Expansion Packs
 Smart Tags
 summary
 using managed automation add-in
 VSTO code behind
 XLA add-ins
Programming InfoPath
 introduction to
 previewing
Programming model, VSTO
 adding host controls dynamically
 aggregation and windows forms console
 aggregation/inheritance/implementation
 Bookmark host control
 connecting aggregates
 controls collection
 Document class
 dynamic controls
 dynamic controls in VSTO
 dynamic host items
 enumerating/searching Controls collection
 event model improvements
 extensions to Word/Excel object models
 Globals class in
 host item class and host control
 inspecting generated code
 Model-View-Controller
 NamedRange/XMLMappedRange/List object host controls

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NamedRange/XMLMappedRange/List object host controls
 obtaining aggregated object
 overview
 removing controls
 saving/loading controls
 separating data and view
 startup/shutdown sequences
 summary
 "Tag" field
 workbook host item class
 worksheet host item class
 XMLNode and host control classes
Programming Outlook
 add-ins
 automation executables
 Collaboration Data Objects (CDO) and
 custom property pages
 Outlook object model
 Persona menu Smart Tags
 Smart Tags embedded in HTMLformatted e-mail
 Smart Tags when Word is e-mail editor
 summary
Programming Word
 automation executables
 COM add-in
 creating simple research service
 getting started with research services
 programming research services
 registering research service
 research service resources
 server-generated documents
 Smart Documents/XML Expansion Packs
 Smart Tags
 summary
 using research service
 VSTO code behind
 Word object model
Programming, in Office
 advanced
 advantages of
 browsing PIAs
 collections
 declarative event handling
 dynamic event handling
 enumeration
 events
 installing PIAs
 methods
 object models
 objects
 parameterized properties
 PIA overview
 properties
 referencing PIAs
 summary
Project, creating InfoPath project in VSTO
Properties [See also Parameters.]
 aggregation 2nd
 application manifest
 in CDO object model

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 in CDO object model
 collections
 data binding and 2nd
 DataMember
 implementing from PIA interface
 implementing using extenders
 list object host control
 objects
 OLEObject/OLEControl
 parameterized
Properties, Action task pane
 AutoScroll
 avoiding
 showing/hiding
Properties, Excel
 active/selected objects in Application objects
 active/selected objects in Workbook objects
 Address properties of Range object
 Application Object
 area of Range object
 Calculation/WorksheetFunction
 ChartObject
 collections in Application object
 collections in Workbook object
 Cursor property of Application Object
 CustomProperties for worksheets
 danger of EnableEvents property
 document properties of workbooks
 DocumentProperties of workbooks
 embedding Excel in another application
 file/printer properties
 formatting cell ranges
 Item/Count properties in workbook collection
 ListObject
 naming cell ranges
 OLEObject
 Range Object
 regions
 Save when quitting
 Save workbooks
 ScreenUpdating property of Application Object
 Shapes property
 StatusBar property
 Value property for ranges
 Window object
 Windows collections
 worksheet management
 worksheet protection
Properties, InfoPath
 button events/view
 form properties
 OnBeforeChange event
 Site/Source properties in DataDOMEvent object
Properties, Outlook
 active/selected objects
 additional properties associated with items
 address books/entries
 built-in/custom properties of items
 changing items properties
 Class property for identifying item type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Class property for identifying item type
 collections in Application object
 CommandBars property in Explorer window
 CommandBars property in Inspector window
 common to items
 CurrentUser property of NameSpace object
 custom property pages
 Explorer object
 Explorer window
 Extended MAPI for changing readonly properties
 finding items
 Folders property of NameSpace object
 getting item using ID properties
 identifying MAPIFolder
 Inspector window
 items in MAPIFolder
 iterating over items
 mail properties of items
 MailMerge object
 MailSession property
 Name object
 Offline property of NameSpace object
 retrieving NameSpace object
 security dialog box and
 selected folder/view/items of Explorer object
 View properties of MAPIFolder objects
Properties, Server data
 cached data object model
 cached data properties
 CachedDataHostItem collection
 CachedDataHostItem object
 CachedDataItem object
 ServerDocument object
Properties, Smart Tag
 action classes
 Action events
 Actions property
 custom class
 object
 recognizer classes
 wise use of
Properties, Word
 active/selected objects Application object
 aggregated Document objects
 Bookmarks property
 Browser property
 Cached property
 collections associated with Document and Range
 collections associated with only Document
 collections in Application object
 CustomizationContext property
 DefaultTab property
 dialog box fields
 DisplayAlerts property
 Document collection
 document formatting in Application object
 Document object 2nd
 document printing
 Document windows
 E-Postage Properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 E-Postage Properties
 File Dialog boxes in Application object
 Find/Replace properties for Range objet
 formatting Range object
 grammar/spell checking
 Mouse Pointer in Application object
 NewDocument property
 NextStoryRange property in Range object
 Options property of Application object
 properties that identify Range object
 Properties window for adding event handlers
 quit settings
 Range object 2nd
 Saved property of Document object
 ScreenUpdating property in Application Object
 StatusBar property
 Tables collection
 templates 2nd
 text from Range object
 user information in Application object
 user interface
 windows
Property Page, using custom property pages for programming Outlook
Protect method
 Word documents
 workbook
 worksheet 2nd
Proxies, using binding sources
Public keys
Public-key cryptography
Public-key tokens
Publish Wizard
 for deploying VSTO solutions
 generating/updating deployment manifests with
 VSTO Outlook add-ins and
Publisher certificates
 CA (Certificate Authority) and
 combining with stong names
 expiration of
 license to code
 obtaining
 overview of
PublishURL, in InfoPath form registration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part I: An Introduction to VSTO
The first part of this book introduces the Office object models and the Office primary interop assemblies
(PIAs). You also learn how to use Visual Studio to build automation executables, add-ins, and code
behind the document using features of Visual Studio 2005 Tools for Office (VSTO).

Chapter 1, "An Introduction to Office Programming," introduces the Office object models and
examines their basic structure. The chapter describes how to work with objects, collections, and
enumerationsthe basic types found in all Office object models. You also learn how to use
properties, methods, and events exposed by objects and collections in the Office object models.
Chapter 1 also introduces the PIAs, which expose the Office object models to .NET code, and
describes how to use and reference Office PIAs in a VSTO project.

Chapter 2, "Introduction to Office Solutions," covers the main ways Office applications are
customized and extended. The chapter describes the various kinds of Office solutions you can
create using VSTO.

The Other Parts of This Book

Part II: Office Programming in .NET

Part II covers the Office object models in more depth. Chapters 3 through 5 cover Excel, Chapters 6
through 8 cover Word, Chapters 9 through 11 cover Outlook, and Chapter 12 covers InfoPath. There is
also some discussion in these chapters about application-specific features and issues. Chapter 3, for
example, talks about how to build custom formulas in .NET for Excel. Chapter 5 discusses the Excel-
specific "locale" issue in some detail. You can select which chapters of Part II to read. If you are
interested only in Excel development, you can read Chapters 3 through 5 and then skip to Part III of
this book.

Part III: Office Programming in VSTO

Part III, comprised of Chapters 13 through 20, describes the features that Visual Studio 2005 Tools for
Office brings to Office development. Part III describes all the features of VSTO, including using Windows
Forms controls in Excel and Word documents, using data binding against Office objects, building Smart
Tags, and adding Windows Forms controls to Office's task pane.

Part IV: Advanced Office Programming

Finally, Part IV covers advanced programming topics. Chapters 21 and 22 talk about working with XML
in Excel and Word with VSTO. Chapter 23 covers how to build managed COM add-ins for Word and
Excel. Chapter 24 describes how to develop Outlook add-ins in VSTO.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part II: Office Programming in .NET
The first two chapters of this book introduced Office object models and the Office primary interop
assemblies (PIAs). You have also seen how to use Visual Studio to build console applications, add-ins,
and code behind the document using features of VSTO. The second part of this book covers the Office
object models in more depth. If you are interested only in Excel development, read Chapters 3 through
5. If you are interested only in Word development, read Chapters 6 through 8. If you are interested
only in Outlook development, read Chapters 10 through 11. If you are interested only in InfoPath
development, read Chapter 12.

Chapter 3,"Programming Excel," shows how you can customize Excel and, in particular, how you
can create custom formulas for Excel.

Chapter 4, "Working with Excel Events," covers the events that Excel raises that your code can
handle.

Chapter 5, "Working with Excel Objects," covers the object model of Excel in some detail,
focusing on the most commonly used objects, properties, and methods.

Chapter 6, "Programming Word," shows how you can customize Word, and in particular, how
you can create research services for Word and other Office applications.

Chapter 7, "Working with Word Events," covers the events that Word raises that your code can
handle.

Chapter 8, "Working with Word Objects," covers the object model of Word in some detail,
focusing on the most commonly used objects, properties, and methods.

Chapter 9, "Programming Outlook," shows how you can customize Outlook and, in particular,
how you can create custom property pages for Outlook.

Chapter 10, "Working with Outlook Events," covers the events that Outlook raises that your
code can handle.

Chapter 11, "Working with Outlook Objects," covers the object model of Outlook in some detail,
focusing on the most commonly used objects, properties, and methods.

Chapter 12, "Introduction to InfoPath," explores how to build InfoPath forms that use Visual
Basic code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part III: Office Programming in VSTO
So far, you have seen how to use Visual Studio to develop managed customizations and add-ins that
can run in various Office applications. Clearly, it is possible to use the power of both managed code and
the rich Office object models together. Compare, however, the development process for such solutions
with, say, designing a Windows Formsbased application in Visual Studio. Developers of forms-based
solutions get visual designers, powerful data binding, and a truly object-oriented programming model.
These tools help professional developers manage the complexity of modern application construction.

VSTO takes the same approach to Word and Excel solution development. VSTO features include the
following:

Word and Excel run as designers inside Visual Studio.

Workbooks, worksheets, and documents are represented by customizable, extensible classes in
an object-oriented programming model.

Managed controls can be hosted by worksheets and documents.

Business process code can be logically separated from display code.

Windows Forms data binding connects business data to controls.

Business data can be cached in the document and manipulated as XML, enabling both offline
client and server scenarios.

Part III of this book explores these features:

Chapter 13, "The VSTO Programming Model," shows how VSTO extends the Word and Excel
object models.

Chapter 14, "Using Windows Forms in VSTO," covers adding Windows Forms controls to VSTO-
customized documents.

Chapter 15, "Working with the Actions Pane," shows how to add managed controls to Office's
Document Actions task pane.

Chapter 16, "Working with Smart Tags in VSTO," shows how to implement Smart Tags using
managed code.

Chapter 17, "VSTO Data Programming," and Chapter 18, "Server Data Scenarios," discuss ways
to manipulate datasets associated with the document on the client and server.

Chapter 19, ".NET Code Security," covers the VSTO security model.

Chapter 20, "Deployment," shows how to deploy your customized documents.

Part III also examines some advanced topics regarding using XML with Word and Excel, as well as
creating managed application-level add-ins in Word, Excel, and Outlook.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part IV: Advanced Office Programming
Part IV covers some advanced Office programming scenarios, including using the XML features of Excel
and Word, building COM add-ins for Word and Excel, and building VSTO add-ins for Outlook:

Chapter 21, "Working with XML in Excel," explores Excel's XML schema-mapping capabilities and
the features of VSTO that are enabled when you map a schema into the document.

Chapter 22, "Working with XML in Word," explores Word's XML schema-mapping capabilities
and the features of VSTO that are enabled when you map a schema into the document. This
chapter also covers VSTO's support for the WordML file format.

Chapter 23, "Developing COM Add-Ins for Word and Excel," describes how to create a managed
COM add-in in .NET for Word and Excel. This chapter also explores the pitfalls to avoid when
writing a managed COM add-in.

Chapter 24, "Creating Outlook Add-Ins with VSTO," covers add-in development for Outlook. In
particular, this chapter examines the support for creating a VSTO Outlook add-in and the way
that helps you avoid the pitfalls with managed COM add-in development described in Chapter
23. This chapter also describes some Outlook-specific issues you might encounter when
developing a managed COM add-in that you can avoid by building a VSTO Outlook add-in
instead.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Praise for Visual Studio Tools for Office
"With the application development community so focused on the Smart Client revolution, a book that
covers VSTO from A to Z is both important and necessary. This book lives up to big expectations. It is
thorough, has tons of example code, and covers Office programming in general termstopics that can be
foreign to the seasoned .NET developer who has focused on ASP.NET applications for years.
Congratulations to Eric Lippert and Eric Carter for such a valuable work!"

Tim Huckaby, CEO, InterKnowlogy, Microsoft regional director

"This book covers in a clear and concise way all of the ins and outs of programming with Visual Studio
Tools for Office. Given the authors' exhaustive experiences with this subject, you can't get a more
authoritative description of VSTO than this book!"

Paul Vick, technical lead, Visual Basic .NET, Microsoft Corporation

"Eric and Eric really get it. Professional programmers will love the rich power of Visual Studio and .NET,
along with the ability to tap into Office programmability. This book walks you through programming
Excel, Word, InfoPath, and Outlook solutions."

Vernon W. Hui, test lead, Microsoft Corporation

"This book is an in-depth, expert, and definitive guide to programming using Visual Studio Tools for
Office 2005. It is a must-have book for anyone doing Office development."

Siew Moi Khor, programmer/writer, Microsoft Corporation

"We don't buy technical books for light reading; we buy them as a resource for developing a solution.
This book is an excellent resource for someone getting started with Smart Client development. For
example, it is common to hear a comment along the lines of, 'It is easy to manipulate the Task Pane in
Office 2003 using VSTO 2005,' but until you see something like the example at the start of Chapter 15,
it is hard to put 'easy' into perspective. This is a thorough book that covers everything from calling
Office applications from your application, to building applications that are Smart Documents. It allows
the traditional Windows developer to really leverage the power of Office 2003."

Bill Sheldon, principal engineer, InterKnowlogy, MVP

"Eric Carter and Eric Lippert have been the driving force behind Office development and Visual Studio
Tools for Office 2005. The depth of their knowledge and understanding of VSTO and Office is evident in
this book. Professional developers architecting enterprise solutions using VSTO 2005 and Office System
2003 now have a new weapon in their technical arsenal."

Paul Stubbs, program manager, Microsoft Corporation

"This book is both a learning tool and a reference book, with a richness of tables containing object
model objects and their properties, methods, and events. I would recommend it to anyone considering
doing Office development using the .NET framework, especially people interested in VSTO
programming."

Rufus Littlefield, software design engineer/tester, Microsoft Corporation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Microsoft .NET Development Series
John Montgomery, Series Advisor

Don Box, Series Advisor

Martin Heller, Series Editor

The Microsoft .NET Development Series is supported and developed by the leaders and experts of Microsoft
development technologies including Microsoft architects and DevelopMentor instructors. The books in this series provide
a core resource of information and understanding every developer needs in order to write effective applications and
managed code. Learn from the leaders how to maximize your use of the .NET Framework and its programming
languages.

Titles in the Series
Brad Abrams, .NET Framework Standard Library Annotated Reference Volume 1: Base Class Library and Extended
Numerics Library, 0-321-15489-4

Brad Abrams and Tamara Abrams, .NET Framework Standard Library Annotated Reference, Volume 2: Networking
Library, Reflection Library, and XML Library, 0-321-19445-4

Keith Ballinger, .NET Web Services: Architecture and Implementation, 0-321-11359-4

Bob Beauchemin, Niels Berglund, Dan Sullivan, A First Look at SQL Server 2005 for Developers, 0-321-18059-3

Don Box with Chris Sells, Essential .NET, Volume 1: The Common Language Runtime, 0-201-73411-7

Keith Brown, The .NET Developer's Guide to Windows Security, 0-321-22835-9

Eric Carter and Eric Lippert, Visual Studio Tools for Office: Using C# with Excel, Word, Outlook, and InfoPath, 0-321-
33488-4

Eric Carter and Eric Lippert, Visual Studio Tools for Office: Using Visual Basic 2005 with Excel, Word, Outlook, and
InfoPath, 0-321-41175-7

Mahesh Chand, Graphics Programming with GDI+, 0-321-16077-0

Krzysztof Cwalina and Brad Abrams, Framework Design Guidelines: Conventions, Idioms, and Patterns for Reusable
.NET Libraries, 0-321-24675-6

Anders Hejlsberg, Scott Wiltamuth, Peter Golde, The C# Programming Language, 0-321-15491-6

Alex Homer, Dave Sussman, Mark Fussell, ADO.NET and System.Xml v. 2.0The Beta Version, 0-321-24712-4

Alex Homer, Dave Sussman, Rob Howard, ASP.NET v. 2.0The Beta Version, 0-321-25727-8

James S. Miller and Susann Ragsdale, The Common Language Infrastructure Annotated Standard, 0-321-15493-2

Christian Nagel, Enterprise Services with the .NET Framework: Developing Distributed Business Solutions with .NET
Enterprise Services, 0-321-24673-X

Brian Noyes, Data Binding with Windows Forms 2.0: Programming Smart Client Data Applications with .NET, 0-321-
26892-X

Fritz Onion, Essential ASP.NET with Examples in C#, 0-201-76040-1

Fritz Onion, Essential ASP.NET with Examples in Visual Basic .NET, 0-201-76039-8

Ted Pattison and Dr. Joe Hummel, Building Applications and Components with Visual Basic .NET, 0-201-73495-8

Dr. Neil Roodyn, eXtreme .NET: Introducing eXtreme Programming Techniques to .NET Developers, 0-321-30363-6

Chris Sells, Windows Forms Programming in C#, 0-321-11620-8

Chris Sells and Justin Gehtland, Windows Forms Programming in Visual Basic .NET, 0-321-12519-3

Paul Vick, The Visual Basic .NET Programming Language, 0-321-16951-4

Damien Watkins, Mark Hammond, Brad Abrams, Programming in the .NET Environment, 0-201-77018-0

Shawn Wildermuth, Pragmatic ADO.NET: Data Access for the Internet World, 0-201-74568-2

Paul Yao and David Durant, .NET Compact Framework Programming with C#, 0-321-17403-8

Paul Yao and David Durant, .NET Compact Framework Programming with Visual Basic .NET, 0-321-17404-6

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Paul Yao and David Durant, .NET Compact Framework Programming with Visual Basic .NET, 0-321-17404-6

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Foreword
IT'S WITH SOME amount of trepidation that I faced the challenge of composing a foreword to this particular book. Let's
face it: The names on the cover inspire some amount of awe. It's humbling to know that one's words will introduce
what one believes to be the seminal work on a given topic, and believe me, I'm relatively sure this book will meet that
lofty goal. When approached with the invitation to grace the front matter of the book, my first response was to wonder
what I could possibly addcouldn't they find some luminary at Microsoft to write the foreword? It seems, however, that
an outside voice adds some credence to the proceedings, so, dear reader, I speak meekly in the presence of greatness.

First, a little about me (it's the last chance I'm going to get in this short piece): I've been lurking about, programming
Office in its various guises, for more than ten years. I've written a lot about the wondersand gotchasof Office
development, and survived the glory years surrounding Office 2000, when it looked like Office might finally make a
successful, integrated development platform. Around 2001, it became clear that no matter how hard I and like-minded
folks wanted Office to become a respected development standard, it just wasn't going to make it with VBA as the
programming language.

With the release of Visual Studio Tools for Office 2003, it finally looked like we'd made some progress: No longer
relegated to the 1990s, Office developers could embrace .NET and all its goodness, taking advantage of managed code,
code-access security, xcopy deployment, and all the rest that .NET supplied. I loved this product, but it never really
reached critical mass with the developer community. Most likely, the fact that you could only use COM-based controls
on documents, and the fact that the product supplied no design-time experience at all, made it a slow starter.

Around that time, I very clearly remember sitting down at some Microsoft event and meeting Eric Carter. I didn't really
know who he was at the time (and he certainly didn't know anything about me), but he seemed nice enough, and we
chatted for several hours about Office development in general and about VSTO specifically. Only later did I learn that he
was high up in the development side of the product. (I spent hours worrying that I'd said something really stupid while
we were chatting. Hope not....) We began a long correspondence, in which I've more often than not made it clear that
I've got a lot to learn about how .NET and Office interact. I've spent many hours learning from Eric Carter's blog, and
Eric Lippert's blog is just as meaty. If you are spending time doing Office development, make sure you drop by both:

http://blogs.msdn.com/ericlippert/

http://blogs.msdn.com/eric_carter/

I spent some hours perusing a draft copy of this book and, in each chapter, attempted to find some trick, some little
nugget, that I had figured out on my own but that didn't appear in the book. I figured that if I was going to write the
foreword for the book, I should add something. The result: I was simply unable to find anything missing. Oh, I'm sure
you'll find some little tidbit you've figured out that doesn't appear here, but in my reading of it, I wasn't able to. I
thought for sure I'd catch them on something but, alas, I failed. (And, I suppose, that's a good thing, right?) Every time
I thought I had them in a missing trick, there is was, right there in print. What that means is that you'll have the best
possible reference book at your fingertips. Of course, you need to get your expectations set correctly: It's simply not
possible, even in a 60-page chapter, to describe the entirety of the Excel or Word object model. But E&E have done an
excellent job of pointing out the bits that make the biggest impact on .NET development.

If you're reading this foreword before purchasing the book, just do it. Buy the thing. If you've already bought it, why
are you reading this? Get to the heart of the matterskip ahead, and get going. You can always read this stuff later.
There's a considerable hill ahead of you, and it's worth the climb. Office development using managed code has hit new
strides with the release of Visual Studio 2005. I can't wait to take advantage of this book to build great applications.

Ken Getz, senior consultant
MCW Technologies

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Preface
IN 2002, THE first release of Visual Studio .NET and the .NET Framework was nearing completion. A few of us at
Microsoft realized that Office programming was going to miss the .NET wave unless we did something about it.

What had come before was Visual Basic for Applications (VBA), a simple development environment integrated into all
the Office applications. Each Office application had a rich object model that was accessed via a technology known as
COM. Millions of developers identified themselves as "Office developers" and used VBA and the Office COM object
models to do everything from automating repetitive tasks to creating complete business solutions that leveraged the
rich features and user interface of Office. These developers realized that their users were spending their days in Office.
By building solutions that ran inside Office, they not only made their users happy, but also were able to create solutions
that did more and cost less by reusing functionality already available in the Office applications.

Unfortunately, because of some limitations of VBA, Office programming was starting to get a bad rap. Solutions
developed in VBA by small workgroups or individuals would gain momentum, and a professional developer would have
to take them over and start supporting them. To a professional developer, the VBA environment felt simple and limited,
and of course, it enforced a single language: Visual Basic. VBA embedded code in every customized document, which
made it hard to fix bugs and update solutions because a bug would get replicated in documents across the enterprise.
Security weaknesses in the VBA model led to a rash of worms and macro viruses that made enterprises turn VBA off.

Visual Studio .NET and the .NET Framework provided a way to address all these problems. A huge opportunity existed
to not only combine the richness of the new .NET Framework and developer tools with the powerful platform that Office
has always provided for developers, but also solve the problems that were plaguing VBA. The result of this realization
was Visual Studio Tools for Office (VSTO).

The first version of VSTO was simple, but it accomplished the key goal of letting professional developers use the full
power of Visual Studio .NET and the .NET Framework to put code behind Excel 2003 and Word 2003 documents and
templates. It let professional developers develop Office solutions in Visual Basic 2005 and C#. It solved the problem of
embedded code by linking a document to a .NET assembly instead of embedding the .NET assembly in the document. It
also introduced a new security model that used .NET code-access security to prevent worms and macro viruses.

The second version of VSTO, known as VSTO 2005the version of VSTO covered by this bookis even more ambitious. It
brings with it functionality never before available to the Office developer, such as data binding and data/view
separation, design-time views of Excel and Word documents inside Visual Studio, rich support for Windows Forms
controls in the document, the ability to create custom Office task panes, server-side programming support against
Officeand that's just scratching the surface. Although the primary target of VSTO is the professional developer, that
does not mean that building an Office solution with VSTO is rocket science. VSTO makes it possible to create very rich
applications with just a few lines of code.

This book tries to put into one place all the information you need to succeed using VSTO to program against Word
2003, Excel 2003, Outlook 2003, and InfoPath 2003. It introduces the Office object models and covers the most
commonly used objects in those object models. In addition, this book will help you avoid some pitfalls that result from
the COM origins of the Office object models. (Complete Visual Basic 2005 code samples are available on the book's Web
page at www.awprofessional.com/title/0321411757.)

This book also provides an insider view of all the rich features of VSTO. We participated in the design and
implementation of many of these features. We can, therefore, speak from the unique perspective of living and breathing
VSTO for the past three years. Programming Office using VSTO is powerful and fun. We hope you enjoy using VSTO as
much as we enjoyed writing about it and creating it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Acknowledgments
THOUGH ONLY TWO names are on the cover, no book of this magnitude gets written without the efforts of many
dedicated individuals.

Eric Carter would like to thank his entire family for the patience they showed while "Dad" was working on his book:
Jason, Hayley, Camilla, Rand, and Elizabeth. Extreme thanks are due to his wife, Tamsyn, who was ever supportive and
kept everything together somehow during this effort.

Eric Lippert would like to thank his excellent wife, Leah, for her support and tremendous patience over the many
months that it took to put the book together.

Many thanks to everyone at Addison-Wesley who made this book possible. Joan Murray and Jessica D'Amico provided
expertise, guidance, encouragement, and feedback through every step of the process. Stephane Nakib cajoled us for
years to get a book proposal together. Thanks are also due to the production and marketing teams at Addison-Wesley,
especially Julie Nahil, Marie McKinley, and Curt Johnson.

A huge thank you to everyone at Microsoft who over the past three years contributed to Visual Studio Tools for Office.
Many people from different disciplinesdesign, development, education, evangelism, management, marketing, and
testingdedicated their passion and energy toward bringing Office development into the managed-code world. We could
not have written this book without the efforts of all of them. One could not ask for a better group of people to have as
colleagues.

A considerable number of industry experts gave the VSTO team valuable feedback over the years. Many thanks to
everyone who came so far to give so much of their time and expertise by participating in software design reviews and
using early versions of the product. Their suggestions made VSTO a better product than the one we originally
envisioned.

We especially thank Andrew Clinick and Hagen Green for their important contributions to this book.

We also thank Robert Green for his assistance in converting listings from the C# book to Visual Basic 2005.

Many thanks to our technical reviewers, whose always-constructive criticism was a huge help. They helped us remove a
huge number of errors from the text; those that remain are our own. Thank you, Rufus Littlefield, Siew Moi Khor,
Stephen Styrchak, Paul Vick, Paul Stubbs, Kathleen McGrath, Misha Shneerson, Mohit Gupta, and Vernon Hui. Finally,
we'd also like to thank KD Hallman, Ken Getz, Mike Hernandez, BJ Holtgrewe, and Martin Heller for their ongoing insight
and support.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

About the Authors
Eric Carter is development manager of the Visual Studio Tools for Office (VSTO) team at Microsoft. He helped invent,
design, and implement many of the features that are in VSTO today. Previously at Microsoft, he worked on Visual
Studio for Applications, the Visual Studio Macros IDE, and Visual Basic for Applications for Office 2000 and Office 2003.

Eric Lippert's primary focus during his nine years at Microsoft has been on improving the lives of developers by
designing and implementing useful programming languages and development tools. He has worked on the Windows
Scripting family of technologies, Visual Studio Tools for Office, and, most recently, the new Language Integrated Query
features of C# 3.0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Query method, Word research services
Quitting
 closing all open Word documents
 Quit method for exiting Excel
 Quit method for exiting Word
 raising Quit event in Outlook
 raising Quit event in Word

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

R1C1-style references, in addressing
Range object, Excel
 addresses
 areas
 cells
 copying/clearing/deleting ranges
 creating new ranges
 editing range values
 finding text in ranges
 formatting range of cells
 getting Range object for cell or range of cells
 object model and
 Range.Locked property for worksheet protection
 regions
 rows/columns
 selecting and activating range of cells
Range object, Word
 changing ranges
 collapsing ranges
 collections associated with
 find and replace
 formatting
 getting a range
 identifying ranges
 inserting nonprinting characters/breaks
 moving ranges
 navigating ranges
 overview
 stories and
 text from
 text in
Range parameter
 Change events
 Double-Click/Right-Click events
Range properties
 parameters of
 Smart Tag Action events
 Word Tables collection
RCW (Runtime Callable Wrapper)
 COM add-ins and
 role in button failure issue
Read only properties, using Extended MAPI to change
Reading pane, Smart Tags in HTMLformatted Outlook e-mail displayed in
RecentFiles property, Excel file/printer properties
Recipient object, NameSpace object
Recognize method
 creating recognizer classes
 custom Smart Tag class
Recognizers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recognizers
 adding to PIAs
 creating recognizer Class
 in Excel
 registering Recognizer class
 in Word
Redo method, in Word Document object
References
 addressing
 Range object
 service for mapping cookies onto host objects
RefersTo properties, Name object
Reflection, work around for locale issue
regasm.exe
Regions, Range Object
RegisterSolution method, InfoPath forms
Registration method, Word research services
Registry
 Automation add-ins in
 COM add-ins
 finding Outlook add-ins in
 installing COM add-ins
 location of COM add-ins
 Smart Tag classes
 VSTO add-ins 2nd
 Word research services
Regular expression, using to add Smart Tags
Relative address, compared with absolute address
ReleaseCOMObject
Removal method
 controls at runtime
 New and Getting Started document task panes in Word
Remove event, Outlook item
RemoveCustomization helper method, in ServerDocument object model
Removed method, in Folders collection
RemoveHandler statement, in dynamic event handling
Replace method, Range Object in Word
Reply method, Outlook mail item
ReportError method, in DataDOMEvent object
Research services
 creating simple
 customizing in Excel
 customizing in Word
 getting started with
 registering with Word
 resources for
 working with
Research task pane, registering Smart Tags to recognize text in
ResetSideBySideWith method, Word windows
Resize events, Excel
Resize method, controlling Windows in Word
Response parameter, Outlook 2nd
Restrict method, finding Outlook item
Restricted security level, in InfoPath forms
Return values
 of methods
 of parameterized properties
 of parameterless properties
ReturnStatus property, of DataDOMEvent object
Right-Click events

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Right-Click events
 cancelable events and event bubbling
 raising in Excel
Role-based security
 overview of
 vs. code-access security
Root folders, NameSpace object
RouteDocument, closing all open Word documents
RowIndex parameter
Rows property
 Range objects 2nd
 Word Tables
Runtime Callable Wrapper (RCW)
 COM add-ins and
 role in button failure issue
Runtime Security Policy

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Save
 controls added at runtime are not saved
 controls in control hosting model
 controls in VSTO
 Outlook items
 properties in quitting Excel
 properties in quitting Word
 ServerDocument object
 Word file save format options
 workbook Name properties
 workbooks
 XML Options dialog box
Save dialog box, Word Application object
Save events
 Document collection in Word
 Document object in Word
 in Excel
 overriding in InfoPath
 in Word
Save method, Word Document object
saveAsUI parameter
 Excel
 Word
SaveChanges parameter
 closing all open Word documents
 exiting Word
Schema Library dialog box 2nd
Schema properties
Schemas [See XML, in Excel.]
ScreenRefresh method Word Application object
ScreenUpdating property
 in Excel Application Object
 in Word Application object
Scrolling, in the Actions task pane
Searching [See also Find method.]
 AdvancedSearch method
 Controls collection
 search methods for Application object
 searching research services
Secondary collection
Security
 .NET 1.1 security policy
 Confirm/SaveAs and
 Context property and
 DataDOMEvent object and
 deploying VSTO solutions and
 deployment security in InfoPath
 document passwords
 form security levels in InfoPath

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 form security levels in InfoPath
 full trust in InfoPath
 information security in InfoPath
 Outlook object model
 setting in InfoPath
 VSTO add-ins and
 VSTO control hosting model and
Security policies
 AppDomain level
 based on identity
 combining levels
 deploying to user machines
 Enterprise level
 location-based levels
 modifying
 User Policy level
 viewing and editing levels
Select Case statement
Select methods
 Excel ranges 2nd
 SelectFolder method in Explorer objects
 SelectNodes method in InfoPath View object
 SelectText method in InfoPath View object
 Word ranges
Selection Change events
 Excel
 Outlook
 Word
Selection events, Actions task pane
Selection object, Explorer
Selection property, Explorer
Send method, of Outlook mail item
SendKeys method, Excel
Serializing
 in cached datasets
 SerializeDataInstance method
Server data scenarios
 cached data object model
 cached data objects/methods/properties
 CachedDataHostItem collection
 CachedDataHostItem object
 CachedDataItem object
 cautionary note about XML
 client-side ServerDocument utility
 custom handler for
 populating document with data on server
 saving/closing documents
 ServerDocument and ASP.NET
 ServerDocument class constructors
 ServerDocument object model
 setting up server
 static helper methods
 summary
Server-generated documents
 customizing Excel
 customizing Word
ServerDocument object
Service Packs, InfoPath
Service providers, mapping cookies onto host object
Session object, in CDO

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Session object, in CDO
Session property
SetDataBinding method
SetRange method
Setup packages
Shapes
 in Excel object model
 OLEObject and
 working with worksheet shapes
Shared Add-In Wizard
Sheets
 accessing collection
 Activate/Deactivate events in
 adding to workbooks
 Calculate events
 Change events
 ChartObjects
 collection in Excel object model
 copying/moving
 Double-Click/Right-Click events
 events raised in
 Follow Hyperlink event
 host items and host controls
 iterating over open
 NewWorksheet events
 selection change events
 SheetsInNewWorkbook property
Shift, specifying in Excel
Shimming, as solution to mscoree.dll problems
Show Advanced XML Error Messages, XML Options dialog box
Show method
 File Dialog boxes in Word Application object
 Word dialog box
Show Placeholder Text for All Empty Elements, XML Options dialog box
Showing, in the Actions task pane
ShowItemCount property, MAPIFolder
Shutdown
 problems related to COM add-ins
 raising Shutdown event in Outlook
 raising Shutdown event in Word
 sequences in VSTO programming model
Signature validation
Signing authority
 assemblies and
 dangers of skipping signature validation
 designating
Site property, of DataDOMEvent object
Slashes (//), using to create submenus
Smart Documents
 Actions task pane in
 customizing Excel
 customizing Word
Smart Tags
 action class
 actions in creating document level
 configuring
 creating application level
 creating application level class library
 creating document level
 custom class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 custom class
 customizing Excel
 customizing Outlook when Word is e-mail editor
 customizing Word
 debugging application-level
 embedded in HTML-formatted e-mail
 introduction
 persistent tagging
 Persona menu
 properties
 recognizer class
 registering/trusting application-level class library
 regular expressions in creating document level
 running/testing application-level
 summary
 terms in creating document level
Solutions, Office [See Office solutions.]
Sort method, Outlook items
Source property, of DataDOMEvent object
Sources
 data sources and security best practices
 overview
 using binding sources as proxies
Space (as intersection operator) 2nd
Spell checking
 Excel
 Word 2nd
Spreadsheets [See also Sheets.]
 creating data-bound spreadsheets
 data source for creating data-bound customized
 data-bound controls for customized
 importing XML files and refreshing XML data in
 XML data in
Start Action, COM add-ins
Start parameter, Word Range object
Start property, Word Range object 2nd
StartCaching
StartOf method, Word Range object
Startup
 calling Startup method in InfoPath
 raising Startup event in Outlook
 running code after
 sequences in VSTO programming model
 in Word
Startup order, Com add-ins
Statements
 in dynamic event handling
 Select Case statement
Status bar
 displaying message in Excel
 displaying message in Word
StopCaching
Store, adding/removing Outlook Store
StoreID, getting Folder/Outlook item using
Story
 defined
 Range object in Word and
Strings
Strong names
 child code group

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 child code group
 creating stong-name code group
 implementing
 overview of
 public keys and public-key tokens
 publisher certificates combined with
 shortcomings of
 strong-named assemblies
Structure parameter, for protecting workbooks
Style property
 Word Range object
 Word Tables collection
Subfolders, accessing in MAPIFolder object
Submit event, InfoPath
Sync events, Word
SyncScrollingSideBySide property, Word windows
System.Security namespace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

% (percent), SendKeys
& (ampersand)
 use of in SmartTag actions
 using to identify accelerators in menus
() (parentheses), index operator 2nd
+ (plus), SendKeys
, (comma), union operator 2nd
/ (slash), using to create submenus
1900 format, converting Excel dates
1904 format, converting Excel dates
: (colon), range operator 2nd
^ (caret), SendKeys

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Tab
 lack of support for TabIndex property in control hosting model
 selecting tab on dialog box in Word
Table
 working with in Word
 writing code to create
"Tag" field, in VSTO programming model
Tags, Smart [See Smart Tags.]
Task panes
 Actions task pane [See Actions task pane.]
 creating custom task panes in Info-Path
 working with New and Getting Started document task panes in Word
Templates
 InfoPath forms, creating
 InfoPath forms, registering
 Word Application object
 Word Document object
Templates and Add-Ins 2nd
Terms, document level Smart Tags
Text
 changing insertion behavior
 getting from Word Range object
 setting in Word Range object
 Smart Tags for recognizing [See Smart Tags.]
Thread locale
Time, in Excel locale issue
TimeOut parameter, Word dialog box
TLBIMP
Tokens, public-key
Toolbars
 positioning in VSTO
 toolbar events in Excel
 toolbar events in Word
Toolbox, for dataset components
ToOle method, window display color conversion
Toolkits
 Microsoft Office InfoPath Toolkit for Visual Studio 2005
 Research Services Development Extras Toolkit for Office
ToXml, helper method Cached Data class
Transforms, XSLT file acting on WordML
Tree view
Trust
 full and partial trusts
 trusting documents
Try block
 dialog boxes and alerts in Word Application object
 ScreenUpdating property in Excel
Type parameter, Chart/Sheet/Worksheet collections
Type property, of Word Document object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Type property, of Word Document object
Typed datasets, in data programming
TypeOf operator 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual Studio Tools for Office: Using Visual Basic 2005 with Excel, Word, Outlook, and InfoPath
By Eric Carter, Eric Lippert
...
Publisher: Addison Wesley Professional
Pub Date: April 26, 2006
Print ISBN-10: 0-321-41175-7
Print ISBN-13: 978-0-321-41175-4
Pages: 1120

Table of Contents | Index

 Copyright

 Praise for Visual Studio Tools for Office

 Microsoft .NET Development Series

 Foreword

 Preface

 Acknowledgments

 About the Authors

 Part I: An Introduction to VSTO

 Chapter 1. An Introduction to Office Programming

 Why Office Programming?

 Office Object Models

 Properties, Methods, and Events

 The Office Primary Interop Assemblies (PIAs)

 Conclusion

 Chapter 2. Introduction to Office Solutions

 The Three Basic Patterns of Office Solutions

 Office Automation Executables

 Office Add-Ins

 Code Behind a Document

 Conclusion

 Part II: Office Programming in .NET

 Chapter 3. Programming Excel

 Ways to Customize Excel

 Programming User-Defined Functions

 Introduction to the Excel Object Model

 Conclusion

 Chapter 4. Working with Excel Events

 Events in the Excel Object Model

 Events in Visual Studio 2005 Tools for Office

 Conclusion

 Chapter 5. Working with Excel Objects

 Working with the Application Object

 Working with the Workbooks Collection

 Working with the Workbook Object

 Working with the Worksheets, Charts, and Sheets Collections

 Working with Document Properties

 Working with the Windows Collections

 Working with the Window Object

 Working with the Names Collection and Name Object

 Working with the Worksheet Object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Working with the Range Object

 Special Excel Issues

 Conclusion

 Chapter 6. Programming Word

 Ways to Customize Word

 Programming Research Services

 Introduction to the Word Object Model

 Conclusion

 Chapter 7. Working with Word Events

 Events in the Word Object Model

 Events in Visual Studio Tools for Office

 Conclusion

 Chapter 8. Working with Word Objects

 Working with the Application Object

 Working with the Dialog Object

 Working with Windows

 Working with Templates

 Working with Documents

 Working with a Document

 Working with the Range Object

 Working with Bookmarks

 Working with Tables

 Conclusion

 Chapter 9. Programming Outlook

 Ways to Customize Outlook

 Custom Property Pages

 Introduction to the Outlook Object Model

 Introduction to the Collaboration Data Objects

 Conclusion

 Chapter 10. Working with Outlook Events

 Events in the Outlook Object Model

 ApplicationLevel Events

 Outlook Item Events

 Other Events

 Conclusion

 Chapter 11. Working with Outlook Objects

 Working with the Application Object

 Working with the Explorers and Inspectors Collections

 Working with the Explorer Object

 Working with the Inspector Object

 Working with the NameSpace Object

 Working with the MAPIFolder Object

 Working with the Items Collection

 Properties and Methods Common to Outlook Items

 Outlook Issues

 Conclusion

 Chapter 12. Introduction to InfoPath

 What Is InfoPath?

 Getting Started

 Form Security

 Programming InfoPath

 Data Source Events

 Form Events, Properties, and Methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Form Events, Properties, and Methods

 Conclusion

 Part III: Office Programming in VSTO

 Chapter 13. The VSTO Programming Model

 The VSTO Programming Model

 VSTO Extensions to Word and Excel Objects

 Dynamic Controls

 VSTO Extensions to the Word and Excel Object Models

 Conclusion

 Chapter 14. Using Windows Forms in VSTO

 Introduction

 Adding Windows Forms Controls to Your Document

 Writing Code Behind a Control

 The Windows Forms Control Hosting Architecture

 Properties Merged from OLEObject or OLEControl

 Adding Controls at Runtime

 Conclusion

 Chapter 15. Working with the Actions Pane

 Introduction to the Actions Pane

 Working with the ActionsPane Control

 Conclusion

 Chapter 16. Working with Smart Tags in VSTO

 Introduction to Smart Tags

 Creating Document-Level Smart Tags with VSTO

 Creating Application-Level Smart Tags

 Creating an Application-Level Smart Tag Class Library in Visual Studio

 Creating a Recognizer Class

 Creating an Action Class

 Registering and Trusting an Application-Level Smart Tag Class Library

 Running and Testing the Application-Level Smart Tag

 Debugging an Application-Level Smart Tag

 Conclusion

 Chapter 17. VSTO Data Programming

 Creating a Data-Bound Customized Spreadsheet with VSTO

 Creating a Data-Bound Customized Word Document with VSTO

 Datasets, Adapters, and Sources

 Another Technique for Creating Data-Bound Spreadsheets

 Caching Data in the Data Island

 Advanced ADO.NET Data Binding: Looking Behind the Scenes

 Binding-Related Extensions to Host Items and Host Controls

 Conclusion

 Chapter 18. Server Data Scenarios

 Populating a Document with Data on the Server

 Using ServerDocument and ASP.NET

 An Alternative Approach: Create a Custom Handler

 A Handy Client-Side ServerDocument Utility

 The ServerDocument Object Model

 Conclusion

 Chapter 19. .NET Code Security

 Code-Access Security Versus Role-Based Security

 Code-Access Security in .NET

 Publisher Certificates

 Trusting the Document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Conclusion

 Chapter 20. Deployment

 VSTO Prerequisites

 Deploying to an Intranet Shared Directory or Web Site

 Local Machine Deployment Without a Deployment Manifest

 Editing Manifests

 Creating Setup Packages

 Conclusion

 Part IV: Advanced Office Programming

 Chapter 21. Working with XML in Excel

 Introduction to Excel's XML Features

 Introduction to XML Schema Creation in Visual Studio

 An End-to-End Scenario

 Advanced XML Features in Excel

 Excel-Friendly XML Schemas

 VSTO Support for Excel Schema Mapping

 Conclusion

 Chapter 22. Working with XML in Word

 Introduction to Word's XML Features

 An End-to-End Scenario: Creating a Schema and Mapping It into a Word Document

 Exporting the Mapped XML in the Document to an XML Data File

 Importing an XML Data File into the Mapped Document

 The XML Options Dialog Box

 VSTO Support for Word Schema Mapping

 VSTO Support for the WordML File Format

 Conclusion

 Chapter 23. Developing COM AddIns for Word and Excel

 Introduction to AddIns

 Scenarios for Using AddIns

 How a COM AddIn Is Registered

 Implementing IDTExtensibility2

 Writing a COM AddIn Using Visual Studio

 The Pitfalls of mscoree.dll

 COM Interop and regasm.exe

 Shimming: A Solution to the Problems with mscoree.dll

 Conclusion

 Chapter 24. Creating Outlook AddIns with VSTO

 Moving Away from COM AddIns

 Creating an Outlook AddIn in VSTO

 Conclusion

 Bibsrc Bibliography

 Security

 Office Programming

 Data Programming

 Forms Programming

 Infrastructure

 Index

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Undo method
 Excel
 Word
Union operator (,)
 creating new ranges using operators
 use in Range Object
Unloading code, in different development patterns
UnReadItemCounty property, MAPIFolder
Untyped datasets, in data programming
Updates
 controlling screen updates in Excel Application Object
 controlling screen updates in Word Application object
 Update event in toolbar/menu events
URLs (uniform resource locators), Info-Path forms 2nd
URN deployment, InfoPath forms
User controls
 in ActionsPane architecture
 adding custom user control to Actions task pane
 custom property pages in Outlook
User IDs, data source security and
User information, for Word Application object
User interface
 Actions task pane as custom user interface [See Actions task pane.]
 controlling look of Excel
 controlling look of Word
 Windows Forms for meeting needs of [See Windows Forms controls.]
User Policy level
User, determining current user in NameSpace object
User-defined functions
 applying managed automation addin to
 building managed automation add-in for
 creating
 debugging
Utilities, client-side ServerDocument utility

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Validation
 XML Options dialog box
 XML schemas
Values
 collection object
 DataDOMEvent object
 enumeration
 Excel Range Object
 FileDialog property
 in methods
 Mouse Pointer in Word Application object
 Nothing value and button failure issue
 object properties
 Range Value properties
 ScreenUpdating property and
Variables
 in button failure issue
 custom property pages
 events handling
 identifying Outlook item type
 object model hierarchy
VBA (Visual Basic for Applications)
 in Office programming
 use of code-behind solution
VBScript
Verb properties, Action classes
View options, XML Options dialog box
Views
 data-bound master-detail view on Excel spreadsheets
 data-bound master-detail view on Word documents
 focus vs. selection in InfoPath XDocument object
 InfoPath forms
 MAPIFolder object view settings
 Model-View-Controller (MVC) in VSTO
 selected in Explorer object
 separating data and view
 switching in InfoPath
 view events in Outlook
Visibility
 Word documents
 Worksheets
Visual Basic 2005 language
 advantages of
 use with PIAs
Visual Basic for Applications (VBA)
 in Office programming
 use of code-behind solution
Visual Studio 2005
 combining schema creation with Excel schema mapping

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 combining schema creation with Excel schema mapping
 creating XML schema for use in Word
 creating XML schemas
 support for XML schemas
 writing COM add-ins
Visual Studio 2005 Tools (VSTO)
 additional Excel events raised in
 additional Word events raised in
 advantages of
 cached data vs. custom properties with Worksheet objects
 code behind in Excel
 code behind in Word
 combining XML mapping with VSTO data binding
 customization and trust
 data programming [See Data programming.]
 deployment runtime prerequisites
 derived from Windows Forms controls
 introduction to
 LoadXml method
 locale issue and
 Outlook add-ins and
 programming model [See Programming model, VSTO.]
 Smart Tag support
 support for Word schema mapping
 support for WordML file format
 support for XML schema mapping
 supported/unsupported XML schemas
 XLA add-ins and
 XML schema added to VSTO project
 XMLNode control
 XMLNodes control
VSTO add-ins
 add-ins
 compared with COM add-ins
 creating 2nd
 improvements to COM add-ins
 installing
 manifest update and
 Outlook shut down problems related to COM add-ins
 ReleaseCOMObject, avoiding
 security and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Wait parameter, in SendKeys method
WdWindowState enumeration
Web caching, deploying VSTO solutions and
Web forms, ASPX
Web pages, associating web view with folder in Explorer object
Web sites, deploying VSTO solutions to
What parameter, Word Range object
Which parameter, Word Range object
WholeStory method, Word Range object
Wiki
Window caption, Word
Windows
 accessing window in Excel collection
 accessing window in Word collection
 Actions task pane [See Actions task pane.]
 Activate/Deactivate in Excel 2nd
 Activate/Deactivate in Word
 adding buttons/menus to Explorer window
 arranging in Excel
 arranging in Word
 creating in Word
 display settings in Excel
 Document object in Word
 Explorer 2nd
 Inspector
 iterating over open windows in Excel
 iterating over open windows in Word
 parameters for workbook protection
 positioning in Excel
 Window Sizing events in Excel
 window sizing events in Word
 windows events in Outlook
Windows Forms controls
 AddControl method
 adding at runtime
 adding to Actions task pane
 adding to documents
 blurry
 code behind
 collection
 in collection typed as object
 control state not saved
 controls added at runtime not saved
 deleting at runtime
 on document surface
 hosting ActiveX control
 inserting into Excel
 inserting into Word
 layout on document/worksheet surface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 layout on document/worksheet surface
 limitations of control hosting model
 Modal/Modeless
 modes for adding
 moving from ActiveX controls to
 not in toolbox
 overview
 programming [See Programming model, VSTO.]
 properties merged from OLEObject/OLEControl
 security
 in Smart Documents
 summary
 VSTO controls derived from
WithEvents keyword
 declarative event handling
 dynamic event handling
 workbook event handling
Word
 add-in solutions for
 adding host controls dynamically
 Bookmark host control
 COM add-ins in
 console application for automating
 data binding in Word documents
 deploying [See Deploying VSTO solutions.]
 Document class
 inserting Word controls into Excel
 Smart Tags in
 Smart Tags when Word is Outlook e-mail editor
 VSTO extensions to Word object models
 XML in [See XML, in Word.]
 XMLNode and host control classes
Word Basic
Word events
 Close Document
 CommandBar
 Document activation
 E-Postage
 Mail Merge
 mouse
 New/Open Document
 Print document
 Save document
 selection
 Start-up/Shutdown
 summary
 Sync
 Visual Studio event handlers
 in VSTO
 window sizing
 Word object model and
 XML
Word objects
 Application object [See Application objects, Word.]
 Bookmarks
 Dialog Object
 Document collection [See Document collections, Word.]
 Document object [See Document object.]
 Range object [See Range object, Word.]
 summary

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 summary
 Tables collection
 templates
 Windows
WordML file format
 overview of
 VSTO support for
 XSLT file transform and
Workbook events
 Activate/Deactivate
 Calculate
 Change
 Before Close
 Double-Click/Right-Click
 Follow Hyperlink
 NewWorkbook
 Open
 Before Print
 raising
 Resize events
 Before Save
Workbooks
 accessing document properties
 accessing in collection
 adding XML schemas to
 creating new
 creating/activating windows
 embedding Excel in another application
 host item class
 iterating over open workbooks in collection
 mapping schemas to
 object default properties
 opening existing/closing all workbooks in collection
 printing
 properties that return active/selected objects
 properties that return collections
 protecting
 saving
 saving in XLA format
 sending as e-mail
Worksheets [See also Sheets.]
 accessing in collection
 adding controls to [See Windows Forms controls.]
 adding to collection
 built-in WorksheetFunction property
 Change events
 ChartObjects in
 copying/moving
 custom properties
 Excel object model and
 host item class
 iterating over open sheets in collection
 layout of controls on worksheet surface
 lists
 managing
 names
 New Worksheet events
 OLEObjects
 properties
 protecting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 protecting
 range of cells [See Range object, Excel.]
 shapes
Wrappers, using PIAs to communicate
Write-only property, in object model methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

XDocument object
 button events/view switching in forms
 focus vs. selection methods
 in InfoPath
 OnContextChange event in
XLA add-ins
 customizing Excel
 Install/Uninstall events
XML
 caution in using ServerDocument object model to manipulate cache
 Import/Export events in XML data files
 manipulating serialized XML directly
 XML file formats for server data
 XML-based forms in InfoPath
XML Document task pane
XML Expansion Packs
 for customizing Excel
 for customizing Word
XML Map Properties dialog box
 appending XML data to lists
 data formatting and layout for XML-mapped lists
 schema validation settings
XML maps
 defined
 in Smart Documents
 using to change Actions pane contents
XML Options dialog box
 Ignore Mixed Content check box
 overview of
 save options
 Show Advanced XML Error Messages
 Show Placeholder Text for All Empty Elements
 validation options
 view options
XML schemas
 adding to VSTO project
 adding to Word document
 adding to workbook
 combining Visual Studio schema creation with Excel schema mapping
 combining Visual Studio schema creation with Word schema mapping
 creating for Excel
 creating for Word
 mapping schema data type to Excel cell formats
 mapping to Word documents
 mapping to workbooks
 supported/unsupported in Excel
 validating in Excel
 VSTO support for Excel schema mapping
 VSTO support for Word schema mapping

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 VSTO support for Word schema mapping
 XSLT file associated with
XML Source task pane
XML Structure task pane 2nd
XML, in Excel
 adding schemas to workbooks
 adding schemas VSTO project
 appending data to lists
 combining Visual Studio schema creation with Excel schema mapping
 combining XML mapping with VSTO data binding
 creating schemas with Visual Studio 2005
 data formatting and layout
 features
 importing XML files and refreshing XML data in spreadsheets
 ListObject controls
 mapping XML schema data types to Excel cell formats
 mapping XML schemas to workbooks
 supported/unsupported schemas
 validating XML schemas
 VSTO support for XML schema mapping
 XMLMappedRange controls
XML, in Word
 adding schema to Word documents
 attributes
 combining Visual Studio schema creation with Word schema mapping
 creating and mapping schema into Word document
 creating document with mapped XML structure
 creating schemas with Visual Studio 2005
 creating XSLT file
 data view only
 exporting mapped XML to XML data file
 features
 importing XML data file into mapped document
 LoadXml for loading XML programmatically
 manually converting book-order XML file using XSLT file
 raising XML events
 saving XML document
 VSTO support for Word schema mapping
 VSTO support for WordML file format
 XML data view only
 XML Options dialog box 2nd
 XMLNode control
 XMLNodes control
 XSLT file applied automatically to XML file
XMLMappedRange controls 2nd
XMLNode control
 dynamic creation of host controls in Word/Excel
 Word XML 2nd
XMLNodes control
XSD files
.XSF files
XSLT file
 applied automatically to XML file
 creating
 manually converting book-order XML file using XSLT file
 transform of WordML
.XSN files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Zones, code groups

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

