
Rod Stephens

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

Programmer’s Reference
WPF
Windows® Presentation Foundation with C# 2010 and .NET 4

 $54.99 USA
 $65.99 CAN

Windows Presentation Foundation (WPF) enables you to build effective
and unique graphical user interfaces. However, it takes a steep learning
curve to master the exceptions and shortcuts that are built into WPF.
This reference provides you with a solid foundation of fundamental
WPF concepts so you can start building attractive, dynamic, and
interactive applications quickly and easily. As the book progresses,
topics gradually become more advanced, and you’ll discover how to
use WPF to build applications that run in more environments, on more
hardware, using more graphical tools, and providing a more engaging
visual experience than is normally possible with Windows Forms.

WPF Programmer’s Reference:

• Explains with full color code examples how code is connected to
the user interface and shows how operations can be performed using
both XAML and C#

• Features a series of essential appendices that summarize WPF syntax
and concepts for easy reference

• Covers the latest release of WPF, along with Visual Studio® 2010,
Expression Blend™ 3, and .NET 4

• Shows how to position and arrange content, layout, interaction,
and drawing controls; define their properties; and manipulate those
properties to produce stunning visual effects

• Addresses event triggers and animation, templates, themes and skins,
data binding, and transformations and effects

• Provides comparable Visual Basic versions of all code examples
on the companion web site

Rod Stephens is a professional software developer who has built a wide variety
of software and database applications in his career that spans two decades. He is
the author of more than twenty books and 250 articles, and is a regular contributor
to DevX.com (www.devx.com).

Wrox guides are crafted to make learning programming languages and
technologies easier than you think. Written by programmers for programmers,
they provide a structured, tutorial format that will guide you through all the
techniques involved.

Programming/C# (.NET)

Go beyond what you thought possible
in user interface development

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

W
PF

Programmer’s
Reference

Stephens

Related Wrox Books
Beginning ASP.NET 4: in C# and VB
ISBN: 9780470502211
This introductory book offers helpful examples and step-by-step format and has code examples written in both C# and Visual Basic.
With this book you will gradually build a Web site example that takes you through the processes of building basic ASP.NET Web
pages, adding features with pre-built server controls, designing consistent pages, displaying data, and more.

Beginning Microsoft Visual Basic 2010
ISBN: 9780470502228
This book not only shows you how to write Windows applications, Web applications with ASP.NET, and Windows mobile and
embedded CE apps with Visual Basic 2010, but you’ll also get a thorough grounding in the basic nuts and bolts of writing good code.
You’ll be exposed to the very latest VB tools and techniques with coverage of both the Visual Studio 2010 and .NET 4 releases.

Beginning Microsoft Visual C# 2010
ISBN: 9780470502266
Using this book, you will first cover the fundamentals such as variables, flow control, and object-oriented programming and
gradually build your skills for Web and Windows programming, Windows forms, and data access. Step-by-step directions walk
you through processes and invite you to “Try it Out,” at every stage. By the end, you’ll be able to write useful programming code
following the steps you’ve learned in this thorough, practical book. If you’ve always wanted to master Visual C# programming, this
book is the perfect one-stop resource.

Professional ASP.NET 4: in C# and VB
ISBN: 9780470502204
Written by three highly recognized and regarded ASP.NET experts, this book provides all-encompassing coverage on ASP.NET 4 and
offers a unique approach of featuring examples in both C# and VB, as is the incomparable coverage of core ASP.NET. After a fast-
paced refresher on essentials such as server controls, the book delves into expert coverage of all the latest capabilities of ASP.NET 4.
You’ll learn site navigation, personalization, membership, role management, security, and more.

Professional C# 4 and .NET 4
ISBN: 9780470502259
After a quick refresher on C# basics, the author dream team moves on to provide you with details of language and framework
features including LINQ, LINQ to SQL, LINQ to XML, WCF, WPF, Workflow, and Generics. Coverage also spans ASP.NET program-
ming with C#, working in Visual Studio 2010 with C#, and more. With this book, you’ll quickly get up to date on all the newest
capabilities of C# 4.

Professional Visual Basic 2010 and .NET 4
ISBN: 9780470502242
If you’ve already covered the basics and want to dive deep into VB and .NET topics that professional programmers use most, this is
your guide. You’ll explore all the new features of Visual Basic 2010 as well as all the essential functions that you need, including .NET
features such as LINQ to SQL, LINQ to XML, WCF, and more. Plus, you’ll examine exception handling and debugging, Visual Studio
features, and ASP.NET web programming.

Professional Visual Studio 2010
ISBN: 9780470548653
Written by an author team of veteran programmers and developers, this book gets you quickly up to speed on what you can expect
from Visual Studio 2010. Packed with helpful examples, this comprehensive guide explains and examines the features of Visual Studio
2010, which allows you to create and manage programming projects for the Windows platform. It walks you through every facet of the
Integrated Development Environment (IDE), from common tasks and functions to its powerful tools.

Visual Basic 2010 Programmer’s Reference
ISBN: 9780470499832
This reference guide provides you with a broad, solid understanding of essential Visual Basic 2010 topics and clearly explains how
to use this powerful programming language to perform a variety of tasks. As a tutorial, the book describes the Visual Basic language
and covers essential Visual Basic topics. The material presents categorized information regarding specific operations and reveals
useful tips, tricks, and tidbits to help you make the most of the new Visual Basic 2010.

Get more out of
wrox.com

Programmer to Programmer™

Interact
Take an active role online by participating in our
P2P forums @ p2p.wrox.com

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and code
to keep you up to date and out of trouble!

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

WPF
Programmer’s reFerence

IntroductIon . xxiii

1chaPter WPF Overview . 1

2chaPter WPF in Visual Studio . 21

3chaPter Expression Blend . 37

4chaPter Common Properties . 61

5chaPter Content Controls . 73

6chaPter Layout Controls . 101

7chaPter User Interaction Controls .119

8chaPter Two-Dimensional Drawing Controls . 145

9chaPter Properties . 153

1chaPter 0 Pens and Brushes . 165

1chaPter 1 Events and Code-Behind . 179

1chaPter 2 Resources . 193

1chaPter 3 Styles and Property Triggers . 213

1chaPter 4 Event Triggers and Animation . 235

1chaPter 5 Templates . 263

1chaPter 6 Themes and Skins . 283

1chaPter 7 Printing . 303

1chaPter 8 Data Binding . 317

1chaPter 9 Commanding . 347

2chaPter 0 Transformations and Effects . 359

2chaPter 1 Documents . 367

2chaPter 2 Navigation-Based Applications . 379

2chaPter 3 Three-Dimensional Drawing . 387

24 chaPter Silverlight . 407

aaPPendIx Common Properties . 417

BaPPendIx Content Controls .425

Continues

caPPendIx Layout Controls . 443

daPPendIx User Interaction Controls . 461

eaPPendIx MediaElement Control . 487

FaPPendIx Pens . 493

gaPPendIx Brushes . 495

haPPendIx Path Mini-Language . 507

IaPPendIx XPath . 51 1

JaPPendIx Data Binding . 519

KaPPendIx Commanding Classes .525

LaPPendIx Bitmap Effects . 533

maPPendIx Styles . 535

naPPendIx Templates . 539

oaPPendIx Triggers and Animation . 549

PaPPendIx Index of Example Programs . 555

Index . 573

WPF
Programmer’s reference

www.wowebook.com

WPF
Programmer’s reference

WindoWs Presentation foundation
With c# 2010 and .net 4

Rod Stephens

WPf Programmer’s reference: Windows Presentation foundation with c# 2010 and .net 4

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-47722-9

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2009942828

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other coun-
tries, and may not be used without written permission. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc. is not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions

aBout the author

rod stePhens started out as a mathematician, but while studying at MIT,
discovered the joys of programming and has been programming profession-
ally ever since. During his career, he has worked on an eclectic assortment of
applications in such fields as telephone switching, billing, repair dispatching,
tax processing, wastewater treatment, concert ticket sales, cartography, and
training for professional football players.

Rod is a Microsoft Visual Basic Most Valuable Professional (MVP) and ITT
adjunct instructor. He has written more than 20 books that have been trans-

lated into languages from all over the world, and more than 250 magazine articles covering Visual
Basic, C#, Visual Basic for Applications, Delphi, and Java. He is currently a regular contributor to
DevX (www.DevX.com).

Rod’s popular VB Helper web site www.vb-helper.com receives several million hits per month and
contains thousands of pages of tips, tricks, and example code for Visual Basic programmers, as well
as example code for this book.

credIts

executIve edItor
Bob Elliott

senIor ProJect edItor
Adaobi Obi Tulton

technIcaL edItor
John Mueller

senIor ProductIon edItor
Debra Banninger

coPy edItor
Cate Caffery

edItorIaL dIrector
Robyn B . Siesky

edItorIaL manager
Mary Beth Wakefield

marKetIng manager
Ashley Zurcher

ProductIon manager
Tim Tate

vIce PresIdent and
executIve grouP PuBLIsher
Richard Swadley

vIce PresIdent and
executIve PuBLIsher
Barry Pruett

assocIate PuBLIsher
Jim Minatel

ProJect coordInator, cover
Lynsey Stanford

comPosItor
James D . Kramer, Happenstance Type-O-Rama

ProoFreader
Nancy Carrasco

Indexer
J & J Indexing

cover desIgner
Michael E . Trent

cover Image
© Ben Blankenburg / istockphoto

acKnoWLedgments

thanKs to Bob Elliott, Adaobi Obi Tulton, Kristin Vorce, Cate Caffrey, and all of the others who
worked so hard to make this book possible.

Thanks also to John Mueller for giving me another perspective and the benefit of his extensive
expertise. Visit www.mwt.net/~jmueller to learn about John’s books and to sign up for his free
newsletter .NET Tips, Trends & Technology eXTRA.

Contents

IntroductIon xxvii

WPF overvieW ChaPter 1: 1

WPF in a Nutshell 1
What Is WPF? 3
What Is XAML? 4
Object Trees 6
Non-Treelike Structure 7
What Is Silverlight? 8

Project Types 9
Goals and Benefits 10

Better Use of Graphics Hardware 10
Property Binding to Provide Animation 14
Property Inheritance 15
Styles 15
Templates 16
Consistent Control Containment 16
Separate User Interface and Code-Behind 17
New Controls 17
Declarative Programming 18

Disadvantages 19
Summary 20

WPF in visual studio ChaPter 2: 21

New Projects 22
Window Designer 23
XAML Editor 25
Toolbox 28
Solution Explorer 28
Properties Window 29
Window Tabs 31
Code-Behind 31

Default Event Handlers 32
Non-Default Event Handlers 33
Handmade Event Handlers 33
Runtime Attached Event Handlers 34

xii

CONTENTS

Other Visual Basic Event Handlers 34
Summary 35

exPression Blend 3ChaPter 3: 7

New Projects 38
Assets Window 40
Projects Window Tab 40
Window Designer 40
Properties Window 42

Brushes 43
Pens 52
Property Resources 53
Styles 53

Resources Window 54
Objects and Timeline 54

Storyboards 55
Triggers 56
Control Toolbox 57
Code-Behind 58
Summary 58

Common ProPerties ChaPter 4: 61

Size and Position 61
Alignment 61
Other Size and Position Properties 64

Font 65
Color 66
Image Shape 67

Gradient Opacity Masks 67
Image Opacity Masks 68

Miscellaneous 69
Summary 71

Content Controls 7ChaPter 5: 3

Control Overview 75
Graphical Controls 75

Image 76
MediaElement 77

Textual Controls 79
DocumentViewer 79
FlowDocument 81

xiii

CONTENTS

Label 82
Pop-Up 83
TextBlock 87
ToolTip 89

Spatial Controls 89
Border 89
BulletDecorator 91
GroupBox 91
ListView 92
ProgressBar 94
Separator 97
TreeView 98

Summary 99

layout Controls ChaPter 6: 101

Control Overview 101
Canvas 102
DockPanel 103
Expander 105
Grid 105
ScrollViewer 107
StackPanel 108
StatusBar 109
TabControl 110
ToolBar and ToolBarTray 111
UniformGrid 113
Viewbox 114
WindowsFormsHost 115
WrapPanel 117
Summary 117

user interaCtion Controls ChaPter 7: 119

Control Overview 119
Button 120
CheckBox 121
ComboBox 122
ContextMenu 124
Frame 126
GridSplitter 127
ListBox 128
Menu 130

xiv

CONTENTS

PasswordBox 132
RadioButton 133
RepeatButton 134
RichTextBox 135

Editing Commands 135
Spell Checking 137
Undo and Redo 137
Other Features 138

ScrollBar 140
Slider 141
TextBox 142
Summary 143

tWo-dimensional draWing Controls ChaPter 8: 145

Control Overview 145
Stroke Properties 146
Ellipse 147
Line 147
Path 147

Path Mini-Language 148
A Path Holding Objects 149

Polygon 150
Polyline 151
Rectangle 151
Summary 152

ProPerties ChaPter 9: 153

Property Basics 153
Type Converters 154
Property Element Syntax 155
Property Inheritance 159
Attached Properties 160
Summary 163

Pens and Brushes ChaPter 10: 165

Pens 165
Stroke 166
StrokeThickness 167
StrokeDashArray 167
StrokeDashCap 168
StrokeDashOffset 168

xv

CONTENTS

StrokeEndLineCap and StrokeStartLineCap 168
StrokeLineJoin 168
StrokeMiterLimit 169

Brushes 170
FillRule 170
SpreadMethod 170
SolidColorBrush 171
LinearGradientBrush 172
RadialGradientBrush 173
TileBrush 174

Summary 178

events and Code-Behind ChaPter 11: 179

Code-behind Files 179
Example Code 181
Event Name Attributes 181

Creating Event Handlers in Expression Blend 184
Creating Event Handlers in Visual Studio 185
Relaxed Delegates 186

Event Handlers at Run Time 189
The Handles Clause 190
Summary 191

resourCes ChaPter 12: 193

Defining Resources 194
Resource Types 196

Normal Property Values 197
Controls 197
Simple Data Types 199

Resource Hierarchies 201
Merged Resource Dictionaries 204
Dynamic Resources 207
Summary 211

styles and ProPerty triggers ChaPter 13: 213

Simplifying Properties 213
Keys and Target Types 219

Non-Specific Target Types 219
Multiple Target Types 220
Unnamed Styles 221

Property Value Precedence 224

xvi

CONTENTS

Style Inheritance 225
Triggers 227

Text Triggers 228
IsMouseOver Triggers 229
Setting Transform and BitmapEffect 230
Setting Opacity 231
IsActive and IsFocused Triggers 233

Summary 234

event triggers and animation 23ChaPter 14: 5

Event Triggers 235
Event Trigger Locations 237
Storyboards in Property Elements 240
Storyboards in Styles 240

Property Trigger Animations 241
Storyboards 243

Storyboard and Animation Properties 245
Animation Types 247

Controlling Storyboards 255
Media and Timelines 256
Animation without Storyboards 259
Easy Animations 261
Summary 262

temPlates 26ChaPter 15: 3

Template Overview 263
ContentPresenter 264
Template Binding 265
Changing Control Appearance 266
Template Events 268
Glass Button 270

Glass Button Template Overview 271
Glass Button Styles 272
Glass Button Triggers 274

Ellipse Button 275
Ellipse Button Controls 277
Ellipse Button Triggers 278

Researching Control Templates 280
Summary 282

CONTENTS

themes and skins 28ChaPter 16: 3

Themes 283
Using the System Theme 284
Using a Specific Theme 285

Skins 287
Skin Purposes 288
Resource Skins 292
Animated Skins 295
Dynamically Loaded Skins 297

Summary 301

Printing 30ChaPter 17: 3

Printing Visual Objects 304
Simple Printing with PrintVisual 305
Advanced Printing with PrintVisual 306

Printing Code-Generated Output 309
Printing Documents 312

Printing FlowDocuments 313
Printing FixedDocuments 315

Summary 316

data Binding ChaPter 18: 317

Binding Basics 317
Binding Target and Target Property 318
Binding Source 319
Binding Path 323

Binding Collections 325
ListBox and ComboBox Templates 327
TreeView Templates 329

Binding Master-Detail Data 332
Binding XAML 333
Binding XML 335
Binding Database Objects 338

Loading Data 339
Saving Changes 341
Binding the Student Name ListBox 342
Displaying Student Details 343
Binding the Scores ListBox 344

Summary 345

xviii

CONTENTS

Commanding 34ChaPter 19: 7

Commanding Concepts 348
Predefined Commands with Actions 349
Predefined Commands without Actions 352
Custom Commands 355
Summary 358

transFormations and eFFeCts 35ChaPter 20: 9

Transformations 359
Combining Transformations 361
Layout and Render Transforms 362
Effects 363
Summary 366

doCuments 36ChaPter 21: 7

Fixed Documents 367
Building XPS Documents 368
Displaying XPS Documents 368
Building Fixed Documents in XAML 370
Saving XPS Files 371

Flow Documents 372
BlockUIContainer 373
List 373
Paragraph 374
Section 376
Table 376

Summary 378

navigation-Based aPPliCations 37ChaPter 22: 9

Page 380
Hyperlink Navigation 381
NavigationService 382
Frame 385
Summary 386

three-dimensional draWing 38ChaPter 23: 7

Basic Structure 388
Positions 389
TriangleIndices 389
Outward Orientation 389

xix

CONTENTS

Normals 391
TextureCoordinates 393

Cameras 394
Lighting 396
Materials 399
Building Complex Scenes 400

Geometric Shapes 400
Charts and Graphs 402
Generated Textures 404
Surfaces 405

Summary 405

silverlight 40ChaPter 24: 7

What Is Silverlight? 407
A Color Selection Example 408
A Bouncing Ball Example 412
For More Information 415
Summary 416

Common ProPerties aPPendix a: 417

General Properties 417
Font Properties 421
Drawing Properties 422
Bitmap Effect Properties 423
Grid Attached Properties 423
DockPanel Attached Properties 423
Canvas Attached Properties 424

Content Controls 42aPPendix B: 5

Border 425
BulletDecorator 426
DocumentViewer 426
FlowDocument 427

Content Objects 427
FlowDocumentPageViewer 430
FlowDocumentReader 430
FlowDocumentScrollViewer 431
GroupBox 431
Image 432
Label 432
ListView 433

xx

CONTENTS

MediaElement 434
Popup 434
ProgressBar 435
Separator 436
TextBlock 437
ToolTip 439
TreeView 440

layout Controls 44aPPendix C: 3

Canvas 443
DockPanel 444
Expander 445
Grid 447
ScrollViewer 448
StackPanel 449
StatusBar 450
TabControl 451
ToolBar and ToolBarTray 454
UniformGrid 456
Viewbox 457
WindowsFormsHost 458
WrapPanel 459

user interaCtion Controls 4aPPendix d: 61

Button 461
CheckBox 462
ComboBox 463
ContextMenu 464
Frame 465
GridSplitter 467
ListBox 470
Menu 471
PasswordBox 473
RadioButton 474
RepeatButton 475
RichTextBox 476
ScrollBar 482
Slider 483
TextBox 484

xxi

CONTENTS

mediaelement Control 48aPPendix e: 7

Pens 49aPPendix F: 3

Brushes 49aPPendix g: 5

Brush Classes 495
DrawingBrush 496

Drawing Types 497
ImageBrush 498
LinearGradientBrush 500
RadialGradientBrush 501
SolidColorBrush 502
VisualBrush 503
Viewports and Viewboxes 506

Path mini-language 50aPPendix h: 7

xPath aPPendix i: 511

XML in XAML 511
Binding to XML Data 512
Selection 513
Predicates 514
Constraint Functions 514

Selection Expressions 516
Display Expressions 517

data Binding aPPendix J: 519

Binding Components 519
Binding to Elements by Name 519
Binding to RelativeSource 520
Binding to Classes in Code-Behind 520
Binding to Classes in XAML Code 521
Making Collections of Data 521

Collections in XAML Code 522
Collections in Code-Behind 522

Using ListBox and ComboBox Templates 523
Using TreeView Templates 523
Binding to XML Data 524

xxii

CONTENTS

Commanding Classes 52aPPendix k: 5

ApplicationCommands 525
ComponentCommands 526
Editing Commands 527
MediaCommands 530
NavigationCommands 531
Commands in XAML 531
Commands in Code-Behind 532

BitmaP eFFeCts 53aPPendix l: 3

styles 53aPPendix m: 5

Named Styles 535
Unnamed Styles 536
Inherited Styles 537

temPlates 53aPPendix n: 9

Label 539
CheckBox 540
RadioButton 541
ProgressBar 541
Oriented ProgressBar 542
Labeled ProgressBar 543
ScrollBar 543
Modified ScrollBar 545
Button 547

triggers and animation 54aPPendix o: 9

EventTriggers 549
Property Triggers 550
Storyboard Properties 551
Animation Classes 552

index oF examPle Programs 55aPPendix P: 5

Index 573

IntroductIon

WIndoWs PresentatIon FoundatIon (WPF) is Microsoft’s next evolutionary step in user interface
(UI) development. While WPF lets you drop controls on forms just as developers have been doing
for years, WPF provides a quantum leap beyond what is possible using Windows Forms. WPF lets
you use a consistent development model to build applications that run in more environments, on
more hardware, using more graphical tools, and providing a more engaging visual experience than is
normally possible with Windows Forms.

WPF lets you build stand-alone desktop applications that run as executable on a Windows system. WPF
can also build simple web pages, compiled applications that run within a web browser, or Silverlight
applications that run in a browser with enhanced security. By using these browser techniques, you can
build applications that run just about anywhere, even on UNIX or Macintosh systems!

WPF allows you to build engaging interfaces that are responsive, interactive, and aesthetically
pleasing. WPF interfaces can include static documents or documents that rearrange their content as
needed, two- and three-dimensional graphics, high-resolution vector graphics that draw lines and
curves instead of using bitmaps, animation, audio, and video.

All of the examples shown in this book are available for download in C# and
Visual Basic versions on the book’s web pages. See the section, “Source Code,”
later in this chapter for details. The names of the programs are shown in their
title bars so it’s easy to tell which figures show which programs.

In fact, WPF makes it almost embarrassingly easy to:

Draw normal controls and simple graphics, as shown in ➤➤ Figure 0-1.

FIgure 0-1

xxiv

IntroductIon

Play audio and video files, as shown in ➤➤ Figure 0-2.

FIgure 0-2

Add eye-catching graphical effects such as drop shadows and color gradients, as shown in ➤➤

Figure 0-3.

FIgure 0-3

Use shared styles to give control similar appearances and skins, as shown in ➤➤ Figure 0-4.

FIgure 0-4

xxv

IntroductIon

Transform objects including shapes, controls, and even video, as shown in ➤➤ Figure 0-5.

FIgure 0-5

Display simple animations similar to those provided by Adobe Flash, as shown in ➤➤ Figure 0-6.
(OK, I admit I faked this one. Figure 0-6 shows three steps in a WPF animation. Although
WPF allows you to show videos easily, this printed book does not.)

FIgure 0-6

Create and even animate intricate three-dimensional (3D) graphics, as shown in ➤➤ Figure 0-7.

FIgure 0-7

xxvi

IntroductIon

Draw vector graphics that scale without jagged aliasing. The pictures at the top of ➤➤ Figure 0-8
were drawn with vector graphics so they scale smoothly. In contrast, the images at the bottom
of Figure 0-8 are scaled views of a bitmap image so they become jagged as they are enlarged.

FIgure 0-8

Create and display sophisticated documents that rearrange their contents to make the best ➤➤

use of available space, as shown in Figure 0-9.

FIgure 0-9

In this introductory chapter, don’t worry about how the examples work. For
now, focus on the cool and amazing things they can do. You’ll see how they
work in later chapters.

xxvii

IntroductIon

Unfortunately, to use WPF, you must overcome a rather steep learning curve. Many of the fundamental
concepts in modern Windows UI design are different from those used by WPF. Concepts as basic as
how events are handled and how program code is attached to the user interface are different in WPF.

Many of these new concepts are unified, elegant, and simple. Ideas such as declaratively building an
interface in Extensible Markup Language (XAML — pronounced zammel), property value inheri-
tance, and allowing controls to contain any type of content make a simple yet powerful program-
ming paradigm.

Unfortunately, shortcuts, exceptions, and inconsistencies built into WPF make it much harder to
understand and use than you might hope from its elegant underlying philosophy. Depending on how
properties are used, developers must use several different XAML notations, property value inheri-
tance is trumped by performance issues in some cases, and some controls can only contain certain
other kinds of controls.

This book provides an introduction to WPF development. It explains fundamental WPF concepts so
you can start building applications quickly and easily. As it progresses, the book covers more com-
plex topics, explaining how to handle the exceptions and shortcuts built into WPF.

The book finishes with a series of appendixes summarizing WPF concepts and syntax for easy refer-
ence. You can use these appendixes to refresh your memory of WPF’s intricate and sometimes coun-
terintuitive syntax.

Of course, many future applications will be written without WPF. Many will be written using
clunky old technologies such as command-line interfaces and pure HTML. Others will be written
with competing technologies like Java and Flash.

Finally, some developers will continue using good old familiar Windows Forms in C# or Visual
Basic. There’s a lot to be said for sticking with what you know, but the future of development in the
Windows environment is WPF. Soon the beauty, grace, and level of responsiveness provided by WPF
will become de rigueur, and if you’re still using Windows Forms, you’ll be left behind.

Who thIs Book Is For

This book is for anyone who wants to use or better understand WPF. In particular, it is intended for:

Specialized UI designers who build user interfaces but don’t write program code➤➤

Programmers who write the code behind the user interface➤➤

Jack-of-all-trades developers who create user interfaces and write the code behind them➤➤

Web developers who want to learn how to use WPF in loose web pages, browser applica-➤➤

tions, and Silverlight applications

Project managers who want a better understanding of what WPF is and what kinds of fea-➤➤

tures it can provide

xxviii

IntroductIon

For decades, good developers have separated UI construction from the code behind the user inter-
face. Keeping the two separate makes it easier to distribute work among different developers and
makes it easier to build each piece separately. WPF continues this philosophy by making the separa-
tion between the user interface and the code behind it more distinct than ever before.

In fact, in Microsoft’s original vision, specialized graphic designers built the user interface, and pro-
grammers added the code behind it completely separately.

While many development projects cannot afford separate graphic designers and programmers, it’s
still worthwhile to keep these two tasks separate. This book squarely addresses those who perform
either of those tasks.

This book provides an introduction to WPF and does not require that you have any experience with
it. In fact, it doesn’t require that you have any previous programming or UI design experience.

I don’t want to receive a bunch of flaming e‑mails complaining that some of the
material is too basic, so I’m warning you right now! If you’re mortally offended
by introductory material, you’re welcome to skim the first few chapters and
move on to the more advanced material.

Although this book does not require previous programming experience, it covers a lot of material
and does get into some rather advanced topics. By the time you finish reading it, you should have
learned a lot no matter how experienced you are at the start.

What thIs Book covers (and What It doesn’t)

This book explains WPF development. It explains how to build user interfaces by using Microsoft’s
Expression Blend tool, Visual Studio, and the XAML programming language. It also explains how
to use Visual Studio to attach code to the user interface.

WPF is a very flexible tool, and you can use it to make amazing user interfaces. Unfortunately, it is
also often complicated, occasionally confusing, and sometimes downright intractable. You can use it
to perform remarkable feats of UI sleight-of-hand, but doing so can be a heroic adventure in experi-
mentation and web browsing.

Such deeds of development heroism fly in the face of Microsoft’s intent that graphic designers build
user interfaces that programmers then attach to code. Perhaps I’m hanging out with the wrong crowd,
but the graphic designers that I’ve met did not have the skills or interest to spend their time construct-
ing elaborate UI animations. Instead, they wanted to focus on the interface’s appearance and usability.

This book’s philosophy is that the user interface is a front end to the application, not the application
itself. It should not take six years of experience and a PhD in WPF to build a data entry form.

If it takes a huge assortment of sneaky tricks to make a program perform some esoteric stunt, this
book doesn’t cover it. For more complex situations, the book will freely jump between the user

xxix

IntroductIon

interface and the code behind it. For example, if a particular animation is hard to control with pure
WPF but easy to control using code behind the scenes, I’ll opt for option two every time.

This book also doesn’t cover programming the code behind the interface. It demonstrates some of
that code so you can learn how to write your own code, but it doesn’t cover C#, Visual Basic, or any
other programming language in detail.

hoW thIs Book Is structured

The chapters in this book are generally arranged from the most basic in the beginning to the more
advanced at the end. They start with fundamentals such as adding controls to windows and selecting
the kinds of controls to use. Later chapters cover more advanced topics such as animation, transfor-
mations, and 3D graphics. The appendixes provide a handy reference for controls and other objects,
and XAML syntax.

The book will probably make the most sense if you read the chapters in order, but you can skip
around a bit if you need information on a particular topic. For example, after you read the first few
chapters and know how to build simple WPF applications, you might want to skip ahead and read a
bit more about styles or transformations.

If you have previous development experience, particularly with Expression Blend or Visual Studio,
you may want to skim the earliest chapters.

If you know that you will not be using Expression Blend or Visual Studio, you may want to skip the
corresponding chapters entirely. For example, if you know that you will be using Visual Studio and
not Expression Blend, then you may want to skip Chapter 3.

Chapter 1: WPF Overview➤➤ — Chapter 1 covers basic WPF concepts. It explains WPF’s
advantages, how WPF is layered on top of DirectX, and how WPF separates UI design from
the code behind it. It also describes the different kinds of WPF projects (stand-alone, XBAP,
library) and explains how Page, Frame, and PageFunction projects work in general terms.

Chapter 2: WPF in Visual Studio➤➤ — Chapter 2 explains how to build WPF projects with
Visual Studio. It tells how to build a simple user interface and how to connect interface ele-
ments with the code behind them. This chapter explains how to set control properties and
how to edit XAML code in Visual Studio. It does not explain WPF controls in great depth
because they are covered in later chapters.

Chapter 3: Expression Blend➤➤ — Chapter 3 explains how to build WPF projects with
Expression Blend. It tells how to edit XAML code in Expression Blend and how to link to
Visual Studio to add code behind the user interface.

Chapter 4: Common Properties➤➤ — Chapter 4 describes some properties that are common to
many WPF controls. These properties determine basic control features such as color, size,
and position.

Chapter 5: Content Controls➤➤ — Chapter 5 describes WPF’s controls that are intended to dis-
play content (as opposed to the controls described in the following chapters). These include

xxx

IntroductIon

such controls as Label, GroupBox, ListBox, and Image. This chapter describes the purpose
of each control and summarizes its most important properties and behaviors.

Chapter 6: Layout Controls➤➤ — Chapter 6 describes WPF’s controls that are intended to
arrange other controls. These include such controls as Grid, DockPanel, StackPanel, and
WrapPanel. This chapter describes the purpose of each control and summarizes its most
important properties and behaviors.

Chapter 7: User Interaction Controls➤➤ — Chapter 7 describes WPF’s controls that are
intended to allow the user to control the application. These include such controls as Button,
RadioButton, TextBox, and Slider. This chapter describes the purpose of each control and
summarizes its most important properties and behaviors.

Chapter 8: Two-Dimensional Drawing Controls➤➤ — Chapter 8 describes WPF objects that
perform two-dimensional (2D) drawing. These include Line, Ellipse, Rectangle, Polygon,
Polyline, and Path. This chapter also explains the Path mini-language and geometries,
which can contain multiple drawing objects.

Chapter 9: Properties➤➤ — Chapter 9 explains WPF properties in detail. Whereas the ear-
lier chapters use properties to provide simple examples, this chapter describes properties
in greater depth. It explains basic properties entered as simple text, properties that can be
entered as multiple text values, properties that are objects, dependency properties, and
attached properties.

Chapter 10: Pens and Brushes➤➤ — Chapter 10 describes the pen and brush objects that you
can use to determine the graphical appearance of WPF objects. In addition to simple single-
color pens and brushes, this chapter describes more complex objects such as dashed pens,
gradient brushes, and image brushes.

Chapter 11: Events and Code-Behind➤➤ — Chapter 11 explains routed events, tunneling (pre-
view) events, bubbling events, and attached events. These different kinds of events allow you
to attach a user interface that was created with WPF to the code behind the scenes.

Chapter 12: Resources➤➤ — Chapter 12 explains WPF resources. It tells how to use static and
dynamic resources in XAML code.

Chapter 13: Styles and Property Triggers➤➤ — Chapter 13 explains styles and property triggers.
It tells how to use styles, usually stored as resources, to give objects a consistent appearance.
(For an example, see Figure 0-4.) It also explains property triggers, which are often defined in
styles, to change a control’s appearance when a property value changes.

Chapter 14: Event Triggers and Animation➤➤ — Chapter 14 explains event triggers and the
animations they can run. It explains storyboards and timelines that let WPF applications per-
form animations with surprisingly little effort.

Chapter 15: Templates➤➤ — Chapter 15 describes control templates. It explains how you can use
templates to change the appearance and behavior of predefined controls. It also tells how to use
ItemsPresenter and ContentPresenter objects to change the way lists and menus work.

xxxi

IntroductIon

Chapter 16: Themes and Skins➤➤ — Chapter 16 explains how to use resource dictionaries to
provide application themes and skins. By changing a single resource dictionary, you can
make a WPF application change the appearance of some or all of its graphical components.

Chapter 17: Printing➤➤ — Chapter 17 explains how a WPF application can display print pre-
views and how it can print documents.

Chapter 18: Data Binding➤➤ — Chapter 18 explains how to bind control properties to data.
It explains basic data binding and also shows how to use DataTemplate objects to provide
more complicated data display.

Chapter 19: Commanding➤➤ — Chapter 19 explains commanding, a tool that lets you associate
controls to command objects that represent the actions they should perform. For standard
operations such as copy, cut, and paste, these objects make providing consistent features
much easier.

Chapter 20: Transformations and Effects➤➤ — Chapter 20 explains rotation, scaling, and other
transformations that you can use to rotate, stretch, and otherwise change the appearance of
WPF objects. It also describes special graphical effects such as blur, drop shadow, and glow.
(For examples of drop shadow, see Figure 0-3.)

Chapter 21: Documents➤➤ — Chapter 21 explains the document objects provided by WPF.
It explains fixed documents, which display items in the precise positions where you place
them, and flow documents, which can rearrange objects much as a web browser does to take
advantage of the available space. (For an example, see Figure 0-9.)

Chapter 22: Navigation-Based Applications➤➤ — Chapter 22 describes programs that use spe-
cial navigation controls to manage how the user moves through the application. It explains
how to build Page, Frame, and PageFunction projects.

Chapter 23: Three-Dimensional Drawing➤➤ — Chapter 23 explains how to display and control
3D drawings in WPF. Although it is possible to build these objects in XAML code, it is often
easier to generate 3D scenes programmatically, so this chapter provides both XAML exam-
ples and examples that use C# code to build scenes.

Chapter 24: Silverlight➤➤ — Chapter 24 briefly introduces Silverlight, WPF’s web-oriented
cousin. Although Silverlight has some restrictions that WPF doesn’t, it lets you build applica-
tions that can run in a web browser on any operating system.

Appendix A: Common Properties➤➤ — Appendix A summarizes properties that are shared by
many WPF controls.

Appendix B: Content Controls➤➤ — Appendix B summarizes the most useful properties and behav-
iors of WPF controls that are intended to display content such as Label, ListBox, and Image.

Appendix C: Layout Controls➤➤ — Appendix C summarizes the most useful properties and
behaviors of WPF controls that are intended to contain and arrange other controls such as
Grid, StackPanel, and WrapPanel.

xxxii

IntroductIon

Appendix D: User Interaction Controls➤➤ — Appendix D summarizes the most useful proper-
ties and behaviors of WPF controls that let the user control the application such as Button,
RadioButton, and TextBox.

Appendix E: MediaElement Control➤➤ — Appendix E summarizes the MediaElement control.

Appendix F: Pens➤➤ — Appendix F summarizes Pen classes and properties that an application
can use to determine the graphical appearance of line features.

Appendix G: Brushes➤➤ — Appendix G summarizes Brush classes and properties that an appli-
cation can use to determine the graphical appearance of filled areas.

Appendix H: Path Mini-Language➤➤ — Appendix H summarizes the Path mini-language that
you can use to draw shapes with the Path object. Complicated paths are much easier to build
with the Path mini-language rather than using objects contained inside a Path.

Appendix I: XPath➤➤ — Appendix I summarizes the XPath expressions that you can use to bind
XML data to WPF controls.

Appendix J: Data Binding➤➤ — Appendix J summarizes data binding techniques you can use to
bind property values to values provided by different objects such as other WPF controls or
objects created by code-behind.

Appendix K: Commanding Classes➤➤ — Appendix K summarizes the most useful predefined
commanding classes.

Appendix L: BitmapEffects➤➤ — Appendix L provides an example demonstrating the different
BitmapEffect classes.

Appendix M: Styles➤➤ — Appendix M summarizes the syntax for creating named and unnamed
styles.

Appendix N: Templates➤➤ — Appendix N provides example templates for the Label,
CheckBox, RadioButton, ProgressBar, ScrollBar, and Button controls.

Appendix O: Triggers and Animation➤➤ — Appendix O summarizes the syntax for creating
event triggers and the animations that they control.

Appendix P: Index of Example Programs➤➤ — Appendix P lists this book’s more than 250 exam-
ple programs, all of which are available for download on the book’s web site. It gives a brief
description of each program, tells where it is shown in a figure (if it is), and tells which page has
more information. You can use this list to find examples that may help with specific problems.

What You need to use thIs Book

There are several ways you can build and view WPF applications and XAML files, and each has dif-
ferent requirements.

If you’re a devout minimalist, all you really need to install is the latest version of the .NET Framework
and a WPF-enabled browser such as one of the newer versions of Internet Explorer or Firefox.

xxxiii

IntroductIon

At least some XAML files should work with .NET Framework 3.0, Internet Explorer 6, and Firefox 2,
but I recommend installing the latest versions. Currently, that’s .NET Framework 3.5 with Service Pack 2,
Internet Explorer 8, and Firefox 3. Don’t forget to look for other Service Packs for all three products!

The current release of Expression Blend doesn’t understand the .NET Framework
version 4.0 so, for now at least, you may want to stick with version 3.5 if you plan
to use Expression Blend.

Note that Windows Vista comes with the .NET Framework 3.0 preinstalled, so, if you’re running
Vista, you may be all set. You can install the .NET Framework version 3 and later in Windows XP,
although not in earlier versions of Windows. As far as I know, you cannot run WPF in UNIX or
Macintosh operating systems, although in theory that could change some day.

In this bare-bones Framework-and-browser environment, you can create XAML files in a text editor
and then look at them in your browser.

If you want to attach program code to your WPF user interfaces, or if you want to build compiled
WPF applications or XAML Browser Applications (XBAP — pronounced ex‑bap), you’ll need a
programming environment that can write that code. The easiest solution is to install Visual Studio
and write application code in C# or Visual Basic.

The programming code examples shown in this book are written in C# and
Visual Basic; versions of the programs are available for download on the book’s
web site.

Visual Studio makes attaching code to the WPF user interface practically trivial. The interactive
Window Designer is missing a lot of functionality, so you often need to write XAML code to get the
job done, but the Visual Studio Express Editions come at the unbeatable price of $0. Download the
C# or Visual Basic Express Editions at www.microsoft.com/express.

If you want a more graphic designer–oriented development tool, you can install Expression Blend. It
won’t help you build code to attach to the user interface, but it does have some nice features that are
missing from Visual Studio. Its support for interactively manipulating different WPF objects is more
complete than that provided by Visual Studio, and it provides fairly simple editors that let you build
simple triggers and animations interactively.

Unfortunately, Expression Blend is far from free. At the time of writing, it’s priced at $499, although
you can get a 30-day free trial. You can learn more about Expression Blend at www.microsoft.com/
expression/products/Overview.aspx?key=blend.

Of course, the best configuration for building WPF applications includes both Visual Studio
and Expression Blend. Neither of these tools is perfect, but they each cover some of the other’s
shortcomings.

xxxiv

IntroductIon

I also often find that one gives a mysterious error message, while the other
is easy to understand — so switching back and forth sometimes helps with
debugging.

To summarize, the best WPF development environment includes the latest .NET Framework and a
WPF-enabled web browser, together with the latest versions of Visual Studio and Expression Blend,
all installed in Windows Vista or Windows XP. If you want to save some money, you can do without
Expression Blend, but then you’ll do a lot more XAML coding by hand.

conventIons

To help you get the most from the text and keep track of what’s happening, we’ve used several con-
ventions throughout the book.

Boxes like this one hold important, not‑to‑be forgotten information that is
directly relevant to the surrounding text.

Notes, tips, hints, tricks, and asides to the current discussion are offset and
placed in italics like this.

As for styles in the text:

We ➤➤ highlight new terms and important words when we introduce them.

We show keyboard strokes like this: [Ctrl]+A.➤➤

We show URLs and code within the text in monofont type like so:➤➤
persistence.properties.

We present code like this:➤➤

We use a monofont type with no highlighting for code examples.

The Code Editors in Visual Studio and Expression Blend provide a rich color scheme to indicate var-
ious parts of code syntax. That’s a great tool to help you learn language features in the editor and to
help prevent mistakes as you code.

xxxv

IntroductIon

To take advantage of the editors’ colors, the code listings in this book are colorized using colors simi-
lar to those you would see on screen in Visual Studio or Expression Blend. In order to optimize print
clarity, some colors have a slightly different hue in print than what you see on screen. But all of the
colors for the code in this book should be close enough to the default Visual Studio colors to give you
an accurate representation of the colors.

source code

As you work through the examples in this book, you may choose either to type in all the code man-
ually or to use the source code files that accompany the book. Many of the examples show only the
code that is relevant to the current topic and may be missing some of the extra details that you need
to make the example work properly.

All of the source code used in this book is available for download at www.wrox.com. Once at the site,
simply locate the book’s title (either by using the Search box or by using one of the title lists) and click
on the “Download Code” link on the book’s detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by
ISBN; this book’s ISBN is 978‑0‑470‑47722‑9.

Once you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

You can also download the book’s source code from its web page on my VB Helper web site,
www.vb-helper.com/wpf.htm. That page allows you to download all of the book’s code in one big
chunk, the C# or Visual Basic versions separately, or the code for individual chapters.

errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration and at the same time you will be helping us provide even higher
quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click on the Book Errata link. On this page
you can view all errata that have been submitted for this book and posted by Wrox editors. A com-
plete book list including links to each book’s errata is also available at www.wrox.com/misc-pages/
booklist.shtml.

http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com
http://www.wrox.com

xxxvi

IntroductIon

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fix the problem in
subsequent editions of the book.

P2P.Wrox.com

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics of
interest of your choosing when new posts are made to the forums. Wrox authors, editors, other indus-
try experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to p2p.wrox.com and click on the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post
your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click on the “Subscribe to this Forum” icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click on the FAQ link on any P2P page.

Using the P2P forums allows other readers to benefit from your questions and any answers they gen-
erate. I monitor my book’s forums and respond whenever I can help.

If you have other comments, suggestions, or questions that you don’t want to post to the forums,
feel free to e-mail me at RodStephens@vb-helper.com with your comments, suggestion, or ques-
tions. I can’t promise to solve every problem but I’ll try to help you out if I can.

http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com

WPF Overview
This chapter explains fundamental Windows Presentation Foundation (WPF) concepts. Normally,
it’s the glaringly obvious chapter that you skip to get to the good stuff. If this were a cookbook,
this would be where I explain food and tell you why it’s important (“so you don’t starve”).

In this case, however, I encourage you to at least skim this chapter before plunging ahead.
Many parts of WPF are confusing and seemingly inconsistent. This chapter gives some useful
background on what WPF is (that question has caused more confusion than you might imag-
ine), WPF’s goals, and the underlying architecture used by WPF.

These tidbits of information will give you some useful perspective for understanding WPF’s
quirks and idiosyncrasies. For example, this information will let you say, “Oh, WPF does it
that way because Direct3D does it that way” or “I’ll bet this weird behavior was provided to
save me a few keystrokes of typing.”

In addition to this background, this chapter describes the basic types of WPF projects.

Finally, this chapter can help you understand what’s contained in the later chapters. This chap-
ter briefly defines resources, styles, control templates, and other terms that are described more
completely in later chapters. A quick introduction to those terms now will help you know
which chapters to read later.

WPF in a nutshell

WPF has been around for quite a while now, but there are still plenty of people out there who
don’t really know what it is. I’ve heard people claim it’s everything from a set of controls to a
“Vista thing” to XAML.

1

2 ❘ ChaPter 1 WPF OvervieW

In fact, there’s a kernel of truth in each of these attitudes. WPF does include a new set of controls
that largely replace the Windows Forms controls. The libraries you need to run WPF applications are
installed by default in Vista and Windows 7, so it is sort of a Vista thing, although you can also run
WPF applications in Windows XP and certainly in future versions of Windows (and perhaps even
UNIX some day). WPF applications can use XAML to build interfaces, and XAML is all you really
need to write loose web pages; but there’s a lot more to WPF than just XAML.

As far as WPF’s importance and usefulness go, opinions range the gamut from “I don’t have time
for jiggling buttons and spinning labels” to “It’s the wave of the future, and every new application
will be written in WPF by the end of the year” (although that was last year, so perhaps this latter
attitude isn’t quite correct).

Again, the truth lies somewhere between these two extremes. You certainly can abuse WPF to build
completely unusable interfaces full of bouncing buttons, skewed video, stretched labels, garish col-
ors, and rotating three-dimensional (3D) graphics. You can add animation to the controls until the
interface behaves more like a video game than a business application.

Figure 1-1 shows the Clutter example program displaying a (faked) series of rotated images as an
invoice spins into view. This program demonstrates some interesting techniques but goes way over-
board with gratuitous animation, displaying a spinning invoice area, animated buttons, and sound
effects. If you think it’s ugly in this book, you should see how annoying it is when you run it!

FoCus on What, not hoW

In this overview chapter, don’t worry about how the examples work. For now, focus on
the cool and amazing things they can do. You’ll see how they work in later chapters.

Figure 1-1

WPF in a Nutshell ❘ 3

amPle examPles

All of the example programs that are available for download on the book’s web site
have titles that match their names. For example, Figure 1-1 shows the Clutter pro-
gram and its title is “Clutter.”

If you see a picture in the book and you want to find the corresponding example
program, download the programs for that chapter and look for a program with a
name matching the title shown in the picture. For information about downloading
the examples, see the section “Source Code” in the Introduction.

If you use restraint and good design principles, you can use WPF to make user interfaces that are
more visually appealing and inviting. You can use animation to hide and display information to
reduce clutter while giving the user hints about where the data has gone so it’s easy to find later.

animation overload

Before you go overboard with animation, ask yourself, “Does this animation serve a
purpose?” If the purpose is to hide a picture while showing where it is going so the
user can find it again later — great. If the purpose is to be cool and make an invoice
fly out of a file cabinet icon while growing, spinning, and changing opacity — think
again. The first time, the user might think this is cool; but by the second or third time,
the user will find it annoying; and by the end of the day, the user will be seasick.

It may not be true that all new applications will use WPF by the end of the year, but you should con-
sider using WPF for new development. While getting the most out of WPF takes a lot of study and
practice, it’s easy enough to use WPF controls instead of the corresponding Windows Forms controls
in most cases. You may not stretch WPF to its limits, but you can take advantage of some of WPF’s
new features without a lot of work.

Of course, some applications will probably never need WPF. Some programs run most naturally as
automatic services or from the command line and don’t need graphical user interfaces at all.

What is WPF?
So, what exactly is WPF? I’ve heard it described as a library, framework, subsystem, set of controls,
language, and programming model.

Probably the easiest way to understand WPF is to think of it as an assortment of objects that make it
easier to build cool user interfaces. Those objects include a new set of controls, some replacing your
favorite Windows Forms controls (such as Label, TextBox, Button, Slider) and others providing
new features (such as Expander, FlowDocument, and ViewBox).

4 ❘ ChaPter 1 WPF OvervieW

WPF also includes an abundance of new objects to manage animation, resources, events, styles, tem-
plates, and other new WPF features.

Your application uses some combination of these objects to build a user interface.

What is xaml?
XAML (pronounced zammel) stands for “eXtensible Application Markup Language.” It is an exten-
sion of XML (eXtensible Markup Language). Microsoft invented XAML to represent WPF user
interfaces in a static language much as HTML represents the contents of a web page. It defines spe-
cial tokens to represent windows, controls, resources, styles, and other WPF objects.

A program can use a file containing XAML code to load a user interface. For example, a web
browser can load a file containing XAML code and display the user interface (UI) it defines. If you
use Expression Blend or Visual Studio to create a WPF application, the application automatically
loads the project’s XAML for you so you don’t need to add code to do that yourself.

no xaml required

Note that XAML is not required to make a WPF application. A program could
build all of the objects that it needs by using code. For example, instead of placing
a Label object in a XAML file, the program could create an instance of the Label
class and use that instead. XAML is just there for your convenience. It makes it
easier to build and store interfaces.

All of the usual XML rules apply to XAML files. In particular, XAML files must have a single root
element that contains all of the other elements in the file. What element you use as the root element
depends on the type of project you are building.

For example, in a compiled application, the root element is a Window that represents the window
displayed on the desktop. In contrast, a loose XAML page is displayed in a web browser, so the
browser plays the role of the window. In that case, the root element is typically some container
control such as a Grid or StackPanel that can hold all of the other elements.

Control sneak Peek

Later chapters describe these controls in detail, but for now, know that a Grid
arranges controls in rows and columns, and a StackPanel arranges controls in a
single row either vertically or horizontally.

WPF in a Nutshell ❘ 5

Each opening element must have a corresponding closing element with the same name but beginning
with a slash. For example, the following code snippet defines a StackPanel:

<StackPanel>
</StackPanel>

If an element doesn’t need to contain any other elements, you can use a special shorthand and end
the opening element with a slash instead of a separate closing element. The following snippet shows
an Image object. It doesn’t contain any other items, so it uses the shorthand notation.

<Image Margin=”10” Width=”75” Height=”75” Source=”Volleyball.jpg”/>

The preceding snippet also demonstrates attributes. A XAML attribute is a value contained inside
an item’s opening tag. In this snippet, the Image object has attributes Margin, Width, Height, and
Source with values 10, 75, 75, and Volleyball.jpg.

XAML elements must be properly nested to show which WPF objects contain other objects. The fol-
lowing XAML code shows a Window that contains a horizontal StackPanel that holds several other
vertical StackPanel objects, each holding an Image and a Label.

<Window
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 x:Class=”Window1”
 x:Name=”Window”
 Title=”SimpleCritters”
 Width=”557” Height=”156”
 FontSize=”22” FontWeight=”Bold” FontFamily=”Comic Sans MS”
 >
 <StackPanel Orientation=”Horizontal” Margin=”5”>
 <StackPanel>
 <Image Margin=”5” Height=”50” Source=”Frog.jpg”/>
 <Label Margin=”5” Content=”Frog”/>
 </StackPanel>
 <StackPanel>
 <Image Margin=”5” Height=”50” Source=”Butterfly.jpg”/>
 <Label Margin=”5” Content=”Butterfly”/>
 </StackPanel>
 <StackPanel>
 <Image Margin=”5” Height=”50” Source=”Shark.jpg”/>
 <Label Margin=”5” Content=”Shark”/>
 </StackPanel>
 <StackPanel>
 <Image Margin=”5” Height=”50” Source=”Tiger.jpg”/>
 <Label Margin=”5” Content=”Tiger”/>
 </StackPanel>
 <StackPanel>
 <Image Margin=”5” Height=”50” Source=”Platypus.jpg”/>
 <Label Margin=”5” Content=”Platypus”/>
 </StackPanel>
 </StackPanel>
</Window>

SimpleCritters

6 ❘ ChaPter 1 WPF OvervieW

Figure 1-2 shows the result.

Figure 1-3 shows the program with its
StackPanels highlighted so they are
easy to see. In this figure, you can see
how the outer StackPanel arranges the
inner StackPanels horizontally and
how the inner StackPanels arrange
their Images and Labels vertically.

object trees
The controls that make up a user inter-
face such as the one shown in Figure 1-2
form a natural hierarchy with some con-
trols containing others, which may then
contain others. Figure 1-4 shows this
program’s control hierarchy graphically.

WPF has two concepts of trees that
represent structure similar to the one
shown in Figure 1-4. Normally, you don’t need to worry explicitly about these, but knowing what
they are can make it a bit easier to understand some of the online documentation.

Image

Label

Image

Label

Image

Label

Image

Label

Image

Label

Window

StackPanel

StackPanel StackPanel StackPanel StackPanel StackPanel

Figure 1-4

Logical Tree
The logical tree is defined by the content relationships among the objects in the interface. That
includes controls contained within other controls (such as a series of Image controls contained
within a StackPanel) and simple content (such as the string contained in a Label).

It also includes some objects that you may not think of as separate entities. For example, if you add
items to a ListBox, those items are automatically added as ListBoxItem objects inside the ListBox.
If you use the Expression Blend or Visual Studio editors to add the items, you may not think of them
as separate objects, but they are, as far as the logical tree is concerned.

Figure 1-2

Vertical StackPanels

Horizontal StackPanel

Figure 1-3

WPF in a Nutshell ❘ 7

Visual Tree
The second WPF tree is the visual tree. The visual tree represents the structure of visual objects
including the components that define them. For example, a scrollbar includes a draggable thumb,
two arrow buttons at the ends, and two clickable areas between the thumb and the arrows. Each of
those pieces is a separate object that is wrapped up inside a scrollbar, and each of the pieces is part
of the visual tree.

Why should you care about the logical and visual trees? First, controls tend to inherit property val-
ues according to their positions in the logical tree. For example, the preceding XAML code used the
following attributes to set the main Window’s FontSize, FontWeight, and FontFamily properties.

FontSize=”22” FontWeight=”Bold” FontFamily=”Comic Sans MS”

These properties are inherited throughout the logical tree so the Labels at the bottom of the tree all
use these font values.

The second reason you should care about these trees is that events tend to follow the visual tree. For
example, when you click on an arrow in a scrollbar, you don’t really want to have to deal with that
arrow’s events. Instead you can let the event propagate up through the visual tree to the scrollbar,
and you can catch it there.

non-treelike structure
Because the controls that make up a user interface such as this one naturally form a containment
hierarchy, they map fairly reasonably into XML. Unfortunately some of the things that make up an
interface don’t fit quite as neatly in a tree structure.

For example, Figure 1-5 shows a more
complicated version of the previous user
interface.

In this version, all of the Image controls
have drop shadows. You could give each
Image its own drop shadow, but that
would mean duplicating code, which
would make maintaining the program
harder. For example, if you later decided to remove the drop shadows or use some other bitmap
effect (perhaps to put a glow around the images), you would have to update each control separately.

Rather than repeating the drop shadow code, you can define a Style and apply it to each Image.
Now to change every Image, you only need to change the Style.

Similarly, this example defines a style for its Label controls that gives them drop shadows, makes
them yellow, and centers their text.

Unfortunately, each of these styles applies to several different controls in the logical hierarchy, and
that messes up the nice neat tree structure shown in Figure 1-4.

Figure 1-5

8 ❘ ChaPter 1 WPF OvervieW

XAML still uses a hierarchical XML structure anyway, even though some scenarios such as this one
require objects to refer to others in a non-hierarchical way. It works, but, as you’ll see in later chap-
ters, it does complicate the XAML syntax considerably.

What is silverlight?
Silverlight (formerly known as WPF/e, where the e stands for “everywhere”) is a restricted version
of WPF designed to run safely in a browser while still providing a rich user interface. It runs on most
major browsers including Mozilla Firefox, Microsoft Internet Explorer, and Apple Safari.

To minimize library size and to work safely in the browser, Silverlight does not provide all of the fea-
tures that are included in WPF. Some features are missing, while others are provided in a restricted
way. While there are some differences between WPF and Silverlight, the basics are the same; so much
of what you learn about WPF applies to Silverlight as well.

There are several differences between WPF and Silverlight, but so far Microsoft has not published
an authoritative list. Here are some of the restrictions in Silverlight:

deFerred understanding

Some of these features may not make much sense to you now. But they will
become clearer, I hope, as you read through the book. For now, just be aware that
Silverlight doesn’t do everything that WPF does.

Once assigned, you cannot change a control’s style.➤➤

You must explicitly assign each control’s style. You cannot create a style that applies to every ➤➤

control of a given type (e.g., buttons).

One style cannot inherit from another.➤➤

You cannot put triggers in styles and templates.➤➤

You cannot use dynamic resources. All resources are static.➤➤

Silverlight has more restrictive data binding.➤➤

Access to Windows API functions is limited.➤➤

You cannot use commands in Silverlight.➤➤

Silverlight doesn’t support 3D graphics and graphics hardware.➤➤

Silverlight doesn’t include preview (tunneling) events.➤➤

This list will change over time (it may even be outdated by the time you read this). Microsoft is
trying to include as many WPF features as possible in Silverlight, while still keeping the necessary
libraries as small as possible.

Project Types ❘ 9

This isn’t a Silverlight book, so it doesn’t cover Silverlight in any detail. You can
learn more about Silverlight on these web pages:

Silverlight Overview: ➤➤ msdn.microsoft.com/bb404700(VS.95).aspx

Silverlight Home Page: ➤➤ www.microsoft.com/Silverlight

Silverlight FAQ: ➤➤ www.microsoft.com/silverlight/resources/faq/

default.aspx

Differences between WPF and Silverlight: ➤➤ msdn.microsoft.com/

cc903925(VS.95).aspx

In general, you should use WPF if you plan to build a high-powered desktop sys-
tem that needs extensive access to the host computer. You should use Silverlight
if you don’t need as much access to the host computer and you want your appli-
cation to run easily in different web browsers on different operating systems.

ProjeCt tyPes

WPF lets you build three main kinds of applications: stand-alone, XAML Browser Applications, and
loose XAML pages.

A stand-alone application is compiled and runs locally on the user’s computer much as any stand-
alone application does. This type of application runs with full trust and has full access to the com-
puter. It can read and write files, modify the System Registry, and do just about anything else that
you can do from a C# or Visual Basic program.

A XAML Browser Application (XBAP — pronounced ex-bap) is a compiled application that runs
within a web browser. For security purposes, it runs within the Internet Zone so it doesn’t have full
trust and cannot access all of the parts of the computer that are available to a stand-alone applica-
tion. XBAPs can only run in browsers that support them (currently Internet Explorer and Firefox)
and require that the .NET Framework version 3 or later be installed on the user’s computer.

Loose XAML pages are simply XAML files displayed in a web browser. They can be viewed by any
web browser that understands XAML. Loose XAML pages do not require the .NET Framework
to be installed on the user’s computer, so they can run on operating systems that cannot install the
.NET Framework, such as Macintosh and UNIX systems. Loose XAML pages cannot use script,
C#, or Visual Basic code, however. They can display interesting graphics and let the user manipu-
late the display through XAML animations, but they don’t have the power of the other kinds of
applications.

In addition to these different types of applications, WPF provides several different navigation mod-
els for stand-alone applications and XBAPs. First, they can provide navigational tools similar to
those used by Windows Forms applications. Buttons, links, and other code-based mechanisms can
display other pages and windows.

10 ❘ ChaPter 1 WPF OvervieW

WPF also provides browser-style navigation that lets the user go forward and backward through a
history of previously visited windows. The Frame and NavigationWindow classes can provide this
type of navigation much as a web browser does.

The PageFunction class also supports a special form of navigation. It allows one page to treat another
as if it were calling a function. The first page can call the second, passing it input parameters. When the
called page finishes, the first page receives a “return result” from the called page.

Later chapters have more to say about using these different forms of navigation.

goals and BeneFits

WPF has several important goals including:

Better use of graphics hardware➤➤

Property binding to provide animation➤➤

Property inheritance➤➤

Styles➤➤

Templates➤➤

Consistent control containment➤➤

Separate user interface and code-behind➤➤

New controls➤➤

Declarative programming➤➤

The following sections describe these goals and how they are achieved by WPF in greater detail.

Better use of graphics hardware
Windows Forms controls are built using the GDI (graphics device interface) and GDI+ (.NET’s version
of GDI) programming interfaces. These native (non-.NET) APIs provide many flexible and powerful
features for drawing graphics, but they have become a bit outdated. In particular, GDI and GDI+ do
not take advantage of the tremendous power available in modern computer graphics hardware. Even
a fairly inexpensive modern desktop system has vastly more graphical power than the computers that
were available when GDI was created.

WPF is based on the more recent DirectX library rather than GDI or GDI+. DirectX is a library of
tools that provide high-performance access to graphic and multimedia hardware.

By using DirectX, WPF can draw objects more quickly and flexibly than before. DirectX also pro-
vides a few secondary benefits practically for free including better multimedia support, transforma-
tions, 3D graphics, retained-mode drawing, and high-resolution vector graphics.

Goals and Benefits ❘ 11

Better Multimedia Support
DirectX includes routines that play multimedia files efficiently. WPF has taken advantage of some of
those routines to make displaying media files quick and easy.

For example, the following XAML snippet makes all of the buttons in a window play the sound file
speech_on.wav when clicked:

<EventTrigger RoutedEvent=”ButtonBase.Click” >
 <SoundPlayerAction Source=”speech_on.wav”/>
</EventTrigger>

The MediaElement control plays video files almost as easily. In the XAML code, you can set the
control’s Source property to the file that you want to play. At run time, the control provides sim-
ple methods and properties such as Play, Pause,
Stop, and Position to control the video playback.

Figure 1-6 shows a small application playing
three video files simultaneously. The buttons use
MediaElement methods and properties to control
the video. The program also uses the previous
XAML snippet to play a sound whenever you
click a button.

Transformations
DirectX provides methods that make it easy to
move, stretch, skew, and rotate graphics. WPF
gives you access to those methods so you can
easily transform any graphics that you draw. In
fact, you can also apply those same transforma-
tions to objects that WPF draws including con-
trols such as Labels, TextBoxes, and Buttons.

Figure 1-7 shows a program that displays
Labels rotated 90 degrees on the left.

You can even transform a MediaElement, and it
will display video moved, stretched, skewed, and
rotated! Figure 1-8 shows a program displaying
three videos in MediaElements that have been
rotated, skewed, and stretched, respectively. The
three Buttons at the top are also skewed.

It’s hard to imagine a business application where you would need to display rotated and stretched
video, but using WPF, you could do it if you really had to.

Figure 1-6

Figure 1-7

12 ❘ ChaPter 1 WPF OvervieW

Figure 1-8

3D Graphics
Many modern computers include graphics hardware that supports 3D graphics, and DirectX (specif-
ically, the Direct3D part of DirectX) takes advantage of that support. WPF, in turn, uses Direct3D
to provide support for 3D graphics.

If your program uses Direct3D directly, you need to write a fair amount of code that deals with ini-
tializing Direct3D, discovering what hardware is available on the computer, handling device errors,
and other administrative chores. WPF handles these details for you so it’s easier to build 3D scenes
with WPF than it is working with Direct3D itself.

In addition to letting you avoid some annoying details, using WPF to produce 3D graphics also gives
you some hope that your application will still work when new versions of Direct3D become avail-
able. When some previous versions of Direct3D came out, programmers had to change their pro-
grams to work with the new version. If you use WPF to make 3D programs, WPF should adjust to
accommodate any Direct3D changes in the future.

There’s still plenty of work to do, however. Building a 3D scene requires that you create lights, mate-
rials, and surfaces. Depending on the project, it may require that you define texture coordinates and
surface normals (vectors indicating a direction away from the surface) to indicate how the surfaces
are oriented.

In fact, even with WPF’s help, building complex scenes is tough enough that you’ll probably want to
use code to do it rather than using XAML, but at least it’s possible.

The Gasket3D example program shown in Figure 1-9 uses
WPF code to display a rotating cube full of holes. This pro-
gram draws a fairly complicated shape and requires a lot of
resources so you may not get very good performance if you
set Level greater than 2.

Retained-Mode Drawing
When you place a control on a form, the control draws itself
whenever necessary. If you cover the form with another win-
dow and then show the form again, the control redraws itself.

Figure 1-9

Goals and Benefits ❘ 13

Unlike Windows Forms, WPF provides this capability to all visible objects, not just controls. Your
code creates objects such as arcs and polygons that can then draw themselves whenever necessary.

Furthermore, if you need to move an object, you can simply change its coordinates and it will redraw
itself accordingly.

The following XAML code defines a Polygon object that draws a star. The program doesn’t need any
code to redraw the star when the window repaints. The Polygon object does this automatically.

<Polygon Stroke=”Red” StrokeThickness=”5”
 Points=”20,20 120,40 30,70 80,10 110,90” />

Figure 1-10 shows the Star example program displaying this object.

High-Resolution Vector Graphics
One approach to drawing graphics is to make a bitmap image of your picture
and then display the bitmap. A system that draws images based on bitmaps is
called a raster-based system.

This works well if you only need to display the image at its original size, but if
you scale, skew, rotate, or otherwise transform the bitmap, the results are often blocky and pixelated.

To avoid these problems, WPF takes a different approach. Instead of drawing bitmap-based graph-
ics, it uses vector graphics. A vector drawing system stores the data (points, line segments, and
other drawing shapes) needed to draw a picture instead of a bitmap image of the original picture.
If the picture needs to be transformed, the graphics system transforms the drawing data and then
redraws the picture, giving a high-resolution result no matter how the drawing is transformed.

The Zoom example program shown in Figure 1-11
demonstrates the difference between raster and
vector graphics. In the top row, the program uses
XAML objects (ellipses and an elliptical arc for the
mouth) to draw the exact same Smiley Face at differ-
ent scales. In the bottom row, the program draws a
bitmap image of the smallest face at different scales.
As you zoom in, you can see how blocky the result
becomes.

lines enlarged

Notice that the lines in the vector-drawn image are also scaled. When the draw-
ing is enlarged, lines become thicker and fonts become larger, just as if the original
image were magnified, only smoother.

Figure 1-10

Figure 1-11

14 ❘ ChaPter 1 WPF OvervieW

Property Binding to Provide animation
In addition to using DirectX, another fundamental change with WPF is the way it handles properties.
WPF properties seem similar to good old Windows Forms properties at first, and, in many cases, you
can treat them similarly.

For example, to set a property in code, you simply create the value that the property should have and
assign it to the property. The following C# code creates a LinearGradientBrush that shades from
white to green. It then sets the grdMain control’s Background property to the brush.

LinearGradientBrush bg =
 new LinearGradientBrush(Colors.White, Colors.Green, 90);
grdMain.Background = bg;

Behind the scenes, however, WPF properties are very different from the simple properties a pro-
gram normally gives to the classes that it creates. WPF uses dependency properties, a special kind
of property that is registered with the WPF property system. Dependency properties support sev-
eral features that normal properties do not, including default values, inheritance (described further
in the next section), WPF-style data binding, and property change notification.

Change notification allows the WPF system to notice when a property changes and take action if
necessary. The WPF-style data binding allows a property’s value to be tied to some other value.
Together these two features allow a program to animate many of the properties that define the
appearance of its interface.

For example, the GrowingButtons program shown in Figure 1-12 defines several Buttons scaled to
75 percent of their normal sizes. When the mouse moves over a Button, the Button’s IsMouseOver
property value changes from False to True. The program detects that change and starts an anima-
tion that increases the Button’s scale to 150 percent. When the mouse leaves the Button, the prop-
erty’s value changes to False and the program uses another animation to decrease the button’s scale
to 75 percent again.

By providing change notification and supporting the type of data binding used by animations,
WPF properties make property animation possible.

Figure 1-12

Goals and Benefits ❘ 15

Property inheritance
A WPF control inherits property values from the control that contains it. For example, if you place a
Button on a Grid that has defined font properties, then the Button inherits those properties.

a diFFerent kind oF inheritanCe

The idea of property inheritance is different from the normal concept of inheri-
tance used in object-oriented programming (OOP). In OOP, a derived class inherits
the property, method, and event definitions of the parent class but an object in the
child class does not inherit property values from the parent class. In WPF, a control
inherits some of the property values of the control that contains it.

A control’s property values actually depend on a sequence of possible sources that are applied in a
specific order of precedence. For example, a Button may inherit font properties from the Grid that
contains it, but the Button’s own properties can override those values.

The following list shows the precedence of the simplest places where a property can get its value.
The items at the top have the highest precedence, so, for example, a Button’s own properties (local
values) override inherited values, but an animation can override the local values, at least while the
animation is running.

 1. Animated values

 2. Local value

 3. Style

 4. Inheritance

 5. Default

For a more complete list of places where properties can get there values, see msdn.microsoft.com/
ms743230.aspx.

styles
A style lets you define a package of property values for later use. For example, a style can define values
for Width, Height, BitmapEffect, and Background properties for a Button. Later, you can apply the
style to a Button to give it those property values.

Styles let you easily define a common appearance for a group of controls. Later, if you want to change
the appearance of the application, you can simply modify the style, and all of the controls that use it
automatically pick up the change. This makes it a lot easier to maintain complex user interfaces and
to give controls a similar appearance.

16 ❘ ChaPter 1 WPF OvervieW

You can use one style as a starting point for another style. For example, you could make a style that
defines a common Background for the entire application. Then you could make more refined styles
to determine the appearances of Buttons, Labels, and other types of controls.

Contested inheritanCe

Some controls block inheritance. For example, Button and ListBox controls do
not inherit Background property values.

templates
WPF has a couple of kinds of templates.

A control template lets you customize the behavior of a control by determining the objects that
make up the control and how they behave.

For example, a normal button displays a rounded rectangle with a certain visual appearance includ-
ing text in the middle. If you wanted, you could define a control template that made a Button draw
itself as an ellipse with the text extending outside the left and right sides. You could then define the
actions that the control takes when significant events occur such as the mouse moving over the but-
ton, the user pressing the button, the button being disabled, and so forth.

A second type of template is a data template. Data templates let you define how data-bound con-
trols display their data. For example, suppose you want to display data about students in a ListBox.
You could use a data template to make the ListBox display each entry as a StackPanel that holds a
picture of the student followed by the student’s name and contact information.

Styles let you modify control appearance. Templates let you modify control structure and behavior.

Consistent Control Containment
Many types of Windows Forms controls can contain only a single type of content. For example,
TextBox, Label, Button, and GroupBox controls all have a Text property that determines what text
the control displays.

In contrast, many WPF controls can contain just about anything either directly or indirectly. For
example, a Button control can contain a single object. Normally that object is a string, but it could
be something else such as a StackPanel. The StackPanel can then include whatever you like.

Figure 1-13 shows a program display-
ing three Buttons. Each Button holds
a StackPanel that contains an Image
and a Label.

This ability for controls to hold practi-
cally anything makes WPF controls
far more flexible than Windows Forms
controls.

Figure 1-13

Goals and Benefits ❘ 17

separate user interface and Code-Behind
One of the biggest goals of WPF was to separate the user interface from the code that lies behind it.
Using XAML to define the user interface and C# or Visual Basic code to provide the application’s
functions lets you separate the two tasks of interface construction and programming.

In theory, graphic designers using Expression Blend can build the interface without knowing any-
thing about programming. Then programmers can use Visual Studio to add the application code.

In practice, not every company can afford dedicated graphic designers and Expression Blend. In that
case, the same people may end up building the user interface and writing the code behind it, either with
a combination of Expression Blend and Visual Studio, or with Visual Studio alone. Even in that case,
however, separating the user interface from the code behind it makes working on the two pieces easier.

a good, old idea

Good developers have been separating UI development and the code behind it for
years. In Windows Forms applications, one developer can build the user interface,
while another writes code to perform application tasks. Then you can stitch the
two together.

Using XAML makes the separation a bit stricter, however, so it provides additional
benefit.

Windows Forms developers also often make the code attached to the user interface
as thin as possible, making simple event handlers that call routines in other mod-
ules to do all of the heavy lifting. That strategy still works for WPF applications.

Another drawback to the “separate designers” theory is that it assumes that graphic designers can
build the interfaces you need without knowing a lot about programming. Unfortunately, some of the
more advanced XAML and WPF techniques are quite complicated, and both Expression Blend and
Visual Studio have trouble with them. To get the most out of WPF, a UI designer might need a PhD
in WPF and XAML programming, not a topic that’s typically covered in graphics design courses (at
least not so far).

This has led to my non-purist WPF philosophy. Do what’s reasonable in XAML. If something is
easier to handle in code, do so.

new Controls
WPF comes with several new controls for arranging child controls. For example, StackPanel
arranges its children in a single row or column, DockPanel attaches its children to its edges,
WrapPanel arranges its children in a row or column and wraps to a new row or column when
necessary, and Grid arranges its children in rows and columns.

18 ❘ ChaPter 1 WPF OvervieW

a neW take on old Controls

Some of these controls have been around in other forms for a while now. For example,
the old FlowLayoutPanel does roughly what the new WrapPanel does and the old
TableLayoutPanel has a similar purpose to the new Grid, although it’s not as flexible.

Some have claimed that these arranging controls should change the way you design user interfaces
by allowing you to take best advantage of whatever space is available on the form. Good developers
have already been using Windows Forms controls such as FlowLayoutPanel and properties such as
Anchor to do this, so it’s not a revolutionary new concept, although the new controls do give you
some new options.

One new control that deserves special mention is FlowDocument. A FlowDocument is a flexible docu-
ment object that can hold content much like a web page does. It can hold text in various styles grouped
by paragraphs. It can hold lists, tables, and images. It can hold figures and floaters that hold content
around which the text flows. A FlowDocument can hold WPF controls such as Buttons, TextBoxes,
and 3D drawings. It can even run WPF animations so the figures in the document move.

WPF comes with three controls for viewing FlowDocuments:

FlowDocumentScrollViewer➤➤ displays a FlowDocument in a long vertically scrolling page
much like a web browser displays web pages.

FlowDocumentPageViewer➤➤ displays the content one page at a time. It provides scrolling and
zooming features so the user can see the whole document.

FlowDocumentReader➤➤ can display the content in one of three ways: like the
FlowDocumentScrollViewer, like a FlowDocumentPageViewer, or in a two-page mode that
shows the document two side-by-side pages at a time.

Figure 1-14 shows a FlowDocumentPageViewer displaying a FlowDocument that contains text, tables,
lists, shapes, and even a Button control. The floater on the right holds a polygon and a 3D viewport
displaying the text VB Helper rotating in three dimensions. The FlowDocumentPageViewer is dis-
playing the document in TwoPage mode so it shows two pages of the document side-by-side.

declarative Programming
Many developers add declarative programming as a benefit of using XAML. Intuitively this makes
some sense. If the user interface just sits there, it seems reasonable that the code that implements it
should be declarative and just sit there, too.

Of course, many WPF user interfaces do far more than just sit there. Once you start adding triggers,
storyboards, templates, and styles, the interface is doing much more than just sitting there. In some
cases, an interface built in XAML alone is much harder to understand than one that uses a little
code at key moments.

Declarative programming is a nice feature of XAML, but it’s not clear that it’s beneficial in itself.

Disadvantages ❘ 19

Figure 1-14

disadvantages

Despite all of its advantages, WPF does have some disadvantages, the biggest of which is its steep
learning curve. Using WPF to build a simple form filled with Labels, TextBoxes, and simple shapes
is easy, but taking advantage of all of the features it has to offer is hard.

WPF includes many inconsistencies such as exceptions to property inheritance. The fact that XAML
uses a hierarchical format to store information that is not always hierarchical means it must include
some rather confusing syntax.

While WPF includes new controls that Windows Forms doesn’t have, it is also missing some old ones
such as DateTimePicker, MonthCalendar, PropertyGrid, and BackgroundWorker.

The mere fact that WPF is relatively new means that it is less stable than the more established Windows
Forms. Changes, hopefully for the better, are inevitable.

Finally, the Expression Blend and Visual Studio XAML Editors leave much to be desired. Neither of
them can handle all of the flexibility provided by WPF, and they sometimes generate cumbersome
XAML code that you may need to fix by hand. IntelliSense support is also weak for XAML editing,
particularly for providing help while entering values for attributes.

Still, WPF provides many advantages and it’s easy enough to use for simple interfaces. You can put
TextBoxes and Labels on a window with little difficulty. You can add more complex animations
and special effects later when you’ve had a chance to digest them and you decide that they are neces-
sary for your application.

20 ❘ ChaPter 1 WPF OvervieW

summary

WPF contains an assortment of objects that build user interfaces. XAML is an XML-based lan-
guage that you can use to specify WPF objects. At run time, a program can read a XAML file to
create a user interface.

WPF has many advantages including:

Better use of graphics hardware➤➤

Property binding to provide animation➤➤

Property inheritance➤➤

Styles➤➤

Templates➤➤

Consistent control containment➤➤

Separate user interface and code-behind➤➤

New controls➤➤

Declarative programming➤➤

It also has some drawbacks, three of the biggest being a difficult learning curve, increased expense
(if you want to use the Expression Blend tool), and mediocre support in the design tools Expression
Blend and Visual Studio.

However, WPF is easy enough to use if you don’t need all of its more advanced features. You can use
WPF to make simple forms containing textboxes, labels, and basic decorations such as frames. Then
you can add more advanced features such as styles, templates, and animations when you decide you
need them.

As long as you don’t get carried away with animation, sound effects, and other fun but distracting
features, you can use WPF to build engaging, responsive interfaces that will both keep users inter-
ested and let them do their jobs.

Now that you understand what WPF is and what its strengths and weaknesses are, you’re ready to
start building WPF applications. The next two chapters describe the two main tools for building
these applications: Visual Studio and Expression Blend.

WPF in Visual Studio
Visual Studio provides everything you need to build WPF applications. It has a WYSIWYG
(“what you see is what you get”) Window Designer that lets you create a XAML (Extensible
Markup Language) interface by dragging controls onto a window. (If you skipped Chapter 1 and
want more detail about what XAML, see the section “What Is XAML?” in Chapter 1. Its Code
Editors let you write C# or Visual Basic code to sit behind the user interface (UI). It can also run
the WPF application that you’re building so you can see it in action.

This chapter explains how you can use Visual Studio to build WPF applications. It does not
explain how to use Visual Studio in its entirety. Visual Studio is a huge application with lots
of powerful features for writing applications in C#, Visual Basic, Visual C++, and other lan-
guages, and this book only covers the bare minimum necessary to use Visual Studio to build
WPF applications. For more information on programming in those other languages, see a
book that covers those topics.

For more details on Visual Basic programming, see my book Visual Basic 2010
Programmer’s Reference (Rod Stephens, Wiley, 2010).

If you have lots of previous experience with Visual Studio, possibly building
Windows Forms applications, then most of this material will be familiar and
easy to understand. If you’re comfortable building forms, setting control prop-
erties, and performing other basic Visual Studio chores, then you may want to
skim much of this chapter and focus on the parts that are most specific to WPF
development, particularly the section “Code-Behind.”

2

22 ❘ Chapter 2 WPF in Visual studio

New projeCts

Starting a new WPF project in Visual Studio is easy. Open the File menu and select New Project to
display the New Project dialog shown in Figure 2-1.

Figure 2-1

Select the type of project that you want to build. If you want to use C# to build a stand-alone appli-
cation, select “WPF Application” as shown in Figure 2-1. If you want to build a XAML Browser
Application (XBAP), select “WPF Browser Application.”

Note that Expression Blend 3 cannot open programs created for .NET Framework version 4, at least not as
of this writing. If you want to be able to edit the program with Expression Blend 3, select a .NET Framework
version that it can understand such as 3.5. In Figure 2-1, the Framework version is circled in red.

all May Not Be as it appears

The exact appearance of the New Project dialog shown in Figure 2-1 and where
menu commands appear may depend on how you have Visual Studio configured. For
example, in Figure 2-1 it is assumed that Visual Studio is configured for C# develop-
ment. If it is configured for Visual Basic development, then Visual Basic will be listed
as the first category, and C# will appear in the “Other Languages” category.

Also depending on the version of Visual Basic you have installed and how it is config-
ured, your development environment may not look exactly the same as mine. Windows
may be moved to new locations or hidden, and even menus may be rearranged. You may
need to spend a little extra time searching through Visual Studio to find something, but
it should all be there somewhere.

Window Designer ❘ 23

If you want to use Visual Basic for the code behind the user interface, expand the “Other Languages”
category and select “Visual Basic” before you pick “WPF Application” or “WPF Browser Application.”

Enter a good name for the project and click OK.

Figure 2-2 shows Visual Studio displaying a newly created WPF application. If the Properties win-
dow (#5 in the annotated figure) isn’t visible, use the View menu’s “Properties Window” command
to display it.

Figure 2-2

The following list names the parts that are numbered in Figure 2-2:

 1. Window Designer

 2. XAML Editor

 3. Toolbox

 4. Solution Explorer

 5. Properties window

 6. Window tabs

The following sections describe each of these parts of Figure 2-2 in greater detail.

wiNdow desigNer

The Window Designer lets you build windows graphically. It lets you add controls to the window,
resize and arrange controls, place controls inside other controls, set control properties, and more.

Notice the scale slider on the left edge of the Window Designer in Figure 2-2. This lets you change
the Designer’s level of magnification so you can zoom in to work on a small area or zoom out to see

24 ❘ Chapter 2 WPF in Visual studio

everything. Click on the little box with arrows pointing in four directions below the slider to scale
the window to fit the available area.

Use the Toolbox (described shortly) to select a control type. Then click and draw on the Window
Designer to place the control on it. Alternatively, you can double-click on a tool in the Toolbox to
place the control on the window at a default size and location.

After you place a control on the Designer, you can click on it and drag it into a new position. If you
create or drag a control on top of a container control such as a Grid, StackPanel, or Frame, the con-
trol will be placed inside the container.

CoNteNt iNteNt

Be careful when you position controls on the window. It’s easy to accidentally drag
a control inside a container.

When in doubt, look at the XAML code to see which control contains other con-
trols. You can also use the XAML Editor to move controls into other containers if
you have trouble dragging them where you want them to be.

When you select a control, the Designer highlights it as shown in
Figure 2-3.

In Figure 2-3 the upper button’s left, top, and right edges are
attached to the edges of its container by arrows. This indicates
that the control’s corresponding edges will remain a fixed dis-
tance from the container’s edges if the container is resized. In
this case, that means if the container is made wider, then the
button grows wider, too.

The following code shows the XAML generated by the
Window Designer for the top button. The Margin attribute sets the distance between the control’s
and the container’s left, top, and right edges. The value VerticalAlignment=”Top” keeps the
button’s bottom edge from attaching to the container’s.

<Button Height=”23” Margin=”46,30,157,0” Name=”button1”
 VerticalAlignment=”Top”>Button</Button>

If you hover over one of the attachment arrows or over the circle on
any unattached side, then the cursor changes to a pointing hand, as
shown in Figure 2-3. If you click while that cursor is displayed, the
control toggles whether the clicked edge is attached to its contain-
er’s edge. This is an easy way to turn edge attachment on and off.

You can click-and-drag the grab handles at the control’s
corners to resize it. As you resize the control, the Window
Designer displays the control’s width and height, as shown
in Figure 2-4. The small, gray line between the two buttons

Figure 2-3

Figure 2-4

XAML Editor ❘ 25

indicates that the Designer snapped the height of the upper button so it is a standard distance
away from the lower button (6 pixels).

You can also click-and-drag the control’s body to move it. As you drag the control, snap lines appear
to show when the control lines up with other controls in various ways such as along the left edges,
right edges, top edges, content, and so forth.

Once in a while, the Window Designer may get confused and display the message shown in Figure 2-5
instead of redrawing. Simply follow the message’s instructions and click on the message to make the
Error List appear (at the bottom in Figure 2-5). Double-click an error message to make the XAML edi-
tor go to that line so you can fix it.

Figure 2-5

The Window Designer may also display the message shown in Figure 2-6. Use the View menu’s
Error List command to open the Error List. Then you can double-click on an error to go to the bro-
ken line in the XAML editor as before.

If you look closely at the XAML code in Figure 2-6, you’ll see that there are two Button controls
with the name button1. In this example, the error message is correct. If you rename one of the but-
tons, the Window Designer will reload correctly.

XaMl editor

The XAML Editor lets you manually edit the window’s XAML code. Usually it’s easier to use the
Window Designer to place controls on the window and let the designer generate the XAML for you,
but there are occasions when you’ll need to edit the XAML code directly. The Window Designer just
plain can’t do some things, and it does a poor job of doing others.

26 ❘ Chapter 2 WPF in Visual studio

Figure 2-6

For example, the Window Designer will not create or apply styles, templates, or storyboards, although
if you enter them in the XAML code by hand, it will do its best to honor them.

Sometimes it’s easier to edit the XAML than to use the Window Designer. For example, setting exact
row and column sizes in a Grid can be tricky in the Window Designer, but it’s easy in XAML. Define
some row and columns in the Window Designer. Then open the XAML Editor, find the RowDefinition
and ColumnDefinition elements, and set their Height and Width attributes as needed.

For example, the following code gives a Grid two rows, one of height 30 pixels and one using all of
the remaining vertical space. It gives the Grid three columns of equal widths.

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height=”30” />
 <RowDefinition Height=”*” />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”33*” />
 <ColumnDefinition Width=”33*” />
 <ColumnDefinition Width=”33*” />
 </Grid.ColumnDefinitions>
</Grid>

You could very carefully set the Grid’s column widths in the Window Designer, but it would be tricky
to make them exactly equal. The Window Designer also can’t set a row height to a fixed value such as
30 pixels.

XAML Editor ❘ 27

Colorized Code

The XAML Editor colorizes code to show its structure. If you don’t mess with the
default color settings, it displays angle brackets in blue, object names in brown, attri-
bute names in red, and attribute values in blue. The colors make it a bit easier to pick
out different parts of an object’s definition such as the attribute values.

I recommend that you leave the default colors alone as much as possible so your
code looks like other developers’ code (and the code in this book), but if you really
need to change the colors (for example, if you have trouble telling the default colors
apart) you can. Open the Tools menu and select Options. Expand the Environment
folder and click the Fonts and Colors tab.

row aNd ColuMN properties

While the Window Designer cannot set fixed row or column sizes, you can do it by
clicking the ellipsis next to the Grid’s ColumnDefinitions and RowDefinitions
properties in the Properties window. Using the XAML Editor is easier still.

It’s also sometimes easier to make a lot of copies of a group of controls using the XAML Editor. Simply
highlight the controls’ code, press [Ctrl]+C to copy, and [Ctrl]+V to paste.

The XAML Editor provides IntelliSense so as you type it displays a list of possible things you might be
trying to type. For example, Figure 2-7 shows IntelliSense after I typed <Lab in the XAML Editor. The
list has Label highlighted because that’s the only choice that it knows about that matches what I typed.

After IntelliSense opens, you can use the mouse or arrow keys to select a choice and then press the
[Tab] key to make IntelliSense insert the full command. If IntelliSense goes away and you want it
back (e.g., if you pressed [Esc] or moved to another line and then moved back), press [Ctrl]+Space to
make it open again.

Figure 2-7

28 ❘ Chapter 2 WPF in Visual studio

split wiNdows

You can drag the slider between the Window Designer and the XAML Editor to
make one bigger and the other smaller. When you’re initially placing controls on a
window, you may want a large Window Designer and a small XAML Editor. Later,
when you’re fine-tuning the XAML code, you may want a big XAML Editor.

You can also click on the up/down arrow (↑↓) between the two panes to switch
which is on top and which is on bottom. If you keep the top window large and the
bottom one small, this makes it easy to switch between the two.

toolBoX

The Toolbox holds controls that you can place on the window. Many of the controls, such as Label and
TextBox, are self-explanatory, and you should have little trouble figuring out how to use them. Many of
the controls are also similar to Windows Forms controls, so using them will be easy if you have experi-
ence with Windows Forms controls. Chapters 5 through 8 describe individual controls in more detail.

To use the Toolbox, click on a tool to select it. Move to the Window Designer and click-and-drag to
place an instance of the control on the window. You can then drag the control around on the Designer
to move it on the window. You can also click on the control and use its grab handles to resize it.

If you [Ctrl]+click on a control in the Toolbox, then that control remains selected even after you click-
and-drag to place an instance on the form. This lets you make several controls quickly and can be use-
ful, for example, if you need to make a form containing a lot of labels and textboxes.

Click on the Pointer tool to deselect any previously selected control (including if you [Ctrl]+clicked
one). Then you can click on controls in the Window Designer to select them.

If you double-click on a control on the Toolbox, Visual Studio adds
an instance of the control to the window at a default size and location.
You can then drag it into position and resize it as needed.

The Toolbox contains tabs that group related controls. In Figure 2-2, the
Controls tab is open to display all of the available controls. Figure 2-8
shows the Toolbox with the Common tab expanded. This tab contains only
the most frequently used controls, which include (on my system at least)
Border, Button, CheckBox, ComboBox, Grid, Image, Label, ListBox,
RadioButton, Rectangle, StackPanel, TabControl, and TextBox.

solutioN eXplorer

The Solution Explorer lists the application’s files. Double-click on a file
to open it in the appropriate editor. For example, if you double-click
Window1.xaml as shown in Figure 2-9, Visual Studio opens the file in
the Window Designer. Figure 2-8

Properties Window ❘ 29

You can use the Solution Explorer to find other project files such as code-
behind files. For example, to open the code-behind file for Window1.xaml,
click on the hollow triangle to the left of that file in the Solution Explorer
if necessary, and double-click on the MainWindow.xaml.cs (for C#) or
MainWindow.xaml.vb (for Visual Basic) file that lies beneath. (Figure 2-9
shows the file expanded so the code-behind file is visible.)

If you add resource files to the project such as images, video, or audio
files, you can change the files’ properties. Click on a file in the Solution
Explorer to select it and then use the Properties window to set properties
such as “Build Action” and “Copy to Output Directory.”

editors everywhere

Visual Studio includes a lot of different kinds of editors. It can edit C#, Visual Basic,
XAML, images, icons, and even cursors.

In fact, that gives you a relatively easy way to create and edit images and icons. Open
the Project menu and select “Add New Item.” Select the type of item that you want to
add, give it a good name, and click Add. Initially Visual Studio opens the new file for
editing. Later you can double-click on the file in Solution Explorer to edit it.

The editors include all sorts of useful tools such as color palettes, drawing tools (pens,
brushes, spray, flood), and specialized tools for different file types. For example, the
Cursor Editor lets you set the cursor’s hotspot, and the Icon Editor lets you add new
sizes and color depths to the file. (Icons look best on different systems if you provide
lots of different sizes and depths.) The tools may not be as powerful as commercial
editors that you can buy, but they are functional and handy.

properties wiNdow

The Properties window lets you view and edit the properties val-
ues for the currently selected control in the Window Designer.
Figure 2-10 shows the Properties window when a Grid control
is selected.

The Properties window can only set relatively simple kinds of proper-
ties. For example, it can set a control’s Background, Fill, or Stroke
property to solid colors such as Red, Light Blue, or #FFFF8000 (a dark
orange). It can even set these properties to gradient brush but it cannot
set them to more complex objects such as visual brushes.

To set more complex property values in Visual Studio, you need to
type the brush’s code in the XAML Editor. For example, the following
code fills a Rectangle with a VisualBrush:

<Rectangle>
 <Rectangle.Fill>

Figure 2-9

Figure 2-10

30 ❘ Chapter 2 WPF in Visual studio

 <VisualBrush Viewport=”0,0,0.25,0.25” TileMode=”FlipXY”>
 <VisualBrush.Visual>
 <Label Content=”Hello”/>
 </VisualBrush.Visual>
 </VisualBrush>
 </Rectangle.Fill>
</Rectangle>

property oddity

Sometimes the Properties window doesn’t show the properties that you expect. For
example, if you select more than one control at the same time (use [Shift]+click to
select more than one control or [Ctrl]+click to toggle whether a control is selected),
then the Properties window displays only properties that are common to all of the
selected controls. For example, Grids have a Background property but Rectangles
use Fill for the same purpose, so if you select a Grid and a Rectangle, then you’ll
see neither of those properties.

Similarly, if you click on a file in the Solution Explorer, you’ll see the properties of
the file, not the currently selected controls.

The Properties window does provide editors for a few complex properties. For example, it provides
editors that let you modify a Grid control’s ColumnDefinitions and RowDefinitions properties,
and to define gradient brushes.

NeCessary NaMes

In Figure 2-10, the selected Grid control has no name. You can see the Name
textbox near the top of the Properties window below the control’s type, System
.Windows.Controls.Grid.

If you need to refer to a control in code, either the XAML code or the C# or Visual
Basic code behind the interface, then you should give the control a good name.

Developers often don’t give names to controls that are never referred to by the code
such as Labels that don’t change, GroupBoxes and other decorative controls, layout
controls such as StackPanels, and so forth.

Many C# and Visual Basic developers give controls a prefix that tells the kind of
control followed by a descriptive name. For example, txtFirstName is a TextBox
that holds a first name. Some links you can follow for specific conventions include:

Microsoft’s Visual Basic naming conventions at ➤➤ msdn.microsoft.com/

aa263493.aspx

continues

Code-Behind ❘ 31

Microsoft Consulting Service’s Visual Basic naming conventions at ➤➤

support.microsoft.com/kb/110264

More general Microsoft naming guidelines at ➤➤ http://msdn.microsoft.com/

xzf533w0.aspx

Using a prefix lets IntelliSense help you quickly find the control you want. For
example, if you type txt in a Code Editor, IntelliSense will bring you a list of every
available TextBox so you can easily pick the one you want. (I find this particularly
useful when I teach and I don’t know the names of a student’s controls. If they use
the right prefix, I can type txt and find the control whether they named it txt-
FirstName, txtCustomerName, or txtName.)

Some developers put the type of control at the end of the name as in FirstNameTextBox
or firstNameTextBox. This makes the control’s purpose obvious, but it removes the
IntelliSense benefit. (I suspect those developers are used to an environment that doesn’t
have good IntelliSense support.)

wiNdow taBs

Figure 2-11 shows the Window tabs at the top of Visual Studio’s editing area.

Figure 2-11

These tabs let you select among the various windows that are open for editing. In Figure 2-11,
those include MainWindow.xaml (the Window Designer/XAML Designer currently selected), the
MainWindow.xaml.cs code-behind file, App.xaml.cs (the code-behind file for the main applica-
tion), and App.xaml (the XAML file for the main application).

Code-BehiNd

Unless your application consists solely of UI elements (a loose XAML page might), you’ll eventually
need to associate program code with the UI elements. For example, the application will need to take
action when the user clicks buttons and selects commands from menus.

Visual Studio makes this easy. Depending on what you’re trying to accomplish and which language
you’re using, you have several options.

continued

32 ❘ Chapter 2 WPF in Visual studio

eveNt haNdler eXaMples

The ImageColors example program, which is shown in Figure 2-12, demonstrates
the techniques for attaching controls to event handlers that are described in the fol-
lowing sections. The program’s different buttons are attached to event handlers in
different ways. Download the C# or Visual Basic version of this program from the
book’s web site depending on which language you are using.

Figure 2-12

default event handlers
The simplest way to attach code to the user interface is through Window Designer. Open the window in
Window Designer. If you want to add code to a control’s default event handler (e.g., a Button’s Click
event), simply double-click on the control. Visual Studio automatically creates an event handler for the
event and opens it in the Code Editor (either the C# or Visual Basic Editor depending on the language
you are using). It also adds code to the XAML element to attach the control to the event handler.

For example, the following code shows the event handler generated when you double-click on a
Button named btnGreen while using C#.

private void btnGreen_Click(object sender, RoutedEventArgs e)
{

}

The following XAML code shows the button’s definition. Visual Studio automatically added the
Click=”btnGreen_Click” attribute to tie the button to its event handler.

<Button Height=”23” HorizontalAlignment=”Left”
 Margin=”10,10,0,0” Name=”btnGreen” VerticalAlignment=”Top”
 Width=”75” Click=”btnGreen_Click”>Button</Button>

ImageColors

Code-Behind ❘ 33

The Click attribute is the only connection between the XAML code and the code-behind. If you
need to detach the button from the code, simply remove that attribute. You don’t even need to
remove the event-handler code, although leaving it in will clutter the code.

Non-default event handlers
If you want to attach code to an event other than a control’s default event (e.g., a Button’s MouseOver
event), select the control in the Window Designer. At the top of the Properties window, click on the
Events button to view the control’s events.

Figure 2-13 shows the Properties window displaying the events
for btnGreen. Notice that the Click event handler is already
filled in with the btnGreen_Click routine.

If you select an event, a dropdown appears to the right that will
let you pick an appropriate event handler for that event.

If you want to create a new event handler, simply double-click
on the event, and Visual Studio will create an appropriate event
handler and open it in the Code Editor.

handmade event handlers
Double-clicking on a control and using the Properties window are the easiest ways to build event
handlers, but there’s nothing stopping you from doing it yourself by hand.

Add an appropriate attribute to the control’s XAML code. For example, to add a ValueChanged event to
a Slider control, add an attribute similar to ValueChanged=”slider1_ValueChanged”.

Then add the event handler to your code. You’ll need to give it the appropriate parameters for the
type of event you are catching. For C#, the Slider control’s ValueChanged event handler would
look similar to the following:

private void slider1_ValueChanged(object sender,
 RoutedPropertyChangedEventArgs<double> e)
{

}

In Visual Basic, the code would be similar to the following:

Private Sub Slider1_ValueChanged(ByVal sender As System.Object, _
 ByVal e As System.Windows.RoutedPropertyChangedEventArgs(_
 Of System.Double)) _
 Handles Slider1.ValueChanged

End Sub

The trick to building event handlers by hand lies in knowing what parameters they need. Because these
are often complicated, it’s usually easier to double-click on the control or use the Properties window.

Figure 2-13

34 ❘ Chapter 2 WPF in Visual studio

runtime attached event handlers
A Window’s controls are objects in the project’s code, so you can add event handlers to them in the
code at run time. In this case, you don’t need to add an attribute to the XAML code to connect the
control to its event handler.

The following C# code attaches the btnRed control’s Click event to the btnRed_Click event handler.

btnRed.Click += btnRed_Click;

Here’s the Visual Basic version:

AddHandler btnRed.Click, AddressOf btnRed_Click

It’s usually easier to connect controls to event handlers at design time, but this technique lets you
add, remove, or change the code associated with an event at run time.

other visual Basic event handlers
Visual Basic gives you one additional option for connecting controls to event handlers. Do not include
an event attribute in the XAML code. Then add a Handles clause to the event handler’s declaration.

The following Visual Basic code shows the declaration for an event handler. The Handles clause at
the end indicates that this routine handles the btnGreen control’s Click event.

Private Sub btnGreen_Click(ByVal sender As System.Object, _
 ByVal e As System.Windows.RoutedEventArgs) _
 Handles btnGreen.Click

The trick again is in knowing what parameters to pass the routine. Happily, Visual Basic’s Relaxed
Delegates feature lets you simplify the parameter list.

This feature lets you replace the type of a parameter with a different type as long as you know that
the actual value will match the new type at run time. For example, if this event handler only handles
button clicks, then the sender parameter is actually a button. If the event handler doesn’t need to
use the second parameter, it can declare it using the simpler type Object. The simplified version of
the event handler is:

Private Sub btnBlue_Click(ByVal btn As Button, _
 ByVal a As Object) Handles btnBlue.Click

Finally, if the event handler doesn’t need to use the parameters at all, you can omit them as in the
following code:

Private Sub btnGrayscale_Click() Handles btnGrayscale.Click

This technique isn’t quite as simple as double-clicking on the control in the Window Designer, but it
does make the Visual Basic code very simple. Note that you can double-click on the control to create
the event handler and then remove its parameters, giving you the best of both worlds.

Summary ❘ 35

suMMary

Visual Studio provides the basic tools that you need to build WPF applications. The Window Designer
lets you build the XAML interface, and the Code Editors let you create the C# or Visual Basic code that
sits behind the controls.

While you can get the job done with Visual Studio, it makes some tasks rather cumbersome. For
example, it doesn’t provide editors for complex objects such as visual brushes, and it doesn’t provide
any help for creating property animations. To build these things in Visual Studio, you need to write
the XAML code yourself.

The Expression Blend tool described in the next chapter provides some useful tools that are missing
from Visual Studio. For example, it lets you create complex visual brushes and property animations
interactively rather than by writing XAML code. You’ll still want to use Visual Studio to write the
code behind the interface, but Expression Blend can make some chores a lot easier.

Expression Blend
Visual Studio provides an excellent environment for writing C# or Visual Basic code but a
mediocre environment for creating XAML interfaces. Expression Blend provides the opposite
experience: It is a fine environment for creating XAML interfaces but a lackluster tool for cre-
ating C# and Visual Basic code-behind.

Fortunately, Expression Blend is nicely integrated with Visual Studio, so you can switch back
and forth between the two tools as needed.

This chapter explains how you can use Expression Blend to build Windows Presentation
Foundation (WPF) user interfaces (UI). It explains how to start a new project, add controls to
a window, specify basic control properties, and create simple animations.

InstallIng ExprEssIon BlEnd

To get the most out of this chapter, you’ll need to install Expression Blend. Unfortunately
Expression Blend is rather expensive and, unlike Visual Studio, has no free Express
edition. Fortunately you can download a 60-day trial version. You can learn more
about Expression Blend or download the trial version at expression.microsoft.com/
cc136530.aspx.

Expression Blend is a huge and complicated application with lots of powerful features for build-
ing XAML user interfaces, and this book only covers the bare minimum necessary to build WPF
applications. For more detailed information about the intricacies of Expression Blend, consult
a book that focuses solely on Expression Blend such as Foundation Expression Blend 3 with
Silverlight (Victor Gaudioso, friends of ED, 2009) or Microsoft Expression Blend Unleashed
(Brennon Williams, Sams, 2008).

If you have lots of previous experience with Expression Blend, then most of this
material will be familiar and easy to understand, so you might want to skim this
chapter.

3

38 ❘ ChaptEr 3 ExprEssion BlEnd

nEw projECts

Starting a new WPF project in Expression Blend is easy. Open the File menu and select “New
Project” to display the New Project dialog shown in Figure 3-1.

FIgurE 3-1

Select the type of project that you want to build. Enter a descriptive name for the project and the direc-
tory where you want to build it. Select the programming language that you want to use for code-behind
(C# or Visual Basic) and click OK to create the project.

If you only want to make loose XAML pages, select the WPF Application project
type and pick either programming language. Later you can copy the XAML file
that you build out of the project’s directory and discard the rest.

Figure 3-2 shows Expression Blend displaying a typical WPF application.

all May not BE as It appEars

Expression Blend may not appear exactly as shown in the figures in this chapter.
While it’s not as configurable as Visual Studio, there are still plenty of ways to
resize, collapse, hide, or otherwise change the appearance of Expression Blend’s
windows. If you can’t find a window, look for its title next to an arrow indicating
that it has been collapsed. If you still can’t find it, look in the Window menu.

New Projects ❘ 39

FIgurE 3-2

The following list names the numbered parts that are highlighted in Figure 3-2.

 1. Assets window

 2. Projects window tab

 3. Window Designer, Design view

 4. Window Designer, XAML view

 5. Properties window

 6. Resources window tab

 7. Objects and Timeline

 8. Triggers window tab

 9. Control Toolbox

The following sections describe each of the parts of Figure 3-2 in greater detail.

tErMInology

The Window Designer’s Design view is also called the artboard.

40 ❘ ChaptEr 3 ExprEssion BlEnd

assEts wIndow

The Assets window lists tools that you can use while building a project. Select a category on the
left (Project, Controls, Styles, etc.) to see items that fit the category on the right. For example, in
Figure 3-2 the Controls category is selected so the list on the right shows common controls. You can
expand the Controls category to pick from the sub-categories All, Data Visualization, and Panels.

projECts wIndow taB

The Project window lists the files in the project. These include application files, resource files such as
images and video, the XAML window definition files, and the code-behind for those files.

The Project window gives you several ways to edit different kinds of files. If you double-click on a
XAML file, Expression Blend opens it in the Window Designer (described next).

If you double-click on a code-behind file, Expression Blend opens it in an internal code editor com-
plete with IntelliSense.

MIssIng EdItors

Unfortunately, Expression Blend doesn’t have some of the extra editors that Visual
Studio has to let you edit bitmaps, icons, cursors, and so forth.

If you double-click on an image file in Expression Blend and you have a window
open in the Window Designer, Expression Blend adds an Image control contain-
ing the image to the currently selected control. If you don’t have a window open in
the Window Designer, Expression Blend opens the file using its default application,
usually Microsoft Paint.

Alternatively, you can right-click on the file and select “Edit Externally” to open it
in an external editor like Microsoft Paint.

Best of all, you can right-click on a XAML or code-behind file and select “Edit in Visual Studio” to
open the entire WPF project in Visual Studio. This lets you easily edit the code-behind and even the
XAML with the full benefits of Visual Studio.

wIndow dEsIgnEr

The Window Designer lets you edit windows and define animations. The Storyboards section later
in this chapter explains how you can use the Window Designer to build animations. This section
explains how you can use it to build a window’s basic user interface.

Window Designer ❘ 41

When you want to concentrate on the Window Designer, Expression Blend lets you hide the side
panels that normally contain the Project window, Triggers window, and other secondary windows.
To hide or restore the panels, open the Window menu and select “Auto-Hide All Panels.”

Figure 3-3 shows the Window Designer with the side panels hidden.

FIgurE 3-3

The upper part of this figure shows the design surface (artboard). Here you can add, select, resize,
move, and delete controls. The Window Designer highlights the currently selected control with blue
lines and displays the control’s name in its upper-left corner (“rectContent” in Figure 3-3).

Below the design surface is the XAML Editor. Here you can review and edit XAML code. In Figure 3-3
the Rectangle that is selected in the designer surface is highlighted in the XAML Editor.

The upper-right corner of the design surface holds three sideways buttons (circled in red in Figure 3-3)
that let you view the design surface only, the XAML Editor only, or a split view similar to the one
shown in Figure 3-3.

Between the design surface and the XAML Editor is a zoom dropdown that says “100%” in
Figure 3-3. Use the dropdown to select different scale levels while using the Designer.

The buttons to the right of the zoom dropdown let you turn off rendering effects (for performance),
show or hide the snap grid (shown in Figure 3-3), turn snapping to gridlines on and off, turn snap-
ping to snaplines on and off, and show or hide annotations.

The left edge of the screen holds the Control Toolbox. For more information on this area, see the
section “Control Toolbox” later in this chapter.

42 ❘ ChaptEr 3 ExprEssion BlEnd

propErtIEs wIndow

The Properties Window lets you view and modify the properties
that determine the appearance and behavior of a window’s con-
trols. Figure 3-4 shows the Properties window for the Rectangle
rectContent.

This window groups the control’s properties into categories that
vary slightly depending on the type of control selected. The follow-
ing list summarizes the categories shown in Figure 3-4:

Brushes➤➤ — Sets the control’s fill and outline colors.

Appearance➤➤ — Sets the control’s opacity, visibility (visible or
hidden), and some aspects of geometry (the radii of the rect-
angle’s corner curves in this example). Advanced properties
set dash style and bitmap effects.

Layout➤➤ — Sets the control’s width, height, and alignment. If
the control is inside a Grid, sets the row and column.

Common Properties➤➤ — Sets properties that are common to
many controls such as Cursor, IsEnabled, and ToolTip.

Transform➤➤ — Sets transformations that can move, scale,
rotate, and skew the control.

Miscellaneous➤➤ — Holds advanced properties such as
ContextMenu that don’t fit anywhere else.

Another common category, Text, is used by controls that contain text to specify font properties.

Click on the right-pointing triangle () next to a category to expand it. In Figure 3-4, the Layout,
Common Properties, Transform, and Miscellaneous categories are collapsed so they show this symbol.

Click on the downward-pointing triangle () next to a category to collapse it. In Figure 3-4, the
Brushes and Appearance categories are expanded so they show this symbol.

Note that some categories also have advanced properties that are hidden by default. In Figure 3-4,
the Appearance category has advanced properties that are hidden. Click on the downward pointing
arrow with a dot in it () at the bottom of the category to see the advanced properties.

Unfortunately these categories and their advanced sections are fairly confusing. If you are a begin-
ner and sort of know what you want to do but don’t really know what property to look for, the sec-
tions can help. For example, if you want to change a grid’s fill color but don’t know the name of the
property that does that, you can look in the Brushes and Appearance categories until you figure out
that the property is Background.

FIgurE 3-4

Properties Window ❘ 43

However, if you know that you want to change a control’s MinWidth property to 100, then you may
need to wander around until you discover that MinWidth is in the advanced properties part of the
Layout category.

To make finding properties easier, the Properties window provides a search box above the property cat-
egories. In Figure 3-4, it contains the italicized text Search. Click in this box, enter the name of the prop-
erty you want (or part of the name), and the Properties window will display the matching properties.

The following sections say a bit more about making and editing brushes and using property resources.

Brushes
In WPF, a brush determines how an object is filled. WPF also uses
brushes to “fill” items that seem too thin to fill such as the lines
that make up a polygon or the edges of a rectangle.

Figure 3-5 shows a rectangle that is filled with a pale yellow brush.
Its Stroke property, which is used to draw its edges, is a gradient
brush that shades from yellow at the top to orange at the bottom.
The star-shaped Polygon has no fill color (so the Rectangle shows
through), and its Stroke is a gradient brush that shades from blue
to white.

Making Brushes
To make a brush, select the object that should use it on the Window
Designer. Then in the Properties window, expand the Brushes cate-
gory. Figure 3-6 shows the Brushes properties for the rectangle shown
in Figure 3-5.

The bars across the top of the Brushes area show the different kinds of
brushes the control can use. For the Rectangle shown in Figure 3-5,
this includes Fill (the Brush used to fill the Rectangle), Stroke
(the Brush used to draw the Rectangle’s outline), and OpacityMask (a
Brush used to determine how opaque or transparent the Rectangle is at
different points).

Click on one of these bars to select the brush that you want to modify.
In Figure 3-6, the Stroke brush is selected.

Now you can use the Brush definition area below to define the brush.
The small images across the top of this area are tabs that select differ-
ent styles of brushes. The following list summarizes these tabs in left-to-right order:

No Brush➤➤ — The control is not filled so whatever lies below shows through.

Solid Brush➤➤ — The control is filled with a single solid color. (The rectangle shown in Figure 3-5
is filled with this type of brush.)

FIgurE 3-5

FIgurE 3-6

44 ❘ ChaptEr 3 ExprEssion BlEnd

Gradient Brush➤➤ — The control is filled with a gradient brush that shades between colors. The
following section says more about gradient brushes.

Tile Brush➤➤ — The control is filled with a repeating image. The section “Tile Brushes” later in
this chapter says more about tile brushes.

Brush Resources➤➤ — This tab lists predefined brush resources. They include solid system-
color brushes such as ControlBrushKey and HighlightBrushKey, in addition to any brush
resources that you have defined. The section “Tile Brushes” later in this chapter explains how
to make some kinds of brush resources.

Pick the brush tab that you want, and then define the brush that you want to use. The following sec-
tions provide a little more detail about how to make some of the more complicated brushes.

Gradient Brushes
A gradient brush fills an area with colors that flow smoothly from one value to another. Depending on
the type of brush, the colors may flow in one direction or radially away from a center point. A gradient
brush can also include any number of colors so, for example, it might shade from red to green to blue.

To create a gradient brush, select the Brush area’s “Gradient brush”
tab to see a Brush Editor similar to the one shown in Figure 3-7.

Below the tabs lies a color square that you can click on to select colors.
Along the right edge of the square is a rainbow-like hue selector that you
can click on to change the color square’s hue. In Figure 3-7, a pure green
is selected so the color square shows different shades of pure green. If you
clicked on the yellow part of the hue selector, then the color square would
display shades of yellow.

Beneath the color square is a horizontal bar showing the colors that
make up the brush’s gradient. In Figure 3-7, the gradient starts light
green on the left, shades to dark green in the middle, and then shades
back to light green on the right.

The little house-shaped things below the gradient bar show key colors
along the gradient. If you click on one to select it, then you can use
other parts of the Brush Editor to change the color at that position. For example, you can click on
the color square to pick the key color’s value.

To the right of the color square and hue selector are R, G, and B textboxes where you can type a
color’s red, green, and blue components as values between 0 and 255.

The A textbox holds the color’s alpha component. This value tells how opaque the color is and can
take values between 0 percent (transparent) and 100 percent (opaque).

Below the A textbox is the color’s representation in hexadecimal.

Click-and-drag a key color to change its position in the gradient. Click on the color gradient bar to
add more key colors.

The final pieces of the Brush Editor described here let you decide whether the brush should be a linear
gradient brush or a radial gradient brush. Click on the button in the Editor’s lower-left corner (it shades

FIgurE 3-7

Properties Window ❘ 45

from black on the left to white on the right) to select a linear gradient brush where colors shade from one
to another in a single direction. Click on the next button to the right (it shades from black in the center to
white around the edges) to select a radial gradient brush.

Figure 3-8 shows a program that fills two Rectangles with
gradient brushes. The two brushes are the same (and use the
colors specified in Figure 3-7) except the one on the left is a
linear gradient brush and the one on the right is a radial gra-
dient brush.

Transformed Gradient Brushes
More advanced options let you change the appearance of gradient brushes. A particu-
larly useful brush editing tool is the Brush Transform tool. This tool looks like a fat
arrow in the Control Toolbox and is shown in the middle of Figure 3-9.

If you select this tool and then click on a control that uses a brush, the Window
Designer displays an arrow that lets you change the brush’s geometry.

In Figure 3-10, the rectangle on the left is filled with a linear gradient brush. The
arrow shows the gradient’s direction.

When the Brush Transform tool is active for a linear gradient
brush, you can use the mouse to:

Grab the middle dot and move the whole arrow with-➤➤

out rotating it.

Grab the arrow’s head or tail and move it.➤➤

Hover beyond either end of the arrow to get a rota-➤➤

tion pointer. Then click-and-drag to rotate the arrow
without moving it.

In Figure 3-11, the rectangle on the right is filled with a
radial gradient brush. The gradient’s colors shade across
the arrow’s length from the tail to the head. (This example
shades from light blue at the tail to dark blue in the middle to
light blue again at the head.)

When the Brush Transform tool is active for a radial gradient
brush, you can use the mouse to:

Drag the arrow’s tail to change where the first color begins.➤➤

Drag the small white grab handles to resize the brush. (For example, you could make it ➤➤

shorter and wider.)

Drag the brush’s edge to move the whole brush without otherwise changing it.➤➤

Hover beyond a side’s grab handle to get a rotation pointer. Then click-and-drag to rotate ➤➤

the brush without moving it.

FIgurE 3-8

FIgurE 3-9

FIgurE 3-10

FIgurE 3-11

46 ❘ ChaptEr 3 ExprEssion BlEnd

Tile Brushes
A tile brush fills an area with a repeating pattern. That pattern can be an image, a drawing, or a
dynamic drawing that animates at run time. The following sections describe the three kinds of tile
brushes: image brush, drawing brush, and visual brush.

Image Brush
An image brush fills an area with a picture. You
can use the brush’s properties to display some or
all of the picture on some or all of the filled area,
stretching the picture if necessary.

To make an image brush, first create an Image con-
trol containing the picture that you want to use.
In the Objects and Timeline area, select the new
Image control.

On the Tools menu, open the “Make Brush
Resource” submenu, and select “Make Image
Brush Resource” to open the Create ImageBrush Resource dialog shown in Figure 3-12.

Give the brush a good name and click OK.

At this point, Expression Blend has created the brush resource.

ExpEndaBlE IMagE

After creating the image brush, Expression Blend no longer needs the Image control
that you used to create it. You can delete that control if you like.

To see the new brush, click on the Resources tab on Expression
Blend’s right panel. Click on the dropdown arrow to the right of the
brush to open the Brush Property dialog shown in Figure 3-13.

The “Tile mode” property determines how the image is repeated if
necessary to fill the area and can take the following values:

None➤➤ — The image is not repeated. Parts of the area may
be unfilled if a single copy of the image doesn’t fill the area
completely.

FlipX➤➤ — The image is flipped horizontally to create new col-
umns of the image.

FlipY➤➤ — The image is flipped vertically to create new rows
of the image. (If you look closely at Figure 3-13, you’ll see

FIgurE 3-12

FIgurE 3-13

Properties Window ❘ 47

that the copy of the image above the central one is flipped vertically so the eyes are at the
bottom. Similarly the image on the bottom has been flipped to the smile is on top.)

FlipXY➤➤ — The image is flipped both horizontally and vertically to create new copies of the image.

Tile➤➤ — The image is repeated as needed without any flipping.

The Stretch property determines how the image is scaled or stretched when needed and can take
the following values:

None➤➤ — The image is not stretched.

Fill➤➤ — The image is stretched to fill the area.

Uniform➤➤ — The image is stretched to be as big as possible
in the area but is not distorted. For example, if the image
is relatively tall and thin compared to the area, it will be
stretched until it fills the area vertically, and parts of the
area to the sides may remain unfilled.

UniformToFill➤➤ — The image is stretched uniformly until
it completely fills the area. If parts of the image extend
beyond the edges of the filled area, they are clipped off.

To use the new brush resource, place a control such as a Rectangle
on the window. Open the Properties window, find the Brushes
category, and select the brush type that you want to set (Fill for a
Rectangle). Among the tabs for different kinds of brushes (none,
solid, gradient, etc.), select the rightmost Brush Resources tab.

Find the new brush in the list shown in Figure 3-14 and select it.

Figure 3-15 shows the result. Notice that the image is stretched to
fill the entire rectangle. Since the original image was circular, the
result is stretched out of shape.

This is the default appearance that Expression Blend assumes you
want to use. It works well if you want a large area to display a pic-
ture as a background and either the image fits the area or you don’t
mind some stretching.

It doesn’t work as well if you want to tile an area with repeated
copies of an image. To do that, you need to understand viewboxes
and viewports.

A brush’s viewbox determines the part of the image that is used by the brush. The viewport deter-
mines the part of the filled area that should correspond to a single copy of the viewbox image.

In the image shown in Figure 3-15, the viewbox includes the entire image, and the viewport includes
the entire rectangle so the image is stretched to fill the rectangle.

FIgurE 3-14

FIgurE 3-15

48 ❘ ChaptEr 3 ExprEssion BlEnd

pErplExIng propErtIEs

Expression Blend does not provide an interactive tool for setting a brush’s viewbox
or viewport properties. To set these values, you must manually edit the XAML code.

The brush’s Viewbox and Viewport properties contain four values that give the left, top, width,
and height of the area you want to use. These values can be in one of two coordinate systems:
RelativeToBoundingBox or Absolute.

RelativeToBoundingBox coordinates are measured as a fraction of the relevant area’s size. For exam-
ple, setting the left value to 0 and the width to 0.5 would select the left half of the area.

Absolute coordinates are measured in pixels. They are often useful for tiling images, although you
need to know the exact size of the image to make everything fit perfectly.

Figure 3-16 shows four rectangles filled with the same
image but with different Viewbox and Viewport values.

The upper-left rectangle uses the default settings, so the
image is stretched to fill the rectangle.

The upper-right rectangle uses Viewbox values 0, 0, 1, 1,
so it uses the entire brush image. Its Viewport values are
0, 0, 0.5, 0.5, so a single copy of the image is used to fill
the upper-left quadrant of the rectangle. In this brush,
Stretch is set to Uniform; thus the image is scaled
uniformly to be as big as possible within the upper-left
quadrant. Since the TileMode property is Tile, the
image is repeated without flipping.

shadowy tIlEs

The rectangles in Figure 3-16 all have drop shadows. Notice how the upper-right
rectangle displays the drop shadow for each tiled copy of the image, not the rect-
angle as a whole.

Since the lower-left rectangle sets ViewportUnits to Absolute, the Viewport values are specified
in pixels. Its Viewport values are 0, 0, 50, 50; thus the first tiled image is sized to fill the upper-left
50×50-pixel square in the rectangle. This rectangle is 150 pixels wide and 100 pixels tall and thus is
filled exactly by the six images shown in Figure 3-16.

Finally, the lower-right rectangle sets its Viewbox values to 0, 0, 0.5, 0.5, so it selects the image’s
upper-left quadrant. Since it uses the same viewport as the lower-left rectangle, this piece of the
image is used to exactly tile the rectangle.

FIgurE 3-16

Properties Window ❘ 49

truE tIlIng

The technique shown in the lower left of Figure 3-16 is very useful for tiling areas.
Set the brush’s Viewbox to 0, 0, 1, 1. Set ViewportUnits to Absolute so the
Viewport values are specified in pixels and then set the Viewport values to match
the image’s size in pixels.

The following code snippets show the brushes used by the UseImageBrushes example program
shown in Figure 3-16. Note that it shows only the brushes, not the rest of the XAML code.

<ImageBrush ImageSource=”Smiley.bmp” />

<ImageBrush Stretch=”Uniform” TileMode=”Tile”
 ImageSource=”Smiley.bmp”
 Viewbox=”0,0,1,1” Viewport=”0,0,0.5,0.5”
/>

<ImageBrush Stretch=”Uniform” TileMode=”Tile”
 ImageSource=”Smiley.bmp”
 Viewbox=”0,0,1,1”
 Viewport=”0,0,50,50” ViewportUnits=”Absolute”
/>

<ImageBrush Stretch=”Uniform” TileMode=”Tile”
 ImageSource=”Smiley.bmp”
 Viewbox=”0,0,0.5,0.5”
 Viewport=”0,0,50,50” ViewportUnits=”Absolute”
/>

UseImageBrushes

Drawing Brush
A drawing brush fills an area with a drawing that may contain shapes, labels, video, and other controls.

To make a drawing brush, add some sort of container control to the window such as a Grid, Canvas,
or StackPanel. Then add the controls to it that you want to be part of the brush.

Next, select the container control, open the Tools menu, expand the “Make Brush Resource” sub-
menu, and select “Make DrawingBrush Resource.” On the Create DrawingBrush Resource dialog,
give the brush a good name and click OK.

Now you can modify the brush as explained in the previous section for image brushes. For example,
you can open the Resources window in Expression Blend’s right panel and click on the brush’s drop-
down to set its TileMode and Stretch properties.

Review the previous section “Image Brush” for more information on modifying the brush. In par-
ticular, you may want to review how to set the brush’s viewbox and viewport.

50 ❘ ChaptEr 3 ExprEssion BlEnd

drawIng dElEtEd

After creating the drawing brush, Expression Blend no longer needs the drawing that
you used to create it. You can delete the container control that you used if you like.

Figure 3-17 shows a rectangle filled with a drawing brush.
The brush contains a centered image and four labels that are
rotated and aligned to the brush’s sides.

The following code snippet shows the brush’s opening element
with its TileMode, Viewbox, Viewport, and ViewportUnits
properties:

<DrawingBrush x:Key=”DangerBrush” TileMode=”Tile”
 Viewbox=”0,0,1,1”
 Viewport=”0,0,100,100” ViewportUnits=”Absolute”>

The rest of the brush’s definition isn’t shown here because it’s
long, very complicated, and not the focus of this chapter.

BEwIldErIng Brush

The XAML definition for this seemingly simple brush contains 810 lines of code
and more than 5,000 parts (tags, attributes, and other values).

One of the reasons this drawing brush is so complicated is that it contains a
large object hierarchy. It contains a DrawingGroup, which in turn contains a series
of GeometryDrawing and other DrawingGroup objects with appropriate trans-
formations and geometry objects. By far the biggest part of the brush is the code
that draws the text, because Expression Blend converts the Label controls into
PathGeometry objects that draw each letter stroke-by-stroke.

Visual Brush
A visual brush fills an area with a copy of a user interface element. That element may contain other
elements and may even include animations.

To make a visual brush, create the control that defines the brush, including any controls that it
should contain. Select the control, open the Tools menu, expand the “Make Brush Resource” sub-
menu, and select “Make VisualBrush Resource.” On the Create DrawingBrush Resource dialog,
give the brush a good name and click OK.

FIgurE 3-17

Properties Window ❘ 51

Now you can modify the brush as explained in the previous sections for image brushes. For exam-
ple, you can open the Resources window in Expression Blend’s right panel and click on the brush’s
dropdown to set its TileMode and Stretch properties.

Review the earlier section “Image Brush” for more information on modifying the brush. In particu-
lar, you may want to review how to set the brush’s viewbox and viewport.

KEEp thE Controls

Unlike the case for the image brush and drawing brush, you must not delete the
controls that define a visual brush. WPF uses those controls at run time to build the
image that the brush uses; thus, if you delete those controls, then it cannot make
the brush’s image.

If you don’t want the visual brush’s controls to be visible, you can hide them behind
another control.

Figure 3-18 shows a program using a visual brush. The grid in
the upper-left corner contains a radial gradient background and a
label that uses a property animation to rotate continuously. The
rectangle on the right is filled with a visual brush that uses this
grid as its visual source. As the label in the grid rotates, so do the
copies displayed in the rectangle. (Note that this would be a very
annoying user interface!)

Figure 3-19 shows a common parlor trick that uses
visual brushes. Below each of the textboxes is a rect-
angle that uses the corresponding textbox as a visual
brush. The rectangles are scaled by a factor of –1 ver-
tically so their contents are flipped upside down, mak-
ing them look like reflections of the textboxes.

When you type in a textbox at run time, the corresponding visual brush also updates, so the rectan-
gle below shows the updated reflection. In Figure 3-19, you can even see the reflection of the cursor
in the first textbox.

rIddlE ME thIs

All three of the rectangles shown in Figure 3-19 are drawn using the same tech-
nique. So why isn’t the text in the middle rectangle upside down like the others? See
the footnote for the answer.

The text in the middle textbox happens to include only letters that look the same right side up as upside down, at least in that font.

FIgurE 3-18

FIgurE 3-19

The text in the middle textbox happens to include only letters that look the same right side up as upside down, at least
in that font.

52 ❘ ChaptEr 3 ExprEssion BlEnd

The program shown in Figure 3-20 dem-
onstrates all three types of tile brush. The
text in the visual brush on the right spins
continuously.

The program contains a grid that holds two
other grids. The first contains a brush that
provides the visual brush used in the right-
most rectangle. The second grid covers the
first (so the visual brush’s defining grid is hidden). It contains a horizontal stack panel that contains
three vertical stack panels, each holding a filled rectangle and a label.

pens
Brushes determine how an area such as the interior of a rectangle is filled. They also determine how
lines such as the borders of a rectangle or polygon are filled.

Pens determine the style of lines such as the edges of rectangles and polygons. For example, they
determine the line’s thickness, dash pattern, and corner style.

The WPF properties that define a pen all begin with the word Stroke and include StrokeThickness,
StrokeDashArray, StrokeDashCap, and StrokeMiterLimit. You can find these properties in the
Properties window’s Appearance section, mostly in the advanced properties area.

stroKE

In fact, the brush used to fill a line is stored in the line’s Stroke property, so all of
the properties that define a line’s appearance are stroke properties.

Figure 3-21 shows a polygon that demonstrates three of the Stroke
properties. Its StrokeThickness property is set to 20, so the polygon’s
lines are very thick; its StrokeMiterLimit property is set to 1, so the
extra pointy corners on the right edge of the polygon are chopped off;
and its Stroke property is set to a brush that shades from red to yellow.

The following XAML code shows the polygon’s definition:

<Polygon StrokeThickness=”20”
 Points=”20,110 20,60 90,20 200,30
 110,60 110,100 180,130 60,150”
 StrokeMiterLimit=”2”>
 <Polygon.Stroke>
 <LinearGradientBrush EndPoint=”0.5,1” StartPoint=”0.5,0”>
 <GradientStop Color=”#FFFF0000” Offset=”0”/>
 <GradientStop Color=”#FFFFFF00” Offset=”1”/>
 </LinearGradientBrush>
 </Polygon.Stroke>
</Polygon>

UsePens

FIgurE 3-20

FIgurE 3-21

Properties Window ❘ 53

Chapter 9 has more to say about how pens and brushes work. In this section, I just want to mention
that Expression Blend provides editors for stroke properties that are missing in Visual Studio.

property resources
A resource makes it easy to ensure that several controls all
use the same values. Rather than setting the Background
property for a group of buttons individually, you can make
a resource representing the background and then make the
buttons all use that resource for their backgrounds.

Resources also make it easier to change shared values. To
make the buttons use a different brush, you only need to
change the Brush resource.

The Properties window allows you to convert many proper-
ties into resources. Then you can use those resources to set
similar property values on other controls.

For example, suppose you want to give every button on a
form the same background. First give one button the back-
ground that you want. Next click the tiny “Advanced prop-
erty options” button under the mouse in Figure 3-22 and
select the “Convert to New Resource” command to make a
resource holding the brush’s properties.

Now you can select the other buttons and set their back-
ground properties to use this resource. Select another but-
ton, open the Properties window’s Brushes section, and
select the Background brush. Click the “Brush resources”
tab on the right (under the mouse in Figure 3-23) and pick
the new resource from the list. Figure 3-23 shows a Brush
resource named btnBrush.

The Properties window lets you use resources for other
properties in slightly different ways. For example,
to make a resource to hold a control’s Width prop-
erty, click on the little box to the right of the Width
property and select “Convert to New Resource” from the
dropdown menu.

To set another control’s property to this value, select the
control and click on the same little box to the right of the control’s property. In the dropdown menu,
expand the Local Resource submenu and select the resource, as shown in Figure 3-24.

styles
A style lets you group properties, triggers, and other attributes to be shared by several controls.
For example, the previous section explained how you could make several buttons share a common

FIgurE 3-22

FIgurE 3-23

54 ❘ ChaptEr 3 ExprEssion BlEnd

background resource. You can use a style to make the buttons
share a common background, width, height, and other
properties.

To create a style for a group of buttons, make one button with
the properties that you want in the style. Then select the but-
ton, open the Object menu, expand the Edit Style submenu,
and select “Edit a Copy.”

This creates a style and opens it for editing. Use the Properties
window to set any additional property values for the style.
When you are finished, click the “Return scope to Window”
button under the mouse in Figure 3-25.

Having created a style, you can apply it to other controls.
Select a control, open the Object menu, expand the Edit Style
submenu, expand its Apply Resource menu, and select the
style that you want to apply.

Note that Expression Blend will only let you apply a style to
an object that is compatible with the one you used to define
the style. For example, if you define a Button style, you can-
not apply it to a Label.

EdItIng stylEs

If you need to edit a style later, open the Resources window, find the style that you
want to edit, and click the “Edit resource” button to its right.

rEsourCEs wIndow

The Resources window lets you view and edit resources. Figure 3-26
shows the Resources window.

The Resources window lets you edit some values directly. For example,
in Figure 3-26 you can type a new value for btnWidth in its textbox.

The Resources window provides editors for other values. If you
click on the colored area to the right of the btnBrush resource, a
brush editing area appears similar to the one you use to define a
brush in the Properties window.

oBjECts and tIMElInE

The Objects and Timeline area shown in Figure 3-27 lets you edit objects and storyboards. Usually
you use this area to select controls so you can change their properties in the Properties window.

FIgurE 3-24

FIgurE 3-25

FIgurE 3-26

Objects and Timeline ❘ 55

When it is displaying the window’s controls, this area shows the
hierarchical arrangement of controls. For example, in Figure 3-27,
the window contains a Grid named OuterGrid, which contains
two Grids named VBHGrid and InnerGrid. Those controls con-
tain a bunch of others. (The square brackets around a control’s
type means that it has no name.)

One of the more confusing features of this area is in how you select
controls. If you click on a control, it turns gray and is selected for
property editing, so changes you make to the Properties window
apply to the control. In Figure 3-27, the Label that says “Image
Brush” is selected for property editing.

If the control you click is a container, it is also highlighted with
a blue box. If the control is not a container, then its container is
highlighted. In Figure 3-27 the StackPanel containing the selected
Label is highlighted.

If you double-click on a control in the Toolbox, a new instance of
that control is added to the container that is highlighted with the blue box. In Figure 3-27, if you were
to double-click the Button tool, a new Button would be added to the highlighted StackPanel.

The Objects and Timeline area has two useful icons to the right of each control. The first, which
looks like an eye, lets you make the control visible or invisible. Even if you want a control to be vis-
ible at run time, it’s sometimes useful to hide it for a while at design time to reduce clutter so it’s
easier to see the other controls.

The second icon looks like a dot or a padlock depending on whether you have clicked it. When the
padlock is visible, the control’s properties are locked so you cannot accidentally change them, for
example, by dragging the control on the Window Designer.

The Objects and Timeline area has a few other useful features. You can click-and-drag controls to new
positions within a container. For example, that would let you reorder the controls in a StackPanel. It
also lets you change the stacking order because the controls are painted in order with those listed first
drawn first.

One final trick is worth special mention here. If you select a group of controls, right-click on them,
and select “Group Into,” then Expression Blend lets you select a container control such as a Grid or
StackPanel. When you pick a container, Expression Blend moves the controls that you selected into
a new instance of the container.

storyboards
In addition to letting you edit control properties, the Objects and Timeline area lets you build
storyboards that control property animations.

To create a storyboard, click on the plus sign at the top of the area. Give the storyboard a descriptive
name and click OK.

FIgurE 3-27

56 ❘ ChaptEr 3 ExprEssion BlEnd

Figure 3-28 shows the Objects and Timeline area while it is edit-
ing the storyboard named SpinButton.

To edit a storyboard, drag the yellow time indicator to a
time. In Figure 3-28, the indicator is set at 0.5 second. Now
change the properties of the controls that you want to animate.
Expression Blend creates a storyboard that sets those properties
to the desired values at the selected time.

You can use the video-control style buttons at the top of the
timeline area to test the animation. For example, click the Play
button () to run the animation.

suspEnd tIME

While you are editing a storyboard, the Window Designer is outlined in red and
displays a label at the top that says “Timeline recording is on.” Click the red dot
beside this label to turn timeline recording off. Then you can modify control prop-
erties without the changes becoming part of the storyboard.

Figure 3-28 shows the timeline for the SpinButton storyboard in the SpinningButtons example pro-
gram. The storyboard sets a button’s angle of rotation to 0 degrees at 0 seconds and sets the angle of
rotation to 359.9 degrees at 0.5 second. This makes the button rotate through one complete revolu-
tion in half a second.

trIggErs

After you define a storyboard, you can determine which events trig-
ger it. Initially, Expression Blend hooks the storyboard to the window’s
Loaded event so the storyboard executes when the program starts.

You can change this behavior by using the Triggers area shown in
Figure 3-29.

Click on the control dropdown next to the right of the word
“When” and select the control that should trigger the storyboard. In
Figure 3-29, this is set to the Button named btnSpinMe.

Control ConFusIon

The control dropdown only lists the control that is currently attached to the story-
board and the control that is currently selected in the Objects and Timeline area. If
the dropdown doesn’t show the control that you want, be sure it is selected in the
Objects and Timeline area.

FIgurE 3-28

FIgurE 3-29

Control Toolbox ❘ 57

Next, use the second dropdown to select the control’s event that should trigger the storyboard. In
Figure 3-29, this is the Button’s Click event.

In the dropdowns below, you can select the storyboard that you want to control with the trigger and
the action that you want the storyboard to perform. In Figure 3-29, the SpinButton storyboard begins.

Control toolBox

The Control Toolbox shown in Figure 3-30 lets you put controls on a window.
Double-click on a control in the Objects and Timeline area to select it for adding chil-
dren. Then you can double-click on a control in the Toolbox to put a new instance of
that control in the selected control.

The Control Toolbox only shows a few controls at a time. If you don’t see the control
that you want, you need to take action to make it appear.

If the control you want is one of the more common controls, you can find it in the
Toolbox’s control groups. For example, the third control from the top in Figure 3-30 rep-
resents the Grid control. If you want some other container control, you can right-click
this one and select Canvas, StackPanel, WrapPanel or some other container from a
dropdown list. That replaces the Grid control with the control you selected so you can
use it.

If the control that you want isn’t in any of the control groups or you just can’t find it,
click on the double right arrow at the bottom of the Toolbox to open the Asset Library,
shown in Figure 3-31.

FIgurE 3-31

The Asset Library contains a lot of controls so, if you don’t immediately see the control that you want,
type part of its name in the search box at the top. In Figure 3-31, the search box contains the text
Item so the Asset Library is showing the controls that have the word Item in their names.

FIgurE 3-30

58 ❘ ChaptEr 3 ExprEssion BlEnd

When you select a control, the Control Toolbox adds that control to the bottom in a recently used
controls group. In Figure 3-30, that area holds the Border control just below the double arrow.

CodE-BEhInd

Expression Blend is not a programming tool and isn’t really intended to be used to edit the code
behind the user interface.

To add code to a window, open the Project window. Right-click on the XAML file that should have
code and select “Edit in Visual Studio.” Edit the code there, and then close Visual Studio to return
to Expression Blend.

synChIng sECrEts

When you switch between Expression Blend and Visual Studio, the two applica-
tions need to ensure that the files you modify are synchronized. For example, if
you start Expression Blend, move to Visual Basic, modify a file, and then return to
Expression Blend, Expression Blend asks if you want to reload the modified file to
pick up the changes you made.

That all makes sense, but there’s one situation that can be confusing. If you open
Expression Blend, modify a file, and then open Visual Studio, the changes you made
in Expression Blend are not automatically saved first, so Visual Studio does not see
the changes. If you edit the file in Visual Studio and save the changes, you may have
two versions of the file floating around, one being used by Expression Blend and one
being used by Visual Studio. If you save the two versions, you’ll lose one or the other,
depending on which you save first.

To avoid confusion, always save all changes before you switch between the two
applications.

suMMary

This chapter explains the basics of Expression Blend. Expression Blend is a tool for building XAML
interfaces. It provides many editors for creating and using properties, resources, styles, and storyboards.

While Expression Blend is not a free product like Visual Studio, it provides many useful editors that
are missing from Visual Studio. For example, Expression Blend provides an easy-to-use editor for
specifying gradient backgrounds that is more powerful than the one available in Visual Studio.

Creating storyboards by hand in Visual Studio is confusing enough that Expression Blend’s story-
board editing system alone may be worth the expense, at least if you do a lot of property animation.
Download the trial version of Expression Blend at expression.microsoft.com/cc136530.aspx
and see if its benefits outweigh its cost.

Summary ❘ 59

Expression Blend is not a programming tool, so it doesn’t give you much help for attaching C# or
Visual Basic code to the interface. But since Visual Studio provides the tools that you need to do
that, Expression Blend and Visual Studio are a powerful combination.

This chapter and the previous one describe the two main tools for building WPF applications: Visual
Studio and Expression Blend. Having read these chapters, you should be able to create a new project
and add controls to build a user interface. However, it will be difficult to pick the right control for a
particular task unless you know what controls are available and what they can do.

The following chapters describe different kinds of controls and discuss their capabilities. After you
read them, you’ll know just what controls to use under different circumstances.

Common Properties
All of the WPF control classes inherit from the Control class, and that common ancestry gives
them many properties in common. For example, most of them have properties that determine
their size and position, foreground and background colors, transformations, and font properties.

This chapter describes some of the properties that many controls share. Later chapters men-
tion some of these properties again where they are particularly relevant, but if you learn about
them now, you will already know a lot about the controls described in the following chapters.

The following section describes a particularly important and confusing topic: sizing and positioning
properties. Every WPF developer must understand these properties to arrange controls effectively.

Size and PoSition

Sizing and positioning properties can be very confusing because a control’s geometry depends
on several different properties, the way in which those properties interact, and even the con-
trol’s container. For example, the same Button looks very different when it is placed inside a
Grid, a StackPanel, or a Canvas.

The following section describes the most important properties for determining a control’s size
and position — its alignment properties. The next section then describes some simpler proper-
ties that also influence a control’s size and position.

alignment
Four of the most important properties that determine a control’s size are Width, Height,
HorizontalAlignment, and VerticalAlignment.

aSSorted alignmentS

Don’t confuse HorizontalAlignment and VerticalAlignment with
HorizontalContentAlignment and VerticalContentAlignment. The former
determine the control’s alignment, while the latter determine the alignment of the
control’s content.

4

62 ❘ ChaPter 4 Common ProPerties

The Width and Height properties are fairly self-explanatory. They determine the control’s size directly.

Often, however, you don’t really want to set a control’s size explicitly. Instead, it would be better for
the control to resize itself in some manner to fit either its contents or the area that contains it. That
lets the control use as little space as possible or take best advantage of the space available.

That’s where the HorizontalAlignment and VerticalAlignment properties come into play.
HorizontalAlignment can take the values Left, Right, Center, and Stretch. VerticalAlignment
can take the values Top, Bottom, Center, and Stretch.

The Left, Right, Top, Bottom, and Center values determine the control’s position in a fairly obvious
way. For example, if a control has these properties set to Left/Top, then it is placed in the upper-left
corner of its container.

The Stretch value is a bit less intuitive. In general, this value means that the control should expand
to fill its container, but the exact result depends on the type of the control’s container.

For example, if the container is a Grid, then the control stretches to fill its Grid cell as expected.
In contrast, if the container is a StackPanel oriented vertically, then setting
HorizontalAlignment=Stretch makes the control expand to fill the width of the StackPanel,
but the VerticalAlignment property is ignored. If you don’t explicitly set the control’s Height
property, then the control will be as short as possible while still displaying its contents.

The SizeInContainers example program shown in Figure 4-1 displays Button controls inside various
types of containers. The Labels tell what kind of containers they are, and the containers have yel-
low backgrounds where possible so you can see them. The Buttons in each container are the same,
and all have HorizontalAlignment and VerticalAlignment set to Stretch.

Figure 4-1

The following XAML code shows how the program creates its Grid container together with its
Label and Buttons. Notice that the Grid’s size is explicitly set with its Width and Height proper-
ties. The code for the other containers is similar except they use other controls in place of the Grid.

<StackPanelMargin=”10”>
<LabelContent=”Grid”HorizontalAlignment=”Center”/>
<GridBackground=”Yellow”Width=”175”Height=”100”>
<ButtonContent=”Button1”/>

Size and Position ❘ 63

<ButtonContent=”Button2”/>
</Grid>
</StackPanel>

SizeInContainers

The following list summarizes the results in the different containers:

Grid➤➤ — The Buttons stretch to fill the Grid. The Buttons both fill the Grid so you only see
the one on top: Button2.

StackPanel➤➤ — The Buttons stretch to fill the StackPanel’s width (because its orientation is
vertical) and are as short as they can be while holding their content.

Canvas➤➤ — The Buttons are as small as possible while holding their content. Without other
positioning information, the Canvas places them both in its upper-left corner so you can only
see the one on top: Button2.

WrapPanel➤➤ — The Buttons are as small as possible while holding their content. The WrapPanel
arranges them in order so you can see them both.

DockPanel➤➤ — By default, the first Button is docked to the control’s left edge, so it is stretched
to fill the DockPanel vertically, and it is as thin as possible while still holding its content. By
default, the last control is stretched to fill the DockPanel’s remaining space.

UniformGrid➤➤ — The UniformGrid divides its space up evenly into cells, places each Button
in a cell, and stretches them to fill their cells.

The SizeInSingleChildContainers example program shown in Figure 4-2 displays controls inside contain-
ers that can hold only a single child. Each container contains a StackPanel that holds two Buttons.

Figure 4-2

The following XAML code shows how the program creates its Border container together with its
Label, StackPanel, and Buttons. The StackPanel has a yellow background so it’s easy to see. The
code for the other containers is similar except they use other controls in place of the Border.

<StackPanelMargin=”10”Background=”LightBlue”>
<LabelContent=”Border”HorizontalAlignment=”Center”/>
<BorderWidth=”175”Height=”100”
BorderBrush=”Black”BorderThickness=”3”>
<StackPanelBackground=”Yellow”>
<ButtonContent=”Button1”/>
<ButtonContent=”Button2”/>

64 ❘ ChaPter 4 Common ProPerties

</StackPanel>
</Border>
</StackPanel>

SizeInSingleChildContainers

Notice that the StackPanel’s size is not set in the XAML code. Because its HorizontalAlignment and
VerticalAlignment properties default to Stretch, the StackPanel stretches to fill the Border and
ScrollViewer.

In the Viewbox, however, the StackPanel remains as small as possible while holding its content. The
Viewbox’s job is to stretch its contents to fill itself so it doesn’t give the StackPanel a target area to
stretch into. The StackPanel remains small, and then the Viewbox stretches it to fill the Viewbox.

SeriouS StretChing

By default, the Viewbox stretches its contents uniformly to be as big as possible while
fitting inside the Viewbox. You can change this behavior by setting the Viewbox’s
Stretch property. For more information on the Viewbox control, see Chapter 6.

The size and position properties are really quite confusing when combined with differ-
ent kinds of containers. I strongly encourage you to download the SizeInContainers
and SizeInSingleChildContainers example programs from the book’s web site and
experiment with them to get a better sense of how these properties work.

other Size and Position Properties
While Width, Height, HorizontalAlignment, and VerticalAlignment play the biggest roles in
determining a control’s size, a few other properties play smaller roles.

The Margin property determines how much extra space is added around the control. That influences the
control’s position, and, if the control is stretching to fit its container, it also reduces the control’s size.

Margin can take the form of one, two, or four numbers. If the value includes a single number, then
all four edges of the control are given that much extra space. If the value includes two numbers, the
first gives the left and right margins, and the second gives
the top and bottom margins. If the value includes four
numbers, they give the left, top, right, and bottom mar-
gins respectively.

The Margins example program shown in Figure 4-3 dis-
plays buttons with different Margin values contained in
Grid controls.

Figure 4-3

Font ❘ 65

PerFeCt Padding

Some controls such as Border, Button, and TextBox also provide a Padding prop-
erty. This property has a syntax similar to that of Margin, but it specifies padding
to add inside the control around its contents. For example, setting Padding=“10”
adds 10 pixels of extra space around the text inside a TextBox.

Four other properties that influence a control’s size are MaxWidth, MaxHeight, MinWidth, and
MinHeight. As you can guess from their names, they determine how big and how small a control
can be when its container is resized and its properties make it resize, too.

The MaxMinSizes example program shown in Figure 4-4
displays four rectangles with rounded corners. Labels
show the rectangles’ MinHeight and MaxHeight values.

The first rectangle’s Height is set to 75, so it always has
that height.

The second rectangle’s MaxHeight value is set to 100.
The window is big enough for the rectangle to be taller
than this, but its MaxHeight value limits it.

The third rectangle’s MinHeight value is 150. That’s too tall to fit completely on the window, so this
rectangle is clipped.

The final rectangle does not have any MinHeight or MaxHeight values, so it grows and shrinks to fit
its part of the window.

You might take a few minutes to download the MaxMinSizes example program from the book’s web
site and run it to see what happens to the rectangles when you change the window’s size at run time.

Font

It makes sense that text displaying controls like Label and TextBox would provide font properties
that let you determine the text’s appearance. It’s less obvious that some other controls that don’t dis-
play text provide the same properties.

For example, the Menu, ListBox, and Window classes provide these properties even though they don’t
directly display text. These objects generally contain other controls that do display text. (Menus gen-
erally contain MenuItems, ListBoxes generally contain ListBoxItems, and Windows can contain
anything.) Giving these objects Font properties allows the controls they contain to inherit their val-
ues, making it easier to give all of those controls the same fonts.

The following list summarizes the most useful font properties:

FontFamily➤➤ — Determines the text’s font face. Some common values include Segoe (pro-
nounced see-go, this is Microsoft’s preferred font for Windows Vista), Times New Roman,
Courier New, and Arial. I use Comic Sans MS for many of the figures in this book.

Figure 4-4

66 ❘ ChaPter 4 Common ProPerties

FontSize➤➤ — Determines the size of the font in pixels. This gives the size of the characters
and doesn’t include leading and internal space that may be drawn above and below a line of
text. You can add the unit specifiers “px” or “pt” to indicate pixels or printer’s points (1/72
inch). For example, the value “20pt” means that the text should be 20 points tall.

FontStyle➤➤ — Determines the text’s style. This property can take the values Normal and Italic.

FontWeight➤➤ — Determines the text’s density
(whether it’s bold or not). This property can take
the values (in increasing order of density) Thin,
ExtraLight, Light, Normal, Medium, SemiBold,
Bold, ExtraBold, Black, and ExtraBlack.
The FontProperties example program shown in
Figure 4-5 demonstrates an assortment of font
property values. Notice how much taller the
20-point Segoe font is than the 20-pixel Times
New Roman font.

For a particular font, some FontWeight values may produce the same results. For example, on my
computer in the Segoe font (and most fonts), the values Thin through Medium produce a normal font
and SemiBold through ExtraBlack produce the same bold font. In contrast, my computer displays the
Arial font’s ExtraBold through ExtraBlack values with a slightly darker bold than the Bold value.

The FontWeights example program shown in Figure 4-6
displays text in 20-pixel Segoe and Arial fonts at differ-
ent weights. You can tell that Arial gives three different
weights by looking closely at the widths of the text Arial
in the column on the right.

Color

Several properties determine a control’s appearance. For
drawing controls such as Ellipse, Rectangle, and Path,
the Stroke property determines the brush used to draw
the shape’s outline, and the Fill property determines
how the shape is filled.

For non-drawing controls such as Label, TextBox, and
StackPanel, the Background property determines how
the control’s interior is filled, and the Foreground prop-
erty determines how any objects displayed on top of the control appear.

a needleSS inConSiStenCy

Yes, it might have been nice if these objects consistently used either Foreground/
Background or Stroke/Fill — but that’s not the way WPF works.

Figure 4-5

Figure 4-6

Image Shape ❘ 67

For example, a GroupBox’s Foreground property determines the color of its header text, and its
Background property determines how its client area is filled.

The GroupBoxColors example program shown in
Figure 4-7 displays a GroupBox with
Foreground=Green and Background=LightBlue.
Notice how the property values are inherited by some
controls (the TextBlock) but not others (the Label).

The following XAML code shows how the
GroupBoxColors program creates its controls:

<GroupBoxBackground=”LightBlue”Foreground=”Green”Header=”GroupBox”>
<StackPanelMargin=”10”>
<LabelContent=”ForegroundisnotinheritedbyaLabel.”/>
<TextBlockText=”ForegroundisinheritedbyaTextBlock.”/>
</StackPanel>
</GroupBox>

GroupBoxColors

image ShaPe

Normally an Image is rectangular because the picture it displays is rectangular, but there are ways
that you can give an Image control (or any control) another shape.

One method to change a control’s shape is to set its OpacityMask property to an opacity mask. An
opacity mask is a brush that determines the opacities of the parts of the control.

Note that the red, green, and blue color components used by the opacity mask are irrelevant. Only
a pixel’s alpha component, which determines the pixel’s opacity, matters. This alpha value can be
between 0 (transparent) and 255 (opaque).

Two common methods for building an opacity mask are using a gradient brush and using an image.

gradient opacity masks
The GradientOpacityMask example program shown in Figure 4-8 uses a radial gradient brush for
an opacity mask.

Figure 4-8

Figure 4-7

68 ❘ ChaPter 4 Common ProPerties

The following code shows how the program uses its OpacityMask:

<ImageMargin=”5”Source=”Flowers.jpg”Stretch=”None”>
<Image.OpacityMask>
<RadialGradientBrush>
<GradientStopColor=”#FF833C3C”Offset=”0”/>
<GradientStopColor=”#FFE4D6D6”Offset=”0.8”/>
<GradientStopColor=”#00FFFFFF”Offset=”1”/>
</RadialGradientBrush>
</Image.OpacityMask>
</Image>

GradientOpacityMask

The code displays an Image that shows a picture. The control’s Image.OpacityMask property ele-
ment defines the Image’s opacity mask.

The Image.OpacityMask element contains a RadialGradientBrush. The brush’s GradientStops
define the colors the brush uses.

The first GradientStop, with Offset=0, has an opacity of 255 (the FF hexadecimal = 255 deci-
mal in the first color component), so the colors at the center of the brush are opaque. (Remember
that the other color components are irrelevant.) When used as an opacity mask, this means that the
Image’s picture at the center is opaque.

The second GradientStop at Offset=0.8 also uses an opaque color, so the Image up to 80 per-
cent away from the center is opaque.

The final GradientStop at Offset=1 uses a completely transparent color. That means that the
Image at the edge of the brush is transparent. The brush smoothly shades between the opaque and
transparent colors so the parts of the Image between the second and third GradientStop smoothly
change from opaque to transparent. Figure 4-8 shows the result.

image opacity masks
The second common method for making opacity masks is to use an image.

First, create a mask image that defines opacities for its pixels. If you want a pixel in the result to
be transparent, set the alpha value for the corresponding mask pixel to 0. If you want a pixel to be
opaque, set the corresponding pixel’s alpha value to 255. (As before, the other color components are
irrelevant.) Use values between 0 and 255 for partially transparent pixels.

Next, in your WPF application, either in XAML or program code, use the mask image to create an
ImageBrush.

Building BruSheS

The “Image Brush” section in Chapter 3 explains how to make an ImageBrush in
Expression Blend. Chapter 10 has more to say about ImageBrushes and Brushes
in general.

Miscellaneous ❘ 69

Finally, set the OpacityMask for
the original image or control to
this brush.

The ImageOpacityMask example
program shown in Figure 4-9
demonstrates this technique.

The picture on the left of the top
row is the original image.

The second picture shows the
mask image. It contains an opaque
black ellipse on top of a transpar-
ent background.

The third picture shows the original image using the mask image as its OpacityMask. Only the parts
of the original image that correspond to opaque parts of the mask are visible.

The next picture shows a simpler way to achieve a similar result. This image is similar to the origi-
nal image except its background pixels are transparent so it doesn’t need an opacity mask.

The final item on the first row shows a Button using the same opacity mask. Note that the button is
still rectangular; you just can’t see its corners. If you click next to the round area that’s visible where
those corners should be, you can click the Button.

The following XAML code shows how the program uses the opacity mask with the original image:

<ButtonContent=”Button”Height=”105”Width=”105”>
<Button.OpacityMask>
<ImageBrushImageSource=”PlainSmileyMask.png”Stretch=”None”/>
</Button.OpacityMask>
</Button>

ImageOpacityMask

The bottom row in Figure 4-9 shows the same images displayed in the top row but with drop shad-
ows. Chapter 20 explains bitmap effects such as this in greater detail.

miSCellaneouS

WPF controls and objects certainly share a lot of other properties, and I don’t want to take up a
bunch of space covering them all exhaustively, but there are a few that are so useful they deserve
special mention.

The Name property identifies a control for use by XAML code and for use by C# or Visual Basic code-
behind. You do not need to give a control a name, but if you plan to use it in your code, you should.

The Parent property returns a control’s logical parent. For example, if you place a Button inside a
Grid, then the Button’s parent is the Grid. You can use this property to climb around in the appli-
cation’s logical tree and learn about its structure.

Figure 4-9

70 ❘ ChaPter 4 Common ProPerties

What’S in a name?

Sometimes you can get around naming a control, but you probably should give it a
name anyway. For example, you can use a Button’s Click attribute to indicate the
event handler that should execute when the user clicks the Button without giving
the Button a name. That makes the code more confusing, however, so I recommend
that you give the Button a descriptive name (such as btnExit) and then you give the
event handler a corresponding name if possible (in this case, btnExit_Click).

PraCtiCal Parenthood

One useful trick that uses the Parent property is to copy a control’s property val-
ues from its Parent so they match.

The Tag property can hold an arbitrary object that you can use for anything you want. For example,
you could store a number or string here to identify the control (if the control is a MenuItem or
ListBoxItem, it might indicate the item’s position in the menu or list box).

You could even use code-behind to store an object in the Tag property. For example, you might
build a ListBox that shows employee names and set each ListBoxItem’s Tag property to the cor-
responding Employee object.

The ContextMenu property determines the context menu that a control displays when the user right-
clicks on it. You can use context menus to provide actions that make sense for specific parts of the
application’s user interface.

The ToolTip property determines what text is displayed in a tooltip when the mouse hovers over a control.

The IsEnabled property determines whether a control will interact with the user. If
IsEnabled=False, then the control completely ignores the user. Most controls also change their
appearances to indicate that they are disabled (usually by graying themselves out).

enaBling grouPS

If you set IsEnabled to True or False for a container such as a StackPanel or
GroupBox, all of the container’s children inherit that value. That makes it easy to
enable or disable a group of related controls quickly and easily.

Note, however, that the container may not display itself as disabled. For example, a
GroupBox looks the same whether IsEnabled is True or False.

Summary ❘ 71

The Visibility property determines whether a control is visible on the screen. This property can
take three values: Visible (the control is visible as usual), Hidden (the control is not visible, but the
window’s layout saves room for it), and Collapsed (the control is not visible, and the window’s lay-
out does not include room for it).

Summary

WPF controls have many shared properties. Many you can safely ignore most of the time, but some
are important, and a few are confusing. The sizing and positioning properties Width, Height,
HorizontalAlignment, and VerticalAlignment play particularly important and confusing roles in
determining a control’s size and location.

This chapter describes the most important of these common properties and helps demystify the siz-
ing and positioning properties. Later chapters provide additional details as they cover specific prop-
erties in depth.

This chapter covers properties that apply to every kind of control. The following four chapters turn
to specific groups of controls. They describe the controls you can use to display information, arrange
other controls, interact with the user, and draw shapes. These chapters describe specific controls and
discuss their capabilities. After you read these chapters, you’ll know just what controls to use under
different circumstances.

Content Controls
WPF provides a nice assortment of controls that let the user view, modify, and otherwise inter-
act with a program’s data. This chapter describes one group of those controls: content controls.

Content controls are primarily intended to hold content that the user should see. They display
something that the user should view but generally won’t modify.

In contrast, Chapter 6 describes layout controls that arrange the controls that they contain, and
Chapter 7 describes user interaction controls that let the user interact with the application.

Control Categories

Many controls fall into multiple categories. For example, a TextBox can display out-
put, but the user can also enter values in it. Similarly, a ListBox can display items
and even highlight a particular item, but the user can also select items in the list.

In this chapter and the next two, if a control usually contains or arranges other con-
trols (e.g., a StackPanel or TabControl), then it’s a layout control and is described
in Chapter 6. If the control lets the user enter data, adjust something, select an item,
or otherwise manipulate the program, then it’s a user interaction control and is
described in Chapter 7.

(I thought long and hard about the ListView and TreeView because they arrange
their contents in very specific ways such as grid-like and hierarchical displays. When
you use them in their simplest forms, however, they display only text and the con-
trols they contain are mostly hidden, so I finally decided to include them here.)

Even the simplest of controls provides a multitude of properties, methods, and events. To be as
useful as possible, this chapter doesn’t cover every last detail of every control.

Instead, it focuses on what each control does and how you can use it in your applications. It
also describes the properties, methods, and events that are most important for a particular
control.

5

74 ❘ Chapter 5 Content Controls

properties, Methods, and events

In case you’re not familiar with object-oriented terminology, all objects provide three
kinds of features: properties, methods, and events.

A property is a value that determines the object’s appearance or behavior. For exam-
ple, a control’s Background property determines how it is filled, and its IsEnabled
property determines whether the user can interact with the control. In XAML code,
you use attributes and object property syntax to set properties.

A method is a routine that a control can execute to do something. For example, a
TextBox’s Clear method makes the control erase any text that it contains, and a
Window’s Close method makes the Window close itself. XAML code cannot invoke
an object’s methods.

An event is something that a control raises to let your program know that something
important has happened. Your program can catch the event and take appropriate
action. For example, a TextBox raises a TextChanged event whenever its text has
changed, and a Button raises a Click event whenever it is clicked. XAML code can
indicate that a particular code-behind routine should handle an event. For example,
the Click attribute at the end of the following XAML statement means that the rou-
tine btnClear_Click should handle the Button’s Click event.

<Button Name=”btnClear” Content=”Button” Click=”btnClear_Click” />

Note that this book does not cover every control and object provided by WPF. WPF includes a huge
number of objects, many of which you don’t work with directly. For example, the following XAML
code assigns a ToolTip object to a TextBox control’s ToolTip property:

<TextBox ToolTip=”The customer’s ZIP code.”/>

The following code does the same thing with a separate ToolTip object. Which do you think is
easier?

<TextBox>
 <TextBox.ToolTip>
 <ToolTip>
 The customer’s ZIP code.
 </ToolTip>
 </TextBox.ToolTip>
</TextBox>

Figure 5-1 shows the ToolTip at run time.

Because the first method is easier, this book only covers
objects like ToolTip used by the second method very briefly
or not at all.

Figure 5-1

Graphical Controls ❘ 75

Control overview

The following table briefly lists the controls described in this chapter together with their purposes. You
can use this table to help decide which control you need for a particular purpose.

Control purpose

Border Draws a border around or background behind a single child control.

BulletDecorator Displays an item and bullet in a bulleted list.

DocumentViewer Displays FixedDocument content such as XPS (XML Paper
Specification) files.

FlowDocumentPageViewer Displays a FlowDocument in page viewing mode.

FlowDocumentReader Displays a FlowDocument in Page, Scroll, or TwoPage mode.

FlowDocumentScrollViewer Displays a FlowDocument in Scroll mode.

GroupBox Displays a header and a border around a single child.

Image Displays a graphical image.

Label Displays text that the user cannot modify.

ListView Displays a set of items in one of several layouts such as a grid or as icons.

MediaElement Plays an audio or video file.

Popup Displays an area floating over a window much as a ContextMenu or
ToolTip does.

ProgressBar Displays progress information to the user.

Separator Displays a horizontal separator line in a menu.

TextBlock Displays read-only text much as a Label does but with additional
features such as line wrapping, italics, and bold text.

ToolTip Displays a tooltip when the mouse hovers over its parent.

TreeView Displays hierarchical data in a tree form.

The following sections describe these controls in greater detail and provide XAML examples demon-
strating the controls. The controls are grouped into three categories: graphical, textual, and spatial.

graphiCal Controls

The main purpose of the graphical controls is, as you can probably guess, to display something
graphical. This includes lines and shapes, images, and multimedia output.

76 ❘ Chapter 5 Content Controls

Usually you can completely specify these controls at design time and don’t need to modify them at
run time. They also usually don’t interact with the user.

image
The Image control displays a graphical image.

To easily use an Image control, first add the file to the project. In either Expression Blend or Visual
Studio, open the Project menu, select “Add Existing Item,” find the file, and click Open.

Now create an Image control and set its Source property to the file.

The Image control’s two other most useful properties are Stretch and StretchDirection.
Stretch can take the following values:

None➤➤ — The picture is not stretched. It is displayed at its original size.

Fill➤➤ — The picture is stretched to fill the Image control, possibly distorting the picture.

Uniform➤➤ — The picture is stretched by the same amount vertically and horizontally to make
it as big as possible while still fitting in the Image control.

UniformToFill➤➤ — The picture is stretched by the same amount vertically and horizontally
until it completely fills the Image control. If the picture doesn’t have the same width-to-height
ratio as the Image control, then some of the picture will stick out past the edges of the con-
trol and will be clipped.

The StretchDirection property determines whether the
picture can be enlarged or shrunk to satisfy the Stretch
property. StretchDirection can take the following
values:

UpOnly➤➤ — The picture can only be stretched to
make it larger.

DownOnly➤➤ — The picture can only be shrunk to
make it smaller.

Both➤➤ — The picture can be stretched or shrunk.

The following XAML code creates the Image control
shown in Figure 5-2:

<Image Width=”Auto” Height=”Auto”
 HorizontalAlignment=”Stretch” VerticalAlignment=”Stretch”
 Source=”Flatirons.jpg” Stretch=”UniformToFill”/>

UseImage

Figure 5-2

Graphical Controls ❘ 77

Mediaelement
The MediaElement control plays an audio or video file. At design time, the control’s most important
property is Source, which gives the name of the media file to play.

By default, when the MediaControl loads, it begins playing its media file. Unless you want it to play
some sort of startup sound or video, that’s probably not what you want. Instead, you probably want the
program to control the media.

To let the program control the media, set the control’s LoadedBehavior property to Manual. That
prevents the control from playing when it loads and lets the program take charge.

Next, write code to call the control’s methods to play the media.

The following XAML code defines two MediaElement controls, one that plays a .wmv video file and
one that plays a .wav audio file. Notice that LoadBehavior is set to Manual.

<MediaElement x:Name=”mmJulia” Source=”EvolvingJuliaSet.wmv”
 LoadedBehavior=”Manual”
 Margin=”283.556,24,0,0” HorizontalAlignment=”Left”
 VerticalAlignment=”Top” Height=”88” />

<MediaElement x:Name=”mmAudio” Source=”Windows XP Startup.wav”
 LoadedBehavior=”Manual”
 Margin=”0,116,106.444,28” HorizontalAlignment=”Right”
 Width=”114” />

UseMediaElement

strange sizes

While working on one program, I set an Image control’s Stretch property to None,
and the (fairly large) picture shrank to postage-stamp size. I reassigned the picture
and got the same result. I opened the picture file in Microsoft Paint, and it was at
its normal size, but when I opened it in an Image control, it was tiny.

It turned out that I had taken that picture with a digital camera. The imaging
software that came with it expected me to print the image on a printer so it set
the image’s resolution to 480 dpi (dots per inch), which is much higher than the
resolution of the computer screen. The Image control was smart enough (or stupid
enough, depending on how you look at it) to realize that the image was intended to
display more pixels per inch, so it resized the image accordingly.

I solved the problem by opening the file in Microsoft Paint, selecting all of the
pixels, and copying and pasting them into a new image. Fancier image processing
applications such as Paint Shop Pro can also set an image’s dpi settings.

78 ❘ Chapter 5 Content Controls

The following code shows how the UseMediaElement example program controls the video control:

// Play the video file.
private void btnPlayVideo_Click(object sender, RoutedEventArgs e)
{
 mmJulia.Play();
}

// Pause the video file.
private void btnPauseVideo_Click(object sender, RoutedEventArgs e)
{
 mmJulia.Pause();
}

// Rewind the video file.
private void btnRewindVideo_Click(object sender, RoutedEventArgs e)
{
 mmJulia.Position = new TimeSpan(0);
}

UseMediaElement

Figure 5-3 shows the UseMediaElement program in
action.

Unfortunately, the MediaElement control doesn’t
provide any dependency properties that let a XAML
file control its playback. For example, it doesn’t pro-
vide an IsPlaying or State property that XAML
code could set to make the control play or pause.
That means you need to write code-behind to con-
trol the media.

However, XAML does include a SoundPlayerAction command that lets you play an audio file to
the end without pausing or stopping. You can write XAML trigger code to invoke this command
when an event takes place.

The following XAML code defines a trigger that executes when the btnSoundPlayerAction button
fires its Click event. When the code executes, the SoundPlayerAction plays the file notify.wav.

<Window.Triggers>
 <EventTrigger RoutedEvent=”ButtonBase.Click”
 SourceName=”btnSoundPlayerAction”>
 <SoundPlayerAction Source=”notify.wav”/>
 </EventTrigger>
</Window.Triggers>

UseMediaElement

Figure 5-3

Textual Controls ❘ 79

Media Manipulations

It seems like an odd omission that the MediaElement has no properties that let XAML
code control the media. If you search the Web, you can find people who have written
controls that wrap MediaElement and provide the properties you need. It seems likely
that Microsoft will add these properties to the MediaElement at some point.

textual Controls

The textual controls deal primarily with displaying text. While you can place other things inside some
of these controls, they are most often used to display text. For example, you can place a Button inside a
Label but normally a Label displays text.

The FixedDocument and FlowDocument objects can contain all sorts of things such as pictures, tables,
and controls in addition to text, but they are still basically intended to display text formatted in various
ways so I have grouped them here.

documentviewer
The FlowDocument object (described later in this chapter) displays information that can rearrange
itself as needed at run time. Just as a web page displayed in a browser can reflow text and pictures
when the browser resizes, a FlowDocument can rearrange its contents when it is resized.

In contrast, a DocumentViewer displays fixed content that does not reflow at run time. The content
in a DocumentViewer is fixed with every item positioned exactly as it will appear to the user, much
as the content of a PDF file is fixed.

The following code fragment creates a FixedDocument object containing two pages of content. The
surrounding code and most of the actual content have been omitted to save space. The styles (which
have also been omitted) set properties such as font sizes for headings and paragraph text.

<DocumentViewer Width=”Auto” Height=”Auto”
 HorizontalAlignment=”Stretch” VerticalAlignment=”Stretch”>
 <DocumentViewer.Background>
 <LinearGradientBrush EndPoint=”0.5,1” StartPoint=”0.5,0”>
 <GradientStop Color=”#FF000000” Offset=”0”/>
 <GradientStop Color=”#FF06B7FF” Offset=”1”/>
 </LinearGradientBrush>
 </DocumentViewer.Background>
 <FixedDocument>
 <PageContent>
 <FixedPage Width=”600” Height=”400”>
 <StackPanel Width=”500” Height=”300”
 Background=”#FFFFFF90” Margin=”50”>
 <Label Style=”{StaticResource styHeader}”>
 FixedDocument Elements
 </Label>

80 ❘ Chapter 5 Content Controls

 <TextBlock Style=”{StaticResource styPara}”>
 Unlike the FlowDocument, a FixedDocument
 contains items that cannot be moved by the
 user at run time.
 It is useful for creating precisely
 Positioned documents in a manner similar
 to PDF files.
 </TextBlock>
 ... Other TextBlocks and Labels omitted...
 </StackPanel>
 </FixedPage>
 </PageContent>
 <PageContent>
 <FixedPage Width=”600” Height=”400”>
 <StackPanel Width=”500” Height=”300”
 Background=”#FFFFFF90” Margin=”50”>
 ... Other TextBlocks and Labels omitted...
 </StackPanel>
 </FixedPage>
 </PageContent>
 </FixedDocument>
</DocumentViewer>

UseDocumentViewer

The code begins with a DocumentViewer that contains a FixedDocument. The FixedDocument object
contains two PageContent objects representing the program’s two pages.

Each PageContent object holds a FixedPage that contains other WPF controls that create the actual
content.

Figure 5-4 shows the result. The DocumentViewer lets the user zoom in and out, print, and display
two pages (as shown in Figure 5-4).

Figure 5-4

Textual Controls ❘ 81

Flowdocument
The FlowDocument control contains objects that make up a document. These objects may include:

Paragraphs➤➤

Tables➤➤

Lists➤➤

Floaters➤➤

Figures➤➤

User interface elements such as ➤➤ Buttons and TextBoxes

Three-dimensional (3D) objects➤➤

For more information on building FlowDocuments, see Chapter 21.

The following three sections describe controls that display FlowDocuments in different styles. If you place
a FlowDocument directly in a Window, then the control acts as if it were inside a FlowDocumentReader.
See the section describing that control for information about how it behaves.

FlowDocumentPageViewer
The FlowDocumentPageViewer displays a FlowDocument in page viewing mode. In this mode, the
user can see a single page at a time, and controls at the bottom of the viewer allow the user to move
to other pages.

The size of a page and the amount displayed by the viewer are determined by the FlowDocument’s
PageHeight and PageWidth properties, and by the viewer’s size.

By default, the document scales to fit the viewer’s width. Then a page is defined by however much of
the document can fit vertically in the viewer at that width. If you set the document’s PageHeight and
PageWidth properties, then the viewer may chop the document into more pages to honor those values.

Figure 5-5 shows a FlowDocumentPageViewer
displaying a FlowDocument. The arrows in the
viewer’s bottom center let you scroll through the
document’s pages. The plus and minus buttons
on the bottom right let you zoom in and out.

FlowDocumentReader
The FlowDocumentReader displays a
FlowDocument in one of three modes: Page,
Scroll, or TwoPage.

In Page mode, the control works like a
FlowDocumentPageViewer. See the preceding
section for information about that control.

Figure 5-5

82 ❘ Chapter 5 Content Controls

In Scroll mode, the control works like a FlowDocumentScrollViewer. See the following section for
information about that control.

In TwoPage mode, the control displays the document two pages at a time side-by-side. As is the case
with the FlowDocumentPageViewer, the size of a page is determined by the document’s PageHeight
and PageWidth properties and the available space in the viewer. By default, the viewer divides its
area in two, scales the document to fit the width of the two halves, and displays as much of the
document as will fit at that width for each page.

Figure 5-6 shows a FlowDocumentReader displaying a FlowDocument in TwoPage mode. The arrows
in the viewer’s bottom center let you move between pages. The icons to the right let you pick between
Page, TwoPage, and Scroll mode. The plus and minus buttons on the bottom right let you zoom in
and out.

Figure 5-6

FlowDocumentScrollViewer
The FlowDocumentScrollViewer displays a
FlowDocument as a tall, continuously scrolling
document much as a web browser displays the
contents on a long web page.

Figure 5-7 shows a FlowDocumentScrollViewer
displaying a FlowDocument.

label
The Label control normally displays text that
the user cannot modify, although you can give
the Label control a different kind of child such
as a Grid or Button if you want to for some
strange reason.

Figure 5-7

Textual Controls ❘ 83

When used to display ordinary text, the Label control is relatively simple. Its Content property deter-
mines the text that it displays. It provides
Background and Foreground properties to
determine its colors. Standard font proper-
ties (FontFamily, FontSize, FontWeight,
etc.) determine the appearance of the text.

The following XAML code creates the mid-
dle Label control shown in Figure 5-8:

<Label Content=”This is Comic Sans Serif, 20 point, bold, italic”
 FontFamily=”Comic Sans MS” FontSize=”20”
 FontWeight=”Bold” FontStyle=”Italic”
 HorizontalAlignment=”Center”/>

UseLabel

label or textbox?

Usually if you want to display text that the user cannot modify, you should use a
Label (or a TextBlock, described later in this chapter). However, sometimes you
can make the user’s life easier by displaying read-only text in a TextBox instead.

The Label control won’t let the user change the text it displays, but it won’t let the
user select that text either. That means that the user cannot copy and paste the text.

If you want to prevent the user from changing some text but you want to allow copy and
paste, consider using a TextBox with its IsReadOnly property set to True. For example,
if a program’s About dialog displays the application’s version and serial numbers, you
might want to allow the user to copy those values but not modify them.

pop-up
The Popup control displays an area floating over a window much as a ContextMenu or ToolTip does.
However, the Popup does not automatically display itself as the ContextMenu and ToolTip do. Instead,
the program must set the control’s IsOpen property to display and hide the pop-up.

painless pop-ups

The ContextMenu and ToolTip controls are easier to use than a Popup because
they automatically display themselves when appropriate. If you only need features
that a ContextMenu or ToolTip can provide, use those controls instead of a Popup.

Figure 5-8

84 ❘ Chapter 5 Content Controls

The following table describes properties that determine where the pop-up appears when it is visible:

property purpose

PlacementTarget The object relative to which the Popup is positioned. Typically, this is a con-
trol, and the Popup is placed next to it. In XAML code, this might look like:
PlacementTarget=”{Binding ElementName=image1}”. If you omit this
property, then the Popup is positioned relative to its container.

Placement Determines how the Popup is positioned relative to the PlacementTarget
object. See the following text for more information.

PlacementRectangle If you include this, it determines a rectangle within the PlacementTarget
relative to which the Popup should be positioned.

HorizontalOffset Sets a horizontal offset for the Popup’s placement.

VerticalOffset Sets a vertical offset for the Popup’s placement.

The UsePopup example program
shown in Figure 5-9 demonstrates the
PlacementTarget and IsOpen properties.
When the mouse enters a small picture, the
program’s code-behind uses those proper-
ties to display the larger picture in a Popup.

The following XAML code shows how
the program creates its interface:

<StackPanel>
 <StackPanel Orientation=”Horizontal” Height=”35” Margin=”4”>
 <Label Width=”200” Content=”George Washington”/>
 <Image Name=”img1” Stretch=”Uniform”
 Source=”GeorgeWashington.jpg”
 MouseEnter=”img_MouseEnter”
 MouseLeave=”img_MouseLeave” />
 </StackPanel>
 ... Other rows omitted ...
 <Popup Name=”popFullScale” Placement=”Right”
 HorizontalOffset=”5” VerticalOffset=”5”>
 <Image Name=”imgFullScale” Stretch=”None”/>
 </Popup>
</StackPanel>

UsePopup

The Window contains a StackPanel that holds a series of horizontal StackPanels. Each of those
contains a Label and an Image that shows the small preview picture.

Figure 5-9

Textual Controls ❘ 85

After the horizontal entries, the main StackPanel holds a Popup control that contains an Image.

The program uses the following code to show and hide its Popup control:

// The mouse has entered an image. Display the popup.
private void img_MouseEnter(object sender, MouseEventArgs e)
{
 Image img = (Image)sender;
 imgFullScale.Source = img.Source;

 popFullScale.PlacementTarget = img;
 popFullScale.IsOpen = true;
}

// The mouse has left an image. Hide the popup.
private void img_MouseLeave(object sender, MouseEventArgs e)
{
 popFullScale.IsOpen = false;
}

UsePopup

When the mouse enters an Image control, the img_MouseEnter event handler figures out which
Image raised the event. It sets the Popup’s Image control to display the same image as the small
preview control but at full scale. It sets the Popup’s PlacementTarget to the control that raised the
event and sets IsOpen to True.

When the mouse leaves an Image control, the img_MouseLeave event handler simply sets the Popup
control’s IsOpen property to False.

The following table describes the values that the Placement property can take:

value position is relative to:

Absolute Upper-left corner of the screen. If the pop-up won’t fit, it is moved to the edge of
the screen.

Relative Upper-left corner of PlacementTarget

Bottom Lower edge of PlacementTarget

Center Center of PlacementTarget

Right Right edge of PlacementTarget

AbsolutePoint Upper-left corner of the screen. If the pop-up won’t fit, it is extended from an axis
defined by HorizontalOffset or VerticalOffset.

RelativePoint Upper-left corner of PlacementTarget. If the pop-up won’t fit, it is extended from
an axis defined by HorizontalOffset or VerticalOffset.

Mouse The mouse’s position

continues

86 ❘ Chapter 5 Content Controls

value position is relative to:

MousePoint The mouse’s position. If the pop-up won’t fit, it is extended from an axis defined
by HorizontalOffset or VerticalOffset.

Left Left edge of PlacementTarget

Top Top edge of PlacementTarget

Custom A position specified by a CustomPopupPlacementCallback

The PopupPlacement example program shown in Figure 5-10 demonstrates the most common
Placement values. All four pop-ups have their PlacementTarget values set to the Image control.

Figure 5-10

pushy pop-ups

Pop-ups float over the application. If you move the application, they remain where
they were originally positioned and do not move with the application.

In fact, pop-ups tend to float above all other applications, too. If you switch to
another program, the pop-ups remain visible floating over the new program.

By default, a pop-up remains visible until its IsOpen property is set to False. If you set the control’s
StaysOpen property to False, then the Popup automatically captures the mouse and hides when a
mouse event occurs outside of the Popup. It also hides if you switch focus to another application.

The final Popup property mentioned here is PopupAnimation. You can set this property to None
(the pop-up simply appears), Fade (the pop-up fades in and out), Scroll (the pop-up scrolls in
from its upper-left corner), and Slide (the pop-up slides down from the top or up from the bottom
if it won’t fit sliding down). To use any of these values other than None, you must set the control’s
AllowsTransparency property to True.

 (continued)

Textual Controls ❘ 87

textblock
The TextBlock displays read-only text much as a Label does but with greater flexibility. The
TextBlock has additional features that let you:

Change some text’s appearance inline by making it ➤➤ bold, italic, or underlined.

Add line breaks.➤➤

Change line spacing.➤➤

Expand or condense the text.➤➤

Truncate text with an ending ellipsis.➤➤

Apply text decorations such as ➤➤ strikethrough, baseline, underline, and overline.

Use ➤➤ superscripts and subscripts.

The following table summarizes some of the more useful properties that the TextBlock class itself
provides.

property purpose

LineHeight Determines the spacing between lines.

LineStackingStrategy Can be BlockLineHeight (line height is determined by LineHeight)
or MaxHeight (each line’s height is set to fit its contents)

TextTrimming Determines how the TextBlock handles words that don’t fit. Can be None
(words are truncated), WordEllipsis (text is broken at a word boundary
and replaced with an ellipsis), or CharacterEllipsis (text is broken at a
character boundary and replaced with an ellipsis). See Figure 5-11.

TextWrapping Determines whether text is wrapped at the end of the TextBox. This
can be NoWrap, Wrap, or WrapWithOverflow. If the text contains a very
long word and the control cannot figure out how to break the text into
lines, then WrapWithOverflow may make part of the long word stick
out beyond the edge of the TextBlock (and get chopped off), whereas
Wrap will break the word in the middle and continue it on the next line.

Each row in Figure 5-11 demonstrates a different
TextTrimming value. The TextBlocks on the right all
contain the text C:\Program Files\CoolApplications and
have their TextWrapping properties set to NoWrap. When
TextTrimming is CharacterEllipsis, the control ends
the text at the last character that can fit and finishes with
an ellipsis. When TextTrimming is WordEllipsis, the
control ends the text at the last word break that can fit and
finishes with an ellipsis. When TextTrimming is None, the
control simply truncates the text.

Figure 5-11

88 ❘ Chapter 5 Content Controls

In addition to ordinary text, the TextBlock can contain inlines, objects that change the text’s
appearance for a short while. The following table summarizes the most useful inlines.

inline purpose

Bold Makes the enclosed text bold.

Hyperlink Displays text as a hyperlink. Can raise Click events and can automatically
navigate if contained in a navigation host such as a NavigationWindow,
Frame, or browser.

InlineUIContainer Holds other controls.

Italic Makes the enclosed text italic.

LineBreak Starts a new line.

Run Contains a run of text. The Run inline also has its own properties such as
Foreground, Background, and FontSize, so you can use it to change
many text features.

Span Groups other inline elements. Like Run, Span has properties that can greatly
change the enclosed text’s appearance.

Underline Makes the enclosed text underlined.

For example, the following XAML code italicizes the word much:

<TextBlock>
 A TextBlock gives <Italic>much</Italic> greater control
 than a Label.
</TextBlock>

A TextBlock can also directly contain some controls, which it includes within the flow of the text.

The following XAML code demonstrates many TextBlock features. The result is shown in
Figure 5-12.

<TextBlock HorizontalAlignment=”Stretch” VerticalAlignment=”Stretch”
 FontSize=”16” LineHeight=”30” Margin=”0,0,0,0”
 TextWrapping=”Wrap” TextTrimming=”WordEllipsis”
 LineStackingStrategy=”BlockLineHeight”>
 The text in a TextBlock can include <Italic>inlines</Italic>
 that make the text <Bold>bold</Bold>, <Italic>italic</Italic>,
 or <Underline>underline</Underline>.
 They can also provide
 <Hyperlink>hyperlinks</Hyperlink>
 and can include
 <LineBreak/>
 line breaks and even controls such as
 <Button Content=”Buttons”/>.
 They can include both
 <Run BaselineAlignment=”Superscript”

Spatial Controls ❘ 89

 FontSize=”12”>superscripts</Run>
 and <Run BaselineAlignment=”Subscript”
 FontSize=”12”>subscripts</Run>.
 <LineBreak/>
 <Run Foreground=”Red” FontWeight=”Bold”>
 <Run.Background>
 <LinearGradientBrush>
 <GradientStop Offset=”0” Color=”White”/>
 <GradientStop Offset=”1” Color=”Orange”/>
 </LinearGradientBrush>
 </Run.Background>
 You can use a Run to give text different properties such as
 Foreground and Background colors.
 </Run>
</TextBlock>

UseTextBlock

tooltip
The ToolTip displays a tooltip for another object.
Figure 5-13 shows a program displaying a tooltip
for the “First Name” textbox that’s sitting under
the mouse.

While you can give a control a tooltip by building
a ToolTip object, it’s generally easier to simply set
the control’s ToolTip property as shown in the
following code:

<TextBox Margin=”80,10,12,0” VerticalAlignment=”Top”
 Text=”Prog” ToolTip=”The customer’s first name”
 Name=”txtFirstName” Height=”21.96” />

UseToolTip

spatial Controls

The spatial controls have an important spatial component. Some,
such as BulletDecorator and GroupBox, provide spatial arrange-
ment and decoration for other controls. Others, such as ListView
and TreeView, use spatial positioning to show relationships
among other objects.

border
The Border control displays a border or background. It’s a spatial control in the sense that it creates
a space to hold its child. While that may seem like a minor accomplishment, creating separate areas

Figure 5-12

Figure 5-13

90 ❘ Chapter 5 Content Controls

on a window can be very useful for defining groups of controls. For example, if a window contains
many radio buttons or checkboxes, grouping them with Borders can make the window easier to
read and understand.

The control can have only a single child, but that child can be a container such as a Grid or
StackPanel, so this isn’t really much of a restriction.

The following table summarizes the Border control’s most useful properties:

property purpose

Background The control’s background brush

BorderBrush The brush used to draw the Border’s edges

BorderThickness Determines the thicknesses of the Border’s edges. If this is a single value, then
all four edges use the same thickness.

CornerRadius Determines the radii of curvature for the Border’s four rounded corners. If this
is a single value, then all four corners use the same radius. Set this to 0 for
square corners.

The following XAML code creates the Border shown in Figure 5-14:

<Border HorizontalAlignment=”Center” VerticalAlignment=”Center”
 Width=”150” Height=”100”
 CornerRadius=”20”
 BorderBrush=”#FFFF8000” BorderThickness=”5”>
 <Border.BitmapEffect>
 <DropShadowBitmapEffect/>
 </Border.BitmapEffect>
 <Border.Background>
 <LinearGradientBrush EndPoint=”0.5,1” StartPoint=”0.5,0”>
 <GradientStop Color=”#FF00FF00” Offset=”0”/>
 <GradientStop Color=”#FF004000” Offset=”1”/>
 </LinearGradientBrush>
 </Border.Background>
 <TextBlock Width=”100” Height=”50” FontWeight=”Bold”
 TextWrapping=”Wrap” TextAlignment=”Center”
 Text=”This TextBlock is contained inside the Border.”/>
</Border>

UseBorder

Figure 5-14

Spatial Controls ❘ 91

bulletdecorator
The BulletDecorator displays an item and bullet in a bulleted list. The control can have only a
single child (other than the bullet), but that child can be a container such as a Grid or StackPanel,
so this isn’t really much of a restriction.

The BulletDecorator control’s most important property is Bullet,
which should contain the object to be used as the item’s bullet. Normally
this should be something that looks like a bullet such as a small image or
character, but in theory it can be something else such as a label or button.

The following XAML code creates the first item in the bulleted list
shown in Figure 5-15. The three BulletDecorator controls are con-
tained in a StackPanel to make the list.

<BulletDecorator>
 <BulletDecorator.Bullet>
 <Image Width=”20” Height=”20”
 Source=”Bullet.bmp” Stretch=”None”
 HorizontalAlignment=”Left” VerticalAlignment=”Center” >
 <Image.BitmapEffect>
 <DropShadowBitmapEffect/>
 </Image.BitmapEffect>
 </Image>
 </BulletDecorator.Bullet>
 <Label Content=”Choice 1” Foreground=”Red”/>
</BulletDecorator>

UseBulletDecorator

groupbox
A GroupBox displays a header and a border around a single child. Like the Border, the GroupBox is
useful for creating distinct areas on a window.

The GroupBox’s Foreground property determines the brush used to draw the header text, while its
BorderBrush property determines the brush used to draw the border. The Background property
determines how the GroupBox is filled.

broken borders

For some reason, the GroupBox’s border is partially obscured if the control’s
BorderThickness property is larger than 2.

Note also that you can hide the border by setting BorderThickness = 0.

Figure 5-15

92 ❘ Chapter 5 Content Controls

The following XAML code fragment creates the GroupBox shown in Figure 5-16. The GroupBox
contains a Grid that holds the program’s Label and TextBox controls. To save space, they are not
shown in the following code:

<GroupBox HorizontalAlignment=”Stretch” VerticalAlignment=”Stretch”
 Header=”Customer Information” Margin=”8” BorderBrush=”#FFD5DFE5”>
 <Grid Margin=”5”>
 ...
 </Grid>
</GroupBox>

UseGroupBox

listview
The ListView displays a set of data
items in one of several layouts. You
can define new custom layouts for the
control, but probably the most com-
mon standard layout is the grid-like
view shown in Figure 5-17.

Although displaying a fixed set of
data in a grid with resizable columns may sometimes be useful, the real power of the ListView is its
ability to display data from a data source such as a database or a list of objects.

Data binding is covered in greater detail in Chapter 18; this section covers only a few of the basics
so you can see how the ListView works.

To really understand this example, you need to jump back and forth between the code-behind that
defines the data and the ListView control’s XAML code.

The following C# code shows how the UseListView example program defines its BookInfo class.
The class’s constructor simply initializes the new object’s four properties: Author, Title, Year, and
Price. Since the properties are all implemented in a very similar way, only the code for the Author
property is shown here.

public class BookInfo
{
 // Initialize a new object’s fields.
 public BookInfo(string new_Author, string new_Title,
 string new_Year, string new_Price)
 {

Figure 5-16

Figure 5-17

Spatial Controls ❘ 93

 Author = new_Author;
 Title = new_Title;
 Year = new_Year;
 Price = new_Price;
 }

 private String m_Author;
 public string Author
 {
 get { return m_Author; }
 set { m_Author = value; }
 }

 ... Code for the other properties omitted ...
}

UseListView

When the program starts, it uses the following code to create an ObservableCollection of
BookInfo objects containing the data that should be displayed. It then sets the ListView control’s
DataContext property to the collection so that the control has access to all of the data.

// Create a list of BookInfos.
ObservableCollection<BookInfo> books =
 new ObservableCollection<BookInfo>();
books.Add(new BookInfo(“Daniel Pinkwater”,
 “5 Novels”, “1997”, “9.56”));
books.Add(new BookInfo(“Glen Cook”,
 “Cold Copper Tears (Garrett Files)”, “2007”, “6.99”));
books.Add(new BookInfo(“Simon R. Green”,
 “The Man With the Golden Torc”, “2008”, “7.99”));
books.Add(new BookInfo(“Tad Williams”,
 “The War of the Flowers”, “2004”, “8.99”));
books.Add(new BookInfo(“Tom Holt”,
 “You Don’t Have to Be Evil to Work Here, But it Helps”,
 “2007”, “10.00”));

// Set the ListView’s data context to this list.
lvwBooks.DataContext = books;

UseListView

In addition to assigning basic properties such as Name and Background to the ListView, the XAML
code must tell the control what pieces of data to display where. The following XAML code fragment
creates the ListView shown in Figure 5-17:

<ListView Name=”lvwPeople”
 Background=”{x:Null}”
 ItemsSource=”{Binding}”>
 <ListView.View>
 <GridView>
 <GridViewColumn Header=”Author” Width=”100”
 DisplayMemberBinding=”{Binding Path=Author}”/>
 <GridViewColumn Header=”Title” Width=”300”

94 ❘ Chapter 5 Content Controls

 DisplayMemberBinding=”{Binding Path=Title}”/>
 <GridViewColumn Header=”Year” Width=”50”
 DisplayMemberBinding=”{Binding Path=Year}”/>
 <GridViewColumn Header=”Price” Width=”50”
 DisplayMemberBinding=”{Binding Path=Price}”/>
 </GridView>
 </ListView.View>
</ListView>

UseListView

In this code, the ListView’s ItemsSource property is set to {Binding}. That tells the control that
it should use all of the data to which it is bound. In this example, that means it should use the entire
ObservableCollection created by the code and attached to the control’s DataContent property.

The ListView’s View property (the ListView.View element shown in the code) describes how the
control’s data should be displayed. The GridView that the View property contains produces the grid-
like arrangement shown in Figure 5-17.

The GridView element contains a series of GridViewColumn objects that define the view’s columns.
The Width and Header attributes simply set the text displayed at the top of a column and the col-
umn’s initial width.

The GridViewColumn’s DisplayMemberBinding attribute tells the column how to find the data that it
should display in that column. The Path part of the binding tells what part of the data to display. For
example, the Author column’s DisplayMemberBinding attribute is set to {Binding Path=Author}.
That tells the column to take the next piece of data bound to the ListView (a BookInfo object) and dis-
play its Author member. In this example, that means displaying the BookInfo object’s Author property.

The other GridViewColumns are defined similarly. Look back at Figure 5-17 to see the result.

The ListView control is fairly powerful, and, together with XAML triggers and code-behind, it can
provide many special features such as multiple views, formatted cells (in this case, it might be nice to
right-justify the Year and Price columns), cells that are colored differently depending on the values
of their contents, editable data, and so forth.

Unfortunately, many of these features are fairly complicated and therefore this chapter doesn’t say
anything more about them. For a list of about a dozen How-To examples, see Microsoft’s web page
msdn.microsoft.com/ms752071.aspx.

progressbar
The ProgressBar displays progress information to the user. As your program performs some time-
consuming task, it can use a ProgressBar to let the user know that the program is still working and
to indicate roughly how much it has done.

The control’s Minimum, Maximum, and Value properties determine the control’s appearance. For
example, suppose your program needs to process 17 large text files. You could set the ProgressBar’s
Minimum property to 0 and its Maximum property to 17. Then after processing each file, the program
could set the control’s Value property to the number of files processed so far. As the program worked
its way through the files, the ProgressBar would fill in a corresponding percentage of itself.

Spatial Controls ❘ 95

Unfortunately in WPF, the situation isn’t quite that simple. As the program works on the files, it
doesn’t give up control of the CPU long enough for the ProgressBar to refresh itself on the screen
so the user doesn’t see any change in the control’s status.

One way to solve this problem is to perform the lengthy task on a different thread. A thread is like a
lightweight process that can run independently of the main user interface. Now as the thread works, it
can update the ProgressBar’s Value property. Because the ProgressBar runs in a different thread, it
can update itself independently of the lengthy task.

Sadly, even this more complicated approach isn’t as easy as it sounds. In WPF (and Windows Forms
programming, too), a control can only be accessed by code running in the same thread that created
the control. That means the file processing code cannot directly update the ProgressBar because it
is running in a separate thread.

The almost final solution is to have the file processing thread use a Dispatcher object to invoke
code on the user interface thread when necessary.

If you think this all sounds pretty complicated for as simple a task as showing progress, you’re right!
Fortunately, there’s a simpler solution.

The BackgroundWorker class can automatically perform a task on a separate thread and provide noti-
fication to the user interface thread when necessary. Behind the scenes the BackgroundWorker class
handles all of the details about starting itself on a new thread, using a Dispatcher to invoke code on the
user interface thread, and so forth, but all of the details are nicely hidden from you.

The UseProgressBar example program takes this approach to show how it’s doing as it simulates a
long task. The following C# code shows how the program works:

// The BackgroundWorker that will perform the long task.
private BackgroundWorker m_BackgroundWorker;

public Window1()
{
 this.InitializeComponent();

 // Insert code required on object creation below this point.

 // Prepare the BackgroundWorker.
 m_BackgroundWorker = new BackgroundWorker();
 m_BackgroundWorker.WorkerReportsProgress = true;
 m_BackgroundWorker.DoWork += BackgroundWorker_DoWork;
 m_BackgroundWorker.ProgressChanged +=
 BackgroundWorker_ProgressChanged;
 m_BackgroundWorker.RunWorkerCompleted +=
 BackgroundWorker_RunWorkerCompleted;
}

// Start the long task.
private void btnDoSomething_Click(object sender, RoutedEventArgs e)
{
 // Display the progress controls.
 prgWorking.Value = 0;
 prgWorking.Visibility = Visibility.Visible;
 lblWorking.Visibility = Visibility.Visible;

96 ❘ Chapter 5 Content Controls

 btnDoSomething.Visibility = Visibility.Hidden;

 // Asynchronously start the routine
 // that does the long calculation.
 m_BackgroundWorker.RunWorkerAsync();
}

// Simulate a long task.
private void BackgroundWorker_DoWork(Object sender,
 System.ComponentModel.DoWorkEventArgs e)
{
 int value = 0;
 Random rand = new Random();
 while (value < 100)
 {
 // Wait a little while.
 Thread.Sleep(200);

 // Add a bit to the progress.
 value += rand.Next(10, 20);

 // Update the UI thread.
 m_BackgroundWorker.ReportProgress(value);
 }
}

// Display the progress.
private void BackgroundWorker_ProgressChanged(Object sender,
 System.ComponentModel.ProgressChangedEventArgs e)
{
 prgWorking.Value = e.ProgressPercentage;
}

// Reset the UI.
private void BackgroundWorker_RunWorkerCompleted(Object sender,
 System.ComponentModel.RunWorkerCompletedEventArgs e)
{
 prgWorking.Visibility = Visibility.Hidden;
 lblWorking.Visibility = Visibility.Hidden;
 btnDoSomething.Visibility = Visibility.Visible;
}

UseProgressBar

The code starts by declaring the BackgroundWorker object. The Window’s constructor initializes the
object and sets its WorkerReportsProgress property to True so it can generate progress events. It then
assigns event handlers to the object’s DoWork, ProgressChanged, and RunWorkerCompleted events.

When the user clicks on the btnDoSomething button defined by the program’s XAML code, the
btnDoSomething_Click event handler executes. That code displays the ProgressBar and a prog-
ress Label and hides the Button. It then calls the BackgroundWorker’s RunWorkerAsync method
to start the lengthy task.

Spatial Controls ❘ 97

When the program calls the BackgroundWorker’s RunWorkerAsync method, the object raises its DoWork
event. The attached event handler sets a value variable to 0 and then enters a loop that runs as long as
the variable’s value is less than 100.

Each time through the loop, the program sleeps for 200 milliseconds to simulate a long task. At this
point, a real program would be frantically reading files, generating output, buying and selling stocks,
and performing other calculations.

After wasting some time, the program generates a random number between 10 and 20 and adds it
to the value variable. It then calls the BackgroundWorker’s ReportProgress method, passing it the
new value. This makes the worker raise its ProgressChanged event on the user interface thread.

The loop continues until the value variable reaches 100.

When the worker raises its ProgressChanged event, the program’s BackgroundWorker_ProgressChanged
event handler executes. That routine runs on the user interface thread that created the worker so it can
directly access the program’s controls. It simply updates the ProgressBar’s Value property.

When the loop ends, the BackgroundWorker_DoWork
event handler ends, and the BackgroundWorker raises its
RunWorkerCompleted event. The event handler hides the
ProgressBar and the progress Label and redisplays the
program’s button.

Figure 5-18 shows the program about
70 percent of the way through its simulated calculation.

separator
The Separator object draws a line between two items in a menu or
toolbar. The UseSeparator example program shown in Figure 5-19
has a Separator between the File menu’s Open and Exit com-
mands, and between the second and third toolbar buttons in the
two toolbars near the bottom of the window.

The following XAML code builds the File part of the program’s
menu structure. The code that builds the Edit and Help menus has
been omitted to save space.

<Menu HorizontalAlignment=”Stretch”
 DockPanel.Dock=”Top” VerticalAlignment=”Top”>
 <MenuItem Header=”File”>
 <MenuItem Header=”New”>
 <MenuItem.Icon>
 <Image Source=”New.ico”/>
 </MenuItem.Icon>
 </MenuItem>
 <MenuItem Header=”Open”>
 <MenuItem.Icon>
 <Image Source=”Open.ico”/>
 </MenuItem.Icon>
 </MenuItem>

Figure 5-18

Figure 5-19

98 ❘ Chapter 5 Content Controls

 <Separator/>
 <MenuItem Header=”Exit”/>
 </MenuItem>
 ...
</Menu>

UseSeparator

This program also has two ToolBar controls on the bottom. The upper ToolBar directly contains
a series of Buttons with a Separator between the second and third Buttons. The result is the light
vertical line shown in Figure 5-19.

The bottom ToolBar contains a ToolBarPanel that holds the Buttons. Normally the ToolBarPanel
changes the appearance of the Buttons so the Separator is invisible. To make the Separator vis-
ible again, this program uses the following code to give the Separator some width and to remove its
usual vertical line:

<Separator Width=”10” Margin=”0,0,0,0” Background=”{x:Null}”/>

Note that you could use any blank object as a Separator in a Toolbar. For example, the following
Label also makes a horizontal gap in the Toolbar:

<Label Width=”10”/>

treeview
The TreeView displays hierarchical data. For example,
the UseTreeView example program shown in Figure 5-20
displays the organizational chart for a fictitious com-
pany. The dark triangles beside the Board of Directors,
President/CEO, and other items indicate that those items
are expanded to show the subitems that they contain.
The light, hard to see triangle next to the CFO item indi-
cates that the CFO item is collapsed to hide its subitems.

The TreeView object contains TreeViewItem
objects that hold the values shown on the control. A
TreeViewItem can contain other controls, but if you
just want to display text as shown in Figure 5-20, you
can simply set the TreeViewItem’s Header property to the text you want it to display.

You give the TreeView its hierarchical structure by placing TreeViewItems inside other
TreeViewItems.

The following XAML code shows how the UseTreeView program builds its TreeView control:

<TreeView Margin=”5”>
 <TreeView.Background>
 <RadialGradientBrush>
 <GradientStop Color=”#FFFFFFFF” Offset=”0”/>
 <GradientStop Color=”#FFFF3030” Offset=”1”/>

Figure 5-20

Summary ❘ 99

 </RadialGradientBrush>
 </TreeView.Background>
 <TreeViewItem Header=”Board of Directors” IsExpanded=”True”>
 <TreeViewItem Header=”President/CEO” IsExpanded=”True”>
 <TreeViewItem Header=”CIO” IsExpanded=”True”>
 <TreeViewItem Header=”VP Misinformation Systems”/>
 <TreeViewItem
 Header=”VP Digital Assets and Paranoia”/>
 <TreeViewItem Header=”VP Networks and Grossworks”/>
 </TreeViewItem>
 <TreeViewItem
 Header=”VP Administration” IsExpanded=”True”>
 <TreeViewItem Header=”Human Resources”/>
 <TreeViewItem Header=”Inhuman Resources”/>
 <TreeViewItem
 Header=”Advertising, Marketing, and Spam”/>
 </TreeViewItem>
 <TreeViewItem Header=”CFO” IsExpanded=”False”>
 <TreeViewItem Header=”VB Resource Mismanagement”/>
 <TreeViewItem Header=”General Accounting”/>
 <TreeViewItem Header=”Colonel Accounting”/>
 <TreeViewItem
 Header=”Internal "Auditing"”/>
 <TreeViewItem Header=”VB Perks and Boondoggles”/>
 </TreeViewItem>
 <TreeViewItem Header=”Phil the Janitor”/>
 </TreeViewItem>
 </TreeViewItem>
</TreeView>

UseTreeView

Like the ListView control, the TreeView control has some advanced data-binding capabilities.
Chapter 18 explains some TreeView data-binding techniques.

suMMary

This chapter describes WPF’s most useful content controls. These are the controls that a program
uses mainly to display content for the user to view but not to modify or manipulate.

This chapter provides a brief overview of the controls and gives enough detail for you to get started
using them. However, some of the controls are incredibly complex. For example, the ListView and
TreeView controls provide all sorts of features that let you customize the ways in which they bind
to and display data. With enough work, you can customize these controls until they are hardly
recognizable.

Unfortunately, there isn’t room to cover all of these advanced techniques in a single book. For more
information on specific controls, start by looking at Microsoft’s documentation at msdn.microsoft
.com/ms752324.aspx.

The following chapter describes another group of controls: layout controls. These are controls such
as Grid and StackPanel that help you by arranging the controls that they contain.

Layout Controls
Layout controls are primarily intended to contain and arrange other controls. They position
the controls they contain in different ways to make it easier to design various kinds of user
interfaces.

Layout controls are not quite the same as container controls. While all layout controls do
contain other controls, the converse is not true: Not all controls that contain other controls
arrange those controls in a nontrivial way.

For example, the GroupBox control draws a header and a border around a single child.
Because its main purpose is to draw the header and border and because it contains only a
single child control, it doesn’t really do much arranging.

These non-arranging container controls are described elsewhere. For example, the GroupBox is
described in the previous chapter.

Control overview

The following table briefly lists the controls described in this chapter together with their pur-
poses. You can use this table to help decide which control you need in a particular situation.

Control PurPose

Canvas Lets you position child controls explicitly by specifying the distances
between their left, top, right, and bottom edges and those of the Canvas.

DockPanel Docks its children to its edges.

Expander Displays a header and an icon that the user can click on to show or hide a
single child control.

Grid Displays children in rows and columns. You can also ignore the rows and
columns and position children somewhat as you can in a Canvas.

6

continues

102 ❘ ChaPter 6 Layout ControLs

Control PurPose

ScrollViewer Displays a single child in a scrollable region.

StackPanel Displays children in a single row or column.

StatusBar Creates an area at the bottom of the window where you can display status
information to the user.

TabControl Displays a series of tabs that the user can click to select different children.

ToolBar Displays a vertical or horizontal area where you can place buttons and other
tools for easy access.

ToolBarTray Handles sizing, dragging, and other arrangements of ToolBar controls.

UniformGrid Displays a grid where all rows have the same size and all columns have the
same size.

Viewbox Stretches its contents in various ways.

WindowsFormsHost Contains Windows Forms controls.

WrapPanel Displays children in a row/column that wraps to a new row/column when
necessary.

The following sections describe these controls in greater detail and provide XAML examples dem-
onstrating the controls.

Canvas

The Canvas control lets you explicitly position child controls by speci-
fying the distances between their left, top, right, and bottom edges and
those of the Canvas. To do that, the Canvas control provides Left,
Top, Right, and Bottom attached properties.

For example, the following code creates a Canvas containing four but-
tons that are 20 pixels from the edges of the Canvas. Figure 6-1 shows
the result.

<Canvas>
 <Button Content=”TopLeft” Width=”85” Height=”30”
 Canvas.Top=”20” Canvas.Left=”20”/>
 <Button Content=”TopRight” Width=”85” Height=”30”
 Canvas.Top=”20” Canvas.Right=”20”/>
 <Button Content=”BottomLeft” Width=”85” Height=”30”

Figure 6-1

 (continued)

DockPanel ❘ 103

 Canvas.Bottom=”20” Canvas.Left=”20”/>
 <Button Content=”BottomRight” Width=”85” Height=”30”
 Canvas.Bottom=”20” Canvas.Right=”20”/>
</Canvas>

UseCanvas

The Canvas always gives its children as much space as they want.

If a child specifies both the Left and Right or the Top and Bottom attached properties, then the
Left or Top values take precedence and the Right or Bottom values are ignored.

edge eFFeCts

Because of the way the attached properties work, the Canvas control’s children
stick to its edges and keep their original sizes when the Canvas resizes. If you want
the children to stretch when their parent resizes, consider a different container such
as a Grid and use the children’s Margin properties.

doCkPanel

The DockPanel control docks its children to its edges. This control defines the attached property
Dock, which can take the values Left, Right, Top, and Bottom.

During layout, the DockPanel loops through its child controls and checks their Dock values. It attaches
each child to the appropriate edge of whatever space is currently unclaimed in the DockPanel.

If the DockPanel control’s LastChildFill property is True, then it makes its last child fill whatever
space remains.

For example, the following code creates a series of Border controls that are docked to the
DockPanel’s edges and that contain Label controls.

<DockPanel LastChildFill=”True”>
 <Border DockPanel.Dock=”Top” Background=”LightGreen”>
 <Label Content=”1, Top”/>
 </Border>
 <Border DockPanel.Dock=”Left” Background=”#FFFF00FF”>
 <Label Content=”2, Left” >
 <Label.LayoutTransform>
 <RotateTransform Angle=”-90”/>
 </Label.LayoutTransform>
 </Label>
 </Border>
 <Border DockPanel.Dock=”Right” Background=”#FFFFB400”>
 <Label Content=”3, Right” >

104 ❘ ChaPter 6 Layout ControLs

 <Label.LayoutTransform>
 <RotateTransform Angle=”90”/>
 </Label.LayoutTransform>
 </Label>
 </Border>
 <Border DockPanel.Dock=”Bottom” Background=”Yellow”>
 <Label Content=”4, Bottom”/>
 </Border>
 <Border DockPanel.Dock=”Bottom” Background=”#FF80FFFF”>
 <Label Content=”5, Bottom”/>
 </Border>
 <Border Background=”White”>
 <Label Content=”6, None”/>
 </Border>
</DockPanel>

UseDockPanel

The DockPanel considers its first child. That control has Dock value
Top, so the DockPanel attaches it to the top of its area.

Next the DockPanel considers its second child. That control has
Dock value Left, so the DockPanel attaches it to the left edge of
the space that is not occupied by the first child.

The DockPanel continues positioning its children until it reaches
the last one. If the control’s LastChildFill property is True
(which it is by default), the control makes its final child fill the
remaining space.

Figure 6-2 shows the results.

size sPeCiFiCations

By default, the DockPanel tries to stretch its child controls so they cover the edges
to which they are attached. For example, in Figure 6-2, it stretches the top Border
so it fills the DockPanel’s entire width.

At the same time, the DockPanel lets the control try to grow to its natural size in
the other dimension. The top Border in Figure 6-2 is about 37 pixels tall because
that’s how tall it wants to be.

You can override either of a child’s dimensions by explicitly setting its Width and
Height properties.

Figure 6-2

Grid ❘ 105

exPander

The Expander control displays a header and an icon that the
user can click on to show or hide a single child control.

Figure 6-3 shows four expanders with headers “Personal
Information,” “Address,” “Equipment Stats,” and “Medical
Information.” The first Expander is expanded to show the
Grid it contains and the other controls inside the Grid (an
Image, three Labels, and three TextBoxes).

The following table summarizes the Expander’s most useful
properties.

ProPerty PurPose

Background The color of any exposed parts of the Expander, including the header area. In
Figure 6-3, the background includes the blue header and thin blue border. The
light-to-dark blue shaded area is the Grid inside the Expander.

BorderBrush The color of the border drawn around the entire Expander (white in Figure 6-3)

BorderThickness The thickness of the border drawn around the entire Expander (2 pixels in Figure 6-3)

ExpandDirection Determines the direction in which the Expander opens to show its contents.
This can be Down, Left, Right, and Up (Down in Figure 6.3).

Foreground The color of the Expander’s header text (yellow in Figure 6-3)

Header The text that the Expander displays (“Personal Information” for the first
Expander in Figure 6.3)

IsExpanded Determines whether the Expander is currently expanded.

grid

The Grid control arranges its children in rows and columns.

The Grid’s ColumnDefinitions property is a collection of ColumnDefinition objects that deter-
mine the widths of the Grid’s columns. Similarly, the Grid’s RowDefinitions property is a collec-
tion of RowDefinition objects that determine the heights of the Grid’s rows.

The ColumnDefinition and RowDefinition objects have properties that determine their sizes
(Width for columns, Height for rows).

These Width and Height properties can take absolute values or proportional values. To use an abso-
lute number of pixels, you can simply use a number. For example, if a column’s Width property is set
to 50, that column is 50 pixels wide.

Figure 6-3

106 ❘ ChaPter 6 Layout ControLs

You can include a unit indicator after a number to use a unit other than pixels. The following table
lists the unit indicators that you can use:

indiCator Meaning equivalent

px pixels 1 pixel

in inches 96 pixels

cm centimeters 96/2.54 ª 37 pixels

pt points 1/72 inch

To use a proportional width or height, assign the property a number followed by an asterisk (*).
(The value * is equivalent to 1*.) The Grid calculates the amount of space it has that is not used up
by absolute values and then divides it among the rows or columns with proportional sizes, weighting
them according to their numeric values.

For example, the following XAML code defines a grid with three columns and two rows.

<Grid Margin=”5”>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”0.75 in”/>
 <ColumnDefinition Width=”2*”/>
 <ColumnDefinition Width=”1*”/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height=”30”/>
 <RowDefinition Height=”*”/>
 </Grid.RowDefinitions>
</Grid>

The first column has a width of 0.75 inch = 72 pixels, so it takes up the leftmost 72 pixels in the
Grid. The second and third columns’ widths are set to 2* and 1*, so the second column is twice as
wide as the last column. In other words, the second column gets 2/(2 + 1) = 2/3 of the remaining
width in the Grid, and the last column gets 1/(2 + 1) = 1/3 of the remaining width.

The first row has a height of 30 pixels. The second row has height set to *, so it gets all of the remain-
ing height in the Grid.

By convention, many developers set proportional values so they add up to either 100 or 1. That lets
you think of the sizes as percentages of the remaining space. For example, in the following XAML
code, the first two columns each use 25 percent of the Grid’s width and the third column uses the
remaining 50 percent of the Grid’s width.

<Grid Margin=”5”>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”25*”/>
 <ColumnDefinition Width=”25*”/>
 <ColumnDefinition Width=”50*”/>
 </Grid.ColumnDefinitions>
</Grid>

ScrollViewer ❘ 107

To let you place child controls in its rows and columns, the Grid control defines Row and Column
attached properties. For example, the following XAML code creates a Label and places it in row 0
column 2 of a Grid.

<Label Grid.Row=”0” Grid.Column=”2” Content=”Hello!”/>

The Grid also defines RowSpan and ColumnSpan attached proper-
ties, so you can make a child cover more than one row or column.
For example, set RowSpan = 2 to make a child span 2 rows.

Figure 6-4 shows a Grid containing Borders and Labels that
demonstrate various Row, Column, RowSpan, and ColumnSpan val-
ues. Since the Grid’s ShowGridLines property is set to True, it dis-
plays dashed lines between its rows and columns. Download the
example program from the book’s web site to see how the XAML
code produces this result.

sCrollviewer

The ScrollViewer control displays a single child inside a scrollable region. Its most important
properties are HorizontalScrollBarVisibility and VerticalScrollBarVisibility. These can
take one of the following values:

Auto➤➤ — The scrollbar is displayed when needed and hidden otherwise.

Visible➤➤ — The scrollbar is displayed even when it isn’t needed.

Disabled➤➤ — The scrollbar does not appear even when it is needed. The child control’s size is
set to the available size of the ScrollViewer. For example, a Grid might be resized to fit.

Hidden➤➤ — The scrollbar does not appear even when it is needed. The child’s size is not set
to the available size of the ScrollViewer. For example, a Grid would keep its original size
even if it sticks out beyond the bounds of the ScrollViewer (where it is clipped).

Figure 6-5 illustrates the difference between the Disabled
and Hidden values. The program contains a StackPanel
holding two nearly identical ScrollViewers. Each
ScrollViewer holds a Grid with two equally sized rows
and columns. Since the Grids’ ShowGridLines properties
are set to True, you can see the dashed lines between the
rows and columns.

Since the upper ScrollViewer’s
HorizontalScrollBarVisibility property is set to Disabled, the horizontal scrollbar isn’t shown
and the Grid is resized to fit within the ScrollViewer. The large buttons don’t fit in the Grid so
they are truncated.

Figure 6-4

Figure 6-5

108 ❘ ChaPter 6 Layout ControLs

The lower ScrollViewer’s HorizontalScrollBarVisibility property is set to Hidden. This time,
since the Grid is not resized to fit within the ScrollViewer, it remains large enough to display its
buttons. The first button fits in the ScrollViewer, but the second doesn’t.

The UseScrollViewer example program uses the following code to demonstrate the most typical use
of the ScrollViewer: to let the user scroll over something that’s too big to fit.

<ScrollViewer
 HorizontalScrollBarVisibility=”Auto”
 VerticalScrollBarVisibility=”Auto”>
 <Image Source=”ColoradoFlowers.jpg” Stretch=”None”/>
</ScrollViewer>

UseScrollViewer

Figure 6-6 shows the UseScrollViewer program in action.

Figure 6-6

staCkPanel

The StackPanel control displays its children in a single row or column. If any children don’t fit,
they are clipped.

The most useful property of the StackPanel is
Orientation, which can take the values Vertical
(the default) or Horizontal.

The UseStackPanel example program shown in
Figure 6-7 uses three StackPanels. The first fills
the window and contains the other two. The sec-
ond is a horizontal StackPanel that contains the
blue buttons. The last is a vertical StackPanel that
contains the yellow buttons. Figure 6-7

StatusBar ❘ 109

The following XAML code shows how the program builds the StackPanel containing the blue but-
tons. (Don’t worry about the Style for now. That just sets the button sizes, colors, and margins.)

<StackPanel Orientation=”Horizontal”>
 <Button Content=”Drinks” Style=”{StaticResource HStyle}”/>
 <Button Content=”Appetizers” Style=”{StaticResource HStyle}”/>
 <Button Content=”Entrees” Style=”{StaticResource HStyle}”/>
 <Button Content=”Desserts” Style=”{StaticResource HStyle}”/>
</StackPanel>

UseStackPanel

statusBar

The StatusBar control creates an area at the bottom of the window where you can display status
information to the user. Ideally, a StatusBar should contain relatively simple read-only information
such as labels, icons, and progress bars, although some programs put buttons, combo boxes, menus,
and all sorts of other content in them.

Figure 6-8 shows the UseStatusBar application dis-
playing a StatusBar. A timer in the code-behind
updates the status icon, progress bar, and clock.

A StatusBar should contain StatusBarItem
objects to hold the status items. A StatusBarItem
can contain only a single child, but that child can
be a container such as a Grid or StackPanel, so
you can display just about anything you like.

The following XAML fragment shows how the UseStatusBar program colors the StatusBar and
makes its date label. The timer in the code-behind resets the date to the current date when the pro-
gram starts.

<StatusBar HorizontalAlignment=”Stretch” VerticalAlignment=”Bottom”
 FontWeight=”Bold”>
 <StatusBar.Background>
 <LinearGradientBrush EndPoint=”0.5,1” StartPoint=”0.5,0”>
 <GradientStop Color=”#FF80FF00” Offset=”0”/>
 <GradientStop Color=”#FFFFFF00” Offset=”1”/>
 </LinearGradientBrush>
 </StatusBar.Background>
 <StatusBarItem>
 <Label Name=”lblDate” Content=”4/1/2010”/>
 </StatusBarItem>
 ... Other StatusBarItems omitted ...
</StatusBar>

UseStatusBar

Figure 6-8

110 ❘ ChaPter 6 Layout ControLs

taBControl

The TabControl displays a series of tabs that the user can click to select the control’s children.

Control Controls

Yes, this control is called TabControl, not just Tab, TabContainer, or some
other more appealing name. This can lead to awkward phrases such as “Insert a
TabControl control here.”

For some reason, it seems that one or two controls always slip through that have
the word control in their names, perhaps for historical reasons.

The TabControl object contains TabItem objects
that hold the control’s content. A TabItem can
contain only a single child, but that child can be
a container such as a Grid or StackPanel, so
you can put just about anything you want in the
TabItem.

Figure 6-9 shows the UseTabControl example
program with its first tab selected. Compare this
interface to the Expanders used in Figure 6-3.

The following table summarizes the
TabControl’s most useful properties:

ProPerty PurPose

BorderBrush Sets the color for the control’s border (red in Figure 6-9).

BorderThickness Sets the thickness of the border (3 pixels in Figure 6-9).

SelectedIndex The index of the currently selected tab (0 in Figure 6-9)

SelectedItem The selected object (normally a TabItem object)

TabStripPlacement Determines where the control places its tabs. Can take the values Left,
Right, Top (the default), or Bottom.

The TabItem’s ForeGround and BackGround properties determine the colors used to draw the item’s
tab. In Figure 6-9, these are yellow and blue, respectively. The light-to-dark blue shaded area is the
Grid contained inside the TabItem.

Usually the TabItem’s Header property is a simple string, but if you want to place something more
complicated in the tab, you can do so by using property element syntax.

Figure 6-9

ToolBar and ToolBarTray ❘ 111

Bad BaCkgrounds

When you click on a TabControl’s tab, the control changes the background of that
tab to show that it is selected. In Figure 6-9, you can see that the first tab’s back-
ground is different from those of the other tabs.

If you change the tabs’ colors, be sure that the foreground color you use will con-
trast with the selected tab’s background color, or the result may be hard to read.

For example, in the following XAML fragment, the Header property contains a horizontal StackPanel
that holds an Ellipse and a Label. The TabItem’s body holds a Grid that could contain other controls.

<TabItem>
 <TabItem.Header>
 <StackPanel Orientation=”Horizontal”>
 <Ellipse Width=”30” Height=”20”
 Stroke=”Black” Fill=”Yellow”/>
 <Label Content=”Round Things” />
 </StackPanel>
 </TabItem.Header>
 <Grid>
 ... Content omitted ...
 </Grid>
</TabItem>

toolBar and toolBartray

The ToolBar control displays an area where you can place buttons, combo boxes, and other tools
that the user can easily find.

To give the user the full ToolBar experience, place one or more ToolBars inside a ToolBarTray.
The ToolBarTray arranges the ToolBars and lets the user drag them around within the tray.

Finish by putting Buttons, TextBoxes, ComboBoxes, and whatever other tools you want to display
inside the ToolBar.

The ToolBarTray defines two attached properties that you can use to control the positioning of the
ToolBars: Band and BandIndex.

Band is a number that determines the order of the horizontal rows or bands in the ToolBarTray
that hold the ToolBars. The ToolBarTray uses the Band value to sort the bands, but it doesn’t care
whether they start with 0, 1, or something else, or if they are consecutive.

BandIndex is a number that determines a ToolBar’s position within its band.

112 ❘ ChaPter 6 Layout ControLs

Figure 6-10 shows the UseToolBar example pro-
gram displaying one ToolBarTray containing three
ToolBars.

The first Toolbar, which contains a textbox and
search-related buttons, has Band = 1 and BandIndex
= 1, so it appears first in the first (top) band.

The second ToolBar, which contains vari-
ous globe-related buttons, has Band = 1 and
BandIndex = 2, so it appears second in the first band.

The final ToolBar, which contains miscellaneous buttons, has Band = 2 and BandIndex = 1, so it
appears first in the second band.

At run time, the user can drag ToolBars to new positions in the ToolBarTray, even in different bands.

toolBar turMoil

In my tests, Expression Blend wasn’t very good at updating ToolBars. Occasionally
it got confused and stopped displaying a tool or put ToolBars in the wrong bands.
Switching the designer to XAML view and then switching back to Design or Split
view usually fixed it, and it always displayed correctly at run time.

If a ToolBar is too small to display all of its items (e.g., if you make the window too narrow), it cre-
ates an overflow area that is available to the user via a dropdown arrow.

The ToolBar defines an OverflowMode attached property that lets you determine how an item in a
ToolBar behaves when the ToolBar uses an overflow area. You can set OverflowMode to Always
(always put the item in the overflow area), Never (never put the item in the overflow area, even if it
gets chopped off), and AsNeeded (put the item in the overflow area if it won’t fit in the ToolBar).

Figure 6-11 shows the UseToolBar program again,
this time with the overflow area in the third ToolBar
open. The four items in this area have OverflowMode
set to Always, so they appear only in the overflow
area (not shown in Figure 6-10).

The tools in the first ToolBar all have OverflowMode
set to Never, so they are never moved into that
ToolBar’s overflow area. If you make the form too
narrow to show the whole ToolBar, it sticks off the
side of the window and is clipped.

Figure 6-10

Figure 6-11

UniformGrid ❘ 113

The following XAML code shows how the UseToolBar program builds parts of its ToolBars:

<ToolBarTray VerticalAlignment=”Top” HorizontalAlignment=”Stretch”>
 <ToolBarTray.Background>
 <LinearGradientBrush EndPoint=”0.5,1” StartPoint=”0.5,0”>
 <GradientStop Color=”White” Offset=”0”/>
 <GradientStop Color=”Yellow” Offset=”1”/>
 </LinearGradientBrush>
 </ToolBarTray.Background>
 <ToolBar Band=”1” BandIndex=”1”> <!-- Search -->
 <TextBox BorderBrush=”Gray” Width=”50”
 ToolBar.OverflowMode=”Never”/>
 <Button ToolBar.OverflowMode=”Never”>
 <Image Source=”search.ico” Height=”24” Width=”24”/>
 </Button>
 <Button ToolBar.OverflowMode=”Never”>
 <Image Source=”search_reference.ico” Height=”24” Width=”24”/>
 </Button>
 <Button ToolBar.OverflowMode=”Never”>
 <Image Source=”search4doc.ico” Height=”24” Width=”24”/>
 </Button>
 ... Other Buttons omitted ...
 <ToolBar Band=”1” BandIndex=”1”> <!-- Search -->
 ... Other ToolBars omitted ...
</ToolBarTray>

UseToolBar

The ToolBarTray control has one final property worth mentioning here: Orientation. You can set
this property to Horizontal or Vertical to determine whether the tray arranges its ToolBars ver-
tically or horizontally.

Figure 6-12 shows a program that arranges its ToolBarTray ver-
tically. The program’s XAML code uses a Layout Transform to
rotate the textbox sideways. Note that the third ToolBar’s over-
flow area opens horizontally even though the ToolBar itself is
arranged vertically.

uniForMgrid

The UniformGrid control displays items in a grid in which all
rows have the same size and all columns have the same size. You
set the control’s Rows and Columns properties to the number of
rows and columns you want. The control divides its area up evenly
to form that many rows and columns.

The control places its children in the resulting grid cells. If a child is too big to fit in its cell, it is
clipped at the cell’s boundaries.

Figure 6-12

114 ❘ ChaPter 6 Layout ControLs

In some ways, a UniformGrid acts like a WrapPanel. Both arrange their children in a row until they
run out of room, and then they begin a new row. However, there are two big differences between
the controls.

First, the WrapPanel gives each item in a row the same height, but the items in different rows may
have different widths so they don’t necessarily line up in columns. In contrast, the UniformGrid
gives every item the same area vertically and horizontally.

Second, the WrapPanel has an Orientation property that lets you determine whether it arranges its
children in rows or columns. The UniformGrid always arranges its children in row-first order.

Figure 6-13 shows the UseUniformGrid example program display-
ing three rows and four columns. Since the buttons stretch to fit
their cells, they all have the same size, but the control would work
just as well if its children all had different sizes.

The following XAML code fragment shows the key pieces of the
UseUniformGrid program. I’ve omitted the UniformGrid’s back-
ground definition to save space.

<UniformGrid Columns=”4” Rows=”3”>
 <UniformGrid.Background>
 ... Omitted to save space ...
 </UniformGrid.Background>
 <Button Content=”Button 1” Margin=”5”/>
 <Button Content=”Button 2” Margin=”5”/>
 <Button Content=”Button 3” Margin=”5”/>
 <Button Content=”Button 4” Margin=”5”/>
 <Button Content=”Button 5” Margin=”5”/>
 <Button Content=”Button 6” Margin=”5”/>
 <Button Content=”Button 7” Margin=”5”/>
 <Button Content=”Button 8” Margin=”5”/>
 <Button Content=”Button 9” Margin=”5”/>
 <Button Content=”Button 10” Margin=”5”/>
 <Button Content=”Button 11” Margin=”5”/>
 <Button Content=”Button 12” Margin=”5”/>
</UniformGrid>

UseUniformGrid

viewBox

The Viewbox control stretches its contents in various ways. That not only lets you stretch images
(the Image control can do that by itself anyway), but it also lets you stretch other controls.

The Viewbox can contain only a single child, but that child can be a container such as a Grid or
StackPanel, so you can put anything you want in the child.

Figure 6-13

WindowsFormsHost ❘ 115

The Viewbox’s Stretch property determines how it stretches its child. The Stretch property can
take one of the following values:

None➤➤ — The child is not stretched.

Fill➤➤ — The child is stretched to fill the Viewbox even if that causes distortion.

Uniform➤➤ — The child is stretched uniformly (by the same amount vertically and horizontally)
until it is as big as possible while still fitting within the Viewbox.

UniformToFill➤➤ — The child is stretched uniformly until it fills the entire Viewbox even if
parts of the child stick out and are clipped.

Figure 6-14 shows the UseViewbox example program demonstrating the different Stretch property
values.

Figure 6-14

windowsForMshost

The WindowsFormsHost control can hold Windows Forms controls. This lets you use a Windows
Forms control if there is no equivalent WPF version. (It can even host older COM controls, although
that’s not covered explicitly here.)

For example, WPF doesn’t have a DateTimePicker control, but Windows Forms does. The follow-
ing XAML code fragment adds a DateTimePicker control to a WPF window.

<GroupBox Header=”Appointment Info” Margin=”5”>
 <StackPanel Margin=”10,5,0,0”>
 <CheckBox Content=”Make an appointment” Margin=”5”
 Name=”chkMakeAppt” Checked=”chkMakeAppt_Checked”
 Unchecked=”chkMakeAppt_Unchecked” />
 <WindowsFormsHost Margin=”5” x:Name=”wfhAppt”>
 <WindowsFormsHost.Child>
 <wf:DateTimePicker x:Name=”dtpAppt”
 Enabled=”False” />
 </WindowsFormsHost.Child>
 </WindowsFormsHost>
 </StackPanel>
</GroupBox>

UseWindowsFormsHost

116 ❘ ChaPter 6 Layout ControLs

The code starts with a GroupBox that displays the header
“Appointment Info.” The GroupBox contains a StackPanel
that holds a CheckBox and the WindowsFormsHost.
The WindowsFormsHost’s Child property contains a
DateTimePicker control.

Figure 6-15 shows the result.

The program uses the following C# code-behind to enable the
DateTimePicker only when the program’s CheckBox is checked.
When the control is enabled, you can click on its parts to change
the month, date, and year, or you can click on the dropdown
arrow to display the month selection area shown in Figure 6-15.

// Enable the DateTimePicker so the user can make an appointment.
private void chkMakeAppt_Checked(object sender, RoutedEventArgs e)
{
 dtpAppt.Enabled = true;
}

// Disable the DateTimePicker.
private void chkMakeAppt_Unchecked(object sender, RoutedEventArgs e)
{
 dtpAppt.Enabled = false;
}

UseWindowsFormsHost

Before you can use a WindowsFormsHost, you must perform three steps:

 1. Add a reference to the WindowsFormsIntegration library. In Visual Studio, you can open the
Project menu, select “Add Reference,” and select the library from the .NET tab on the Add
Reference dialog. In Expression Blend, you can open the Project menu, select Add Reference,
and then browse to the library file. On my system, it’s installed at C:\Program Files\
Reference Assemblies\Microsoft\Framework\v3.0\WindowsFormsIntegration.dll.

 2. Add a reference to the System.Windows.Forms.dll library. Again, in Visual Studio, you can
use the Project menu’s Add Reference command and select the library from the resulting dia-
log. In Expression Blend, you can again use the Project menu’s Add Reference command and
then browse to the library file. On my system, it’s installed at C:\Windows\Microsoft.NET\
Framework\v2.0.50727\System.Windows.Forms.dll.

 3. Add a namespace declaration for the Windows Forms namespace to the top of the XAML
file. The declaration should look something like this:

xmlns:wf=”clr-namespace:System.Windows.Forms;assembly=System.Windows.Forms”

This makes wf the abbreviation for the namespace, so you can refer to Windows Forms controls as
in wf:DateTimePicker.

Figure 6-15

Summary ❘ 117

host hints

Visual Studio seems to do a better job of displaying the WindowsFormsHost control
than Expression Blend does, at least in the versions I’m using now. Visual Studio seems
to understand Windows Forms controls well enough to calculate the size of the host
and its contents and display an outline for the host. Expression Blend doesn’t seem to
look inside the host, so it doesn’t use its content to give the host the proper size.

If the host’s contents should help determine its size, you may want to lay out the
host in Visual Studio rather than Expression Blend.

wraPPanel

The WrapPanel control works much like a StackPanel, arranging controls in a row. The difference
between the two is that the WrapPanel starts a new row when the current row runs out of room. It
keeps arranging its children in rows, starting new rows when necessary, until it has positioned all of
its children.

Like the StackPanel, the WrapPanel has an Orientation property that can take the values
Horizontal or Vertical. If you set Orientation to Vertical, the control arranges its children in
columns instead of rows.

Figure 6-16 shows the
UseWrapPanel example program
displaying two WrapPanels that
demonstrate the two orientations.

The WrapPanel is ideal when
it’s more important for the user
to see all of the items than it is
to have each item in a specific
position.

suMMary

This chapter describes WPF’s most useful layout controls. These are the controls that a program
uses mainly to arrange other controls in various ways.

This chapter provides a brief overview of the controls and gives enough detail for you to get started
using them. However, some of the controls are fairly complex. In particular, the Grid control pro-
vides a lot of features for arranging its children, and you may need a bit of practice with it before
you fully master its capabilities.

The following chapter describes another group of controls: user interaction controls. These are con-
trols such as TextBox, Button, and Menu that let the user enter data, execute code, and otherwise
control the application.

Figure 6-16

User Interaction Controls
The two preceding chapters described two categories of WPF controls: content controls and
layout controls. This chapter describes a third category: user interaction controls.

User interaction controls are the objects that the user manipulates to interact with the appli-
cation. Where content controls let the program give information to the user, user interaction
controls let the user give information to the program.

The types of information the user gives to the program include:

Textual values entered in textboxes➤➤

Choices selected from list boxes, combo boxes, radio buttons, checkboxes, and so forth➤➤

Values picked from a value selection control such as a slider or numeric up/down button➤➤

The user also tells the program when to perform actions by clicking buttons and selecting
menu items.

This chapter describes these controls and gives examples to help you get started using them.
Because the whole point of these controls is to give information and instructions to the pro-
gram, this chapter contains a bit more code-behind than the previous ones.

Chapter 2 includes several sections that explain different ways of building event handlers.
See the section “Code-Behind” for details.

Control overview

The following table briefly lists the controls described in this chapter together with their pur-
poses. You can use this table to help decide which control you need for a particular purpose.

Control PurPose

Button Lets the user click to tell the program to do something.

CheckBox Lets the user select or deselect a non-exclusive option.

7

continues

120 ❘ ChaPter 7 User InteractIon controls

Control PurPose

ComboBox Lets the user pick from a dropdown list of choices.

ContextMenu Displays a pop-up menu associated with a control.

Frame Displays Web or XAML content and provides simple navigation buttons.

GridSplitter Lets the user resize the rows and columns in a Grid.

ListBox Displays a list of items to the user and lets the user pick one or more, depending
on how the control is configured.

Menu Displays a main menu for a window.

PasswordBox Lets the user enter text while hiding the text on the screen

RadioButton Lets the user select one of an exclusive set of options.

RepeatButton Lets the user fire Click events repeatedly as long as the mouse is pressed over
the control.

RichTextBox Lets the user enter formatted text with such features as multiple fonts, multiple col-
ors, paragraphs, hanging indentation, bulleted lists, and so forth.

ScrollBar Lets the user select a numeric value from a range of values. Usually the value is
used to adjust something graphically such as the position of a large image within a
viewing area.

Slider Lets the user select a numeric value from a range of values.

TextBox Lets the user enter text without fancy formatting.

Button

The Button control lets the user click to tell the program to do something.

This is an extremely simple control to use. When the user clicks a Button, the Button raises its
Click event. The program catches the event and takes whatever action is necessary.

The following code shows one of the simplest ways to attach an event handler to a Button in
XAML code. When the user clicks on this button, the code-behind executes the routine named
btnShowTime_Click:

<Button Content=”Show Time” x:Name=”btnShowTime”
 Width=”100” Height=”30” Margin=”5” Click=”btnShowTime_Click” />

 (continued)

CheckBox ❘ 121

The following code shows the C# code behind for this button:

// Show the time.
private void btnShowTime_Click(object sender, RoutedEventArgs e)
{
 MessageBox.Show(DateTime.Now.ToString());
}

UseButtons

The UseButtons example program uses similar
code to display the three buttons shown on the left
in Figure 7-1.

A Button’s Content property can contain a single
child, but that child can be a container such as a
Grid or StackPanel, so you can put just about
anything you want in a Button. The large button
on the right in Figure 7-1 contains a Grid that
holds an Image and five Labels.

CheCkBox

A CheckBox control lets the user select or unselect an option.
The user can check or uncheck the option independently of any
other CheckBox. (In contrast, only one RadioButton in a group
can be selected at one time.)

A CheckBox can also operate in a tri-state mode where it can be
checked, unchecked, or in an indeterminate state that is neither
checked nor unchecked.

The UseCheckBoxes example program, shown in Figure 7-2,
contains four CheckBoxes. In the figure, the first and third are
checked, and the last has an indeterminate state.

indeterminate Confusion

Many users don’t understand tri-state CheckBoxes very well, largely because their use
isn’t very common and the meaning of the indeterminate state isn’t really standard-
ized. Some programs use this state to mean parts of an option are selected. For exam-
ple, when picking code libraries to install, you might select all of them (checked), none
of them (unchecked), or some of them (indeterminate). In this case, the program needs
some method for the user to specify which items should be selected and that further
complicates the interface.

figure 7-1

figure 7-2

continues

122 ❘ ChaPter 7 User InteractIon controls

If you use tri-state CheckBoxes in a program, expect to spend a little extra time
and documentation explaining. You might want to consider using a ComboBox or
other multi-value control so that the user can select the three possible values by
name (Used, Unused, and Sort of Used?) instead of using checks and filled boxes.

Two of the CheckBox class’s most useful events are Checked and Unchecked. These events fire when
(you guessed it) the user checks or unchecks the control. If you want to take action whenever a
CheckBox is either checked or unchecked, then you can catch the Click event instead.

Covert CliCks

Despite its name, the Click event handler doesn’t only fire when a CheckBox is
clicked. If the user tabs to the control and presses the [Enter] or Space key, the con-
trol also fires its Click event.

Often, however, a program doesn’t need to catch these events and can simply check the control’s
state later when it must perform some action, perhaps triggered by a Button.

The control’s most useful property (other than the usual assortment of colors, fonts, etc.) is IsChecked.
This property can take the values True (checked), False (unchecked), and null (indeterminate). The
program can use IsChecked to get or set the control’s current state.

The IsThreeState property determines whether the control uses two states (checked and
unchecked) or three states (checked, unchecked, and indeterminate).

ComBoBox

The ComboBox control lets the user pick from a
dropdown list of choices. The choices are represented
by ComboBoxItem objects inside the ComboBox. Each
ComboBoxItem can hold a single child, although that
child can be a container such as a Grid or StackPanel.

The UseComboBox example program shown in Figure 7-3
has two ComboBoxes. In the figure, the combo box on the
left is open and displaying its list of choices.

The following XAML code shows how the program
builds its left ComboBox. This is a fairly typical text-only
ComboBox and is quite simple to use.

figure 7-3

 (continued)

ComboBox ❘ 123

<ComboBox IsSynchronizedWithCurrentItem=”True”
 Grid.Row=”0” Grid.Column=”0”
 VerticalAlignment=”Top” Margin=”10”
 SelectedIndex=”2” Height=”25” Width=”100”>
 <ComboBoxItem Content=”Mercury”/>
 <ComboBoxItem Content=”Venus”/>
 <ComboBoxItem Content=”Earth”/>
 <ComboBoxItem Content=”Mars”/>
 <ComboBoxItem Content=”Jupiter”/>
 <ComboBoxItem Content=”Saturn”/>
 <ComboBoxItem Content=”Uranus”/>
 <ComboBoxItem Content=”Neptune”/>
 <ComboBoxItem Content=”(Pluto)”/>
</ComboBox>

UseComboBox

Figure 7-4 shows the UseComboBox program with its right ComboBox open. Each ComboBoxItem
contains a StackPanel that holds an Image and a Label.

figure 7-4

The following XAML code shows how the program builds the first item in its right ComboBox:

<ComboBox IsSynchronizedWithCurrentItem=”True”
 Grid.Row=”0” Grid.Column=”1”
 VerticalAlignment=”Top” Background=”Black”
 SelectedIndex=”2” Height=”90” Width=”120” Margin=”10”
 FontWeight=”Bold” FontSize=”16”>
 <ComboBoxItem Background=”Black”>
 <StackPanel HorizontalAlignment=”Stretch” Width=”100”>
 <Image Source=”Mercury.jpg” Height=”50” Width=”Auto”
 HorizontalAlignment=”Center”/>

124 ❘ ChaPter 7 User InteractIon controls

 <Label Content=”Mercury” HorizontalAlignment=”Center”
 Foreground=”Green”/>
 </StackPanel>
 </ComboBoxItem>
 ... Other ComboBoxItems omitted ...
</ComboBox>

UseComboBox

The ComboBox’s Background property sets the background used for the ComboBox itself, not the items.
You can see in Figure 7-3 that the right ComboBox’s background is black.

A ComboBoxItem’s Background property sets the background used for the ComboBoxItem. For example,
in Figure 7-4, you can see that the background behind the Earth, Jupiter, and Saturn items is black.

Notice the blue background behind Mars in Figure 7-4. When the mouse hovers over an item in the
dropdown list (Mars in Figures 7-3 and 7-4), the ComboBox changes its background color so the user
can see that it is selected.

The ComboBox can only change the background color of an item where it is not covered by its contents.
For example, in the previous code, if you set the ComboBoxItem’s StackPanel’s Background property
to blue, then almost all of the dropdown items would have a blue background. The ComboBox would
only be able to change the color of two small slices to the left and right of the dropdown item, so the
user would have very little clue when the item was selected.

The morale of the story is to not try to fill the dropdown items completely but make sure that some
background shows through.

The following table summarizes the ComboBox’s most useful properties:

ProPerty PurPose

Background The background used to draw the ComboBox itself

IsEditable Determines whether the user can type a new value into the ComboBox. (This
works best if the items are plaintext values as on the left in Figure 7-3.)

MaxDropdownHeight The maximum height of the dropdown list

SelectedIndex The index of the currently selected item

SelectedItem The currently selected ComboBoxItem

Contextmenu

The ContextMenu control displays a pop-up menu associ-
ated with a control. For example, the UseContextMenu
example program shown in Figure 7-5 contains a ListBox
with an associated ContextMenu. When you right-click on
the ListBox, the ContextMenu automatically appears, as
shown in the figure. figure 7-5

ContextMenu ❘ 125

Strangely, neither Expression Blend nor Visual Studio has a ContextMenu in its Control Toolboxes.
Fortunately, a ContextMenu is easy to build in XAML.

The following XAML code shows how the UseContextMenu program builds its ListBox and
ContextMenu. After the ListBox’s Background element, a ListBox.ContextMenu element defines
the ContextMenu. That element must contain a ContextMenu object that contains MenuItem objects.

<ListBox Name=”lstWebSites” Grid.Row=”1” HorizontalAlignment=”Stretch” Width=”Auto”
 IsSynchronizedWithCurrentItem=”True” Margin=”5”>
 <ListBox.Background>
 <LinearGradientBrush EndPoint=”0.5,1” StartPoint=”0.5,0”>
 <GradientStop Color=”#FFFFFFFF” Offset=”0”/>
 <GradientStop Color=”#FFFFFF00” Offset=”1”/>
 </LinearGradientBrush>
 </ListBox.Background>
 <ListBox.ContextMenu>
 <ContextMenu>
 <MenuItem Name=”mnuAddNewSite” Header=”Add New Site”/>
 <MenuItem Name=”mnuDeleteSite” Header=”Delete Site”/>
 </ContextMenu>
 </ListBox.ContextMenu>
 <ListBoxItem>
 <StackPanel Orientation=”Horizontal”>
 <Label Content=”VB Helper” Width=”150”/>
 <Label Content=”www.vb-helper.com” Width=”150”/>
 </StackPanel>
 </ListBoxItem>
 ... Other ListBoxItems omitted ...
</ListBox>

UseContextMenu

You can easily create submenus in a ContextMenu by simply adding MenuItems inside other MenuItems.
For example, the following ContextMenu contains a submenu that holds items Copy, Cut, and Paste:

<ContextMenu>
 <MenuItem Name=”mnuAddNewSite” Header=”Add New Site”/>
 <MenuItem Name=”mnuDeleteSite” Header=”Delete Site”/>
 <MenuItem Header=”Submenu”>
 <MenuItem Name=”mnuCopy” Header=”Copy”/>
 <MenuItem Name=”mnuCut” Header=”Cut”/>
 <MenuItem Name=”mnuPaste” Header=”Paste”/>
 </MenuItem>
</ContextMenu>

handling menuitems

When the user selects a menu item, the MenuItem object raises a Click event just as
a Button does. You can catch it and handle it in the same way.

ContextMenus are one kind of Menu object. The “Menu” section later in this chapter has more to
say about Menu and MenuItem objects.

126 ❘ ChaPter 7 User InteractIon controls

frame

The Frame control displays content and provides a simple navigation model. It can display web
pages or XAML files and follow links in those files.

The control’s Source property determines the web page or XAML file that the control should display.
A program can also call the control’s Navigate method to make it display a new page. For example,
the following C# code makes the Frame named fraGo open the web page www.vb-helper.com/
index_categories.html:

fraGo.Navigate(new Uri(“http://www.vb-helper.com/index_categories.html”));

When the Frame navigates to a new page, either because its Source property changed or the pro-
gram called the Navigate method, the Frame stores its previous location in its navigation history.
The user can click on the control’s forward and backward buttons to move through the history.

Covert navigation

If the frame moves to a new page because the user clicks a link on the current page,
the Frame does not add the new page to the navigation history.

The UseFrame example program shown in Figure 7-6 contains a ComboBox and a Frame. When you
select a web page from the ComboBox, the program displays the page.

figure 7-6

In Figure 7-6, you can see the navigation buttons in the Frame control’s upper-left corner. If you click
on the small dropdown arrow to the right of the buttons, the control displays a list of the pages in the
navigation history so you can quickly jump to one of them.

GridSplitter ❘ 127

gridsPlitter

The GridSplitter control lets the user adjust the widths of the rows and columns in a Grid. To use
a GridSplitter, you add it to a cell in the Grid. At run time, the user can grab the GridSplitter
and drag it to resize the rows or columns on either side of the control.

Figure 7-7 shows the UseGridSplitter example program. The blue and red bars are GridSplitters
that let you resize the Grid’s columns and rows, respectively.

figure 7-7

The following XAML code shows how the UseGridSplitter program makes its blue GridSplitter:

<GridSplitter Grid.Column=”1” Grid.RowSpan=”2”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Stretch”
 Background=”Blue”
 ShowsPreview=”False”
 Width=”5”/>

UseGridSplitter

The following list explains each of this control’s property values:

Grid.Column=”1”➤➤ — The GridSplitter will resize columns 0 and 1. This property puts the
control in column 1.

Grid.RowSpan=”2”➤➤ — This makes the control span both of the Grid’s rows. If you leave this
out, the control only extends through the first row. It would still let the user resize the col-
umns, but it looks weird.

HorizontalAlignment=”Left”➤➤ — This makes the control stick to the left edge of column 1
so it appears to be between columns 0 and 1.

128 ❘ ChaPter 7 User InteractIon controls

VerticalAlignment=”Stretch”➤➤ — This makes the control fill the Grid vertically.

Background=”Blue”➤➤ — This just makes the control stand out.

ShowsPreview=”False”➤➤ — If this is True, the control shows a gray ghost of itself as the user
drags it. If this is False, the control actually resizes the Grid’s columns as the user drags it.

Width=”5”➤➤ — This determines the control’s width. Make this big enough that the user can
click on it easily but small enough that it doesn’t waste too much room.

To make a GridSplitter that lets the user resize rows instead of columns, switch the roles of the
rows and columns and the vertical and horizontal alignment. The following XAML code shows
how the UseGridSplitter program makes its red GridSplitter:

<GridSplitter Grid.Row=”1” Grid.ColumnSpan=”2”
 HorizontalAlignment=”Stretch”
 VerticalAlignment=”Top”
 Background=”Red”
 ShowsPreview=”True”
 Height=”5”/>

UseGridSplitter

make room for sPlitters

Because the GridSplitter actually sits inside the Grid’s cells, it takes up room in
them. If you want the other controls in the cells to be completely visible and not
cover the GridSplitter, be sure to set their Margin properties so they don’t over-
lap with the GridSplitter.

listBox

The ListBox control displays a list of items to the user and lets the user pick one or more, depend-
ing on the control’s SelectionMode property. SelectionMode can take the three values described in
the following list:

Single➤➤ — You can pick only one item. If you click on a new item, the old one is deselected.

Multiple➤➤ — You can pick multiple items by clicking on them. Click on an item a second
time to deselect it.

Extended➤➤ — You can pick multiple items. If you just click on an item, all others are deselected.
[Ctrl]+click on an item to toggle whether it is selected without changing other selections. Click
on an item and [Shift]+click on a second item to select them and all of the items between.
[Ctrl]+[Shift]+click does the same thing as [Shift]+click except it doesn’t remove previous selec-
tions. (This is easier to use than to visualize from a written description. Give it a try to get a bet-
ter sense of how it works.)

ListBox ❘ 129

Two other useful properties are HorizontalContentAlignment
and VerticalContentAlignment, which let you control how
items in the list are aligned.

The UseListbox example program shown in Figure 7-8 contains a
ListBox with SelectionMode set to Extended and the third, fifth,
and sixth items selected.

Each ListboxItem must contain a single child, but that child can
be a container such as a Grid, so you can effectively put anything
you want in the list.

The following XAML code shows how the program builds this ListBox. The “Mountain
Unicycling” item includes a StackPanel holding a TextBlock and an Image.

<ListBox Grid.Row=”1”
 HorizontalAlignment=”Stretch” VerticalAlignment=”Stretch” Height=”Auto”
 IsSynchronizedWithCurrentItem=”True”
 FontSize=”16” FontWeight=”Bold”
 Foreground=”Blue” Background=”Pink”
 HorizontalContentAlignment=”Left” VerticalContentAlignment=”Top”
 SelectionMode=”Extended”>
 <ListBoxItem Content=”Bossaball”/>
 <ListBoxItem Content=”Ga-Ga”/>
 <ListBoxItem>
 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”Mountain Unicycling” VerticalAlignment=”Center”/>
 <Image Source=”Unicycle.jpg” Stretch=”Uniform”
 Height=”50” Margin=”30,0,0,0”/>
 </StackPanel>
 </ListBoxItem>
 <ListBoxItem Content=”Pesapallo”/>
 <ListBoxItem Content=”Hornussen”/>
 <ListBoxItem Content=”Trugo”/>
</ListBox>

UseListBox

Color Caution

The ListBox control changes an item’s colors when it is selected. To ensure that the
user can tell when an item is selected, don’t cover the entire item with a control that
has explicitly set foreground and background colors.

For example, in the previous code, if you set the StackPanel’s Background to red
and the TextBlock’s Foreground to black, then it’s harder to tell when the Mountain
Unicycling item is selected.

To make it easier for the ListBox to change items’ colors, the control doesn’t
inherit its background color from its container.

figure 7-8

130 ❘ ChaPter 7 User InteractIon controls

menu

The Menu control displays a main menu for a window. The Menu can provide submenus, shortcuts
(such as [Ctrl]+O for the Open command), and accelerators (e.g., opening the File menu when you
press [Alt]+F).

The Menu control contains MenuItem objects that represent the commands within the menu. You can
build submenus by placing MenuItems inside other MenuItems.

When the user selects a menu item, the corresponding MenuItem object raises its Click event. Your
program can catch and handle that event just as it handles Button Click events.

The MenuItem’s Header property determines what the item displays. Often the Header value is simple text.

Place an underscore in front of the Header’s letter that you want the MenuItem to use as an accelera-
tor key. For example, if you set the Header to _File, then the MenuItem displays File. (Note that this
is different from the way Windows Forms applications handles this. In a Windows Forms applica-
tion, you place an ampersand in front of the character that you want underlined in a menu.)

aCtivating aCCelerators

In recent Windows operating systems, accelerator characters are not normally under-
lined until the user presses the [Alt] key. Then the accelerator characters are underlined,
and the user can press the corresponding key to trigger the item.

In a typical application, for example, when the user presses [Alt], the File menu’s
underline appears. If the user presses F, the menu opens to show its items with their
accelerator keys underlined. In many programs, the File menu contains a New com-
mand. If the user presses N while the accelerators are visible, that command executes.

You can set a menu item’s shortcut keys by setting the MenuItem’s InputGestureText property. For
example, you might set the InputGestureText for the New command to [Ctrl]+N.

Support for accelerators is automatic. You only need to define the accelerator keys by adding under-
scores, and the application automatically does the rest.

Unfortunately, since support for shortcuts is not automatic,
your program must catch the appropriate keystrokes and take
action when necessary. WPF provides a command architecture
that allows you to handle keystrokes for menu items in a very
general way, but since it is fairly complicated, it isn’t described
in any more detail here. Chapter 19, “Commanding,” covers
commands more completely.

Figure 7-9 shows a program with its File menu open. In this
figure, I pressed [Alt] and then F to open the File menu.

figure 7-9

Menu ❘ 131

The following XAML code builds the menu shown in Figure 7-9. Notice the Separator object
between the “Save As” and Exit MenuItems.

<Menu VerticalAlignment=”Top”>
 <MenuItem HorizontalAlignment=”Left” VerticalAlignment=”Top” Header=”_File”>
 <MenuItem Header=”_New” InputGestureText=”Ctrl+N”/>
 <MenuItem Header=”_Open” InputGestureText=”Ctrl+O”/>
 <MenuItem Header=”_Save” InputGestureText=”Ctrl+S”/>
 <MenuItem Header=”Save _As” InputGestureText=”Ctrl+A”/>
 <Separator/>
 <MenuItem Header=”E_xit”/>
 </MenuItem>
 <MenuItem Header=”_Effects”>
 ... MenuItems omitted ...
 </MenuItem>
</Menu>

UseMenu

A MenuItem’s Header property is often plaintext but it can
be any single control including a container control. Each of
the menu items shown in Figure 7-10 contains a horizontal
StackPanel that holds an Image and a Label.

The MenuItems shown in Figure 7-10 also demonstrate
two new properties. The IsCheckable property determines
whether the menu item can display a checkbox. The IsChecked
property determines whether the item is actually checked. In
Figure 7-10, every MenuItem has IsCheckable = True, but
only the “Drop Shadow” MenuItem has IsChecked = True.

The following code shows how the UseMenu example
program defines the “Drop Shadow” MenuItem shown in
Figure 7-10:

<MenuItem IsCheckable=”True” IsChecked=”True”>
 <MenuItem.Header>
 <StackPanel Orientation=”Horizontal”>
 <Image Stretch=”None” Source=”GraySmiley.bmp” Margin=”0,0,20,0”>
 <Image.BitmapEffect>
 <DropShadowBitmapEffect/>
 </Image.BitmapEffect>
 </Image>
 <Label Content=”_Drop Shadow”/>
 </StackPanel>
 </MenuItem.Header>
</MenuItem>

UseMenu

figure 7-10

132 ❘ ChaPter 7 User InteractIon controls

unlimited free CheCking

Support for checkable items is almost automatic in WPF. If a MenuItem has
IsCheckable = True, then the program will automatically check and uncheck the
item when the user clicks it. The MenuItem even provides Checked and Unchecked
events to let the program know what’s happening.

If that’s all you need the item to do, then you’re done. If you need menu items to be
exclusive (e.g., you only want one of the items shown in Figure 7-10 to be checked
at a time), then you need to add extra code to uncheck the other items when an
item is checked.

menus, menus everywhere

Normally menus stretch across the top of an application, but there’s nothing to
prevent you from putting them in other places. For example, you could add a menu
inside a GroupBox or in the tabs of a TabControl to provide commands that only
apply to the contained controls. You could even apply transformations to menus to
make them rotated or skewed.

Have pity on your users, however, and don’t go crazy dropping menus all over
the place. If you make the menus too confusing, you’ll have to spend a lot of time
explaining things to confused users.

One final property is worth mentioning here. You can set a MenuItem’s Icon property to determine the
picture that is displayed next to it while the item is not checked. When the item is checked, it shows a
checkmark similar to the one shown next to the “Drop Shadow” item in Figure 7-10 instead of the Icon.

PasswordBox

The PasswordBox is a relatively simple textbox that replaces the characters that the user types with
dots (•) or some other special character on the screen. Internally the control keeps track of what’s being
typed but prevents the user from seeing it. More to the point, it prevents Phil the office prankster from
peeking over the user’s shoulder to steal the password.

The UsePasswordBox example program
shown in Figure 7-11 demonstrates the
PasswordBox. Enter a username and
password. As you type the password,
the PasswordBox displays a series of
dots. When you click the OK button, the
program displays the username and pass-
word that you entered. figure 7-11

RadioButton ❘ 133

A program can use the control’s Password property to see what password is really stored in the
control. The following code shows how the UsePasswordBox program displays the username and
password that you enter:

// Display the entered username and password.
private void btnOk_Click(object sender, RoutedEventArgs e)
{
 MessageBox.Show(txtUserName.Text + “‘s password is “ +
 pwdPassword.Password);
}

UsePasswordBox

After Password, the control’s second most useful property is PasswordChar. This property determines
the character that the control displays as the user types. Usually the default value (which produces the
dots shown in Figure 7-11) is fine, but if you don’t like it, you can set PasswordChar to a simple charac-
ter such as a question mark (?), or you can copy and paste a character into the XAML code.

You can also set PasswordChar to a numeric HTML character code. For example, the following
code creates a PasswordBox that uses character 167 (the section symbol §) as its password character:

<PasswordBox Password=”Secret” PasswordChar=”§”/>

radioButton

The RadioButton control lets the user select one of an exclusive set of options. If the user selects a
RadioButton, all other RadioButtons in the same container automatically deselect.

(In contrast, any number of CheckBoxes in a group can be selected at one time. If the user should be
able to select more than one option at a time, use CheckBoxes instead of RadioButtons.)

Often it is helpful to place related
RadioButtons in a GroupBox so the user
can easily see that they are related. The
UseRadioButton example program shown
in Figure 7-12 displays RadioButtons
arranged in three GroupBoxes. If the user
clicks a RadioButton, the others in that
GroupBox deselect.

If you don’t want GroupBoxes to surround related RadioButtons, place them in a StackPanel,
Grid, or some other control that doesn’t normally display a border.

reliaBle radioButtons

If you don’t use GroupBoxes to group related RadioButtons, then you should use
some other method to make it easy for the user to figure out which buttons go
together. For example, you might place different groups of RadioButtons in rows
or columns.

figure 7-12

134 ❘ ChaPter 7 User InteractIon controls

The RadioButton’s properties are very similar to those of the CheckBox. (Behind the scenes, they’re
closely related controls.)

The IsChecked property determines whether the control is selected. If the control’s IsThreeState
property is True, then IsChecked can be True, False, or null to indicate that the control is checked,
unchecked, or in an indeterminate state, neither checked nor unchecked.

state of Confusion

Three-state RadioButtons are even more confusing to users than three-state
CheckBoxes. Visibly, the difference between the checked and indeterminate states
is very small. To avoid confusion, you might want to do without three-state
RadioButtons. See the tip “Indeterminate Confusion” earlier in this chapter for
more discussion of the indeterminate state.

Two of the RadioButton’s most useful events are Checked and Unchecked, which fire when the user
selects or deselects the control, respectively. The Click event fires both when the user selects and
when the user deselects the control.

rePeatButton

The RepeatButton control lets the user fire Click events repeatedly as long as the mouse is pressed
over the control. By firing these events, the user can tell the program to do something many times
very quickly.

The RepeatButton is as easy for a program to use as a Button control. It simply catches the con-
trol’s Click event and takes the appropriate action. The control automatically handles the details of
firing its Click event as long as it is pressed.

When the user first presses it, the button fires a Click event. It then pauses briefly before it starts
firing more Click events.

The Delay property determines the length of the delay between the first and second Click events
in milliseconds. The Interval property determines how much time passes between the subsequent
Click events.

By default, Delay and Interval are 500 and 33, so the button
waits half a second (500 milliseconds) after the first Click event
and then fires another Click event every 33 milliseconds (about
30 times per second) after that.

The UseRepeatButton example program shown in Figure 7-13
demonstrates the RepeatButton. Each time the button raises its
Click event, the program increments the Messages Sent counter.

figure 7-13

RichTextBox ❘ 135

inConsistent intervals

The RepeatButton’s Interval property determines the amount of time the control
tries to pause between Click events, but the actual time may vary, particularly if
Interval is small. It takes a certain amount of time for the control to raise a Click
event and for your program to catch and handle it.

Use the Delay and Interval properties to let the user fire Click events at a reason-
able speed, but don’t rely on the exact timing.

riChtextBox

The RichTextBox control lets the user enter richly formatted text with such features as multiple fonts,
multiple colors, paragraphs, hanging indentation, bulleted lists, and so forth. The RichTextBox control
can even hold other content such as user interface elements (buttons, shapes, etc.), although there’s no
good way for the user to enter those items at run time.

Unfortunately, using XAML code to place content in a RichTextBox is complicated. The RichTextBox’s
Document property contains the control’s contents. The Document property should be a FlowDocument
that holds other objects such as Paragraphs and Tables.

The following XAML code shows how a program might create a RichTextBox and its content.
Note that the word “enobled” in the control’s contents is intentionally misspelled so you can see the
control’s built-in spell-checking feature described shortly.

<RichTextBox>
 <FlowDocument>
 <Paragraph>
 <Run>If spell checking is enobled and you left-click
 over a misspelled word, then the context menu also includes a list
 of possible correct spellings and an Ignore All command.</Run>
 </Paragraph>
 </FlowDocument>
</RichTextBox>

UseRichTextBox

Chapter 21 has more to say about documents.

The RichTextBox is a very complex control and contains dozens of properties and methods that
let you control its behavior and the format of its content. The following sections describe the
RichTextBox control’s most useful features. For a complete description of the control, see
msdn.microsoft.com/aa970779.aspx.

editing Commands
The RichtextBox control automatically provides features that let the user format text. For example,
if the user selects some text in the control and presses [Ctrl]+B, the RichTextBox makes the selected
text bold.

136 ❘ ChaPter 7 User InteractIon controls

The EditingCommands class also makes these editing commands available through code. For
example, the following C# code toggles whether the current selection in the RichTextBox named
rchBody is part of a numbered list:

// Toggle the selection’s number state.
private void mnuParaNumber_Click(object sender, RoutedEventArgs e)
{
 EditingCommands.ToggleNumbering.Execute(null, rchBody);
}

UseRichTextBox

Instead of executing an editing command in code-behind, you can indicate the command that a but-
ton or menu item should execute in its XAML code.

For example, the Command attribute in the following XAML code makes the MenuItem execute the
AlignLeft editing command when it is selected:

<MenuItem Name=”mnuParaAlignLeft” Header=”_Left”
 Command=”EditingCommands.AlignLeft”/>

The following table lists the most useful of the editing commands and the keys the user can press to
invoke them. The command name is the name of the EditingCommand class method that invokes the
command.

Command name shortCut

AlignCenter [Ctrl]+E

AlignJustify [Ctrl]+J

AlignLeft [Ctrl]+L

AlignRight [Ctrl]+R

DecreaseFontSize [Ctrl]+OemOpenBracket

DecreaseIndentation [Ctrl]+[Shift]+T

EnterLineBreak [Shift]+[Enter]

EnterParagraphBreak [Enter]

IncreaseFontSize [Ctrl]+OemCloseBracket

IncreaseIndentation [Ctrl]+T

ToggleBold [Ctrl]+B

ToggleBullets [Ctrl]+[Shift]+L

ToggleItalic [Ctrl]+I

RichTextBox ❘ 137

Command name shortCut

ToggleNumbering [Ctrl]+[Shift]+N

ToggleSubscript [Ctrl]+OemPlus

ToggleSuperscript [Ctrl]+[Shift]+OemPlus

ToggleUnderline [Ctrl]+U

The OemOpenBracket, OemCloseBracket, and OemPlus keys are the OEM (Original Equipment
Manufacturer) [,], and + characters. These are usually placed in the keypad area and, depending on
your keyboard hardware, similar keys in other parts of the keyboard may not work. For example,
the + key in the keypad area might work but the + key next to the number keys might not.

For more information about editing commands and a more complete list, see msdn.microsoft.com/
system.windows.documents.editingcommands.aspx.

spell Checking
One of the RichTextBox control’s most exciting features is support for spell checking. If you set the
control’s SpellCheck.IsEnabled property to True, then the control automatically highlights likely
spelling errors.

By default, the RichTextBox control provides a context
menu containing the Copy, Cut, and Paste commands.
If spell checking is enabled and you left-click over a mis-
spelled word, then the context menu also includes a list of
possible correct spellings and an “Ignore All” command.
If you select one of the spelling suggestions, the control
replaces the misspelled version with your selection. If you
select “Ignore All,” the control treats all occurrences of
the misspelled word as correctly spelled.

Figure 7-14 shows the UseRichTextBox example pro-
gram displaying its context menu.

undo and redo
The RichTextBox control automatically provides undo and redo features. Each time the user presses
[Ctrl]+Z, the control undoes the most recent change. Each time the user presses [Ctrl]+Y, the control
reapplies the most recently undone change.

The control also provides tools that you can use to manage the undo stack programmatically. The
CanUndo and CanRedo properties indicate whether there is an action that the control can undo or
redo. The Undo and Redo methods make the control undo or redo an action.

The UseRichTextBox program’s Edit menu contains Undo and Redo commands. When the user opens
the Edit menu, the following code checks the RichTextBox control’s CanUndo and CanRedo properties

figure 7-14

138 ❘ ChaPter 7 User InteractIon controls

to see which of the menu items should be enabled. For example, if the user has not undone a com-
mand recently, then CanRedo returns False and the mnuEditRedo menu is disabled.

// Enable or disable the Undo and Redo commands.
private void mnuEdit_SubmenuOpened(object sender, RoutedEventArgs e)
{
 mnuEditUndo.IsEnabled = (rchBody.CanUndo);
 mnuEditRedo.IsEnabled = (rchBody.CanRedo);
}

UseRichTextBox

The following code shows how the program invokes the control’s Undo and Redo methods.

// Undo.
private void mnuEditUndo_Click(object sender, RoutedEventArgs e)
{
 rchBody.Undo();
}

// Redo.
private void mnuEditRedo_Click(object sender, RoutedEventArgs e)
{
 rchBody.Redo();
}

UseRichTextBox

other features
The RichTextBox control provides too many other features to mention them all here. Before moving
on, however, the following table summarizes some key RichTextBox properties.

ProPerty PurPose

AcceptsReturn Determines whether [Enter] key strokes are placed in the
control’s content or whether they are sent to the window.
If AcceptsReturn is False and the window contains a
Button with IsDefault set to True, then pressing [Enter]
inside the control triggers the Button.

AcceptsTab Determines whether [Tab] key strokes are placed in the
control’s content or whether they are sent to the window. If
AcceptsTab is False, then pressing [Tab] moves focus to
the window’s next control.

HorizontalScrollBarVisibility Determines whether the horizontal scrollbar is visible. This
can be Auto, Disabled, Hidden, or Visible.

RichTextBox ❘ 139

ProPerty PurPose

IsEnabled Determines whether the control will interact with the user. If
this is False, the user can look but cannot change, highlight,
or scroll the control’s contents.

IsReadOnly Determines whether the user can modify the control’s con-
tents. If IsReadOnly is True, the user can still scroll the con-
trol’s contents, select text, and copy text to the clipboard. If
you want to display something that the user cannot change, it
is often better to set IsReadOnly = True instead of setting
IsEnabled = False.

VerticalScrollBarVisibility Determines whether the vertical scrollbar is visible. This can
be Auto, Disabled, Hidden, or Visible.

The UseRichTextBox example program demonstrates some other simple formatting commands that
let you change:

Font style (➤➤ bold, italic, underline)

Font size (➤➤ small, medium, large)

Text color➤➤

Background color➤➤

Font family (e.g., ➤➤ Times New Roman, Arial, Courier New)

Bulleted and numbered paragraphs➤➤

Paragraph alignment (left, center, right, justify)➤➤

Download the example from the book’s web site and look at the code to see how it works.

For a more complete description of the control and its features, see these links:

RichTextBox Overview ➤➤ — msdn.microsoft.com/aa970779.aspx

RichTextBox How-To Topics ➤➤ — msdn.microsoft.com/ms744813.aspx

RichTextBox Class ➤➤ — msdn.microsoft.com/system.windows.controls.richtextbox.aspx

Microsoft’s web site contains several sample programs that demonstrate RichTextBox features. Two
particularly useful samples are:

EditingCommands Sample ➤➤ — Demonstrates most of the RichTextBox’s editing commands:
http://msdn.microsoft.com/ms771634.aspx.

Notepad Demo ➤➤ — A WPF notepad application: http://msdn.microsoft.com/aa972157.aspx

140 ❘ ChaPter 7 User InteractIon controls

sCrollBar

The ScrollBar control lets the user select a numeric value from a range of values. Often a program
doesn’t need to use ScrollBars directly, instead relying on controls that display them as needed
such as ScrollViewer, TextBox, and FlowDocumentReader.

Occasionally, however, a ScrollBar is handy for letting the user select a value that will be used in
some way other than to scroll content.

For example, the UseScrollBar example program
shown in Figure 7-15 uses three ScrollBars to
let the user select red, green, and blue color val-
ues between 0 and 255. When any of the values
change, the program displays the new value to the
right of its ScrollBar and displays a sample of the
color with those component values on the left.

The ScrollBar control is relatively simple. The following table summarizes the control’s most use-
ful properties:

ProPerty PurPose

LargeChange The amount by which the control’s value changes when the user clicks between
the draggable thumb and one of the control’s arrows

Orientation Vertical or Horizontal

Maximum The largest value the user can select

Minimum The smallest value the user can select

SmallChange The amount by which the control’s value changes when the user clicks on one of
the control’s arrows

Value The control’s current value

The ScrollBar’s most useful event is ValueChanged, which — as you can probably guess — fires
whenever the control’s value changes.

The following C# code shows how the UseScrollBar program handles ValueChanged events for all
three of its ScrollBars. The code uses the ScrollBars’ values to make a solid brush and sets the
lblSample control’s Background property to the brush. It then displays the color values in labels.

// Display a color sample.
private void sbar_ValueChanged(
 object sender, RoutedPropertyChangedEventArgs<double> e)
{
 byte r = (byte)sbarRed.Value;
 byte g = (byte)sbarGreen.Value;
 byte b = (byte)sbarBlue.Value;
 Color clr = Color.FromRgb(r, g, b);
 SolidColorBrush br = new SolidColorBrush(clr);

figure 7-15

Slider ❘ 141

 lblSample.Background = br;

 lblRed.Content = r;
 lblGreen.Content = g;
 lblBlue.Content = b;
}

UseScrollBar

augmented arrows

The ScrollBar’s arrows are actually RepeatButtons. If you click on one, the
control’s value changes by the SmallChange value. If you hold an arrow down, the
value changes by that amount repeatedly.

slider

Like the ScrollBar control, the Slider control lets the user select a numeric value from a range
of values. The Slider works in almost exactly the same way as the ScrollBar but with a different
appearance.

Figure 7-16 shows the UseSlider example pro-
gram. Notice how similar this program is to the
UseScrollBar program shown in Figure 7-15. The
main differences are that the Sliders display tick
marks and don’t have arrows.

The Slider has many of the same properties as
the ScrollBar. See the table in the previous sec-
tion for a description of the most important of
those properties.

The following table summarizes new properties that the Slider uses to define its tick marks:

ProPerty PurPose

IsSnapToTickEnabled If this is True, then the control snaps its value to the nearest tick mark.

IsSelectionRangeEnabled Determines whether the user can select a range of values rather
than only a single value.

TickFrequency Determines the numeric spacing between tick marks.

TickPlacement Determines the position of the tick marks. This can be Both
(both top and bottom if horizontal or left and right if vertical),
BottomRight (bottom if horizontal or right if vertical), TopLeft (top
if horizontal or left if vertical), or None.

figure 7-16

continues

142 ❘ ChaPter 7 User InteractIon controls

ProPerty PurPose

Ticks An explicit list of numeric positions where there should be tick
marks. For example, the value “0,16,128,255” would put tick
marks at values 0, 16, 128, and 255.

tiCk trouBle

If you specify the Ticks property but don’t include the minimum and maximum
values in it, the user may not be able to click on the Slider’s body to jump to those
values. This is a minor issue, but you may as well avoid it by including the mini-
mum and maximum values in the Ticks property.

textBox

The TextBox control lets the user enter text without fancy formatting. The TextBox control is a
good choice if you need to get plain old textual input from the user without multiple fonts, styles,
colors, and so forth.

The TextBox control provides some of the same features as the RichTextBox control, but it doesn’t
have the powerful formatting capabilities. All of the text in a TextBox must use the same font family
(Times New Roman, Arial, Courier New), font size, font style (italic, bold, underscore), and color.

If the control’s AcceptsReturn property is True, the user can enter carriage returns in the control to
create paragraphs, but the control does not format paragraphs specially. It cannot create paragraphs
with hanging indent, bullets, or numbered lists. The control can justify text or align it on the left,
right, or center, but the alignment applies to all of the text — not individual paragraphs.

Features that the TextBox shares with the RichTextBox include:

Spell checking➤➤

A context menu containing Copy, Cut, and Paste commands as well as spelling suggestions➤➤

Undo and redo➤➤

Properties: ➤➤ AcceptsReturn, AcceptsTab, HorizontalScrollBarVisibility, IsEnabled,
IsReadOnly, VerticalScrollBarVisibility

See the descriptions of these features in the earlier “RichTextBox” section for details.

The TextBox control does not provide the editing commands supported by the RichTextBox.
(Of course, that also means it doesn’t support the keyboard shortcuts that let users apply those com-
mands at run time.)

(continued)

Summary ❘ 143

The UseTextBox example program is similar to the
UseRichTextBox program except it demonstrates
the TextBox control instead of the RichTextBox
control. Its menus let you change the properties of
all of the control’s text, not just the selected text as
program UseRuchTextBox does. Because the TextBox
doesn’t support bulleted or numbered paragraphs, the
UseTextBox program’s Paragraph menu doesn’t pro-
vide those commands.

Figure 7-17 shows the UseTextBox program in action.
Notice how the font styles, colors, and alignment apply
to the control’s whole contents, not just parts of the text.

summary

This chapter describes WPF’s most useful user interaction controls. These are the controls that allow
the user to control and provide input to a program.

This chapter provides a brief overview of the controls and gives enough detail for you to get started
using them. However, some of the controls are fairly complex. The RichTextBox control is remark-
ably complicated and provides a wide variety of formatting options and editing commands. You’ll
need to spend some time experimenting with the RichtextBox control before you can use its capa-
bilities to their fullest.

This chapter and the previous two describe major categories of WPF controls. Chapter 5 describes
content controls — controls that display output for the user to view. The following chapter provides
more detail on a specific kind of content control: those that produce two-dimensional shapes. These
include Line, Ellipse, Rectangle, Polygon, Polyline, and Path. While many applications rely primarily
on more textual controls such as Labels and TextBoxes, these drawing controls can be very useful
for visualizing data.

figure 7-17

Two-Dimensional
Drawing Controls

Chapter 5, “Content Controls,” describes controls that display information to the user. Most
of these controls display textual data or images.

This chapter describes controls that display more graphical output: two-dimensional (2D)
drawing controls. These controls draw lines, ellipses, curves, and other 2D shapes.

This chapter also describes the Path mini-language that you can use to concisely make the
Path object produce complex drawings.

Control overview

The following table briefly lists the controls described in this chapter together with their pur-
poses. You can use this table to help decide which control to use to satisfy your needs.

Control PurPose

Ellipse Draws an ellipse.

Line Draws a line.

Path Draws a series of lines and curves.

Polygon Draws a series of line segments that connect a series of points. It finishes by
connecting the last point to the first.

Polyline Draws a series of line segments that connect a series of points.

Rectangle Draws a rectangle.

8

146 ❘ ChaPter 8 Two-Dimensional Drawing ConTrols

stroke ProPerties

The controls described in this chapter draw linear features. Whether they draw a single line segment,
a closed ellipse, or a complex sequence of curves, lines, and polygons, they all basically draw lines.

WPF provides a special set of properties to control the way those lines are drawn. These properties
control the lines’ colors, dash style, and thickness.

The following table summarizes these controls’ most important drawing properties:

ProPerty PurPose

Fill The control’s background brush (This is similar to the Background property
used by many other controls.)

Stroke The brush used to draw the control’s edges (This is similar to the
Foreground property used by many other controls.)

StrokeDashArray Array of values that tell how many pixels are drawn and then skipped to make
a dash pattern

The numbers are scaled by the line’s thickness, so a value of 1 for a 5-pixel-
wide line makes the line draw or skip 5 pixels. This makes dashes bigger in
bigger lines and just looks better.

The line shown in Figure 8-1 uses the StrokeDashArray value (3, 3) and
therefore draws three times the line’s width (5 pixels) and then skips three
times the line’s width.

StrokeDashCap Determines the shape of the ends of dashes. This can be Flat, Round,
Square, or Triangle. The Flat style ends a dash exactly where it should
end. The Round, Square, and Triangle styles place a shape (circle, square,
or triangle) at the end of the dash so it extends slightly into the space
between dashes.

StrokeDashOffset Determines the distance from the beginning of a line to the start of the first dash.

StrokeEndLineCap Determines the shape of the end of a line. This can be Flat, Square, Round,
or Triangle.

If the line ends at a blank space between dashes, then it ends with the dash’s
end cap style instead of the line’s. If the line ends close to the end of a dash,
the Round, Square, and Triangle end caps may extend slightly beyond the
end of the segment. (See the description of the StrokeDashCap property.)

StrokeLineJoin Determines how adjacent lines are joined in a Rectangle, Polyline, Polygon,
or Path. This can be Miter (edges extend until they intersect), Bevel (corners
are cut off symmetrically), or Round (corners are slightly rounded). The effect is
subtle unless the StrokeThickness is relatively large.

StrokeStartLineCap Determines the shape of the start of a line. This is similar to StrokeEndLineCap.

StrokeThickness The width of the line

Path ❘ 147

The following XAML code creates the Ellipse and Line shown in Figure 8-1:

<Ellipse Width=”100” Height=”50”
 Stroke=”Blue” StrokeThickness=”5” Fill=”Cyan”
 HorizontalAlignment=”Left” VerticalAlignment=”Top”
 Margin=”10,10,0,0”/>

<Line X1=”200” Y1=”20” X2=”50” Y2=”100” Stroke=”Red” StrokeThickness=”5”
 StrokeDashArray=”3,3”/>

UseEllipseLine

Chapter 10, “Pens and Brushes,” describes stroke attributes in greater
detail and provides examples.

elliPse

The Ellipse control draws a simple ellipse that cannot contain any chil-
dren. Normally an Ellipse control doesn’t interact with the user, although
it provides MouseDown, MouseEnter, MouseLeave, and other events that you
can catch if you like.

The Ellipse’s Width and Height properties determine its size. The control’s location is determined by
the container that holds it. For example, the Ellipse shown in Figure 8-1 is contained in a Grid, and the
location of its upper-left corner is determined by its HorizontalAlignment (Left), VerticalAlignment
(Top), and Margin (10,10,0,0) properties.

If you omit the Width and Height properties, the Margin property can make the Ellipse resize as
its container resizes.

line

The Line control draws a line segment that cannot contain any children. Instead of Width and
Height properties, the Line control’s size and location are determined by its X1, Y1, X2, and Y2
properties. The line starts at the point (X1, Y1) and extends to the point (X2, Y2).

Like the Ellipse, the Line control normally doesn’t interact with the user, but it provides a set of
events that you can catch just in case.

Path

The Path control draws a series of lines, arcs, Bézier curves, and other shapes. You can use child
objects to define a Path’s shapes, but it’s usually easier to use the Path mini-language.

Figure 8-1

148 ❘ ChaPter 8 Two-Dimensional Drawing ConTrols

Path Mini-language
To use the Path mini-language, you give the control a Data attribute. That attribute includes a list
of single-letter abbreviations for drawing commands interspersed with point coordinates that deter-
mine where to draw.

Figure 8-2 shows a program that draws a Path, a Polygon,
and a Polyline, all using the same point coordinate data.

The following XAML code shows how the program draws
its Path object. The Data attribute contains a series of com-
mands in the Path mini-language. In this example, the M41,3
command makes the object move the drawing position to the
point (41, 3). The L followed by a series of coordinates makes
the object draw a series of connected lines.

<Path Margin=”15” HorizontalAlignment=”Center”
 VerticalAlignment=”Top” Width=”Auto” Height=”Auto”
 Fill=”#FFFF0000” Stroke=”#FF000000” StrokeThickness=”5”
 Data=”M41,3 L2,70 78,32 3,19 59,69 41,3”/>

UsePathPolygonPolyline

Many of the Path mini-language’s commands are followed by one or more points that are used as
parameters. You can separate the points or the coordinates within a point with commas or spaces.
To make it easier to read the code, I use commas to separate a point’s X and Y coordinates and
spaces to separate different points.

Several of the mini-language’s commands have uppercase and lowercase versions. The uppercase
version means that the following points are in absolute coordinates, while the lowercase version
means that the following points are relative to the previous points.

The following table describes the Path mini-language’s commands:

CoMMand Meaning

F0 Use odd/even fill rule (see Figure 8-3).

F1 Use nonzero fill rule (see Figure 8-3).

M or m Move to the following point.

L or l Draw lines to the following points.

H or h Draw a horizontal line to the given X coordinate.

V or v Draw a vertical line to the given Y coordinate.

C or c Draw a cubic Bézier curve. This command takes three points as parameters: two control
points and an endpoint. The curve starts at the current point moving toward the first control
point and ends at the endpoint moving away from the second control point. (See Figure 8-4.)

Figure 8-2

Path ❘ 149

CoMMand Meaning

S or s Draw a smooth Bézier curve. This command takes two points as parameters: a control
point and an endpoint. The curve defines an initial control point by reflecting the final
control point from the previous S command. It then draws a cubic Bézier curve using the
newly defined control point and the two parameter points. This makes the second curve
smoothly join with the previous one. (See Figure 8-4.)

Q or q Draw a quadratic Bézier curve. This command takes two points as parameters: a control
point and an endpoint. The curve starts at the current point moving toward the control
point and ends at the endpoint moving away from the control point. (See Figure 8-4.)

T or t Draw a smooth Bézier curve defined by a single point. This command takes a single
point as a parameter and draws a smooth curve to that point. It reflects the previous T
command’s control point to define a control point for the new section of curve and uses
it to draw a quadratic Bézier curve. The result is a smooth curve that passes through the
points sent to consecutive T commands. (See Figure 8-4.)

A or a Draws an elliptical arc starting at the current point and defined by five parameters:

size➤➤ — The X and Y radii of the arc

rotation_angle➤➤ — The ellipse’s angle of rotation in degrees

large_angle➤➤ — 0 if the arc should span less than 180 degrees; 1 if it should
span 180 or more degrees

sweep_direction➤➤ — 0 for counterclockwise; 1 for clockwise

end_point➤➤ — The point where the arc should end

Z or z Close the figure by drawing a line from the current point to the first point.

Figure 8-3 shows the difference between the odd/even and nonzero
fill rules.

The PathBezier example program, shown in Figure 8-4, demonstrates
the Path mini-language’s Bézier curve commands. The program draws
each curve with a thick blue line and then draws thin black line seg-
ments over the curve to show where its control points lie.

a Path holding objects
The Path mini-language isn’t
the only way to make the Path
object draw. Instead of using the
mini-language, you can place
other objects inside the Path
object to represent the shapes.

Figure 8-3

Figure 8-4

150 ❘ ChaPter 8 Two-Dimensional Drawing ConTrols

The PathObjects example program shown in Figure 8-5 uses
the following XAML code to draw two curves. The code first
uses the Path mini-language to draw a curve and then draws the
same curve by placing objects inside a Path control.

<!-- Draw using the Path mini-language. -->
<Path Stroke=”Red” StrokeThickness=”5”
 Data=”M60,20 Q140,150 140,50 140,0 30,100”/>

<!-- Draw using objects. -->
<Path Stroke=”Red” StrokeThickness=”5”>
 <Path.Data>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigureCollection>
 <PathFigure StartPoint=”60,20”>
 <PathFigure.Segments>
 <PathSegmentCollection>
 <PolyQuadraticBezierSegment
 Points=”140,150 140,50 140,00 30,100”/>
 </PathSegmentCollection>
 </PathFigure.Segments>
 </PathFigure>
 </PathFigureCollection>
 </PathGeometry.Figures>
 </PathGeometry>
 </Path.Data>
</Path>

PathObjects

The two methods produce the same output, but the Path mini-language is much simpler and more concise.

Polygon

The Polygon object draws lines segments that connect a series of points. It finishes by connecting
the first point to the last point.

The following XAML code draws the polygon shown in the middle of Figure 8-2. The Points attri-
bute at the end lists the coordinates of the points that the polygon connects.

<Polygon Margin=”15” HorizontalAlignment=”Center”
 VerticalAlignment=”Top” Width=”Auto” Height=”Auto”
 Fill=”#FFFF8000” Stroke=”#FF000000” StrokeThickness=”5”
 Points=”41,3 2,70 78,32 3,19 59,69”/>

UsePathPolygonPolyline

Figure 8-5

Rectangle ❘ 151

Polyline

The Polyline object draws line segments that connect a series of points. Unlike the Polygon object,
it does not finish by connecting the first point to the last point.

In fact, even if you repeat the first point at the end so the Polyline finishes at the first point, you
still don’t get exactly the same result you would get from the Polygon object.

A Polygon considers the join between the last and first lines as a corner in the shape. In contrast,
the Polyline considers the last and first lines as two separate lines, even if they happen to end at
the same point.

The PolygonPolylineDifference example program shown in Figure 8-6
draws a Polygon and a Polyline that connect the same points. The first
and last points are the same for the Polyline, so it closes the shape.

If you look closely at Figure 8-6, you’ll see that the top point on the left
triangle (drawn with Polygon) isn’t quite the same as the top point on
the triangle on the right (drawn with Polyline). The Polygon treats
this join as a corner, so it gets a nice point. The Polyline treats this as
where the last and first line segments happen to start, so it draws both
of their ends.

The following XAML code shows how the PolygonPolylineDifference program draws its Polygon
and Polyline:

<StackPanel Orientation=”Horizontal”>
 <StackPanel>
 <Polygon Margin=”15,5,0,0”
 HorizontalAlignment=”Center” VerticalAlignment=”Top”
 Fill=”Yellow” Stroke=”Black” StrokeThickness=”10”
 Points=”50,10 100,100 0,100”/>
 <Label HorizontalAlignment=”Center” Content=”Polygon”/>
 </StackPanel>
 <StackPanel>
 <Polyline Margin=”25,5,0,0”
 HorizontalAlignment=”Center” VerticalAlignment=”Top”
 Fill=”Yellow” Stroke=”Black” StrokeThickness=”10”
 Points=”50,10 100,100 0,100 50,10”/>
 <Label HorizontalAlignment=”Center” Content=”Polyline”/>
 </StackPanel>
</StackPanel>

PolygonPolylineDifference

reCtangle

The Rectangle control draws a simple rectangle that cannot contain any children. The control’s
location and position are determined much as those of an Ellipse. The Rectangle’s size is deter-
mined by its Width and Height properties, and its location is determined by its container and its
Margin, HorizontalAlignment, and VerticalAlignment properties.

Figure 8-6

152 ❘ ChaPter 8 Two-Dimensional Drawing ConTrols

The UseRectangle example program shown in Figure 8-7 uses the following XAML code to draw
two Rectangles:

<Rectangle Width=”Auto” Height=”Auto” Margin=”10”
 Stroke=”Red” StrokeThickness=”10”
 StrokeDashArray=”3,3” StrokeDashCap=”Triangle”/>

<Rectangle Width=”100” Height=”50”
 Stroke=”Blue” StrokeThickness=”5” Fill=”Cyan”
 HorizontalAlignment=”Center” VerticalAlignment=”Center”/>

UseRectangle

In the first Rectangle, since the Width and Height are set to Auto, the con-
trol’s Margin property determines the control’s size and location. Because
the Margin is 10 in this example, the Rectangle is positioned so its edges
are 10 pixels from the edges of the Grid that contains it.

In the second Rectangle, the Width and Height are set explicitly. Since
the control’s HorizontalAlignment and VerticalAlignment properties
are both set to Center, the control is given its specified size and centered
in its container.

suMMary

This chapter describes WPF’s 2D drawing controls. These controls let you draw ellipses, lines, rec-
tangles, and other 2D shapes. Although these controls draw very different shapes, they have much
in common such as their Stroke and Fill properties.

Most of these controls are relatively simple, although the Path control with its specialized mini-
language can be quite complex. It’s so complex, in fact, that you’ll probably only use it for relatively
simple shapes. For complex shapes, you may want to use program code to generate the Path’s draw-
ing commands.

This chapter finishes the description of WPF controls. The controls described in Chapters 5 through
8 should meet most of your everyday programming needs.

The chapters that follow turn away from specific controls and discuss more general issues. Chapter 9,
“Properties,” explains in general terms how XAML code can set control properties. Since the exam-
ples so far in this book have used properties extensively, you probably already know how to set values
for simple properties. Chapter 9 provides more background and explains how to set properties that
take values that are objects themselves.

Figure 8-7

Properties
The preceding chapters in this book include close to 100 examples that demonstrate all sorts
of control properties, methods, events, and other features provided by WPF. To keep those
examples as simple and self-contained as possible, I sometimes glossed over some techniques
used in the code and deferred them to later chapters.

This chapter covers one of those topics: properties. Many properties are relatively straightfor-
ward, and XAML, C#, and Visual Basic code can easily work with them.

Others, however, are more confusing. Some properties don’t take values that don’t have simple data
types such as Integer or String, and using them can be confusing, particularly in XAML code.

This chapter describes WPF properties. It explains how you can set even complicated property
values in XAML, C#, and Visual Basic code.

ProPerty Basics

The idea of a property is fairly simple: a property is a value that belongs to an object and that
determines its behavior, appearance, or the data that it represents.

For example, if you create a Person class, it probably has properties like FirstName,
LastName, and StreetAddress that define the data that a Person object represents.

Using this kind of simple property is easy. For example, the following C# code creates a
Person object and sets its FirstName and LastName properties:

// Create a new Person object.
Person author = new Person();

// Set the Person’s name properties.
author.FirstName = “Rod”;
author.LastName = “Stephens”;

9

154 ❘ chaPter 9 ProPerties

XAML code also handles these kinds of simple-valued properties easily. The following XAML code
sets a Label control’s Background property to yellow:

<Label Content=”Hello” Background=”Yellow”/>

Using this kind of simple property is easy in your code, but behind the scenes, WPF is doing a bit
more work than you might think. To translate XAML values into something comprehensible behind
the scenes, WPF uses type converters.

tyPe converters

While your XAML code simply sets a Label control’s Background property to the string “Yellow”,
the Background property is really not a simple string. It is actually an object that is an instance of
the System.Windows.Media.Brush class.

The following C# code sets the grdMain control’s Background property. Notice that the code doesn’t
set the property to a string value. Instead, it uses a static value provided by the Brushes class. The
class’s Yellow property returns a SolidColorBrush object (which is a type of Brush) that has the
color yellow.

grdMain.Background = Brushes.Yellow;

Fortunately, XAML provides a set of type converters that can convert strings like “Yellow” into
objects like brushes.

XAML provides type converters for many simple property types such as numbers (Width, Height),
points, arrays of points (the Polygon’s Points property), other numeric arrays (DashArray), strings
(the Content property when set to a string), simple colors (Background, Stroke, Fill), Booleans
(IsChecked, IsEnabled), simple brushes (the Button’s BorderBrush), and many others.

XAML even has a type converter to translate a complex sequence of
commands in the Path mini-language into a series of objects that produce
lines, arcs, and curves. For example, the following XAML code draws
the shape shown in Figure 9-1. The type converter translates the complex
series of arc commands in the Path object’s Data attribute into the curves
shown in the figure. (For more information on the Path mini-language,
see the section “Path Mini-Language” in Chapter 8.)

<Path Fill=”HotPink” Stroke=”Red” StrokeThickness=”3”
 Data=”M110,60
 a 50,50 90 0 1 50,-50
 a 50,50 90 0 1 50,50
 a 50,50 90 0 1 -50,50
 a 50,50 90 0 0 -50,50
 a 50,50 90 0 0 -50,-50
 a 50,50 90 0 1 -50,-50
 a 50,50 90 0 1 50,-50
 a 50,50 90 0 1 50,50”
/>

Heart

Figure 9-1

Property Element Syntax ❘ 155

Unfortunately, XAML does not provide type converters for other,
more complicated properties. For example, it’s easy to describe a
single-color Brush object with a string such as Yellow, LightGreen,
or #FF0C0C0 (a sort of dark turquoise). But what if you want to fill
a Grid with the brush shown in Figure 9-2? It would be difficult to
represent this complicated object as a simple string.

To use more complex objects in XAML code, you need to build
the actual objects instead of describing them in a simple string.
You can do that with property element syntax.

ProPerty element syntax

Property element syntax lets XAML code represent a property as a separate element with its own
start and end tags nested inside the object that will use it. In this example, the Grid that will use the
background contains a new element that defines the background.

The property element’s name consists of the control’s type (Grid), followed by a dot (.), followed by
the property’s name (Background); thus, in this example, the element’s name is Grid.Background.

Inside this new property element, the XAML code defines the object.

The following XAML code shows how the ComplexBrush example program displays the back-
ground shown in Figure 9-2:

<Grid>
 <Grid.Background>
 <RadialGradientBrush>
 <GradientStop Color=”#FFFFFFFF” Offset=”0.00”/>
 <GradientStop Color=”#FFFF0000” Offset=”0.25”/>
 <GradientStop Color=”#FFFFFF00” Offset=”0.50”/>
 <GradientStop Color=”#FF00FF00” Offset=”0.75”/>
 <GradientStop Color=”#FF0000FF” Offset=”1.00”/>
 </RadialGradientBrush>
 </Grid.Background>
</Grid>

ComplexBrush

The Grid.Background element is the Grid’s Background property element. It contains a
RadialGradientBrush object. That object contains five GradientStop objects that indicate the
colors that the brush should use at various positions. Finally, the GradientStop objects’ Color and
Offset properties are relatively simple values (simple colors and numbers), so they are represented
as attributes that XAML’s type converters can handle.

The following C# code shows how a program could build the same brush object in code-behind:

RadialGradientBrush br = new RadialGradientBrush();
br.GradientStops.Add(new GradientStop(Colors.White, 0.00));
br.GradientStops.Add(new GradientStop(Colors.Red, 0.25));
br.GradientStops.Add(new GradientStop(Colors.Yellow, 0.50));

Figure 9-2

156 ❘ chaPter 9 ProPerties

br.GradientStops.Add(new GradientStop(Colors.Lime, 0.75));
br.GradientStops.Add(new GradientStop(Colors.Blue, 1.00));
grdBackground.Background = br;

MakeComplexBrush

This code creates a RadialGradientBrush. It then adds GradientStop objects to the brush’s
GradientStops collection.

no tyPe converters required

Notice that the values passed to the GradientStop objects’ constructor are a color
and a numeric value. Since neither value is a string as it is in the XAML file, it
doesn’t need a type converter.

Property elements let you build quite complex objects in XAML code. Other common property ele-
ments that have been used in previous examples include:

Grid.ColumnDefinitions➤➤ — A collection of ColumnDefinition objects that determine
how wide the Grid’s columns are

Grid.RowDefinitions➤➤ — A collection of RowDefinition objects that determine how tall
the Grid’s rows are

BitmapEffect➤➤ — A control’s BitmapEffect property determines whether the control dis-
plays a drop shadow, embossed surface, bevel, or other special effect. BitmapEffect must be
an object, so XAML code must set it as a property element.

eFFicient eFFects

Microsoft could have defined a simple type converter for BitmapEffect. For
example, it would convert the string “Bevel” into a BevelBitmapEffect object.
Unfortunately, they didn’t do this — so you’re stuck using a property element.

Header➤➤ — The item displayed in a MenuItem, as the caption in a GroupBox, or on a
TabItem’s tab is defined by the Header property. If you want to display simple text, then you
can use an ordinary attribute to set Header to a string value. If you want to display some-
thing else (such as an Image or a StackPanel), then you need to use a property element.

ContextMenu➤➤ — A control’s ContextMenu property defines the pop-up menu that appears when
you right-click on the control. It’s an object, so you must define it with a property element.

LayoutTransform➤➤ — A control’s LayoutTransform property determines how the control is
moved, stretched, or rotated before it is laid out and drawn. These transformations are rela-
tively complex objects and thus you must define them with property elements.

Property Element Syntax ❘ 157

The PropertyElements example program shown in Figure 9-3 demonstrates each of these property
elements.

The following XAML code shows how the PropertyElements program works. The discussion fol-
lowing the code walks through what each of the property elements does. As you read the discussion,
refer to Figure 9-3 to see the results.

<Window
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 x:Class=”Window1”
 x:Name=”Window”
 Title=”PropertyElements”
 Width=”400” Height=”300”
 FontWeight=”Bold” FontSize=”16”>
 <Window.Background>
 <LinearGradientBrush EndPoint=”0.5,1” StartPoint=”0.5,0”>
 <GradientStop Color=”Red” Offset=”0”/>
 <GradientStop Color=”Black” Offset=”1”/>
 </LinearGradientBrush>
 </Window.Background>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”*”/>
 <ColumnDefinition Width=”*”/>
 <ColumnDefinition Width=”*”/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height=”*”/>
 <RowDefinition Height=”*”/>
 </Grid.RowDefinitions>
 <Image Grid.Row=”0” Stretch=”Uniform”
 Grid.Column=”0” Width=”100” Height=”Auto”
 Source=”Lighthouse.jpg”>
 <Image.BitmapEffect>
 <BevelBitmapEffect BevelWidth=”10”/>
 </Image.BitmapEffect>
 <Image.ContextMenu>
 <ContextMenu>
 <MenuItem>
 <MenuItem.Header>
 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”Phone”
 VerticalAlignment=”Center”/>
 <Image Width=”30”
 Source=”cellphone.ico”>
 <Image.BitmapEffect>
 <DropShadowBitmapEffect/>
 </Image.BitmapEffect>
 </Image>
 </StackPanel>
 </MenuItem.Header>
 </MenuItem>
 <MenuItem Header=”Exit”/>
 </ContextMenu>

158 ❘ chaPter 9 ProPerties

 </Image.ContextMenu>
 </Image>
 <GroupBox Grid.Row=”0” Grid.Column=”1” Grid.ColumnSpan=”2” Margin=”10”>
 <GroupBox.Header>
 <StackPanel Orientation=”Horizontal”>
 <Label Content=”Keys”/>
 <Image Width=”30” Source=”Keys.ico”>
 <Image.BitmapEffect>
 <DropShadowBitmapEffect/>
 </Image.BitmapEffect>
 </Image>
 </StackPanel>
 </GroupBox.Header>
 </GroupBox>
 <Image Grid.Row=”1” Grid.Column=”0” Width=”75” Source=”Frog.jpg”>
 <Image.LayoutTransform>
 <RotateTransform Angle=”10”/>
 </Image.LayoutTransform>
 </Image>
 <Label Content=”Stretched Text” FontSize=”25” Foreground=”Yellow”
 HorizontalAlignment=”Center” VerticalAlignment=”Top” Margin=”0,-40”
 Grid.Row=”1” Grid.Column=”1” Grid.ColumnSpan=”2”>
 <Label.RenderTransform>
 <TransformGroup>
 <ScaleTransform ScaleY=”3”/>
 <SkewTransform AngleX=”20”/>
 <RotateTransform Angle=”20”/>
 </TransformGroup>
 </Label.RenderTransform>
 </Label>
 </Grid>
</Window>

PropertyElements

The main Window element contains a Window.Background
property element to make the Window display a red gradi-
ent brush.

The Grid control contains Grid.ColumnDefinitions
and Grid.RowDefinitions property elements to define
its three columns and two rows.

The Image displaying a lighthouse contains an Image
.BitmapEffect property element to give the image a
beveled appearance so it looks sort of like a tall button.
The original image doesn’t have the shaded edges —
those are added by the BevelBitmapEffect object.

That Image also has an Image.ContextMenu property element to define its context menu.
The ContextMenu contains two MenuItems.

Figure 9-3

Property Inheritance ❘ 159

The first MenuItem has a MenuItem.Header property element that makes the item display a
StackPanel containing a TextBlock and an Image. Like the previous Image, this one uses an
Image.BitmapEffect property element, this time to display a drop shadow.

If you unwind all of the closing tags until you reach the end of the first Image control, you’ll find a
GroupBox element. Its GroupBox.Header property element makes the control display a StackPanel
containing a Label and an Image in its header. The Image uses an Image.BitmapEffect property
element to display a drop shadow.

The program’s next Image control uses an Image.LayoutTransform property element to transform
the image. In this case, it uses a RotateTransform to rotate the image 10 degrees.

The program’s final control is a Label. It uses a Label.RenderTransform object to transform itself.
That object contains a TransformGroup that contains several transformations that are applied in
sequence. Those transforms scale the Label by a factor of 3 vertically, skew the Label in the X
direction by 20 degrees, and then rotate the Label by 20 degrees.

tricky transForms

The PropertyElements example program uses LayoutTransform and
RenderTransform objects, both of which transform a control.

The difference is that WPF applies any LayoutTransforms before it determines
how it should lay out a window’s controls. For example, suppose you rotate a very
tall, thin rectangle by 90 degrees. The resulting rectangle is short and wide. Now
WPF can use the rectangle’s new transformed dimensions to determine how it
should be arranged with the other controls.

In contrast, a RenderTransform decides where controls will be positioned first and
only transforms the object afterward, right before it is drawn on the screen.

ProPerty inheritance

In object-oriented programming, you can define a subclass that represents a particular kind of class.
For example, if you define a Person class, you could then define an Employee subclass that was a
particular kind of Person.

The subclass inherits the properties, methods, and events defined by the parent class, and it may
define new ones. For example, if the Person class defines the FirstName and LastName properties,
then the Employee class inherits them. The Employee class may also add new properties such as
EmployeeId, StartDate, and Salary that don’t apply to all Person objects.

In addition to this object-oriented concept of class inheritance, WPF controls support another type
of property inheritance in which a control inherits the property values of its container.

For example, suppose a StackPanel sets the property values FontName = Comic Sans MS,
FontSize = 20, and FontWeight = Bold. Then if you place a Label inside the StackPanal, the
Label inherits those property values, so it draws its text in 20-point bold Comic Sans MS.

160 ❘ chaPter 9 ProPerties

Unfortunately, WPF property inheritance includes many exceptions; thus, you cannot always count
on it. For example, the ListBox control highlights its currently selected item by making the item’s
background blue and its foreground white. Suppose you set the window’s Background property to
the same blue color. If the ListBox and the items it contains inherited that property, then all of the
items in the ListBox would have blue backgrounds and the user wouldn’t be able to tell which item
was selected. To prevent this, the ListBox doesn’t inherit its container’s Background property value.

Of course, since you can explicitly set the ListBox’s Background property or change the Background
properties of the items that it contains, this doesn’t really solve the problem. It just makes it less likely
that the problem will occur. You can still get into trouble by selecting poor background colors, but it
won’t happen unless you take extra action.

The InheritedProperties example program
shown in Figure 9-4 demonstrates some prop-
erties that are inherited and some that are not.

The program’s window sets its font properties
to 18-point bold Comic Sans MS, and you can
see in the figure that the program’s ComboBox
and ListBox items, Label, Button, and
GroupBox all inherit this font.

The program’s window also sets its Background
property to a green gradient brush. The pro-
gram’s Label, StackPanels, and GroupBox have
transparent backgrounds so the brush shows through, but the Button, ComboBoxes, and ListBox display
their own backgrounds.

The window sets its Foreground property to yellow. The program’s GroupBox inherits this value,
but the other controls do not.

One item in each of the program’s ComboBoxes and in its ListBox has its Background set to yellow
and its Foreground set to red, so you can see that you can explicitly set these colors if you want.

If you download the example program from the book’s web site and experiment with it, you’ll see
that these explicitly set colors do interfere with the ListBox and ComboBox’s abilities to highlight
their selected items.

The moral is that you should be aware that controls sometimes inherit property values from their
containers — but not always.

attached ProPerties

Sometimes a control might need to have a property that contains information for use by another control.
For example, consider a Button inside a Grid control. The Grid needs to determine how to arrange the
Button. In particular, it needs to know what row and column should hold the Button. Although the
Grid needs to know this information, the row and column really belong to the Button.

So how do you attach this information to the Button control? You could give Button the properties
Row and Column. If you took that approach, then you would need to similarly define the same prop-
erties for every other kind of control on the off chance that instances were placed inside a Grid.

Figure 9-4

Attached Properties ❘ 161

Even that might work (you could put the properties in the Control class and let every other control
class inherit them), but there are lots of other properties that you might need to handle similarly. For
example, the DockPanel control needs to know how to dock its children; the Canvas control needs
to know Top, Left, and other position properties for its children; and the ToolBar needs to know
what OverflowMode to use for the items it contains.

Adding all of these properties to the Control class would not only clutter the class, but it would
also not give you a general solution. If you later created a new control that needed to know some-
thing about other controls (e.g., you make a new container class that needs to know how to arrange
its children), you would need to rebuild the Control base class to accommodate the new control. I
doubt that Microsoft is likely to recompile the WPF libraries and release a special build just to add
your property.

oBject-oriented oBjection

Adding all of these properties to the Control class would also mess up the classes’
encapsulation. It would make the Control class know a lot about other classes
when it really shouldn’t. Object-oriented purists would say that disqualifies this
approach from the start.

Instead, WPF takes a different approach, which allows a control to provide an attached property
for use by other controls. For example, the Grid control actually implements the Grid.Row and
Grid.Column attached properties, and other controls can use them.

The syntax for an attached property is the name of the property provider, followed by a dot, followed
by the name of the property. For example, the Grid control’s Row property is called Grid.Row.

ProPerties without restrictions

The control providing the attached property does not check to make sure that the
property makes sense in context. For example, you can give a TextBox control a
Grid.Row property even if it is not contained in a Grid. In that case, the property is
simply ignored.

Unfortunately, the syntax for an attached property is very similar to the syntax for a property ele-
ment. For instance, the AttachedProperties example program shown in Figure 9-5 uses the following
XAML code. This code contains several attached properties and property elements.

<Grid>
 <Grid.Background>
 <LinearGradientBrush EndPoint=”0.5,1” StartPoint=”0.5,0”>
 <GradientStop Color=”Yellow” Offset=”0”/>
 <GradientStop Color=”Red” Offset=”1”/>
 </LinearGradientBrush>
 </Grid.Background>
 <Grid.RowDefinitions>

162 ❘ chaPter 9 ProPerties

 <RowDefinition Height=”40”/>
 <RowDefinition Height=”*”/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”*”/>
 <ColumnDefinition Width=”*”/>
 </Grid.ColumnDefinitions>
 <Label Content=”Select Transaction” Foreground=”Yellow”
 HorizontalAlignment=”Stretch” HorizontalContentAlignment=”Center”
 Grid.Row=”0” Grid.Column=”0” Grid.ColumnSpan=”2”>
 <Label.Background>
 <LinearGradientBrush EndPoint=”0.5,1” StartPoint=”0.5,0”>
 <GradientStop Color=”Yellow” Offset=”0”/>
 <GradientStop Color=”Red” Offset=”1”/>
 </LinearGradientBrush>
 </Label.Background>
 </Label>
 <Button Margin=”10” Grid.Row=”1” Grid.Column=”0”>
 <StackPanel>
 <Label Content=”Credit” HorizontalAlignment=”Center”
 Grid.Row=”1” Grid.Column=”1”/>
 <Image Source=”Credit.jpg” Height=”60” />
 </StackPanel>
 </Button>
 <Button Margin=”10” Grid.Row=”1” Grid.Column=”1”>
 <StackPanel>
 <Label HorizontalAlignment=”Center” Content=”Debit” />
 <Image Source=”Debit.jpg” Height=”60” />
 </StackPanel>
 </Button>
</Grid>

AttachedProperties

The Grid control contains three property elements: Grid.Background,
Grid.RowDefinitions, and Grid.ColumnDefinitions. These
describe properties of the Grid control that happen to have objects
for their values.

The first Label has three attached properties: Grid.Row,
Grid.Column, and Grid.ColumnSpan. These properties are pro-
vided by the Grid class and tell the Grid containing the Label
how to position it.

This Label also has a property element, Label.Background, that
defines the Label’s background brush.

The first Button control has two attached properties, Grid.Row and Grid.Column, that tell the Grid
where to place it. The Button contains a StackPanel that holds a Label and an Image.

Figure 9-5

Summary ❘ 163

The Button’s Label has attached attributes Grid.Row and Grid.Column. Because the Label is not
directly contained in a Grid, those properties are ignored.

The second Button also has Grid.Row and Grid.Column properties to tell the Grid where to
position it.

summary

This chapter explains how to use properties in XAML code. It explains how to use simple property
values, values that are translated by type converters, property elements, and attached properties.
These three kinds of properties let you define the property values that WPF controls need.

The next chapter describes a particularly useful set of properties: pen and brush properties. It
explains how to build simple and complex pens and brushes that determine the colors used to out-
line and fill graphical objects such as text, backgrounds, lines, rectangles, and curves.

Pens and Brushes
Pens and brushes determine some of the most visually obvious pieces of a graphical
application — its colors.

In graphical programming terms, a pen determines the color
and style of a linear feature such as a line or the edge of a
circle. A brush determines how an area is filled. For example,
the ellipse drawn in Figure 10-1 is filled with a red brush and
outlined with a thick, dashed, purple pen.

This chapter describes pen and brush properties and tells
how to set them in XAML code. It explains the different
kinds of pens and brushes and the properties that determine
their appearance.

Pens

A pen defines the color and geometry of a linear feature such as a line, a curve defined by a
Path control, or the edges of an ellipse or rectangle.

Interestingly, some colors that you might think would be determined by a pen are actually
determined by a brush. In particular, text is rendered by filling the font’s shapes with a brush
rather than drawing the shapes with a pen. This is a bit counterintuitive if you think of draw-
ing text by hand, where you usually use a pen (or a pencil or crayon, but probably not a brush
unless you’re practicing your Japanese calligraphy).

A pen has several different properties — all with names beginning with the word stroke — that
determine its color and geometry.

Figure 10-1

10

166 ❘ ChaPter 10 Pens and Brushes

a Closer look

Many of the stroke properties don’t make a huge difference to appearance unless
the linear feature you’re drawing is quite thick. For example, StrokeDashCap deter-
mines whether the ends of dashes are drawn as square, rounded, or triangular. If a
line is only 1 pixel wide, you won’t be able to tell the difference.

Remember, however, that WPF can draw
objects that are scaled, so, if your program
allows it, the user can zoom in on linear fea-
tures until these properties make a big differ-
ence. The MagnifiedLines example program
shown in Figure 10-2 draws the exact same
line at five different scales. Only in the thick-
est lines can you tell that the dash caps are
triangular.

The following code shows how the MagnifiedLines program draws its thickest line.
Because the line isn’t as wide as the ViewBox that contains it, the ViewBox enlarges
it to make it fit:

<Viewbox Stretch=”Uniform” Height=”20” Width=”300” Margin=”10,10,10,0”>
 <Line X1=”0” Y1=”0” X2=”18.75” Y2=”0” Stroke=”Blue”
 StrokeDashArray=”3” StrokeDashCap=”Triangle”/>
</Viewbox>

MagnifiedLines

Figure 10-2

stroke
The Stroke property determines the color of a linear feature. You can specify the color in a
couple of ways. First, you can give the color’s name. Names that WPF understands include Red,
Chartreuse, LavenderBlush, and about 150 others.

The following XAML code shows how the PensAndBrushes example program draws the ellipse
shown in Figure 10-1. The Stroke property makes the ellipse’s border purple.

<Ellipse Fill=”Red” Stroke=”Purple”
 Margin=”20” StrokeThickness=”10” StrokeDashArray=”2,2”/>

The second way to specify a solid color is by giving its color components. This value can have one of
two forms: #RRGGBB or #AARRGGBB. In both cases, the RR, GG, and BB parts include two hexa-
decimal digits giving the color’s red, green, and blue color components between 00 and FF (255). For
example, the value #FF0000 is red, and the value #FFFF00 is yellow (equal parts red and green).

Pens ❘ 167

In the second color component format, AA indicates the color’s alpha value or opacity. This is also
a two-digit hexadecimal value between 00 and FF, where 00 means that the color is completely
transparent, and FF means that it is completely opaque.

The Opacity example program shown in Figure 10-3 uses the following XAML code to demonstrate
opacity:

<Canvas>
 <Label Content=”Opacity!” Canvas.Top=”60” Canvas.Left=”2”
 FontFamily=”Times New Roman” FontSize=”46” FontWeight=”Bold”/>
 <Ellipse Fill=”#80FF0000” Stroke=”Black” Height=”100” Width=”100”
 Canvas.Top=”10” Canvas.Left=”10”/>
 <Ellipse Fill=”#8000FF00” Stroke=”Black” Height=”100” Width=”100”
 Canvas.Top=”10” Canvas.Left=”70”/>
 <Ellipse Fill=”#800000FF” Stroke=”Black” Height=”100” Width=”100”
 Canvas.Top=”70” Canvas.Left=”40”/>
</Canvas>

Opacity

The Canvas control contains a Label followed by red, green, and blue
Ellipses with opacity set to 80. Since the value 80 in hexadecimal (128 in
decimal) is halfway between 00 and FF, the colors are 50 percent opaque.
That means that the lower ellipses show through those above and the text
shows through all of them.

While these solid colors (whether opaque or not) seem like simple things,
they are not. Even though they are logically pen colors, WPF implements
them as brushes for drawing purposes. The solid colored pens described
so far are actually provided by the SolidColorBrush class.

The fact that these colors are really defined by brushes means that you
can use other types of brushes to determine pen color. Figure 10-4
shows the GradientPens example program displaying an ellipse, a
re ctangle, and a line with borders filled with gradient brushes.

The “Brushes” section later in this chapter says more about differ-
ent kinds of brushes you can build, and you can use any of those
brushes to define the way a pen is drawn.

strokethickness
The StrokeThickness property is the simplest of the pen properties. It determines the thickness of
a line in pixels. For example, the shapes drawn in Figure 10-4 all have StrokeThickness set to 10.

strokeDasharray
The StrokeDashArray property is an array of values indicating the number of pen units that should
be drawn and skipped while drawing. A pen unit is equal to the thickness of the linear feature set
by the StrokeThickness property.

Figure 10-3

Figure 10-4

168 ❘ ChaPter 10 Pens and Brushes

For example, suppose a Line has StrokeThickness = 10.
Then the StrokeDashArray value “2,2,4,2” means
to draw 20 pixels, skip 20 pixels, draw 40 pixels, skip
20 pixels, and repeat as needed to finish the Line.

Figure 10-5 shows the StrokeDashArrays example
program displaying several dash patterns. The labels
on the left indicate the lines’ StrokeDashArray values.
The first two lines are 1 pixel wide, while the others
are 10 pixels wide. If you look closely, you can see how
the StrokeThickness value helps determine the size of
the dashes.

strokeDashCap
The StrokeDashCap property determines how the ends
of dashes are drawn. This property can take the values
Flat, Square, Round, and Triangle. Figure 10-6 shows
the results of each of these values.

strokeDashoffset
The StrokeDashOffset property determines how far
into the first dash a line segment starts drawing. The
property’s value indicates a distance in pen units (the
thickness of the line).

The StrokeDashOffsets example program shown in
Figure 10-7 displays similar Line controls drawn with
various StrokeDashOffset values. The labels on the left
indicate the StrokeDashOffset values.

strokeendlineCap and
strokestartlineCap

The StrokeStartLineCap and StrokeEndLineCap
properties determine how the start and the end of a line
are drawn. Like the StrokeDashCap property, these
properties can take the values Flat, Square, Round,
and Triangle. The StrokeLineCaps example program
shown in Figure 10-8 shows the results of these values.

strokelineJoin
The StrokeLineJoin property determines how lines are connected in rectangles, polylines, poly-
gons, and other shapes that draw connected line segments. This property can take the values
Miter, Bevel, and Round.

Figure 10-5

Figure 10-6

Figure 10-7

Figure 10-8

Pens ❘ 169

Flat anD square

Notice that the Flat and Square dash caps don’t quite line up. Flat makes the
dash end abruptly after its proper length. Square, Round, and Triangle all extend
the end of the dash half of its width further to draw their end effects.

enD CaP eDiFiCation

Note that a line only draws its start or end caps if it starts or ends on a drawn
piece of line. For example, if the line ends in the middle of a gap between
dashes, then the line stops with the previous dash. If the StrokeDashCap and
StrokeEndLineCap properties are different, the result may look a bit strange.

Miter makes the edges of the lines extend until
they meet, possibly resulting in a sharp point;
Bevel cuts off the sharp point; and Round makes
the corners rounded.

The StrokeLineJoins example program shown in
Figure 10-9 demonstrates these values.

strokeMiterlimit
The StrokeMiterLimit property limits how long the sharp point on a mitered corner can be
before it is chopped off in a bevel. Technically it limits the ratio of miter length divided by half the
StrokeThickness. In other words, if StrokeMiterLimit is 3, then the point at a corner can be at
most three times half the line’s thickness past the center of the line.

Intuitively, it’s just easier to look at a picture and understand that larger StrokeMiterLimit values
allow pointier corners.

The StrokeMiterLimits example program shown in Figure 10-10 shows the same curve with
StrokeMiterLimit set to 1, 2, and 3. Notice that second corner near the middle of each shape is
not beveled when StrokeMiterLimit is 2 or 3 because the corner does not reach its miter limit.

Figure 10-10

Figure 10-9

170 ❘ ChaPter 10 Pens and Brushes

Brushes

A brush determines how an area is filled. The area may be simple (such as a rectangle or ellipse) or
complex (such as a polygon, overlapping pieces of a polyline, or a shape drawn by a Path control).

As mentioned earlier in this chapter,
brushes also determine how text is
filled. That means that you can fill text
with a solid color, a color gradient, or
even a repeating pattern or picture. The
PictureFilledText example program shown
in Figure 10-11 draws some text filled with
a picture of a field full of flowers.

Before you learn about the different kinds of brushes that you can create, you should learn about
two properties that affect the way any brush is used: FillRule and SpreadMethod. The following
two sections describe these properties. The sections after those describe the brush classes.

Fillrule
If the lines that define an area cross each other, then the object’s FillRule property determines which
pieces of the area are filled. If FillRule is Nonzero, then any piece of
the screen that is enclosed by the shape is filled. If FillRule is EvenOdd,
then only pieces of the screen that are enclosed an odd number of times
by the shape are filled.

The difference is hard to understand when described in words, but it’s
fairly easy to understand if you look at an example. In Figure 10-12,
the FillRules example program shows the difference between the two
FillRule values.

spreadMethod
If a brush is not big enough to fill a drawn area, then its SpreadMethod property determines how
the remaining area is filled. For example, if you’re filling a large rectangle with a small picture, the
brush isn’t big enough to fill the rectangle. The SpreadMethod property can take the values Pad,
Reflect, and Repeat.

The value Pad makes the brush fill the remaining area with its final color. For example, if the brush
smoothly shades from white to green, then any remaining area is filled with green.

The value Reflect makes the brush reverse itself and continue filling the area. For example, suppose
a brush shades from white to green. Then a larger area would be filled with white shading to green
followed by green shading to white. This pattern would repeat until the entire area was filled.

The value Repeat makes the brush start over and repeat itself. If a brush shades from white to
green, then a large area would be filled with white shading to green followed by an abrupt jump
back to white shading to green again.

Figure 10-11

Figure 10-12

Brushes ❘ 171

Fillrule Details

To better understand how FillRule works and what its values mean, pick a point
somewhere on Figure 10-12 and mentally draw a ray from that point infinitely far
to the right (off the page is far enough in this example).

For the EvenOdd rule, count the number of times the ray intersects one of the
shape’s segments. If the number of intersections is odd, then the point is “inside”
the shape and is colored. If the number of intersections is even, then the point is
“outside” of the shape and is not colored.

For the Nonzero rule, you need to consider the orientation of the shape’s segments
where they cross the ray. Each time a segment crosses the ray from left to right (as
seen by the ray), add 1 to a counter. Each time a segment crosses the ray from right
to left, subtract 1 from the counter. When you’re done, if the counter is nonzero,
then the point is “inside” the shape and is colored. If the count is zero, then the
point is “outside” of the shape and is not colored.

Experiment with new points inside and outside of the shapes in Figure 10-12 and
see what happens.

The SpreadMethods example program shown in
Figure 10-13 demonstrates LinearGradientBrushes
and RadialGradientBrushes using each of the three
SpreadMethod values. Notice the abrupt change of colors
when SpreadMethod is Repeat.

solidColorBrush
The SolidColorBrush class represents a single solid color.
In XAML code, you can specify the brush’s color by name
(e.g., Red or HotPink) or by hexadecimal value (e.g.,
#FFFF0000 or #FFFF69B4).

Although it’s usually easier to use a color’s name or value,
you can also explicitly build a SolidColorBrush object if you like.

The UseSolidBrush example program uses the following XAML code to demonstrate both methods.
First, it uses the color name Blue to draw a blue ellipse. Then it draws a second ellipse, filling it with
an explicitly created red SolidColorBrush.

<Ellipse Margin=”10,20” StrokeThickness=”5” Stroke=”Black”
 Fill=”Blue”/>
<Ellipse Margin=”75,0” StrokeThickness=”5” Stroke=”Black”>
 <Ellipse.Fill>
 <SolidColorBrush Color=”Red”/>
 </Ellipse.Fill>
</Ellipse>

UseSolidBrush

Figure 10-13

172 ❘ ChaPter 10 Pens and Brushes

lineargradientBrush
A LinearGradientBrush fills an area with a sequence of colors that blend smoothly from one to
another in a linear direction. For example, the brush might start blue on the left and gradually turn
to white on the right.

The LinearGradientBrush’s StartPoint and EndPoint properties determine where the gradient
starts and ends its colors. The coordinates of these points use a scale, where (0, 0) is the brush’s
upper-left corner and (1, 1) is its lower-right corner.

The brush contains a collection of GradientStop objects that determine how it fills its area. The
GradientStop object’s Color property defines the color that the brush should use at a particular point.
Its Offset property determines how far through the brush from its StartPoint to its EndPoint the
color should be positioned (on a 0 to 1 scale).

The brush can contain many GradientStop
objects to define intermediate colors within the
gradient.

The UseLinearGradientBrush example program
shown in Figure 10-14 uses the following code to
draw its rectangles:

<Rectangle Margin=”5” Width=”100” Height=”100” Stroke=”Black”>
 <Rectangle.Fill>
 <LinearGradientBrush EndPoint=”0.5,1” StartPoint=”0.5,0”>
 <GradientStop Color=”White” Offset=”0”/>
 <GradientStop Color=”Blue” Offset=”1”/>
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>
<Rectangle Margin=”5” Width=”100” Height=”100” Stroke=”Black”>
 <Rectangle.Fill>
 <LinearGradientBrush EndPoint=”0.5,1” StartPoint=”0.5,0”>
 <GradientStop Color=”White” Offset=”0”/>
 <GradientStop Color=”White” Offset=”0.5”/>
 <GradientStop Color=”Blue” Offset=”1”/>
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>
<Rectangle Margin=”5” Width=”100” Height=”100” Stroke=”Black”>
 <Rectangle.Fill>
 <LinearGradientBrush EndPoint=”1,1” StartPoint=”0,0”>
 <GradientStop Color=”Blue” Offset=”0”/>
 <GradientStop Color=”Lime” Offset=”0.5”/>
 <GradientStop Color=”Red” Offset=”1”/>
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>
<Rectangle Margin=”5” Width=”100” Height=”100” Stroke=”Black”>

Figure 10-14

Brushes ❘ 173

 <Rectangle.Fill>
 <LinearGradientBrush EndPoint=”0.25,0.5” StartPoint=”0,0.5”
 SpreadMethod=”Reflect”>
 <GradientStop Color=”White” Offset=”0”/>
 <GradientStop Color=”Blue” Offset=”1”/>
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

UseLinearGradientBrush

The first rectangle shades vertically from white at the top point (0.5, 0) to blue at the bottom
point (0.5, 1).

The second rectangle adds an additional GradientStop object to make the gradient remain white
until halfway through the brush before it starts shading to blue.

The third rectangle’s Brush uses different StartPoint and EndPoint values to make the gradient
move from the upper-left corner (0, 0) to the lower-right corner (1, 1). It uses three GradientStop
objects to make the colors blend from blue to lime to red.

The final rectangle’s Brush has EndPoint (0.25, 0.5), so the brush only covers a quarter of the rec-
tangle’s width. The Brush’s SpreadMethod is set to Reflect, so the Brush reflects to cover the rest
of the rectangle.

radialgradientBrush
The RadialGradientBrush blends colors smoothly radiating away from a central point.

Instead of using StartPoint and EndPoint properties to determine the brush’s shape, the
RadialGradientBrush uses the properties GradientOrigin, RadiusX, and RadiusY.

GradientOrigin determines the point from which the colors radiate. By default, this is (0.5, 0.5),
so the colors radiate from the center of the Brush’s (0, 0) to (1, 1) coordinate system.

RadiusX and RadiusY determine how far the brush extends horizontally and vertically from the
center, again using the (0, 0) to (1, 1) coordinate system.

reMeMBer the raDius

Remember that the radius is half of the width of a circle, so RadiusX and RadiusY
values of 0.5 make the gradient fill the brush.

Note also that values of 0.5 make the gradient only reach to the sides of the brush
not all the way into the corners. That means, for example, that the corners of a
rectangle are not covered by the gradient, so how they are filled depends on the
SpreadMethod property.

174 ❘ ChaPter 10 Pens and Brushes

The UseRadialGradientBrush example program
shown in Figure 10-15 draws several rectangles
filled with RadialGradientBrushes. From left-
to-right and top-to-bottom, these brushes have
the following properties:

A default brush shading from white to red➤➤

RadiusX➤➤ = 0.25 and RadiusY = 0.25

RadiusX➤➤ = 0.5 and RadiusY = 0.25

An extra ➤➤ GradientStop object that
makes the brush remain white until it is
halfway through the brush

GradientOrigin➤➤ = 0.25, 0.25

An extra ➤➤ GradientStop object that makes the brush shade from red to white to blue

RadiusX➤➤ = 0.1, RadiusY = 0.1, and SpreadMethod = Reflect

SpreadMethod➤➤ = Repeat (so you can see that the gradient doesn’t reach the rectangle’s corners)

Download the UseRadialGradientBrush program from the book’s web site to view the complete
source code.

tileBrush
TileBrush is a base class that represents a brush that fills an area with a repeating pattern. The
ImageBrush, DrawingBrush, and VisualBrush subclasses fill areas with pictures, drawings, and
user interface elements, respectively.

The section “Tile Brushes” and the sections that follow it in Chapter 3 describe the properties that
you can use to define these types of brushes.

The following sections provide a bit more detail and some examples of these kinds of brushes.

ImageBrush
The ImageBrush class fills an area with
a picture. See the section “Image Brush”
in Chapter 3 for a general description of
this class’s most useful properties and
instructions for building ImageBrushes in
Expression Blend.

The ImageBrushTileModes example pro-
gram shown in Figure 10-16 demonstrates
the control’s TileMode property values.
This property determines how the brush

Figure 10-15

Figure 10-16

Brushes ❘ 175

repeats itself to fill the area if necessary, similar to the way the SpreadMethod property determines
how gradient brushes fill areas they don’t cover.

DrawingBrush
The DrawingBrush class fills an area with a drawing. The drawing may contain labels, lines, poly-
gons, or other controls.

Unfortunately, building a DrawingBrush in XAML code is rather difficult. The brush should con-
tain a Drawing property element that defines the drawing.

The Drawing element can contain a drawing object such as a GeometryDrawing, a GlyphRunDrawing,
or an ImageDrawing. Those objects define properties for the objects they contain. For example, the
GeometryDrawing object’s Brush and Pen properties apply to any objects drawn inside it.

If you want to include more than one drawing object, you can give the Drawing element a DrawingGroup
child, which can contain other drawing objects such as a GeometryDrawing, a GlyphRunDrawing, or an
ImageDrawing.

Creating a complex picture within a DrawingBrush is quite a chore. In fact, it’s so difficult that you
may wonder why you don’t just use an ImageBrush, which is much simpler. But the advantage of the
DrawingBrush is that it defines its contents as drawing commands so if you zoom in on a DrawingBrush
you still see nice smooth curves. In contrast, if you zoom in on an ImageBrush, the brush becomes pix-
elated and blocky.

The MagnifiedDrawingBrush example
program shown in Figure 10-17 displays a
sequence of rectangles filled with the same
DrawingBrush. Each rectangle is displayed
inside a Viewbox that stretches its contents
so you can see the brush at different scales.

The following code shows how the
MagnifiedDrawingBrush program creates
its brush. Different parts of the brush are outlined and filled with different colors, so the brush contains
a DrawingGroup that holds a series of GeometryDrawing objects that define the drawing’s pieces.

<DrawingBrush x:Key=”brFace” TileMode=”Tile” ViewportUnits=”Absolute”
 Viewbox=”0,0,1,1” Viewport=”0,0,50,50”>
 <DrawingBrush.Drawing>
 <DrawingGroup>
 <!-- Background -->
 <GeometryDrawing Brush=”Yellow”>
 <GeometryDrawing.Pen>
 <Pen Brush=”Black”/>
 </GeometryDrawing.Pen>
 <GeometryDrawing.Geometry>
 <RectangleGeometry Rect=”0,0,100,100”/>
 </GeometryDrawing.Geometry>
 </GeometryDrawing>
 <!-- Left eye -->
 <GeometryDrawing Brush=”White”>

Figure 10-17

176 ❘ ChaPter 10 Pens and Brushes

 <GeometryDrawing.Pen>
 <Pen Brush=”Black”/>
 </GeometryDrawing.Pen>
 <GeometryDrawing.Geometry>
 <EllipseGeometry Center=”25,25” RadiusX=”10” RadiusY=”20”/>
 </GeometryDrawing.Geometry>
 </GeometryDrawing>
 <!-- Left pupil -->
 <GeometryDrawing Brush=”Blue”>
 <GeometryDrawing.Geometry>
 <EllipseGeometry Center=”30,30” RadiusX=”5” RadiusY=”10”/>
 </GeometryDrawing.Geometry>
 </GeometryDrawing>
 <!-- Right eye -->
 <GeometryDrawing Brush=”White”>
 <GeometryDrawing.Pen>
 <Pen Brush=”Black”/>
 </GeometryDrawing.Pen>
 <GeometryDrawing.Geometry>
 <EllipseGeometry Center=”75,28” RadiusX=”12” RadiusY=”18”/>
 </GeometryDrawing.Geometry>
 </GeometryDrawing>
 <!-- Right pupil -->
 <GeometryDrawing Brush=”Blue”>
 <GeometryDrawing.Geometry>
 <EllipseGeometry Center=”68,25” RadiusX=”5” RadiusY=”10”/>
 </GeometryDrawing.Geometry>
 </GeometryDrawing>
 <!-- Nose -->
 <GeometryDrawing Brush=”Lime”>
 <GeometryDrawing.Pen>
 <Pen Brush=”Green”/>
 </GeometryDrawing.Pen>
 <GeometryDrawing.Geometry>
 <EllipseGeometry Center=”50,50” RadiusX=”7” RadiusY=”15”/>
 </GeometryDrawing.Geometry>
 </GeometryDrawing>
 <!-- Mouth -->
 <GeometryDrawing>
 <GeometryDrawing.Pen>
 <Pen Brush=”Red” Thickness=”5”/>
 </GeometryDrawing.Pen>
 <GeometryDrawing.Geometry>
 <LineGeometry StartPoint=”35,80” EndPoint=”80,80”/>
 </GeometryDrawing.Geometry>
 </GeometryDrawing>
 </DrawingGroup>
 </DrawingBrush.Drawing>
</DrawingBrush>

MagnifiedDrawingBrush

As you can see, building even a simple DrawingBrush in XAML by hand isn’t easy. It is likely that
most of the DrawingBrushes used by developers will be either very simple or defined by automated
tools such as Expression Blend.

Brushes ❘ 177

For instructions explaining how to make Expression Blend create a DrawingBrush for you, see the
section “Drawing Brush” in Chapter 3.

VisualBrush
The VisualBrush class fills an area with a copy of a user interface element. That element can con-
tain other controls such as Lines, Labels, TextBoxes, Polygons, and just about anything else that
you want to add.

In fact, if you fill an area with a VisualBrush defined by a control and that control changes at run
time, then the Brush automatically updates to match the control’s new appearance.

Unfortunately, the control you use to define the Brush cannot be invisible because the Brush needs
to use its drawn image, and that image doesn’t exist if the control’s Visibility property is not set
to Visible. That means you cannot make the control completely hidden and then use it only to fill
areas on the screen.

You can, however, place the control behind another control or move it so it is off the program’s window.

The MagnifiedVisualBrush example program uses a VisualBrush to produce exactly the same
result as the MagnifiedDrawingBrush program but uses a VisualBrush instead of a DrawingBrush.

The following XAML code shows how the MagnifiedVisualBrush program builds the Canvas con-
trol that defines its VisualBrush. Note how the code sets the Canvas control’s Margin property to
“-120,0,0,0” to move the control off the left edge of the window so it is invisible at run time.

<Canvas HorizontalAlignment=”Left” Margin=”-120,0,0,0”
 Name=”cvsFace” Width=”100” Height=”100” Background=”Yellow”>
 <Rectangle Canvas.Left=”0” Canvas.Right=”0” Width=”100” Height=”100”
 Stroke=”Black” Fill=”Yellow”/>
 <!-- Left eye -->
 <Ellipse Canvas.Left=”15” Canvas.Top=”5” Width=”20” Height=”40”
 Stroke=”Black” Fill=”White”/>
 <!-- Left pupil -->
 <Ellipse Canvas.Left=”25” Canvas.Top=”20” Width=”10” Height=”20”
 Fill=”Blue”/>
 <!-- Right eye -->
 <Ellipse Canvas.Left=”63” Canvas.Top=”10” Width=”24” Height=”36”
 Stroke=”Black” Fill=”White”/>
 <!-- Right pupil -->
 <Ellipse Canvas.Left=”63” Canvas.Top=”15” Width=”10” Height=”20”
 Fill=”Blue”/>
 <!-- Nose -->
 <Ellipse Canvas.Left=”43” Canvas.Top=”35” Width=”14” Height=”30”
 Stroke=”Green” Fill=”Lime”/>
 <!-- Mouth -->
 <Line X1=”35” Y1=”80” X2=”80” Y2=”80” Stroke=”Red” StrokeThickness=”5”/>
</Canvas>

MagnifiedVisualBrush

At 22 lines, this version is much shorter than the 65 lines used by the previous version to define a
GeometryGroup. (If you remove the comments, which are much less important in this simpler ver-
sion, it’s only 16 easy-to-follow lines long.)

178 ❘ ChaPter 10 Pens and Brushes

This version also uses simpler controls that are easier to understand.

Having built the control that defines the Brush, the MagnifiedVisualBrush program must still actu-
ally create the Brush. Fortunately, that’s relatively short and easy.

<VisualBrush x:Key=”brFace” Visual=”{Binding ElementName=cvsFace}”
 TileMode=”Tile” Viewbox=”0,0,1,1”
 Viewport=”0,0,50,50” ViewportUnits=”Absolute” />

MagnifiedDrawingBrush

Brushes the easy Way

I don’t know about you, but I think the VisualBrush is a whole lot easier to
build than the DrawingBrush. Unless I have a really simple drawing, I use the
VisualBrush.

suMMary

Pens and Brushes determine the appearance of just about everything that your WPF application
draws. Pens determine how lines are drawn, and Brushes determine how areas are filled.

This chapter describes pens and brushes. It explains Pen properties and the Brush classes
SolidColorBrush, LinearGradientBrush, RadialGradientBrush, ImageBrush, DrawingBrush,
and VisualBrush.

With these properties and brushes, you can produce just about any drawing you can imagine.

WPF program development involves two distinct steps: creating the user interface and writing
the code that sits behind it. Most of the chapters up until this point in the book explain how to
build the user interface. The next chapter explains the other half of the equation: how to put code
behind the controls.

Events and Code-Behind
Unless your application consists solely of user interface (UI) elements (a loose XAML page
might), you’ll eventually need to associate program code with the UI elements. For example,
the program will need to take action when the user clicks buttons, selects menu items, and
clicks tools in the toolbar.

In WPF, the code that sits behind the user interface, responding to control events and perform-
ing other processing, is called the code-behind. Visual Studio makes writing code-behind easy.
This chapter explains how to write code that handles control events so the application can
respond to the user at run time.

Depending on what you’re trying to accomplish and which language you’re using, you have
several options for connecting XAML objects to code-behind:

Using an event name attribute in XAML code➤➤

Adding event handlers at run time➤➤

Using the ➤➤ Handles clause (Visual Basic only)

The following sections describe these options and provide examples. Before you learn about
event handlers and how to create them, however, it’s worth taking a little time to learn about
code-behind files.

Code-behind Files

Whenever you add a window to a project, Expression Blend or Visual Studio adds a corre-
sponding code-behind file. The file has the same name as the XAML file with the extra exten-
sion cs (for C#) or vb (for Visual Basic). For example, when you create a new WPF project in

11

180 ❘ Chapter 11 EvEnts and CodE-BEhind

C#, the project includes the initial window in the file Window1.xaml and the corresponding code-
behind file Window1.xaml.cs.

If you’re using Visual Studio, then you can edit the code-behind file and take full advantage of
Visual Studio’s powerful code-editing features such as keyword highlighting and IntelliSense.

If you’re using Expression Blend, then you have two options for editing the code-behind file.

First, you can right-click on the file’s name in the Project file list, and select “Edit Externally.” This
opens the file for editing in whatever application your system has associated with this type of file.
For example, if you’re using C# and you don’t have Visual Studio installed, the system may open
the file in Notepad, or it may ask you to select an application for editing the file. If you have Visual
Studio installed, then your system will probably open the file in Visual Studio.

If you use this method to open the code-behind file in Notepad, WordPad, or some other text editor,
then you don’t get any of the advantages of Visual Studio. You can enter and edit code in the file,
but you have to do all of the typing correctly by yourself without the benefits of IntelliSense. (There
are even some third-party Code Editors such as the Antechinus C# Editor. See www.c-point.com/
c_sharp_editor.php for more information.)

The second way in which you can edit a code-behind file is to right-click on it and select “Edit in
Visual Studio.” This opens the whole project in Visual Studio so you can take advantage of all of
Visual Studio’s capabilities. When you switch back and forth between Visual Studio and Expression
Blend, the two applications synchronize your changes so they stay up to date.

save Your Changes

Before you switch from Visual Studio to Expression Blend or vice versa, save any
changes you have made so that the other application can see them. For example, if
you make changes in Visual Studio and then switch to Expression Blend without
saving your changes, Expression Blend will not see the changes. If you then make
more changes in Expression Blend, the two programs will have inconsistent views
of the project. The result can be very confusing and will probably result in some
lost changes. Avoid this by always saving before you switch applications.

Whether you program in C# or Visual Basic, Visual Studio sets up the namespace references you need
to access the WPF controls in your code. For example, the following XAML code defines a TextBox
named txtFirstName:

<TextBoxName=”txtFirstName”/>

Your code can refer to this control simply as txtFirstName. You don’t need to do anything extra to
use the control in code.

Event Name Attributes ❘ 181

example Code

This chapter’s source code, which is available for
download on the book’s web site at www.wrox.com,
includes several example applications that all do the
same thing but use different techniques for attaching
code-behind to the user interface.

Figure 11-1 shows one of the programs in action.
You can drag the scrollbars or enter values in the
textboxes to set the red, green, and blue components
of the color displayed on the right. If you click on the
Apply button, the program sets the window’s background color to match the current sample.

The ImageColors example program, which is shown in Figure 11-2, demonstrates all of the different
techniques for attaching UI elements to code-behind in a single program. The program’s different
buttons are attached to event handlers in different ways. Download the C# or Visual Basic version
of this program from the book’s web site to see the details.

Figure 11-2

event name attributes

The first way to attach code-behind to a control’s events uses an attribute in the XAML code. The
attribute’s name is the same as the event that you want to catch. Its value is the name of the event
handler in the code-behind.

For example, the following XAML code defines a Button named btnApply. The Click attribute
indicates that the routine btnApply_Click catches the control’s Click event handler.

<ButtonContent=”Apply”IsDefault=”True”
Name=”btnApply”Click=”btnApply_Click”/>

Figure 11-1

182 ❘ Chapter 11 EvEnts and CodE-BEhind

Unfortunately, if you simply add the event handler declaration to the XAML code, the program
won’t run. If you try to execute it in Expression Blend or Visual Studio, you’ll receive an error that
says your program doesn’t contain a definition for the event handler routine.

inCognito Controls

You don’t really need to give a control a name to give it an event handler. For
example, the Button in the previous code doesn’t need to be called btnApply or
anything at all. The Click attribute tells the program what event handler to exe-
cute. If you’re never going to refer to the Button in code (e.g., to enable or disable
it), then you can omit the name.

Some development projects have standards for naming controls, however, and some
may insist that any control with an event handler have a name.

separate no more

The fact that the program won’t run without the event handler highlights a pretty
serious breakdown in the separation between UI construction and the code-behind.
It means that the UI designer cannot test the interface until the event handlers exist,
but the event handlers are not part of the interface so they should be none of the
interface designer’s business. You could argue that the programmer should make
the event name attribute in the XAML code after writing the event handlers, but
the programmer shouldn’t need to touch the interface code.

In practice, this is probably not a huge problem — it just means that the interface
designer and programmer need to speak to each other.

The techniques for attaching code-behind described later in this chapter — adding
event handlers at run time and using the Handles clause (in Visual Basic) — avoid
this problem.

The following C# code handles the event declared in the previous XAML code:

privatevoidbtnApply_Click(objectsender,RoutedEventArgse)
{
this.Background=borSample.Background;
}

This code catches the btnApplyButton’s Click event and sets the window’s Background property
to the value used by the borSample control’s Background property (more details on this shortly).

Your code doesn’t need to do anything special to wire up the event handler to catch the event —
Expression Blend and Visual Studio take care of that for you.

Event Name Attributes ❘ 183

The following XAML fragment shows how the EventNameAttributes example program determines
which event handlers catch the key events raised by the program’s Apply button, and the scrollbar and
textbox that control the color’s red component. The code for the other scrollbars and textboxes is similar.

<ScrollBarOrientation=”Horizontal”Minimum=”0”Maximum=”255”
Grid.Row=”0”Grid.Column=”0”Value=”255”
Name=”scrRed”ValueChanged=”scrRed_ValueChanged”/>

<TextBoxMargin=”2”Grid.Row=”0”Grid.Column=”1”Text=”255”
HorizontalContentAlignment=”Right”VerticalContentAlignment=”Center”
Name=”txtRed”TextChanged=”txtRed_TextChanged”/>

<ButtonGrid.Row=”3”Grid.Column=”0”Grid.ColumnSpan=”3”Width=”100”
Height=”40”
Content=”Apply”IsDefault=”True”
Name=”btnApply”Click=”btnApply_Click”/>

EventNameAttributes

The following C# fragment shows how the EventNameAttributes program responds when you use
the first scrollbar or textbox to change the red color component, and when you click on the Apply
button. The event handlers for the other scrollbars and textboxes are similar.

//AScrollBarhasbeenchanged.UpdatethecorrespondingTextBox.
privatevoidscrRed_ValueChanged(objectsender,
RoutedPropertyChangedEventArgs<double>e)
{
if(txtRed==null)return;
txtRed.Text=((int)scrRed.Value).ToString();
ShowSample();
}

//ATextBoxhasbeenchanged.UpdatethecorrespondingScrollBar.
privatevoidtxtRed_TextChanged(objectsender,
TextChangedEventArgse)
{
//Keepthevaluewithinbounds.
intvalue;
try{
value=int.Parse(txtRed.Text);
}catch{
value=0;
}

if(value<0)value=0;
if(value>255)value=255;
txtRed.Text=value.ToString();

if(scrRed==null)return;
scrRed.Value=value;
ShowSample();
}

//Displayasampleofthecolor.

184 ❘ Chapter 11 EvEnts and CodE-BEhind

privatevoidShowSample()
{
if(borSample==null)return;

byter,g,b;
try{
r=byte.Parse(txtRed.Text);
}catch{
r=0;
}
try{
g=byte.Parse(txtGreen.Text);
}catch{
g=0;
}
try{
b=byte.Parse(txtBlue.Text);
}catch{
b=0;
}
borSample.Background=newSolidColorBrush(Color.FromRgb(r,g,b));
}

EventNameAttributes

When the scrollbar’s value changes, the ValueChanged event handler converts the new value into an
integer (to throw away any fractional part) and displays the result in the red component’s textbox. It
then calls ShowSample to display a sample of the new color.

When the textbox’s value changes, the TextChanged event handler converts the new text value into
an integer. It makes sure that the result is between 0 and 255, the allowed values for a color compo-
nent, and redisplays the result. It then sets the corresponding scrollbar’s value to this new value and
calls ShowSample to display a sample of the color.

The ShowSample method gets the values in the red, green, and blue textboxes; uses them to create a
color; and displays it in the Background property of the Border control borSample.

Consistent Code-behind

This code-behind is more or less the same in later versions of the example program.
Only the XAML code changes significantly.

Creating event handlers in expression blend
To create an event handler in Expression Blend, create the event name attribute in the XAML code.
Then edit the code-behind file and type in the event handler code.

Event Name Attributes ❘ 185

Unfortunately, Expression Blend will complain loudly if you make a mistake but won’t give you any
help in typing this code, so you need to type it correctly by yourself. You need to get all of the syn-
tax and the event handler’s parameters correct.

Creating event handlers in visual studio
Visual Studio provides three methods for creating event handlers that are much easier than the meth-
ods provided by Expression Blend: double-clicking a control, using the Properties window, or using
XAML IntelliSense.

Double-Clicking a Control
The first method for creating an event handler is to simply double-click on the control on the
Window Designer. This creates an event handler for the control’s default event. For example,
the default event for a Button is Click.

If you’re using C#, Visual Studio adds an appropriate name attribute to the XAML code and creates
a stub for the event handler in the code-behind file. (If you’re using Visual Basic, then Visual Studio
uses a Handles clause as described later in this chapter.)

name First

Visual Studio uses the control’s name to build a name for the event handler. For
example, if you double-click on a Button named btnSave, then Visual Studio cre-
ates an event handler named btnSave_Click.

If the control doesn’t have a name, Visual Studio gives it a name and then names
the event handler after it. For example, it might give the Button the name button1
and then name the event handler button1_Click.

If you want the control and event handler to have nice names, give the control a
good name before you let Visual Studio create the event handler.

Using the Properties Window
The second way to make an event handler uses the Properties window. First select the control in the
Window Designer. Next click on the Events button in the Properties window (it looks like a lightning
bolt) to see a list of that control’s events and find the event that you want to handle.

Now you have three options:

 1. To create a new event handler with a default name, double-click on the event.

 2. To create a new event handler with a name of your choosing, type the name next to the event
and then double-click on the event.

 3. To make the control use an existing event handler (e.g., if you want several TextBoxes to all
fire the same event handler), click on the dropdown arrow to the right of the event and select
an existing event handler from the list.

186 ❘ Chapter 11 EvEnts and CodE-BEhind

Figure 11-3 shows the Visual Studio Properties window dis-
playing the events for the ScrollBar control scrGreen. In
this figure, the control’s ValueChanged event’s dropdown is
listing the code-behind methods that have the right signa-
tures for the ValueChanged event. (Note the lightning bolt
button that makes the window display events rather than
properties.)

Using XAML IntelliSense
The third way to make an event handler in Visual Studio is
to use the XAML Code Editor’s IntelliSense. Start typing the
event name attribute in the XAML Code Editor. When you
type the equals sign, IntelliSense displays a list of existing
event handlers that could catch the event. At the top of the
list is the special entry <NewEventHandler>. If you select
this entry, Visual Studio invents an event handler name and
creates an event handler stub.

no handles Clause

If you’re using Visual Basic, then this last method creates an event name attribute
instead of using the Handles clause. That makes sense because you’re creating the
event handler by typing the event name attribute in the XAML Code Editor.

Figure 11-4 shows IntelliSense displaying the code-behind methods that have the right signature for
the TextBox named txtBlue.

Figure 11-4

relaxed delegates
If you’re using C#, you can skip this section, but if you’re using Visual Basic, you can sometimes
simplify event handlers.

Figure 11-3

Event Name Attributes ❘ 187

Visual Basic supports Relaxed Delegates. These let you replace the data types of a routine’s param-
eters with other data types that are consistent with whatever is actually passed into the routine.
That lets you make an event handler’s parameters either more or less specific than those that Visual
Studio creates by default, and that can sometimes simplify the code.

For example, consider the following empty Button Click event handler generated by Visual Basic:

PrivateSubbtnApply_Click(ByValsenderAsSystem.Object,_
ByValeAsSystem.Windows.RoutedEventArgs)

EndSub

Now suppose you know that this event handler is only attached to Button Click events. Then you
know that the sender parameter will always be a Button, so you can change its data type to Button
in the event handler’s declaration.

Meanwhile, you may not need to use the parameter e. That parameter contains information about
the event such as the control that originated it, a RoutedEvent object representing the event, and a
Handled flag that you can set to True to stop the event from further processing. Often event handlers
have no need for this information. In that case, you can change the parameter’s data type to the more
general and simpler type Object instead of the more cumbersome System.Windows.RoutedEventArgs.

The following code shows the modified event handler. The new line of code inside the event handler
displays the Button’s content converted into a string. If the Button displays a simple text caption,
the code displays the caption.

PrivateSubbtnApply_Click(ByValsenderAsButton,_
ByValeAsObject)
MessageBox.Show(sender.Content.ToString())
EndSub

When sender is declared as a System.Object, there’s not a lot you can do with it. To access its
properties, you first need to convert it into a Control, Button, or some other more specific class.

Declaring the sender parameter to be of type Button allows the code to skip that conversion and
treat it as a Button right away. In this example, that means it can look at the control’s Content
property.

Declaring the parameter e as an Object just makes the code a little simpler.

Relaxed Delegates also let you omit the parameter list entirely if you don’t need to use the parameters.
The following code shows the simplest form of the btnApply_Click event handler:

PrivateSubbtnApply_Click()

EndSub

Of course, now you cannot refer to the parameters sender and e because they no longer exist; but
that’s often not a problem. In many applications, buttons, menu items, toolbar buttons, and other
controls are attached to their own private event handlers that no other control shares. Only the

188 ❘ Chapter 11 EvEnts and CodE-BEhind

btnApply Button sends its Click event to the btnApply_Click event handler so this routine can
assume the user clicked this button. In that case, you can use Relaxed Delegates to omit the param-
eters and make the code a little easier to read.

The EventNameAttributesRelaxed example program uses the Visual Basic code in the follow-
ing fragment to handle the events raised by its red scrollbar, red textbox, and Apply button. The
code works the same way as the earlier C# version but in Visual Basic and without event handler
parameters.

‘AScrollBarhasbeenchanged.UpdatethecorrespondingTextBox.
PrivateSubscrRed_ValueChanged()
IftxtRedIsNothingThenExitSub
txtRed.Text=CInt(scrRed.Value).ToString()
ShowSample()
EndSub

‘ATextBoxhasbeenchanged.UpdatethecorrespondingScrollBar.
PrivateSubtxtRed_TextChanged()
‘Keepthevaluewithinbounds.
DimvalueAsInteger
Try
value=CInt(txtRed.Text)
CatchexAsException
value=0
EndTry

Ifvalue<0Thenvalue=0
Ifvalue>255Thenvalue=255
txtRed.Text=value.ToString()

IfscrRedIsNothingThenExitSub
scrRed.Value=value
ShowSample()
EndSub

‘Displayasampleofthecolor.
PrivateSubShowSample()
IfborSampleIsNothingThenExitSub

Dimr,g,bAsByte
Try
r=CByte(txtRed.Text)
CatchexAsException
r=0
EndTry
Try
g=CByte(txtGreen.Text)
CatchexAsException
g=0
EndTry
Try

Event Handlers at Run Time ❘ 189

b=CByte(txtBlue.Text)
CatchexAsException
b=0
EndTry
borSample.Background=NewSolidColorBrush(Color.FromRgb(r,g,b))
EndSub

EventNameAttributesRelaxed

event handlers at run time

The preceding sections attach events to code-behind by placing the event handler’s name in a
XAML attribute such as Click.

You can also use code-behind to attach event handlers to controls at run time.

To use this technique, you don’t need to add any reference to the event handler in the XAML code.
Then, in the code-behind, you add code to attach the event handlers.

The following C# code shows how the RuntimeEventHandlers example program attaches event han-
dlers to its control’s events when it starts:

publicWindow1()
{
this.InitializeComponent();

//Insertcoderequiredonobjectcreationbelowthispoint.
//Attachtheeventhandlers.
scrRed.ValueChanged+=scrRed_ValueChanged;
scrGreen.ValueChanged+=scrGreen_ValueChanged;
scrBlue.ValueChanged+=scrBlue_ValueChanged;
txtRed.TextChanged+=txtRed_TextChanged;
txtGreen.TextChanged+=txtGreen_TextChanged;
txtBlue.TextChanged+=txtBlue_TextChanged;
btnApply.Click+=btnApply_Click;
}

RuntimeEventHandlers

(In Visual Basic, attach the event handlers with the AddHandler statement.)

One nice feature of this technique is that the UI designer can work on the XAML file without ever
needing to know the names of the event handlers in the code-behind. In fact, the interface designer
doesn’t even need to know what events are handled by the code. The only requirement is that the
interface designer must give names to any controls with events that will be caught so the code-
behind can refer to them.

190 ❘ Chapter 11 EvEnts and CodE-BEhind

extra events

Don’t use both techniques and name an event handler in the XAML code and also
attach the same event handler at run time. If you do, then the event handler will
execute twice each time the event occurs.

the handles Clause

If you’re using C#, you can skip this section, but if you’re using Visual Basic, you have one more
option for attaching event handlers to controls — the Handles clause.

Like the previous technique that attaches event handlers at run time, this technique does not add
event declarations to the XAML file. Instead of attaching the event handlers at run time, the code
uses Handles clauses to indicate which events the event handlers should catch.

The following code fragment shows how the HandlesClause example program declares event han-
dlers for the red scrollbar and textbox and the Apply button. To save space, the code uses Relaxed
Delegates and omits the bodies of the event handlers.

‘AScrollBarhasbeenchanged.UpdatethecorrespondingTextBox.
PrivateSubscrRed_ValueChanged()HandlesscrRed.ValueChanged
...
EndSub

‘ATextBoxhasbeenchanged.UpdatethecorrespondingScrollBar.
PrivateSubtxtRed_TextChanged()HandlestxtRed.TextChanged
...
EndSub

‘Settheform’sbackgroundtothesamplecolor.
PrivateSubbtnApply_Click()HandlesbtnApply.Click
...
EndSub

HandlesClause

The Handles clauses make Visual Basic automatically attach the event handlers as needed.

Like the previous technique, this method separates the user interface design and the code-behind so
the XAML code doesn’t need to know anything about the event handlers.

extra events, redux

As with the previous technique, you should be careful not to declare event handlers
in the XAML and use the Handles clause. If you do both, then the event handler will
execute twice each time the event occurs.

Summary ❘ 191

summarY

Most applications provide code behind the user interface. The code responds to events generated by
the controls, performs calculations, and uses the controls to display results.

WPF provides several methods for attaching code to the user interface including using event name
attributes in the XAML code, attaching event handlers to events at run time, and (if you’re using
Visual Basic) the Handles clause. These techniques give you a trade-off between ease of use (event
name attributes are easy) and separation between interface design and code-behind (attaching event
handlers at run time keeps them more separate).

When you’re writing application code in C#, Visual Basic, or some other language, you can reduce
duplication by putting shared code in functions and then calling those functions. If the program
needs to look up a customer in a database in ten different places, you can write a function to find
the customer and then call it from the ten places.

Similarly, XAML allows WPF controls to share values such as colors, brushes, strings, and numbers.
These values are stored in resources that are used in other parts of the XAML code.

The following chapter explains how you can use resources to remove duplicated code, make different
elements more consistent, and centralize key values so they are easy to manage.

Resources
One of the most important concepts in any kind of programming is code reuse. Subroutines,
functions, scripts, classes, inheritance, loops, and many other programming constructs let you
reuse code in one way or another. For example, if your program needs to perform the same
task in many places, you can create a subroutine that performs the task and then call it from
those places.

This kind of code reuse has several advantages, including:

You only need to write and debug the code once.➤➤

If you need to modify the code later to make changes or fix a bug, you only need to do ➤➤

it in one place.

When you fix bugs or make other changes to the code, you don’t need to worry about ➤➤

keeping the changes in multiple parts of the code in synch.

If you need to do something similar in another program, you may be able to copy the ➤➤

routine that performs the action.

You need to write less code, which makes the program easier to read and more reliable. ➤➤

That in turn reduces cost.

Just as routines and functions let you reuse code in languages such as C# and Visual Basic,
resources let you reuse XAML code. They let you define values that you can then use from
many places in a XAML file.

Because XAML files are graphical, resources tend also to be graphical. They define objects
and values that represent control properties that you can then apply to many controls to give
them similar appearance or behavior.

This chapter describes resources and explains how you can define them and refer to them in
your XAML code.

12

194 ❘ Chapter 12 ResouRces

reuse abuse

Code reuse can have a few disadvantages, particularly when done incorrectly.

One situation where too much code reuse can cause problems is when a developer
tries to make a subroutine do too much. In that case the routine may become overly
complicated and confusing, and you might be better off using several simpler rou-
tines instead.

A less common problem occurs when a routine is called too many times. The extra
overhead of calling a subroutine slows a program down slightly. If the code calls
the subroutine an enormous number of times (think billions not thousands), the
routine may hurt performance.

In most cases, code reuse is a good thing. When in doubt, ask yourself whether the
change will make the code more or less confusing, and whether it will be called so
many times that it might hurt performance.

Similarly you can abuse resources in XAML. A resource can make it easy to give
several controls a similar appearance, but it makes little sense to create a resource
for every single control property whether it’s shared or not.

Defining resourCes

Creating and using a simple resource is fairly easy. (In fact, it’s easier to understand from an exam-
ple than from a description, so, if you have trouble understanding the following explanation, look at
the example text and then read the explanation again.)

To define a resource, add a Resources property element to an object such as a Window, Grid, or other
container. Inside that element, place the resources that you will want to use later. Each resource is an
element such as an object (e.g., a LinearGradientBrush, Thickness, or Label) or a simple value
(e.g., a string or an integer).

You must give each resource a unique x:Key attribute value to identify it.

Keys requireD

The Resources element defines a resource dictionary, a list that allows objects
to search for items based on their keys. A resource dictionary requires that every
item have a key (except in some rare circumstances that aren’t covered here), so you
must give every resource a key.

Defining Resources ❘ 195

For example, the following XAML code defines a Resources element that contains
RadialGradientBrush named brButton and a BitmapEffectGroup named bmeButton. This
Resources element is contained in the file’s Window element (hence the tag Window.Resources).

<Window.Resources>
 <LinearGradientBrush x:Key=”brButton” StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Color=”Red” Offset=”0”/>
 <GradientStop Color=”White” Offset=”0.5”/>
 <GradientStop Color=”Blue” Offset=”1”/>
 </LinearGradientBrush>
 <BitmapEffectGroup x:Key=”bmeButton”>
 <DropShadowBitmapEffect/>
 </BitmapEffectGroup>
</Window.Resources>

ButtonResources

Any object contained (directly or indirectly) in the object that holds the Resources element can use
the resources. In the previous code, the Window contains the Resources element, so any object in the
Window can use its resources.

After you have defined a simple property resource such as this one, you can use it with property attribute
syntax. The value you give the attribute should have the format {StaticResource resource_name},
where you replace resource_name with the name of the resource.

For example, the following XAML code defines a Button. It sets the Button’s Background property
to the brButton resource and its BitmapEffect property to the bmeButton resource.

<Button Margin=”4” Width=”120”
 Background=”{StaticResource brButton}”
 BitmapEffect=”{StaticResource bmeButton}”>
 <TextBlock TextAlignment=”Center” Margin=”4”>
 Traveling<LineBreak/>Salesperson<LineBreak/>Problem
 </TextBlock>
</Button>

ButtonResources

The ButtonResources example program
shown in Figure 12-1 displays several but-
tons that use similar code to define their
backgrounds and bitmap effects. The only
difference between the buttons is the con-
tents of their TextBlocks.

Using resources has several advantages.
Because the buttons shown in Figure 12-1
use the same resources, they are guaranteed
to have a consistent appearance (at least as
far as the Background and BitmapEffect
properties are concerned).

figure 12-1

196 ❘ Chapter 12 ResouRces

Using resources simplifies the code by converting relatively complex property elements into simpler
attribute elements. For example, the following code shows how you could define a similar Button
without resources. This version is more than twice as long as the previous one. If the application
contained several dozen Buttons, all of the extra code would quickly add up and make the code
more cluttered and harder to understand.

<Button Margin=”4” Width=”120”>
 <Button.Background>
 <LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Color=”Red” Offset=”0”/>
 <GradientStop Color=”White” Offset=”0.5”/>
 <GradientStop Color=”Blue” Offset=”1”/>
 </LinearGradientBrush>
 </Button.Background>
 <Button.BitmapEffect>
 <DropShadowBitmapEffect/>
 </Button.BitmapEffect>
 <TextBlock TextAlignment=”Center” Margin=”4”>
 Traveling<LineBreak/>Salesperson<LineBreak/>Problem
 </TextBlock>
</Button>

ButtonResources

The resources also allow you to easily change the appearance of all of the buttons at once. For
example, the following XAML code defines resources with the same keys as before but with differ-
ent values. When you make these changes to the Windows.Resources section of the code, the but-
tons immediately change their appearance.

<Window.Resources>
 <RadialGradientBrush x:Key=”brButton”>
 <GradientStop Color=”White” Offset=”0”/>
 <GradientStop Color=”Blue” Offset=”1”/>
 </RadialGradientBrush>
 <BitmapEffectGroup x:Key=”bmeButton”>
 <BevelBitmapEffect/>
 </BitmapEffectGroup>
</Window.Resources>

ButtonResources

Figure 12-2 shows the application’s new appearance.

resourCe types

A resource can have any data type that the XAML code can understand. Three particularly inter-
esting categories of data types that a resource can have are “normal” property values, controls,
and simple data types.

Resource Types ❘ 197

normal property Values
As the previous examples show,
you can make resources that are
LinearGradientBrushes,
RadialGradientBrushes, and
BitmapEffectGroups. You can also make
resources that are SolidColorBrushes,
Thicknesses (for Margins), DashStyles,
Colors (although that’s less useful than
you might think — you probably want a
Brush instead), FontFamilies,
FontStyles, and just about any other
property type you might want to use.

These “normal” property values are fairly easy to understand and make good intuitive sense. For
example, it seems reasonable that you might want several controls to share the same Background,
Margin, or DashStyle values.

The examples in the previous section demonstrated this kind of simple property type.

Controls
Resources often contain “normal” property values but they can also hold controls. For example, the
following XAML code defines a TextBlock control that contains some text in two different styles:

<TextBlock x:Key=”txtButton” TextAlignment=”Center”>
 Click Me<LineBreak/>
 <Run
 TextBlock.Foreground=”Red”
 TextBlock.FontSize=”20”
 TextBlock.FontStyle=”Italic”
 TextBlock.FontWeight=”Bold”>
 PLEASE!
 </Run>
</TextBlock>

ContentResource

The ContentResource example program uses the following code to set a Button’s Content property
to the TextBlock resource so it displays the text:

<Button Width=”125” Height=”75” Content=”{StaticResource txtButton}”/>

Figure 12-3 shows the result.

In this example, making the TextBlock a resource doesn’t save
you much trouble. It requires about the same amount of code that
you would use if the Button defined its own content and you are
unlikely to want lots of buttons with the exact same content, so
you probably won’t use the resource to save duplication.

figure 12-2

figure 12-3

198 ❘ Chapter 12 ResouRces

This technique is much more useful on the few occasions upon which you do want multiple cop-
ies of the exact same control. For example, suppose an application displays a series of pictures
of people and you want each to provide the same context menu choices: Details, Email, Phone,
and Delete. The following code defines a ContextMenu that includes those commands and a
BitmapEffectGroup that displays drop shadows:

<Window.Resources>
 <ContextMenu x:Key=”ctxPerson”>
 <MenuItem Header=”Details” Click=”mnuDetails_Click”/>
 <MenuItem Header=”Email” Click=”mnuEmail_Click”/>
 <MenuItem Header=”Phone” Click=”mnuPhone_Click”/>
 <Separator/>
 <MenuItem Header=”Delete” Click=”mnuDelete_Click”/>
 </ContextMenu>
 <BitmapEffectGroup x:Key=”bmePerson”>
 <DropShadowBitmapEffect/>
 </BitmapEffectGroup>
</Window.Resources>

ContextMenuResource

The following code shows how an Image can use the resources:

<Image Name=”imgClaude” Width=”100” Height=”100” Stretch=”Uniform”
 MouseDown=”img_MouseDown”
 Source=”Claude.jpg” Tag=”Claude”
 BitmapEffect=”{StaticResource bmePerson}”
 ContextMenu=”{StaticResource ctxPerson}”/>

ContextMenuResource

A series of Buttons can use similar code to display the same ContextMenu.

The program uses code-behind to respond when the user selects a context menu’s MenuItem.
Unfortunately the Click event handler raised by the MenuItem doesn’t know which Image control
the user clicked. The MenuItem’s parameters tell which MenuItem was clicked but not which Image
displayed the ContextMenu.

One way to figure out which Image displayed the menu is to save a reference to that Image when the
menu is displayed. The ContextMenuResource example program assigns the following event handler
to all of its Image controls’ MouseDown event handlers. If the user is pressing the right button over
the Image, then the code saves a reference to the Image control for use later when the user selects a
menu item.

// Remember the image clicked.
private Image m_ImageClicked = null;
private void img_MouseDown(object sender, MouseButtonEventArgs e)
{
 if (e.RightButton == MouseButtonState.Pressed)
 {
 m_ImageClicked = (Image)sender;
 }
}

ContextMenuResource

Resource Types ❘ 199

The following code shows how the program responds when the user selects the ContextMenu’s
Details command. The code gets the Image control that was previously saved by the MouseDown
event handler and uses its Tag property to display a message about the person clicked. (A real pro-
gram would probably use the Tag property’s value to look the person up in a database.)

// Display details for the person clicked.
private void mnuDetails_Click(object sender, RoutedEventArgs e)
{
 if (m_ImageClicked != null)
 MessageBox.Show(“Display details for “ + m_ImageClicked.Tag.ToString());
}

ContextMenuResource

Figure 12-4 shows the ContextMenuResource example program displaying its shared ContextMenu.

figure 12-4

simple Data types
Ironically, some of the simplest data types (such as strings, integers, and doubles) are the most
confusing to store in resources, at least until you know the trick. The problem is that a XAML file
knows only about XAML data types such as SolidColorBrush and TextBox, not system data types
such as Double and Int32.

To make the file correctly understand these data types, you need to give it a new namespace attri-
bute telling it what namespace to look in for these data types.

For example, the following XAML snippet opens a Window element. The third namespace attribute
indicates that the namespace prefix sys refers to data types defined in the mscorlib library.

<Window
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:sys=”clr-namespace:System;assembly=mscorlib”
 x:Class=”Window1”
 x:Name=”Window”
 Title=”ResourceHierarchy”
 Width=”350” Height=”180”
 FontSize=”16” FontWeight=”Bold”>

ResourceHierarchy

200 ❘ Chapter 12 ResouRces

Now the following code defines two resources with the Double data type. Notice how the code uses
the sys namespace prefix to indicate where the Double data type is defined.

<Window.Resources>
 <sys:Double x:Key=”dblRadX”>5</sys:Double>
 <sys:Double x:Key=”dblRadY”>20</sys:Double>
</Window.Resources>

ResourceDictionaries

The following code shows how a Rectangle might use these resources to set its RadiusX and
RadiusY properties:

<Rectangle Margin=”5” Width=”175” Height=”60”
 Fill=”Red” Stroke=”Black” StrokeThickness=”5”
 RadiusX=”{StaticResource dblRadX}”
 RadiusY=”{StaticResource dblRadY}”
/>

These simple data types let you place very specific values in resources. For example, you can build
a resource dictionary containing all of the strings that your application will use for labels, buttons,
menu items, and other controls. While you probably won’t want to use the same text for several dif-
ferent buttons (although you might want a button and a menu item that have the same purpose to use
the same text), placing these values in resources makes it easier to change them in a central location.

The SysDataTypes example program shown in Figure 12-5 displays sample resources in each of the
simple data types defined in the mscorlib library.

figure 12-5

DisCoVering Data types

In Visual Studio, you can use the Object Browser to see what data types are avail-
able in various libraries such as mscorlib.

Resource Hierarchies ❘ 201

You can also make more than one resource dictionary containing different values for the same
resources and then easily switch between them. The section “Skins” in Chapter 16 has more to say
about this technique.

resourCe hierarChies

In a WPF logical tree, many objects might have resource dictionaries. When a control uses a resource,
WPF looks upward through the tree until it finds an object that has defined a resource with the given
name and uses it.

For example, suppose a Window contains a StackPanel that holds a Label and the Label uses a
resource named LabelValue. When it builds the Label, WPF first checks the Label’s resource dic-
tionary (if it exists) for a resource named LabelValue. If it doesn’t find one, WPF moves up the logi-
cal tree to the StackPanel and searches its resources. If it still doesn’t find a LabelValue resource,
WPF continues up the tree to the Window and checks its resources.

If it still hasn’t found the LabelValue resource in the Window sitting at the top of the logical tree,
WPF checks the application’s XAML file App.xaml to see if it defines the resource.

If after all this WPF can’t find the resource, then the application fails in one of several ways. For
example, the Expression Blend Window Designer doesn’t render the control that needs the resource,
and if you try to run the application, it fails. In contrast, Visual Studio’s Window Designer displays
an error message and doesn’t draw any of the controls.

MatCh types

The resource that WPF finds for a reference must have the correct data type. For
example, suppose you set a Button’s Width property to the value in the btnWidth
resource. Now suppose the first resource WPF finds named btnWidth is a String
with the value “Big.” WPF tries to assign the Button’s Width property the String
value Big and has a tantrum.

In fact, the data type of the resource must exactly match the data type expected by
the property. In this example, if the btnWidth resource is a String containing the
value 100, the program still fails because a String isn’t the Double data type that
was expected by the Width property.

For an even sneakier problem, suppose that the btnWidth resource is of type Int32
(32-bit integer). Any normal person (or even programming language) should be able
to automatically convert an Int32 value into a Double, but WPF won’t even try. If
a XAML file tries to put an Int32 value in a Double property, the program won’t
run. (Note that most numeric properties take Double values.)

Of course, some other conversions do work. For example, if you set a Label’s Content
property to a Double or Boolean resource, WPF will display the resource’s value.

202 ❘ Chapter 12 ResouRces

The ResourceHierarchy example program demonstrates the search for resources. The follow-
ing code shows the program’s App.xaml file. This file defines String resources named String1,
String2, String3, and String4.

<Application
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:sys=”clr-namespace:System;assembly=mscorlib”
 x:Class=”App”
 StartupUri=”Window1.xaml”>
 <Application.Resources>
 <!-- Resources scoped at the Application level
 should be defined here. -->
 <sys:String x:Key=”String1”>String1 in App.Resources.</sys:String>
 <sys:String x:Key=”String2”>String2 in App.Resources.</sys:String>
 <sys:String x:Key=”String3”>String3 in App.Resources.</sys:String>
 <sys:String x:Key=”String4”>String4 in App.Resources.</sys:String>
 </Application.Resources>
</Application>

ResourceHierarchy

The following code shows the program’s main XAML file:

<Window
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:sys=”clr-namespace:System;assembly=mscorlib”
 x:Class=”Window1”
 x:Name=”Window”
 Title=”ResourceHierarchy”
 Width=”350” Height=”180”
 FontSize=”16” FontWeight=”Bold”>
 <Window.Background>
 <LinearGradientBrush EndPoint=”0.5,1” StartPoint=”0.5,0”>
 <GradientStop Color=”#FFFFFFFF” Offset=”0”/>
 <GradientStop Color=”#FFA6009F” Offset=”1”/>
 </LinearGradientBrush>
 </Window.Background>

 <Window.Resources>
 <sys:String x:Key=”String2”>String2 in Window.Resources.</sys:String>
 <sys:String x:Key=”String3”>String3 in Window.Resources.</sys:String>
 <sys:String x:Key=”String4”>String4 in Window.Resources.</sys:String>
 </Window.Resources>

 <StackPanel Margin=”5”>
 <StackPanel.Resources>
 <sys:String x:Key=”String3”>
 String3 in StackPanel.Resources.
 </sys:String>
 <sys:String x:Key=”String4”>
 String4 in StackPanel.Resources.
 </sys:String>

Resource Hierarchies ❘ 203

 </StackPanel.Resources>

 <Label Content=”{StaticResource String1}”/>
 <Label Content=”{StaticResource String2}”/>
 <Label Content=”{StaticResource String3}”/>
 <Label>
 <Label.Resources>
 <sys:String x:Key=”String4”>
 String4 in Label.Resources.
 </sys:String>
 </Label.Resources>
 <StaticResource ResourceKey=”String4”/>
 </Label>
 </StackPanel>
</Window>

ResourceHierarchy

In this code, the Window defines the resources String2, String3, and String4; the StackPanel defines
the resources String3 and String4; and the final Label defines the resource String4.

The first Label uses the resource String1. WPF searches up the logical tree and doesn’t find a resource
named String1 in the StackPanel or Window that contains it. It eventually finds the resource in the
application resource dictionary in Appl.xaml.

Similarly, the second Label finds its resource String2 in the Window’s resources, and the third Label
finds its resource String3 in the StackPanel’s resources.

The fourth Label is a bit different because it defines its own String4 resource. Its content is set to a
StaticResource object that gives the resource’s key String4.

absent attributes

It’s tempting to use an attribute as in the following code instead of the
StaticResource object to define the fourth Label’s content:

<Label Content=”{StaticResource String4}”>
 <Label.Resources>
 <sys:String x:Key=”String4”>
 String4 in Label.Resources.
 </sys:String>
 </Label.Resources>
</Label>

Unfortunately, the Label’s resource dictionary isn’t quite ready by the time WPF
reads the Label’s Content attribute. Expression Blend’s Window Designer seems to
find the value correctly, but at run time and in the Visual Studio Window Designer,
the Label doesn’t find its own resource and moves up the logical tree to the
StackPanel’s version of String4.

204 ❘ Chapter 12 ResouRces

App
String1
String2
String3
String4

Window
String2
String3
String4

StackPanel
String3
String4

Label {String1}

Label {String2}

Label {String3}

Label {String4}
 String4

figure 12-6

Figure 12-6 shows the ResourceHierarchy pro-
gram’s search for resources graphically.

Figure 12-7 shows the ResourceHierarchy pro-
gram in action.

figure 12-7

MergeD resourCe
DiCtionaries

A resource dictionary lets several controls share
the same values. Merged resource dictionaries let
several windows or even applications share the same
resource values.

To merge a resource dictionary, create a XAML file that has a ResourceDictionary object as its
root element. Give the element namespace attributes as you would a Window, and place resources
inside the dictionary.

reaDy resourCes

To save typing, you can copy and paste a Window’s namespace declarations into a
resource dictionary.

Visual Studio and Expression Blend can also add resource dictionaries with default
namespace declarations. In Visual Studio, open the Project menu, select the “Add
New Item” command, select the “Resource Dictionary” command, and click Add.
In Expression Blend, open the File menu, select the “New Item” command, select
the “Resource Dictionary” item, and click OK.

The following code shows part of a resource dictionary file named RectangleResources.xaml. This
file defines resources that the MultiWindowResources example program uses to define Rectangle
properties. (To save space, I’ve omitted some of the resources.)

<ResourceDictionary
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Merged Resource Dictionaries ❘ 205

 xmlns:sys=”clr-namespace:System;assembly=mscorlib”>
 <!-- Resource dictionary entries should be defined here. -->
 <sys:Double x:Key=”rectWidth”>140</sys:Double>
 <sys:Double x:Key=”rectHeight”>50</sys:Double>
 <sys:Double x:Key=”rectRadX”>5</sys:Double>
 <sys:Double x:Key=”rectRadY”>20</sys:Double>
 ... More resources omitted ...
</ResourceDictionary>

MultiWindowResources

The following code shows how the MultiWindowResources program uses this resource dictionary.
The Window1 XAML file uses a ResourceDictionary.MergedDictionaries element that con-
tains a reference to the dictionary file.

<Window.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source=”RectangleResources.xaml”/>
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
</Window.Resources>

MultiWindowResources

The following code shows how the Window uses these resources. This code creates a Rectangle that
refers to the resources defined in the external dictionary.

<Grid MouseDown=”rectAddUser_MouseDown”>
 <Rectangle
 Margin=”{StaticResource rectMargin}”
 Width=”{StaticResource rectWidth}”
 Height=”{StaticResource rectHeight}”
 RadiusX=”{StaticResource rectRadX}”
 RadiusY=”{StaticResource rectRadY}”
 Fill=”{StaticResource rectFill}”
 Stroke=”{StaticResource rectStroke}”
 StrokeThickness=”{StaticResource rectStrokeThickness}”
 BitmapEffect=”{StaticResource rectBitmapEffect}”
 />
 <Label HorizontalAlignment=”Center” VerticalAlignment=”Center”
 Content=”Add User”
 FontSize=”{StaticResource rectFontSize}”
 FontWeight=”{StaticResource rectFontWeight}”
 />
</Grid>

MultiWindowResources

The MultiWindowResources example program uses similar code to include the resource dictionary
and refer to its resources in all four of its Windows. Because every form refers to the same resources,
they all have a common appearance. If you decide to change the appearance, you can simply modify
the resource dictionary, and all of the forms will pick up the changes automatically.

206 ❘ Chapter 12 ResouRces

Figure 12-8 shows the MultiWindowResources program displaying several forms that have similar
button-like rectangles.

figure 12-8

In addition to allowing multiple forms or applications to use the same resources, merged dictionar-
ies allow a single window to load more than one resource dictionary. This can be handy if you want
to use separate dictionaries to hold different groups of resources. For example, you might have sepa-
rate dictionaries to hold button resources, label resources, and list resources.

resourCes oVerwritten

When a program loads a resource dictionary, its values overwrite any resources
with the same names that were loaded from other resource dictionaries, so what-
ever values are loaded last are the ones used by the controls.

You can also use multiple resource dictionaries in the same application to switch easily between
different appearances. For example, the ResourceDictionaries example program uses the following
code to merge two resource dictionaries, ResBlue.xaml and ResRed.xaml:

<Window.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source=”ResBlue.xaml”/>
 <ResourceDictionary Source=”ResRed.xaml”/>
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
</Window.Resources>

ResourceDictionaries

Dynamic Resources ❘ 207

Because the file ResRed.xaml
is loaded second, the resource
values in that file take prece-
dence. Figure 12-9 shows the
ResourceDictionaries program
using the values in this resource
dictionary.

By simply switching the order of
these two resource dictionaries, you
can completely change the applica-
tion’s appearance. Figure 12-10
shows the Resource Dictionaries
program using the values in the
ResBlue.xaml resource dictionary.

The section “Skins” in Chapter 16
explains how to switch an applica-
tion’s appearance in a similar man-
ner at run time.

DynaMiC resourCes

Up to this point, this chapter has used only static resources. If WPF encounters a static resource as it
reads a XAML file, it looks up the resource’s value and assigns it to whatever property it is currently
reading. Once the property’s value is set, WPF doesn’t look at it again.

This is why the following code described in the section “Resource Hierarchies” earlier in this chap-
ter doesn’t work. Because the attribute Content=”{StaticResource String4}” comes before the
Label’s resources, the resource isn’t ready when the resource is needed.

<Label Content=”{StaticResource String4}”>
 <Label.Resources>
 <sys:String x:Key=”String4”>
 String4 in Label.Resources.
 </sys:String>
 </Label.Resources>
</Label>

A dynamic resource is similar to a static resource except it is not simply read once when it is first
encountered. Instead of setting the property’s value right away, WPF waits and looks up the property’s
value when it is actually needed.

For example, the following code (used by the DynamicLabelResource example program) works
correctly. The code records the fact that the Content attribute uses the resource value String4, but
it doesn’t look up that value until it is time to render the Label. At that time the resource exists.

<Label Content=”{DynamicResource String4}”>
 <Label.Resources>
 <sys:String x:Key=”String4”>
 String4 in Label.Resources.

figure 12-9

figure 12-10

208 ❘ Chapter 12 ResouRces

 </sys:String>
 </Label.Resources>
</Label>

DynamicLabelResource

resourCe-intensiVe resourCes

Dynamic resources are a lot more work for WPF to implement than static resources; in
general, therefore, it’s better to use static resources when you can. In the previous exam-
ple, you could probably store the String4 resource in the Label’s container instead of
in the Label. Then you can use a static resource instead of a dynamic resource.

In addition to deferring lookup, WPF prepares dynamic resources so that it can detect changes to
their values. For example, if the resource value String4 in the previous example changed while the
program was running, WPF would detect the change and update the Label to display the new value.

This ability to detect changes is most often used with system-defined resources such as system col-
ors. If the user opens the system’s configuration applications and changes the system colors, the pro-
gram automatically reloads any modified resources.

The SimpleClock example program demonstrates two kinds of changing resources — resources
changed by the program and changing system colors.

The program uses the following resource declaration to create a simple string resource named
TimeNow:

<Window.Resources>
 <sys:String x:Key=”TimeNow”>1:00:00 AM</sys:String>
</Window.Resources>

It then uses the following code to define three Labels:

<Label Margin=”5” HorizontalAlignment=”Stretch”
 Content=”{StaticResource TimeNow}”
 Background=”Green”
 Foreground=”YellowGreen”/>

<Label Margin=”5” HorizontalAlignment=”Stretch”
 Content=”{DynamicResource TimeNow}”
 Background=”{DynamicResource lblBackground}”
 Foreground=”{DynamicResource lblForeground}”
>
 <Label.Resources>
 <SolidColorBrush x:Key=”lblBackground” Color=”Green”/>
 <SolidColorBrush x:Key=”lblForeground” Color=”YellowGreen”/>
 </Label.Resources>
</Label>

<Label Margin=”5” HorizontalAlignment=”Stretch”
 Content=”{DynamicResource TimeNow}”

Dynamic Resources ❘ 209

 Foreground=”{DynamicResource {x:Static SystemColors.ActiveCaptionBrushKey}}”
>
 <Label.Background>
 <SolidColorBrush
 Color=”{DynamicResource {x:Static SystemColors.DesktopColorKey}}”/>
 </Label.Background>
</Label>

SimpleClock

The first Label displays the value of the TimeNow resource as a static resource using hard-coded brushes.

The second Label displays the TimeNow resource dynamically. It also uses the DynamicResource
keyword to set its Foreground and Background properties from its own resources.

The third Label also displays the TimeNow resource dynamically. In addition, it uses the
DynamicResource keyword to get its Background and Foreground Brushes from the system resources.

The Label gets its Foreground Brush from the system’s active caption color. The static resource
ActiveCaptionBrushKey gives the name of the Brush in the system resource dictionary. The code
uses that value in a DynamicResource statement to look up the corresponding value.

The Label builds its Background Brush so it matches the system’s desktop color. Because the system
resources do not define a desktop color brush, the code builds a SolidColorBrush that uses the
desktop color.

The SimpleClock program uses the following code-behind to update the TimeNow resource every
second:

public Window1()
{
 this.InitializeComponent();

 // Insert code required on object creation below this point.
 tmrClock = new System.Timers.Timer(1000.0);
 tmrClock.Elapsed += new System.Timers.ElapsedEventHandler(tmrClock_Elapsed);
 tmrClock.Enabled = true;
 SetTimeResource();
}

private System.Timers.Timer tmrClock;

// Update the TimeNow resource every second.
private void tmrClock_Elapsed(Object sender, System.Timers.ElapsedEventArgs e)
{
 this.Dispatcher.Invoke(new Action(SetTimeResource));
}

// Update the TimeNow resource.
private void SetTimeResource()
{
 this.Resources.Remove(“TimeNow”);
 this.Resources.Add(“TimeNow”, DateTime.Now.ToString(“T”));
}

SimpleClock

210 ❘ Chapter 12 ResouRces

The Window’s constructor creates a new Timer that fires every 1,000 milliseconds (i.e., every sec-
ond). It registers the event handler tmrClock_Elapsed to handle the Timer’s Elapsed events and
enables the Timer. It finishes by calling SetTimeResource to display the initial time.

When the Timer raises its Elapsed event, the event handler springs into action. Unfortunately, the
event handler’s code runs in a different thread of execution from the code that manages the user
interface (UI) and its controls. Windows doesn’t allow code to directly access UI objects from a sep-
arate thread, so the program must use the Invoke method to make the Dispatcher object running
the UI thread do the work. In this example, the code uses Invoke to execute the SetTimeResource
function on the UI thread.

inDireCt inVoCation

Contrast this call to Invoke with the constructor’s initial direct call to
SetTimeResource. The constructor is running in the same thread as the UI objects,
so it can call SetTimeResource directly. Later when the Timer fires its event, it is
running on a separate thread, so it must use Invoke.

The function SetTimeResource removes the TimeNow resource from the Window’s resource diction-
ary and then re-adds it with a new value showing the current time.

Figure 12-11 shows the SimpleClock program on top of the Windows 7 Desktop Background applet.
(Right-click on the desktop, select Personalize, and click on the “Desktop Background” link.) You
may want to refer back to the XAML code as you review this figure.

figure 12-11

Summary ❘ 211

The first Label displays TimeNow as a StaticResource, so it is not updated every second and displays
the resource’s initial value, 1:00:00 AM.

The second Label displays TimeNow as a DynamicResource, so it shows the current time. It also
uses DynamicResource statements to load its colors from its own resources.

Like the second Label, the third Label displays TimeNow as a DynamicResource, and thus it shows
the current time. It uses DynamicResource statements to load its colors from the system resources.
In Figure 12-11, I changed the desktop background color to a dark purple, and the Label’s back-
ground updated to match.

In summary, since dynamic resources place a bigger load on the system, you should use StaticResource
whenever possible. If you expect a resource value to change while the programming is running, however,
use DynamicResource so your program can see the change.

suMMary

XAML resources provide several benefits including: giving many controls a consistent appearance,
providing a central location for resource definitions, and making it easy to change the appearance of
related controls so they remain consistent.

By using multiple resource dictionaries, you can change the entire application’s appearance quickly
and easily.

One big drawback to resources is that they are fairly verbose and relatively hard to read. For exam-
ple, the following code defines two Rectangles. The first uses hard-coded property values and is
relatively easy to read. The second uses more flexible resource values but is longer and harder to
understand.

<Rectangle Grid.Row=”0” Grid.Column=”0” Margin=”5”
 RadiusX=”10” RadiusY=”10”
 Fill=”Yellow” Stroke=”Orange” StrokeThickness=”1”
/>

<Rectangle Grid.Row=”0” Grid.Column=”0”
 Margin=”{DynamicResource thkMargin}”
 RadiusX=”{DynamicResource dblRadX}”
 RadiusY=”{DynamicResource dblRadY}”
 Fill=”{DynamicResource brRectFill}”
 Stroke=”{DynamicResource brRectStroke}”
 StrokeThickness=”{DynamicResource dblRectStrokeThickness}”
/>

If an application has many similar controls that share the same property values, resources can make
the code much harder to read. For example, if a window contains a dozen or so Rectangles with the
same Margin, RadiusX, RadiusY, Fill, Stroke, and StrokeThickness values, then using this kind
of resource code would take up a huge amount of space.

The next chapter explains one way to practically eliminate this problem: styles. By using styles, you
can package sets of properties for use by controls that should have a similar overall appearance. The
chapter also explains property triggers, objects that styles can use to change a control’s properties
when certain conditions arise.

Styles and Property Triggers
Chapter 12 explains resources — named property values that you can assign to controls to
give them a common appearance and behavior.

Unfortunately, resources often lead to long and complicated code. If a group of controls shares
many property values, then converting the properties into resources requires a lot of repetition
using the verbose StaticResource or DynamicResource keywords.

A Style is a special kind of resource that lets you extract this redundancy and centralize it,
much as other resources let you centralize property values. Styles let you define packages
of property values that you can apply to a control all at once instead of applying individual
resource values to the control one at a time.

This chapter explains Styles and shows how to use them to give controls similar appearance
and behavior.

Simplifying propertieS

Resources make it easier to give a group of con-
trols a consistent appearance. The ButtonValues
example program shown in Figure 13-1 dis-
plays five button-like rectangles containing
text. It sets each button’s properties individu-
ally, so making changes to the code is repetitive
and a bit tricky. If you don’t change every but-
ton’s code in the same way, they will no longer
have a common appearance.

The ButtonResources example program uses resources to display a similar set of buttons. The
resources make it easy to change the appearance of all of the buttons at once, but the resulting
code is long and confusing.

figure 13-1

13

214 ❘ Chapter 13 StyleS and ProPerty triggerS

The following code shows how the program defines its button resources:

<Window.Resources>
 <LinearGradientBrush x:Key=”btnFill” StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Color=”Blue” Offset=”0”/>
 <GradientStop Color=”White” Offset=”0.5”/>
 <GradientStop Color=”Blue” Offset=”1”/>
 </LinearGradientBrush>
 <LinearGradientBrush x:Key=”btnStroke” StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Color=”White” Offset=”0”/>
 <GradientStop Color=”Blue” Offset=”0.5”/>
 <GradientStop Color=”White” Offset=”1”/>
 </LinearGradientBrush>
 <sys:Double x:Key=”btnStrokeThickness”>5</sys:Double>
 <sys:Double x:Key=”btnWidth”>75</sys:Double>
 <sys:Double x:Key=”btnHeight”>40</sys:Double>
 <sys:Double x:Key=”btnRadiusX”>10</sys:Double>
 <sys:Double x:Key=”btnRadiusY”>10</sys:Double>
 <Thickness x:Key=”btnMargin”>5</Thickness>
 <FontFamily x:Key=”btnFontFamily”>Segoe</FontFamily>
 <FontWeight x:Key=”btnFontWeight”>Bold</FontWeight>
 <sys:Double x:Key=”btnFontSize”>16</sys:Double>
 <BitmapEffectGroup x:Key=”btnTextBitmapEffect”>
 <OuterGlowBitmapEffect GlowColor=”White” GlowSize=”10”/>
 </BitmapEffectGroup>
 <sys:String x:Key=”btnText0”>File</sys:String>
 <sys:String x:Key=”btnText1”>Edit</sys:String>
 <sys:String x:Key=”btnText2”>View</sys:String>
 <sys:String x:Key=”btnText3”>Data</sys:String>
 <sys:String x:Key=”btnText4”>Help</sys:String>
</Window.Resources>

ButtonResources

The following code shows how the ButtonResources program defines its File button. The other but-
tons are similar:

<!-- File -->
<Grid
 Width=”{StaticResource btnWidth}”
 Height=”{StaticResource btnHeight}”
 Margin=”{StaticResource btnMargin}”
>
 <Rectangle
 Fill=”{StaticResource btnFill}”
 Stroke=”{StaticResource btnStroke}”
 StrokeThickness=”{StaticResource btnStrokeThickness}”
 RadiusX=”{StaticResource btnRadiusX}”
 RadiusY=”{StaticResource btnRadiusY}”
 />
 <TextBlock HorizontalAlignment=”Center” VerticalAlignment=”Center”
 FontFamily=”{StaticResource btnFontFamily}”

Simplifying Properties ❘ 215

 FontSize=”{StaticResource btnFontSize}”
 FontWeight=”{StaticResource btnFontWeight}”
 BitmapEffect=”{StaticResource btnTextBitmapEffect}”
 Text=”{StaticResource btnText0}”
 />
</Grid>

ButtonResources

Although resources make it easier to modify all of the buttons’ appearance, they make the code long
and confusing. Because all of the buttons have the same basic appearance, the code contains a lot of
redundancy, with each Button’s code repeating the same Width, Height, Margin, Fill, and other
properties.

A style packages property values that should be set as a group. It begins with a Style element con-
tained in a resource dictionary. You can place the Style in any resource dictionary depending on
how widely you want it to be available. For example, if you want a Style to be visible to the entire
project, place it in the Application.Resources section in the App.xaml file; if you want the Style
visible to every control on a window, place it in the Window.Resources section; and if you want it to
be visible only to controls inside a StackPanel, place it inside the StackPanel.Resources section.

Style SCope

Suppose you have a Grid that contains a group of Labels. You could use a style
defined in Window.Resources to give them a similar appearance but that might
cause problems if you want to give other Labels in a different Grid a different
appearance. In that case, you would have to define multiple named styles (named
and unnamed styles are described shortly), which will complicate the code.

It’s usually better to give Styles the most limited scope possible while still get-
ting the job done. That keeps the styles near where they are used and lets you use
unnamed styles to simplify your code.

A style can have an x:Key attribute to give it a name and a TargetType attribute to indicate the
kind of control to which it should apply. (The next section says more about these attributes.)

Inside the Style element, Setter and EventSetter elements define the style’s property values and
event handlers, respectively.

A Setter sets a property’s value. It takes two attributes — Property and Value — that give the
property to be set and the value it should take. The value can be a simple attribute value like Red or
7, or it can be an element attribute specifying something more complex like a brush. (EventSetters
are described later in this chapter.)

The RedRectangles example program uses the following code to define a Style named RedRectStyle
that applies to Rectangles. The Stroke, StrokeThickness, Width, Height, and Margin setters use

216 ❘ Chapter 13 StyleS and ProPerty triggerS

property attribute syntax to provide simple values, while the Fill setter uses property element syntax
to set its value to a RadialGradientBrush object.

<Style x:Key=”RedRectStyle” TargetType=”Rectangle”>
 <Setter Property=”Stroke” Value=”Red”/>
 <Setter Property=”StrokeThickness” Value=”5”/>
 <Setter Property=”Width” Value=”100”/>
 <Setter Property=”Height” Value=”50”/>
 <Setter Property=”Margin” Value=”5”/>
 <Setter Property=”Fill”>
 <Setter.Value>
 <RadialGradientBrush>
 <GradientStop Color=”Red” Offset=”0”/>
 <GradientStop Color=”White” Offset=”1”/>
 </RadialGradientBrush>
 </Setter.Value>
 </Setter>
</Style>

RedRectangles

You can use a style just as you use any other resource. Simply set the “Style” property to the style’s key.

The RedRectangles example program uses the following code to display three recRectangles that
use the RedRectStyle Style:

<StackPanel Orientation=”Horizontal”>
 <Rectangle Style=”{StaticResource RedRectStyle}”/>
 <Rectangle Style=”{StaticResource RedRectStyle}”/>
 <Rectangle Style=”{StaticResource RedRectStyle}”/>
</StackPanel>

RedRectangles

Notice how much the style simplifies this code. Without the the style, each Rectangle would need
to have its own Stroke, StrokeThickness, Width, Height, Margin, and Fill properties.

all typeS of typeS

The x:Type markup extension allows you to pass a type into an attribute such as
TargetType. For example, the following two Style tags do the same thing:

<Style x:Key=”RedRectStyle” TargetType=”Rectangle”>

<Style x:Key=”RedRectStyle” TargetType=”{x:Type Rectangle}”>

Sometimes you may need to use the x:Type syntax to pass a type name into an
attribute that cannot convert the type’s name from a simple string into a type
object, but so far I’ve been able to use the simpler syntax for styles.

For some reason, possibly because early examples were written that way, the more
verbose x:Type format is common in the documentation and on the Web, so you’ll
often see that format.

Simplifying Properties ❘ 217

Figure 13-2 shows the RedRectangles program in action.

The ButtonStyles example program displays button-like rect-
angles similar to those displayed by the ButtonValues and
ButtonResources programs (see Figure 13-1), but it uses styles
to simplify its code. The program uses the following XAML
code to define three styles for its Grid, Rectangle, and
TextBlock controls:

<Window.Resources>
 … Property resource definitions omitted …

 <Style x:Key=”btnGridStyle” TargetType=”Grid”>
 <Setter Property=”Width”
 Value=”{StaticResource btnWidth}”/>
 <Setter Property=”Height”
 Value=”{StaticResource btnHeight}”/>
 <Setter Property=”Margin”
 Value=”{StaticResource btnMargin}”/>
 </Style>

 <Style x:Key=”btnRectStyle” TargetType=”Rectangle”>
 <Setter Property=”Fill”
 Value=”{StaticResource btnFill}”/>
 <Setter Property=”Stroke”
 Value=”{StaticResource btnStroke}”/>
 <Setter Property=”StrokeThickness”
 Value=”{StaticResource btnStrokeThickness}”/>
 <Setter Property=”RadiusX”
 Value=”{StaticResource btnRadiusX}”/>
 <Setter Property=”RadiusY”
 Value=”{StaticResource btnRadiusY}”/>
 </Style>

 <Style x:Key=”btnTextBlockStyle” TargetType=”TextBlock”>
 <Setter Property=”FontFamily”
 Value=”{StaticResource btnFontFamily}”/>
 <Setter Property=”FontSize”
 Value=”{StaticResource btnFontSize}”/>
 <Setter Property=”FontWeight”
 Value=”{StaticResource btnFontWeight}”/>
 <Setter Property=”HorizontalAlignment”
 Value=”Center”/>
 <Setter Property=”VerticalAlignment”
 Value=”Center”/>
 <Setter Property=”BitmapEffect”
 Value=”{StaticResource btnTextBitmapEffect}”/>
 </Style>
</Window.Resources>

ButtonStyles

The style definitions are contained in the Window.Resources element with the other resource defini-
tions. This program includes resource definitions similar to those used by the ButtonResources pro-
gram (Width, Height, RadiusX, FontFamily, etc.), but they are not shown here to save space.

figure 13-2

218 ❘ Chapter 13 StyleS and ProPerty triggerS

The following code shows how the ButtonStyles program uses these styles to display its File button:

<!-- File -->
<Grid Style=”{StaticResource btnGridStyle}”>
 <Rectangle Style=”{StaticResource btnRectStyle}”/>
 <TextBlock Style=”{StaticResource btnTextBlockStyle}”
 Text=”{StaticResource btnText0}”
 />
</Grid>

ButtonStyles

This version is much shorter than the previous one, using only 6 lines of code compared to 21 lines
used by the ButtonResources program (not counting comments).

This version is also much easier to understand. For example, the Grid’s code uses the style
btnGridStyle, which defines whatever properties are appropriate for the Grid. When you are read-
ing this piece of code, you don’t really need to know what those values are, just that they make sense
for the Grid. That lets you focus on the arrangement of the Grid, Rectangle, and TextBlock with-
out being distracted by the property values.

The ButtonStyles program displays five buttons, so the savings in lines of code and complexity
adds up. The button-definition code takes only 30 lines compared to the 105 lines used by the
ButtonResources program.

a programming DigreSSion

When you write a Windows Forms program with C# or Visual Basic, Visual Studio
allows you to set control properties at design time, so your code only needs to deal
with properties that must change at run time.

For example, you can set a Label’s font, colors, size, and position properties in the
Form Designer at design time. Then at run time, the program’s code might only
need to change the Label’s text. Visual Studio lets you ignore the other properties
by hiding them in a separate designer-generated code module that you need to look
at rarely if ever.

In XAML code, however, you cannot move some of the unchanging property defi-
nitions into a separate file in quite the same way. If you need to set a Label’s font,
color, and position, then those properties are set in the same file as the control’s
declaration. That can make the code horribly cluttered and hard to read.

Styles let you move the unchanging properties out of the control’s declaration, mak-
ing it much easier to read the control’s code and understand the program’s structure.
You can define the styles in a resource dictionary provided by a container, window,
or at the application level depending on the scope you want the style to have.

Simplifying the code is an important function of styles, so don’t be afraid to use
them to make the code simpler. Sometimes it’s even worth creating a style that you
will only use for a single control if it makes that control’s declaration easier to read.

Keys and Target Types ❘ 219

KeyS anD target typeS

The Style element’s x:Key and TargetType attributes help identify when and where you can use a
Style. There are at least three particularly interesting and useful ways in which you can use these
attributes: non-specific target types, multiple target types, and unnamed styles.

non-Specific target types
The TargetType attribute determines the kinds of control that can use the Style. While you need
to provide this information somehow, you don’t necessarily need to be overly specific.

For example, since the following Style’s TargetType is set to Button, only Buttons can use this Style:

<Style x:Key=”OrangeButtonStyle” TargetType=”Button”>
 <Setter Property=”Width” Value=”150” />
 <Setter Property=”Height” Value=”40” />
 <Setter Property=”Background” Value=”Orange” />
 <Setter Property=”Foreground” Value=”Yellow” />
 <Setter Property=”Margin” Value=”5”/>
</Style>

ControlStyle

But suppose you want to give Labels a similar style. Since this style only works with Buttons, you
can’t simply use it for Labels.

You can make a second style with TargetType set to the Label class, but that would require dupli-
cated code. If you later decided to change the program’s theme from orange to purple, for example,
you would need to update both styles separately. This would be even more difficult if the style were
more complex, perhaps using gradient background and foreground brushes.

Another approach is to set the Style’s TargetType to a less specific class that includes both Button
and Label. Both the Button and Label classes inherit from the Control class, so, if you set the
Style’s TargetType to Control, the Style can apply to either Buttons or Labels.

The following code shows the new style:

<Style x:Key=”OrangeControlStyle” TargetType=”Control”>
 <Setter Property=”Width” Value=”150” />
 <Setter Property=”Height” Value=”40” />
 <Setter Property=”Background” Value=”Orange” />
 <Setter Property=”Foreground” Value=”Yellow” />
 <Setter Property=”Margin” Value=”5”/>
</Style>

So far so good — but what if you want to specify property values for a control type that doesn’t
apply to every subclass of the Control class? For example, the Label control has BorderBrush and
BorderThickness properties that determine the appearance of its border. A Button doesn’t have
those properties, so how do you add them to this kind of style?

Fortunately, a control ignores any properties set by the style that it doesn’t understand. That means
that you can simply add the BorderBrush and BorderThickness properties to the style, and any
Button controls that use it simply ignore them.

220 ❘ Chapter 13 StyleS and ProPerty triggerS

The following code shows the new style. This version includes the previous Setters plus new ones
for the Label’s BorderBrush and BorderThickness properties.

<Style x:Key=”OrangeControlStyle” TargetType=”Control”>
 <Setter Property=”Width” Value=”150” />
 <Setter Property=”Height” Value=”40” />
 <Setter Property=”Background” Value=”Orange” />
 <Setter Property=”Foreground” Value=”Yellow” />
 <Setter Property=”Margin” Value=”5”/>
 <Setter Property=”BorderBrush” Value=”Yellow” />
 <Setter Property=”BorderThickness” Value=”2” />
</Style>

ControlStyle

The ControlStyle example program shown in Figure 13-3 uses the following code to display two
Buttons and a Label. The upper Button uses OrangeButtonStyle; the lower Button and the
Label both use OrangeControlStyle.

<StackPanel VerticalAlignment=”Center”>
 <Button Style=”{StaticResource OrangeButtonStyle}” Content=”Button”/>
 <Button Style=”{StaticResource OrangeControlStyle}” Content=”Button”/>
 <Label Style=”{StaticResource OrangeControlStyle}” Content=”Label”/>
</StackPanel>

ControlStyle

multiple target types
The previous section explains how to build a style that can affect
two control types (Button and Label) by setting the Style’s
TargetType to a class that is an ancestor of both control types.
(Button and Label both inherit from Control.)

But what if you also want the style to affect rectangles? Button
and Label have the Control class as a common ancestor, but
Rectangle inherits from the Shape class instead of Control.
If you climb a bit higher in the inheritance hierarchy, how-
ever, you’ll find that Control and Shape both inherit from
FrameworkElement, so you might think you’re home free. You could simply create a style with
TargetType FrameworkElement and build Setters as usual.

But, unfortunately, FrameworkElement doesn’t support all of these properties. For example, if you
try to change the previous Style’s TargetType to FrameworkElement, Expression Blend flags errors
on the Background, Foreground, BorderBrush, and BorderThickness properties.

The problem is that the first common ancestor of Button, Label, and Rectangle doesn’t support all
of the properties that you’d like to use. Fortunately, there is another way to specify the objects that
provide the style’s properties.

Instead of indicating the class with the Style element’s TargetType attribute, indicate it in the
Setter’s Property attribute.

figure 13-3

Keys and Target Types ❘ 221

The following style is similar to the previous one, but it uses this new technique to add support for
the Rectangle control (and it changes some property values for variety):

<Style x:Key=”VioletStyle”>
 <Setter Property=”FrameworkElement.Width” Value=”150” />
 <Setter Property=”FrameworkElement.Height” Value=”40” />
 <Setter Property=”Control.Background” Value=”Violet” />
 <Setter Property=”Control.Foreground” Value=”Green” />
 <Setter Property=”Control.Margin” Value=”5”/>
 <Setter Property=”Label.BorderBrush” Value=”Green” />
 <Setter Property=”Label.BorderThickness” Value=”2” />
 <Setter Property=”Rectangle.Fill” Value=”Violet” />
 <Setter Property=”Rectangle.Stroke” Value=”Green” />
 <Setter Property=”Rectangle.StrokeThickness” Value=”2” />
</Style>

LabelAndRectStyle

The FrameworkElement class supports the Width and Height properties, so the corresponding
Setters refer to that class. Since the Control class supports Background, Foreground, and Margin,
their Setters refer to the Control class. Finally, the Setters for Label and Rectangle properties
refer to those classes.

The LabelAndRectStyle example pro-
gram shown in Figure 13-4 uses the
following code to display a button, a
label, and a rectangle that all use this
common style:

<StackPanel Orientation=”Horizontal” Background=”LightBlue”
 HorizontalAlignment=”Center” VerticalAlignment=”Center”>
 <Button Style=”{StaticResource VioletStyle}” Content=”Button”/>
 <Label Style=”{StaticResource VioletStyle}” Content=”Label”/>
 <Rectangle Style=”{StaticResource VioletStyle}”/>
</StackPanel>

LabelAndRectStyle

unnamed Styles
In all of the styles described in the previous sections, the Style element included an x:Key attribute
to give the style a name. Then controls used the StaticResource keyword to refer to the name.

In contrast, if you omit the attribute and include a TargetType, then the resulting unnamed style
applies to all controls of the TargetType within the style’s scope. For example, the following Style
applies to every Button within the style’s scope, so every Button appears with a yellow background
and a red foreground:

<Style TargetType=”Button”>
 <Setter Property=”Background” Value=”Yellow” />
 <Setter Property=”Foreground” Value=”Red” />
</Style>

figure 13-4

222 ❘ Chapter 13 StyleS and ProPerty triggerS

Clever ClaSSeS

The classes used in the Setters’ property attributes must support their properties,
but the style doesn’t actually require that the controls using them be from that class.

For example, the previous style sets the FrameworkElement.Width and
Framework Element.Height properties. The FrameworkElement class has the
Width and Height properties, so WPF can use its definitions to understand how to
set their values. If you changed the Width property to Red, WPF would complain
because FrameworkElement .Width cannot be a color’s name.

While the class defines the properties, the style doesn’t require that the controls using
it have those classes. In this example, if you were to change FrameworkElement to
Button, the style would still work. The Button class also has Width and Height prop-
erties, so it can define them, but the Label and Rectangle can still use those property
values even though they are not descendants of Button.

In fact, if you look back at the style’s definition and the result in Figure 13-4, you’ll
see that the Rectangle uses the same Margin value as the Button and Rectangle
even though that property is specified with the Control class and Rectangle isn’t a
descendant of Control.

The moral of the story is that it doesn’t matter too much which classes you use in
the Setters as long as they can define the properties.

The UnnamedStyles example program shown in Figure 13-5 defines four unnamed styles. The fol-
lowing list describes the properties that those styles set for their classes:

Image➤➤ — Width = 100, Height = 100, Stretch = Uniform, BitmapEffect = drop shadow

Label➤➤ — FontFamily = Comic Sans MS, FontSize = 18, FontWeight = bold,
HorizontalAlignment = center, BitmapEffect = light blue outer glow

Button➤➤ — FontFamily = Arial, FontSize = 12, Height = 20, Background = blue and white
linear gradient

StackPanel➤➤ — Margin = 5

The following code shows how the program defines its Style for Images. You can download the
example program from the book’s web site to see how the other Styles are defined.

<Style TargetType=”Image”>
 <Setter Property=”Width” Value=”100” />
 <Setter Property=”Height” Value=”100” />
 <Setter Property=”Stretch” Value=”Uniform” />
 <Setter Property=”BitmapEffect”>
 <Setter.Value>
 <DropShadowBitmapEffect/>
 </Setter.Value>
 </Setter>
</Style>

UnnamedStyles

Keys and Target Types ❘ 223

figure 13-5

The styles are all defined in the XAML code’s Window.Resources section so they apply to every
control on the window.

Having defined its Styles, the program simply creates Images, Buttons, Labels, and StackPanels
and lets the Styles take effect.

The following code snippet shows how the program creates its first two sets of controls. The others
are defined similarly.

<StackPanel>
 <Image Source=”Mammal.jpg”/>
 <Label Content=”Mammal”/>
 <Button Content=”More Info”/>
</StackPanel>
<StackPanel>
 <Image Source=”Bird.jpg”/>
 <Label Content=”Bird”/>
 <Button Content=”More Info”/>
</StackPanel>

UnnamedStyles

Style with SCope

An unnamed style applies to all objects of its TargetType but only within its scope.
If you want to modify every Label in the entire application, define the style in the
Application.Resources section of App.xaml. If you want to modify the Labels
in a Window, define the style in Window.Resources. If you want to modify the
Labels in a Grid, StackPanel, or other container, define the style in an appropri-
ate Resources section (Grid.Resources, StackPanel.Resources, etc.).

224 ❘ Chapter 13 StyleS and ProPerty triggerS

property value preCeDenCe

Most of the examples in this book set property values in straightforward, unambiguous ways. For
example, the UnnamedStyles example program sets property values using unnamed styles. It sets
a few other simple properties (e.g., a Button’s or Label’s Content property), but it doesn’t set the
same property in both a Style and an element attribute.

In fact, there are many ways in which you could set values for the same properties. If you do set a
property’s value in more than one way, WPF uses property precedence rules to decide which value
is actually used. For example, if you set a control’s property in a style and also in the control’s attri-
butes, then the value in the attribute takes precedence.

The following list shows a partial ordering of how property values might be applied to a control.
You can think of the values as being applied in order so that those that are applied last have a higher
precedence and overwrite those that are applied earlier.

 1. Container Inheritance — A control may inherit a property value from its container. For
example, if a Window defines a FontFamily, then Labels inside the Window inherit that
FontFamily. (Note that some containers block some property inheritance.)

 2. Default Style — Default styles determine the “natural” appearance of controls. For example,
Buttons have a typical default appearance unless you override it by setting other properties.

 3. Unnamed Styles — Unnamed styles can have precedence over default styles. If multiple
unnamed styles might apply to a control, then the one with the most limited scope has pre-
cedence. For example, suppose a Window contains a Grid and both define unnamed Label
styles. Then a Label contained inside the Grid would use the Grid’s version of the Style.

StyleS Don’t CompromiSe

Two styles do not share a control’s properties even if they set values for different
properties. One style or the other will set the control’s properties, and the other
will have no say in the matter.

If two unnamed styles might apply to a control, the one with more limited scope
has sole control.

 4. Named Styles — Named styles have precedence over unnamed styles. As is the case with
unnamed styles, if more than one named style might apply to a control, then the one with the
most limited scope has precedence.

 5. Local Values — A property value set explicitly either with property attribute or property ele-
ment syntax takes precedence over the previous kinds of values.

 6. Active Animations — If an animation is running, it may modify current property values.
(Chapter 14 describes animation in detail.)

Style Inheritance ❘ 225

This list does not cover every possible way in which property values might be changed, but it covers
the most intuitive and useful ways. The others are beyond the scope of this chapter. For more infor-
mation on property value precedence, see Microsoft’s “Dependency Property Value Precedence”
web page at msdn.microsoft.com/ms743230.aspx.

no Style

Suppose you have defined an unnamed style but don’t want the style to apply to a
particular control of that type. Then you can set the control’s Style to the special
value {x:Null} to indicate that it should have no style. For example, the following
code creates a Label that has no Style:

<Label Style=”{x:Null}” Content=”Test” />

Style inheritanCe

Resources let you apply the same property values to multiple controls. Styles let you group related
resources into packages to make it even easier to give controls a common appearance.

Style inheritance lets you build one style based on another. That makes it easier still to give controls
a common look and feel even if they don’t share the same final styles.

The child style inherits all of the Setters and other values defined by the parent style. You can
then override some of those values if you like.

To make one style inherit from another, add a BasedOn attribute to its starting element, and set the
attribute’s value to the parent Style. Note that the Style is an object defined in a resource diction-
ary, so you should set the value with a StaticResource statement.

For example, the following code snippet defines two Brush resources and four Styles:

<LinearGradientBrush x:Key=”GreenBrush” StartPoint=”0,0” EndPoint=”1,0”>
 <GradientStop Color=”Green” Offset=”0”/>
 <GradientStop Color=”Lime” Offset=”0.3”/>
 <GradientStop Color=”Transparent” Offset=”0.8”/>
</LinearGradientBrush>

<LinearGradientBrush x:Key=”BlueBrush” StartPoint=”0,0” EndPoint=”1,0”>
 <GradientStop Color=”Blue” Offset=”0”/>
 <GradientStop Color=”White” Offset=”1”/>
</LinearGradientBrush>

<Style x:Key=”SizeStyle” TargetType=”FrameworkElement”>
 <Setter Property=”Width” Value=”150” />
 <Setter Property=”Height” Value=”30” />
 <Setter Property=”HorizontalAlignment” Value=”Left”/>
 <Setter Property=”VerticalAlignment” Value=”Top”/>
 <Setter Property=”Margin” Value=”5”/>

226 ❘ Chapter 13 StyleS and ProPerty triggerS

</Style>

<Style TargetType=”Rectangle” BasedOn=”{StaticResource SizeStyle}”>
 <Setter Property=”Fill” Value=”{StaticResource BlueBrush}”/>
 <Setter Property=”RadiusX” Value=”10”/>
 <Setter Property=”RadiusY” Value=”10”/>
</Style>

<Style TargetType=”Label” BasedOn=”{StaticResource SizeStyle}”>
 <Setter Property=”FontWeight” Value=”Bold”/>
</Style>

<Style TargetType=”Button” BasedOn=”{StaticResource SizeStyle}”>
 <Setter Property=”Background” Value=”{StaticResource GreenBrush}”/>
 <Setter Property=”Margin” Value=”25,5,5,5”/>
 <Setter Property=”FontWeight” Value=”Bold”/>
 <Setter Property=”Width” Value=”100”/>
</Style>

InheritedStyles

The code begins by defining a LinearGradientBrush named GreenBrush that fades from green to
lime to transparent. It also creates a Brush named BlueBrush that fades from blue to white.

The code then creates a style named SizeStyle that sets size and alignment properties.

Next the code defines an unnamed style for Rectangles. It is based on SizeStyle so it inherits that
Style’s size and alignment properties. The new Style adds values for the Rectangle properties
Fill (set using the BlueBrush resource), RadiusX, and RadiusY.

The snippet then defines an unnamed style for Labels. This style inherits the SizeStyle’s size and
alignment properties and adds a new FontWeight Setter.

Finally, the code creates an unnamed style for Buttons that sets the Background, Margin, and FontWeight
properties. In this example, the unnamed Button Style overrides the Margin and Width values that it
inherits from SizeStyle.

The InheritedStyles example program
shown in Figure 13-6 uses these styles to
display Rectangles and Labels across
the top of a Grid and Buttons beneath.
The Rectangles are too big to fit in their
Grid cells, so their rounded edges are
truncated on the right. The Buttons use
the GreenBrush Background, so they fade
from green to transparent, allowing the
window’s light green background color to
show through on their right edges.

In this example, the unnamed Rectangle and Label Styles inherit their positioning properties
from SizeStyle, so they line up properly.

figure 13-6

Triggers ❘ 227

Note that you can only base a style on another style with a target that is a superclass of the new
style. For example, in the previous example, the unnamed Rectangle, Label, and Button Styles
are based on a Style with TargetType FrameworkElement. This works because Rectangle, Label,
and Button all inherit from FrameworkElement.

In contrast, you cannot base a Button Style on a Label Style because Button does not inherit
from Label.

mixeD anCeStry

However, you can still use very general styles that target multiple control types.
For example, the following code defines the Style lblStyle. This Style is really
intended for Labels, but it doesn’t have a TargetType, so WPF doesn’t enforce
that intention. That allows btnStyle to inherit from it even though btnStyle’s
TargetType is Button and Button doesn’t inherit from Label.

<Style x:Key=”lblStyle”>
 <Setter Property=”Label.Background” Value=”Yellow”/>
 <Setter Property=”Label.FontWeight” Value=”Bold”/>
</Style>

<Style TargetType=”Button” BasedOn=”{StaticResource lblStyle}”>
 <Setter Property=”Width” Value=”100”/>
 <Setter Property=”Height” Value=”50”/>
</Style>

You can use style inheritance to provide consistency across windows or even applications. For
example, you could define global styles in a resource dictionary file and then merge it with the appli-
cation’s resources at run time. These styles might define common background brushes, button sizes,
and so forth that you want to remain constant for multiple applications.

Then, at the application level, you could define other styles in the application’s resource diction-
ary in App.xaml. These might define the positions of OK and Cancel buttons, more colors or
images, label formats, and other values that you want to be consistent across all of the application’s
windows.

Finally, styles within a window can define common properties for the controls on that window such
as margins and positioning within grids or other containers.

triggerS

The styles described so far always apply their property values to their controls. If a style has a set-
ter that makes the Background property green, then every control that uses the style gets a green
background.

228 ❘ Chapter 13 StyleS and ProPerty triggerS

Styles can also define triggers, objects that apply setters or start other actions only under certain
conditions. For example, a trigger might change a Label’s color, font, or size when the mouse was
over it to provide some visual feedback to the user.

WPF provides several kinds of triggers including property triggers, event triggers, and data triggers.
This section describes property triggers. Event triggers are closely tied to animation, so they are
described in Chapter 14. Data triggers aren’t really covered here, although they are closely related to
data binding which is explained in Chapter 18.

A property trigger performs its actions when a specific property has a certain value. For example, a
property trigger could invoke one or more Setters if a TextBox’s Text property had the value Test.
(They are called property triggers because it’s a property value that triggers the action.)

When the property no longer has the triggering value, the Trigger deactivates, and the control’s
original property value returns. For example, when the user moves the mouse off the Label, the
Label returns to its original color, font, and size.

This ability to respond to changing properties at run time gives the controls new behaviors that
make an application feel more responsive to the user.

To make a property Trigger, create a Style and give it a Style.Triggers property element. Inside
the Style.Triggers section, you can add Trigger elements.

Use each Trigger’s Property and Value attributes to indicate the property value that should activate
the Trigger. Inside the Trigger element, add whatever Setters you want the Trigger to execute.

trigger loCationS

You must place property triggers inside Styles — not in a framework element’s
Triggers section. For example, you cannot place property triggers in a Window
.Triggers or Grid.Triggers section. IntelliSense will pretend that this will work,
but, in fact, those sections can only hold event triggers (which are described in the
next chapter).

Always put property triggers in a Style.

The following sections provide some useful property trigger examples.

text triggers
The following XAML code defines two unnamed styles, one for TextBoxes and one for
ComboBoxes:

<Style TargetType=”TextBox”>
 <Setter Property=”HorizontalAlignment” Value=”Left” />
 <Setter Property=”VerticalAlignment” Value=”Center” />
 <Setter Property=”Width” Value=”220” />
 <Style.Triggers>
 <Trigger Property=”Text” Value=””>

Triggers ❘ 229

 <Setter Property=”Background” Value=”Yellow” />
 </Trigger>
 </Style.Triggers>
</Style>

<Style TargetType=”ComboBox”>
 <Style.Triggers>
 <Trigger Property=”Text” Value=””>
 <Setter Property=”Background” Value=”Yellow” />
 </Trigger>
 </Style.Triggers>
</Style>

TextTriggers

Each of these Styles defines a Style.Triggers
section that contains a single Trigger that takes
action when the control’s Text property is blank.
When that happens, the Styles’ Setters make the
controls’ Backgrounds yellow to indicate that the
value is required.

The TextTriggers example program shown in
Figure 13-7 uses this code to flag required fields that
have blank values. If a required field is blank, its back-
ground is yellow. (In Figure 13-7, Mr. Obama hasn’t
finished filling in his information, so the City, State,
ZIP, Phone, and Email fields are yellow to flag them as
missing.)

exaCt matCheS only

Unfortunately, triggers only detect exact matches for properties and cannot handle
ranges, different capitalization, or other more complicated situations. For example,
you cannot use a simple trigger to give TextBoxes different colors based on the
values they contain (e.g., red for negative values, yellow for values between 0 and
10, and green for larger values). XAML just doesn’t have the expressive power to
represent these sorts of tests.

ismouseover triggers
One common type of property trigger takes action when the user moves the mouse over something.
These triggers execute their Setters when the IsMouseOver property is True.

The following XAML code defines an unnamed Button Style. It sets some basic values and then
defines a Trigger that executes when the IsMouseOver property is True. When the mouse moves
over the Button, the Trigger makes the Button bigger and makes its font larger and bold.

figure 13-7

230 ❘ Chapter 13 StyleS and ProPerty triggerS

<Style TargetType=”Button”>
 <Setter Property=”VerticalAlignment” Value=”Top”/>
 <Setter Property=”Margin” Value=”10”/>
 <Setter Property=”Background” Value=”Violet”/>
 <Setter Property=”Width” Value=”100”/>
 <Setter Property=”Height” Value=”30”/>
 <Setter Property=”FontSize” Value=”16”/>
 <Style.Triggers>
 <Trigger Property=”IsMouseOver” Value=”True”>
 <Setter Property=”Width” Value=”105”/>
 <Setter Property=”Height” Value=”50”/>
 <Setter Property=”FontSize” Value=”20”/>
 <Setter Property=”FontWeight” Value=”Bold”/>
 </Trigger>
 </Style.Triggers>
</Style>

IsMouseOverTriggers

The IsMouseOverTriggers example program shown in Figure 13-8 uses this code to provide feed-
back when the mouse is over a button.

figure 13-8

Setting transform and Bitmapeffect
The previous Trigger gives the activated Button a new Width, Height, and FontSize to make the
button bigger. The MenuMouseOverTriggers example program achieves a similar effect in a differ-
ent way. Rather than setting these properties individually, it uses a Setter that gives the active con-
trol a new LayoutTransform that scales the control.

The following code shows how the program enlarges a MenuItem when the mouse is over it:

<Window.Resources>
 <ScaleTransform x:Key=”mnuBigScale” ScaleX=”1.25” ScaleY=”1.25”/>
 <OuterGlowBitmapEffect x:Key=”mnuBitmapEffect”/>

 <Style x:Key=”mnuStyle” TargetType=”MenuItem”>
 <Style.Triggers>
 <Trigger Property=”IsMouseOver” Value=”True”>
 <Setter Property=”FontWeight” Value=”Bold”/>
 <Setter Property=”Foreground” Value=”Red”/>
 <Setter Property=”LayoutTransform”
 Value=”{StaticResource mnuBigScale}”/>
 <Setter Property=”BitmapEffect”
 Value=”{StaticResource mnuBitmapEffect}”/>
 </Trigger>

Triggers ❘ 231

 </Style.Triggers>
 </Style>
</Window.Resources>

MenuMouseOverTriggers

First, the program defines a ScaleTransform resource and an
OuterGlowBitmapEffect resource. These are the values that the
Trigger will use to set the MenuItem properties.

The program then defines the MenuItem Style. The Trigger sets
the MenuItem’s FontWeight and Foreground simple properties. It
also sets the control’s LayoutTransform and BitmapEffect prop-
erties to the resources defined earlier.

Figure 13-9 shows the result.

You can use similar techniques to give controls triggers that mod-
ify their LayoutTransform and BitmapEffect properties.

 Button BaCKgrounDS

Don’t bother trying to change Button or MenuItem backgrounds when the mouse
is over them. The Button and MenuItem controls have very definite opinions about
what they should look like when the mouse is over them so the user won’t see your
color or may see it flash briefly before the control’s natural behavior takes over and
replaces it.

You can change how these controls appear at different times, but that’s better done
with templates, not triggers. Chapter 15 explains templates in detail.

Setting opacity
The ImageTriggers example program shown in Figure 13-10 uses Triggers to highlight the image
under the mouse.

figure 13-10

figure 13-9

232 ❘ Chapter 13 StyleS and ProPerty triggerS

The program uses several Styles to make building the list of images easier. They’re rather long, so
they aren’t shown here. You can download the example program from the book’s web site and take
a look if you like.

The bottom of the program’s window contains a series of StackPanel controls, each of which holds
an Image and a Label. The following code shows how the program displays the controls for the
Engineering department on the right:

<StackPanel Style=”{StaticResource DepartmentStackPanel}”>
 <Image Source=”Engineering.jpg” />
 <Label Style=”{StaticResource ImageLabelStyle}” Content=”Engineering”/>
</StackPanel>

ImageTriggers

The key is the DepartmentStackPanel Style defined in the following code:

<ScaleTransform x:Key=”BigScale” ScaleX=”1.1” ScaleY=”1.1”/>

<Style x:Key=”DepartmentStackPanel” TargetType=”StackPanel”>
 <Setter Property=”Margin” Value=”10”/>
 <Setter Property=”Opacity” Value=”0.5”/>
 <Setter Property=”Background” Value=”Transparent”/>
 <Style.Triggers>
 <Trigger Property=”IsMouseOver” Value=”True”>
 <Setter Property=”Opacity” Value=”1”/>
 <Setter Property=”LayoutTransform”
 Value=”{StaticResource BigScale}”/>
 </Trigger>
 </Style.Triggers>
</Style>

ImageTriggers

Like the previous example, this code first defines a ScaleTransform resource.

The code then defines the DepartmentStackPanel Style. The Style begins by setting the
StackPanel’s Margin. It sets the Opacity property to 0.5, so the controls in the StackPanel
are semitransparent, giving them a faded appearance. Next, the Style set the StackPanel’s
Background property to Transparent.

tranSparent verSuS null

A Null background gives the same appearance as a transparent background.
However, if a control has a Null background, its IsMouseOver does not change to
True when the mouse is over the control. If the control’s background is transparent,
IsMouseOver does change when the mouse moves over the control.

If you want to make a Trigger using the IsMouseOver property, make sure the
control’s background is not Null.

Triggers ❘ 233

The DepartmentStackPanel Style then defines its IsMouseOver Trigger. When IsMouseOver is
True, the Trigger sets the StackPanel’s Opacity to 1, so the controls are fully opaque, and sets the
LayoutTransform property to the previously defined ScaleTransform resource, so the StackPanel
is enlarged.

isactive and isfocused triggers
Several of the previous trigger examples take action when the IsMouseOver property is True. The
IsMouseOver property is a natural choice for examples because it provides nice, graphical feedback
that’s easy to see, but you can write triggers to watch for values in just about any property.

The IsActiveTrigger example program shown in Figure 13-11
demonstrates two more triggers that watch the Window’s
IsActive property and the TextBox’s IsFocused property.

These triggers provide two effects:

 1. First, when the program is inactive because
another application has the input focus, the pro-
gram changes its Title to Inactive.

 2. Second, the TextBox that contains the insertion cursor displays a red glow effect.

After the Window’s opening <Window> tag, the Window.Style element defines the Window’s Style.
This example defines the Style directly rather than in a resource that it later references partly for
demonstration purposes and partly because there will always be only one Window object in the file.

The following code shows the Window’s Style element that changes the Window’s Title to Inactive
when some other program has the focus:

<Window.Style>
 <Style TargetType=”Window”>
 <Setter Property=”Title” Value=”IsActiveTrigger”/>
 <Style.Triggers>
 <Trigger Property=”IsActive” Value=”False”>
 <Setter Property=”Title” Value=”Inactive”/>
 </Trigger>
 </Style.Triggers>
 </Style>
</Window.Style>

IsActiveTrigger

The only trick to this Style is the way it sets the Window’s Title property. When the form’s IsActive
property is False, the Trigger tries to set the Title property to Inactive. If the Window element explic-
itly sets a value for Title in an attribute, then the Trigger won’t be able to override that value.

To allow the Trigger to do its job, the Window element must not have a Title attribute. To display
a title when it is active, the Style sets the Window’s initial Title in its first Setter.

figure 13-11

234 ❘ Chapter 13 StyleS and ProPerty triggerS

The following code shows the resources that the program uses to display a red glow around the text-
box that has the focus:

<OuterGlowBitmapEffect x:Key=”txtGlow” GlowColor=”Red” GlowSize=”10”/>

<Style TargetType=”TextBox”>
 <Setter Property=”Margin” Value=”5”/>
 <Setter Property=”Width” Value=”200”/>
 <Style.Triggers>
 <Trigger Property=”IsFocused” Value=”True”>
 <Setter Property=”BitmapEffect” Value=”{StaticResource txtGlow}”/>
 </Trigger>
 </Style.Triggers>
</Style>

IsActiveTrigger

The code first creates an OuterGlowBitmapEffect resource. It then defines a TextBox Style with a
Trigger that activates when the IsFocused property is True. The Trigger simply sets the TextBox’s
BitmapEffect property to the previously defined glow effect.

Summary

Styles let you define packages of resource values that many controls can share. Shared styles give
controls more consistent appearance and behavior, make it easier to change property values without
making mistakes, and simplify XAML code so that it’s easier to focus on the interesting parts of the
window’s structure without being distracted by duplicated property values.

You can give a Style an x:Key value if you want to apply it to individual controls, or you can omit
the value to make it apply to every control of the Style’s target type.

Property triggers let you define simple behaviors that a control can perform when a property takes
on a certain value. For example, you can use property triggers to provide extra feedback, perhaps
changing a button’s font style, size, or color when the user moves the mouse over it.

While property triggers let a control take action, they are still fairly localized and are intended to
act only on the control that defines them. For example, if a Style applies to a Button, then its prop-
erty triggers can affect the Button’s properties, but they are not intended to modify the Label next
to the Button, the Grid containing the Button, or the Window that holds the whole thing.

Event triggers, which are explained in the next chapter, provide one way around this restriction. While
you can define event triggers inside a Style, you can also define them at a more global level, where it’s
easier to work with multiple controls. For example, you could define an event trigger on a Button that
changes the color of another Button, the Grid containing the Buttons, or the Window itself.

Event Triggers and Animation
The property triggers described in the previous chapter let you detect specific property val-
ues and change some property’s value in response. For example, a Button might detect when
IsMouseOver is True and change its scale to make the Button grow when the mouse is over it.

Event triggers and animation add a new dimension to this type of responsiveness. An event
trigger lets you detect when an event occurs. Animation lets you change property values in
a series of smoothly varying steps. Together, for example, you can make a Button detect the
MouseOver event and use animation to enlarge the Button, providing graphical feedback simi-
lar to the experience provided by the previous property event.

So, what’s the difference? First, WPF controls provide many events that are not provided by
watching property values. For example, while a Button has an IsMouseOver property to tell
you when the mouse is over it, there are no properties that directly correspond to the events
MouseEnter, MouseLeave, MouseDown, MouseUp, MouseMove, and Click.

Second, a setter used by property triggers immediately changes a property’s value. In contrast,
an animation makes a property value gradually change over time. The end result is similar, but
the user can see the change in the value as it happens. For example, instead of making a button
suddenly pop to a new size, an animation makes it gradually grow. Often the difference isn’t
critical — the button ends up with the same final size either way — but letting the user watch
the change provides a more engaging experience.

This chapter explains event triggers and animations. The following sections explain how
you can write event triggers to detect events and execute storyboards. The next sections then
explain how storyboards work and the kinds of animations they can execute.

EvEnt triggErs

A property trigger takes action when a control’s property has a certain value. For example, the
following style makes a button increase its width and height when the mouse is over it:

<Style x:Key=”btnPropertyGrowStyle” TargetType=”Button”>
 <Setter Property=”Width” Value=”100”/>
 <Setter Property=”Height” Value=”50”/>
 <Style.Triggers>

14

236 ❘ ChaptEr 14 EvEnt triggErs and animation

 <Trigger Property=”IsMouseOver” Value=”True”>
 <Setter Property=”Width” Value=”150”/>
 <Setter Property=”Height” Value=”75”/>
 </Trigger>
 </Style.Triggers>
</Style>

In contrast, an event trigger takes action when a control event occurs. Rather than acting when the
IsMouseOver property is True, an event trigger might take action when the MouseEnter event fires,
indicating that the mouse moved over the control. Another event could take some other action when
the MouseLeave event fires, which occurs when the mouse moves off the control.

To make an event trigger, make a Triggers element, either in a control’s definition or in a Style.
Inside the Triggers section, add EventTrigger elements.

Each EventTrigger should have a RoutedEvent attribute that indicates the event that executes the
trigger. The RoutedEvent should include the name of the class raising the event (Button, Label,
Grid, etc.), followed by a dot and the name of the event. For example, the RoutedEvent name for a
Button’s Click event is Button.Click.

Inside the trigger, place an Actions section to hold the actions that you want the trigger to perform.
Inside the Actions element, you can place code to run animations by executing storyboards.

For example, the following code shows a Button that takes action when it raises a MouseEnter
event (although it doesn’t show what that action might be):

<Button Width=”100” Height=”50” Content=”Click Me”>
 <Button.Triggers>
 <EventTrigger RoutedEvent=”Button.MouseEnter”>
 <EventTrigger.Actions>
 ... Do something here ...
 </EventTrigger.Actions>
 </EventTrigger>
 </Button.Triggers>
</Button>

Normally an event trigger’s actions use a BeginStoryboard element to invoke a Storyboard
object. Later sections describe storyboards in detail, but for now, assume that you have defined a
Storyboard named sbBigScale in a window’s Resources section. Then the following code shows
how the previous Button could invoke the Storyboard:

<Button Width=”100” Height=”50” Content=”Click Me”>
 <Button.Triggers>
 <EventTrigger RoutedEvent=”Button.MouseEnter”>
 <EventTrigger.Actions>
 <BeginStoryboard
 Storyboard=”{StaticResource sbBigScale}”/>
 </EventTrigger.Actions>
 </EventTrigger>
 </Button.Triggers>
</Button>

GrowingButtons

Event Triggers ❘ 237

The BeginStoryboard object’s Storyboard attribute gives the Storyboard that it should execute.
This example uses the StaticResource to run the Storyboard defined in the window’s resource
dictionary.

What DoEs BEginstoryBoarD MEan?

Every time I see a BeginStoryboard element, I think, “This is the beginning of
a storyboard definition,” and I expect the subsequent lines of code to define the
Storyboard. Unfortunately, that’s not what BeginStoryboard means. As the pre-
vious example shows, the BeginStoryboard element doesn’t need to contain any-
thing more than a reference to a Storyboard object.

The begin in BeginStoryboard really means “execute” or “run,” so when you
see this element, you should think, “Run this storyboard.” Perhaps it would
have been less confusing (for me, at least) if Microsoft had named this element
RunStoryboard.

Event trigger Locations
The most obvious place to put an event trigger is inside the control that raises the event. For exam-
ple, the following code defines a Button that runs the sbSpin Storyboard when it is clicked:

<Button Content=”Spin Me!”>
 <Button.Triggers>
 <EventTrigger RoutedEvent=”Button.Click”>
 <EventTrigger.Actions>
 <BeginStoryboard Storyboard=”{StaticResource sbSpin}”/>
 </EventTrigger.Actions>
 </EventTrigger>
 </Button.Triggers>
</Button>

SpinButton

The sbSpin Storyboard rotates the Button 360 degrees.
Figure 14-1 shows the SpinButton example program when the
Storyboard has just started.

The preceding code already uses a few techniques to make
the Button’s code easier to read. An unnamed button style
sets the Button’s Width and Height. It also sets the Button’s
RenderTransform to a RotateTransform object so that the
Storyboard can later rotate the Button. FigurE 14-1

238 ❘ ChaptEr 14 EvEnt triggErs and animation

transForMation tip

A Storyboard can change a transformation’s properties, but it cannot create a
new transformation from scratch. In the rotating button example, the Storyboard
can change the RenderTransform’s angle of rotation, but it cannot make the
RenderTransform out of nothing, so the Button’s Style makes an initial
RenderTransform that rotates the button by 0 degrees.

In general, if you want to rotate, stretch, or otherwise change a control’s transfor-
mation, you must give it an initial transformation for the Storyboard to modify.

The sbSpin Storyboard is also defined as a resource to further simplify the Button’s code.

You could even define the EventTrigger in the Button’s Style to make the Button’s code really simple.

In some cases, it may make sense to define triggers more centrally. For example, consider the
CentralizedTriggers example program shown in Figure 14-2. This program displays a series of
thumbnail images on the left. When you click on one, the image expands and moves to fill the area
on the right.

FigurE 14-2

In this example, all of the thumbnail images do more or less the same thing: They expand their
images. In programs like this one that display a series of controls that serve similar purposes, it may
make the program’s logic easier to understand if their triggers are all placed together. This might
make sense for a series of thumbnails, buttons, menu items, radio buttons, or any other set of con-
trols that perform roughly the same actions.

Event Triggers ❘ 239

When a routed event is triggered, it moves through the hierarchy of controls that contains the one
that started it. The CentralizedTriggers example program displays its controls on a Canvas, so,
when the user clicks on one of the thumbnails (an Image control), a MouseLeftButtonDown event
starts at the thumbnail, moves up to the Canvas, and then moves up again to the Window. The pro-
gram’s code can catch the event at any of those levels.

The following code fragment shows the structure of the CentralizedTriggers program’s Canvas control:

<Canvas Margin=”5”>
 <Canvas.Resources>
 <!-- Define an unnamed Image Style. -->
 <Style TargetType=”Image”>
 <Setter Property=”Opacity” Value=”0.5”/>
 <Setter Property=”Width” Value=”100”/>
 <Setter Property=”Height” Value=”100”/>
 <Setter Property=”Stretch” Value=”Uniform”/>
 <Setter Property=”BitmapEffect”>
 <Setter.Value>
 <DropShadowBitmapEffect/>
 </Setter.Value>
 </Setter>
 </Style>

 <!-- Define a Storyboard for each Image. -->
 <Storyboard x:Key=”sbImg1”>
 ... Code omitted ...
 </Storyboard>
 ... Define the other Storyboards ...
 </Canvas.Resources>

 <!-- Handle Image MouseLeftButtonDown events. -->
 <Canvas.Triggers>
 <EventTrigger SourceName=”img1” RoutedEvent=”Image.MouseLeftButtonDown”>
 <EventTrigger.Actions>
 <RemoveStoryboard BeginStoryboardName=”beginSbImg1”/>
 <RemoveStoryboard BeginStoryboardName=”beginSbImg2”/>
 <RemoveStoryboard BeginStoryboardName=”beginSbImg3”/>
 <RemoveStoryboard BeginStoryboardName=”beginSbImg4”/>

 <BeginStoryboard Name=”beginSbImg1”
 Storyboard=”{StaticResource sbImg1}”/>
 </EventTrigger.Actions>
 </EventTrigger>
 ... Define EventTriggers for the other Images ...
 </Canvas.Triggers>

 <!-- Build the controls. -->
 <Image Canvas.Left=”0” Canvas.Top=”0” Name=”img1” Source=”Canyon01.jpg”/>
 <Image Canvas.Left=”0” Canvas.Top=”100” Name=”img2” Source=”Canyon02.jpg”/>
 <Image Canvas.Left=”0” Canvas.Top=”200” Name=”img3” Source=”Canyon03.jpg”/>
 <Image Canvas.Left=”0” Canvas.Top=”300” Name=”img4” Source=”Canyon04.jpg”/>
</Canvas>

CentralizedFigures

240 ❘ ChaptEr 14 EvEnt triggErs and animation

The Canvas.Resources section defines an unnamed Image Style (Width, Height, Stretch, etc.) and
the storyboards that enlarge and move the thumbnails to fill the viewing area.

The Canvas.Triggers section defines the Images’ EventTriggers. The previous code shows only the
first trigger in detail. Its SourceName and RoutedEvent attributes indicate that the trigger catches
the MouseLeftButtonDown event raised by an Image control named img1.

The Trigger.Actions section uses RemoveStoryboard objects to cancel any previously running
Storyboards, restoring the thumbnails to their original positions. (The section “Controlling
Storyboards” later in this chapter says more about objects like RemoveStoryboard.) It then uses a
BeginStoryboard object to run the sbImg1 Storyboard, which moves the Image control img1 to
the viewing area.

Having defined the resources and triggers, the program’s code that defines the Image controls is
quite simple and easy to understand.

Often it makes sense to keep triggers with the controls that raise the events, but sometimes it makes
the code easier to read if you group similar pieces of code together. That makes the individual sec-
tions of code (styles, storyboards, triggers, controls) easier to understand.

storyboards in property Elements
Rather than referring to a storyboard defined in a resource dictionary, the code can include a
Storyboard definition directly inside the BeginStoryboard element as an element attribute. The
following code shows a Button that includes a Storyboard defined as an element attribute:

<Button Width=”100” Height=”50” Content=”Click Me”>
 <Button.Triggers>
 <EventTrigger RoutedEvent=”Button.MouseEnter”>
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 ... Place storyboard animations here ...
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
 </Button.Triggers>
</Button>

storyboards in styles
Building a storyboard right into a control makes its definition quite long and requires some pretty
deeply nested elements, so you may want to define storyboards in resources to simplify the code. If
possible, you might want to put the triggers in a style to simplify the Button’s code. You can then
make the Style simpler by placing the Storyboard in its own resource.

Property Trigger Animations ❘ 241

For example, the following code defines a Button Style that includes event triggers. When the
Button raises its MouseEnter event, the code runs the sbBigSize Storyboard. When the Button
raises its MouseLeave event, the code runs the sbSmallSize Storyboard.

<Style x:Key=”btnEventSbSize” TargetType=”Button”>
 <Setter Property=”Width” Value=”100”/>
 <Setter Property=”Height” Value=”50”/>
 <Style.Triggers>
 <EventTrigger RoutedEvent=”Button.MouseEnter”>
 <EventTrigger.Actions>
 <BeginStoryboard Storyboard=”{StaticResource sbBigSize}”/>
 </EventTrigger.Actions>
 </EventTrigger>
 <EventTrigger RoutedEvent=”Button.MouseLeave”>
 <EventTrigger.Actions>
 <BeginStoryboard Storyboard=”{StaticResource sbSmallSize}”/>
 </EventTrigger.Actions>
 </EventTrigger>
 </Style.Triggers>
</Style>

GrowingButtons

A program could use the following code to define a button that uses this style:

<Button Style=”{StaticResource btnEventSbSize}”
 Content=”New Size”/>

propErty triggEr aniMations

Normally a property trigger uses setters to change property values immediately, but you can also use
property triggers to run storyboards. How a property trigger applies a storyboard differs from the
way it applies a setter because the two have different typical purposes.

A setter changes a property value as long as some other property has a certain value. For example,
suppose a Button has a property trigger that takes action when the IsMouseOver property is True.
As long as that property is True, a Setter changes the Button’s Width to 150. When IsMouseOver
is no longer True, the Setter deactivates, and the Button returns to its normal size, say 100. Here
the Setter makes the Width property 150 as long as IsMouseOver is True.

In contrast, an animation makes a property change smoothly from one value to another over time.
For example, an animation might make a Button’s Width vary from its original value of 100 to 150
over a period of 1 second. In that case, it doesn’t make sense to have the animation run as long as
the IsMouseOver property is True. The animation will finish in 1 second even if IsMouseOver is
True for 10 minutes. You could make the animation replay again and again, but that would prob-
ably be a bit strange in this example.

In order to sensibly apply animations, a property trigger provides two extra sections that can execute
animations in addition to ordinary setters: EnterActions and ExitActions.

242 ❘ ChaptEr 14 EvEnt triggErs and animation

As before, setters take immediate action.

The animations inside the EnterActions section run when the property’s value changes to the target
value. In the previous example, they would execute when the Button’s IsMouseOver property value
becomes True.

The animations inside the ExitActions section run when the property’s value changes from the target
value to another value. In the previous example, they would execute when the Button’s IsMouseOver
property changes from True to False.

The following code shows a Button Style that uses a property trigger to invoke both Setters and
Storyboards:

<Style x:Key=”btnStyle” TargetType=”Button”>
 <Setter Property=”Margin” Value=”10”/>
 <Setter Property=”Width” Value=”100”/>
 <Setter Property=”Height” Value=”50”/>
 <Style.Triggers>
 <Trigger Property=”IsMouseOver” Value=”True”>
 <Setter Property=”FontStyle” Value=”Italic”/>
 <Trigger.EnterActions>
 <BeginStoryboard Storyboard=”{StaticResource sbBigSize}”/>
 </Trigger.EnterActions>
 <Trigger.ExitActions>
 <BeginStoryboard Storyboard=”{StaticResource sbSmallSize}”/>
 </Trigger.ExitActions>
 </Trigger>
 </Style.Triggers>
</Style>

PropertyTriggerButton

When the Button’s IsMouseOver property becomes True, the Setter immediately changes the Button’s
FontStyle to Italic.

When the IsMouseOver property changes to True, the EnterActions execute, launching the Storyboard
resource named sbBigSize. That Storyboard animates the Button’s Width and Height, changing to 150
and 75, respectively, over a period of 0.2 second.

When the IsMouseOver property changes to False, the ExitActions
execute, launching the Storyboard resource named sbSmallSize.
That Storyboard animates the Button’s Width and Height, chang-
ing to 100 and 50, respectively, over a period of 0.2 second.

The PropertyTriggerButton example program shown in
Figure 14-3 uses this code to make its buttons grow and shrink as
you move the mouse over them. In Figure 14-3, the mouse is over
the middle button, so that button has italic text. The sbBigSize
Storyboard has finished running, so the button is at its larger
size. (You’ll just have to imagine the button growing and shrinking
until Wrox figures out how to print moving images in its books.) FigurE 14-3

Storyboards ❘ 243

The GrowingButtons example program
shown in Figure 14-4 demonstrates the
three combinations of trigger types and
trigger actions: property triggers with set-
ters, property triggers with storyboards,
and event triggers with storyboards.

The buttons in the top row change their
sizes, so they grow larger but their text
stays the same size. The buttons on the
bottom row change the scale transforma-
tions, so their text grows with them.

storyBoarDs

Now that you understand how to start a storyboard, it’s time to learn how to build one. A storyboard
is an object that defines a timeline for one or more animations.

An animation manages the transition of a property from one value to another over time. An anima-
tion can include a start time indicating when the transition should begin and a duration telling how
long the animation should last.

Animation classes make animation easy by handling a lot of very tricky details. For example, sup-
pose you want to change a control’s Width property from 50 to 200 over a 1-second interval. To do
this yourself, you would need to figure out how many different values you can effectively display in
1 second. The number of frames you can display depends on the speed of your computer, the system
load, the complexity of the window (enlarging the control might force other controls to move, e.g.,
if they are in a StackPanel), and other factors that are outside your control. With enough time and
effort, you could probably work this all out and come up with something reasonable; but, unless your
application does nothing more than display animations, you would probably be better off concen-
trating on other parts of the program.

The animation classes let you specify what you want done and then ignore how it is done. You say
you want a property changed to a certain value over the next 3 seconds, and the animation classes
figure out how to do it.

The classes still don’t provide absolutely perfect timing. After all, they are subject to the same sys-
tem issues that you would be if you were to perform the animation yourself. But they do a reason-
able job with much less effort on your part.

aniMation pErForManCE

To get the best performance out of your animations, try to minimize their side
effects. For example, suppose you use an animation to change the size of a Button.
If that Button is inside a StackPanel, then changes to its size affect the locations
of the other controls in the StackPanel. If the Button contains controls rather

FigurE 14-4

continues

244 ❘ ChaptEr 14 EvEnt triggErs and animation

than simple text, then changing its size may force WPF to rearrange all of those
controls. Depending on the complexity of the program, these kinds of side effects
may slow the animation considerably.

When you design an animation, particularly one that changes control positions
and sizes, think about the consequences of those changes, and try to minimize the
effects on other controls. You can fix this example by moving the Button into a
Grid so that changes to its size don’t affect other controls.

Specific kinds of animations handle changes to properties of different data types such as Double,
Color, String, Thickness, and many others.

The following code shows a simple Storyboard containing five DoubleAnimation objects. This is
the Storyboard that the CentralizedTriggers program shown in Figure 14-2 uses to move the first
thumbnail into the viewing area.

<Storyboard x:Key=”sbImg1”>
 <DoubleAnimation Duration=”0:0:0.5” To=”120”
 Storyboard.TargetName=”img1”
 Storyboard.TargetProperty=”(Canvas.Left)”/>
 <DoubleAnimation Duration=”0:0:0.5” To=”0”
 Storyboard.TargetName=”img1”
 Storyboard.TargetProperty=”(Canvas.Top)”/>
 <DoubleAnimation Duration=”0:0:0.5” To=”485”
 Storyboard.TargetName=”img1”
 Storyboard.TargetProperty=”Width”/>
 <DoubleAnimation Duration=”0:0:0.5” To=”400”
 Storyboard.TargetName=”img1”
 Storyboard.TargetProperty=”Height”/>
 <DoubleAnimation Duration=”0:0:0.5” To=”1”
 Storyboard.TargetName=”img1”
 Storyboard.TargetProperty=”Opacity”/>
</Storyboard>

CentralizedTriggers

The first animation makes the Canvas.Left property of the control img1 change from its current
value (whatever it is) to 120 over a 0.5-second interval. The second animation similarly changes the
control’s Canvas.Top property to 0 over the same 0.5 second.

The third and fourth animations change the img1 control’s Width and Height properties to 485 and
400, respectively. The final animation changes the control’s Opacity to 1 so it is completely opaque.

The following section describes the most useful storyboard properties. The next sections then pro-
vide more detail about various animation classes.

 (continued)

Storyboards ❘ 245

storyboard and animation properties
The animation classes have several properties that determine the animation’s behavior. For exam-
ple, Duration determines how long the animation should take to finish changing the property to
its new value.

The Storyboard class provides many of the same properties, so the animations it contains can
inherit their values. For example, Storyboard has a Duration property. If you set a Storyboard’s
Duration attribute to 0:0:2 and you do not give the animations their own Duration attributes,
then the animations each run in 2 seconds.

The following list describes the most useful animation and storyboard properties:

AccelerationRatio➤➤ — Determines the fraction of the total time that is spent accelerating
the value before reaching its peak rate of change.

AutoReverse➤➤ — If this is True, then the animation automatically reverses itself when it is done.

BeginTime➤➤ — The time at which the animation should start after the Storyboard has started
running. This has the form hours:minutes:seconds.

gLaCiaL aniMation

If your animation seems to be moving incredibly slowly or not at all, check your
BeginTime and Duration properties and make sure they have the right format. For
example, if you accidentally set Duration to 0:1 instead of 0:0:1, then the anima-
tion will take 1 minute rather than the 1 second you intended.

DecelerationRatio➤➤ — Determines the fraction of the total time that is spent decelerating
the value from its peak rate of change before stopping at its final value.

Duration➤➤ — The time the animation should take to move the property from its start value to
its final value. This has the form hours:minutes:seconds.

FillBehavior➤➤ — Determines what the animation does when it finishes. This can be HoldEnd
(the property keeps its final value) or Stop (the property immediately snaps back to its
“default” value).

RepeatBehavior➤➤ — Determines how often the animation is repeated. This property can take
one of three forms: a repeat count (2x means repeat twice, 5x means repeat five times), a time
(0:0:10 means repeat as needed until 10 seconds have elapsed), or the keyword Forever
(keep repeating).

SpeedRatio➤➤ — Determines the speed with which time passes relative to the animation’s par-
ent. For example, if SpeedRatio is 2, then time passes twice as quickly for the animation as
it does for its parent. If the Storyboard contains several animations of the same Duration,
then this one would finish twice as quickly as the others.

246 ❘ ChaptEr 14 EvEnt triggErs and animation

The AccelDecelRatios example
program shown in Figure 14-5 dem-
onstrates the AccelerationRatio
and DecelerationRatio properties.
When you click on the Go button,
the program starts a storyboard that
moves the two Image controls across
the window. The first Image moves
at a constant speed throughout the
animation. The second Image has
AccelerationRatio = 0.4 and DecelerationRatio = 0.2, so it takes a while to get up to speed
and then slows down as it approaches its final destination. (I guess that horse is a slow starter and
pulls up lame at the end.)

The following code shows the storyboard used by the AccelDecelRatios program:

<Storyboard>
 <DoubleAnimation Duration=”0:0:2” From=”5” To=”500”
 Storyboard.TargetName=”img1”
 Storyboard.TargetProperty=”(Canvas.Left)”/>
 <DoubleAnimation Duration=”0:0:2” From=”5” To=”500”
 AccelerationRatio=”0.4”
 DecelerationRatio=”0.2”
 Storyboard.TargetName=”img2”
 Storyboard.TargetProperty=”(Canvas.Left)”/>
</Storyboard>

AccelDecelRatios

The animation classes add a few extra properties that they do not inherit from the Storyboard
class. The most important of these are From, To, and By:

From➤➤ — Indicates the value at which the animation should begin. In the previous code, the
DoubleAnimations have From = 5, so the Canvas.Left properties they animate start at the
value 5.

To➤➤ — Indicates the animation’s final property value. In the previous example, the Canvas
.Left property ranges from 5 to 500.

By➤➤ — The animation ends at the value equal to this value plus the property’s original value.
For example, if From is 10 and By is 100, then the final value is 10 + 100 = 110.

If you don’t specify a value for the From property, the animation begins with the property’s current
value. That value may be the control’s original property value, or it may be the result of a previous
animation.

In fact, if an animation is under way but doesn’t finish when the new animation starts, the current
value may be somewhere in the middle of the previous animation.

FigurE 14-5

Storyboards ❘ 247

For example, suppose you have two buttons that move a control right or left. If you click on the
“Move Right” button and then click on the “Move Left” button before the first animation has fin-
ished, the control will immediately begin moving back to the left.

FroM WhErE?

Omitting the From property is a useful technique because it lets the animation do
something sensible even if the previous animation isn’t finished. If you explicitly set
From, then many animations jump to that value before starting their transitions.

For example, suppose you have the “Move Right” and “Move Left” buttons again.
If you click on the “Move Right” button and then before it finishes you click on the
“Move Left” button, the second button will make the control jump to its final right
location before it starts moving back to the left.

animation types
WPF provides many classes for animating properties with different data types. The following
table lists data types that have corresponding animation classes. For example, you can use the
Int32Animation class to animate a 32-bit integer property.

Boolean Int16 Point3D String
Byte Int32 Quaternion Thickness
Char Int64 Rect Vector
Color Matrix Rotation3D Vector3D
Decimal Object Single
Double Point Size

Most of these data types have two kinds of animation classes. The first has the suffix Animation
and performs a simple linear interpolation of the property’s values so that the property’s value is set
proportionally between the start and finish values based on the elapsed time. When the Duration is
1/4 over, the value will be one-fourth of the way between the start and finish values.

The second type of animation class has the suffix AnimationUsingKeyFrames. This type of anima-
tion changes a property from one value to another while visiting specific key values in between. You
can use several different kinds of objects to specify key frame values, and the type of key frame class
determines how the animation moves to the frame’s value.

The most common types of key frame objects move to their key values linearly, using a spline, or
discretely. A few other key frame animations can make their values follow a path.

The following sections describe linear animations and the main kinds of key frame animations:
linear, spline, discrete, and path.

Simple Linear Animations
Linear animations change a property’s value in a simple way from one value to another.

248 ❘ ChaptEr 14 EvEnt triggErs and animation

For example, the AccelDecelRatios example program shown in Figure 14-5 uses the following
Storyboard to move its two Image controls:

<Storyboard>
 <DoubleAnimation Duration=”0:0:2” From=”5” To=”500”
 Storyboard.TargetName=”img1”
 Storyboard.TargetProperty=”(Canvas.Left)”/>
 <DoubleAnimation Duration=”0:0:2” From=”5” To=”500”
 AccelerationRatio=”0.4”
 DecelerationRatio=”0.2”
 Storyboard.TargetName=”img2”
 Storyboard.TargetProperty=”(Canvas.Left)”/>
</Storyboard>

AccelDecelRations

Both of the DoubleAnimation objects in this
code make a Canvas.Left property vary
from 5 to 500 over a 2-second period. The
second animation also demonstrates the
AccelerationRatio and DecelerationRatio
properties.

The RovingButton example program shown
in Figure 14-6 provides a more complicated
example. It makes a Button follow a rectan-
gular path, so its upper-left corner follows the
black rectangle shown in the figure.

The following code shows the Storyboard
that the RovingButton program uses to move
its Button:

<Storyboard x:Key=”sbMoveButton” RepeatBehavior=”Forever”>
 <DoubleAnimation Duration=”0:0:1.5” To=”370”
 Storyboard.TargetName=”btnMover”
 Storyboard.TargetProperty=”(Canvas.Left)”/>
 <DoubleAnimation BeginTime=”0:0:1.5” Duration=”0:0:1” To=”160”
 Storyboard.TargetName=”btnMover”
 Storyboard.TargetProperty=”(Canvas.Top)”/>
 <DoubleAnimation BeginTime=”0:0:2.5” Duration=”0:0:1.5” To=”10”
 Storyboard.TargetName=”btnMover”
 Storyboard.TargetProperty=”(Canvas.Left)”/>
 <DoubleAnimation BeginTime=”0:0:4” Duration=”0:0:1” To=”10”
 Storyboard.TargetName=”btnMover”
 Storyboard.TargetProperty=”(Canvas.Top)”/>
</Storyboard>

RovingButtons

The sbMoveButton Storyboard uses four DoubleAnimations to change the Button’s Left and Top
properties along the Rectangle’s edges. Each animation has BeginTime set to start the animation
when the previous one finishes, so the Button never stops moving.

FigurE 14-6

Storyboards ❘ 249

Linear Key Frames
A key frame animation that uses linear key frames is similar to a series of simple linear animations.
The difference is mainly in whether you want to think of the animation as a series of smaller sepa-
rate trips or as a single trip with waypoints.

The RovingButtonWithKeyFrames example program uses the following code to make its Button run
around the same rectangle as the RovingButton program:

<Storyboard x:Key=”sbMoveButton” RepeatBehavior=”Forever”>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName=”btnMover”
 Storyboard.TargetProperty=”(Canvas.Left)”>
 <LinearDoubleKeyFrame Value=”370” KeyTime=”0:0:1.5”/>
 <LinearDoubleKeyFrame Value=”370” KeyTime=”0:0:2.5”/>
 <LinearDoubleKeyFrame Value=”10” KeyTime=”0:0:4”/>
 <LinearDoubleKeyFrame Value=”10” KeyTime=”0:0:5”/>
 </DoubleAnimationUsingKeyFrames>

 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName=”btnMover”
 Storyboard.TargetProperty=”(Canvas.Top)”>
 <LinearDoubleKeyFrame Value=”10” KeyTime=”0:0:1.5”/>
 <LinearDoubleKeyFrame Value=”160” KeyTime=”0:0:2.5”/>
 <LinearDoubleKeyFrame Value=”160” KeyTime=”0:0:4”/>
 <LinearDoubleKeyFrame Value=”10” KeyTime=”0:0:5”/>
 </DoubleAnimationUsingKeyFrames>
</Storyboard>

RovingButtonWithKeyFrames

This code uses two DoubleAnimationUsingKeyFrame objects, one for the Button’s Canvas.Left
property and one for its Canvas.Top property.

The LinearDoubleKeyFrame objects give the values that the properties should have at various times
during the animation. The program interpolates linearly between the values to make the Button
move much as the previous code did.

Spline Key Frames
A spline is a curve with a shape determined by control points.
Figure 14-7 shows a spline in orange. The white squares show
the curve’s control points. If the curve is being drawn from left to
right, then the lower control point is the first control point, and
the upper control point is the second control point. These points
determine the direction in which the curve leaves the first point
(red) and enters the second point (blue).

If you use a linear key frame, the value of its property moves uni-
formly from the start value to the end value following the green
curve in Figure 14-7.

FigurE 14-7

250 ❘ ChaptEr 14 EvEnt triggErs and animation

If you use a spline key frame, the property follows a path similar to the orange spline shown in
Figure 14-7. In this example, on the left side of the graph, the value starts by changing relatively lit-
tle as time increases; in the middle of the graph, the value changes quickly; and near the right side of
the graph, the change in the value decreases again. The result is that the value starts moving slowly,
picks up the pace, and then slows down again before reaching its final value.

You use the KeySpline attribute to specify the control points for a key frame with splines. This
attribute should contain two points that give the control point coordinates in a normalized coordi-
nate system (so 0 ≤ X ≤ 1, and 0 ≤ Y ≤ 1).

The RovingButtonWithSplines example program uses the following code to make its Button fol-
low the same rectangular path followed by the RovingButton and RovingButtonWithKeyFrames
programs. The paths are the same, but the speed with which the Button moves is different. In the
earlier programs, the Button moves at a constant speed across each of the Rectangle’s sides. In the
RovingButtonWithSplines program, the Button starts slowly, accelerates, and then decelerates as it
approaches its next value. (It’s actually a pretty nice effect. Download the program from the book’s
web site and see for yourself.)

<Storyboard x:Key=”sbMoveButton” RepeatBehavior=”Forever”>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName=”btnMover”
 Storyboard.TargetProperty=”(Canvas.Left)”>
 <SplineDoubleKeyFrame Value=”370”
 KeyTime=”0:0:1.5” KeySpline=”0.5,0 0.5,1”/>
 <SplineDoubleKeyFrame Value=”370” KeyTime=”0:0:2.5”
 KeySpline=”0.5,0 0.5,1”/>
 <SplineDoubleKeyFrame Value=”10” KeyTime=”0:0:4”
 KeySpline=”0.5,0 0.5,1”/>
 <SplineDoubleKeyFrame Value=”10” KeyTime=”0:0:5”
 KeySpline=”0.5,0 0.5,1”/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName=”btnMover”
 Storyboard.TargetProperty=”(Canvas.Top)”>
 <SplineDoubleKeyFrame Value=”10” KeyTime=”0:0:1.5”
 KeySpline=”0.5,0 0.5,1”/>
 <SplineDoubleKeyFrame Value=”160” KeyTime=”0:0:2.5”
 KeySpline=”0.5,0 0.5,1”/>
 <SplineDoubleKeyFrame Value=”160” KeyTime=”0:0:4”
 KeySpline=”0.5,0 0.5,1”/>
 <SplineDoubleKeyFrame Value=”10” KeyTime=”0:0:5”
 KeySpline=”0.5,0 0.5,1”/>
 </DoubleAnimationUsingKeyFrames>
</Storyboard>

RovingButtonWithSplines

Discrete Key Frames
Linear and spline key frames move a property continuously from one value to another. A discrete
key frame makes a property suddenly jump from one value to another.

Storyboards ❘ 251

The RovingButtonDiscrete example program uses the following code to animate its Button:

<Storyboard x:Key=”sbMoveButton” RepeatBehavior=”Forever”>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName=”btnMover”
 Storyboard.TargetProperty=”(Canvas.Left)”>
 <DiscreteDoubleKeyFrame Value=”130” KeyTime=”0:0:0.5”/>
 <DiscreteDoubleKeyFrame Value=”250” KeyTime=”0:0:1.0”/>
 <DiscreteDoubleKeyFrame Value=”370” KeyTime=”0:0:1.5”/>
 <DiscreteDoubleKeyFrame Value=”370” KeyTime=”0:0:2.5”/>
 <DiscreteDoubleKeyFrame Value=”250” KeyTime=”0:0:3”/>
 <DiscreteDoubleKeyFrame Value=”130” KeyTime=”0:0:3.5”/>
 <DiscreteDoubleKeyFrame Value=”10” KeyTime=”0:0:4”/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName=”btnMover”
 Storyboard.TargetProperty=”(Canvas.Top)”>
 <DiscreteDoubleKeyFrame Value=”85” KeyTime=”0:0:2”/>
 <DiscreteDoubleKeyFrame Value=”160” KeyTime=”0:0:2.5”/>
 <DiscreteDoubleKeyFrame Value=”85” KeyTime=”0:0:4.5”/>
 <DiscreteDoubleKeyFrame Value=”10” KeyTime=”0:0:5”/>
 </DoubleAnimationUsingKeyFrames>
</Storyboard>

RovingButtonDiscrete

The example program moves its Button in a rectangular path much as the previous examples do,
but the Button moves in discrete jumps rather than smooth movements.

Because discrete key frames don’t generate any intermediate values, your code must list every value
that you want the property to become.

Path Animations
Path animations let property values follow the
coordinates or angle of a path. For example,
you can use a path animation to move a con-
trol along the border of an ellipse or a series of
curves.

The RovingButtonWithPath example program
shown in Figure 14-8 moves a Button along
the path shown in black. As it moves, the
Button rotates to match the curve’s angle at
that point.

The RovingButtonWithPath program uses the
following code to animate its Button:

<PathGeometry x:Key=”pathMove”
 Figures=”M 10,85
 A 100,70 0 1 1 210,85
 A 100,70 0 1 0 410,85
 A 130,70 0 1 0 150,85

FigurE 14-8

252 ❘ ChaptEr 14 EvEnt triggErs and animation

 A 70,70 0 1 1 10,85”/>
<Storyboard x:Key=”sbMoveButton” RepeatBehavior=”Forever”>
 <DoubleAnimationUsingPath Duration=”0:0:4”
 Storyboard.TargetName=”btnMover”
 Storyboard.TargetProperty=”(Canvas.Left)”
 Source=”X”
 PathGeometry=”{StaticResource pathMove}”/>
 <DoubleAnimationUsingPath Duration=”0:0:4”
 Storyboard.TargetName=”btnMover”
 Storyboard.TargetProperty=”(Canvas.Top)”
 Source=”Y”
 PathGeometry=”{StaticResource pathMove}”/>
 <DoubleAnimationUsingPath Duration=”0:0:4”
 Storyboard.TargetName=”btnMover”
 Storyboard.TargetProperty=”RenderTransform.Angle”
 Source=”Angle”
 PathGeometry=”{StaticResource pathMove}”/>
</Storyboard>

RovingButtonWithPath

The code first creates a PathGeometry object to define the path. It then uses that object in the
sbMoveButton Storyboard.

The Storyboard’s first DoubleAnimationUsingPath object changes the Button’s Canvas.Left
property. The Source attribute indicates that the property should be set to the path’s X coordinate as
the animation progresses over the path.

Similarly, the second DoubleAnimationUsingPath object makes the Button’s Canvas.Top property
match the path’s Y coordinate as the animation progresses.

The Button’s definition includes a RenderTransform object that initially rotates the Button by
–90 degrees. The final animation object makes the Button’s Transform.Angle property match the
path’s Angle during the animation.

Mix and Match Key Frames
Each of the previous key frame examples uses
a single type of key frame, but you can mix
and match them if you like. For example, a
single storyboard might include linear key
frames and discrete key frames. The story-
board can even include path animations.

The RovingButtonMixedKeyFrames example
program shown in Figure 14-9 demonstrates
a mix of linear and discrete key frames, and
path animation. When you click on the Start
button, the Button follows the route drawn
in black. FigurE 14-9

Storyboards ❘ 253

The RovingButtonMixedKeyFrames program uses the following code to animate its Button:

<PathGeometry x:Key=”pathMove”
 Figures=”M 350,10 A 50,50 0 1 1 350,170”/>
<Storyboard x:Key=”sbMoveButton” RepeatBehavior=”Forever”>
 <!-- Move right -->
 <DoubleAnimationUsingKeyFrames BeginTime=”0:0:0”
 Storyboard.TargetName=”btnMover”
 Storyboard.TargetProperty=”(Canvas.Left)”>
 <LinearDoubleKeyFrame KeyTime=”0:0:1” Value=”190”/>
 <DiscreteDoubleKeyFrame KeyTime=”0:0:1” Value=”350”/>
 </DoubleAnimationUsingKeyFrames>

 <!-- Move down -->
 <DoubleAnimationUsingPath BeginTime=”0:0:1” Duration=”0:0:1”
 Storyboard.TargetName=”btnMover”
 Storyboard.TargetProperty=”(Canvas.Left)”
 Source=”X”
 PathGeometry=”{StaticResource pathMove}”/>
 <DoubleAnimationUsingPath BeginTime=”0:0:1” Duration=”0:0:1”
 Storyboard.TargetName=”btnMover”
 Storyboard.TargetProperty=”(Canvas.Top)”
 Source=”Y”
 PathGeometry=”{StaticResource pathMove}”/>
 <DoubleAnimationUsingPath BeginTime=”0:0:1” Duration=”0:0:1”
 Storyboard.TargetName=”btnMover”
 Storyboard.TargetProperty=”RenderTransform.Angle”
 Source=”Angle”
 PathGeometry=”{StaticResource pathMove}”/>

 <!-- Move Left -->
 <DoubleAnimationUsingKeyFrames BeginTime=”0:0:2”
 Storyboard.TargetName=”btnMover”
 Storyboard.TargetProperty=”(Canvas.Left)”>
 <DiscreteDoubleKeyFrame KeyTime=”0:0:0” Value=”190”/>
 <LinearDoubleKeyFrame KeyTime=”0:0:1” Value=”10”/>
 </DoubleAnimationUsingKeyFrames>

 <!-- Rotate right-side up -->
 <DoubleAnimation BeginTime=”0:0:3” Duration=”0:0:1” To=”0”
 Storyboard.TargetName=”btnMover”
 Storyboard.TargetProperty=”RenderTransform.Angle”/>

 <!-- Move Up -->
 <DoubleAnimationUsingKeyFrames BeginTime=”0:0:4”
 Storyboard.TargetName=”btnMover”
 Storyboard.TargetProperty=”(Canvas.Top)”>
 <LinearDoubleKeyFrame KeyTime=”0:0:1” Value=”10”/>
 </DoubleAnimationUsingKeyFrames>
</Storyboard>

RovingButtonMixedKeyFrames

254 ❘ ChaptEr 14 EvEnt triggErs and animation

The Button starts in the upper left, moves horizontally along the solid line, jumps discretely across
the dashed line, and follows the circular path, rotating to match the curve’s angle. The path leaves
the Button upside down.

The Button then jumps across the bottom dashed line and moves horizontally to the left until it
reaches the left edge of the form. It then rotates in place until it is right-side up, and finally moves up
to its original position.

Special Cases
WPF provides the following animation types for most data types:

Simple (linear) animation➤➤

Key frame animation with linear key frames➤➤

Key frame animation with spline key frames➤➤

Key frame animation with discrete key frames➤➤

It also provides path animation for the data types Double, Matrix, and Point.

A few data types don’t provide the standard animation types, however, generally because these
animation types don’t make sense. For example, it doesn’t really make sense to animate a String
using linear interpolation or a spline. How would you define a String value that is halfway between
“Time” and “banana?”

For the String, Boolean, and Char data types, WPF provides only discrete animation classes.

The AnimatedText example program shown in Figure 14-10
demonstrates string animation. When you click on the Quote but-
ton, the program displays the quotation text a couple of letters at
a time. After the quotation is visible, Winston Churchill’s name
gradually fades in at the bottom.

The following code shows the Storyboard that the AnimatedText
program uses to display its quote and attribution:

<Storyboard x:Key=”sbShowQuote”>
 <!-- Display the quote -->
 <StringAnimationUsingKeyFrames
 Storyboard.TargetName=”lblQuote”
 Storyboard.TargetProperty=”Content”>
 <DiscreteStringKeyFrame KeyTime=”0:0:0.1” Value=”A j”/>
 <DiscreteStringKeyFrame KeyTime=”0:0:0.2” Value=”A jok”/>
 <DiscreteStringKeyFrame KeyTime=”0:0:0.3” Value=”A joke i”/>
 <DiscreteStringKeyFrame KeyTime=”0:0:0.4” Value=”A joke is a”/>
 <DiscreteStringKeyFrame KeyTime=”0:0:0.5” Value=”A joke is a ve”/>
 <DiscreteStringKeyFrame KeyTime=”0:0:0.6” Value=”A joke is a very”/>

 ... Other key frames omitted ...

 <DiscreteStringKeyFrame KeyTime=”0:0:1.2”
 Value=”A joke is a very serious thing.”/>

FigurE 14-10

Controlling Storyboards ❘ 255

 </StringAnimationUsingKeyFrames>

 <!-- Display the attribution -->
 <DoubleAnimation BeginTime=”0:0:2” Duration=”0:0:1” To=”1”
 Storyboard.TargetName=”lblBy”
 Storyboard.TargetProperty=”Opacity”/>
</Storyboard>

AnimatedText

The DiscreteStringKeyFrame class is easy to use, although it’s rather tedious because you need to
specify every change to the String individually.

ControLLing storyBoarDs

In addition to the BeginStoryboard class, which starts a Storyboard running, WPF provides sev-
eral other objects for controlling Storyboards. The most useful of these classes are:

PauseStoryboard➤➤ — Pauses a Storyboard.

ResumeStoryboard➤➤ — Resumes a paused Storyboard.

SeekStoryboard➤➤ — Moves the Storyboard to a specific position in its timeline.

StopStoryboard➤➤ — Stops a Storyboard. This resets properties to their original values.

RemoveStoryboard➤➤ — Stops a Storyboard and frees its resources.

Many of the previous examples in this chapter demonstrate most of these classes. For example,
the RovingButtonMixedKeyFrames example program shown in Figure 14-9 provides Start, Pause,
Resume, Stop, and Remove buttons to let you control its Storyboard.

The following code shows how those example programs manage their Buttons:

<EventTrigger RoutedEvent=”Button.Click” SourceName=”btnStart”>
 <EventTrigger.Actions>
 <BeginStoryboard Name=”begSbMoveButton”
 Storyboard=”{StaticResource sbMoveButton}”/>
 </EventTrigger.Actions>
</EventTrigger>

<EventTrigger RoutedEvent=”Button.Click” SourceName=”btnPause”>
 <EventTrigger.Actions>
 <PauseStoryboard BeginStoryboardName=”begSbMoveButton”/>
 </EventTrigger.Actions>
</EventTrigger>

<EventTrigger RoutedEvent=”Button.Click” SourceName=”btnResume”>
 <EventTrigger.Actions>
 <ResumeStoryboard BeginStoryboardName=”begSbMoveButton”/>
 </EventTrigger.Actions>
</EventTrigger>

<EventTrigger RoutedEvent=”Button.Click” SourceName=”btnStop”>

256 ❘ ChaptEr 14 EvEnt triggErs and animation

 <EventTrigger.Actions>
 <StopStoryboard BeginStoryboardName=”begSbMoveButton”/>
 </EventTrigger.Actions>
</EventTrigger>

<EventTrigger RoutedEvent=”Button.Click” SourceName=”btnRemove”>
 <EventTrigger.Actions>
 <RemoveStoryboard BeginStoryboardName=”begSbMoveButton”/>
 </EventTrigger.Actions>
</EventTrigger>

RovingButtonMixedKeyFrames

When you click on the Start button, the program uses a BeginStoryboard object to start the
Storyboard sbMoveButton running. The BeginStoryboard object has attribute
Name = begSbMoveButton. The other objects use this name to control the Storyboard.

When you click on the Pause button, the program uses a PauseStoryboard object, passing it
the BeginStoryboard’s Name so it knows which instance of the Storyboard to pause. The other
Buttons work similarly.

MEDia anD tiMELinEs

The BeginStoryboard, PauseStoryboard, and other Storyboard control classes are really just
action wrappers — objects that perform actions rather than representing “physical” objects such
as buttons, labels, and grids. Another useful action wrapper is SoundPlayerAction, which plays an
audio file.

The SoundEvents example program uses SoundPlayerAction objects in the following code to play
sounds when the user clicks on one button or moves the mouse over another:

<Button Content=”Click”>
 <Button.Triggers>
 <EventTrigger RoutedEvent=”Button.Click”>
 <EventTrigger.Actions>
 <SoundPlayerAction Source=”tada.wav”/>
 </EventTrigger.Actions>
 </EventTrigger>
 </Button.Triggers>
</Button>
<Button Content=”Hover”>
 <Button.Triggers>
 <EventTrigger RoutedEvent=”Button.MouseEnter”>
 <EventTrigger.Actions>
 <SoundPlayerAction Source=”WindowsRingin.wav”/>
 </EventTrigger.Actions>
 </EventTrigger>
 </Button.Triggers>
</Button>

SoundEvents

Media and Timelines ❘ 257

You can also play a sound inside a Storyboard. To do that, add a MediaElement control to the win-
dow. Then, inside the Storyboard, add a MediaTimeline object, setting its Storyboard.TargetName
property to the MediaElement and its Source property to the name of the sound file you want to play.

The RepeatingSound example program uses the following Storyboard to play a sound every time a
button passes a certain point in an animation. The MediaTimeline object plays the sound in the file
WindowsDefault.wav using the MediaElement named medDing.

<Storyboard x:Key=”sbMoveButton” RepeatBehavior=”Forever”>
 <DoubleAnimationUsingPath Duration=”0:0:2”
 Storyboard.TargetName=”btnMover”
 Storyboard.TargetProperty=”(Canvas.Left)”
 Source=”X”
 PathGeometry=”{StaticResource pathMove}”/>
 <DoubleAnimationUsingPath Duration=”0:0:2”
 Storyboard.TargetName=”btnMover”
 Storyboard.TargetProperty=”(Canvas.Top)”
 Source=”Y”
 PathGeometry=”{StaticResource pathMove}”/>
 <MediaTimeline BeginTime=”0:0:1” Source=”WindowsDefault.wav”
 Storyboard.TargetName=”medDing”/>
</Storyboard>

RepeatingSound

MuLtipLE sounDs

I’ve had bad luck trying to play more than one sound in the same storyboard.
Multiple MediaTimelines seem to interfere with each other. Perhaps it’s a
problem with the media player. If you get that working, e-mail me at
RodStephens@vb-helper.com and let me know the secret.

Unfortunately, you cannot play media files in a Storyboard that has its AutoReverse property set
to True. (Presumably, WPF doesn’t want to try to reverse the media file.)

One way around this restriction is to build a storyboard that explicitly reverses the actions it takes
so it can reverse property animations while not trying to reverse the media file.

A second approach is to make two storyboards or two timelines within the same storyboard. Multiple
timelines let different parts of the storyboard run independently, possibly overlapping each other.

The BouncingBall example program shown in Figure 14-11 uses the following Storyboard to make
its red ball bounce up and down while playing a sound effect each time the ball hits the “ground.”

<!-- One Storyboard to rule them all. -->
<Storyboard x:Key=”sbBounce” RepeatBehavior=”Forever”>
 <!-- Play the sound after 1 second. -->
 <ParallelTimeline BeginTime=”0:0:0”>
 <MediaTimeline BeginTime=”0:0:1” Source=”boing.wav”
 Storyboard.TargetName=”medBoing”/>

258 ❘ ChaptEr 14 EvEnt triggErs and animation

 </ParallelTimeline>

 <!-- Move the ball and its shadow. -->
 <ParallelTimeline BeginTime=”0:0:0” AutoReverse=”True”>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName=”ellBall”
 Storyboard.TargetProperty=”(Canvas.Top)”>
 <SplineDoubleKeyFrame KeyTime=”0:0:1”
 KeySpline=”0.5,0 1,1”
 Value=”120”/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName=”ellShadow”
 Storyboard.TargetProperty=”Opacity”>
 <SplineDoubleKeyFrame KeyTime=”0:0:1”
 KeySpline=”0.5,0 1,1”
 Value=”1”/>
 </DoubleAnimationUsingKeyFrames>
 </ParallelTimeline>
</Storyboard>

BouncingBall

The Storyboard contains two ParallelTimeline
objects that run independently. The first waits
1 second until the ball is touching the “ground”
and then uses a MediaTimeline object to play the
sound effect.

The second ParallelTimeline contains two
DoubleAnimationUsingKeyframes objects, one to
control the ball’s Canvas.Top property and one to
control the shadow’s Opacity. As the ball’s anima-
tion moves the ball downward, the shadow’s ani-
mation makes the shadow more opaque. When the
animations end, the ball is touching the “ground,”
and the shadow is fully opaque.

Both animations use similar spline key frames with control points set so that the controlled property
value starts changing slowly and speeds up at the end of the animation.

The ParallelTimeline containing the two animations has its AutoReverse property set to True,
so after the ball reaches the “ground,” it bounces back up to its starting position.

BaD BounCEs

Recall that an animation that doesn’t set its From property starts animating its
property from its current value, whatever that may be. This can lead to some unex-
pected and amusing effects.

FigurE 14-11

continues

Animation without Storyboards ❘ 259

For example, run the BouncingBall program and click on the Start button. When
the ball is almost to the “ground,” click on the Pause button to freeze the anima-
tions. If you now click on the Resume button, the ball continues falling as usual.
However, if you click on the Start button, the animations start running from the
ball’s current position. Because the animations don’t set their From values, the ani-
mations make the ball bounce up and down from whatever height it had when you
paused it. The result is a series of very slow, small bounces. (You can click on the
Stop button to reset the program.)

You should always check your animations to see what happens when they are inter-
rupted and to decide whether the results are acceptable.

aniMation Without storyBoarDs

XAML code can only run animations with storyboards,
but code-behind can use animations without a story-
board. The basic idea is to create an animation object
and set its properties or give it key frames as appropri-
ate. Then using the control that you want to animate,
call the control’s BeginAnimation method, passing it
the property that you want to animate and the anima-
tion object.

The AnimationWithoutStoryboards example program
shown in Figure 14-12 uses animations built in code-
behind to display a ball bouncing off walls. Click on the
ball (or press [Alt]+F) to close the program.

The AnimationWithoutStoryboards program uses the following C# code to build and start its ani-
mations. (You can download this code or a Visual Basic version on the book’s web site.)

// Start the animation.
private void Window_Loaded(object sender, RoutedEventArgs e)
{
 // Get geometry info.
 double ball_wid = ellBall.ActualWidth;
 double ball_hgt = ellBall.ActualHeight;
 int max_x = (int)(canTable.ActualWidth - ball_wid);
 int max_y = (int)(canTable.ActualHeight - ball_hgt);

 // Set the ball’s initial position.
 Random rand = new Random();
 double x = rand.Next(0, max_x);
 double y = rand.Next(0, max_y);
 Canvas.SetLeft(ellBall, x);
 Canvas.SetTop(ellBall, y);

 // Make animations.

FigurE 14-12

 (continued)

260 ❘ ChaptEr 14 EvEnt triggErs and animation

 const double TRANSIT_TIME = 1;
 DoubleAnimationUsingKeyFrames x_animation =
 new DoubleAnimationUsingKeyFrames();
 x_animation.RepeatBehavior = RepeatBehavior.Forever;
 double l_time = TRANSIT_TIME * x / max_x;
 double r_time = TRANSIT_TIME - l_time;
 // To right edge.
 x_animation.KeyFrames.Add(
 new LinearDoubleKeyFrame(
 max_x,
 KeyTime.FromTimeSpan(
 TimeSpan.FromSeconds(r_time))));
 // Back to left edge.
 x_animation.KeyFrames.Add(
 new LinearDoubleKeyFrame(
 0,
 KeyTime.FromTimeSpan(
 TimeSpan.FromSeconds(r_time + TRANSIT_TIME))));
 // Back to start.
 x_animation.KeyFrames.Add(
 new LinearDoubleKeyFrame(
 x,
 KeyTime.FromTimeSpan(
 TimeSpan.FromSeconds(r_time + TRANSIT_TIME + l_time))));

 DoubleAnimationUsingKeyFrames y_animation =
 new DoubleAnimationUsingKeyFrames();
 y_animation.RepeatBehavior = RepeatBehavior.Forever;
 double t_time = TRANSIT_TIME * y / max_y;
 double b_time = TRANSIT_TIME - t_time;
 // To bottom edge.
 y_animation.KeyFrames.Add(
 new LinearDoubleKeyFrame(
 max_y,
 KeyTime.FromTimeSpan(
 TimeSpan.FromSeconds(b_time))));
 // Back to top edge.
 y_animation.KeyFrames.Add(
 new LinearDoubleKeyFrame(
 0,
 KeyTime.FromTimeSpan(
 TimeSpan.FromSeconds(b_time + TRANSIT_TIME))));
 // Back to start.
 y_animation.KeyFrames.Add(
 new LinearDoubleKeyFrame(
 y,
 KeyTime.FromTimeSpan(
 TimeSpan.FromSeconds(b_time + TRANSIT_TIME + t_time))));

 // Apply the animations.
 ellBall.BeginAnimation(Canvas.LeftProperty, x_animation);
 ellBall.BeginAnimation(Canvas.TopProperty, y_animation);
}

AnimationWithoutStoryboards

Easy Animations ❘ 261

The code first gathers some geometry information. It then gives the ball a random position on the
Canvas. (Notice how the program uses the Canvas class’s SetLeft and SetTop methods to set the
values of the ball’s Canvas.Left and Canvas.Top attached properties.)

Next the program creates a Double AnimationUsingKeyframes object to manage the ball’s X coor-
dinate and sets its RepeatBehavior to Forever. It calculates the time the ball should spend moving
to the left and right of its initial position. The code then creates three LinearDoubleKeyframe
objects to make the ball move to the right edge, back to the left edge, and then back to its starting
position. (Note that the key times are cumulative so, e.g., the key times might be 0:0:0.25,
0:0:1.25, and 0:0:2.)

The code then repeats these steps to make an animation for the ball’s Y coordinate.

Finally, the code calls the ball Ellipse’s BeginAnimation method, passing it the properties it should ani-
mate and the corresponding animation objects. Notice how the code uses the Canvas class’s LeftProperty
and TopProperty values to identify the Ellipse’s attached Canvas.Left and Canvas.Top properties.

Using animation, storyboard, key frame, and other classes, your code-behind can build any anima-
tion that you can make using XAML.

Easy aniMations

Building animations can be a tedious business. The code is long and deeply nested for even simple
animations. For example, the JumpingButton example program uses the following code to build one
of the simplest animations possible, modifying a single Button property to make the Button move
up and then back to its starting position.

<Button Content=”Jump!” Width=”100” Height=”40”
 Canvas.Top=”65” Canvas.Left=”95”>
 <Button.Triggers>
 <EventTrigger RoutedEvent=”Button.Click”>
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation To=”10” Duration=”0:0:0.25”
 AutoReverse=”True”
 Storyboard.TargetProperty=”(Canvas.Top)”/>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
 </Button.Triggers>
</Button>

JumpingButton

If you’ve read this chapter, you should be able to understand this code without too much trouble, but
it is 16 lines long and uses 6 levels of nested code. More complicated animations can be quite involved
and confusing.

262 ❘ ChaptEr 14 EvEnt triggErs and animation

One of the most useful features of Expression Blend is its ability to build animations for you. Simply
open a Storyboard and change control properties at various times. Expression Blend keeps track of
the property values at different times and builds a complete Storyboard for you.

This technique is particularly useful for animating complex properties like the colors used in a gradient
brush. You may want to edit the result manually, but at least Expression Blend can get you started.

For more information on using Expression Blend to build Storyboards, see the section “Storyboards”
in Chapter 3. You can also consult the online help, particularly the Expression Blend web pages for
animation at msdn.microsoft.com/cc294924.aspx and the page “Create, Modify, or Delete a
Storyboard” at msdn.microsoft.com/cc295300.aspx.

suMMary

This chapter explains event triggers. It shows how you can use event triggers to execute storyboards.
It explains how you can use property triggers to execute storyboards before and after a property
attains a certain value.

This chapter also explains storyboards and the animations that they perform. It shows how to build
storyboards in a control’s property elements, in a style, or in resources.

Finally, this chapter provided several examples demonstrating various animation techniques such as
using key frames, using spline key frames, building path-following animations, and playing sounds.

All of these techniques give new features to existing controls. They allow a control to perform actions
that are not always part of its repertoire, for example, allowing a Button to change its color, a Rectangle
to change its size, or one control to modify the properties of another.

The templates described in the next chapter allow you to change a control’s behavior at a more
fundamental level. Whereas the triggers and animations described in this chapter let you add new
actions to a control, templates let you redefine the control’s basic behavior, for example, letting you
change the way a Button responds when the mouse moves over it.

Templates
Properties and styles determine a control’s appearance and behavior. For example, a Slider
control’s TickFrequency, TickPlacement, Background, and Width properties help determine
its appearance, while its Minimum, Maximum, LargeChange, and IsEnabled properties help
determine its behavior.

In contrast, templates determine a control’s structure. They determine what components make
up the control and how those components interact to provide the control’s features.

This chapter describes templates in general terms and shows how you can build templates of
your own to change the way existing controls work.

TemplaTe Overview

If you look closely at Figure 15-1, you can see that
a Slider control has a bunch of parts including:

A border➤➤

Tick marks➤➤

A background➤➤

Clickable areas on the background (basically anywhere between the top of the control ➤➤

and its tick marks vertically) that change the current value

A Thumb indicating the current value that you can drag back and forth➤➤

Selection indicators (the little black triangles) that indicate a selected range➤➤

These features are provided by the pieces that make up the Slider. By default, a Slider is made
up of a multitude of Border, Grid, TickBar, Track, RepeatButton, Rectangle, Thumb, Canvas,
and Path controls, together with many brushes, transformations, styles, and triggers.

A template determines what the pieces are that make up a control. It determines the control’s
components together with their styles, triggers, and everything else that is needed by the con-
trol. As an analogy, consider a car. Its properties are easily changed — things like its color,

Figure 15-1

15

264 ❘ ChapTer 15 TemplaTes

upholstery, and vanity plate (e.g., WPF FAN). Its template defines the things it is made of — for
example, its chassis, number of doors, and engine.

No matter what combination of properties and components you pick, however, it has certain stan-
dard car-like features such as turning on, accelerating, decelerating, turning off, and costing way
too much to insure. As you drive down the street, you will see hundreds of combinations, but they
are all easily recognizable as cars.

[OK, there may be a few that are hard to recognize such as the MULE robotic logistics vehicle
(www.botmag.com/articles/mule.shtml), the Terrafugia Transition flyable-car/roadable-plane
(www.theregister.co.uk/2008/07/29/terrafugia_transition_on_show_oshkosh), or the
Toyota PM (www.toyota.com/concept-vehicles/pm.html), which looks more like a Star Wars
pod racer than a car, but I have yet to see any of these on the road.]

Note that the components influence the behavior of the car. A hybrid has great fuel efficiency but
slow acceleration, while a 12-cylinder sports car has great acceleration but poor mileage. Similarly,
the components that make up a control can change the way it behaves.

Because the controls in the template determine the control’s appearance, WPF controls are some-
times called lookless. By creating your own template for an existing control such as a Button or
CheckBox, you can give the control a new appearance and behavior.

wOrk warning

Building a template can be a lot of work. When you build a template, you take
responsibility for most of the control’s behavior. You cannot make a Button
use a diamond-shaped polygon for its surface and expect it to automatically do
everything that a normal Button does. If you decide to use a template to make a
diamond-shaped Button, then you need to build most of the Button’s behaviors
yourself.

The Button still provides some very basic features such as raising a Click event
when the user clicks it, but you need to handle things such as changing the Button’s
appearance when the mouse is over it, when the user presses the mouse, when the
mouse moves off it, and so forth.

COnTenTpresenTer

If you’re assembling a new control from components of your own choosing, how do you handle the
essential features of the control? For example, if you’re building a template for Label controls, per-
haps displaying the text inside a Border with a beveled edge, how do you know what text to display?

The answer is the ContentProvider. The ContentProvider is an object that WPF provides to dis-
play whatever it is that the control should display. You can place the ContentProvider in whatever
control hierarchy you build for the template, and it will display the content.

Template Binding ❘ 265

For example, the following code shows an extremely simple Label template:

<Window.Resources>
 <ControlTemplate x:Key=”temSimpleLabel” TargetType=”Label”>
 <Border BorderBrush=”Red” BorderThickness=”1”>
 <ContentPresenter/>
 </Border>
 </ControlTemplate>
</Window.Resources>

SimpleLabelTemplate

The template’s name is temSimpleLabel, and it applies to Label controls. The template contains a
Border control that displays a red border and that holds the ContentPresenter.

The following code shows how the program might use this template. This code creates a Label. Its
last attribute sets the control’s Template property to the previously created template.

<Label Margin=”5” Content=”No Template”
 HorizontalContentAlignment=”Right”
 VerticalContentAlignment=”Center”
 BorderBrush=”Yellow” BorderThickness=”2”
 Foreground=”{StaticResource brForeground}”
 Background=”{StaticResource brBackground}”
 Template=”{StaticResource temBorderLabel}”
/>

SimpleLabelTemplate

The SimpleLabelTemplate example program shown in
Figure 15-2 displays two Labels. The one on the left
uses no template, while the one on the right uses the
temSimpleLabel template.

TemplaTe Binding

If you compare the two Labels in Figure 15-2, you’ll see that even this simple example has some
potential problems. Because the template’s Border control includes explicit values for its BorderBrush
and BorderThickness properties, it overrides any values set in the code that creates the Label. The
Border control also doesn’t specify a Background, so it uses its default transparent background.

This means the templated control doesn’t display the correct background or border. It also doesn’t
honor the requested HorizontalContentAlignment and VerticalContentAlignment values.

Fortunately, a template can learn about some of the properties set on the client control by using a
template binding. For example, the following code fragment sets the Background property for a
piece of the template to the value set for the control’s Background property:

Background=”{TemplateBinding Background}”

Figure 15-2

266 ❘ ChapTer 15 TemplaTes

Template bindings let the template honor values set for the control where appropriate while overrid-
ing other values to achieve the appearance you desire.

The following code shows a better version of the Label template that honors several of the control’s
background and foreground properties:

<ControlTemplate x:Key=”temBetterLabel” TargetType=”Label”>
 <Border
 Background=”{TemplateBinding Background}”
 BorderBrush=”{TemplateBinding BorderBrush}”
 BorderThickness=”{TemplateBinding BorderThickness}”>
 <ContentPresenter Margin=”4”
 HorizontalAlignment=”{TemplateBinding HorizontalContentAlignment}”
 VerticalAlignment=”{TemplateBinding VerticalContentAlignment}”/>
 </Border>
</ControlTemplate>

BetterLabelTemplate

In this template, the Border control mimics the client control’s Background, BorderBrush,
and BorderThickness properties. The ContentPresenter sets its HorizontalAlignment
and VerticalAlignment properties to the client control’s HorizontalContentAlignment and
VerticalContentAlignment values so that the result is properly aligned within the control.

The BetterLabelTemplate example program shown in
Figure 15-3 uses this template to display a Label that
looks much more like one that has no template.

So now that you can create a template Label that looks
like a regular Label, what’s the point? If you just want a
Label that looks like a Label, use a Label!

The point is that you don’t have to copy every feature of the original control. You can add bitmap
effects, rotate the label, insert an image, and make other changes. For example, the following sec-
tion describes two Label templates that add features not provided by the normal Label control.

Changing COnTrOl appearanCe

Of course, you won’t always want your template to match exactly the appearance of a control with-
out a template. If you did, you wouldn’t bother going to all the trouble of making a template.

Your template will override properties, implement new behaviors, and build the template from con-
trols other than those used by the original control to provide a unique experience.

The InterestingLabelTemplates example program
shown in Figure 15-4 demonstrates two more interest-
ing Label templates. The first draws a double border
around its text if the Label specifies BorderBrush and
BorderThickness properties. The second can display
text wrapped across multiple lines.

Figure 15-3

Figure 15-4

Changing Control Appearance ❘ 267

The following code shows how the InterestingLabelTemplates program displays its Label with a
double border:

<ControlTemplate x:Key=”temDoubleBorderLabel” TargetType=”Label”>
 <Border Background=”{TemplateBinding Background}”
 BorderBrush=”{TemplateBinding BorderBrush}”
 BorderThickness=”{TemplateBinding BorderThickness}”>
 <Border Margin=”2” Background=”Transparent”
 BorderBrush=”{TemplateBinding BorderBrush}”
 BorderThickness=”{TemplateBinding BorderThickness}”>
 <ContentPresenter Margin=”2”
 HorizontalAlignment=”Center”
 VerticalAlignment=”{TemplateBinding VerticalContentAlignment}”/>
 </Border>
 </Border>
</ControlTemplate>

InterestingLabelTemplates

This template displays a Border control that matches the client control’s Background, BorderBrush,
and BorderThickness properties.

Inside that is another Border control with its Margin set to 2, so it sits inside the first Border. Its
Background is set to Transparent, so it doesn’t cover the background used by the outer Border,
although the inner Border also obeys the client’s BorderBrush and BorderThickness properties.

Finally, inside the inner Border, the ContentPresenter displays the client’s content as before.

The following code shows how the program displays its second Label with wrapped text:

<ControlTemplate x:Key=”temWrappedLabel” TargetType=”Label”>
 <Grid>
 <Border
 Background=”{TemplateBinding Background}”
 BorderBrush=”{TemplateBinding BorderBrush}”
 BorderThickness=”{TemplateBinding BorderThickness}”>
 <TextBlock Name=”txtbContent”
 Margin=”4”
 TextWrapping=”Wrap”
 Text=”{TemplateBinding ContentPresenter.Content}”/>
 </Border>
 </Grid>
</ControlTemplate>

InterestingLabelTemplates

This template displays a Border as before. The Border contains a TextBlock with
TextWrapping = True, so it wraps its content if necessary. The TextBlock’s Text property is
set to the ContentPresenter’s Content property.

268 ❘ ChapTer 15 TemplaTes

Note that this only works if the ContentPresenter is trying to display text. For example, if you
build the client Label control so that it contains a Button as shown in the following code, then the
TextBlock doesn’t display anything:

<Label Margin=”5”
 HorizontalContentAlignment=”Right”
 VerticalContentAlignment=”Center”
 BorderBrush=”Yellow” BorderThickness=”2”
 Foreground=”{StaticResource brForeground}”
 Background=”{StaticResource brBackground}”
 Template=”{StaticResource temWrappedLabel}”
>
 <Button Content=”Click Me”/>
</Label>

InterestingLabelTemplates

TemplaTe evenTs

The Label control used in the previous example is one of the simplest controls. It mostly just sits
there looking pretty without bothering to interact with the user.

But more complicated controls like Button, CheckBox, and Slider must perform all sorts of stunts
as the mouse moves, presses, drags, and releases over them.

To make a template control respond to events, you can add property and event triggers to the tem-
plate much as you added them to styles in Chapters 13 and 14.

In addition to events caused by user actions such as moving or pressing the mouse, controls must
respond to changes in state. For example, although a Label mostly just sits around doing nothing, it
should also change its appearance when it is disabled. If you don’t need to display complex animations,
then it can simply respond with Setters in a property
Trigger that runs when the IsEnabled property is False.

The DisabledLabelTemplate example program shown in
Figure 15-5 uses a template that gives a disabled Label a
distinctive appearance.

The following code shows the template that gives the
disabled Label its appearance:

<ControlTemplate x:Key=”temWrappedLabel” TargetType=”Label”>
 <Grid>
 <Border Name=”brdMain”
 Background=”{TemplateBinding Background}”
 BorderBrush=”{TemplateBinding BorderBrush}”
 BorderThickness=”{TemplateBinding BorderThickness}”>
 <TextBlock Name=”txtbContent”
 Margin=”4”
 TextWrapping=”Wrap”
 Text=”{TemplateBinding ContentPresenter.Content}”/>
 </Border>
 <Canvas Name=”canDisabled” Opacity=”0”>

Figure 15-5

Template Events ❘ 269

 <Canvas.Background>
 <LinearGradientBrush StartPoint=”0,0” EndPoint=”3,3”
 MappingMode=”Absolute”
 SpreadMethod=”Repeat”>
 <GradientStop Color=”LightGray” Offset=”0”/>
 <GradientStop Color=”Black” Offset=”1”/>
 </LinearGradientBrush>
 </Canvas.Background>
 </Canvas>
 </Grid>
 <ControlTemplate.Triggers>
 <Trigger Property=”IsEnabled” Value=”False”>
 <Setter TargetName=”canDisabled”
 Property=”Opacity” Value=”0.5”/>
 <Setter TargetName=”txtbContent”
 Property=”Foreground” Value=”Gray”/>
 </Trigger>
 </ControlTemplate.Triggers>
</ControlTemplate>

DisabledLabelTemplate

This version of the Template starts with a Grid control that contains a Border and a Canvas. The
Border holds a TextBlock that displays the control’s ContentPresenter as before. The Canvas cov-
ers the Border, is filled with a linear gradient brush, and initially has Opacity = 0 so it is invisible.

The template’s Triggers section contains a property trigger that activates when the control’s IsEnabled
property is False. When that happens, the trigger sets the Canvas’s Opacity property to 0.5 so it par-
tially obscures the control’s content. It also changes the TextBlock’s Foreground to Gray.

TemplaTe TriCks 1

Using a control with Opacity = 0 is a common and particularly useful template
trick. The template can use it to display something new, cover something old, or, as
in this example, partially obscure whatever lies behind it.

You can use a translucent white control to wash out whatever is behind, a translu-
cent black control to darken whatever is behind, or an opaque control to cover the
background controls completely.

TemplaTe TriCks 2

It’s easier for triggers to manipulate the template’s controls and other objects if you
give those objects names. In this example, the TextBlock is named txtbContent
and the translucent Canvas is named canDisabled, so it’s easy for the triggers to
control them. If you’ll need to animate it, give it a name.

The following sections describe some much more complex templates that change the way Buttons work.

270 ❘ ChapTer 15 TemplaTes

glass BuTTOn

The GlassButton example program shown in Figure 15-6 uses a template to give its buttons a glassy
appearance.

Figure 15-6

The disabled button on the left looks washed-out and doesn’t respond to the user.

The second button labeled Default has a different border from that of the other buttons. If no other
button has the focus when the user presses the [Enter] key, that Button fires its Click event. In
Figure 15-6, the TextBox has the focus, so pressing the [Enter] key will fire the default Button.

designaTed deFaulT

Just because a Button’s IsDefault property is True, that doesn’t mean that
the Button always fires when the user presses [Enter]. If the focus is on another
Button, then the [Enter] key fires that Button instead of the default.

Also, when the default Button has the focus, it behaves like any other Button with
the focus, so it is not acting as the default Button at that time.

When a Button is acting as the default, it is said to be defaulted. You (or, more
importantly, your triggers) can see whether a Button is defaulted by checking its
IsDefaulted property.

Figure 15-7 shows the program when the mouse is over Button 3. The button under the mouse
becomes less transparent. Notice that the focus is still in the TextBox (you can see the caret in
Figure 15-7), so the default button still shows its distinctive border.

Figure 15-7

Glass Button ❘ 271

Figure 15-8 shows the program when the user presses the mouse down on Button 3.

Figure 15-8

At this point, the pressed button is opaque. Pressing the button also moves focus to that button.
Because focus is now on Button 3, the default button is no longer defaulted. In fact, no button is
defaulted right now. Button 3 has the focus so it will fire if the user presses [Enter] but it is not
defaulted so it won’t display the default border even after the user releases the mouse.

If you drag the mouse off the button while it is still pressed, the button returns to its focused
“mouse over” appearance. If you then release the mouse, no mouse click occurs.The following
three sections describe the glass button’s Template. The first describes the Template at a high level,
explaining the controls the Template uses and how they fit together. The two sections that follow
describe the Template’s Styles and Triggers.

This program is fairly long so the complete code isn’t shown in these sections. You
can download the example program from the book’s web site to see the details.

glass Button Template Overview
The following code snippet shows the Template’s main sections and the controls that it uses.

<ControlTemplate x:Key=”temGlassButton” TargetType=”Button”>
 <ControlTemplate.Resources>
 ... Template Styles omitted here...
 </ControlTemplate.Resources>

 <Grid Name=”grdMain” ClipToBounds=”True” Opacity=”0.5”
 Width=”{TemplateBinding Width}”
 Height=”{TemplateBinding Height}”>
 <Rectangle Name=”rectMain”/>

 <ContentPresenter
 VerticalAlignment=”Center”
 HorizontalAlignment=”Center”/>
 </Grid>

 <!-- Behaviors. -->

272 ❘ ChapTer 15 TemplaTes

 <ControlTemplate.Triggers>
 ... Template triggers omitted here...
 </ControlTemplate.Triggers>
</ControlTemplate>

GlassButton

The Template’s controls are relatively simple. The Template contains a Grid that holds a
Rectangle and the ContentPresenter. The ContentPresenter’s attributes center it on the
Button, but all of the other interesting properties are set in the Template’s Styles.

glass Button styles
The following code shows the Styles defined in the template’s Resources section. The Button looks
differently when it is in the three states (normal, defaulted, and disabled). To make the code easier to
understand, the template uses three different Styles for those states. The code also includes a base
Style from which the others inherit.

<!-- Base style that sets corner radii and stroke thickness. -->
<Style x:Key=”styBase” TargetType=”Rectangle”>
 <Setter Property=”RadiusX” Value=”20”/>
 <Setter Property=”RadiusY” Value=”20”/>
 <Setter Property=”StrokeThickness” Value=”5”/>
</Style>

<!-- Style for “normal” status. -->
<Style TargetType=”Rectangle”
 BasedOn=”{StaticResource styBase}”>
 <Setter Property=”Fill”>
 <Setter.Value>
 <LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Color=”DarkGreen” Offset=”0”/>
 <GradientStop Color=”LightGreen” Offset=”1”/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 <Setter Property=”Stroke”>
 <Setter.Value>
 <LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Color=”DarkGreen” Offset=”1”/>
 <GradientStop Color=”LightGreen” Offset=”0”/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
</Style>

<!-- Style when IsDefaulted. -->
<Style x:Key=”styIsDefaulted” TargetType=”Rectangle”
 BasedOn=”{StaticResource styBase}”>
 <Setter Property=”Fill”>
 <Setter.Value>
 <LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Color=”DarkGreen” Offset=”0”/>

Glass Button ❘ 273

 <GradientStop Color=”LightGreen” Offset=”1”/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 <Setter Property=”Stroke”>
 <Setter.Value>
 <LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Color=”DarkGreen” Offset=”1”/>
 <GradientStop Color=”Black” Offset=”0”/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
</Style>

<!-- Style when disabled. -->
<Style x:Key=”styDisabled” TargetType=”Rectangle”
 BasedOn=”{StaticResource styBase}”>
 <Setter Property=”Opacity” Value=”0.75”/>
 <Setter Property=”Fill”>
 <Setter.Value>
 <LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Color=”Gray” Offset=”0”/>
 <GradientStop Color=”White” Offset=”1”/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 <Setter Property=”Stroke”>
 <Setter.Value>
 <LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Color=”Gray” Offset=”1”/>
 <GradientStop Color=”White” Offset=”0”/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
</Style>

GlassButton

The first Style is a base Style that sets the Rectangle’s RadiusX, RadiusY, and StrokeThickness
properties. These properties are the same for all of the Button’s states.

Since the Button’s “normal” Style is an unnamed Rectangle Style, it always applies unless some
other Style overrides it. It sets the control’s Fill property to a LinearGradientBrush that shades
from dark green to light green. The Style then sets the Stroke property to a brush that does the
opposite: It shades from light green to dark green. (This remarkably simple technique gives the
Button an easy 3D appearance.)

The “defaulted” Style uses the same Fill property but makes the Stroke brush shade from dark
green to black. (The difference is actually fairly subtle. You might want to experiment with larger
changes, perhaps adding a completely black outline.)

The “disabled” Style sets the Rectangle’s Opacity property to 0.75, so it is translucent. It also
changes the Rectangle’s Fill and Stroke properties to shade between gray and white.

274 ❘ ChapTer 15 TemplaTes

glass Button Triggers
The following code shows the Template’s Triggers. In response to events and changes in the con-
trol’s properties, the Triggers set new property values and apply the Styles.

<!-- Mouse over. -->
<Trigger Property=”IsMouseOver” Value=”True”>
 <Setter TargetName=”grdMain” Property=”Opacity”
 Value=”0.75”/>
</Trigger>

<!-- Focus. -->
<Trigger Property=”IsFocused” Value=”True”>
 <Setter TargetName=”grdMain” Property=”Opacity”
 Value=”0.75”/>
</Trigger>

<!-- Defaulted. -->
<Trigger Property=”IsDefaulted” Value=”True”>
 <Setter TargetName=”rectMain” Property=”Style”
 Value=”{StaticResource styIsDefaulted}”/>
</Trigger>

<!-- Pressed. This comes after Focus so it gets precedence. -->
<Trigger Property=”IsPressed” Value=”True”>
 <Setter TargetName=”grdMain” Property=”Opacity”
 Value=”1”/>
</Trigger>

<!-- Disabled. This comes last so it gets ultimate precedence. -->
<Trigger Property=”IsEnabled” Value=”False”>
 <Setter TargetName=”rectMain” Property=”Style”
 Value=”{StaticResource styDisabled}”/>
</Trigger>

GlassButton

When the control’s IsMouseOver property is True, the first trigger sets the Grid’s Opacity property
to 0.75. This is more opaque than the original value of 0.5, so the control becomes more solid.

When the control receives the focus, the second trigger also sets the Grid’s Opacity property to 0.75.

When the control’s IsDefaulted property is True, the next trigger sets the Rectangle’s Style to the
“defaulted” Style.

When the IsPressed property is True, the following trigger sets the Grid’s Opacity to 1, making it
fully opaque.

Finally, when the control’s IsEnabled property is False, the last trigger sets the Rectangle’s Style
to the “disabled” Style. The Button control automatically stops interacting with the user, so you
don’t need to worry about that.

Ellipse Button ❘ 275

impOrTanT Order

Notice that the order of the template’s triggers is important. Triggers that are
defined later are applied later — if two triggers are active at the same time, the sec-
ond trigger overrides the first.

In this example, the IsPressed trigger must come after the IsMouseOver trigger.
Otherwise, when the user pressed the mouse on the Button, the IsPressed trigger
would occur first. But at that point, since the mouse would be over the Button, the
IsMouseOver trigger would also apply and would override the IsPressed trigger
so that the user would never see the Button look pressed.

Similarly the IsEnabled trigger comes last so it overrides all other triggers. If the
button is disabled, it should never display any of the other appearances.

ellipse BuTTOn

The EllipseButton example program shown in Figure 15-9 uses a template to make an elliptical but-
ton that is very different from the glass button described in the preceding section.

Figure 15-9

The disabled button on the left is paler than the others and doesn’t respond to the user.

The defaulted button is brighter than the others and displays a yellow highlight along its border.

Figure 15-10 shows the program when the mouse is over Button 3. The button under the mouse is
even brighter than the defaulted button and displays a yellow glow under its text.

Figure 15-10

276 ❘ ChapTer 15 TemplaTes

It’s difficult to see, but the button under the mouse in Figure 15-10 also displays an extra white
highlight in its border roughly above the number 3. Every second, that highlight makes a trip
around the button’s circumference to draw the user’s attention to the button. It’s a small highlight,
so the effect is fairly subtle.

animaTiOn adviCe

Motion is one of the most attention-grabbing effects you can add to a program,
but it can also be the most distracting and annoying. A button that flashes bright
colors or continually changes size while the mouse is over it would really annoy
users. The moving highlight that the EllipseButton program displays is subtle so the
effect isn’t too bad, but be careful. Keep animations like this one subtle or make
them play only once — for example, when the mouse first enters the button, so
you don’t drive your users crazy. In extreme cases, rapidly flashing lights can even
induce seizures in some people so don’t use areas that flash brightly, particularly at
frequencies between 2 and 55 Hz. Better still, give users a way to disable these sorts
of animations.

Also note that users with special needs such as color vision deficiency or visual
impairment may not see subtle animations very well or at all. Don’t rely solely on
subtle animations to give the user information.

Figure 15-11 shows the program when the user presses the mouse down on a button.

Figure 15-11

When you press a button, its background shifts slightly, and it displays a larger glow under its text.

If you drag the mouse off the button while it is still pressed, the button returns to its focused
“mouse over” appearance. If you then release the mouse, no mouse click occurs.

The following two sections describe the ellipse button’s Template. The first section describes the
Template at a high level, explaining the controls the Template uses and how they fit together. The
next section describes the Template’s Triggers.

This program is fairly long so the complete code isn’t shown in these sections. You
can download the example program from the book’s web site to see the details.

Ellipse Button ❘ 277

ellipse Button Controls
Figure 15-12 shows the template’s control
structure. The controls’ labels are shown in
left-to-right and top-to-bottom order, so you
can tell which controls are defined by the
XAML code before the others. For example,
the “Inner surface” is defined in the XAML
code before the “Outer edge.”

A Grid (shown as a yellow dashed box) con-
tains all of the other controls, most of which are
Ellipses.

The inner surface is an ellipse filled with a
brush that shades from lime to green. It lies
beneath all of the other visible controls.

The outer edge is an ellipse with a trans-
parent center and a black edge. Because its
StrokeThickness is 10, it forms a wide band
around the control.

The edge highlight is an ellipse with Margin = 4 and StrokeThickness = 4, forming a band within
the outer edge. It has a transparent center. Its Stroke property is a gradient brush that shades from
lime on the left, to transparent in the middle, to lime again on the right; thus this ellipse makes two
highlights on the edge. Its BitmapEffect property is set to a BlurBitmapEffect object, so it’s fuzzy,
giving the edge a rounded, 3D appearance.

The sparkle highlight isn’t shown in Figure 15-12. It is similar to the green edge highlight except
that it’s white and only has one visible piece instead of two. It is only visible when the mouse is over
the control and it is animated.

The upper-left highlight is an ellipse filled with a brush that shades from white to transparent. Since
its Margin property is set to 12,12,20,20, it is offset a bit toward the upper left.

The lower-right highlight is shown in Figure 15-12 as a dashed ellipse because it has Opacity = 0,
making in invisible. It is displayed when the user presses the button. If you look closely, you can see
it in Figure 15-11. Like the upper-left highlight, this ellipse shades from white to transparent but is
centered with a Margin value of 15.

The ContentPresenter is centered in the Template’s Grid.

The final Template control is a light gray Ellipse that covers everything. Its Opacity is 0.3 and
thus it tones down the colors of all of the other controls.

Many of the controls have Opacity less than 1, so they are semitransparent. When the control
changes state — for example, when the mouse is over the button or the user presses the but-
ton — the template’s Triggers change the Opacity of the controls to give the Button a different
appearance.

Grid
Inner

surface
Outer
edge

Edge
highlight

Upper left
highlight

Lower right
highlight

ContentPresenter

Figure 15-12

278 ❘ ChapTer 15 TemplaTes

ellipse Button Triggers
When events occur, the template’s triggers make appropriate changes to the control’s appearance.
Mostly these changes involve changing Opacity values to make some controls more visible while
hiding others.

The IsMouseOver property trigger shown in the following code is the most interesting of the tem-
plate’s triggers:

<Trigger Property=”IsMouseOver” Value=”True”>
 <Setter TargetName=”ellUpperLeftHighlight” Property=”Opacity” Value=”1”/>
 <Setter TargetName=”ellCover” Property=”Opacity” Value=”0”/>
 <Setter TargetName=”cpContent” Property=”Opacity” Value=”1”/>
 <Setter TargetName=”cpContent” Property=”BitmapEffect”
 Value=”{StaticResource bmeMouseOver}”/>
 <Setter TargetName=”ellSparkle” Property=”Opacity” Value=”0.75”/>

 <!-- Start the sparkle animation. -->
 <Trigger.EnterActions>
 <BeginStoryboard Name=”begSparkle”>
 <Storyboard BeginTime=”0:0:1” RepeatBehavior=”Forever” >
 <DoubleAnimationUsingKeyFrames
 Duration=”0:0:2”
 Storyboard.TargetName=”transSparkle”
 Storyboard.TargetProperty=”Angle”>
 <LinearDoubleKeyFrame
 Value=”0” KeyTime=”0:0:0”/>
 <LinearDoubleKeyFrame
 Value=”360” KeyTime=”0:0:1”/>
 <LinearDoubleKeyFrame
 Value=”360” KeyTime=”0:0:2”/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </BeginStoryboard>
 </Trigger.EnterActions>

 <!-- Stop the sparkle animation. -->
 <Trigger.ExitActions>
 <StopStoryboard BeginStoryboardName=”begSparkle”/>
 </Trigger.ExitActions>
</Trigger>

EllipseButton

This code uses simple setters to do the following immediately when it starts:

Make the upper-left highlight fully opaque instead of translucent.➤➤

Make the light gray cover that tones down the other controls transparent so that all of the ➤➤

other controls have their full brightness.

Make the ➤➤ ContentPresenter fully opaque instead of translucent.

use in accordance with the Wrox Terms of Service and under US copyright as stated on this book’s copyright page. If you did not purchase this
copy/ please visit www.wrox.com to purchase your own copy.

Ellipse Button ❘ 279

Give the ➤➤ ContentPresenter an OuterGlowBitmapEffect (defined in the template’s
Resources section).

Make the white sparkle highlight visible with ➤➤ Opacity = 0.75. This makes the left edge
highlight brighter than the right edge highlight and prepares the sparkle for the animation
described next.

The Trigger’s EnterActions occur when the IsMouseOver property becomes True. This code begins
a Storyboard that uses a DoubleAnimationUsingKeyFrames object to animate the sparkle highlight’s
brush. The brush has a RotateTransform named transSparkle that initially has Angle = 0, so the
brush is not rotated. The animation makes Angle sweep from 0 to 360 degrees over a 1-second period.
It holds Angle at 360 degrees for another second to make the animation pause. The Storyboard then
repeats indefinitely.

The Trigger’s ExitActions occur when the IsMouseOver property becomes no longer True (in
other words, becomes False). When that happens, the code stops the Storyboard that animates
the sparkle brush.

The Template’s other triggers are much simpler. For example, the following code shows the IsPressed
property trigger that executes when the user presses the button:

<Trigger Property=”IsPressed” Value=”True”>
 <Setter TargetName=”ellUpperLeftHighlight” Property=”Opacity” Value=”0”/>
 <Setter TargetName=”ellLowerRightHighlight” Property=”Opacity” Value=”0.75”/>
 <Setter TargetName=”cpContent” Property=”BitmapEffect”
 Value=”{StaticResource bmePressed}”/>
</Trigger>

EllipseButton

This code uses simple setters to do the following:

Hide the upper-left highlight by setting ➤➤ Opacity = 0.

Display the lower-right highlight by setting ➤➤ Opacity = 0.75.

Give the ➤➤ ContentPresenter the OuterGlowBitmapEffect named bmePressed. This
effect, which is defined in the template’s Resources section, uses a larger GlowSize than the
bmeMouseOver effect, so the glow behind the ContentPresenter is larger. You can see the
difference if you carefully compare Figures 15-10 and 15-11.

The template’s other triggers shown in the following code work similarly:

<!-- Defaulted. -->
<Trigger Property=”IsDefaulted” Value=”True”>
 <Setter TargetName=”ellCover” Property=”Opacity” Value=”0.15”/>
 <Setter TargetName=”ellEdgeHighlight” Property=”Stroke”
 Value=”{StaticResource brDefaultedEdgeHighlight}”/>
</Trigger>

<!-- Not defaulted. -->

280 ❘ ChapTer 15 TemplaTes

<Trigger Property=”IsDefaulted” Value=”False”>
 <Setter TargetName=”ellEdgeHighlight” Property=”Stroke”
 Value=”{StaticResource brEdgeHighlight}”/>
</Trigger>

<!-- Disabled. This comes last so it gets ultimate precedence. -->
<Trigger Property=”IsEnabled” Value=”False”>
 <Setter TargetName=”ellCover” Property=”Opacity” Value=”0.6”/>
</Trigger>

EllipseButton

These triggers are fairly straightforward, giving controls new Stroke values and shuffling around
Opacity values.

TemplaTe TriCks 3

The EllipseButton example demonstrates several useful template tricks including:

Using ➤➤ BlurBitmapEffect to make an object appear three-dimensional (the
outer edge with the blurred edge highlight on it)

Using ➤➤ Opacity <1 to make translucent highlights

Using brushes that blend from a color to transparent to make highlights fade ➤➤

away

Using brushes that blend from a color to transparent and back to a color to ➤➤

make objects that are visible in multiple places

Using different brushes for different control states (the normal vs. defaulted ➤➤

highlights)

Using different ➤➤ BitmapEffects for different control states (the smaller glow
for IsMouseOver and the larger glow for IsPressed)

Animating changes to a brush’s transformation➤➤

researChing COnTrOl TemplaTes

To effectively build templates, you need to learn what behaviors the control provides for you and
what behaviors you need to provide for it. You also need to determine what events the control pro-
vides so that you know when you have a chance to make the control take action.

For example, WPF provides a confusing assortment of mouse events including Mouse.MouseEnter,
IsMouseOver, MouseLeftButtonDown, Pressed, and Click. If you’re trying to write a Button tem-
plate, which mouse events can you use to change the Button’s appearance? Which properties and
behaviors does the Button provide for you, and which do you need to implement?

Researching Control Templates ❘ 281

The Button templates described in the previous sections use the Button’s IsMouseOver, IsPressed,
IsEnabled, IsFocused, and IsDefaulted properties. The Button class provides these no matter
what controls you add to the template to provide basic Button behavior.

As described in the “Template Binding” section earlier in this chapter, templates can also read some
of the property values provided by the underlying control. For example, the Button class provides
Background, BorderBrush, and BorderThickness properties that a template can read by using tem-
plate bindings. Button also inherits properties such as Width and Height that you can also read with
template bindings.

So, how do you learn what properties and template bindings are available?

One good source of information is Microsoft’s “Control Styles and Templates” web page at
msdn.microsoft.com/cc278075(VS.95).aspx. That page provides links to other pages that
describe the features available to different control templates.

For example, the “Button Styles and Templates” page lists the Button’s states and properties and
tells where it gets them. For instance, the Pressed state (which you can read with the IsPressed
property) tells when the button is pressed.

These web pages also show the default templates used by the controls. The Button control’s default
template is 84 lines long and fairly complicated. Some are much longer and much more complex.

In addition to using Microsoft’s web pages, you can make a control tell you about its template. The
ShowTemplate example program shown in Figure 15-13 displays the default template for a control.
When you click on the “Show Template” button, the program displays the default template for the
control named Target. In Figure 15-13, that control is the Slider in the upper-left corner. To see
the template used by a different kind of control, replace the Slider with a different control, name it
Target, and run the program.

Figure 15-13

282 ❘ ChapTer 15 TemplaTes

The ShowTemplate program uses the following code to display the Target control’s template:

private void btnShowTemplate_Click(object sender, RoutedEventArgs e)
{
 XmlWriterSettings writer_settings = new XmlWriterSettings();
 writer_settings.Indent = true;
 writer_settings.IndentChars = “ “;
 writer_settings.NewLineOnAttributes = true;

 StringBuilder sb = new StringBuilder();
 XmlWriter xml_writer = XmlWriter.Create(sb, writer_settings);

 XamlWriter.Save(Target.Template, xml_writer);

 txtResult.Text = sb.ToString();
}

ShowTemplate

The key to this code is the XamlWriter class, which includes methods that extract XAML from a
WPF object such as a control or template.

The code starts by initializing an XmlWriterSettings object to make the writer produce nicely
formatted output. If you don’t do this, the code comes out in one long line of XML without carriage
returns or indentation.

The program then creates a StringBuilder to hold the result text. It uses the writer settings to cre-
ate an XmlWriter attached to the StringBuilder.

The code then calls the XamlWriter class’s static Save method to write a XAML representation of
the Target control’s Template property into the StringBuilder.

The program finishes by displaying the result in its TextBox txtResult.

After you find a control’s default template, you can modify it to make your own template that
changes the control’s appearance. That lets you ensure that your template behaves the same way the
default template does except in those places where you want changes.

summary

Properties and styles let you change a control’s appearance in superficial ways. Templates let you
change a control more fundamentally, altering the pieces that make up the control and changing
the way it responds to events and changes in property values. By using templates, you can give your
applications a distinctive look and feel.

The next chapter explains two topics closely related to styles and templates: themes and skins. Skins
let an application change its entire appearance, sometimes radically. They let you change the appli-
cation to suit your immediate need or even your mood.

Themes provide a unifying appearance across controls, windows, and even separate applications. By
providing a common look and feel, themes can make even unrelated programs seem to fit together in
a single system.

Themes and Skins
WPF lets you build applications that have engaging, distinctive appearances. By using rela-
tively simple techniques such as drop shadows, partial transparency, and transparency masks,
you can make an eye-catching interface that adds interest and excitement to even the most
routine application.

Properties let you change the appearance of controls. They let you change visual characteristics
such as a control’s colors, size, location, and contents. Resources and styles let you package
those changes so that you can easily apply them to many controls simultaneously.

Templates let you alter the way controls behave by changing the pieces that make up the controls.
They let you change the appearance and behavior of Buttons, ListBoxes, Menus, and other con-
trols in fundamental ways while still allowing them to perform their essential functions.

Themes and skins bring all of these ideas together to let you easily change the appearance and
behavior of an entire application to suit the users’ needs and moods.

Themes

Some developers use the terms theme and skin interchangeably, but I make the distinction that
a skin applies to a single application (or part of an application), and a theme applies to more
than one application.

More precisely, a theme is a unifying plan that helps determine the appearance and behavior
of more than one application. The most common themes are those provided by Windows. For
example, Windows 7 provides the themes:

Aero➤➤

Classic➤➤

Luna (Homestead, Metallic, and Normal versions)➤➤

Royale➤➤

16

284 ❘ ChapTer 16 Themes and skins

Using the system Theme
The ShowThemes example program shown in Figure 16-1 displays controls that use each of the
themes that come with Windows 7. The differences are fairly subtle, so you’ll need to look closely to
see the changes in each theme.

FigUre 16-1

If you don’t use properties, styles, or templates to change a control’s appearance or behaviors, it uses
the values defined by the system’s current theme. In Figure 16-1, you can see that the controls in the
“default” group have the same appearance as those that use the Aero theme. This is because the sys-
tem had the Aero theme selected when I ran the program.

To change the system’s theme in
Windows 7, open the Control
Panel. Under “Appearance and
Personalization” click “Change the
theme.” On the dialog shown in
Figure 16-2, click the theme that you
want to use.

After taking the screenshot shown
in Figure 16-1, I followed these steps
to change the system’s theme to
Windows Classic without closing the
ShowThemes program. The program
automatically detected the change in
the system theme and redrew itself
appropriately.

Figure 16-3 shows the result. If you look closely, you’ll see that the controls in the default group now
match those that use the Classic theme.

FigUre 16-2

Themes ❘ 285

FigUre 16-3

If you compare Figures 16-1 and 16-3 very closely, you’ll also see that the controls in the ShowThemes
program look a little different. In Figure 16-3, the window’s upper corners are not as rounded, the
title bar is darker, the border is no longer shaded with a light blue pattern, and the system icons in the
form’s upper-left and upper-right corners are different.

Using a specific Theme
Normally you don’t need to even think about themes. If you leave a control’s appearance alone, it
will automatically use the system’s current theme and even change its appearance if you change the
theme. If you really want to, however, you can select a specific theme.

Changing Themes

This technique is probably more useful for testing an application to see what it looks
like in a particular theme than it is for actually forcing the theme on the users.

Some users may select a particular theme for a good reason. For example, a visually
impaired user may select a high-contrast theme to make programs easier to see. If
you change the theme, that user may be unable to use your application.

If you don’t really need a specific theme, you should let your program use the default.

To use a specific system theme in Visual Studio, begin a new WPF project. Open the Project menu
and select “Add Reference.” On the .NET tab, select the theme(s) that you want to use and click OK.
Figure 16-4 shows the Add Reference dialog with the Aero, Classic, Luna, and Royale themes selected.

Next, in a resource dictionary, use a MergedDictionaries object to load the theme. The theme will
apply to any controls that should be modified by the dictionary.

286 ❘ ChapTer 16 Themes and skins

FigUre 16-4

For example, the following code shows how the ShowThemes program uses the Luna Metallic theme.
Each group of controls shown in Figures 16-1 and 16-3 is contained in a StackPanel. Each StackPanel
has a ResourceDictionary that loads its theme.

<StackPanel>
 <StackPanel.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source=
“/PresentationFramework.Luna;component/themes/luna.metallic.xaml” />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </StackPanel.Resources>
 <Label Style=”{StaticResource lblStyle}” Content=”luna.metallic”/>
 <Button Margin=”10” Content=”Click Me”/>
 <CheckBox Margin=”10” Content=”Check Me”/>
 <RadioButton Margin=”10” Content=”Press Me”/>
</StackPanel>

ShowThemes

Notice the unusual syntax for the ResourceDictionary’s Source property. The PresentationFramework.
Luna piece tells WPF which library contains the theme, and the rest of the Source gives the name of the
theme within the library.

For more information on Microsoft’s standard themes, go to msdn.microsoft.com/aa358533.aspx.
Links at the bottom of the web page lead to pages about the specific themes Aero, Classic, Luna, and
Royale. From those pages, you can download XAML files that show how the themes are defined. You
can then modify those files to build your own theme files.

Skins ❘ 287

Theme resTriCTions

I have had bad luck getting Expression Blend to use specific themes. It seems to
have trouble finding the DLLs for use by the ResourceDictionary’s Source prop-
erty. I’ve also had bad luck getting the compiled executable to run.

Perhaps these issues will be fixed in a later release, but for now I use this technique only
to see what the program will look like in different themes in programs built with Visual
Studio. If you figure out how to get these working in Expression Blend, e-mail me at
RodStephens@vb-helper.com and I’ll post your solutions on the book’s web page.

skins

Themes let a program automatically change to match the rest of the system’s appearance. Selecting a
specific theme lets a program change its appearance deliberately, but that’s generally not necessary. The
differences between the Luna Metallic and Aero Normal themes are so small that there’s little reason to
force the user to see one or the other when you could let the program use the system’s default theme.

Skins are much more interesting. A skin is a packaged set of appearances and behaviors that can
give an application (or part of an application) a distinctive appearance while still allowing it to pro-
vide its key features.

Skins are somewhat similar to themes in the sense that they define the appearance and behavior of
an application, but they generally make much larger changes in the application’s appearance than
those shown in Figures 16-1 and 16-3. Rather than unifying all of the applications running on a sys-
tem, the larger changes provided by skins can make an application stand out. A skin differentiates
the application and makes it easier for the user to tell applications apart at a glance.

For example, Figures 16-5 and 16-6 show the ResourceDictionaries example program (which is
described in Chapter 12) displaying two very different appearances. It’s the same program in both
figures and it contains the same controls — just rearranged slightly and with different colors, fonts,
and so forth.

FigUre 16-5

288 ❘ ChapTer 16 Themes and skins

FigUre 16-6

The following sections describe skins and explain several ways you can implement them in WPF.

hard Work Warning

Be warned that skinning takes a lot of work! Depending on the technique you use,
it may not be very complicated work, but it can be very time-consuming.

WPF provides so many tools for creating attractive user interfaces that it’s easy to
spend hours fiddling with control properties and arrangements, trying to build the
world’s most beautiful interface. Now multiply that effort to provide multiple skins,
and you could end up spending days on a window instead of “only” hours.

skin purposes
Usually skins are mostly decorative, changing the application’s colors, button shapes, form designs,
background images, and so forth. The skins shown in Figures 16-5 and 16-6 look very different but
only superficially. They still use the same controls in roughly the same positions.

Although skins are often decorative and used to increase a program’s “coolness factor,” multiple
skins can have legitimate business purposes.

For example, in the United States, roughly 8 percent of men and 0.4 percent of women have some
form of color vision deficiency and thus have trouble distinguishing among certain colors. If your
application provides multiple skins, users can change the colors or shapes used by the program so
they have less trouble getting the information they need.

In addition, as the general user population ages, applications must be ready to help older users.
Larger fonts, menus, buttons, and other components can make understanding and using an appli-
cation easier for users. Providing multiple skins with different element sizes also allows users with
larger screens to take advantage of the space they have available.

One use for skins that is usually overlooked is to make different interfaces so you can use the same
application for different purposes. For example, suppose you’re writing an order entry system.
Different kinds of users would need to see different pieces of an order at different times.

Skins ❘ 289

When an order is initially created, the order entry clerk needs to know all about the customer and
order, and possibly payment information (depending on your arrangements with the customers).
Later, the shipping clerk who packages up the customer’s order only needs to know about the items
ordered and the customer’s shipping address, not payment information or previous order history. The
program might automatically send the customer an invoice, but if the customer calls with a question,
a billing clerk may need to know about the customer’s payment method and possibly past orders.

You can use different skins to satisfy the needs of these different users. The order entry clerk’s skin
would let the user locate customer data and enter information about a new order. The shipping clerk’s
skin would display information about the current order and the customer’s shipping address while
hiding payment information and previous order history.

The OrderTracking example program displays four different interfaces for different kinds of users.
Figure 16-7 shows the program’s four skins for managers, billing clerks, order entry clerks, and ship-
ping clerks.

FigUre 16-7

The following XAML code shows how the OrderTracking program works:

<Window
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 x:Class=”Window1”
 x:Name=”Window”
 SizeToContent=”WidthAndHeight”
 Width=”300” Height=”360”
 ResizeMode=”NoResize”>

 <!-- Load skin resources -->
 <Window.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source=”resBasics.xaml”/>
 <!--
 <ResourceDictionary Source=”resBillingClerk.xaml”/>
 <ResourceDictionary Source=”resOrderEntry.xaml”/>
 <ResourceDictionary Source=”resShippingClerk.xaml”/>
 -->
 <ResourceDictionary Source=”resManager.xaml”/>

290 ❘ ChapTer 16 Themes and skins

 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Window.Resources>

 <!-- Set window properties from resources -->
 <Window.Background>
 <StaticResource ResourceKey=”brWindow”/>
 </Window.Background>
 <Window.FontFamily>
 <StaticResource ResourceKey=”ffWindow”/>
 </Window.FontFamily>
 <Window.FontSize>
 <StaticResource ResourceKey=”fsWindow”/>
 </Window.FontSize>
 <Window.FontWeight>
 <StaticResource ResourceKey=”fwWindow”/>
 </Window.FontWeight>
 <Window.Title>
 <StaticResource ResourceKey=”txtTitle”/>
 </Window.Title>

 <StackPanel Margin=”10”>
 <Button Content=”Unshipped Orders” Click=”btnUnshippedOrders_Click”
 Visibility=”{StaticResource visUnshippedOrder}”/>
 <Button Content=”Find Customer” Click=”btnFindCustomer_Click”
 Visibility=”{StaticResource visFindCustomer}”/>
 <Button Content=”New Order” Click=”btnNewOrder_Click”
 Visibility=”{StaticResource visCreateOrder}”/>
 <Button Content=”Track Order” Click=”btnTrackOrder_Click”
 Visibility=”{StaticResource visTrackOrder}”/>

 <Label Height=”30”
 Visibility=”{StaticResource visSystemMaintenance}”/>
 <Button Content=”System Maintenance” Click=”btnSystemMaintenance_Click”
 Foreground=”Red” Height=”40”
 Visibility=”{StaticResource visSystemMaintenance}”/>
 </StackPanel>
</Window>

OrderTracking

The program begins by defining Window attributes. Setting the SizeToContent attribute to
WidthAndHeight makes the window automatically resize itself to fit its content so the window is
an appropriate size no matter which skin it is using. The code also sets the ResizeMode attribute to
NoResize so the window stays that size.

Next, the code loads its resource dictionaries. The first one, resBasics.xaml, contains values that are
the same for every skin. It defines the window’s font properties and contains an unnamed Button
style that sets the Button sizes and margins.

After that, the code includes the resource dictionary for the skin it should display. The previous
code includes the resource file for managers, resManager.xaml, and the other resource files are
commented out.

Skins ❘ 291

The code then uses resource properties to set the window’s background brush, font, and title. Giving
the skins different backgrounds and titles makes it easier to tell the skins apart at a glance.

Next, the code defines a StackPanel containing a series of Buttons. The Buttons’ Visibility
properties are set using resources defined in the skin resource dictionaries. The basic dictionary
resBasics.xaml sets Visibility = Collapsed for all of the buttons. The other dictionaries over-
ride those settings to display the appropriate buttons. For example, in the Order Entry dictionary,
resOrderEntry.xaml, the values visCreateOrder and visTrackOrder are set to Visible so the
“Create Order” and “Track Order” buttons are shown in the order entry skin.

The following code shows the resBasics.xaml resource dictionary that defines common values for
all of the skins. It defines the Window’s font characteristics and the Button style. It also hides all of
the Buttons.

<ResourceDictionary
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:sys=”clr-namespace:System;assembly=mscorlib”>

 <!-- Main window -->
 <FontFamily x:Key=”ffWindow”>Comic Sans MS</FontFamily>
 <FontWeight x:Key=”fwWindow”>Bold</FontWeight>
 <sys:Double x:Key=”fsWindow”>18</sys:Double>
 <sys:String x:Key=”txtTitle”>OrderTracking</sys:String>

 <!-- Buttons style -->
 <Style TargetType=”Button”>
 <Setter Property=”Width” Value=”200”/>
 <Setter Property=”Height” Value=”50”/>
 <Setter Property=”Margin” Value=”10”/>
 </Style>

 <!-- Button visibilities -->
 <Visibility x:Key=”visUnshippedOrders”>Collapsed</Visibility>
 <Visibility x:Key=”visCreateOrder”>Collapsed</Visibility>
 <Visibility x:Key=”visFindCustomer”>Collapsed</Visibility>
 <Visibility x:Key=”visTrackOrder”>Collapsed</Visibility>
 <Visibility x:Key=”visSystemMaintenance”>Collapsed</Visibility>
</ResourceDictionary>

OrderTracking

The following code shows the resOrderEntry.xaml skin resource dictionary. It defines the Window’s
background brush and title, and the Button visibilities for the order entry skin.

<ResourceDictionary
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:sys=”clr-namespace:System;assembly=mscorlib”>

 <!-- Main window -->
 <LinearGradientBrush x:Key=”brWindow” StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Color=”LightBlue” Offset=”0”/>
 <GradientStop Color=”Blue” Offset=”1”/>
 </LinearGradientBrush>

292 ❘ ChapTer 16 Themes and skins

 <sys:String x:Key=”txtTitle”>OrderTracking - Order Entry</sys:String>

 <!-- Button visibilities -->
 <Visibility x:Key=”visCreateOrder”>Visible</Visibility>
 <Visibility x:Key=”visTrackOrder”>Visible</Visibility>
</ResourceDictionary>

OrderTracking

To use the OrderTracking program, you would compile the program and save the executable pro-
gram. Then you would change the included resource dictionary to load a different skin, recompile
the program, and save the new executable. You would repeat the process until you had created an
appropriate executable for each type of user.

Rather than creating separate versions of the program for each type of user, you could load the
appropriate skin at run time. The following sections describe three ways you can build skinnable
applications in WPF, all of which let the program change its skin at run time.

resource skins
The program ResourceDictionaries shown in Figures 16-5 and 16-6 uses two different sets of
resources to change its appearance at design time.

The following code shows the Window’s resource dictionary. The inner ResourceDictionary elements
load two different resource dictionaries. Because dictionaries loaded later override those loaded earlier,
you can change the application’s appearance by changing the order of these two elements. (As shown
here, the RedRed.xaml dictionary is loaded second, so the program uses its red interface, shown in
Figure 16-5.)

<Window.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source=”ResBlue.xaml”/>
 <ResourceDictionary Source=”ResRed.xaml”/>
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
</Window.Resources>

ResourceDictionary

While the program ResourceDictionaries can display two different appearances, you need to modify
the program at design time to pick the skin you want. This may be useful for building different inter-
faces for different kinds of users, but a truly skinnable program should allow the user to change skins
at run time.

To turn this into a truly skinnable application, all you need to do is give the program the ability to
change skins at run time.

The Skins example program is very similar to the program ResourceDictionaries except that it
can change skins at run time. To make that possible, most of its resources are dynamic rather than
static. The program also contains two new user interface elements: an Image and a Label.

Skins ❘ 293

resTriCTed skins

If you use different skins for different kinds of users (e.g., the order entry clerk and
shipping clerk described in the previous section), then you’ll need to restrict the skins
that each user can load. For example, you probably wouldn’t want the shipping clerk to
be able to load the billing clerk’s skin and view the customer’s credit card information.

When it displays its red interface, this program adds a small Image in its upper-right corner. This
Image has a context menu that displays the choices Red and Blue (shown on the left in Figure 16-8),
which let you pick between the red and blue skins.

FigUre 16-8

The program’s blue interface displays a label in its upper-right corner (on the right in Figure 16-8)
that displays the same context menu.

The following code shows how the program displays its Options textbox on the blue interface:

<Label MouseDown=”Options_MouseDown”
 Grid.Row=”0” Grid.Column=”2” Margin=”2”
 Content=”Options” FontSize=”10”
 HorizontalAlignment=”Right” VerticalAlignment=”Top”
 Foreground=”Black” BorderBrush=”Black”
 BorderThickness=”1”
 Visibility=”{DynamicResource visBlue}”
>
 <Label.Background>
 <LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Color=”Lime” Offset=”0”/>
 <GradientStop Color=”Green” Offset=”1”/>
 </LinearGradientBrush>
 </Label.Background>
 <Label.ContextMenu>
 <ContextMenu Name=”ctxOptions”>
 <MenuItem Header=”Red” Background=”Pink”
 Foreground=”Red”
 Click=”ctxSkin_Click” Tag=”ResRed.xaml”/>
 <MenuItem Header=”Blue” Background=”LightBlue”

294 ❘ ChapTer 16 Themes and skins

 Foreground=”Blue”
 Click=”ctxSkin_Click” Tag=”ResBlue.xaml”/>
 </ContextMenu>
 </Label.ContextMenu>
</Label>

Skins

This code contains four real points of interest:

 1. First, the Label’s MouseDown event triggers the Options_MouseDown event handler. This
routine, which is shown in the following code, displays the context menu by setting the
ContextMenu’s IsOpen property to True:

// Display the options context menu.
private void Options_MouseDown(object sender, RoutedEventArgs e)
{
 ctxOptions.IsOpen = true;
}

Skins

 2. Second, the Label’s Visibility property is set to the value of the visBlue static resource. This
resource has the value True in the Blue resource dictionary and False in the Red resource dic-
tionary. This means that the Label is visible only in the blue interface. The red interface’s skin-
changing Image uses a similar visRed resource that is only True in the red interface.

 3. Third, the context menu’s items have a Tag property that names the XAML resource file that
they load. For example, the Blue menu item has its Tag set to ResBlue.xaml. The program
uses the Tag property to figure out which file to load when the user picks a menu item.

 4. Finally, both of the context menu’s items fire the ctxSkin_Click event handler shown in the
following code to load the appropriate skin:

// Use the selected skin.
private void ctxSkin_Click(object sender, RoutedEventArgs e)
{
 // Get the context menu item that was clicked.
 MenuItem menu_item = (MenuItem)sender;

 // Create a new resource dictionary, using the
 // menu item’s Tag property as the dictionary URI.
 ResourceDictionary dict = new ResourceDictionary();
 dict.Source = new Uri((String)menu_item.Tag, UriKind.Relative);

 // Remove all but the first dictionary.
 while (App.Current.Resources.MergedDictionaries.Count > 1)
 {
 App.Current.Resources.MergedDictionaries.RemoveAt(1);
 }

 // Install the new dictionary.
 App.Current.Resources.MergedDictionaries.Add(dict);
}

Skins

Skins ❘ 295

This code gets the menu item that triggered the event and looks at the item’s Tag property to see which
resource file to load. It creates a ResourceDictionary object loaded from the file, removes old resource
dictionaries from the application’s MergedDictionaries collection, and adds the new dictionary.

removed resoUrCes redUx

The program doesn’t remove the first resource dictionary so that WPF doesn’t get con-
fused about missing resources and issue a flock of warnings. For more information, see
the note “Removed Resources” in the “Dynamic Resources” section of Chapter 12.

When the program loads the new resource dictionary, WPF detects the changed values and updates
all of the window’s dynamic resources.

This technique is what most developers think of as skinning in WPF applications: The program
loads multiple resource files at run time to provide different skins.

animated skins
The skins described in the previous section use separate resource dictionaries to provide different
appearances. The program’s XAML file sets its control properties to resource values so that when
you change the resource values, the interface changes accordingly.

Another way to change property values is to use property animation. Chapter 14 covers property ani-
mation in greater detail, but this section explains briefly how to use animation to provide skinning.

XAML files allow you to define triggers that launch
storyboards that represent property animations. For
example, when the user presses the mouse down over a
rectangle, the XAML code can run a storyboard that
varies the Rectangle’s Width property smoothly from
100 to 200 over a 1-second period.

The AnimatedSkins example program uses this
technique to provide skinning. Figure 16-9 shows
the program displaying its green skin. Figure 16-10
shows its blue skin.

When you click the appropriate control, a trigger
launches a storyboard that:

Resizes the main window and changes its ➤➤

Background brush.

Hides and displays the small blue or green ➤➤

ellipses in the upper-right corner that you
click to switch skins.

Moves ➤➤ Labels.

FigUre 16-9

FigUre 16-10

296 ❘ ChapTer 16 Themes and skins

Resizes, moves, and changes the corner radii of the rectangles that act as buttons.➤➤

Changes the ➤➤ Fill and Stroke brushes for the rectangles pretending to be buttons.

Changes the text displayed in the ➤➤ Labels.

Moves and resizes the ➤➤ Image.

Changes the background and foreground colors.➤➤

Figure 16-11 shows the program a bit less than half-
way done switching from the green to the blue skin.
In this figure, you can see that the colors are moving
from green to blue, the labels are moving, and the
rectangle buttons have new positions, sizes, captions,
and rounded corners.

In addition to displaying very different appearances,
animated skins let the user watch as one interface
morphs into another. The effect is extremely cool.

The priCe oF Coolness

You might argue that coolness isn’t really the focus in many applications, and
you would be completely correct, but programmers who write skins aren’t usually
focused on getting by with the least possible work. It’s hard to argue that most skin-
ning serves anything other than an aesthetic purpose, so as long as you’re spending
extra effort providing skins, it’s not completely fair to say that the extra coolness of
animated skins isn’t worth the effort. By the same token, you could argue that you
shouldn’t even be using WPF and should stick with Windows Forms programming,
which is generally easier.

That being said, however, be warned that animating skins is a lot of work. Tweaking
the animations to give everything exactly the right position, size, and appearance
takes time. The AnimatedSkins example program uses only two storyboards (one for
each skin) but more than 100 property animations to get everything right. And the
differences between these two skins aren’t as great as some I’ve seen, so you could
spend a huge amount of time getting everything just right.

One interesting side effect of this technique is that one animation doesn’t need to finish before a
new animation can start. For example, suppose you click on the blue circle in Figure 16-9 to switch
to the blue skin. After the controls start moving to their new positions, you can click on the green
circle shown in Figure 16-10. At that point, the controls immediately start moving back to their
positions for the green skin without going all the way to their blue skin positions.

FigUre 16-11

Skins ❘ 297

dynamically loaded skins
One of the drawbacks of the previous two skinning techniques is that they only modify existing
objects. They can display an Ellipse, Button, or Label with different properties, but they are still
the same Ellipse, Button, or Label. For example, you cannot provide one skin that launches tasks
with Buttons, another that uses Menus, and a third that uses Labels.

One common solution to this problem is to include every set of controls in every skin and then hide
the ones that you don’t need. For example, you would include Buttons, Menus, and Labels in every
skin. Then the button-oriented skin would hide the Menus and Labels, the menu-oriented skin would
hide the Buttons and Labels, and the label-oriented skin would hide the Buttons and Menus.

Another solution to this problem might be to use separate XAML files that sit on top of the same
code-behind. Unfortunately, WPF doesn’t handle this situation very well.

WPF provides methods for loading XAML files with or without event handlers attached. The short
version of the story is, if you want to load XAML code with event handlers, then you can only have
one XAML file associated with each code-behind class. If you load XAML code without event han-
dlers, then you need to wire up the event handlers yourself.

The longer sTory

If you want to load XAML files with event handlers, then you need to associate the
XAML with a class defined in your code-behind. Unfortunately, WPF adds its own
automatically generated bonus routines to perform some extra chores such as con-
necting the XAML events with the event handlers provided by your class. If you try
to associate two XAML files with the same class, WPF creates multiple copies of
those routines with the same signatures and that confuses Visual Studio.

You might try to make multiple classes for the XAML files by having them inherit
from a common base class that provides all of the necessary functionality. Sadly,
the automatically generated code makes your class inherit from a WPF control type.
For example, if your XAML file contains a Grid as its root element, then the code
makes your class inherit from the Grid class. That means that you cannot also make
it inherit from your desired base class.

The only direct solution I’ve found is to make completely separate classes for each
XAML file, but that kind of defeats the goal of trying to use common code-behind.

Wiring up events to event handlers isn’t hard, although it does reduce the separation between user
interface design and writing the code-behind. Now the interface designer and the programmer must
agree on the event handlers that the code will use and on the names of the controls that use them.

298 ❘ ChapTer 16 Themes and skins

inTerFaCe irony

The difficulty of attaching multiple XAML files to the same code-behind seems
somewhat ironic given how much emphasis WPF places on separation of user inter-
face and code-behind. You can separate an interface from its code but only as long
as you keep them logically associated with each other.

The SkinInterfaces example program dis-
plays new skins at run time by loading
XAML files and wiring up their event han-
dlers. Figures 16-12 and 16-13 show the
program displaying its two skins.

These skins not only provide radically differ-
ent appearances, but they also use different
types of controls that generate different kinds
of events. The following table lists the types of
controls and events that each skin uses:

red skin BlUe skin

pUrpose ConTrol evenT ConTrol evenT

Switch skin Polygon MouseDown Ellipse MouseDown

Move form Rectangle MouseDown Ellipse MouseDown

Exit Grid (containing a
Rectangle and a
TextBlock)

MouseDown Grid (containing an
Ellipse and a
TextBlock)

MouseDown

Repair disk Button Click Grid (containing an
Ellipse and a
TextBlock)

MouseDown

Virus check Button Click Grid (containing an
Ellipse and a
TextBlock)

MouseDown

Format disk Button Click Grid (containing an
Ellipse and a
TextBlock)

MouseDown

When the program loads a XAML file, it looks through the new controls and attaches event han-
dlers to those that need them.

FigUre 16-12 FigUre 16-13

Skins ❘ 299

To provide some separation between the XAML files and the code-behind, the program uses a sepa-
rate group of routines to do the real work. Event handlers catch the control events and call the work
routines to do all the interesting stuff.

The following code shows how the blue skin defines its red switch skin circle on the left at the
form’s top:

<Grid
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Tag=”Blue”
 >

 Lots of code omitted ...

 <Ellipse Name=”ellSkin” Width=”10” Height=”10”
 Canvas.Left=”70” Canvas.Top=”13”
 Cursor=”Cross” ToolTip=”Change Skin”
 Fill=”HotPink” Stroke=”{StaticResource brRedStroke}”
 StrokeThickness=”2” Tag=”Red.xaml”
 />

 Lots of code omitted ...

</Grid>

SkinInterfaces

The code fragment starts with a Grid control as its root element. (You can use other controls for
the file’s root, but Grid is convenient, partly because the Visual Studio WPF Window Designer can
understand how to display the file if its root is a Grid.) The root element’s Tag property is set to the
name of the skin it represents, in this case, Blue.

The code shown here omits all of the other controls except the “switch skin” circle.

The most important pieces of the circle’s definition are its name, ellSkin, and its Tag, Red.xaml.
The Tag property tells the code-behind which XAML skin file to load when the circle is clicked.

Ignoring for the moment how this control is wired up to its event handler, the following code
shows the event handler that the circle executes. Since this event handler is shared by this circle
and the red skin’s “change skin” polygon (the blue triangle in the upper-left corner), it’s called
pgnSkin_MouseDown.

private void pgnSkin_MouseDown(object sender, MouseButtonEventArgs e)
{
 FrameworkElement element = (FrameworkElement)sender;
 LoadSkin(element.Tag.ToString());
}

SkinInterfaces

This code gets the element that triggered the event (either the blue skin’s Ellipse or the red skin’s
Polygon), reads that element’s Tag property to see which XAML file to load, and passes the file-
name to the function LoadSkin.

300 ❘ ChapTer 16 Themes and skins

The function LoadSkin uses the following code to load a XAML skin file. To save space, the code
only shows a few of the statements that connect controls to their event handlers.

// Load the skin file and wire up event handlers.
private void LoadSkin(string skin_file)
{
 // Load the controls.
 FrameworkElement element =
 (FrameworkElement)Application.LoadComponent(
 new Uri(skin_file, UriKind.Relative));
 this.Content = element;

 // Wire up the event handlers.
 Button btn;
 Polygon pgn;
 Rectangle rect;
 Grid grd;
 Ellipse ell;

 switch (element.Tag.ToString())
 {
 case “Red”:
 btn = (Button)element.FindName(“btnRepairDisk”);
 btn.Click += new RoutedEventHandler(btnRepairDisk_Click);

 Code for other controls omitted
 break;

 case “Blue”:
 Lots of code omitted

 // Uses the same event handler as rectMove.
 ell = (Ellipse)element.FindName(“ellMove”);
 ell.MouseDown +=
 new System.Windows.Input.MouseButtonEventHandler(
 rectMove_MouseDown);

 grd = (Grid)element.FindName(“grdExit”);
 grd.MouseDown +=
 new System.Windows.Input.MouseButtonEventHandler(
 grdExit_MouseDown);
 break;
 }
}

SkinInterfaces

The code starts by using the WPF LoadComponent method to load the desired XAML skin file. It sets
the Window’s main content element to the root loaded from the file so the new controls are displayed.

Next, the code checks the newly loaded root element’s Tag property to see whether it is now display-
ing the red or the blue skin. Depending on which skin is loaded, the code looks for specific controls
in the skin and connects their event handlers.

Summary ❘ 301

For example, if the red skin is visible, the code uses FindName to locate the btnRepairDisk Button
and adds the btnRepairDisk_Click event handler to its Click event.

The previous code omits most of the code connecting controls to event handlers. It does, however, show
how the code finds the ellSkin control (the “change skin” circle) and adds the pgnSkin_MouseDown
event handler to its MouseDown event.

The code that wires up the controls that are not shown here is similar.

The program’s final piece is in the Window’s constructor, which is shown in the following code. After
the Window is initialized, the code calls LoadSkin to start with the red skin.

public Window1()
{
 this.InitializeComponent();

 // Insert code required on object creation below this point.

 // Start with the red skin.
 LoadSkin(“Red.xaml”);
}

SkinInterfaces

That completes the program’s circle of life. When the program starts, it calls LoadSkin to load the
red skin. LoadSkin loads the controls and wires up their event handlers. In particular, it attaches an
event handler to the pgnSkin “change skin” control’s MouseDown event. When you click on the poly-
gon, the pgnSkin_MouseDown event handler executes and calls LoadSkin to start the whole process
over again.

Despite the extra code-behind that locates specific controls and attaches events to event handlers,
this technique is reasonably straightforward. Wiring up the controls can be long, but it’s easy to
understand.

The skin files can set control properties directly instead of requiring that you use a huge number of
dynamic resources, so the code is a lot simpler than it is when you use different resource dictionaries.

This method doesn’t provide property animation, which makes it less cool, but it’s much easier to
implement.

Finally, this technique allows different skins to use different controls for similar purposes. It lets you
make skins that launch actions from Buttons, MenuItems, MouseDown events, and pretty much any
other event you might want to catch.

sUmmary

This chapter explains themes and skins. Themes let every application on the user’s computer provide
a similar look and feel. Normally, you don’t need to do anything to take advantage of themes. If you
don’t override the default appearance of controls, then they automatically match the system’s cur-
rently selected theme and update themselves as needed when the theme changes.

302 ❘ ChapTer 16 Themes and skins

Skins let you change an application’s appearance and behavior, essentially letting you define a
“mini-theme” for the application. The examples in this chapter show how to use different skins for
different purposes, load skins at design time or run time, build animated skins, and load skins that
may use completely different controls.

Chapters 12 through 16 cover topics that control the application’s behavior and appearance. They
explain how to use resources, styles, templates, triggers, and themes to give an application a distinc-
tive and consistent look-and-feel. These techniques are useful for building any WPF application.

The chapters that follow turn to more specific topics that are not necessarily essential for every
application. These chapters explain important techniques that you will find useful in many applica-
tions. For example, Chapter 17 explains one of the more basic needs of many applications: printing.

Printing
Although some programs never need to produce “hard” output, printing is an important part
of many applications. Printing lets you produce a permanent physical record of your work. It
lets you make reports to give to your boss, pamphlets and newsletters to give to your neigh-
bors, and doodles to stick on your refrigerator.

AmAzing FAct

According to HP Communities’ Print 2.0 Blog, people printed around 45 trillion
pages in 2005. Of those, roughly 9 percent, or 4.05 trillion, were printed with digi-
tal printers. (I don’t know how many were printed with WPF.)

WPF provides some remarkably powerful printing capabilities. One of the most impressive of
these is the ability to produce transformed output with little or no loss of resolution. Because
WPF’s retained-mode graphics strategy uses objects to represent graphical output, those objects
can generate output even after they are transformed. That means a printout can display even a
small piece of output zoomed to a large scale but still at a high resolution.

Figure 17-1 shows two printouts of the same window at different scales. The one on the left
shows the window at its normal scale. The one on the right shows the window greatly enlarged.

It’s hard to tell in Figure 17-1, but both printouts display smooth curves and lines even though
the one on the right is enlarged. If the one on the right were enlarged even further, perhaps to the
point where the word New in the title area filled the entire page, it would show smooth lines and
curves with none of the grainy or blocky appearance that you would see if you enlarged a bitmap.

This chapter explains printing in WPF. It explains how you can print objects that inherit from
the Visual class such as the window shown in Figure 17-1. It also tells how you can print out-
put generated by code and complex documents.

17

304 ❘ chApter 17 Printing

Figure 17-1

Document pictures

To display pictures of documents in this chapter, I selected Microsoft XPS Document
Writer as the printer to save the output into an XPS file. I then opened the file in
Internet Explorer (as in Figure 17-1) or with XPS Viewer (as in Figure 17-4).

Unfortunately, Internet Explorer and XPS Viewer don’t always display the same
result produced by the printer. Throughout this chapter, I’ll mention when the
printout looks significantly different from the figures.

printing VisuAl objects

One of the central classes for printing in WPF is PrintDialog. This class provides methods for let-
ting the user pick a printer, interacting with print queues, and sending output to the printer.

Dust oFF Your progrAmming skills

WPF does not include a PrintDialog control that you can put on your windows,
and XAML code cannot manipulate it. For printer-oriented tasks, therefore, you’re
going to have to write some code-behind.

Printing Visual Objects ❘ 305

Normally there are three steps to printing:

 1. Create a new PrintDialog object and
use its ShowDialog method to display it
to the user.

 2. Check ShowDialog’s return result to see
if the user clicked OK.

 3. Use the PrintDialog’s methods to gen-
erate a printout.

Figure 17-2 shows the dialog displayed by the
PrintDialog’s ShowDialog method. Select a
printer from the list at the top. Click on the
Preferences button to set advanced options
for the printer such as the paper tray, draft or
normal resolution, and portrait or landscape
orientation.

The following two sections explain two ways to print Visual objects. The first is simple but pro-
duces a mediocre result. The second is more work but produces much better output.

simple printing with printVisual
The SimplePrintWindow example program uses the following code to perform these three steps:

// Display the print dialog.
PrintDialog pd = new PrintDialog();

// See if the user clicked OK.
if (pd.ShowDialog() == true)
{
 // Print.
 pd.PrintVisual(this, “New Customer”);
}

SimplePrintWindow

After displaying the dialog and verifying that the user pressed OK, the code calls the dialog’s PrintVisual
method, passing it the program’s window. The PrintDialog object knows about the printer selected by
the user and sends the visual object (in this case, the window) to the printer’s queue.

printing pronto

If you call PrintVisual without displaying the dialog, then the printout is immedi-
ately sent to the default printer.

Figure 17-2

306 ❘ chApter 17 Printing

This is remarkably simple, but it has an unfortunate drawback: WPF tries to draw the visual in the
upper-left corner of the paper. Since printers generally cannot print all the way to the edges of the
paper, the result is chopped off.

better thAn printing

If you select the Microsoft XPS Document Writer as your printer, the result is dif-
ferent from what you see coming out of a printer. The page is sized to fit the visual
and, because the Document Writer can print all the way to the edges of its logical
paper, the result isn’t chopped off.

The PrintVisual method is extremely simple but doesn’t produce a very nice result. It’s chopped off
at the top and left edges, and cannot rotate, scale, or center the result.

The following section describes a much more flexible method of printing.

Advanced printing with printVisual
The PrintVisual method sends a Visual object to the printer, but it doesn’t scale, rotate, or center
the object. Fortunately, these are things that your program can do.

Rather than passing the program’s window into the PrintVisual method, you can make a hierarchy
of controls that contains an image of the window. That hierarchy can use Grids, Viewboxes, Images,
Rectangles, and any other control that you want to produce the results. It can even include extra
controls to produce such items as a page header and footer.

The PrintWindow example program shown in
Figure 17-3 uses this approach to print its window
centered at either normal or enlarged scale. Click on
the “Print Centered” button to print the window at its
normal scale. Click on the “Print Stretched” button to
print the window as large as possible on the page.

The PrintWindow program requires references to the
ReachFramework and System.Printing libraries. In
Visual Studio, open the Project menu and select “Add
Reference.” Select these two libraries and click OK.

To make working with the libraries easier, the program
includes the following using statements:

using System.Printing;
using System.Windows.Media.Effects;

Figure 17-3

Printing Visual Objects ❘ 307

The program’s Visual Basic version includes the following Imports statements:

Imports System.Windows.Shapes
Imports System.Windows.Media.Effects

When you click its buttons, the PrintWindow program uses the following code to start the printing
process. Both buttons display the PrintDialog and, if the user selects a printer and clicks OK, call
PrintWindowCentered to do all of the interesting work.

// Print the window centered.
private void btnPrintCentered_Click(object sender, RoutedEventArgs e)
{
 PrintDialog pd = new PrintDialog();
 if (pd.ShowDialog() == true)
 {
 PrintWindowCentered(pd, this, “New Customer”, null);
 }
}

// Print the window stretched to fit.
private void btnPrintStretched_Click(object sender, RoutedEventArgs e)
{
 PrintDialog pd = new PrintDialog();
 if (pd.ShowDialog() == true)
 {
 PrintWindowCentered(pd, this, “New Customer”, new Thickness(50));
 }
}

PrintWindow

The following code shows the PrintWindowCentered function:

// Print a Window centered on the printer.
private void PrintWindowCentered(PrintDialog pd, Window win,
 String title, Thickness? margin)
{
 // Make a Grid to hold the contents.
 Grid drawing_area = new Grid();
 drawing_area.Width = pd.PrintableAreaWidth;
 drawing_area.Height = pd.PrintableAreaHeight;

 // Make a Viewbox to stretch the result if necessary.
 Viewbox view_box = new Viewbox();
 drawing_area.Children.Add(view_box);
 view_box.HorizontalAlignment = HorizontalAlignment.Center;
 view_box.VerticalAlignment = VerticalAlignment.Center;

 if (margin == null)
 {
 // Center without resizing.
 view_box.Stretch = Stretch.None;

308 ❘ chApter 17 Printing

 }
 else
 {
 // Resize to fit the margin.
 view_box.Margin = margin.Value;
 view_box.Stretch = Stretch.Uniform;
 }

 // Make a VisualBrush holding an image of the Window’s contents.
 VisualBrush vis_br = new VisualBrush(win);

 // Make a rectangle the size of the Window.
 Rectangle win_rect = new Rectangle();
 view_box.Child = win_rect;
 win_rect.Width = win.Width;
 win_rect.Height = win.Height;
 win_rect.Fill = vis_br;
 win_rect.Stroke = Brushes.Black;
 win_rect.BitmapEffect = new DropShadowBitmapEffect();

 // Arrange to produce output.
 Rect rect = new Rect(0, 0,
 pd.PrintableAreaWidth, pd.PrintableAreaHeight);
 drawing_area.Arrange(rect);

 // Print it.
 pd.PrintVisual(drawing_area, title);
}

PrintWindow

The function uses Grid, Viewbox, and Rectangle controls to display a window centered on the
printed page. It takes four parameters:

The ➤➤ PrintDialog to use. This object holds information about the printer that the user
selected.

The window to print➤➤

A title for the print job➤➤

A ➤➤ Thickness value to use as a margin around the printed window. The question mark in
the parameter’s declaration means this is a nullable type, so the program can pass the value
null for this parameter. If this value is null, the routine prints the window at its normal size
centered on the printout. If this is not null, then the routine enlarges the window as much as
possible while still allowing this margin around it.

The code starts by creating a Grid control. It uses the PrintDialog’s PrintableAreaWidth and
PrintableAreaHeight properties to see how big the printer’s page is, and it makes the Grid fill
the page.

Printing Code-Generated Output ❘ 309

Next, the code places a Viewbox centered inside the Grid. Recall that a Viewbox’s purpose is to stretch
its single child in various ways.

If the routine’s margin parameter is null, the code should display the window at its normal scale, so
it sets the Viewbox’s Stretch property to None.

If the routine’s margin parameter is not null, the code should enlarge the window. It sets the Viewbox’s
Margin property to the margin parameter so the Viewbox expands to fill the Grid except for the
margin. It also sets the Viewbox’s Stretch property to Uniform so it enlarges its child control as
much as possible without changing its aspect ratio (the ratio of width to height).

Next, the code makes a VisualBrush that contains an image of the window that it should print.

It then makes a Rectangle with the same size as the window, fills the Rectangle with the VisualBrush,
and places the Rectangle inside the Viewbox. The Viewbox stretches the Rectangle if appropriate.

Next, the code calls the Grid’s Arrange method. This makes the Grid recursively arrange its chil-
dren and renders them. If you omit this call, the code runs, but the printout is blank.

Finally, the code calls the PrintDialog’s
PrintVisual method to print the Grid
and its contents.

If the user clicks on the print dialog’s
Preferences button and changes the
printer’s orientation to landscape, the
PrintDialog’s PrintableAreaWidth
and PrintableAreaHeight properties
automatically switch so the controls are
arranged appropriately.

Figure 17-4 shows the result when the
program’s window is stretched and printed
using the Microsoft XPS Document Writer
with preferences set to landscape orienta-
tion and displayed in XPS Viewer.

printing coDe-generAteD output

The PrintDialog object’s PrintVisual method is easy to use and, with a little extra work, can
produce nicely scaled and centered results. It still assumes that you are only printing one page at a
time, however. If you want to print a longer document, you’ll need to call PrintVisual once for
each page, and it will produce one print job for each page. This isn’t an ideal solution. Fortunately
there’s a better way to produce multi-page printouts.

Figure 17-4

310 ❘ chApter 17 Printing

The PrintDialog object’s PrintDocument method takes a DocumentPaginator object as a parameter.
That object generates the pages of a printout, and the PrintDocument places them in a single print job.

Figure 17-5

DocumentPaginator is an abstract class that defines methods for you to implement in a subclass.
Those methods give the PrintDocument method information such as the printout’s total number of
pages and the objects to print.

The PrintShapes example program uses a ShapesPaginator class that inherits from
DocumentPaginator to print four pages of shapes. Figure 17-5 shows the output saved by the
Microsoft XPS Document Writer printer and displayed in XPS Viewer.

The following code shows how the program responds when you click on its “Print Shapes” but-
ton. Like the previous code that uses PrintVisual, it displays a PrintDialog and sees whether
the user selected a printer and clicked OK. It then calls the PrintDocument method, passing it a
paginator object and a print job title.

// Print the shapes.
private void btnPrintShapes_Click(object sender, RoutedEventArgs e)
{
 PrintDialog pd = new PrintDialog();
 if (pd.ShowDialog() == true)
 {
 pd.PrintDocument(
 new ShapesPaginator(
 new Size(pd.PrintableAreaWidth, pd.PrintableAreaHeight)),
 “Shapes”);
 }
}

PrintShapes

printing pronto, pArt 2

If you call PrintDocument without displaying the dialog, then the printout is
immediately sent to the default printer.

Printing Code-Generated Output ❘ 311

The following code fragment shows the key pieces of the ShapesPaginator class:

class ShapesPaginator : DocumentPaginator
{
 private Size m_PageSize;

 // Save the page size.
 public ShapesPaginator(Size page_size)
 {
 m_PageSize = page_size;
 }

 // Return the needed page.
 public override DocumentPage GetPage(int pageNumber)
 {
 const double WID = 600;
 const double HGT = 800;

 Grid drawing_grid = new Grid();
 drawing_grid.Width = m_PageSize.Width;
 drawing_grid.Height = m_PageSize.Height;

 switch (pageNumber)
 {
 case 0: // Ellipse
 Ellipse ell = new Ellipse();
 ell.Fill = Brushes.Orange;
 ell.Stroke = Brushes.Blue;
 ell.StrokeThickness = 1;
 ell.HorizontalAlignment = HorizontalAlignment.Center;
 ell.VerticalAlignment = VerticalAlignment.Center;
 ell.Width = WID;
 ell.Height = HGT;
 drawing_grid.Children.Add(ell);
 break;

 ... Code for other pages omitted ...
 }

 // Arrange to make the controls draw themselves.
 Rect rect = new Rect(new Point(0, 0), m_PageSize);
 drawing_grid.Arrange(rect);

 // Return a DocumentPage wrapping the grid.
 return new DocumentPage(drawing_grid);
 }

 // If pagination is in progress and PageCount is not final, return False.
 // If pagination is complete and PageCount is final, return True.
 // In this example, there is no pagination to do.
 public override bool IsPageCountValid
 {
 get { return true; }
 }

 // The number of pages paginated so far.

312 ❘ chApter 17 Printing

 // This example has exactly 4 pages.
 public override int PageCount
 {
 get { return 4; }
 }

 // The suggested page size.
 public override Size PageSize
 {
 get { return m_PageSize; }
 set { m_PageSize = value; }
 }

 // The element currently being paginated.
 public override IDocumentPaginatorSource Source
 {
 get { return null; }
 }
}

PrintShapes

The class’s constructor takes as a parameter the size of the page on which it will draw and saves that
size for later use.

The most interesting part of the class is the GetPage method, which returns objects to print. It starts
by creating a Grid control that fills the printed page.

Next, depending on the page number, the code places a shape on the Grid. The previous code shows
how the program adds an Ellipse to the Grid on the first page. The code for the other pages is simi-
lar, so it has been omitted to save space.

The GetPage method then makes the Grid control arrange itself to produce output. It finishes by
returning a new DocumentPage object initialized to display the Grid and its contents.

printing Documents

By using the PrintDialog’s PrintDocument method, you can print many pages of relatively simple
output. For example, you could draw a series of pictures as the PrintShapes program does. You
could also print tables spread across several pages or simple blocks of text.

To produce really complicated output, however, you would need to write a complicated
DocumentPaginator class. For example, suppose you want to print a multi-page newsletter that
has paragraphs flowing around embedded pictures and tables. Building a paginator that could han-
dle these complex layout tasks would be quite a chore.

However, displaying complex output like this is much easier using the FlowDocument and
FixedDocument controls. A FlowDocument arranges its paragraphs, tables, lists, and other contents
to make best use of the available space much as a web browser arranges the contents of a web page.
A FixedDocument displays items at specific positions that never change, much as Adobe Reader dis-
plays the items in a PDF file in fixed positions.

The following sections explain how to print FlowDocuments and FixedDocuments.

Printing Documents ❘ 313

printing FlowDocuments
Instead of building a complicated paginator object to produce a complex printout, you can build a
FlowDocument object and place paragraphs, tables, lists, figures, and other elements inside it. The
FlowDocument automatically arranges its contents to fill the available space. (Chapter 5 includes sev-
eral example programs that demonstrate FlowDocuments.)

Unfortunately, the FlowDocument class does not inherit from the Visual class, so you cannot sim-
ply pass it into the PrintDialog’s PrintVisual method. You could pass the Window containing the
FlowDocument into PrintVisual, but then the printout will only include an image of whatever is
visible on the screen at the time — not the FlowDocument’s entire contents (which may not all be
currently visible).

Printing a FlowDocument correctly is simple but fairly confusing. The basic idea is to create an
XpsDocumentWriter object associated with a print queue. That object’s Write method can write a
DocumentPaginator into the queue to start a print job. To make it all work, you just need to figure
out how to build a DocumentPaginator for the FlowDocument.

Fortunately, the FlowDocument class implements the IDocumentPaginatorSource interface, and
that interface defines a DocumentPaginator property that returns a paginator for the document.

It’s a little convoluted, but the necessary code is quite short.

The following code shows how the PrintFlowDocument example program prints its FlowDocument
when you open its File menu and select Print:

// Print the FlowDocument.
private void mnuFilePrint_Click(object sender, RoutedEventArgs e)
{
 PrintDialog pd = new PrintDialog();
 if (pd.ShowDialog() == true)
 {
 // Make an XPS document writer for the print queue.
 XpsDocumentWriter xps_writer =
 PrintQueue.CreateXpsDocumentWriter(pd.PrintQueue);

 // Turn the FlowDocument into an IDocumentPaginatorSource.
 IDocumentPaginatorSource paginator_source =
 (IDocumentPaginatorSource)fdContents;

 // Use the IDocumentPaginatorSource’s
 // property to get a paginator.
 xps_writer.Write(paginator_source.DocumentPaginator);
 }
}

PrintFlowDocument

As usual, the code starts by displaying a PrintDialog. If the user selects a printer and clicks OK,
the code makes an XpsDocumentWriter associated with the selected printer’s queue.

Next, the code creates a reference to the FlowDocument control named fdContents using its
IDocumentPaginatorSource interface.

314 ❘ chApter 17 Printing

Finally, the code uses the XpsDocumentWriter object’s Write method to write the document’s pagi-
nator into the print queue.

Figure 17-6 shows the PrintFlowDocument program running in TwoPage mode, so it displays two
pages of the FlowDocument’s contents.

Figure 17-6

The program displays its FlowDocument inside a FlowDocumentReader. Note that the format of the
program’s printout depends on the reader’s mode when you make the printout. Figures 17-7 through
17-9 show the results when the reader is in Page mode, TwoPage mode, and Scroll mode, respectively.

Figures 17-7 and 17-8 look a lot like their printed versions, although the printed results are much
smaller than they appear in the figures. The figures make it look like each page is fairly full, but
when printed, the results occupy only about the upper third of the printed page.

Figure 17-7 Figure 17-8

Printing Documents ❘ 315

Figure 17-9 looks almost exactly the same
as the printed version.

As is the case with the previous examples,
since the PrintDocument method tries to
print all the way to the paper’s upper-left
corner, the top and left edges of the output
are clipped unless you include margins
within the FlowDocument.

You can get a more consistent result by
setting the FlowDocument’s PageHeight
and PageWidth properties. Unfortunately,
setting these properties appropriately for
the printer makes the result on the screen
quite small.

One way to work around this problem is
to set the control’s properties just before
printing and then restore their original
values afterward.

bug Alert

Because of an apparent bug in the FlowDocumentReader, the control does not
redraw properly after printing in Scroll mode. If you try to scroll the control at that
point, it crashes.

If you change the control’s zoom level or viewing mode, it refreshes itself, and all is well.

printing FixedDocuments
The PrintFixedDocument example pro-
gram shown in Figure 17-10 displays a
FixedDocument inside a DocumentViewer
control.

If the user clicks on the printer icon on the
upper left, the viewer automatically launches
a print dialog, and if the user selects a printer
and clicks OK, it handles the printing for you.

If you want to do the work yourself, it’s not
hard to print a FixedDocument program-
matically using the same code you would use
to print a FlowDocument. Simply replace the

Figure 17-9

Figure 17-10

316 ❘ chApter 17 Printing

FlowDocument with a FixedDocument. See the previous section for more information about printing
FlowDocuments.

summArY

WPF’s PrintDialog class provides easy access to the printing system. Its PrintVisual method lets
you print a single page displaying an image of a visual control almost effortlessly. Its PrintDocument
method lets you generate more complex printouts such as multi-page documents, FlowDocuments,
and FixedDocuments.

Earlier chapters in this book explain how to set a control’s properties to a value defined in a resource,
style, or template. For example, if you define a string resource, you can later set a Window’s Title
property to the value of that resource.

This is a handy technique for centralizing and reusing values but it ignores other potentially useful
data sources such as the properties of other controls and objects defined by code-behind.

The following chapter describes WPF data binding methods that let you attach a control’s properties
to objects other than resources including arrays of values, other controls’ properties, and the proper-
ties of other kinds of objects.

Data Binding
WPF data binding lets you bind a target to a data source so the target automatically displays
the value in the data source. For example, this lets you:

Make a ➤➤ ListBox display an array of values defined in XAML code.

Make a ➤➤ ListBox display a list of objects created in code-behind.

Make a ➤➤ TreeView build a hierarchical display of objects created in code-behind.

Make ➤➤ TextBoxes, Labels, and other controls display additional detail about the cur-
rently selected item in a ListBox, ComboBox, or TreeView.

Additional WPF data-binding features let you sort, filter, and group data; let the user modify a
control to update a data source; and validate changes to data.

This chapter provides an introduction to data binding in WPF. It explains how to use bindings
to associate objects and how to use bindings to let a control use values supplied by other con-
trols, XAML resources, and objects created in code-behind.

Binding Basics

Data bindings have these four basic pieces:

Target➤➤ — The object that will use the result of the binding

Target Property➤➤ — The target object’s property that will use the result

Source➤➤ — The object that provides a value for the target object to use

Path➤➤ — A path that locates the value within the source object

As a trivial example, suppose you want to bind a Label control’s Content property so that the
Label displays whatever you type in a TextBox. If the Label control is named lblResult and
the TextBox is named txtTypeHere, then you would need to create a binding where:

The target is ➤➤ lblResult (the control where you want the binding’s result to go).

18

318 ❘ chapter 18 Data BinDing

The target property is ➤➤ Content (you want the Label to display the result in its Content property).

The source is ➤➤ txtTypeHere (the object providing the value).

The path is ➤➤ Text (the path to the data in the source object,
in this case, the TextBox’s Text property).

The TextBoxToLabel example program shown in Figure 18-1 dem-
onstrates this kind of simple binding. When you type in the text-
box, the two labels below it echo whatever you type.

The following XAML code shows how the program works:

<StackPanel Margin=”5”>
 <TextBox Name=”txtTypeHere” Margin=”5” Height=”30”
 VerticalAlignment=”Top” Text=”Type here!”/>

 <Label Margin=”5” BorderBrush=”Yellow” BorderThickness=”1”>
 <Binding ElementName=”txtTypeHere” Path=”Text”/>
 </Label>

 <Label Margin=”5” BorderBrush=”Yellow” BorderThickness=”1”
 Content=”{Binding ElementName=txtTypeHere, Path=Text}”/>
</StackPanel>

TextBoxToLabel

The code starts by defining a TextBox named txtTypeHere.

Next, the code defines a Label. The control’s start and end tags enclose its content, in this case, a
Binding object. The object’s ElementName property defines the source control — the TextBox. Its
Path property determines the location of the data value in the source control — the Text property.

In this binding, the four key pieces are:

Target➤➤ — The Label that contains the binding

Target Property➤➤ — The Content property that is set equal to the binding

Source➤➤ — Given by the ElementName attribute

Path➤➤ — The name of the source control’s property

Finally, the code defines a second Label that uses a binding similar to the first one, except this time it
defines the binding with the ungainly string {Binding ElementName=txtTypeHere, Path=Text}.

The following sections describe the four pieces of the binding in greater detail and explain how to
set their values.

Binding target and target property
The target and target property are the easiest parts of the binding to understand. The target is the
control that contains the binding, and the target property is the property that is set to the binding’s

Figure 18-1

Binding Basics ❘ 319

value. In the following code, the Label control is the target, and its Content property is the target
property:

<Label Margin=”5” BorderBrush=”Yellow” BorderThickness=”1”
 Content=”{Binding ElementName=txtTypeHere, Path=Text}”/>

it all depends

A binding’s target property must be a dependency property. Fortunately, most of
the properties that you are most likely to want to bind are dependency properties.

The situation is somewhat more confusing when the target uses several pieces of the binding’s data.

For example, suppose you define a Planet class to track information about planets. Its properties
include Name, Picture, Stats, and so forth.

If you make a collection of Planet objects, you can bind it to a ListBox that displays some or all
of these values. This case is a bit more complicated than binding a Label’s Content property to a
TextBox’s Text property.

The short explanation for this example is that the target property is the ListBox’s ItemsSource
property. The section “Binding Collections” later in this chapter explains how a ListBox can con-
vert a collection bound to its ItemsSource property into a display of the collection’s fields.

Binding source
The binding’s source is the object from which it takes a value. This object can be a WPF control,
XML data, or an object defined in the program’s code-behind.

You can specify the source object by setting any of the binding’s ElementName, Source, or
RelativeSource properties.

pick One

You can only specify one of the ElementName, Source, and RelativeSource prop-
erties at a time.

ElementName
The binding’s ElementName property gives the name of a control. The TextBoxToLabel example pro-
gram described earlier uses ElementName to identify the TextBox that a binding should use as its source.

Source
The binding’s Source property identifies an object that should be used as a binding’s source.
Typically, a program uses a StaticResource to define this object.

320 ❘ chapter 18 Data BinDing

The PersonSource example program shown in Figure 18-2 uses a
binding with its Source property set to display information about
a Person object.

The PersonSource example program defines a Person class with the
properties FirstName, LastName, and NetWorth. The program’s
XAML code includes the following namespace definition so it can
use the class:

xmlns:local=”clr-namespace:PersonSource”

The following code shows how the program’s XAML code defines a static resource named a_person
that is a Person object:

<Window.Resources>
 <local:Person x:Key=”a_person” FirstName=”Bill”
 LastName=”Gates” NetWorth=”40000000000”/>
</Window.Resources>

PersonSource

The following code shows how the program uses bindings to display the Person object’s FirstName,
LastName, and NetWorth values. It uses binding Source properties to identify the Person object
that provides the values.

<Label Grid.Row=”1” Grid.Column=”0” Content=”First Name:”/>
<Label Grid.Row=”1” Grid.Column=”1”
 Content=”{Binding Source={StaticResource a_person}, Path=FirstName}”/>

<Label Grid.Row=”2” Grid.Column=”0” Content=”Last Name:”/>
<Label Grid.Row=”2” Grid.Column=”1”
 Content=”{Binding Source={StaticResource a_person}, Path=LastName}”/>

<Label Grid.Row=”3” Grid.Column=”0” Content=”NetWorth:”/>
<Label Grid.Row=”3” Grid.Column=”1”
 Content=”{Binding Source={StaticResource a_person}, Path=NetWorth}”/>

PersonSource

RelativeSource
The binding’s RelativeSource property lets you specify a source object by its relationship to the
target control. One situation in which this is useful is when you want to bind two properties on the
same control.

The TypeAColor example program shown in Figure 18-3 binds
the TextBox’s Background property to its Text property, so when
you type the name of a color, the control uses that color as its
background.

Figure 18-2

Figure 18-3

Binding Basics ❘ 321

What errOr?

Bindings don’t report errors at run time. If a binding’s value doesn’t make any
sense — for example, if you set a Width equal to a Color — nothing happens. In
the program TypeAColor, if you type some text that isn’t a color’s name, nothing
happens and the program keeps running just fine.

The following code shows how the TypeAColor program binds the TextBox’s Background property
to its Text property:

<TextBox Margin=”10” Height=”30” VerticalAlignment=”Top”
 Background=”{Binding RelativeSource={RelativeSource Self}, Path=Text}”/>

TypeAColor

The text RelativeSource={RelativeSource Self} sets the binding’s RelativeSource property
to a new RelativeSource object built from the string Self.

You can also build a RelativeSource object with the strings TemplatedParent, FindAncestor, or
PreviousData.

The TemplatedParent setting uses a reference to
the object to which a template is being applied. The
TemplatedParent example program shown in Figure 18-4
displays a Label with a template that displays the Label’s
margins along its edges. This Label’s Margin property
was set to 10,20,30,40.

The following code shows the part of the Label’s template
that displays the Label’s top margin. The binding uses its
RelativeSource property to find the Label that is using
the template. The Path value Margin.Top makes the bind-
ing get that Label’s Margin and use its Top value.

<Label VerticalAlignment=”Top” HorizontalAlignment=”Center”
 FontSize=”10” Content=
 “{Binding RelativeSource={RelativeSource TemplatedParent}, Path=Margin.Top}”/>

TemplateParent

The RelativeSource value FindAncestor lets you find one of the
target control’s ancestors of a certain type. The ColumnWidths
example program shown in Figure 18-5 uses this kind of binding
to make Labels display the widths of the Grid columns that con-
tain them.

Figure 18-4

Figure 18-5

322 ❘ chapter 18 Data BinDing

The following code defines the third Label. Its binding searches for the Label’s ancestor of type
Grid. It then gets its value from the Grid’s ColumnDefinitions[2].Width value.

<Label Grid.Column=”2”
 Content=”{Binding RelativeSource={RelativeSource FindAncestor,
 AncestorType={x:Type Grid}},
 Path=ColumnDefinitions[2].Width}”/>

ColumnWidths

The RelativeSource value PreviousData is useful in lists and other controls that display multiple
values. It lets the code that displays one value refer to the previous value.

The PreviousData example program shown in Figure 18-6 demonstrates
the PreviousData value. Each ListBox entry displays its value and the
value of the item before it. The first item has no previous data, so it dis-
plays a blank value. (Fixing this is a bit outside the scope of the current
discussion.)

The following code shows how the program defines its ListBox. The
ItemsSource property refers to a static resource named numbers that
contains an array of numbers.

<ListBox ItemsSource=”{StaticResource numbers}”
 Background=”Transparent”>
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation=”Horizontal”>
 <Label Content=”{Binding}” Width=”50”
 HorizontalContentAlignment=”Right”/>
 <Label Content=” (was”/>
 <Label Content=”{Binding
 RelativeSource={RelativeSource PreviousData}}”
 Margin=”-5,0,0,0”/>
 <Label Content=”)” Margin=”-10,0,0,0”/>
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

PreviousData

Don’t worry about the code’s details. Focus on the bindings and ignore the ItemTemplate and
DataTemplate elements for now. The section “Binding Collections” later in this chapter has more to
say about binding ListBoxes to arrays and other lists of data.

DataContext
There is one additional way to specify a binding’s source: by setting a control’s DataContext prop-
erty. Since controls inherit the DataContext property of their ancestors, this method provides a con-
venient way for several controls to share the same data source.

Figure 18-6

Binding Basics ❘ 323

For example, the PersonSource example program described earlier in this chapter and shown in
Figure 18-2 uses several Label controls to display a Person object’s property values. The following
code shows how one of the Labels is defined:

<Label Grid.Row=”1” Grid.Column=”1”
 Content=”{Binding Source={StaticResource a_person}, Path=FirstName}”/>

Each of the Labels uses a similar binding that includes its own source.

The PersonSource2 example program is similar except it uses DataContext properties to simplify
the Labels’ bindings. The following code shows how the program sets the DataContext property
for the Grid that contains the Labels. The code binds the Grid’s DataContent property to the a_
person object.

<Grid Margin=”10” DataContext=”{Binding Source={StaticResource a_person}}”>

The following code shows the new Label definition with its simplified binding:

<Label Grid.Row=”1” Grid.Column=”1” Content=”{Binding Path=FirstName}”/>

Because the Label inherits the Grid’s DataContext property, it already has a binding source
defined. The new code only needs to specify the binding’s path.

Using DataContext properties in this way can simplify the code. It also makes the data source defi-
nition more centralized so it’s easier to change if you need to use a different data source later.

Binding path
Usually a binding’s path is easy enough to understand. In many cases, you can set it by setting the
Path attribute to the name of the source property that you want to use. For example, the following
code sets the binding’s path to the txtTypeHere TextBox’s Text property:

<Label Margin=”5” BorderBrush=”Yellow” BorderThickness=”1”
 Content=”{Binding ElementName=txtTypeHere, Path=Text}”/>

The following list summarizes the rules for specifying a binding’s path:

To use a property of the binding’s source, set the path equal to the property’s name, as in ➤➤

Path = Property.

If a property is an object, you can use the object’s properties, as in ➤➤ Path = Object.Property.

If the path includes an attached property, enclose the property in parentheses. For example, ➤➤

the GridColumns program uses the following code to make a Label control display its own
Grid.Column value:

<Label Grid.Column=”0”
 Content=”{Binding RelativeSource={RelativeSource Self}, Path=(Grid.Column)}”/>

324 ❘ chapter 18 Data BinDing

anOther example

The DockPanelValues example program uses a Style with TargetType = Label
to make Labels contained in a DockPanel display their DockPanel.Dock attached
property values.

If a value provides an indexer, include the index in square brackets. For instance, the ➤➤

ColumnWidths example program described earlier in this chapter uses paths of the form
ColumnDefinitions[2].Width to display a Grid’s column widths.

If the binding’s source is a collection, you can refer to the collec-➤➤

tion’s current item with the slash character (/).

The ColorList example program shown in Figure 18-7 demonstrates
bindings with Source = /. When you select a color from the ListBox
on the left, the Label on the right displays the name of the color you
selected and changes its Background to match.

The ColorList program uses the following code to define its ListBox
and Label:

<Grid Margin=”10”>
 <Grid.DataContext>
 <x:Array Type=”sys:String”>
 <sys:String>Red</sys:String>
 <sys:String>Yellow</sys:String>
 <sys:String>Lime</sys:String>
 <sys:String>Cyan</sys:String>
 <sys:String>Blue</sys:String>
 <sys:String>Magenta</sys:String>
 </x:Array>
 </Grid.DataContext>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”*”/>
 <ColumnDefinition Width=”*”/>
 </Grid.ColumnDefinitions>

 <ListBox Name=”lstColors” Grid.Column=”0” Background=”Transparent”
 IsSynchronizedWithCurrentItem=”True”
 ItemsSource=”{Binding}”/>

 <Label Grid.Column=”1” BorderBrush=”Black” BorderThickness=”1”
 HorizontalContentAlignment=”Center” VerticalContentAlignment=”Center”
 Content=”{Binding Path=/}”
 Background=”{Binding Path=/}”/>
</Grid>

ColorList

The code starts with a Grid control. It sets this control’s DataContext to an array of strings con-
taining color names.

Figure 18-7

Binding Collections ❘ 325

After defining two grid columns, the code creates a ListBox. Its ItemsSource property is set to
the unusual value {Binding} to indicate that this property should be set to the control’s inherited
DataContext value.

The Label’s Content and Background properties are both set to {Binding Path=/}, so their bind-
ing source is the control’s inherited DataContext, and their binding path is the array’s currently
selected value.

Binding cOllectiOns

Some controls, such as Button, TextBox, and Label, are considered content controls. They are
intended to display one piece of data such as some text or a grid containing other controls.

Other controls, such as ListBox, ComboBox, and TreeView, are considered item controls. These
display a repeating sequence of values stored in collections, arrays, trees, and other repetitive data
structures. The values can be simple things such as numbers or strings, or they can be more complex
objects such as instances of the Order or Employee classes.

Binding content controls is relatively straightforward. Set the binding’s target, target property,
source, and path; and you’re done.

On the surface, binding item controls is just as easy. Just set the control’s
ItemsSource property to some sort of collection that holds repeating values.
If the values are simple numbers or strings, this works.

The NumberList example program shown in Figure 18-8 works this way.

The NumberList example program defines an array of integers. To define
the numbers using the Int32 data type, the program includes the following
namespace declaration:

xmlns:sys=”clr-namespace:System;assembly=mscorlib”

The program then defines its array in its Windows.Resources section:

<Window.Resources>
 <x:Array x:Key=”numbers” Type=”sys:Int32”>
 <sys:Int32>100</sys:Int32>
 <sys:Int32>200</sys:Int32>
 <sys:Int32>50</sys:Int32>
 <sys:Int32>800</sys:Int32>
 <sys:Int32>175</sys:Int32>
 </x:Array>
</Window.Resources>

NumberedList

Finally, it uses the following code to bind the array to a ListBox:

<ListBox ItemsSource=”{StaticResource numbers}” Background=”Transparent”/>

As you can see in Figure 18-8, the ListBox automatically displays the values in the array.

Figure 18-8

326 ❘ chapter 18 Data BinDing

Unfortunately, the situation is more complicated if you bind a ListBox to more complex objects.
To determine what to display for an item, the control calls the item’s ToString method. For simple
things like numbers and strings, ToString returns the item’s textual representation.

For a more complex item like a Person object, ToString returns the name of the class. For example, in
the PersonList example program, the Person class’s ToString method returns PersonList.Person for
every item, so a ListBox displays PersonList.Person for every item.

One way around this problem is to make the class
override its ToString method to return something
more useful.

The PersonList example program shown in
Figure 18-9 displays ListBoxes holding items
from two classes: Person and Person2. The Person
class uses its default ToString method, whereas the
Person2 class overrides its ToString method.

The Person2 class uses the following code to override its ToString method:

public override string ToString()
{
 return FirstName + “ “ + LastName;
}

classes in cOde

XAML code can define objects using the classes you have defined in your code-
behind. To make this possible, first include a namespace declaration identifying
your program’s namespace like this:

xmlns:local=”clr-namespace:PersonList”

Now the XAML code can use the class as a data type. For example, the PersonList
program uses the following code to make its array of Person objects:

<Window.Resources>
 <x:Array x:Key=”people” Type=”local:Person”>
 <local:Person FirstName=”James” LastName=”Kirk”/>
 <local:Person FirstName=”Spock”/>
 ...
 </x:Array>
</Window.Resources>

Note that the class must have an empty constructor (one that takes no parameters)
to be used by XAML code.

Figure 18-9

Binding Collections ❘ 327

The overridden ToString method makes the results shown in a ListBox much more useful, but WPF’s
ListBox class can do much more than display simple strings. Item controls like ListBox provide tem-
plates that you can use to determine how each item is displayed.

listBox and comboBox templates
The ListBox and ComboBox controls have an ItemTemplate property that determines how each
item is displayed. These templates are somewhat similar to the templates described in Chapter 15.

The template can hold whatever controls you like to represent the control’s items. Usually many of
these controls are bound to the properties of whatever item the control is currently displaying.

The Planets example program shown in Figure 18-10 displays an array of Planet objects in a
ListBox on the left and in a ComboBox on the right.

Figure 18-10

The following code shows the ItemTemplate used by the program’s ListBox:

<ListBox.ItemTemplate>
 <DataTemplate>
 <DataTemplate.Resources>
 <!-- The ListBoxItem style must be set
 in ListBox.Resources. -->
 <Style TargetType=”TextBlock”>
 <Setter Property=”Margin” Value=”3”/>
 <Setter Property=”HorizontalAlignment” Value=”Left”/>
 <Setter Property=”VerticalAlignment” Value=”Center”/>
 <Setter Property=”FontSize” Value=”20”/>
 <Setter Property=”FontWeight” Value=”Bold”/>
 <Setter Property=”Foreground” Value=”Blue”/>
 </Style>
 <Style TargetType=”Image”>

328 ❘ chapter 18 Data BinDing

 <Setter Property=”Height” Value=”50”/>
 <Setter Property=”Margin” Value=”3”/>
 <Setter Property=”Stretch” Value=”Uniform”/>
 <Setter Property=”HorizontalAlignment” Value=”Right”/>
 </Style>
 <Style TargetType=”TextBox”>
 <Setter Property=”Margin” Value=”3”/>
 <Setter Property=”Width” Value=”250”/>
 <Setter Property=”Background” Value=”SkyBlue”/>
 <Setter Property=”TextWrapping” Value=”Wrap”/>
 <Setter Property=”IsReadOnly” Value=”True”/>
 </Style>
 </DataTemplate.Resources>
 <StackPanel>
 <Grid>
 <TextBlock Text=”{Binding Name}”/>
 <Image Source=”{Binding Picture}”
 Height=”50”/>
 </Grid>
 <TextBox Text=”{Binding Stats}”/>
 </StackPanel>
 </DataTemplate>
</ListBox.ItemTemplate>

Planets

Most of this code uses Styles to define properties for the controls that will display the item’s data.
The StackPanel at the end contains those controls. The controls that actually display the data are:

A ➤➤ TextBlock bound to the Planet item’s Name property

An ➤➤ Image bound to the Planet’s Picture property

A ➤➤ TextBox bound to the Planet’s Stats property

In addition to the ItemTemplate property, the ListBox and ComboBox controls provide an ItemsPanel
property that determines the panel control used to lay out the items. By default, the ListBox and
ComboBox use a vertically oriented StackPanel for their ItemsPanel so that the items appear in a
single column, but you can change this.

The PlanetsPanel example program uses the following code to make its ListBox arrange items in a
WrapPanel Instead of a vertical StackPanel:

<ListBox.ItemsPanel>
 <ItemsPanelTemplate>
 <WrapPanel Orientation=”Horizontal” HorizontalAlignment=”Stretch” />
 </ItemsPanelTemplate>
</ListBox.ItemsPanel>

PlanetsPanel

Binding Collections ❘ 329

Figure 18-11 shows the PlanetsPanel program in action. If you widen the Window at run time,
the ListBox widens, and so does the DockPanel that it uses to arrange its items. If you make the
Window wide enough, the DockPanel will have room to place another item on each row, so it will
display the items in three columns instead of the two shown in the figure.

Figure 18-11

treeView templates
The TreeView control works a bit differently than the ListBox and ComboBox because it displays
hierarchical data instead of items in a simple list.

In a TreeView, you must specify two things at each node in the tree — the data to display for that
node and the path to follow deeper into the tree.

For example, consider an organizational chart that lists corporate regions that contain departments,
which, in turn, contain employees. When the TreeView reaches a department node, your program
must tell it what to display (e.g., the department’s name) and how to move deeper into the tree (by
listing the department’s employees).

The OrgChartTreeView example program shown in Figure 18-12 displays a company organizational
chart with departments displayed either by managers or by projects. To make understanding the items
easier, region names are red, department names are blue and end in the word department, manager
names are shown in blue boxes, project names are shown in goldenrod boxes, and employee names are
plain black text.

The TreeView on the left shows regions, each region’s departments, each department’s managers,
and each manager’s direct report employees. The TreeView on the right shows regions, each region’s
departments, each department’s projects, and each project’s team members.

330 ❘ chapter 18 Data BinDing

The following table describes the classes defined in the program’s code-behind and the properties
those classes have:

class prOperty data type

Region RegionName String

Departments List of Department

Department Name String

Managers List of Manager

Projects List of Project

Manager Title String

Reports List of Employee

Project Name String

Description String

TeamLead Employee

TeamMembers List of Employee

Employee FirstName String

LastName String

Extension String

Figure 18-12

Binding Collections ❘ 331

The Manager class is derived from the Employee class, so it also inherits the Employee class’s
FirstName, LastName, and Extension properties.

The TreeView controls that produce these two displays include HierarchicalDataTemplate objects
in their Resources sections to describe what the control should do at each node. For example, the fol-
lowing code shows how the controls handle Region objects:

<HierarchicalDataTemplate
 DataType=”{x:Type local:Region}”
 ItemsSource=”{Binding Path=Departments}”>
 <TextBlock Text=”{Binding Path=RegionName}” Foreground=”Red”>
 <TextBlock.BitmapEffect>
 <OuterGlowBitmapEffect/>
 </TextBlock.BitmapEffect>
 </TextBlock>
</HierarchicalDataTemplate>

OrgChartTreeView

The HierarchicalDataTemplate has three key jobs:

 1. First, its DataType attribute tells what object this template handles. The preceding template
springs into action when the TreeView encounters a Region object in its data.

 2. Second, the template’s ItemsSource attribute tells where the TreeView should look for
children of this item. The previous code indicates that a Region object has children that are
Departments. You can use the ItemsSource attribute to make the TreeView follow differ-
ent paths through the data hierarchy.

 3. Third, the HierarchicalDataTemplate provides the template that the TreeView should use
to display the data at this node. This example displays the Region’s RegionName property in
a TextBlock.

The TreeView on the left in Figure 18-12 uses the following HierarchicalDataTemplate to display
data for a Department object:

<HierarchicalDataTemplate
 DataType=”{x:Type local:Department}”
 ItemsSource=”{Binding Path=Managers}”>
 <TextBlock Text=”{Binding Path=Name}” Foreground=”Blue”/>
</HierarchicalDataTemplate>

OrgChartTreeView

This template’s ItemsSource attribute indicates that the children of a Department node are given by
the object’s Managers property, so the TreeView follows the Managers path out of Department objects.

Contrast that code with the following code used by the TreeView on the right in Figure 18-12:

<HierarchicalDataTemplate
 DataType=”{x:Type local:Department}”
 ItemsSource=”{Binding Path=Projects}”>
 <TextBlock Text=”{Binding Path=Name}” Foreground=”Blue”/>
</HierarchicalDataTemplate>

OrgChartTreeView

332 ❘ chapter 18 Data BinDing

This template’s ItemsSource attribute makes the TreeView use the Department’s Projects prop-
erty to build child nodes.

Binding master-detail data

The OrgChartTreeView example program shown in Figure 18-12 displays hierarchical data in a
tree-like format, but there are other ways to display this kind of data.

For example, the OrgChartMasterDetail example program shown in Figure 18-13 displays a list
of regions in its upper-left ListBox. When you click on one, the program displays a list of depart-
ments in that region. When you select a department, the program displays a list of managers in that
department. Finally, when you select a manager, the program displays a list of employees who report
to that manager. The ListBoxes on the right display the same data, except they follow department
projects instead of managers.

Figure 18-13

When the OrgChartMasterDetail program starts, it builds the same Region, Department, Manager,
Project, and Employee objects used by the OrgChartTreeView program. It then uses the following
code to make two StackPanel controls use the list of Regions as their DataContexts. The controls
they contain inherit those DataContext values.

spByManager.DataContext = regions;
spByProject.DataContext = regions;

The following code shows how the program defines its first Region ListBox:

<ListBox Name=”lstByManagerRegion” ItemsSource=”{Binding}”>
 <ListBox.ItemTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=RegionName}” Foreground=”Red”>
 <TextBlock.BitmapEffect>
 <OuterGlowBitmapEffect/>

Binding XAML ❘ 333

 </TextBlock.BitmapEffect>
 </TextBlock>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

OrgChartMasterDetail

The only surprise here is the ItemsSource value, {Binding}. That value makes the control build its
list of items from whatever object is stored in its DataContext property. It inherits that value from
the StackPanel that holds it, and that value is the list of Region objects built by the code-behind.

The following code shows how the first Department ListBox displays the departments that corre-
spond to the selected region:

<ListBox Name=”lstByManagerDepartment” Margin=”20,0,0,0”
 ItemsSource=”{Binding ElementName=lstByManagerRegion,
 Path=SelectedItem.Departments}”>
 <ListBox.ItemTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=Name}” Foreground=”DarkBlue”/>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

OrgChartMasterDetail

This control’s ItemsSource property is bound to the Departments property of the
lstByManager Region ListBox’s currently selected item. When you select a region from the
lstByManagerRegion ListBox, this ListBox fills itself with the objects stored in that item’s
Departments list.

The bindings for the other master-detail relationships (department/manager, manager/employee,
department/project, project/employee) work similarly. The ListBoxes have an ItemsSource prop-
erty that uses a binding with ElementName set to the master ListBox and Path set to the appropri-
ate list property of the currently selected item.

Binding xaml

The OrgChartTreeView program shown in Figure 18-12 and the OrgChartMasterDetail program
shown in Figure 18-13 build their data in code. The programs’ Window_Loaded event handlers cre-
ate the objects that represent the organizational chart. The following code shows a tiny part of code
shared by those routines:

private void Window_Loaded(object sender, RoutedEventArgs e)
{
 // Define Employees.
 Employee emp_a = new Employee()
 {FirstName = “Alice”, LastName = “Able”, Extension = “1111”};
 Employee emp_b = new Employee()
 {FirstName = “Ben”, LastName = “Better”, Extension = “2222”};
 ...

334 ❘ chapter 18 Data BinDing

 // Define Managers.
 Manager mgr_a = new Manager()
 {FirstName = “Mindy”, LastName = “Most”,
 Extension = “0001”, Title = “Manager of OR”};
 ...
 mgr_a.Reports.Add(emp_a);

 ... Lots of code omitted ...

 // Make a list of the regions.
 List<Region> regions = new List<Region>();
 regions.Add(div_work);
 regions.Add(div_acro);

 // Make the TreeView controls display this list.
 trvByManager.ItemsSource = regions;
 trvByProject.ItemsSource = regions;
}

OrgChartTreeView and OrgChartMasterDetail

The code starts by creating the objects that the TreeView will display. For example, the previous
code shows how the programs create Employee and Manager objects, and add an Employee to a
Manager’s Reports list. Similarly, the code creates Project, Department, and Region objects and
connects all of the objects by adding them to each other’s list properties.

The code finishes by making a list containing the two Region objects that it has created and setting
the TreeView controls’ ItemsSource properties to that list.

The rest of the code is long but fairly straightforward. Download the example program from the
book’s web site to see the details.

Creating complex data structures like this one in code-behind is common, but it is not the only pos-
sible approach. One alternative is to build the objects in XAML code.

To do this, start by including a namespace declaration similar to the following one to define your
project’s namespace for use in XAML. This statement means that you can use the prefix local to
refer to classes defined in your code-behind.

xmlns:local=”clr-namespace:OrgChartTreeView”

Now the XAML code can use the code-behind classes as data types to define the data you need. The
OrgChartXaml example program demonstrates this approach. For example, the following XAML
code shows how the program defines a Manager object:

<local:Manager FirstName=”Mindy” LastName=”Most” Extension=”0001”
 Title=”Manager of OR”>
 <local:Manager.Reports>
 <local:Employee FirstName=”Alice” LastName=”Able” Extension=”1111”/>
 <local:Employee FirstName=”Ben” LastName=”Better” Extension=”2222”/>
 </local:Manager.Reports>
</local:Manager>

OrgChartXaml

Binding XML ❘ 335

The code starts with a local:Manager element that uses attributes to set the object’s FirstName,
LastName, Extension, and Title properties.

The Manager class has a Reports property that holds an array of Employee objects. (XAML doesn’t
support the List<Employee> data type, so I converted the code-behind class definitions to use
arrays for this example.) The XAML code sets the local:Manager.Reports property to an array of
Employee objects.

The OrgChartXaml program uses its Windows.Resources section to create an array named regions
containing two local:Region objects. Later it’s easy to use this array as a data source for the pro-
gram’s TreeView controls as shown in the following code:

<TreeView Name=”trvByManager” Background=”Transparent”
 Grid.Row=”1” Grid.Column=”0” ItemsSource=”{StaticResource regions}”>
 ...
</TreeView>

OrgChartXaml

The rest of the program’s code is long but reasonably straightforward. The program’s
HierarchicalDataTemplates are exactly the same as those used by the OrgChartTreeView pro-
gram. You can download the project from the book’s web site to see the remaining details.

nOt Quite the same

Although the OrgChartTreeView and OrgChartXaml programs look like they pro-
duce the same result, the actual data is slightly different. The OrgChartTreeView
program reuses the same objects several times. For example, the employee Alice
Able is in two Managers’ Reports collections, is TeamLead for project ACROBAT,
and is a TeamMember for that project. The OrgChartTreeView program creates
one Employee object to represent Alice and then adds it in all of those locations.

In the OrgChartXaml program, I was unable to use the same object in multiple places
in this manner. The obvious approach would be to create an Employee resource rep-
resenting Alice and then use it in the appropriate places. Unfortunately, if you try this,
XAML complains that you are trying to add a StaticResourceExtension object to
an array that should contain Employees. To avoid this problem, the program uses mul-
tiple Employee objects that contain the values for Alice.

If you figure out how to share objects in this way, let me know at
RodStephens@vb-helper.com.

Binding xml

The previous two sections explain how to build objects from classes defined in the code-behind and
bind them to controls such as TreeView. A third approach builds the objects as XML data stored
completely in the XAML code.

336 ❘ chapter 18 Data BinDing

When you use this approach, you can simply define the data by typing in elements and their attri-
butes, making up their names as you go. For example, the following code defines a Manager object
containing two Employee objects:

<Manager FirstName=”Mindy” LastName=”Most” Extension=”0001” Title=”Manager of OR”>
 <Employee FirstName=”Alice” LastName=”Able” Extension=”1111”/>
 <Employee FirstName=”Ben” LastName=”Better” Extension=”2222”/>
</Manager>

OrgChartXml

Neither the XAML code nor the code-behind needs to include definitions for the Manager and
Employee classes. In fact, WPF doesn’t actually create Manager and Employee objects. Instead, it
creates XmlElement objects with Name properties set to Manager and Employee.

terriBle typOs

Be very careful when you type XAML data. If you misspell an element’s name,
WPF merrily creates a new object with the misspelled name. For example, if you
accidentally make an Empoyee element, WPF will create an XmlElement named
Empoyee. Later, when a HierarchicalDataTemplate searches for Employee
objects (described next), it will miss this one.

To use this XML data, you need to wrap it in an XmlDataProvider that you can then bind to a TreeView
control. The XmlDataProvider should contain an x:XData element that holds the actual data.

The following code shows the high-level XML elements used by the OrgTreeXml program:

<XmlDataProvider x:Key=”regions” XPath=”Regions”>
 <x:XData>
 <Regions xmlns=””>
 <Region RegionName=”East”>
 ...
 </Region>
 <Region RegionName=”Central”>
 ...
 </Region>
 </Regions>
 </x:XData>
</XmlDataProvider>

OrgTreeXml

The XmlDataProvider’s XPath property defines the XPath within the data that should be used as
the root of the provider’s data source. Usually XPath is set to the root element of the XML data,
which sits just inside the XData element. In this example, that element is named Regions.

If you wanted to use only some of the data, however, you could change XPath. For example, the
value Regions/Region[2] would make the provider start gathering data at the second Region ele-
ment inside the Regions element.

Binding XML ❘ 337

Note that indexing in XML elements like this starts at 1 not 0, so Region[2] is
the second Region element, not the third.

The XML items inside the x:XData element can redefine XML namespaces, but usually it’s easiest
to reset the namespace for all of the elements to an empty string so that you don’t need to worry
about using them later.

external xml

You can also use an XmlDataProvider to refer to a separate file that contains the
data as in:

<XmlDataProvider x:Key=”OrgChartData” Source=”orgchart.xml”
 XPath=”Regions”/>

When you bind TreeViews and other controls to XML data in this way, you must make a couple of
important changes to the way templates refer to the data.

First, because the XML code defines its own data types, you don’t need to use a namespace prefix to
refer to classes defined in the code-behind.

Second, because the XML objects are XmlElements and not classes defined in the code-behind, you
should use XPath instead of Path syntax.

For example, the following code shows the HierarchicalDataTemplate that the OrgChartXml
program uses for Region elements:

<HierarchicalDataTemplate
 DataType=”Region”
 ItemsSource=”{Binding XPath=*}”>
 <TextBlock Text=”{Binding XPath=@RegionName}” Foreground=”Red”>
 <TextBlock.BitmapEffect>
 <OuterGlowBitmapEffect/>
 </TextBlock.BitmapEffect>
 </TextBlock>
</HierarchicalDataTemplate>

OrgChartXml

In this template, the DataType is the simple type Region rather than the more complex local: Region.

ItemsSource uses the XPath value *, indicating that the node’s children should include all of the
children of the current node.

Finally, the TextBlock’s Text property is bound to @RegionName. When the previous programs
referred to a Region object, that object’s region name was stored in its RegionName property.

338 ❘ chapter 18 Data BinDing

Because the XML version stores this value in an attribute, the XPath syntax must use the @ symbol
to access attribute values.

Compare the preceding code to the following HierarchicalDataTemplate, which is used by the
earlier programs in this chapter:

<HierarchicalDataTemplate
 DataType=”{x:Type local:Region}”
 ItemsSource=”{Binding Path=Departments}”>
 <TextBlock Text=”{Binding Path=RegionName}” Foreground=”Red”>
 <TextBlock.BitmapEffect>
 <OuterGlowBitmapEffect/>
 </TextBlock.BitmapEffect>
 </TextBlock>
</HierarchicalDataTemplate>

OrgChartXml

Binding dataBase OBjects

The sections earlier in this chapter explain how to bind controls to objects created in code-behind,
objects defined in XAML code, and objects defined by XML code. These scenarios are all useful,
but many applications store their data in relational databases.

ADO.NET provides objects that interact with relational databases. Because they are objects, you
can bind them to controls much as you can bind the objects described earlier in this chapter. Because
these objects are more complicated than those you would typically build yourself, binding them is a
little more complicated.

The basic strategy is to open the database in code-behind as you would for any other ADO.NET
application. Load data into DataSet, DataTable, and other ADO.NET objects, and then bind them
to the application’s controls.

You can think of a DataTable as
similar to a collection of DataRow
objects and a DataSet as similar
to a collection of DataTables, so
the binding syntax isn’t totally
unfamiliar.

The StudentData example program
shown in Figure 18-14 demonstrates
ADO.NET binding. This program
loads its data from the StudentData
.mdb Microsoft Access database.

The ListBox on the left lists the
students in the Students table. When you click on a student, the controls in the middle display the
student’s address and phone number, and the ListBox on the right displays the corresponding test
score data from the TestScores table.

Figure 18-14

Binding Database Objects ❘ 339

Note that you don’t need to have Access installed on your computer to use an
Access database in your program. You only need a database engine that can
open the database, such as the Jet database engine.

If you modify any of the student values in the middle, the controls automatically update the cor-
responding ADO.NET objects. If you use the Data menu’s “Save Changes” command, the program
writes those changes back into the database. (This example doesn’t provide a way to add or delete
students, or to add or modify a student’s test scores.)

The database has a third table named States that lists the U.S. states (plus Washington, DC) and
their abbreviations. The program uses this table as a lookup table. The Students table contains
each student’s state as an abbreviation. When it displays that value, the ComboBox in the middle of
the window uses the States table to convert the abbreviation into the state’s full name.

The following sections explain how the program performs its major tasks.

loading data
The following code shows how the StudentData program loads its data from the database:

OleDbDataAdapter m_daUsers;
DataSet m_dsStudentData;

private void Window_Loaded(object sender, RoutedEventArgs e)
{
 // Connect to the database.
 OleDbConnection conn = new OleDbConnection(
 “Provider=Microsoft.Jet.OLEDB.4.0;Data Source=StudentData.mdb”);

 try
 {
 // Open the connection.
 conn.Open();

 // The DataSet to hold all of the data.
 m_dsStudentData = new DataSet();

 // Load Students table.
 m_daUsers = new OleDbDataAdapter();
 m_daUsers.SelectCommand =
 new OleDbCommand(
 “SELECT * FROM Students ORDER BY FirstName, LastName”, conn);
 m_daUsers.Fill(m_dsStudentData, “Students”);

 // Load TestScores table.
 OleDbDataAdapter daTestScores = new OleDbDataAdapter();
 daTestScores.SelectCommand =
 new OleDbCommand(“SELECT * FROM TestScores”, conn);
 daTestScores.Fill(m_dsStudentData, “TestScores”);

340 ❘ chapter 18 Data BinDing

 // Load States table.
 OleDbDataAdapter daStates = new OleDbDataAdapter();
 daStates.SelectCommand =
 new OleDbCommand(“SELECT * FROM States ORDER BY StateName”, conn);
 daStates.Fill(m_dsStudentData, “States”);

 // Relation: States.State = Students.State.
 m_dsStudentData.Relations.Add(
 “relStates_Students”,
 m_dsStudentData.Tables[“States”].Columns[“State”],
 m_dsStudentData.Tables[“Students”].Columns[“State”]);

 // Relation: Students.StudentId = TestScores.StudentId.
 m_dsStudentData.Relations.Add(
 “relStudents_TestScores”,
 m_dsStudentData.Tables[“Students”].Columns[“StudentId”],
 m_dsStudentData.Tables[“TestScores”].Columns[“StudentId”]);

 // Set the Window’s DataContext to the DataSet.
 this.DataContext = m_dsStudentData;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 finally
 {
 // Close the connection.
 conn.Close();
 }
}

StudentData

using USING

The code also uses the following Using statements to make using the ADO.NET
objects easier. (The Visual Basic version uses Imports statements.)

using System.Data;
using System.Data.OleDb;

Depending on the kind of database you use, you may need to use other namespaces
and may need to add references to the project.

The code defines an OleDbDataAdapter and DataSet at the module level so they will be easier to
use later to save changes to the data.

When the program’s window loads, the Window_Loaded event handler creates a new connection to
the database. It opens the database and instantiates the DataSet.

Binding Database Objects ❘ 341

Next, for each of the three tables (Students, TestScores, and States), the program creates a data
adapter and uses it to load the data from the database table into the DataSet. The second parameter
to the Fill method is the name of the DataTable to be filled in the DataSet.

The program then defines data relations between the States and Students tables and between the
Students and TestScores tables. The first parameter used to create the relations gives the relations’
names and will be important later in data binding.

The first relation means that each Students.State value must appear somewhere in a States.State
value. For example, this prevents you from changing a Students record’s State value to XY because
the States table doesn’t hold that value.

The second relation means that each TestScores.StudentId value must appear in a Students
.StudentId value. This prevents you from adding a TestScores record without a correspond-
ing Students record. It also provides the link for use by the master-detail relationship between
Students and TestScores records.

distant relatiOns

The database also defines these relations between its tables so it can enforce these
restrictions itself. If your program tried to violate the relations, the database would
throw a tantrum.

After it finishes loading the data and defining the relations, the code sets the window’s DataContext
to the DataSet and closes the database connection.

saving changes
The following code shows how the program saves changes to the Students table:

// Save the changes to the Students table.
private void mnuDataSaveChanges_Click(object sender, RoutedEventArgs e)
{
 // Shameless kludge to move focus off of the current control
 // so any pending changes are written into the DataSet.
 IInputElement has_focus = FocusManager.GetFocusedElement(this);
 lstStudents.Focus();
 has_focus.Focus();

 // Make a command builder to generate the UPDATE command.
 OleDbCommandBuilder cb = new OleDbCommandBuilder(m_daUsers);

 // Update the table.
 m_daUsers.Update(m_dsStudentData, “Students”);

 MessageBox.Show(“Changes saved.”, “Changes Saved”,
 MessageBoxButton.OK, MessageBoxImage.Information);
}

StudentData

342 ❘ chapter 18 Data BinDing

The code starts with a hack to save any edit that is in progress.

Suppose you are typing a new Street value in its TextBox when you invoke the Data menu’s “Save
Changes” command. At that point WPF has not yet notified the DataSet of your edit in progress,
so that change isn’t saved into the database. To force WPF to make that notification, the program
saves a reference to the control that currently has focus, moves focus off that control, and then
moves it back.

Next, the code creates a command builder to generate any commands that the data adapter might need
to update the database. Finally, the code calls the data adapter’s Update method to save the changes.

That’s it for the code-behind. The rest of the program is in XAML code. Naturally, the most inter-
esting pieces are the bindings.

Binding the student name listBox
The following code shows how the program binds the student name ListBox on the left in
Figure 18-14 to the Students data:

<ListBox Grid.Row=”0” Grid.Column=”0” Margin=”10” Name=”lstStudents”
 IsSynchronizedWithCurrentItem=”True”
 DataContext=”{Binding Tables[Students]}”
 ItemsSource=”{Binding}”>
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Grid>
 <StackPanel Orientation=”Horizontal” Margin=”3,0,3,0”>
 <TextBlock Text=”{Binding Path=FirstName}” />
 <TextBlock Text=” “ />
 <TextBlock Text=”{Binding Path=LastName}” />
 </StackPanel>
 </Grid>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

StudentData

The code sets the control’s DataContext attribute to the Tables entry named Students. Remember
that at this point the window’s DataContext property points to the DataSet. The DataSet has
a Tables property that contains references to the DataTable objects it contains. The syntax
Tables[Students] shown here returns a reference to the DataTable named Students.

What’s in a name?

The name Students used here is the name of the DataTable in the DataSet, not the name
of the table in the database. To make things easier to understand, database code typically
gives a DataTable the same name as the table it represents, but that’s not required. The
DataTables’ names are set in the calls to the data adapters’ Fill methods.

Binding Database Objects ❘ 343

The code then sets the ListBox’s ItemsSource attribute to {Binding}. This rather odd syntax
makes the control bind to whatever is in its DataContext property. In this case, that means the
Students DataTable.

The ListBox’s ItemTemplate property element defines a template to use when displaying the items
in the DataTable. In this example, it simply displays the FirstName and LastName fields separated
by a space. (Note that the binding sources are simply the names of the database fields. There’s plenty
of hard stuff in WPF, but this part is easy.)

displaying student details
When you click on an entry in the student list, the program displays the corresponding address and
phone data in the middle controls.

Displaying the data in the TextBoxes is easy. Recall that the TextBoxes inherit the window’s
DataContext, so their DataContexts also point to the DataSet. All a TextBox needs to do is bind
to the appropriate field in the Students DataTable.

The following code shows how the program makes its Street TextBox. The other TextBoxes are
defined similarly.

<TextBox Grid.Row=”0” Grid.Column=”1” Margin=”3”
 Text=”{Binding Path=Tables[Students]/Street}”/>

When you click on a student in the list, the Tables[Students] DataTable’s current item changes,
and the Street TextBox displays the newly selected record’s Street value.

The State ComboBox is trickier than the TextBoxes because it uses both the Students table and the
States lookup table. The following code shows how the program makes its State ComboBox:

<ComboBox Grid.Row=”2” Grid.Column=”1” Margin=”3”
 IsSynchronizedWithCurrentItem=”True”
 ItemsSource=”{Binding Path=Tables[States]}”
 DisplayMemberPath=”StateName”
 SelectedValuePath=”State”
 SelectedValue=”{Binding Path=Tables[Students]/State}”
 />

StudentData

This control uses four attributes to determine the values that it represents and displays. The follow-
ing list describes these properties:

ItemsSource➤➤ — This gives the source that the control uses to build its list of choices. In this
example, the control displays items from the States DataTable.

DisplayMemberPath➤➤ — This gives the path in the ItemsSource to the value that is displayed
by the control. In this program, the ComboBox displays the state names, not their abbrevia-
tions, so DisplayMemberPath is StateName, the name of the field in the States DataTable
that holds the state names.

344 ❘ chapter 18 Data BinDing

SelectedValuePath➤➤ — This gives the path in the ItemsSource to the value that is stored
and manipulated by the control. In this program, the Students DataTable stores each stu-
dent’s state abbreviation, not its full name, so SelectedValuePath is the field that gives the
abbreviation: State.

SelectedValue➤➤ — This gives the value that the control displays and modifies. In this case,
the ComboBox displays the value for the current Students DataTable’s State value.

To better understand how this works, suppose you select a student who has State = AZ. The
ComboBox’s SelectedValue binding gets the value of Tables[Student].State, which is AZ.
The control then looks in its ItemsSource (which is Tables[States]) for the field referred to
by SelectedValuePath (which is State). It finds the value that matches AZ, looks up the corre-
sponding DisplayMemberPath value (Arizona), and displays it.

If you select a new value from the ComboBox, the process reverses. The control gets the value you
selected and looks it up in the ItemsSource’s DisplayMemberPath field. It gets the corresponding
SelectedValuePath value and saves it as the SelectedValue.

Binding the scores listBox
The final part of the StudentData program binds the ListBox on the right so it displays the
TestScores values for the currently selected student. The following code shows how the program
defines this ListBox:

<ListBox Name=”lstTestScores” Grid.Row=”0” Grid.Column=”2” Grid.RowSpan=”100”
 Margin=”10,3,0,0” IsSynchronizedWithCurrentItem=”True”
 DataContext=”{Binding Path=Tables[Students]}”
 ItemsSource=”{Binding Path=relStudents_TestScores}”
 >
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Grid>
 <StackPanel Orientation=”Horizontal” Margin=”3,0,3,0”>
 <TextBlock Text=”Test: “ />
 <TextBlock Text=”{Binding Path=TestNumber}” />
 <TextBlock Text=”, Score: “ />
 <TextBlock Text=”{Binding Path=Score}” />
 </StackPanel>
 </Grid>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

StudentData

Like the student names ListBox, this control’s DataContext is set to the Students DataTable.

The code sets the control’s ItemsSource property to the relation defined in the code-behind between
the Students and TestScores DataTables. When you click on a student in the students list, the
Students DataTable gets a new current record. The control uses the relation to find the correspond-
ing entries in the TestScores DataTable and displays them.

The ListBox’s ItemTemplate property determines how the control displays its TestScores values.

Summary ❘ 345

summary

WPF provides a very powerful model for data binding. It lets you bind a control’s properties to:

Another control’s properties➤➤

Objects defined in code-behind➤➤

Objects built in XAML code➤➤

Objects defined by XML data➤➤

Database objects such as ADO.NET ➤➤ DataSet and DataTable objects

Bindings let you display many items stored in arrays, collections, and other data structures in lists,
hierarchical displays, and master-detail displays.

Chapter 19 explains a different kind of binding. It explains how you can bind commands to pro-
gram behaviors. For example, it shows how to make the program respond when the user performs a
“Save” action whether the user invokes that action from a menu command, a shortcut key, a toolbar
button, or by any other method.

Commanding
Many applications provide several ways to perform the same function. For example, in many
applications you can copy the text selected in a textbox by any of the following actions:

Press [Ctrl]+C.➤➤

Right-click on the textbox and select the context menu’s Copy command.➤➤

Open the Edit menu and select Copy.➤➤

Click the Copy button on the toolbar.➤➤

In all of these cases, the program performs the same action and copies the selected text.

Rather than using different pieces of code to perform the same action for each of these input
scenarios, a well-designed application calls the same code for each. That reduces repeated
code, so it means less code to write, debug, and maintain.

WPF formalizes this idea of providing centralized actions with commanding. Commanding
separates the logical intent of an action (such as copying text) from the code that implements it.

Figure 19-1 shows three different approaches to handling text copying. In the bad design on
the left, different input actions invoke different pieces of code. This design is bad because it
contains several copies of the same code, making it harder to debug and maintain the code.

In the design in the middle, all of the input methods invoke the same piece of code. This design
is better because all of the text copying code is stored in a central routine where it’s easy to
debug, modify, and maintain.

The design on the right illustrates commanding. All of the input methods invoke the same
command object, which, in turn, calls the appropriate code-behind. This provides roughly the
same features as the middle design with an extra layer added. In addition to encouraging cen-
tralized processing, commanding provides a few extra features. For example, a command can
automatically display standard keyboard shortcuts for menu items and for managing enabling
and disabling all of the input actions that activate the command.

19

348 ❘ Chapter 19 Commanding

Ctrl+C

U
se

r
In

pu
ts

Bad Design Good Design Commanding Design

C
od

e-
B

eh
in

d

Copy

Context
Menu

Copy

Edit >
Copy

Copy

Ctrl+C
Context
Menu

Copy

Edit >
Copy Ctrl+C

Context
Menu

Command

Edit >
Copy

Copy

Figure 19-1

This chapter describes commanding. It explains how to use standard predefined commands that
are useful in many applications, and it shows how to create custom commands for actions that are
unique to your application. It also shows how to bind commands to user inputs such as menu selec-
tion, button clicks, and keyboard sequences.

Commanding ConCepts

Commanding is based on four key concepts:

Command➤➤ — This object represents the logical action that should take place. The action is
something conceptual such as copying text, opening a document, or printing.

Command Source➤➤ — This is an object that invokes the command. This could be a menu item,
button, or key sequence.

Command Target➤➤ — This is the object upon which the command is executed. For example, a
Copy command might be executed on a TextBox.

Command Binding➤➤ — This is the object that maps code to the command.

For example, suppose your program allows the user to start a new document (text file, drawing, or
whatever) by selecting the File menu’s New command. In this example:

The ➤➤ command is the concept of starting a new document.

The ➤➤ command source is the File menu’s New menu item.

The ➤➤ command target is the object that creates the new document, possibly the window hold-
ing the menu.

The ➤➤ command binding maps the menu item to the code in the command target’s class that
creates the new document.

Predefined Commands with Actions ❘ 349

Not only does commanding make it easy for the code to handle an operation in a single centralized
place, but the command object also provides a central point for enabling and disabling the controls
that trigger it. For example, consider a copy command. If no text is selected that could be copied,
then the command object can disable the [Ctrl]+C, context menu, Edit ➪ Copy, and any other
actions that could trigger a copy.

WPF predefines many command objects that you can bind to your controls to define actions. Some
even have a special relationship with other controls so they can automatically perform actions for
you. Finally, you may need to define new command objects to handle other actions that were not
anticipated by WPF.

The following sections describe these three groups of command objects: those predefined by WPF
that can take automatic action, those predefined by WPF that cannot take automatic action, and
custom commands that you define in your code.

predeFined Commands with aCtions

Some control classes automatically implement command bindings for you. For example, the TextBox
control knows how to provide copy, cut, paste, undo, and redo actions. If the program executes the
predefined ApplicationCommands.Copy command while a TextBox has focus, then the TextBox
copies its selected text to the clipboard.

Furthermore, all you need to do is tell a menu item or button that its command is
ApplicationCommands.Copy, and the control will automatically trigger the appropriate action
as needed. You don’t need to write a single line of code-behind!

The TextBoxCommands example program shown in
Figure 19-2 demonstrates predefined commands that
are supported by the TextBox control. Partly hidden
by the program’s Edit menu, a toolbar contains Copy,
Cut, Paste, Undo, and Redo commands similar to those
shown in the menu.

The Copy and Cut menu commands and toolbar buttons
are disabled because the textbox that has the focus (you
can see the focus caret just after the word doubt in the
upper textbox) has no text selected so those commands
don’t make sense. The Paste command is enabled because there was text in the clipboard when
that screenshot was taken so you could paste it into the TextBox. The Undo and Redo commands
are always enabled. (It would be better if those command objects enabled and disabled themselves
appropriately depending on whether the TextBox had changes that could be undone or redone but
currently they don’t.)

The following code shows how the program creates its menu:

<MenuDockPanel.Dock=”Top”>
<MenuItemHeader=”Edit”>
<!--Menuitemsthatinvokedefaultcommands.-->
<MenuItemCommand=”ApplicationCommands.Copy”/>

Figure 19-2

350 ❘ Chapter 19 Commanding

<MenuItemCommand=”ApplicationCommands.Cut”/>
<MenuItemCommand=”ApplicationCommands.Paste”/>
<Separator/>
<MenuItemCommand=”ApplicationCommands.Undo”/>
<MenuItemCommand=”ApplicationCommands.Redo”/>
</MenuItem>
</Menu>

TextBoxCommands

The code sets each MenuItem’s Command property to the name of a predefined application command.

shorter names

The text ApplicationCommands. before the command name is optional, so, for exam-
ple, you could call the Copy command Copy instead of ApplicationCommands.Copy.
Writing the full name makes it more obvious that these are application commands but
you can use whichever style you think is easier to read.

The MenuItems do the rest automatically. They automatically display the appropriate text and short-
cut key combinations. When you invoke one of the menu items, it activates the corresponding com-
mand object and that object makes the TextBox with the focus perform the appropriate action.

Commanding the easy way

This is the easiest commanding scenario. It uses a predefined command, a control
that has built-in support for the command (TextBox), and a control that has built-
in support for representing and invoking commands (MenuItem).

The following code shows how the program makes its toolbar:

<ToolBarTrayDockPanel.Dock=”Top”Background=”Transparent”>
<ToolBarBand=”1”BandIndex=”1”Background=”Transparent”>
<ButtonCommand=”Copy”Content=
“{BindingRelativeSource={RelativeSourceSelf},Path=Command.Text}”/>
<ButtonCommand=”Cut”Content=
“{BindingRelativeSource={RelativeSourceSelf},Path=Command.Text}”/>
<ButtonCommand=”Paste”Content=
“{BindingRelativeSource={RelativeSourceSelf},Path=Command.Text}”/>
<Separator/>
<ButtonCommand=”Undo”Content=
“{BindingRelativeSource={RelativeSourceSelf},Path=Command.Text}”/>
<ButtonCommand=”Redo”Content=
“{BindingRelativeSource={RelativeSourceSelf},Path=Command.Text}”/>
</ToolBar>
</ToolBarTray>

TextBoxCommands

Predefined Commands with Actions ❘ 351

Like the MenuItems, the toolbar’s Buttons have Command properties set to the names of the commands
they execute. Unlike MenuItems, however, Buttons do not automatically display the commands’ text
and shortcut keys, so the program includes XAML code that sets the Buttons’ text.

Each Button’s Content property is set to a binding that makes WPF look at the Button, get its
Command property, and get that object’s Text property. That makes the Button display the appropri-
ate text for its command.

setting Button text

You could set each Button’s text explicitly to Copy, Cut, and so forth, but it would
add an extra chance for you to introduce bugs with the text not matching the com-
mand’s name.

Left to its own devices, commands like ApplicationCommands.Copy enable their sources when any
appropriate control makes the operation possible. For example, the Copy command activates its con-
trols when the textbox that has the focus has text selected.

If you want, you can set a command’s target to tie it to a specific control. For example, you can use
a textbox as a button’s command target. Then the command enables or disables its menu item, but-
ton, and other controls depending on whether text is selected in that particular textbox.

The CommandTarget example program shown in
Figure 19-3 demonstrates command targets.

Many of the program’s controls are similar to those
used by the TextBoxCommands program. The program’s
Edit menu and toolbar contain Copy, Cut, Paste, Undo,
and Redo items that use the appropriate predefined
ApplicationCommands.

The program also provides Copy, Cut, and Paste buttons
that have the upper textbox in Figure 19-3 as their com-
mand targets. Their commands enable and disable these
controls depending on the state of that textbox.

The following code shows how the CommandTarget program defines its new buttons. You can see
that the buttons’ CommandTarget properties are set to the upper textbox txtTop.

<StackPanelGrid.Row=”0”Grid.Column=”1”Margin=”0,0,5,0”
VerticalAlignment=”Center”>
<!--ButtonsthatinvokecommandsontxtTop.-->
<ButtonGrid.Row=”0”Grid.Column=”1”Margin=”2”
Content=”{BindingRelativeSource={RelativeSourceSelf},Path=Command.Text}”
Command=”ApplicationCommands.Copy”
CommandTarget=”{BindingElementName=txtTop}”/>
<ButtonGrid.Row=”0”Grid.Column=”1”Margin=”2”
Content=”{BindingRelativeSource={RelativeSourceSelf},Path=Command.Text}”
Command=”ApplicationCommands.Cut”

Figure 19-3

352 ❘ Chapter 19 Commanding

CommandTarget=”{BindingElementName=txtTop}”/>
<ButtonGrid.Row=”0”Grid.Column=”2”Margin=”2”
Content=”{BindingRelativeSource={RelativeSourceSelf},Path=Command.Text}”
Command=”ApplicationCommands.Paste”
CommandTarget=”{BindingElementName=txtTop}”/>
</StackPanel>

CommandTarget

In Figure 19-3, the lower textbox has the input focus and has no text selected, so the Copy and Cut
toolbar buttons are disabled (as are the corresponding menu items). However, there is text selected in
the upper textbox, so the Copy and Cut buttons on the right are enabled. (That textbox doesn’t have
the focus so you can’t tell that it has text selected. You’ll have to trust me on this.) If you clicked on
the Paste button, whatever text is currently in the clipboard would be pasted into the upper textbox.
If you clicked on the Cut button, the selected text in the upper textbox would disappear.

BaFFling Bindings

Binding commands to particular controls in this way can be very confusing. In
Figure 19-3, there’s no indication that the buttons only work with the upper text-
box except for the fact that they are sitting next to it. There’s no indication that the
toolbar buttons and menu items apply to either textbox.

To avoid confusion, think carefully before you bind commands to some controls but
not to other, similar controls. Try to make the interface as consistent as possible. For
example, give similar buttons to each textbox, disable the buttons when their text-
box doesn’t have focus, or forget the whole thing and stick with the normal Copy,
Cut, and Paste menu items and toolbar buttons that apply to every textbox.

predeFined Commands without aCtions

Although a few command objects can automatically take action when they are invoked, many can-
not. Those objects define a logical action, but your code must determine what the action means to
your application.

For example, the Open, New, Save, Save As, and Close commands all make sense for a document-
oriented application, but the specific actions they perform will differ depending on whether your
program is a text editor, drawing tool, or report generator.

To attach actions to one of these predefined commands, a program can create a command binding.
A command binding tells WPF what code to run to determine whether the command should be
allowed and what code to run when the command executes.

The DocumentCommands example program shown in Figure 19-4 demonstrates several document-
oriented commands that are predefined without automatic actions. The program lets you click-and-
drag to draw rectangles with random colors.

Predefined Commands without Actions ❘ 353

The program’s New, Open, Save, Save As, and Close commands
work more or less as you would expect. For example, if you open
a document and draw a new rectangle on it, then the Save and
Save As commands are enabled, so you can save your changes.

The drawing shown in Figure 19-4 was a new one that had not
yet been saved. Because it did not yet have a filename, the Save
command is disabled and the Save As command is enabled.

One feature of this program that is not common among document
editors is that it will not let you use the New or Open commands
if there are unsaved changes to the current document. Many other
programs let you invoke New or Open and then warn you if the current document has unsaved
changes. The DocumentCommands program makes you save any changes or close the document
before using New or Open. (I did it this way to make the commands more interesting.)

The following XAML code shows how the program binds the New, Open, Save, and Save As com-
mands to code-behind. The code-behind creates the binding for the Close command to show how
it’s done in code.

<Window.CommandBindings>
<CommandBindingCommand=”New”
CanExecute=”DocumentNewAllowed”Executed=”DocumentNew”/>
<CommandBindingCommand=”Open”
CanExecute=”DocumentOpenAllowed”Executed=”DocumentOpen”/>
<CommandBindingCommand=”Save”
CanExecute=”DocumentSaveAllowed”Executed=”DocumentSave”/>
<CommandBindingCommand=”SaveAs”
CanExecute=”DocumentSaveAsAllowed”Executed=”DocumentSaveAs”/>
<!--TheClosebindingisdefinedincode
justtoshowhowit’sdone.
<CommandBindingCommand=”Close”
CanExecute=”DocumentCloseAllowed”Executed=”DocumentClose”/>
-->
</Window.CommandBindings>

DocumentCommands

The Window.CommandBindings section contains the bindings. Note that you can put these bind-
ings in a more restricted scope, for example, in a Grid or StackPanel, but usually it makes the most
sense to handle commands at a global level. It can be confusing if some commands are only avail-
able from certain parts of the user interface.

Each CommandBinding object defines the command that it is binding. The CanExecute attribute
gives the name of the function that decides whether the command should be enabled. The Executed
attribute gives the name of the routine to run when the command executes.

The following code shows the code-behind for the New command:

//ReturnTrueifwecanperformtheNewaction.
privatevoidDocumentNewAllowed(Objectsender,CanExecuteRoutedEventArgse)
{
e.CanExecute=(!m_IsDirty);

Figure 19-4

354 ❘ Chapter 19 Commanding

}

//PerformtheNewaction.
privatevoidDocumentNew(Objectsender,ExecutedRoutedEventArgse)
{
//RemoveanyexistingcontrolsontheCanvas.
cvsDrawing.Children.Clear();

//Displaythecanvas.
borDrawing.Visibility=Visibility.Visible;
m_FileName=null;
}

DocumentCommands

The DocumentNewAllowed routine sets e.CanExecute to True if the program should allow the New
command. When this function sets e.CanExecute to False, the command object disables the menu
item and toolbar button for this command. The function simply returns True if the m_IsDirty flag
is False.

down and dirty

Without going into too much detail about how the program works, m_IsDirty
is set to True whenever there are unsaved changes to the drawing. When the user
clicks-and-drags to make a new rectangle, the variable is set to True. When the
user opens an existing file, creates a new file, or saves changes, the program sets
m_IsDirty to False.

The DocumentNew routine removes any rectangle children on the drawing canvas cvsDrawing. It
ensures that the Border containing the canvas is visible and sets m_FileName to null to indicate
that the new drawing doesn’t have a filename yet.

saFety First

Note that this code doesn’t need any logic to determine whether it is safe to create a
new document. For example, it doesn’t check whether there is an existing document
with unsaved changes. The DocumentNewAllowed routine only enables the New
command when it is safe to make a new document, so the DocumentNew routine
only executes when it is safe.

This is one of the benefits of using WPF commanding. Moving the “is allowed”
logic into a separate routine simplifies the code that performs the action.

Custom Commands ❘ 355

Custom Commands

WPF provides around 150 predefined commands, so in many cases, you can find an existing com-
mand object to suit your needs. There are classes for copy, cut, paste, zoom in, zoom out, print,
help, and many other features that are common to many programs. Appendix K summarizes pre-
defined command classes.

Occasionally, however, you may want to define a command that isn’t common in other programs
and for which WPF doesn’t define a command class. In that case, you can define your own com-
mand objects. You can take two basic approaches to defining new command objects.

First, you can build a class that implements the ICommand interface. This isn’t too hard, but it’s harder
than the other approach so it isn’t discussed here.

Second, you can make an instance of the RoutedCommand or RoutedUIEvent class. These classes are
mostly the same except the RoutedUIEvent class has a Text property that the RoutedCommand class
lacks. That makes RoutedUIEvent a better choice if you want to display the command’s text some-
where such as in buttons and menu items.

The basic steps for building a custom RoutedUICommand object aren’t too complicated, but under-
standing what’s going on can be tricky.

The command object that you define should be static (shared in Visual Basic) so all instances of the
window will share the same instance of the command object. Because all instances of the window share
the same command object, you may wonder if that object enables and disables all of the commands
for every window, for example, if a single object determines whether the “Invert Image” command is
enabled or disabled for every window. That would be bad because it would mean that different win-
dows could not be in different states at the same time.

Fortunately, that’s not the case. Although the object that represents a command is shared between
windows, the CanExecute and Executed routines are not. WPF queries each window’s version of
the CanExecute routine so that each window can decide whether it should allow its command to
execute.

The ImageColors example program shown in Figure 19-5 demonstrates custom command objects.
Note that the top window’s commands are enabled, but the bottom window’s commands are dis-
abled. Click on the New button to make a new window. Check the Enabled box to enable a win-
dow’s commands.

Note also that the program’s buttons and menu items display their accelerator keys (the underlined
keys) and that the menu items display their shortcut key sequences (e.g., [Alt]+I for the Invert com-
mand). All of that is explained shortly.

So what do you need to do to make a custom command object? First, declare the object as static.
WPF won’t need to set the value of the object, so if you like, you can also declare it read-only. The
following code shows how the ImageColors program declares its Invert command object:

publicreadonlystaticRoutedUICommandCommandImageInvert;

356 ❘ Chapter 19 Commanding

Figure 19-5

Next, write code to initialize the object. Because it is declared static, the program can only initialize
the object in a static constructor. The following code shows how the ImageColors program initial-
izes its Invert command:

staticWindow1()
{
CommandImageInvert=newRoutedUICommand(“_Invert”,
“InvertCommand”,typeof(Window1));
CommandImageInvert.InputGestures.Add(
newKeyGesture(Key.I,ModifierKeys.Alt));

Codeforothercommandsomitted
}

ImageColors

When the code creates the RoutedUICommand, it adds an underscore before the command’s accelera-
tor character. If you look closely at Figure 19-5, you’ll see that the I is underlined in the Invert but-
ton and menu item.

This code also adds the [Alt]+I input gesture to the command. The menu item shown in Figure 19-5
automatically displays the gesture to the right.

lots oF statiC

If you try to initialize the command object in a non-static constructor, Visual
Studio complains at design time. If you try to initialize the command object in the
window’s Loaded event handler, the program fails at run time.

Custom Commands ❘ 357

Now write the appropriate CanExecute and Executed routines in the code-behind. The ImageColors
program uses the following CanExecute routine for all of its commands so they are all enabled when
the window’s checkbox is checked:

//ReturnTrueiftheCheckBoxischecked.
privatevoidCanExecuteChecked(Objectsender,CanExecuteRoutedEventArgse)
{
e.CanExecute=(chkEnable.IsChecked==true);
}

ImageColors

The Invert command’s Executed method is interesting but not relevant to this discussion, so it isn’t
shown here. Download the example program from the book’s web site to see how it works.

Next in the XAML code, add command bindings to tell the program which routines to use for the
command’s CanExecute and Executed properties. The following code shows how the ImageColors
program binds its Invert command:

<Window.CommandBindings>
<CommandBinding
Command=”{x:Staticlocal:Window1.CommandImageInvert}”
CanExecute=”CanExecuteChecked”
Executed=”ExecuteImageInvert”/>
<!--...Codeforothercommandsomitted-->
</Window.CommandBindings>

ImageColors

Finally, add the XAML code to display the buttons, menu items, and other controls that invoke the
command.

The following code shows how the ImageColors program displays its Invert menu item. The MenuItem
control automatically reads the command object’s Text property to display its caption. It uses the com-
mand’s input gesture to display the shortcut text [Alt]+I.

<MenuItemCommand=”{x:Staticlocal:Window1.CommandImageInvert}”/>

The following code shows how the program displays its Invert button. Unlike the corresponding menu
item, the button does not automatically get its caption from the command object, so the XAML code
must set the button’s caption explicitly.

<ButtonName=”btnInvert”
Command=”{x:Staticlocal:Window1.CommandImageInvert}”
Style=”{StaticResourceButtonStyle}”
Content=”{BindingRelativeSource={RelativeSourceSelf},Path=Command.Text}”/>

ImageColors

Notice how the code binds the button’s Content to the command object’s Text property. Because
the code-behind added the underscore to the object’s text, the button automatically underlines its
accelerator when you press the [Alt] key and responds to the [Alt]+I key sequence.

358 ❘ Chapter 19 Commanding

The process seems complicated and involves many steps, but the steps are relatively simple if taken
one at a time. I encourage you to download the ImageColors example program from the book’s web
site and look at the code to see how it all fits together.

summary

This chapter describes WPF command objects, which provide several benefits. They let a program
easily enable and disable any number of buttons, menu items, and other controls that invoke them;
they allow you to attach input gestures that let the user invoke commands with keyboard sequences;
and they automatically display those gestures on menu items.

WPF provides around 150 predefined command objects that you can use to represent logical opera-
tions in your applications. A few, such as Copy, Cut, and Paste, are even supported by controls such
as TextBox. See Appendix K for a list of predefined command objects.

If the predefined commands don’t’ do everything that you need, you can always create your own.

Whether you use command objects is still up to you. Your application can catch events and take
direct action without using commands. That may be practical for simple actions, but if you want to
provide multiple ways to invoke the same command or support input gestures, then you should give
commands a try.

WPF commanding is a general mechanism for controlling logical operations at a fairly abstract level.
Many applications have a notion of “creating a new document” although you cannot see the action
itself, only the results.

The following chapter describes two much more concrete tools: transformations, which modify the
way a program draws graphics; and effects, which add decorations to graphical output.

Transformations and Effects
As is mentioned in Chapter 1, WPF uses DirectX as its rendering engine. DirectX provides
access to any high-performance graphics hardware available on the system, so it can produce
amazing effects relatively quickly and easily.

This chapter looks at two useful techniques that WPF gets as a benefit of using DirectX: trans-
formations and bitmap effects. Judicial use of these can make an application easier to use and
more attractive.

TransformaTions

A transformation alters an object’s geometry before it is drawn. Different kinds of transforma-
tions stretch, rotate, squash, skew, and move an object.

Internally WPF represents transformations using 3-by-3 matrices and manipulates them with
linear algebra. Fortunately, you don’t need to understand how transformations work to use
them in your XAML code.

WPF provides four basic kinds of transformations represented by the following XAML elements:

RotateTransform➤➤ — This transformation rotates an object. The Angle property deter-
mines the number of degrees by which the object is rotated clockwise.

ScaleTransform➤➤ — This transformation scales the object vertically and horizontally.
The ScaleX and ScaleY properties determine the horizontal and vertical scale factors
respectively.

SkewTransform➤➤ — This transformation skews the object by rotating its X and Y axes
through an angle given by the AngleX and AngleY properties.

TranslateTransform➤➤ — This transformation moves the object. The X and Y properties
determine how far the object is moved horizontally and vertically.

20

360 ❘ ChapTer 20 TransformaTions and EffEcTs

Normally, rotation, scaling, and skewing take place relative to an object’s origin, which is usually
the object’s upper-left corner. However, you can change the center of transformation by setting their
CenterX and CenterY properties. For example, you can move the center to a control’s middle to
rotate the control around its middle instead of its upper-left corner.

To apply a transformation to an object, give that object a LayoutTransform or RenderTransform prop-
erty element that contains one of the four basic transformations. When you use a LayoutTransform,
WPF modifies the control before it arranges the controls. When you use a RenderTransform, WPF
arranges the controls first and then modifies the control. The section “Layout and Render Transforms”
later in this chapter says more about the differences between these two elements.

For example, the following code creates a Label. The Label.LayoutTransform element contains a
RotateTransform that rotates the Label by 45 degrees.

<Label Canvas.Left=”140” Canvas.Top=”50”
 Background=”LightGreen” Foreground=”Red”
 Content=”Rotate 45 degrees”>
 <Label.LayoutTransform>
 <RotateTransform Angle=”45”/>
 </Label.LayoutTransform>
</Label>

Transformations

In addition to the four basic transformations, WPF provides a MatrixTransform class that rep-
resents an arbitrary combination of rotation, scaling, skewing, and translation as a matrix. Using
matrices is trickier than using the four basic transformation classes and doesn’t really give you any
extra flexibility so it isn’t covered here. For more information, see the MatrixTransform class’s
online help at msdn.microsoft.com/system.windows.media.matrixtransform.aspx.

The Transformations example program shown in Figure 20-1 demonstrates an assortment of
transformations.

figure 20-1

The following list mentions a few notable features in Figure 20-1:

The big yellow label at the top is scaled by a factor of 5 horizontally and 1 vertically.➤➤

The smaller white label in the middle is scaled by a factor of –1 horizontally.➤➤

The orange translated label sits inside a blue canvas, so its translation is relative to the can-➤➤

vas’s upper-left corner.

Combining Transformations ❘ 361

The various rotated labels are rotated around their upper left corners.➤➤

The label that says “Matrix” defines its transformation using a matrix.➤➤

Combining TransformaTions

You can transform an object using any combination of rotation, scaling, skewing, and translation
transformations. To make a combined transformation, use a TransformGroup element instead of a
single transformation object. Inside the group, you can place any number of other transformations.

For example, the following code shows a TransformGroup for a Grid control that contains a trans-
lation followed by a rotation:

<Grid.RenderTransform>
 <TransformGroup>
 <TranslateTransform X=”150” Y=”0”/>
 <RotateTransform Angle=”60”/>
 </TransformGroup>
</Grid.RenderTransform>

CombinedTransformations

Note that the ordering of a set of transformations is important. In general, if you change the order
of the transformations, you will get different results.

The CombinedTransformations example program shown in
Figure 20-2 displays a Border (shown as a large black-edged
rectangle) that contains a Canvas. The Canvas holds several
objects drawn with different transformations. Neither the Border
nor the Canvas have ClipToBounds set to True so the objects are
visible even where they stick out of the Canvas and Border.

Because the objects are contained inside the canvas and the canvas
fills the border, the objects’ origins are in the border’s upper-left
corner.

The white object numbered 0 is the untransformed object. The
blue object 1 has been translated, and the blue object 2 has been
translated and then rotated.

The green object 1 has been rotated, and the green object 2 has been rotated and then translated.

The two objects labeled 2 use the same rotation and translation but in different orders, and they
produce very different results.

CenTered suggesTion

Often it’s easiest to build the transformation you need if you start by creating an
object centered at the origin. Then you can easily scale, rotate, or skew it around its
center before translating it to its final destination.

figure 20-2

362 ❘ ChapTer 20 TransformaTions and EffEcTs

LayouT and render Transforms

WPF controls have two transformation properties: LayoutTransform and RenderTransform.

WPF applies a control’s LayoutTransform before it arranges that control and the others on the win-
dow. It then uses the transformed control’s new width and height to calculate control placement. For
example, if you rotate a square 45 degrees, then the result is a diamond that is wider and taller than
the original square. If the square is placed inside a StackPanel, the StackPanel will allow enough
room for the rotated square to fit.

WPF applies a control’s RenderTransform after the controls have been arranged but before they
are drawn. This can produce some strange results in arranging controls such as StackPanel and
WrapPanel, with controls sticking out past the edges of the areas allocated by their containers.

RenderTransforms work quite well, however, if a control’s container doesn’t use control sizes
to arrange its children. For example, a Canvas doesn’t use control sizes to arrange controls, so
RenderTransforms work well there.

TransLaTion TriCkiness

Depending on a control’s container, transformations sometimes produce unex-
pected results or may have no noticeable effect.

For example, suppose you place a Label inside a Grid and give the Label a transla-
tion transformation. WPF translates the Label but then centers it inside the Grid
so it appears in the same place it would have been if you hadn’t bothered with the
translation.

In situations such as this, it may be easier to get the result you want if you use a
RenderTransform instead of a LayoutTransform, or if you move the control into
a Canvas.

The LayoutVsRender example program shown in
Figure 20-3 demonstrates the difference between the
LayoutTransform and RenderTransform properties.

The StackPanel on the left contains three Labels
rotated with LayoutTransformations, so the
StackPanel allows enough height for each rotated
Label. After allowing room for the Labels, the
StackPanel centers each of them.

The StackPanel on the right contains three Labels
rotated with RenderTransformations. The StackPanel
only allows enough vertical space for each Label to
fit before it is rotated and then drops in the Labels
whether they fit or not.

figure 20-3

Effects ❘ 363

size Wise

Note how the Labels on the right in Figure 20-3 stretch to match the width of the
StackPanel, while those on the left size themselves to fit their contents.

Normally a StackPanel stretches its Labels to fit its width. However, the Layout
Transforms used by the Labels on the left in Figure 20-3 are applied before the
Labels are stretched so the Labels get their desired fit-to-content sizes. In contrast,
the StackPanel on the right of Figure 20-3 arranges the Labels first, stretching
them, and only then rotates the results.

effeCTs

Much as transformations modify an object’s geometry, bitmap effects modify the way in which an
object is drawn.

To add an effect to an object, give it a BitmapEffect property element that contains an effect
object. For example, the following code defines a Canvas that holds an Ellipse and a Path. The
Canvas.BitmapEffect element holds a DropShadowBitmapEffect object to give the result a
drop shadow.

<Canvas Width=”100” Height=”100”>
 <Canvas.BitmapEffect>
 <DropShadowBitmapEffect/>
 </Canvas.BitmapEffect>
 <Ellipse Stroke=”Blue” Fill=”Yellow” Width=”100” Height=”100”/>
 <Path Data=”M 20,50 A 30,30 180,1,0 80,50”
 Stroke=”Blue” StrokeThickness=”2”/>
</Canvas>

Effects

The following list summarizes WPF’s bitmap effect classes:

BevelBitmapEffect➤➤ — Adds beveled edges to the object. This effect has several important
properties. BevelWidth determines how wide the beveled edges are. LightAngle determines
the apparent direction that light hits the beveled edges. Relief determines how stark the
contrast is between the shadowed and lighted edges. Smoothness determines how smooth
the shadows are. EdgeProfile is discussed in the following paragraphs.

BlurBitmapEffect➤➤ — Blurs the object. Radius determines how large the blurring is.

DropShadowBitmapEffect➤➤ — Adds a drop shadow behind the object. This effect’s most use-
ful properties are Color (which determines the shadow’s color) and Direction (which gives
the direction in degrees from the object to its shadow). ShadowDepth determines how far
“behind” the object the shadow appears.

364 ❘ ChapTer 20 TransformaTions and EffEcTs

EmbossBitmapEffect➤➤ — Embosses the object.

OuterGlowBitmapEffect➤➤ — Adds a glowing aura around the object. GlowSize determines
the aura’s size. GlowColor determines the aura’s color.

If you want to use more than one effect at the same time, use a BitmapEffect element that contains a
BitmapEffectGroup. Inside the BitmapEffectGroup, place the effects that you want to use. For example,
the following code makes a Canvas use an EmbossBitmapEffect followed by a BevelBitmapEffect.

<Canvas.BitmapEffect>
 <BitmapEffectGroup>
 <EmbossBitmapEffect/>
 <BevelBitmapEffect BevelWidth=”10”/>
 </BitmapEffectGroup>
</Canvas.BitmapEffect>

Effects

effeCTive effeCTs

Note that the order of effects is important. In general, applying effects in different
orders will produce different results.

The Effects example program shown in Figure 20-4 displays an unmodified object and the same
object using the five basic bitmap effects. The final two versions on the lower right show the object
using combinations of effects.

figure 20-4

The BevelBitmapEffect class’s EdgeProfile property determines the exact shape of the beveled
edges. The BevelEffects example program shown in Figure 20-5 demonstrates each of the property’s
four possible values.

Effects ❘ 365

figure 20-5

All of the bitmap effects act only on pixels that are visible. If an area is unfilled or filled with the
color Transparent, then the effect ignores that area.

fiLLed WiTh noThing

To make an area unfilled, you can often just not fill it. For example, if you don’t
specify an Ellipse’s Fill property, then the Ellipse is unfilled.

To explicitly make an area unfilled, fill it with {x:Null} in XAML code, null in
C#, or Nothing in Visual Basic.

The TransparentEffects example program shown in Figure 20-6 draws Smiley Faces similar to those
displayed by the Effects program except the main ellipse is transparent instead of yellow.

figure 20-6

The effects shown in Figure 20-6 only use the pixels that are actually drawn. This looks reasonable
for the blur, drop shadow, and outer glow effects, but doesn’t look as good for the bevel and emboss
effects. The bevel and emboss effects need filled areas to do their work, so they don’t do much for
this example. (You can still see their effects in the eyes and nose, which are filled.)

366 ❘ ChapTer 20 TransformaTions and EffEcTs

summary

Transformations and bitmap effects can add a bit of extra interest and sophistication to an applica-
tion without forcing you to write a lot of extra code. Most of the examples in this chapter are overly
garish because they demonstrate specific techniques rather than produce an aesthetically pleasing
result. Often you can and should use effects more subtly.

The Games example program shown in Figure 20-7 produces a more elegant result. It uses labels
rotated –90 degrees, drop shadows behind its labels and images, and grids that are beveled to look
like buttons. The result is much more pleasant than the collection of strange Smiley Faces shown in
Figure 20-4.

figure 20-7

Most of WPF’s container controls arrange their children in fairly simple ways. For example, the
StackPanel, WrapPanel, Grid, and UniformGrid controls arrange their children in non-overlapping
rectangular areas.

These controls are easy to use but sometimes you may not want such simple arrangements. Instead
you might want to display text and other objects flowing around sections that contain images,
tables, or other items. The next chapter explains how you can use documents to do just that.

Documents
WPF documents can contain a wide variety of objects such as:

Paragraphs➤➤

Tables➤➤

Lists➤➤

Floaters➤➤

Figures➤➤

User interface elements such as ➤➤ Buttons and TextBoxes

Three-dimensional objects➤➤

WPF has two different kinds of documents: fixed documents and flow documents. This chap-
ter describes these two kinds of documents. It explains the objects that each kind of document
can hold and how they must be arranged to produce a valid result.

Fixed documents

A fixed document displays its contents in exactly the same size and position whenever you
view it. If you resize the control that holds the document, parts of the document may not fit,
but they won’t be moved. In that sense, this kind of document is similar to a PDF (Portable
Document Format) file.

The following sections explain how you can build fixed documents and display them in your
WPF applications.

21

368 ❘ chapter 21 Documents

Building xps documents
When it defined fixed documents, Microsoft also defined XML Paper Specification (XPS) files. An
XPS file is a fixed document saved in a special format that can be read and displayed by certain pro-
grams such as recent versions of Internet Explorer.

One of the most flexible ways you can make an XPS document is to use Microsoft Word. Simply
create a Word document containing any text, graphics, lists, or other content that you want, and
then export it as an XPS document.

Microsoft Word 2007 can export files in XPS (or PDF) format, but you need to install an add-in first. As
of this writing, you can install the add-in by following the instructions on Microsoft’s “2007 Microsoft
Office Add-in: Microsoft Save as PDF or XPS” download page at r.office.microsoft.com/r/
rlidMSAddinPDFXPS. (If the page has moved so you can’t find it, go to Microsoft’s Download Center
at www.microsoft.com/downloads and search for “Save as PDF or XPS.”)

After you install the add-in, simply click on the Windows icon in Word’s upper-left corner to
expand the main file menu. Click on the arrow next to the “Save As” command, and select the
“PDF or XPS” item.

Word oF Warning

Although Word can export a file in XPS format, it cannot read an XPS file success-
fully, at least in the version I’m using right now (Word 2007 SP 1). Be sure you save
your document as a normal Word document in addition to exporting it so you can
reload it later.

Some third party products can also convert XPS documents back into Word docu-
ments. For example, see www.investintech.com/xpscentral/xpstoword/.

If you don’t have Microsoft Word but are running the Microsoft Windows 7 operating system, you
can still create XPS documents relatively easily. Use Notepad, WordPad, or some other editor to cre-
ate the document. Next print it, selecting Microsoft XPS Document Writer as the printer. The writer
will prompt you for the file where you want to save the result.

You can even display a web page in a browser such as Firefox or Internet Explorer, print it, and
select Microsoft XPS Document Writer as the printer.

In addition to using Word or printing to the XPS Document Writer, you can use the XPS Document
Writer as a stand-alone application. You can download and install the writer in the Microsoft XPS
Essentials Pack available at www.microsoft.com/whdc/xps/viewxps.mspx.

displaying xps documents
After you have created an XPS file, you have several options for displaying it.

The Microsoft XPS Viewer, which is installed by default in Windows 7 and integrated into
Internet Explorer 6.0 and higher, can display XPS files. By default, .xps files are associated with
Internet Explorer, so you can probably just double-click on the file to view it.

Fixed Documents ❘ 369

You can also download Microsoft XPS Viewer or Microsoft XPS Essentials Pack (which contains a
stand-alone viewer) at www.microsoft.com/whdc/xps/viewxps.mspx.

Finally, you can make a WPF application display an XPS file inside a DocumentViewer control. To
do that, first add a reference to the ReachFramework library.

In Expression Blend, open the Project menu and select “Add Reference.” Browse to the
ReachFramework DLL (on my system, it’s at \Program Files\Reference Assemblies\Microsoft\
Framework\v3.0\ReachFramework.dll) and click Open.

In Visual Studio, open the Project menu and select “Add Reference.” On the Add Reference dialog,
select the .NET tab, select the ReachFramework entry, and click OK.

Now you can write code-behind to load an XPS document into a DocumentViewer control. To make
using the necessary classes easier, you can add the following using statement to the program:

usingSystem.Windows.Xps.Packaging;

The following code loads the file “Fixed Document.xps” when the program’s window loads:

//LoadtheXPSdocument.
privatevoidWindow_Loaded(objectsender,RoutedEventArgse)
{
//Note:Markthefileas“Copyifnewer”
//tomakeacopygointheoutputdirectory.
XpsDocumentxps_doc=newXpsDocument(“FixedDocument.xps”,
System.IO.FileAccess.Read);
docViewer.Document=xps_doc.GetFixedDocumentSequence();
}

ViewXpsDocument

The ViewFixedDocument example program shown in Figure 21-1 uses this code to display an XPS file.

Figure 21-1

370 ❘ chapter 21 Documents

Building Fixed documents in xamL
Building an XPS document is easy with Microsoft Word, WordPad, or some other external program,
but sometimes it’s more convenient to build a fixed document in XAML or code-behind. For example,
you might want a program to generate a report at run time and display it as a fixed document.

Building a fixed document in XAML code isn’t too complicated, although it is a lot of work because
it’s a fairly verbose format.

Start by creating a DocumentViewer to hold the document. Give it any properties and resources it
needs (such as a background), and place a FixedDocument object inside it.

The FixedDocument object should contain one or more PageContent objects that define its pages.

painLess pages

If you don’t want to build a page within the code, you can set a PageContent
object’s Source property to the Uniform Resource Identifier (URI) of the page it
should display.

You can set each PageContent object’s Width and Height properties to determine the size of the page.

Inside the PageContent, place a FixedPage object to define the page’s contents.

Inside the FixedPage, you can place controls such as StackPanel, Grid, TextBlock, and Border to
create the page’s contents.

contested inheritance

FixedPage objects don’t seem to inherit unnamed styles, so, for example, you can’t
set Label font properties in an unnamed style defined in the Window.Resources sec-
tion. You need to either define the style inside the FixedPage or use a named style.

The SimpleFixedDocument example program shown in Figure 21-2 draws four fixed pages that con-
tain simple shapes and labels.

The SimpleFixedDocument program uses the following code to draw its four pages:

<DocumentViewerBackground=”Pink”>
<FixedDocument>
<PageContentWidth=”850”Height=”1100”>
<FixedPage>
<GridMargin=”100”Width=”650”Height=”900”Background=”LightBlue”>
<EllipseStroke=”Green”Fill=”Orange”StrokeThickness=”10”/>
<LabelContent=”Ellipse”Style=”{StaticResourcestyLabel}”/>
</Grid>
</FixedPage>

Fixed Documents ❘ 371

</PageContent>
<PageContentWidth=”850”Height=”1100”>
<FixedPage>
<GridMargin=”100”Width=”650”Height=”900”Background=”LightBlue”>
<RectangleStroke=”Blue”Fill=”Yellow”StrokeThickness=”10”/>
<LabelContent=”Rectangle”Style=”{StaticResourcestyLabel}”/>
</Grid>
</FixedPage>
</PageContent>
<PageContentWidth=”850”Height=”1100”>
<FixedPage>
<GridMargin=”100”Width=”650”Height=”900”Background=”Yellow”>
<PolygonStroke=”Red”Fill=”LightBlue”StrokeThickness=”10”
Points=”325,0650,9000,900”/>
<LabelContent=”Triangle”Style=”{StaticResourcestyLabel}”/>
</Grid>
</FixedPage>
</PageContent>
<PageContentWidth=”850”Height=”1100”>
<FixedPage>
<GridMargin=”100”Width=”650”Height=”900”Background=”Orange”>
<PolygonStroke=”Red”Fill=”Pink”StrokeThickness=”10”
Points=”325,0650,450325,9000,450”/>
<LabelContent=”Diamond”Style=”{StaticResourcestyLabel}”/>
</Grid>
</FixedPage>
</PageContent>
</FixedDocument>
</DocumentViewer>

SimpleFixedDocument

You can see that this code is relatively straightfor-
ward, containing the nested objects: DocumentViewer,
FixedDocument, PageContent, FixedPage, and then con-
tent objects. It’s fairly simple but quite verbose, using 50
lines of code to draw four simple shapes.

saving xps Files
Having gone to the trouble of building a fixed document
in XAML or code-behind, you might want to save it as an
XPS file.

To save a fixed document into an XPS file, open a project in
Visual Studio and add references to the ReachFramework
and System.Printing libraries. To make using the libraries
easier, you can add the following using statements to the
program:

usingSystem.Windows.Xps;
usingSystem.Windows.Xps.Packaging;

Figure 21-2

372 ❘ chapter 21 Documents

Next, create an XpsDocument object to write into the file that you want to create. Make an
XpsDocumentWriter associated with the document object, and use its Write method to write the
FixedDocument into the file.

The SaveFixedDocument example program uses the following code to save its FixedDocument
object named fdContents into a file.

//SaveasanXPSfile.
privatevoidmnuFileSave_Click(System.Objectsender,System.Windows.RoutedEventArgse)
{
//Getthefilename.
Microsoft.Win32.SaveFileDialogdlg=
newMicrosoft.Win32.SaveFileDialog();
dlg.FileName=“Shapes”;
dlg.DefaultExt=“.xps”;
dlg.Filter=“XPSDocuments(.xps)|*.xps|AllFiles(*.*)|*.*”;
if(dlg.ShowDialog()==true)
{
//Savethedocument.
//MakeanXPSdocument.
XpsDocumentxps_doc=newXpsDocument(dlg.FileName,
System.IO.FileAccess.Write);

//MakeanXPSdocumentwriter.
XpsDocumentWriterdoc_writer=
XpsDocument.CreateXpsDocumentWriter(xps_doc);
doc_writer.Write(fdContents);
xps_doc.Close();
}
}

SavedFixedDocument

The program uses a SaveFileDialog to ask the user where to save the file. It the user selects a file
and clicks OK, the program makes an XpsDocument object for the file and creates an associated
XpsDocumentWriter object. Finally it writes fdContents into the file.

FLoW documents

A flow document rearranges its contents as necessary to fit the container that is holding it. If you
make the viewing control tall and thin, the document reorganizes its contents to fit. In that sense,
this kind of document is similar to a simple web page that rearranges its contents when you resize
the browser.

A WPF program displays flow documents inside one of three kinds of viewers:
FlowDocumentPageViewer, FlowDocumentReader, or FlowDocumentScrollViewer. See the descrip-
tions of these controls in Chapter 5 for more information about them.

A FlowDocument object represents the flow document itself. The FlowDocument’s children must be
objects that are derived from the Block class. These include BlockUIContainer, List, Paragraph,
Section, and Table.

Flow Documents ❘ 373

The following sections provide a bit more detail about each of these classes. They also show the
code used by the ShowFlowDocument example program to demonstrate each of these and include
figures showing the results.

Blockuicontainer
The BlockUIContainer control can hold a single user interface (UI) control as a child. For example,
it can hold a Button, CheckBox, StackPanel, or Grid. If you want the control to hold more than
one element, place a container such as a StackPanel or Grid inside the control, and add other con-
trols to the container.

The following XAML code creates a BlockUIContainer holding a GroupBox, which holds a
StackPanel, which holds a TextBlock and some CheckBoxes:

<BlockUIContainer>
<GroupBoxHeader=”BlockUIContainer”Width=”250”HorizontalAlignment=”Left”>
<StackPanel>
<TextBlockMargin=”30,0,0,10”>AFlowDocumentcanhold:</TextBlock>
<CheckBoxContent=”BlockUIContainer”Margin=”50,0,0,5”/>
<CheckBoxContent=”List”Margin=”50,0,0,5”/>
<CheckBoxContent=”Paragraph”Margin=”50,0,0,5”/>
<CheckBoxContent=”Section”Margin=”50,0,0,5”/>
<CheckBoxContent=”Table”Margin=”50,0,0,5”/>
</StackPanel>
</GroupBox>
</BlockUIContainer>

ShowFlowDocument

Figure 21-3 shows the result.

Figure 21-3

List
A List object contains ListItem objects. Each ListItem should contain block objects such as a
Paragraph or List.

374 ❘ chapter 21 Documents

The ShowFlowDocument example program uses the following code to display the list shown in
Figure 21-4:

<ListMarkerStyle=”Decimal”>
<ListItem><Paragraph>Itemone</Paragraph></ListItem>
<ListItem><Paragraph>Itemtwo</Paragraph></ListItem>
<ListItem>
<Paragraph>
Itemthree.Thesub-listhasMarkerStyle=LowerLatin.
</Paragraph>
<ListMarkerStyle=”LowerLatin”>
<ListItem><Paragraph>Sub-item3a</Paragraph></ListItem>
<ListItem><Paragraph>Sub-item3a</Paragraph></ListItem>
</List>
</ListItem>
</List>

ShowFlowDocument

Figure 21-4

paragraph
A Paragraph groups its contents into a paragraph. A Paragraph adds some vertical space between
itself and the previous element.

A Paragraph typically contains inline elements including:

Text➤➤ — Plain old text

Bold➤➤ — Makes its text bold

Figure➤➤ — Embeds an area inside the paragraph where you can place other block elements
such as a Paragraph or BlockUIContainer. Anchor and offset properties let you determine
where in the paragraph the Figure appears.

Floater➤➤ — Similar to a Figure except you cannot control exact positioning. Instead, the
FlowDocument moves the Floater to a position where it fits reasonably.

Flow Documents ❘ 375

Hyperlink➤➤ — Displays a hyperlink. The NavigateUri property holds the URI to which the
object should navigate. The Hyperlink can automatically navigate to that address only if it is
contained in a navigation host such as a NavigationWindow, Frame, or browser.

InlineUIContainer➤➤ — Can hold UI elements such as Buttons, CheckBoxes, and RadioButtons

Italic➤➤ — Makes its text italic

LineBreak➤➤ — Makes the text start a new line. This does not add extra vertical space between
the lines.

Run➤➤ — Contains a run of text, possibly with a different appearance from the rest of the para-
graph. You can use the Run’s proper-
ties to change the text’s background
color, text color, font size, weight,
style, and so forth.

Span➤➤ — Similar to a Run except it can
also contain inline elements (e.g., Bold,
Italic) and UI elements (e.g., Button,
Ellipse, Polygon)

Underline➤➤ — Makes its text underlined.

The following code shows how the
ShowFlowDocument program produces the
paragraphs shown in Figure 21-5:

<Paragraph>
ThisparagraphcontainsaFloater.
NoticehowtheFloaterisintegratedintotheparagraph.
<FloaterWidth=”120”Background=”White”HorizontalAlignment=”Left”>
<BlockUIContainer>
<ImageSource=”Bird.jpg”Stretch=”Uniform”Width=”100”Height=”60”/>
</BlockUIContainer>
<ParagraphTextAlignment=”Center”>Fig3.Chirp.</Paragraph>
</Floater>
TheParagraphalsoholdsa
<RunForeground=”Blue”Background=”Pink”>
Runwithbluetextonapinkbackground</Run>.
ASpanincludesan
<EllipseWidth=”30”Height=”10”Stroke=”Red”/>
andsometextinvariousstyles:
<Bold>Bold</Bold>,<Italic>Italic</Italic>,
and<Underline>Underline</Underline>.

YoucanuseRunstomakeequationsandformulaslike:
E=MC<RunBaselineAlignment=”Superscript”>2</Run>and
C<Run
BaselineAlignment=”Subscript”>8</Run>H<Run
BaselineAlignment=”Subscript”>10</Run>N<Run
BaselineAlignment=”Subscript”>4</Run>O<Run
BaselineAlignment=”Subscript”>2</Run>.
</Paragraph>

ShowFlowDocument

Figure 21-5

376 ❘ chapter 21 Documents

odd Formatting

The XAML code for the caffeine formula C8H10N4O2 is formatted somewhat
strangely, with line breaks inside the opening Run elements. If the Runs are placed
on separate lines, WPF adds some space around them, spreading the formula out
and making it look odd. This also allows the FlowDocument to break the formula
in the middle.

The unusual formatting shown here keeps the text on one logical line in the XAML
code so the pieces of the formula stay together.

(To make matters even more confusing, if you copy-and-paste the formula’s XAML
code in Visual Studio, the editor reformats the code to place each Run on a separate
line, making the result ugly again.)

section
A Section groups other block-level elements such as Paragraphs, Lists, and Tables. A Section
adds some additional space around its contents so you can use it to separate parts of the document.

For example, you could place two groups of paragraphs in different sections to increase the spac-
ing between the two groups slightly. The effect is somewhat subtle, however, so you may want to
include section headers in a distinctive font to make the break more obvious.

A Section can also change the appearance of the objects it contains by setting its Background,
Foreground, FontSize, BorderBrush, and other properties.

table
A Table displays its contents in rows and columns. The Table.Columns element attribute deter-
mines the widths of the columns. For example, the following code fragment defines five columns.
The first has a width of 100 pixels, and the other columns divide the remaining width evenly.

<TableCellSpacing=”5”>
<Table.Columns>
<TableColumnWidth=”100”/>
<TableColumn/>
<TableColumn/>
<TableColumn/>
<TableColumn/>
</Table.Columns>
...
</Table>

ShowFlowDocument

Flow Documents ❘ 377

The Table’s content includes TableRowGroup objects that hold TableRow objects. Each TableRow con-
tains a series of TableCells that hold block elements such as Paragraphs and BlockUIContainers.

The following code shows how the ShowFlowDocument program defines the content for the Table
shown in Figure 21-6. Since the code contains lots of repeating elements (rows for each planet and
five cells in each row), many of them are omitted to save space.

<TableRowGroup>
<!--Title-->
<TableRowBackground=”#FFA0A0FF”>
<TableCellColumnSpan=”5”TextAlignment=”Center”>
<ParagraphFontSize=”16”FontWeight=”Bold”>Planets</Paragraph>
</TableCell>
</TableRow>

<!--Headers-->
<TableRowBackground=”#FFD0D0FF”>
<TableCell>
<ParagraphFontWeight=”Bold”>Name</Paragraph>
</TableCell>
<TableCell>
<ParagraphFontWeight=”Bold”>Picture</Paragraph>
</TableCell>
<TableCell>
<ParagraphFontWeight=”Bold”>Dist.ToSun</Paragraph>
</TableCell>
<TableCell>
<ParagraphFontWeight=”Bold”>Year</Paragraph>
</TableCell>
<TableCell>
<ParagraphFontWeight=”Bold”>Mass</Paragraph>
</TableCell>
</TableRow>
</TableRowGroup>

<!--Theplanets.-->
<TableRowGroup>
<TableRowGroup.Background>
<LinearGradientBrushStartPoint=”0,0”EndPoint=”1,0”>
<GradientStopColor=”LightBlue”Offset=”0”/>
<GradientStopColor=”White”Offset=”1”/>
</LinearGradientBrush>
</TableRowGroup.Background>

<!--Mercury-->
<TableRow>
<TableCell>
<Paragraph>Mercury</Paragraph>
</TableCell>
<TableCell>
<BlockUIContainer>
<ImageSource=”Mercury.jpg”/>
</BlockUIContainer>

378 ❘ chapter 21 Documents

</TableCell>

...Lotsofcodeomitted...

</TableRow>
</TableRowGroup>

ShowFlowDocument

The code starts with a TableRowGroup that
defines the Table’s title row and column head-
ers. Styles not shown here set common prop-
erties such as text alignment.

The code then ends the first TableRowGroup
and starts a second one to hold the planet
data. This group uses a gradient background
that appears behind the data.

The code then makes a TableRow that includes
the TableCells that define the first planet,
Mercury. Note how the second cell contains a
BlockUIContainer that holds an Image.

Mercury’s other cells and the rows for the other planets are similar to the code shown here. You can
download the example program from the book’s web site to see all of the details.

summary

This chapter explains WPF’s two kinds of documents: fixed documents and flow documents. Fixed
documents display text, shapes, and other objects at exactly the same position every time they are
viewed, much as a PDF file does. Flow documents rearrange their content as necessary when the
available space changes, much as a web page rearranges its contents when you resize the browser.

This chapter explains how to build fixed and flow documents using external applications (such
as Microsoft Word and WordPad) or with a WPF program. Chapter 17 explains how to print
documents.

One of the inline objects that document objects such as Paragraph can contain is a Hyperlink. A
Hyperlink can automatically navigate to a URI, but only if it is contained in a navigation host such
as a NavigationWindow, Frame, or browser.

The next chapter describes navigation-based applications in greater detail. It tells how to use the
NavigationWindow and Frame objects to build applications that use a navigation model similar to
the one used by web browsers.

Figure 21-6

Navigation-Based Applications
As the Internet and the Web have grown more popular, many desktop applications have adopted
features similar to those used by web applications. In particular, many have started providing
Back and Next buttons that let you move through the application’s navigation history.

This style of navigation is simple and intuitive, particularly for applications where the user
visits a series of locations or performs a series of tasks in a particular sequence. It is also useful
if the user’s locations or tasks are only weakly related, as they are when browsing through web
pages. The Back and Next buttons let the user explore safely while always knowing that it will
be easy to get back to a previous position if necessary.

For example, recent versions of Windows Explorer, the Control Panel, and other Windows
accessories include Back and Next buttons. If you press the Back button in Windows Explorer,
the program moves to the directory it visited previously.

NavigatioN FrustratioN

Using web-like navigation does not mean that you can’t provide other means for
moving around the application. The Back and Next buttons are intended to help
the user get back to a place the application was before, but usually an application
should provide other, faster means for moving around.

For example, Windows Explorer provides many ways to navigate through a direc-
tory hierarchy. You can double-click on a folder to open it, click on a directory in
the current path (at the top of the program) to move up the directory hierarchy,
click to the right of the path and type in a new path, and open the dropdown next
to the path to select from a list of recent locations. The Back and Next buttons are
handy but they are some of the weakest methods for navigating.

WPF includes tools and classes that make this style of navigation easy to add to applications.
This chapter describes these tools and shows how you can use them to build navigation-based
applications of your own.

22

380 ❘ Chapter 22 NavigatioN-Based applicatioNs

page

A Page object is somewhat similar to a Window object in the sense that it is the top-level container
that you use to build its style of application. Unlike a Window, however, a Page must be contained
in a navigation host such as a web browser, NavigationWindow, or Frame. Those hosts add support
for the back/next style navigation to the Page. Your program moves through Page objects, either by
using code or by using hyperlinks within the Pages, and the navigation host takes care of the rest.

Because it acts as a top-level container for a program, a Page includes namespace and class declara-
tions similar to those used by a Window.

In some ways, a Page is also similar to a Border control.
Like a Border, it can contain a single child.

If you create a Style with TargetType = Border in
the Page’s Resources section, that style also modifies the
appearance of the Page.

The PageBorder example program shown in Figure 22-1
uses a Style that makes Border controls display a thick,
red border with rounded corners.

The following code shows how the PageBorder program
works:

<Page
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 x:Class=”Page1”
 x:Name=”Page”
 WindowTitle=”WindowTitle”
 Title=”Title”
 FlowDirection=”LeftToRight”
 Width=”300” Height=”200”
 WindowWidth=”400” WindowHeight=”300”
 Background=”LightBlue”>
 <Page.Resources>
 <Style TargetType=”Border”>
 <Setter Property=”BorderBrush” Value=”Red”/>
 <Setter Property=”BorderThickness” Value=”10”/>
 <Setter Property=”CornerRadius” Value=”20”/>
 </Style>
 </Page.Resources>
 <Label Content=”This is a Page”
 FontSize=”30” FontWeight=”Bold” Foreground=”Blue”/>
</Page>

PageBorder

Although this code is quite simple, it demonstrates some important points. First, the Page’s WindowTitle
property determines the title displayed in the container holding the Page. In contrast, the Title property
determines the text displayed in the navigation dropdown next to the Back and Next buttons (disabled in

Figure 22-1

Hyperlink Navigation ❘ 381

The Width and Height properties determine how big the Page is within its container. The WindowWidth
and WindowHeight properties determine how big the container is initially.

The unnamed Border Style modifies the Page so that it displays its thick red border.

No NavigatioNWiNdoW Needed

If you run an application that uses a Page as its startup object, the program displays
the Page in a NavigationWindow that provides the Back and Next buttons. Normally,
you display a Page either in this way or by placing it inside a Frame control.

hyperliNk NavigatioN

One simple way to navigate in a Page is to place a docu-
ment on it that contains hyperlinks. The hyperlinks can
automatically navigate between the application’s Pages
and even to external locations on the Web.

The PageDocument example program shown in
Figure 22-2 contains two Pages. Each Page displays a
FlowDocument that contains a series of hyperlinks that
let you navigate to web sites. The bottom link on each
Page leads to the other Page.

Figure 22-2 shows the navigation dropdown open and
displaying the program’s navigation history. When I
started the program, it displayed its Writing Links page.
I used the hyperlinks to navigate to the Map Links page
(displayed as “Current Page” in the dropdown) and then
to the Google Maps site. Next, I clicked on the Back button to move back to the Map Links page and
opened the dropdown. The mouse is over the Writing Links page so it is highlighted and displays a
left arrow in Figure 22-2. (“Future” pages such as Google Maps in this case display a right arrow.)

The following code shows the body of the program’s first page. The second page is similar.

<FlowDocument>
 <Paragraph FontSize=”20” FontWeight=”Bold” TextAlignment=”Center”>
 Writing Links
 </Paragraph>
 <List>
 <ListItem>
 <Paragraph>
 <Hyperlink
 NavigateUri=”http://www.rhymezone.com/”>RhymeZone</Hyperlink>
 </Paragraph>
 </ListItem>
 <ListItem>
 <Paragraph>
 <Hyperlink

Figure 22-2

382 ❘ Chapter 22 NavigatioN-Based applicatioNs

 NavigateUri=”http://thesaurus.reference.com/”>Thesaurus.com</Hyperlink>
 </Paragraph>
 </ListItem>
 <ListItem>
 <Paragraph>
 <Hyperlink
 NavigateUri=”http://dictionary.reference.com/”>Dictionary.com</Hyperlink>
 <LineBreak/>
 </Paragraph>
 </ListItem>
 <ListItem>
 <Paragraph>
 <Hyperlink
 NavigateUri=”Page2.xaml”>Map Links</Hyperlink>
 </Paragraph>
 </ListItem>
 </List>
</FlowDocument>

PageDocument

The Page holds a FlowDocument object that contains everything else. The document holds a title
paragraph followed by a list.

Each list item contains a paragraph that holds a Hyperlink object. The Hyperlink’s NavigateUri
attribute tells where the Page should go when the user clicks the link.

Most of the links lead to web addresses, but the last one has NavigateUri set to “Page2.xaml.” When
the user clicks on this hyperlink, the program creates a new Page2.xaml object and navigates to it.

reCyCliNg old objeCts

It is important to note that navigating to a Page creates a new instance of the Page
rather than reusing any existing Page objects. In contrast, if you click on the Back
or Next button to move to a previously viewed Page, then the program redisplays
the object it previously showed.

For example, suppose a program’s first Page contains a TextBox. You enter text into
it and click on a hyperlink to move to a second Page. Now, if you click the Back but-
ton, you will see your text on the first Page. However, if you click on another hyper-
link to move to the first Page, you’ll see a new object with a blank textbox.

If you want to allow this sort of navigation but want the hyperlink to lead to the
original Page object, you’ll need to use some code-behind rather than letting the
hyperlink navigate for you automatically.

NavigatioNserviCe

In addition to using hyperlinks, an application’s code-behind can use a NavigationService to navigate.
A NavigationService object lets an application use code-behind to control how the container navigates.

NavigationService ❘ 383

The PageApp example program shown in Figure 22-3 uses a NavigationService to move between
its pages.

Figure 22-3

When you click on one of the buttons shown in Figure 22-3, the program uses the NavigationService’s
Navigate method to open the new page. The following code shows how the program moves to the “Add
Customer” page shown in Figure 22-4:

private void btnAddCustomer_Click(object sender, RoutedEventArgs e)
{
 NavigationService.Navigate(new pagAddCustomer());
}

PageApp

This code simply calls the NavigationService’s Navigate method, passing it a new
pagAddCustomer Page object.

In addition to displaying a Page object, the Navigate method can display a web page. The following
code executes if you click on the Help icon in the lower-right corner of Figure 22-3. This code navi-
gates to the web page www.vb-helper.com/wpf.htm.

// Go to the help web site.
private void btnHelp_Click(object sender, RoutedEventArgs e)
{
 NavigationService.Navigate(new Uri(“http://www.vb-helper.com/wpf.htm”));
}

PageApp

384 ❘ Chapter 22 NavigatioN-Based applicatioNs

Figure 22-4

The NavigationService object provides other useful properties and methods in addition to
Navigate. The following code shows how the program PageApp returns from the “Add Customer”
page shown in Figure 22-4 when you click on the checkmark image in the lower right:

// Pretend we did something and return to the main page.
private void btnOk_Click(object sender, MouseButtonEventArgs e)
{
 MessageBox.Show(“Customer created.”, “Customer created”,
 MessageBoxButton.OK, MessageBoxImage.Information);
 if (NavigationService.CanGoBack)
 {
 NavigationService.GoBack();
 }
 else
 {
 NavigationService.Navigate(new pagMain());
 }
}

PageApp

This code first displays a message box. It then checks the NavigationService’s CanGoBack property to
see if the service can go back to a previous page — in this case, the program’s initial page. If CanGoBack
is True, then the code calls the NavigationService’s GoBack method. If CanGoBack is False, then the
code calls the NavigationService’s Navigate method, passing it a new pagMain Page object.

The following list summarizes the NavigationService’s most useful properties and methods:

AddBackEntry➤➤ — Adds a navigation entry that contains a custom state object.

Frame ❘ 385

CanGoBack➤➤ — True if the NavigationService can move back to a previous object.

CanGoForward➤➤ — True if the NavigationService can move forward to a following object.

GoBack➤➤ — Goes to the previous page if one exists.

GoForward➤➤ — Goes to the next page if one exists.

Navigate➤➤ — Displays a Page or URI.

RemoveBackEntry➤➤ — Removes the most recent navigation history entry.

Source➤➤ — Gets or sets the URI of the current display source. Normally in code-behind, you
would use the Navigate method to open a source, but you can set this property in XAML
code to make the Page open a URI when it is displayed.

Frame

The previous example programs display Page objects. The result is a form containing navigation
buttons, the Page object, and nothing else.

Sometimes you may want a Page to appear as only part of a form that also contains other elements.
You can achieve this by placing a Page inside a Frame control.

You cannot write XAML code that places a Page inside a Frame, but you can set the Frame’s Source
property to the name of the Page class that it should display when it appears.

The FrameApp example program shown in Figure 22-5 uses this approach to display the same
Pages used by the PageApp program inside a Frame. In Figure 22-5, the top and bottom labels and
the green background are part of a Window. Everything else is inside the Frame.

The following XAML fragment shows how the FrameApp program displays its two Labels and
Frame. An unnamed style targeted at Label controls aligns the Labels and gives them drop shadows.

<StackPanel>
 <Label FontSize=”30” FontWeight=”Bold” Content=”FrameApp”/>
 <Frame Name=”fraMain” Source=”pagMain.xaml” Height=”420” Margin=”10”/>
 <Label BorderBrush=”Black” BorderThickness=”1” FontSize=”16” Margin=”10”
 Content=”Use the buttons inside the pages to navigate within the frame.”/>
</StackPanel>

FrameApp

This code contains two points worth mentioning. First, it sets the Frame control’s Source attribute
to pagMain.xaml so the Frame displays a pagMain Page object when it is loaded.

Second, the code explicitly sets the Frame’s height. The Frame only displays its Back and Next but-
tons when the user can navigate backward or forward. Initially, the Frame has not visited any other
pages, so navigation isn’t possible and these buttons are hidden. Then, when you move to a new
Page, the Frame displays its buttons. If you don’t set the Frame’s height explicitly, adding the buttons
makes the Frame taller, and that makes the Window rearrange its controls.

386 ❘ Chapter 22 NavigatioN-Based applicatioNs

Figure 22-5

If you don’t mind this rearrangement, you can omit the Frame’s height and let it figure out how big
to be based on the Pages it contains. If you don’t want other controls such as the Label at the bot-
tom of the Window to move around, give the Frame a fixed height.

summary

By using Pages, you can add a web-like navigation model to an application. The web browser,
NavigationWindow, or Frame that hosts the Pages automatically allows the user to move backward
and forward through the navigation history.

This style of navigation doesn’t replace other methods of opening new windows such as menus and
buttons. It just gives the user a new option for returning to places previously visited.

All of the chapters (and almost all of the examples) so far in this book have worked only in two
dimensions. Careful use of graphical techniques such as BevelBitmapEffect and overlaid high-
lights can give buttons, borders, and other objects a three-dimensional (3D) appearance, but they
are still really two-dimensional (2D) objects.

The next chapter explains how to display truly 3D objects. It shows how you can make 3D shapes
with colored and textured surfaces and multiple light sources. It even shows how you can place con-
trols such as TextBoxes and MediaElements on 3D objects.

Three-Dimensional Drawing
WPF relies on Microsoft’s DirectX technologies for high-quality multimedia support. The DirectX
libraries include methods to display images, present video, and play audio files that take advantage
of the computer’s hardware to provide the best performance and highest quality possible.

One of my favorite parts of DirectX is Direct3D, the three-dimensional (3D) drawing library.
Direct3D lets a program display complex animated 3D scenes with multiple light sources,
smooth color shading, and realistic textures — all in real time.

The TexturedBlock example program shown in
Figure 23-1 displays a simple cube with sides made
of various materials sitting on a brick and grass
surface. You can use the sliders to rotate the scene
in real time.

Unfortunately, writing Direct3D code to display
these types of objects is fairly involved. One of the
first and most annoying tasks is figuring out what
graphics hardware is available on the user’s com-
puter. Determining which device objects you need
to get the most out of the user’s computer can be
confusing.

Fortunately, WPF’s 3D drawing objects handle this setup for you. Although they don’t always
give you quite the same performance you could achieve using Direct3D yourself, it’s a lot easier
to get a program up and running in WPF.

That doesn’t mean that the rest of the process is easy. Producing a 3D scene requires a fair amount
of work because there are many complicated factors to consider, but at least WPF takes care of
initialization and redrawing.

Figure 23-1

23

388 ❘ Chapter 23 Three-Dimensional Drawing

The remaining factors you need to consider include:

Geometry➤➤ — The geometry determines what kinds of objects are in the scene and where they are
located. This is the part that many people think of as 3D graphics. It defines the shapes in 3D
space that make up the buildings, Death Star, and aliens that you will display.

Camera➤➤ — The camera acts just as you would expect in a motion picture, determining the loca-
tion from which you view the scene and the direction in which you are looking. It also deter-
mines the type of projection used to translate from a 3D model onto your 2D computer screen.

Lighting➤➤ — Without any light, you can’t see a thing in the real world or in 3D graphics. Light
objects determine the color and type of lighting used in a scene.

Materials➤➤ — An object’s appearance actually depends both on the light that hits it and its
material. If you shine a blue light on a white ball, the result is blue, not white.

The following section explains the basic structure and geometry of a simple 3D scene. The sections
after that describe cameras, lighting, and materials in greater detail.

BasiC struCture

The Viewport3D control displays a 3D scene. You can think of it as a window leading into 3D space.

You can size, position, and otherwise arrange a Viewport3D control just as you can any other con-
trol. For example, the Viewport3D control in Figure 23-1 is contained in the upper-left cell of a Grid
control. The sliders lie in Grid’s other cells.

Like other controls, the Viewport3D can contain a Resource section. This is a handy place to store
values that will be used by the 3D scene such as colors, materials, and camera parameters.

The Viewport3D object’s Camera property defines the camera used to view the scene. Often a pro-
gram sets this property as a Viewport3D.Camera property element so it can specify the Camera’s
properties, but you can also define the Camera as a resource and then use the resource as an attri-
bute. The “Cameras” section later in this chapter explains cameras in more detail.

The Viewport3D should contain one or more ModelVisual3D objects that define the items in the
scene. The ModelVisual3D’s Content property should contain the visual objects.

Typically, the Content property holds either a single GeometryModel3D object that defines the entire
scene or a Model3DGroup object that holds a collection of GeometryModel3D objects.

Each GeometryModel3D object can define any number of triangles, so a single GeometryModel3D
object can produce a very complicated result. Since the triangles don’t even need to be connected to
each other, a GeometryModel3D could define several separate physical objects.

The catch is that a single GeometryModel3D can only have one material, so any separate objects
would have a similar appearance. For example, if a GeometryModel3D that uses a green material
defines three cubes, all three cubes are green.

Basic Structure ❘ 389

If you want to give the cubes different colors, use a Model3DGroup object holding three GeometryModel3D
objects that define the cubes. The “Materials” section later in this chapter describes materials in greater
detail.

The GeometryModel3D object’s two most important properties are Material (which was just described)
and Geometry. The Geometry property should contain a single MeshGeometry3D object that defines the
triangles that make up the object.

MeshGeometry3D has four key properties that define its triangles: Positions, TriangleIndices,
Normals, and TextureCoordinates. The following sections describe these properties.

positions
The MeshGeometry3D’s Positions property is a list of 3D point coordinate values. You can sepa-
rate the coordinates in the list by spaces or commas.

Clear Coordinates

To make coordinate lists easier to read, I prefer to separate points with spaces and
coordinates with commas as in “1,-1,1 -1,-1,1 1,-1,-1 -1,-1,-1.”

For example, the value “1,0,1 -1,0,1 1,0,-1 -1,0,-1” defines the four points in the Y = 0 plane
where X and Z are 1 or –1. This defines a square two units wide centered at the origin.

triangleindices
The TriangleIndices property gives a list of indexes into the Positions array that give the points
that make up the object’s triangles. Note that the triangles are free to share the points defined by the
Positions property.

For example, if TriangleIndices is “0,1,2 0,2,3” then the first triangle is made up of points 0,
1, and 2; and the second triangle is made up of points 0, 2, and 3. If the Positions property has the
value “1,0,1 -1,0,1 1,0,-1 -1,0,-1” used in the previous section, then these triangles fill the
square –1 ≤ X ≤ 1, Y = 0, –1 ≤ Z ≤ 1.

Note that the orientation of the points that make up a triangle is extremely important. To allow
Direct3D to draw a triangle correctly, it must be outwardly oriented according to the right-hand
rule. The next section explains how to give triangles an outward orientation.

outward orientation
A vector that points perpendicularly to a triangle is called a normal or surface normal for the tri-
angle (or any other surface for that matter). Sometimes people require that the normal have length 1.
Alternatively, they may call a length 1 normal a unit normal.

390 ❘ Chapter 23 Three-Dimensional Drawing

Note that a triangle has two normals that point in opposite directions. If the triangle is lying flat on
a table, then one normal points toward the ceiling, and the other points toward the floor.

The right-hand rule lets you use the order of the points
that define the triangle to determine which normal is
which.

To use the right-hand rule, picture the triangle ABC
that you are building in 3D space. Place your right
index finger along the triangle’s first segment AB as
shown in Figure 23-2. Then bend your middle fin-
ger inward so it lies along the segment AC. If you’ve
done it right, then your thumb (the blue arrow in
Figure 23-2) points toward the triangle’s “outside.”
The outer normal is the normal that lies on the same
side of the triangle as your thumb.

right-hand rule redux

Another way to think about the right-hand rule is to align your right palm along
the first segment AB and then curl your fingers toward the third point C. Again,
your thumb points to the side of the outward normal.

This makes more sense if you think of the triangle as being one of the faces on a tetrahedron or
some other 3D solid. If the triangle is properly oriented, then the right-hand rule makes your thumb
point out of the solid, not into it.

do it right

There are a couple of ways to mess up the right-hand rule. First, be sure you use
your right hand! Second, be sure to bend your middle finger in toward your palm
instead of bending your index finger toward your palm. If you make either of these
mistakes, then your thumb points toward the inward normal — the opposite of the
direction you want.

If you can’t figure out how to make your fingers line up, try turning your hand
upside down. The triangle is probably oriented in the other direction.

Why should you care about the right-hand rule and outwardly-oriented normals? Direct3D uses
the triangle’s orientation to decide whether it should draw the triangle. If the outwardly-oriented
normal points toward the camera’s viewing position, then Direct3D draws the triangle. If the
outwardly-oriented normal points away from the camera’s viewing position, then Direct3D
doesn’t draw the triangle.

AB

C

Figure 23-2

Basic Structure ❘ 391

To understand why this makes sense, suppose a triangle is part of a 3D object such as a tetrahedron.
If the triangle is oriented properly, then its outward normal points out of the tetrahedron. If that nor-
mal points toward the camera, then the camera can see the triangle (if nothing else blocks the view).

However, if the outward normal points away from the camera, then the triangle is on the far side
of the tetrahedron, so the camera cannot see it. Direct3D doesn’t even bother to draw the triangle
because it cannot be visible.

BaCkFaCe removal

Removing triangles that are oriented away from the camera is called backface removal.
Sometimes it’s also called culling, although that can also mean any method for quickly
removing triangles from consideration. For example, if you can quickly identify the
triangles behind the camera, they can also be culled.

Note that this only really works for closed solids, and open surfaces won’t appear
properly from both sides. For example, suppose the camera views a shoebox with-
out a lid from the top. In this position, the camera is looking at the inner sides of
the triangles, so, if they are outwardly oriented, Direct3D won’t draw them. To fix
this problem, you can include each triangle in the program’s geometry twice, once
with each orientation.

normals
As you’ll see in the section “Lighting” later in this chapter, a triangle’s normal not only determines
whether it’s visible, but it also helps determine the triangle’s color. That means more accurate nor-
mals give more accurate colors.

Left to its own devices, Direct3D finds a triangle’s normal by performing some calculations using
the points that define the triangle. (It lines up its virtual fingers to apply the right-hand rule.) The
resulting normal points perpendicularly away from the triangle.

For objects defined by flat surfaces such as cubes, octahedrons, and other polyhedrons, that works well.
For smooth surfaces such as spheres, cylinders, and torii (donuts), it doesn’t work as well because the
normal at one part of a triangle on the object’s surface points in a slightly different direction from the
normals at other points. If you make the triangles small enough, the difference isn’t too noticeable, but
if the triangles are larger, using the same normal across the entire surface of a triangle makes the result
appear faceted instead of smooth.

The MeshGeometry3D object’s Normals property lets you tell the drawing engine what normals to use
for the points defined by the object’s Positions property. The engine still uses the calculated normal
to decide whether to draw a triangle, but it uses the normals you supply to color the triangle.

For example, suppose you are building a sphere. In that case, each of the points in the MeshGeometry3D
object is on the surface of the sphere. The surface’s normal at the point (x, y, z) on the sphere points
from the sphere’s center to the point. If the sphere is centered at the origin, then the normal vector is
simply <x, y, z>. If you set the normal for each point to the corresponding value, then Direct3D can use
it to make the resulting colors smoother.

392 ❘ Chapter 23 Three-Dimensional Drawing

is there a point?

Standard notation surrounds a vector’s components with pointy brackets. A vector
indicates a direction and not a position. For example, the vector <1, 0, 0> indicates
a direction pointing parallel to the positive X axis.

The SpheresWithNormals example program shown
in Figure 23-3 demonstrates this technique. All of the
spheres were drawn using a separate MeshGeometry3D
object for each triangle. The spheres on the right are the
same as those on the left except they specify normals
for each MeshGeometry3D object. You can see that the
results are much smoother.

Earlier in this section, I said that Direct3D creates its
own normals for a triangle if you don’t supply them.
Actually, this is a bit of a simplification. If a point is
used by more than one triangle in a MeshGeometry3D
object, then Direct3D sets the normal at that point to an
average of the normals at that point in the adjoining triangles. The result is somewhere between the
individual triangles’ normals, so the result is generally smoother.

For a sphere, adjoining triangles meet symmetrically around each point, so the averaged normal
points away from the center of the sphere as it should, and the result is nicely smooth.

The SingleMeshSpheres example program draws spheres where every triangle in a sphere is con-
tained in the same MeshGeometry3D object. The result is very smooth despite the fact that the pro-
gram doesn’t explicitly specify normals.

This program is also much faster than the SpheresWithNormals program. It takes Direct3D a lot
longer to draw many MeshGeometry3D objects each containing one triangle than it takes to draw
one MeshGeometry3D object containing many triangles. (Try running the two programs and rapidly
dragging their sliders back and forth. You’ll find that the SingleMeshSpheres program can keep up a
lot better than the SpheresWithNormals program.)

sharing normals

The Normals property specifies the normal at a point, not for a particular triangle.
This means that if two triangles share the same point, then they use the same nor-
mal at that point, so they meet smoothly there.

This also means that two triangles cannot share the same points if they should not
join smoothly. For example, suppose you build a cube in a single MeshGeometry3D

Figure 23-3

Basic Structure ❘ 393

object. If two triangles on different sides of the cube share corners, then Direct3D
will smooth out the edge between then, so you won’t see a nice, crisp edge between
the sides. Instead, you’ll see something similar to the left sphere in Figure 23-4 with
corners around its profile but the middle blurred together.

To avoid this problem, either use a separate MeshGeometry3D object for each of the
cube’s faces or place multiple copies of the same point in the Positions collection so the
triangles don’t need to share.

textureCoordinates
The TextureCoordinates property is a
collection that determines how points are
mapped to positions on a material’s surface.
You specify a point’s position on the surface
by giving the coordinates of the point on
the brush used by the material to draw the
surface. (The section “Materials” later in
this chapter says more about materials.)

The coordinates on the brush begin
with (0, 0) in the upper left with the first
coordinate extending to the right and the second extending downward. This is similar to the way
you use X and Y coordinates in a bitmap (although to avoid confusion with 3D space, many graph-
ics programmers call the texture axes U and V rather than X and Y).

Figure 23-5 shows the idea graphically. The material
could come from any brush such as a solid color, gradi-
ent, or drawing brush (although textures are often easi-
est to visualize when the brush uses an image as shown
in Figure 23-5).

The picture on the left shows the texture material with
its corners labeled in the U–V coordinate system.

The picture on the right shows a MeshGeometry3D
object that defines four points (labeled A, B, C, and D)
and two triangles (outlined in red and green).

The following code shows the MeshGeometry3D’s definition. The corresponding Positions and
TextureCoordinates entries map the points A, B, C, and D to the U–V coordinates (0, 0), (0, 1),
(1, 0), and (1, 1), respectively. You can also see in Figure 23-5 how the program maps the knot hole
from the texture’s lower-right corner to the 3D rectangle’s lower right corner.

Figure 23-4

Figure 23-5

394 ❘ Chapter 23 Three-Dimensional Drawing

<MeshGeometry3D
 Positions=”-1,1,1 -1,-1,1 1,1,1 1,-1,1”
 TriangleIndices=”0,1,2 2,1,3”
 TextureCoordinates=”0,0 0,1 1,0 1,1”
 />

TextureCoordinates

The TexturedBlock program shown in Figure 23-1 uses similar code to map textures to points for
all of its surfaces.

Cameras

The camera determines the location and direction from which a 3D scene is viewed. You can think of
the camera as if it were a motion picture camera pointed at a scene. The camera is in some position
(possibly on a boom, a crane, or in a cameraperson’s hand) pointed toward some part of the scene.

The following camera properties let you specify the camera’s location and orientation:

Position➤➤ — Gives the camera’s coordinates in 3D space.

LookDirection➤➤ — Gives the direction in which the camera should be pointed relative to its
current position. For example, if the camera’s Position is “1, 1, 1” and LookDirection is
“1, 2, 3”, then the camera is pointed at the point (1 + 1, 1 + 2, 1 + 3) = (2, 3, 4).

UpDirection➤➤ — Determines the camera’s roll or tilt. For example, you might tilt the camera
sideways or at an angle.

Common direCtions

Often the camera’s LookDirection is the negative of its Position so the camera
is looking back toward the origin. For example, if Position = “1, 2, 3”, then
LookDirection = “-1, -2, -3” looks back toward the origin.

It’s also common to set UpDirection to a vector pointing upward such as <0, 1, 0>
so the camera is “right-side up.”

The two most useful kinds of cameras in WPF are perspective and orthographic.

In a perspective view, parallel lines seem to merge toward a vanishing point and objects farther
away from the camera appear smaller. Since this is similar to the way you see things in real life, the
result of a parallel camera is more realistic.

In an orthographic view, parallel lines remain parallel and objects that have the same size appear to
have the same size even if one is farther from the camera than another. While this is less realistic,
orthographic views can be useful for engineering diagrams and other drawings where you might
want to perform measurements.

Cameras ❘ 395

The CameraTypes example program shown in Figure 23-6 displays images of the same scene with
both kinds of cameras.

Figure 23-6

orthographiC illusions

Because your brain expects far away objects to look smaller than closer objects,
orthographic projections can sometimes cause an optical illusion. When you look
at the right side of Figure 23-6, your brain may tell you that the box in the back is
bigger than those in front because it does not appear smaller as it should.

The following code shows how the CameraTypes program defines its perspective camera. The
FieldOfView parameter determines the camera’s field of view in degrees. A larger value makes the
camera see more to the sides so the camera must shrink its results to fit in its available area.

<PerspectiveCamera
 Position=”0, 0, 8”
 LookDirection=”0, 0, -8”
 UpDirection=”0, 1, 0”
 FieldOfView=”60”>

CameraTypes

The following code shows how the CameraTypes program defines its orthographic camera. The
Width parameter determines the width of the area that the camera sees in the scene’s coordi-
nate system. This parameter is roughly the orthographic equivalent of the perspective camera’s
FieldOfView parameter.

<OrthographicCamera
 Position=”0, 0, 8”
 LookDirection=”0, 0, -8”
 UpDirection=”0, 1, 0”
 Width=”8”>

CameraTypes

396 ❘ Chapter 23 Three-Dimensional Drawing

lighting

No matter how much effort you put into building a scene, you won’t see anything in the dark. You
need to add light to a scene before you can see anything.

The color that you see in a scene depends on both the lights in the scene and on the materials used
by the objects. The next section discusses materials in detail. This section considers only lights.

A light has a color that helps determine its effects on the scene’s objects. For example, if you shine a
blue light on a white plane, you get a blue result. Conversely, if you shine a white light on a red ball,
you see a red ball.

Other color combinations can be more confusing. For example, if you shine a blue light on a green
ball, you see a black result. A green ball reflects only green light, and, because the blue light con-
tains no green light, there’s nothing for the ball to reflect.

lots oF lights

If you use a light that is some shade of gray (including white, the brightest shade of
gray), then objects of all colors will be illuminated at least to some extent.

WPF provides several kinds of lights that provide different effects. The following list summarizes
these kinds of lights:

Ambient Light➤➤ — This is light that comes from all directions and hits every surface equally.
It’s the reason you can see what’s under your desk even if no light is shining directly there.
Most scenes need at least some ambient light.

Directional Light➤➤ — This light shines in a particular direction as if the light is infinitely far away.
Light from the Sun is a close approximation of directional light, at least on a local scale, because
the Sun is practically infinitely far away compared to the objects near you.

Point Light➤➤ — This light originates at a point in space and shines radially on the objects
around it. Note that the light itself is invisible, so you won’t see a bright spot as you would
if you had a real lightbulb in the scene.

Spot Light➤➤ — This light shines a cone into the scene. Objects directly in front of the cone
receive the full light, with objects farther to the sides receiving less.

eFFiCient illumination

Ambient and directional lights are more efficient than point and spot lights.

Lighting ❘ 397

The Lights example program shown
in Figure 23-7 demonstrates the dif-
ferent kinds of lights. Each scene
shows a yellow square (the corners are
cropped by the edges of the viewport)
made up of lots of little triangles.

The ambient light shines on every
surface with the same intensity so
every triangle appears yellow. This
light is light gray because it would
produce an overly bright result if it
were white. Usually ambient light-
ing is even darker than this and is
only intended to display surfaces
that are not illuminated by any
other light. The following code
shows how the program makes its AmbientLight:

<AmbientLight Color=”LightGray”/>

The directional light is shining at an angle to the square. Because all of the square’s triangles lie in
the same plane, they all make the same angle with respect to the directional light, so they all show
the same color. The light shines at an angle to the square, so the square isn’t as brightly lit as pos-
sible. The following code shows how the program makes its DirectionalLight:

<DirectionalLight Color=”White” Direction=”-1,-1,-1”/>

The point light is located just above the middle of the square. The light is shining directly on the
triangles sitting below it, so they are the brightest. Light shining on triangles farther to the sides hits
those triangles at an angle, so those triangles are not lit as brightly. The following code shows how
the program makes its PointLight:

<PointLight Color=”White” Position=”0,0.5,0”/>

If you look closely at Figure 23-7, you’ll see that there is an area of roughly uniform brightness
directly below the spot light. This area is inside the light’s inner cone and is defined by the light’s
InnerConeAngle property. Outside the inner cone, the light’s intensity drops off until it reaches the
edge of the light’s outer cone, which is defined by the OuterConeAngle property. The following code
shows how the program makes its SpotLight:

<SpotLight Color=”White” Position=”0,2,0” Direction=”0,-1,0”
 InnerConeAngle=”10” OuterConeAngle=”40” Range=”10”/>

Usually a scene includes ambient light so the user can see all of the objects.

Often you will also want to use additional lights, particularly if multiple objects in the scene have
the same color. If you don’t use multiple lights, then objects with the same color will tend to blend
together, so you can’t tell where one ends and the next begins.

Figure 23-7

398 ❘ Chapter 23 Three-Dimensional Drawing

plenty oF pieCes

The squares shown in Figure 23-7 are made up of lots of small triangles for a rea-
son. Direct3D calculates a triangle’s color based on the light, material, and
the angle at which the light hits the material. While it may blend colors to smooth
the edges between one triangle and a neighbor, it does not blend the colors across
a single triangle. Instead, each triangle’s color is determined once at a single point
and then used for the entire triangle (possibly with blending for neighbors).

In this example, that means if the squares were made up of two big triangles, then
each triangle would have a single color, and you wouldn’t see the drop-off effects
provided by the PointLight or SpotLight.

For example, the Tetrahedrons pro-
gram shown in Figure 23-8 displays
two intersecting tetrahedrons. The
picture on the left uses only ambient
light, so every red triangle has exactly
the same color and you can’t tell
where one stops and the next begins.

The middle picture uses ambient
light and a directional light that
shines from right-to-left, so the sur-
faces facing to the right are brighter
than those facing left, up, or down.
That allows you to see differences between some adjacent triangles but not others.

The picture on the right uses ambient light plus four directional lights shining left, in toward the back of
the scene, down, and up. It takes a lot of lights to make every red surface have a slightly different color.

One alternative to using lots of lights is to give the objects in the scene different colors. For example,
the sides of the cubes shown in Figure 23-6 are arranged so that adjacent sides have different colors.

The textured block shown in Figure 23-1 takes a different approach, giving each of the scene’s sur-
faces a completely different texture.

too muCh oF a good thing

Lights are additive, so two lights shining on the same spot can make that spot very
bright. If too many lights shine on too much of the scene, then many of the scene’s
objects will reach saturation and display the brightest possible versions of their col-
ors (red, green, or whatever). If too many objects have the same saturated color, then
you have the same problem again with them blending together.

To prevent this problem, you generally need to reduce the brightness of the lights as
you add new ones. The more lights you have, the dimmer they must be.

Figure 23-8

Materials ❘ 399

materials

As previous sections have explained, the exact color given to a triangle in a scene depends on the
light and the angle at which the light hits the triangle. The result also depends on the triangle’s type
of material. WPF provides three kinds of materials: diffuse, specular, and emissive.

A diffuse material’s brightness depends on the angle at which light hits it, but the brightness does
not depend on the angle at which you view it.

For example, hold a white sheet of paper so that it is perpendicular to the brightest light source near
you. If the light is white, then the paper should appear bright white. If you move your head around
to look at the paper from different angles, it should appear roughly the same color (unless it’s shiny
paper, in which case it acts as a specular material — more on that in a moment). All of the examples
so far in this chapter have used diffuse materials.

A specular material is somewhat shiny. In that case, an object’s apparent brightness depends on how
closely the angle between you, the object, and the light sources matches the object’s mirror angle. The
mirror angle is the angle at which most of the light would bounce off the object if it were perfectly shiny.

For example, suppose you have a perfectly shiny stainless steel ball. If you looked closely, you would
see a small image of the light reflected in the ball. The place where you see the reflection is where
the light’s mirror angle points directly at you. On other parts of the ball, you will be off the mirror
angle so you won’t see the light’s reflection there.

If the ball is only somewhat shiny, for example, a billiard ball, then you’ll see a bright patch where
the mirror angle lines up. Areas near the mirror angle will be slightly less bright and areas far from
the mirror angle will be the least bright.

The final type of material, an emissive material, glows. An emissive material glows but only on itself.
In other words, it makes its own object brighter, but it doesn’t contribute to the brightness of other
nearby objects as a light would.

Specular and emissive materials are not really
intended to be used alone. Most often they are com-
bined with a diffuse material in a MaterialGroup.

The Materials example program shown in
Figure 23-9 shows four identical spheres made of
different materials. From left to right, the materials
are diffuse, specular, emissive, and a MaterialGroup
combining all three types of materials.

Notice that the specular material adds a bright spot to the final sphere and that the emissive material
makes the final sphere brighter overall.

The following code shows how the program creates its spheres:

MakeSingleMeshSphere(Sphere00, new DiffuseMaterial(Brushes.Green), 1, 20, 30);
MakeSingleMeshSphere(Sphere01, new SpecularMaterial(Brushes.Green, 50), 1, 30, 30);
MakeSingleMeshSphere(Sphere02, new EmissiveMaterial(Brushes.DarkGreen), 1, 20, 30);

MaterialGroup combined_material = new MaterialGroup();
combined_material.Children.Add(new DiffuseMaterial(Brushes.Green));

Figure 23-9

400 ❘ Chapter 23 Three-Dimensional Drawing

combined_material.Children.Add(new SpecularMaterial(Brushes.Green, 50));
combined_material.Children.Add(new EmissiveMaterial(Brushes.DarkGreen));
MakeSingleMeshSphere(Sphere03, combined_material, 1, 20, 30);

Materials

The most noteworthy part of this code is the materials it passes to the MakeSingleMeshSphere function
that creates the spheres. The MakeSingleMeshSphere function simply builds a sphere out of a single
MeshGeometry3D object. It’s interesting but fairly long so it isn’t shown here. Download the example
program from the book’s web page to see how it works.

Note also how the code builds a MaterialGroup for the final sphere.

Building Complex sCenes

Throughout this book, I’ve tried to use XAML code as much as possible. As inconsistent and
confusing as XAML sometimes is, it still hides some of the complexity of WPF programming and
makes building typical interfaces easier. The designers in Expression Blend and Visual Studio also
let you instantly view any changes you make to XAML code so you don’t need to run the program
to see what you’re doing.

XAML code, however, will only get you so far when you’re building 3D scenes. XAML is just fine for
simple scenes containing a dozen or so triangles that display cubes, tetrahedrons, and other objects
with large polygonal faces, but building anything really complex in XAML can be difficult.

For example, the spheres shown in Figure 23-9 each use 1,140 triangles. While in principle you could
define all of those triangles in XAML code by hand, in practice that would be extremely difficult and
time-consuming. It would also be hard to debug the data if you found that one of the triangles wasn’t
in exactly the right position or if it was inwardly oriented. It’s a lot easier to write a little code-behind
to generate spheres and other objects that contain a lot of triangles.

The following sections explain how code can generate some particularly useful 3D objects.

geometric shapes
At a low level, it makes sense to build scenes out of triangles because they are simple, it’s relatively
easy to blend colors across them, and you can easily make more complex shapes out of triangles.
At a high level, however, you’re more likely to think in terms of rectangles, spheres, cylinders, and
other more complex shapes.

Building these shapes out of triangles by hand can be time-consuming and tricky. Even building a
rectangle out of two triangles without messing up the orientation and texture coordinates can be
harder than you’d think.

To make building complex scenes easier, it’s helpful to have a library of code-behind routines that
you can use to build these more complex shapes.

The RectanglesAndBoxes example program shown in Figure 23-10 demonstrates routines that draw

truncated cone under the globe), and spheres (the globe).

Building Complex Scenes ❘ 401

Figure 23-10

The following code shows the program’s MakeRectangle routine, which builds a textured rectangle:

// Make a rectangle.
// If rect_mesh is null, make a new one and add it to the model.
// The points p1, p2, p3, p4 should be outwardly oriented.
// The points u1, u2, u3, u4 give the texture coordinates
// for the points p1, p2, p3, p4.
private void MakeRectangle(Model3DGroup rect_model,
 ref MeshGeometry3D rect_mesh, Material rect_material,
 Point3D p1, Point3D p2, Point3D p3, Point3D p4,
 Point u1, Point u2, Point u3, Point u4)
{
 // Make the mesh if we must.
 if (rect_mesh == null)
 {
 rect_mesh = new MeshGeometry3D();
 GeometryModel3D new_model =
 new GeometryModel3D(rect_mesh, rect_material);
 rect_model.Children.Add(new_model);
 }

 // Make the points.
 rect_mesh.Positions.Add(p1);
 rect_mesh.Positions.Add(p2);
 rect_mesh.Positions.Add(p3);
 rect_mesh.Positions.Add(p4);

 // Set the texture coordinates.
 rect_mesh.TextureCoordinates.Add(u1);
 rect_mesh.TextureCoordinates.Add(u2);

402 ❘ Chapter 23 Three-Dimensional Drawing

 rect_mesh.TextureCoordinates.Add(u3);
 rect_mesh.TextureCoordinates.Add(u4);

 // Make the triangles.
 int i1 = rect_mesh.Positions.Count - 4;
 rect_mesh.TriangleIndices.Add(i1);
 rect_mesh.TriangleIndices.Add(i1 + 1);
 rect_mesh.TriangleIndices.Add(i1 + 2);

 rect_mesh.TriangleIndices.Add(i1);
 rect_mesh.TriangleIndices.Add(i1 + 2);
 rect_mesh.TriangleIndices.Add(i1 + 3);
}

RectanglesAndBoxes

The code starts by checking whether its MeshGeometry3D group is missing. If it is, then the routine
makes a new one. Allowing you to pass an existing mesh into the routine lets the program reuse
the same mesh for multiple calls to MakeRectangle or any of the other object creation routines.
(Remember that one mesh that contains many triangles is more efficient than many meshes contain-
ing one triangle each, so it’s better to use the same mesh if the objects can all use the same material.)

Next, the code adds the rectangle’s corner points to the mesh and sets their texture coordinates.
Finally, the code adds the two triangles needed to build the rectangle.

The other object-building routines used by the RectanglesAndBoxes program follow the same basic
approach: Create a mesh if necessary, create points and set texture coordinates, and create triangles.
The big differences are in how the code generates the points and sets their texture coordinates.

Unfortunately, some of these routines are fairly long and complicated (drawing a sphere and map-
ping a texture onto it takes some work), so they are not shown here. Download the example pro-
gram from the book’s web page to see the details.

Box Building

The program’s MakeBox routine calls MakeRectangle six times to make the six
sides of a box. The version used by this program is relatively simple and uses
the same material and texture coordinates for each side. If you look closely at
Figure 23-10, you’ll see that all of the sides of the metal cubes are the same.

You could modify the routine to use six sets of materials and texture coordinates to
give you greater control over box appearances.

Charts and graphs
Drawing globes and metal boxes is fun but not the sort of thing most businesses need on a daily
basis. You can use the same basic tools and techniques, however, to produce more business-oriented
results such as 3D charts and graphs.

Building Complex Scenes ❘ 403

The BarChart and Graph example programs shown in Figures 23-11 and 23-12, respectively, use the
same MakeRectangle routine described earlier to draw bar charts and ribbon graphs.

These two programs only add a few new techniques to those described earlier. Both of these pro-
grams color their rectangles with a material that uses a linear gradient brush that shades from blue
on the bottom to red on the top. For example, the following code shows how the Graph program
builds its material:

Dim graph_brush As New LinearGradientBrush()
graph_brush.StartPoint = New Point(0, 0)
graph_brush.EndPoint = New Point(0, 1)
graph_brush.GradientStops.Add(New GradientStop(Colors.Blue, 0.0))
graph_brush.GradientStops.Add(New GradientStop(Colors.Lime, 0.25))
graph_brush.GradientStops.Add(New GradientStop(Colors.Yellow, 0.5))
graph_brush.GradientStops.Add(New GradientStop(Colors.Orange, 0.75))
graph_brush.GradientStops.Add(New GradientStop(Colors.Red, 1.0))
Dim graph_material As New DiffuseMaterial(graph_brush)

Graph

The programs then use this material to shade all of the rectangles they draw, setting each point’s
texture coordinates to a value that depends on its Y coordinate. For example, a point with Y coordi-
nate 0 gets texture coordinates with second component 0. That gives the point the color at the start
of the gradient brush — blue.

Other Y coordinates are scaled so that the largest Y values in the data are given texture coordinate
values closest to 1; thus, they get colors near the end of the brush — red.

The top and bottom of the bars drawn by the BarChart program have texture coordinates set to the
appropriate scaled Y values, so the bottoms are solid blue and the tops depend on the bars’ heights.

You could determine directly where to create each triangle in these figures, but the MakeRectangle
routine makes things a lot easier.

Figure 23-11 Figure 23-12

404 ❘ Chapter 23 Three-Dimensional Drawing

generated textures
The chart and graph shown in Figures 23-11 and 23-12
are attractive, but it’s hard to see what values they rep-
resent without any kind of labels. These programs use
gradient textures to give you a sense of which values are
large and which are small, but they would be a lot easier
to read if the values were labeled.

The LabeledBarChart example program shown in
Figure 23-13 displays a bar chart with labels on the
rows and columns and a label on the end of each bar,
making it much easier to understand the data.

The following code shows the MakeLabel routine that
the LabeledBarChart program uses to draw its labels:

// Make a horizontal label at the specified position.
private void MakeLabel(Model3DGroup chart_model, double wid, double hgt, string txt,
 string font_name, double font_size, FontWeight font_weight, Brush font_brush,
 double y, double x1, double z1, double x2, double z2)
{
 Label lbl = new Label();
 lbl.Width = wid;
 lbl.Height = hgt;
 lbl.Content = txt;
 lbl.HorizontalContentAlignment = HorizontalAlignment.Center;
 lbl.VerticalContentAlignment = VerticalAlignment.Center;
 lbl.Foreground = font_brush;
 lbl.Background = Brushes.Transparent;
 lbl.FontFamily = new FontFamily(font_name);
 lbl.FontSize = font_size;
 lbl.FontWeight = font_weight;
 Brush label_brush = new VisualBrush(lbl);
 Material label_material = new DiffuseMaterial(label_brush);
 MeshGeometry3D label_mesh = null;
 MakeRectangle(chart_model, ref label_mesh, label_material,
 new Point3D(x1, y, z1), new Point3D(x1, y, z2),
 new Point3D(x2, y, z2), new Point3D(x2, y, z1),
 new Point(1, 1), new Point(1, 0), new Point(0, 0), new Point(0, 1));
}

LabeledBarChart

This code is actually fairly straightforward. It first creates a Label, setting its properties to display
the necessary text using the specified font. It uses the Label to create a VisualBrush and then uses
the brush to create a DiffuseMaterial. Finally, it creates a rectangle using the new material.

Figure 23-13

Summary ❘ 405

surfaces
The MakeSurface example program shown in Figure 23-14
is another application that generates a 3D scene from data
at run time. This program displays a surface generated by
the equation:

y = Cos(x2 + z2)/[1 + (x2 + z2)/2]

Like the BarChart, Graph, and LabeledBarChart
programs, the MakeSurface program uses a gradient
texture that draws larger Y values using warmer colors
(yellow and red) and smaller Y values using cooler colors
(green and blue).

The MakeSurface program contains no big surprises. It simply loops through X and Z values in an
area, calculating the corresponding Y values and building triangles to represent the result. Download
the example program from the book’s web page to see the details.

summary

This chapter explains how to produce three-dimensional scenes using WPF. It explains the basic
structure of a 3D scene and how to build a scene made of triangles in XAML code. Its examples
also demonstrate code-behind techniques for generating more complicated objects such as rectan-
gles, boxes, cylinders, spheres, and surfaces.

For more discussion and examples using WPF’s 3D capabilities, see these articles that I wrote for
DevX.com:

www.devx.com/dotnet/Article/42370➤➤

www.devx.com/dotnet/Article/42450➤➤

www.devx.com/dotnet/Article/42497➤➤

The second and third articles in particular provide more advanced discussion about building differ-
ent kinds of brushes and materials, and using 3D transformations.

Check my web site (www.vb-helper.com) or e-mail me (RodStephens@vb-helper.com) to learn
about other examples.

Although WPF’s 3D tools have a lot of benefits, they also have several drawbacks including:

No Shadows➤➤ — While the positions of lights determine an object’s appearance, objects don’t
block light or cast shadows.

No Reflections➤➤ — You can’t have a mirror or chrome ball that reflects what’s around it.

No Refraction➤➤ — Light doesn’t bend as it passes through transparent or translucent materials, so
you can’t get appropriate distortion, for example, when you look through a glass full of water.

Suboptimal Performance➤➤ — You can get slightly better performance if you use Direct3D
directly instead of via WPF.

Figure 23-14

406 ❘ Chapter 23 Three-Dimensional Drawing

I suspect that shadow calculations will eventually be provided by graphics hardware and trickle into
Direct3D and finally into WPF — but it could take a while. I suspect many of these other issues have
low priority for Microsoft and hardware vendors, so I’m not holding my breath.

Even with these drawbacks, WPF’s 3D graphics are very impressive. They’re easier to use than
Direct3D itself and, while they may never compete effectively with high-performance computer
games, they are fast enough for many applications.

All of the chapters up to this point have covered WPF. The next chapter describes WPF’s cousin,
Silverlight. Silverlight is a version of WPF that is intended to bring all of the interactivity and aes-
thetic appeal of WPF to the browser.

Silverlight
Although this is not a Silverlight book, Silverlight is so closely related to WPF that it makes
sense to include at least a brief introduction to Silverlight here.

What Is sIlverlIght?
Briefly stated, Silverlight is a version of WPF that is intended to run in web browsers. The basic
idea is that Silverlight applications should be able to run anywhere on any browser (via a browser
plug-in) on any operating system. This idea of running anywhere was emphasized by Silverlight’s
original name WPF/E, where the E stood for “everywhere.”

To make running Silverlight in a browser possible, it uses a smaller version of the .NET Framework
than the version used by WPF. That means some of the features you’ve been using in WPF are
unavailable in Silverlight. The differences between Silverlight and WPF have been changing with
each new release of Silverlight and WPF so I’m not even going to try to list them here. Any such list
would almost certainly be out-of-date before this book was printed.

A few places you can look to learn about differences between WPF and different versions of
Silverlight include:

Silverlight Overview➤➤ —

msdn.microsoft.com/library/bb404700(VS.95).aspx

Silverlight Differences on Windows and the Macintosh➤➤ —

msdn.microsoft.com/library/cc838247(VS.95).aspx

A short forum discussion about the differences between➤➤ WPF and Silverlight —

forums.silverlight.net/forums/p/77613/183874.aspx

Programmatic Differences Between Silverlight and WPF➤➤ — A Whitepaper

realworldsa.dotnetdevelopersjournal.com/
programmaticdifferencesbetweensilverlightwpf.htm

Guidance on Differences Between WPF and Silverlight (another whitepaper)➤➤ —

wpfslguidance.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=28278

24

408 ❘ Chapter 24 Silverlight

Because Silverlight applications are intended to run in a user’s browser, Silverlight applications
do not enjoy the same level of trust as desktop applications. Chances are, someone who uses a
Silverlight application on your web site doesn’t want to give you access to the system’s Registry
and files.

While there are some differences between WPF and Silverlight applications, the majority of what you
know about WPF applies to Silverlight. In particular, you can still build a user interface with Expression
Blend or Visual Studio using familiar controls. Silverlight does not provide all of the controls that WPF
does, but it does include the basics such as Button, TextBox, StackPanel, Grid, and so on.

a Color seleCtIon example

As a quick introduction to Silverlight, this section shows how to use Visual Studio to build a simple
example program.

Start Visual Studio, open the File menu, and select “New Project” to display the dialog shown in
Figure 24-1.

FIgure 24-1

Expand the template tree on the left to find the
Silverlight category for your language (C# or Visual
Basic). Select the Silverlight Application template,
enter a project name and a location, and click OK to
display the dialog shown in Figure 24-2.

Leave the checkbox checked if you want Visual
Studio to create a web site for the application.
Otherwise, uncheck the checkbox to create an
application without a web site.

When you click OK, Visual Studio builds a Silverlight
project much as it builds any other kind of project.

FIgure 24-2

A Color Selection Example ❘ 409

Figure 24-3 shows the new project. If you look closely, you’ll see that Visual Studio created an object
named MainPage.xaml.

FIgure 24-3

The middle part of Visual Studio shows a designer surface and XAML Editor similar to those that
you use to make a WPF application. The following code shows the XAML code that Visual Studio
creates for the new project’s MainPage.xaml:

<UserControlx:Class=”SelectColor.MainPage”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
mc:Ignorable=”d”
d:DesignHeight=”300”d:DesignWidth=”400”>

<Gridx:Name=”LayoutRoot”Background=”White”>

</Grid>
</UserControl>

This code is similar to the code used by a new WPF project except its top-level object is a UserControl
instead of a Window. Both kinds of applications start with a Grid control inside the top-level object to
hold any other controls that you may add.

You can use the Toolbox to place controls on the design surface and use the Properties window to
set control properties just as you would in a WPF application. One of the main differences is that
the WPF Toolbox holds more controls than the Silverlight Toolbox.

This example displays the color selection tool shown in Figure 24-4 running inside a Mozilla Firefox
browser. When you change the ScrollBars’ values, the program displays their new values in the
TextBlocks to the right. It also uses those values as the red, green, and blue color components of a
color and displays a sample of that color in the Grid on the far right.

410 ❘ Chapter 24 Silverlight

FIgure 24-4

The following code shows the program’s XAML definition:

<UserControlx:Class=”SelectColor.MainPage”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
mc:Ignorable=”d”
d:DesignHeight=”150”d:DesignWidth=”450”>

<Gridx:Name=”LayoutRoot”Background=”White”>
<StackPanelOrientation=”Horizontal”VerticalAlignment=”Top”>
<GridMargin=”10”Height=”100”Width=”300”
Background=”LightGreen”>
<Grid.RowDefinitions>
<RowDefinitionHeight=”*”/>
<RowDefinitionHeight=”*”/>
<RowDefinitionHeight=”*”/>
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinitionWidth=”Auto”/>
<ColumnDefinitionWidth=”0.85*”/>
<ColumnDefinitionWidth=”0.15*”/>
</Grid.ColumnDefinitions>

<TextBlockMargin=”5”Grid.Column=”0”
Text=”Red:”VerticalAlignment=”Center”/>
<TextBlockMargin=”5”Grid.Column=”0”Grid.Row=”1”
Text=”Green:”VerticalAlignment=”Center”/>
<TextBlockMargin=”5”Grid.Column=”0”Grid.Row=”2”
Text=”Blue:”VerticalAlignment=”Center”/>

<ScrollBarMargin=”5”Grid.Column=”1”
Orientation=”Horizontal”Maximum=”255”
Name=”scrRed”Scroll=”scr_Scroll”/>
<ScrollBarMargin=”5”Grid.Column=”1”
Orientation=”Horizontal”Maximum=”255”
Grid.Row=”1”Scroll=”scr_Scroll”Name=”scrGreen”/>
<ScrollBarMargin=”5”Grid.Column=”1”
Orientation=”Horizontal”Maximum=”255”

A Color Selection Example ❘ 411

Grid.Row=”2”Scroll=”scr_Scroll”Name=”scrBlue”/>

<TextBlockMargin=”5”Grid.Column=”2”
Text=”{BindingElementName=scrRed,Path=Value}”/>
<TextBlockMargin=”5”Grid.Column=”2”Grid.Row=”1”
Text=”{BindingElementName=scrGreen,Path=Value}”/>
<TextBlockMargin=”5”Grid.Column=”2”Grid.Row=”2”
Text=”{BindingElementName=scrBlue,Path=Value}”/>
</Grid>
<GridMargin=”10”Height=”100”Width=”100”
Background=”Black”Name=”grdSample”/>
</StackPanel>
</Grid>
</UserControl>

SelectColor

If you look at the definitions for the TextBlocks on the right, you’ll see that their Text properties
are bound to the corresponding ScrollBars’ Value properties so they automatically update them-
selves to show the currently selected values.

The program’s only remaining task is to display a sample of the selected color. The program does
this in the Scroll event handler named scr_Scroll that is shared by the three ScrollBars.

To create this event handler, select one of the ScrollBars, click the Properties window’s Events
button, and double-click the Scroll event. This opens the Code Editor for the scr_Scroll event
handler.

The following code shows how the event handler works:

//Updatethesample.
privatevoidscr_Scroll(objectsender,
System.Windows.Controls.Primitives.ScrollEventArgse)
{
//Getthenewcolor.
Colorclr=newColor();
clr.R=(byte)scrRed.Value;
clr.G=(byte)scrGreen.Value;
clr.B=(byte)scrBlue.Value;
clr.A=255;

//Applythecolor.
SolidColorBrushbr=newSolidColorBrush(clr);
grdSample.Background=br;
}

SelectColor

This code creates a new Color object. It sets the Color’s red, green, and blue color components to
the values selected by the ScrollBars, converted into byte values. It sets the Color’s alpha compo-
nent to 255 so the Color is completely opaque.

The code finishes by creating a brush to display the color and setting the sample Grid control’s
Background property to that brush.

412 ❘ Chapter 24 Silverlight

After you build the XAML and write the code-behind, simply press F5 or open the Debug menu and
select “Start Debugging” to launch the application in your system’s default browser.

a BounCIng Ball example

The BouncingBalls example program shown in Figure 24-5 uses a timer to display several balls
bouncing around in the browser. This example demonstrates code that more closely ties Silverlight
controls with code-behind.

FIgure 24-5

The following XAML code shows how the program creates its controls. The program simply dis-
plays a Border containing a Canvas.

<UserControlx:Class=”BouncingBalls.MainPage”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
mc:Ignorable=”d”
d:DesignHeight=”300”d:DesignWidth=”400”>

<Gridx:Name=”LayoutRoot”>
<BorderBorderBrush=”Green”BorderThickness=”5”>
<CanvasName=”canField”Background=”LightGreen”
SizeChanged=”canField_SizeChanged”/>
</Border>
</Grid>
</UserControl>

BouncingBalls

There are only two interesting points to the XAML code. First, the Canvas has a name so the code-
behind can refer to it. Second, the Canvas has a SizeChanged event handler.

A Bouncing Ball Example ❘ 413

When the canField Canvas control is resized, the following SizeChanged event handler executes.
This happens when the control is first created and if the user resizes the control later by resizing the
browser.

privateDateTimeLastUpdate;
privateList<Ball>Balls;
privateDispatcherTimerClock;

//Getreadytorun.
privatevoidcanField_SizeChanged(objectsender,SizeChangedEventArgse)
{
GetReady();
}

//Getreadytorun.
privatevoidGetReady()
{
//DeleteanyoldBalls.Necessaryiftheuserresizes.
canField.Children.Clear();

//MakesomeBalls.
Balls=newList<Ball>();
Randomrand=newRandom();
Rectbounds=newRect(0,0,canField.ActualWidth,canField.ActualHeight);
for(inti=1;i<=5;i++)
{
Balls.Add(RandomBall(rand,bounds,canField));
}

//Preparethetimer.
LastUpdate=DateTime.Now;
Clock=newDispatcherTimer();
Clock.Interval=TimeSpan.FromSeconds(0.1);
Clock.Tick+=Clock_Tick;
Clock.Start();
}

BouncingBalls

The program declares some class-level variables that hold the time when the balls were last updated,
the references to the balls, and a DispatchTimer object that provides periodic Tick events.

The SizeChanged event handler simply calls GetReady. That function removes any Ellipses that
are currently in the Canvas. (Try commenting out this step to see an interesting result.)

Next, the code uses the RandomBall function to create five random Ball objects, storing them in
the Balls list. The Ball class keeps track of the size, position, and velocity of balls moving on the
screen and is described shortly.

The RandomBall function simply creates a new Ball and initializes its properties randomly. It is
fairly straightforward so it isn’t shown here.

The GetReady function finishes by preparing the ClockDispatchTimer. It creates the timer, sets its
Interval property so it ticks every tenth of a second, gives it a new Tick event handler, and starts it.

414 ❘ Chapter 24 Silverlight

The following code shows the timer’s Tick event handler that fires roughly every tenth of a second:

//Updatetheballs.
privatevoidClock_Tick(objectsender,EventArgse)
{
DateTimetime_now=DateTime.Now;
TimeSpanelapsed=time_now.Subtract(LastUpdate);

foreach(Balla_ballinBalls)
{
a_ball.Update(elapsed);
}

LastUpdate=time_now;
}

BouncingBalls

The following code shows the program’s Ball class:

publicclassBall
{
publicShapeMyShape{get;set;}
publicTranslateTransformTransform{get;set;}
publicdoubleVx{get;set;}
publicdoubleVy{get;set;}
publicRectBounds{get;set;}

//Constructor.
publicBall(Shapenew_shape,TranslateTransforminitial_transform,
doubleinitial_vx,doubleinitial_vy,Rectthe_bounds)
{
MyShape=new_shape;
Transform=initial_transform;
Vx=initial_vx;
Vy=initial_vy;
Bounds=the_bounds;
}

//Updateourpositionfortheelapsedtime.
publicvoidUpdate(TimeSpanelapsed)
{
doublex=Transform.X+Vx*elapsed.TotalSeconds;
if((Vx<0)&&(x<Bounds.Left))
{
//Wehittheleftwall.
Vx=-Vx;
x+=2*(Bounds.Left-x);
}
elseif((Vx>0)&&(x+MyShape.Width>Bounds.Right))
{
//Wehittherightwall.
Vx=-Vx;
x-=2*(x+MyShape.Width-Bounds.Right);

For More Information ❘ 415

}

doubley=Transform.Y+Vy*elapsed.TotalSeconds;
if((Vy<0)&&(y<Bounds.Top))
{
//Wehitthetopwall.
Vy=-Vy;
y+=2*(Bounds.Top-y);
}
elseif((Vy>0)&&(y+MyShape.Width>Bounds.Bottom))
{
//Wehitthebottomwall.
Vy=-Vy;
y-=2*(y+MyShape.Width-Bounds.Bottom);
}

Transform.X=x;
Transform.Y=y;
}
}

BouncingBalls

The MyShape property holds a reference to the Silverlight Shape control (an Ellipse in this exam-
ple) that the Ball represents. The Transform property holds a reference to a TranslateTransform
object applied to the Shape. To move itself, the Ball updates this transform.

The Vx and Vy properties give the X and Y components of the Ball’s velocity in pixels per second.
The Bounds property is a Rect object that determines where the ball is allowed to be.

The most interesting code in this class is its Update method. This function adds the ball’s velocity
times the elapsed time since the last update to its current position. For example, suppose the ball is
currently at position (30, 60) moving 100 pixels per second to the right, so Vx = 100. Also suppose
it has been 0.2 seconds since the last time the ball’s position was updated. Then the Update method
changes the ball’s X coordinate to 30 + 100 * 0.2.

After calculating the ball’s new position, the code determines whether the ball has hit one of the edges
of its Bounds rectangle, and, if it has, the code reverses the ball’s velocity component appropriately.

Having calculated the ball’s new position, the code updates the Transform property to move the
ball’s Shape to its new location.

For more InFormatIon

This chapter is of necessity but rather short. The intent is to give you a small taste of Silverlight so
you know how Silverlight relates to WPF. For more information, see a book about Silverlight such
as Silverlight 3 Programmer’s Reference (J. Ambrose Little et al., Wrox, 2009) or Silverlight 4
Problem–Design–Solution (Nick Lecrenski, Wrox, 2010).

416 ❘ Chapter 24 Silverlight

There are also many places where you can turn for information on the Internet. The following list
describes some links that you may find useful while learning Silverlight:

Silverlight homepage➤➤ —

msdn.microsoft.com/library/ee656762(VS.95).aspx

This page provides links to pages for specific Silverlight versions. Currently these include
Silverlight 4 Beta and Silverlight 3. For example, if the Silverlight 4 Beta link described next
goes away, you should be able to find the latest Silverlight 4 information here.

Silverlight 4 homepage➤➤ —

msdn.microsoft.com/library/cc838158(VS.96).aspx

Links to complete information about Silverlight 4 Beta. Topics include an overview, controls,
input, printing, graphics, animation, communications, performance, deployment, and more.

Silverlight 3 homepage➤➤ —

msdn.microsoft.com/library/cc838158(VS.95).aspx

This is similar to the previous page but for Silverlight 3.

Get Started Building Silverlight 3 Applications➤➤ —

silverlight.net/getstarted

This is the official Silverlight “getting started” web page. It contains lots of useful links and
a step-by-step tutorial by Silverlight program manager Tim Heuer that walks you through
an example that uses Twitter’s Search Web service.

Silverlight 4 Beta➤➤ — A Guide to the New Features

timheuer.com/blog/archive/2009/11/18/whats-new-in-silverlight-4-complete-
guide-new-features.aspx

A long blog entry by Tim Heuer describing Silverlight 4 tools, resources, and new features.

summary

Silverlight is a version of WPF intended to run applications in web browsers. To squeeze Silverlight
applications into a format that will run reasonably on a browser, Silverlight has a few restrictions
such as fewer controls and more restricted access to the user’s system than WPF has, but there are
many similarities between the two.

You can still use Visual Studio and Expression Blend to build Silverlight applications that use C# or
Visual Basic code-behind. Both Visual Basic and Expression Blend provide feature-rich interactive
design tools that let you drop controls on the design surface and set their properties. While you will
need to learn some new techniques to get the most out of Silverlight, your knowledge of WPF should
give you a big head start.

This chapter concludes the more tutorial part of this book. The appendixes that follow provide a
handy reference for WPF and XAML syntax and common usage. If you need an in-depth introduc-
tion to a particular topic such as data binding or commanding, look at the corresponding chapters
earlier in this book. If you only need to refresh your memory about a topic’s syntax, see the corre-
sponding appendix.

Common Properties
This appendix summarizes properties that are common to many WPF controls. See the earlier
chapters and the following appendixes for more information about specific kinds of controls.

General ProPerties

Table A-1 summarizes general properties that apply to many controls. Note that not all prop-
erties apply to all control types.

table a-1: General Properties

ProPerty PurPose

AcceptsReturn Determines whether a [Return] character is inserted into a
TextBox or RichTextBox, or whether a [Return] character in
this control is ignored.

AcceptsTab Determines whether a [Tab] character is inserted into a
TextBox or RichTextBox, or whether a [Tab] character
moves focus to the next control.

Background The control’s background color

BorderBrush Determines the color of the control’s border. Note
that you must set BorderBrush to a visible color and
BorderThickness to a value >0 before you can see the
border.

BorderThickness Determines the thickness of the control’s border. Note
that you must set BorderBrush to a visible color and
BorderThickness to a value >0 before you can see
the border.

A

continues

418 ❘ aPPendix a Common ProPerties

ProPerty PurPose

Content The content that the control should contain. Some controls
(such as Button and Label) can hold only a single child as
content, while others (such as Grid and StackPanel) can
have many children. If a control can display text (such as a
Button or Label), then you can set the Content property to
a string for the control to display.

ContextMenu The ContextMenu that the control should display when the
user right-clicks on it

Cursor Determines the cursor displayed by the control. This can be
None, No, Arrow, AppStarting, Cross, Help, IBeam, SizeAll,
SizeNESW, SizeNS, SizeNWSE, SizeWE, UpArrow, Wait, Hand,
Pen, ScrollNS, ScrollWE, ScrollAll, ScrollN, ScrollS, ScrollW,
ScrollE, Scroll, ScrollNW, ScrollNE, ScrollSW, ScrollSE, or
ArrowCD.

Foreground The control’s foreground color, usually used for text

Header Some controls that display two kinds of content use a
Content property for one kind and a Header property for the
other. For example, a GroupBox displays a caption (Header)
in addition to content contained inside the GroupBox’s border
(Content). A few other controls such as TreeViewItem also
use a Header property to hold special kinds of content.

Height Determines the control’s absolute height. Often interfaces
are more flexible if you let the control stretch to fill its parent
rather than setting this value explicitly.

HorizontalAlignment Determines whether the control is aligned horizontally to the
left, center, or right in its container. The special value Stretch
makes the control try to fill its container horizontally.

HorizontalContentAlignment Determines how content is aligned horizontally within the con-
trol. For example, you can use this property to align the text
within a Label.

HorizontalScrollBarVisibility Determines whether the control’s horizontal scrollbar is vis-
ible. This property can take the values Auto (displayed when
needed), Disabled (not displayed), Hidden (not displayed),
and Visible (always displayed).

IsEnabled Determines whether the control will respond to user actions.

table a-1 (continued)

General Properties ❘ 419

ProPerty PurPose

IsReadOnly Determines whether the user can modify the text in a
TextBox or RichTextBox. Even if IsReadOnly is True, the
user can select text and press [Ctrl]+C to copy it to the clip-
board, so this is a useful technique for displaying text that the
user might want to copy.

IsTabStop Determines whether the user can tab to a focusable control.
Even if IsTabStop is False, the user can click on the control
to give it focus.

IsUndoEnabled Determines whether the user can press [Ctrl]+Z and [Ctrl]+Y to
undo and redo changes in a TextBox or RichTextBox.

LayoutTransform The transformation used to translate, scale, rotate, and skew
the control before its container arranges its child controls

Margin Determines how much space is left around the control within
its container. This property can include one value (all four mar-
gins use the same value), two values (left/right and top/bottom
margins), or four values (left, top, right, and bottom values).

MaxHeight The largest height the control will give itself

MaxLines The maximum number of lines that a TextBox will display.
This is only meaningful if AcceptsReturn is True.

MaxWidth The largest width the control will give itself

MinHeight The smallest height the control will give itself

MinLines The minimum number of lines that a TextBox will display. This
is only meaningful if AcceptsReturn is True.

MinWidth The smallest width the control will give itself

Name The control’s name. This is often not needed if no XAML or
code-behind refers to the control.

Opacity Determines how opaque the control is. The value 0 means
completely transparent and 1 means completely opaque
(although Expression Blend displays percentage values
between 0 and 100 in the Properties window).

OpacityMask A brush that determines the opacity at various parts of the con-
trol. Often this is a gradient brush or is defined by an image.
Note that only the alpha components of the brush’s colors mat-
ter and the red, green, and blue components are ignored.

continues

420 ❘ aPPendix a Common ProPerties

ProPerty PurPose

Padding Determines the extra space added inside this control around
its contents.

Parent The control’s logical parent

RenderTransform The transformation used to translate, scale, rotate, and skew
the control after its container arranges its child controls but
before it draws this one

Resources Resources defined by this control. Typically this includes
resource values and styles for use by controls contained
within this one.

SelectionLength Gets or sets the length of the TextBox’s current selection.

SelectionStart Gets or sets the starting position of the TextBox’s current
selection.

SelectionText Gets or sets the text in the TextBox’s current selection.

Stretch Determines how a control such as an Image or Viewbox
stretches its contents. This can be Fill (stretch contents to fill
the control even if that distorts the contents), None (contents
keep their original size), Uniform (stretch contents uniformly
as much as possible while still fitting within the control), and
UniformToFill (stretch contents uniformly until the control is
filled even if the contents are partially clipped).

Style Determines the style used by the control to define such things
as property values.

TabIndex Determines the control’s position in the tab order.

Tag Any arbitrary data you want to attach to the control

Text Determines the text contained in a TextBox or TextBlock.

TextAlignment Determines how text is arranged in a TextBox or TextBlock.
This can be Center, Justify, Left, or Right.

TextWrapping Determines how text is wrapped if it won’t fit in a TextBox or
TextBlock. This can be NoWrap (lines are truncated), Wrap
(lines wrap and very long words may be split if they won’t fit),
or WrapWithOverflow (lines wrap and very long words may
be truncated if they won’t fit).

ToolTip The text that the control should display in a tooltip when the
mouse hovers over it

table a-1 (continued)

Font Properties ❘ 421

ProPerty PurPose

VerticalAlignment Determines whether the control is aligned vertically to the top,
center, or bottom in its container. The special value Stretch
makes the control try to fill its container vertically.

VerticalContentAlignment Determines how content is aligned vertically within the con-
trol. For example, you can use this property to align the text
within a Label.

VerticalScrollBarVisibility Determines whether the control’s vertical scrollbar is vis-
ible. This property can take the values Auto (displayed when
needed), Disabled (not displayed), Hidden (not displayed),
and Visible (always displayed).

Visibility Determines whether the control is visible. This can take the
values Visible (visible as usual), Hidden (not visible but the
layout saves room for it), and Collapsed (not visible and the
layout does not save room for it).

Width Determines the control’s absolute width. Often interfaces
are more flexible if you let the control stretch to fill its parent
rather than setting this value explicitly.

Font ProPerties

Table A-2 summarizes font properties. These are useful for controls that display text as well as
containers that may hold controls that display text. In particular, you can set these properties for a
Window, and all of the controls in the Window will use them.

table a-2: Font Properties

ProPerty PurPose

FontFamily The name of the font such as Times New Roman or Arial. Microsoft’s
preferred font for Vista applications is Segoe (pronounced see-go).

FontSize The font’s size, by default in pixels. Append cm, in, px, or pt to specify
centimeters, inches, pixels (the default), or points (1/72 inch) as in
“0.25in” or “12pt.”

FontStyle The font’s style. This can be Normal, Italic, or Oblique (simulates
italic for fonts without an italic style).

continues

422 ❘ aPPendix a Common ProPerties

ProPerty PurPose

FontWeight The font’s “density.” This can be a number or one of the values Thin,
ExtraLight, Light, Normal, Medium, SemiBold, Bold, ExtraBold,
Black, or ExtraBlack, although many fonts look the same for many of
these values.

drawinG ProPerties

Table A-3 summarizes properties that determine the appearance of graphical objects.

table a-3:
Drawing Properties

ProPerty PurPose

Fill The control’s background color, usually used for drawing controls such
as Ellipse and Rectangle

Stroke The control’s foreground color, usually used for lines and curves in
drawing controls such as Ellipse and Rectangle

StrokeDashArray An array of values indicating the number of line widths to draw and skip
while making a dashed line

StrokeDashCap The style to use for the ends of dashes in a dashed line. This can be
Flat, Round, Square, or Triangle.

StrokeDashOffset The distance into its dash pattern where a line starts

StrokeEndLineCap The style to use for the line’s end. This can be Flat, Round, Square, or
Triangle.

StrokeLineJoin The style used to make the corners between segments in a connected
series of segments, for example, in a Polygon or Polyline. This can
be Bevel, Miter, or Round.

StrokeMiterLimit The maximum size that will be mitered in a corner. If a corner is too
sharp, the corner is beveled.

StrokeStartLineCap The style to use for the line’s start. This can be Flat, Round, Square,
or Triangle.

StrokeThickness The width of lines and curves produced by drawing controls

table a-2 (continued)

DockPanel Attached Properties ❘ 423

bitmaP eFFect ProPerties

Table A-4 summarizes bitmap effect properties.

table a-4:
Bitmap Effect Properties

ProPerty PurPose

BevelBitmapEffect Adds beveled edges to the control.

BlurBitmapEffect Makes the control blurred.

DropShadowBitmapEffect Adds a shadow behind the control.

EmbossBitmapEffect Gives the control an embossed appearance.

OuterGlowBitmapEffect Adds a glow behind the control.

Grid attached ProPerties

When you place a control inside a Grid, you can use attached properties defined by the Grid to
determine the control’s placement. Table A-5 summarizes the Grid attached properties.

table a-5:
Grid Attached Properties

ProPerty PurPose

Grid.Column Determines the column that contains the control.

Grid.ColumnSpan Determines the number of columns that the control spans.

Grid.Row Determines the row that contains the control.

Grid.RowSpan Determines the number of rows that the control spans.

Use the Grid’s Grid.ColumnDefinitions and Grid.RowDefinitions property elements to define
the Grid’s rows and columns and their sizes.

dockPanel attached ProPerties

When you place a control inside a DockPanel, you can use the DockPanel.Dock attached property
to determine where the control is positioned within the DockPanel. This property can take the val-
ues Left, Right, Top, and Bottom.

For example, if you set a Label’s DockPanel.Dock property to Left, then the Label will fill the left
edge of the remaining space in the control.

424 ❘ aPPendix a Common ProPerties

If the DockPanel’s LastChildFill property is True — which it is by default — then the control
makes its last child fill any remaining space.

canvas attached ProPerties

When you place a control inside a Canvas, you can use attached properties defined by the Canvas to
determine the control’s placement. Table A-6 summarizes the Canvas attached properties.

table a-6:
Canvas Attached Properties

ProPerty PurPose

Canvas.Bottom Determines the position of the control’s bottom edge.

Canvas.Left Determines the position of the control’s left edge.

Canvas.Right Determines the position of the control’s right edge.

Canvas.Top Determines the position of the control’s top edge.

The Canvas will only set the control’s position, not its size, so it will only set one of Left/Right
and Top/Bottom.

Content Controls
This appendix summarizes controls that are designed to hold content. They display something
that the user should see but should generally not modify.

The following sections very briefly summarize the WPF content controls. They list the con-
trols’ most important properties and provide simple XAML examples. For greater detail on
the controls, see Chapter 5.

Many of these controls provide decoration for a single child. For example, you can place a
single child inside a Border or GroupBox. Remember that this child can be a container such as
a Grid or StackPanel, so being able to hold only one child isn’t really much of a restriction.

Border

The Border draws a border around or background behind a single child control. The key
properties are given in Table B-1.

TaBle B-1: Key Properties of Border

ProPerTy PurPose

Background The color used to fill the control’s interior

BorderBrush The color of the control’s edge

BorderThickness The control edge’s thickness

CornerRadius The radius of curvature for the control’s corners. Areas outside the curve
are transparent so the parent shows through.

B

426 ❘ aPPendix B Content Controls

Border and GridexamPle

The following XAML code makes a simple Border containing a Grid that could hold other controls:

<Border BorderBrush=”Orange” BorderThickness=”3” Background=”Yellow”
 CornerRadius=”20” Width=”100” Height=”100”>
 <Grid>
 ...
 </Grid>
</Border>

BulleTdecoraTor

The BulletDecorator displays a single item and bullet in a bulleted list. The Bullet property defines
the bullet. The control’s single child defines the content. The key properties are given in Table B-2.

TaBle B-2: Key Properties of BulletDecorator

ProPerTy PurPose

Bullet The object displayed as the bullet

Child The object displayed next to the bullet

Diamond-Shaped BulletDecoratorexamPle

The following XAML code creates a blue diamond bullet to the left of the text “Bullet Point.” The code
uses Margin properties to provide some separation between the bullet and the text.

<BulletDecorator>
 <BulletDecorator.Bullet>
 <Polygon Margin=”2,0,0,0” Points=”0,5 5,0 10,5 5,10” Fill=”Blue”/>
 </BulletDecorator.Bullet>
 <TextBlock Margin=”10,0,0,0” Text=”Bullet Point”/>
</BulletDecorator>

Note that the BulletDecorator does not arrange controls in the same way that a StackPanel does. In
particular, increasing the bullet’s right margin does not move the TextBlock farther to the right. That’s
why this code uses the TextBlock’s Margin property.

documenTViewer

FlowDocument ❘ 427

You can build a FixedDocument object inside a DocumentViewer in XAML code, but often a pro-
gram loads the DocumentViewer’s content at run time.

Viewing an XPS DocumentexamPle

The following XAML code defines a DocumentViewer named docViewer:

<Window
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 x:Class=”ViewXpsDocument.MainWindow”
 x:Name=”Window”
 Title=”ViewXpsDocument”
 Width=”640” Height=”480”>
 <DocumentViewer Name=”docViewer” />
</Window>

The following code-behind loads the file “Fixed Document.XPS” into the viewer when the program loads:

// Load the XPS document.
private void Window_Loaded(object sender, RoutedEventArgs e)
{
 // Note: Mark the file as “Copy if newer”
 // to make a copy go in the output directory.
 XpsDocument xps_doc =
 new XpsDocument(“Fixed Document.xps”, System.IO.FileAccess.Read);
 docViewer.Document = xps_doc.GetFixedDocumentSequence();
}

FlowdocumenT

The FlowDocument object represents a document with contents that can flow to use the available space.

content objects
Table B-3 summarizes some of the most useful objects that a FlowDocument can contain.

TaBle B-3: FlowDocument Objects

oBjecT PurPose

Paragraph Groups text. Contains other objects.

Table Displays contents in rows and columns.

List Displays items in a numbered or bulleted list.

Floater Displays content that can float to different positions within the document
to improve layout. Will appear wherever there is room.

continues

428 ❘ aPPendix B Content Controls

oBjecT PurPose

Figure Displays content in a separate area with text flowing around it. You can set
its alignment within the flowing content, and it can span multiple columns.

User interface elements TextBox, Button, and other elements sitting within the FlowDocument.

Three-dimensional objects Displays 3D output.

FlowDocument ObjectsexamPle

The following XAML code demonstrates simple examples of the most common objects contained in a
FlowDocument:

<FlowDocument FontFamily=”Arial” FontSize=”12” Background=”Lime” Foreground=”Black”>
 <!-- A Paragraph containing a Run that uses a different font. -->
 <Paragraph>This is a
 <Run FontStyle=”Italic” Foreground=”Red” FontWeight=”Bold”>simple</Run>
 Paragraph that contains a Run.</Paragraph>

 <!-- A Table with two rows. The first has a different style
 (perhaps to use as a header). -->
 <Table BorderBrush=”Black” BorderThickness=”1” FontSize=”12”>
 <Table.Columns>
 <TableColumn Width=”25*” />
 <TableColumn Width=”75*” />
 </Table.Columns>
 <TableRowGroup>
 <TableRow Background=”LightGray” FontSize=”15”>
 <TableCell>
 <Paragraph>Item</Paragraph>
 </TableCell>
 <TableCell>
 <Paragraph>Purpose</Paragraph>
 </TableCell>
 </TableRow>
 <TableRow>
 <TableCell>
 <Paragraph>List</Paragraph>
 </TableCell>
 <TableCell>
 <Paragraph>Display items in a list</Paragraph>
 </TableCell>
 </TableRow>
 </TableRowGroup>
 </Table>

 <!-- A block containing a user interface element. -->
 <BlockUIContainer>
 <Button Name=”btnBlockUI” Width=”100” Height=”50”
 Content=”Block UI Button” />

TaBle B-3 (continued)

FlowDocument ❘ 429

 </BlockUIContainer>

 <!-- A Paragraph containing controls inline. -->
 <Paragraph>
 Some inline stuff:
 <Button Name=”btnAButton”>A Button</Button>
 <TextBox>A Text Box</TextBox>
 <Ellipse Width=”50” Height=”30”
 Fill=”Yellow” Stroke=”Red” StrokeThickness=”5” />
 </Paragraph>

 <!-- A Paragraph that defines a Floater. -->
 <Paragraph>
 <Floater HorizontalAlignment=”Right”>
 <Paragraph BorderBrush=”Black” BorderThickness=”1”>
 <StackPanel Margin=”2,2,2,2”>
 <Ellipse Fill=”Yellow” Width=”40” Height=”20”/>
 <TextBlock Margin=”5” FontStyle=”Italic”>
 Figure 1. A floating Ellipse.</TextBlock>
 </StackPanel>
 </Paragraph>
 </Floater>
 </Paragraph>

 <!-- Another Paragraph that can sit beside the Floater. -->
 <Paragraph>
 A Floater holds content that can float to other locations.
 </Paragraph>

 <!-- A List. -->
 <List>
 <ListItem>
 <Paragraph>
 Ellipse
 <Ellipse Width=”20” Height=”20” Stroke=”Black” StrokeThickness=”1”/>
 </Paragraph>
 </ListItem>
 <ListItem>
 <Paragraph>
 Triangle
 <Polygon
 Stroke=”Black” StrokeThickness=”1”
 Points=”0,0 20,0 10,20” />
 </Paragraph>
 </ListItem>
 </List>
</FlowDocument>

ShowFlowDocument

Paragraph objects typically make up most of a FlowDocument’s content. This object has a full set of
font properties in addition to Background and Foreground.

For more information on FlowDocuments, see Chapter 21.

430 ❘ aPPendix B Content Controls

FlowdocumenTPageViewer

The FlowDocumentPageViewer displays a FlowDocument in page viewing mode. In this mode, the
user sees a single page at a time and uses controls at the bottom of the viewer to move between pages.

Using FlowDocumentPageViewerexamPle

To use a FlowDocumentPageViewer, simply place a FlowDocument inside it.

<FlowDocumentPageViewer>
 <!-- Insert FlowDocument here. -->
</FlowDocumentPageViewer>

See the earlier entry for information about FlowDocuments.

FlowdocumenTreader

The FlowDocumentReader displays a FlowDocument in any of Page, Scroll, or TwoPage modes.

Viewing Mode Values
Table B-4 summarizes the FlowDocumentReader control’s ViewMode values.

TaBle B-4: ViewMode Values for FlowDocumentReader

mode meaning

Page Behaves like a FlowDocumentPageViewer.

Scroll Behaves like a FlowDocumentScrollViewer.

TwoPage Displays the document two pages at a time side-by-side.

Using FlowDocumentReaderexamPle

To use a FlowDocumentReader, simply place a FlowDocument inside it. You can use the ViewingMode
property to determine which viewing mode the control initially uses, as in the following code:

<FlowDocumentReader ViewingMode=”TwoPage”>
 <!-- Insert FlowDocument here. -->
</FlowDocumentReader>

See the earlier entry for information about FlowDocuments.

GroupBox ❘ 431

FlowdocumenTscrollViewer

The FlowDocumentScrollViewer displays a FlowDocument in Scroll mode as a long, single, scroll-
ing page much as a web browser typically displays a long web page.

Using FlowDocumentScrollViewerexamPle

To use a FlowDocumentScrollViewer, simply place a FlowDocument inside it.

<FlowDocumentScrollViewer>
 <!-- Insert FlowDocument here. -->
</FlowDocumentScrollViewer>

See the earlier entry for information about FlowDocuments.

grouPBox

A GroupBox displays a header and a border around a single child. The Header property determines
the text that the GroupBox displays. The Foreground property determines the text’s color. See Table
B-5 for the key properties of GroupBox.

TaBle B-5: Key Properties of GroupBox

ProPerTy PurPose

Background The color used to fill the control’s interior

BorderBrush The color of the control’s edge

BorderThickness The control edge’s thickness

Foreground The color used to display the Header

Header The text displayed at the top of the GroupBox

GroupBox and “Grid”examPle

The following code defines a simple GroupBox containing a Grid:

<GroupBox Width=”300” Height=”200”
 Header=”Customer Address” BorderBrush=”Red” Foreground=”Blue”>
 <Grid>
 <!-- Insert controls in the Grid here. -->

 </Grid>
</GroupBox>

432 ❘ aPPendix B Content Controls

image

An Image displays a picture. The key properties are listed in Table B-6.

TaBle B-6:
Key Properties of Image

ProPerTy PurPose

Source Tells where the Image’s picture is stored. This can be the name of a picture that is part
of the project or it can be an absolute web address.

Stretch Determines how the control stretches its picture. This can be None, Fill, Uniform,
and UniformToFill.

Loading ImagesexamPle

The following code creates two Images. The first loads its picture from the project file MadScientist.jpg.
The second Image gets its file from the web address www.vb-helper.com/howto_2005_buddhabrot.jpg.

<Image Width=”200” Stretch=”Uniform” Source=” MadScientist.jpg”/>
<Image Width=”200” Stretch=”Uniform”
 Source=”http://www.vb-helper.com/howto_2005_buddhabrot.jpg”/>

In code-behind, you can set the Source property to a BitmapImage object.

The following code displays two pictures at run time. It loads the first from the file amy007.jpg stored
in the project as a resource and the second from a web address.

img1.Source = new BitmapImage(new Uri(“pack://application:,,,/amy007.jpg”));
img2.Source = new BitmapImage(new
 Uri(“http://www.vb-helper.com/howto_2005_buddhabrot.jpg”));

laBel

The Label displays text that the user can read but not modify. The key properties are given in Table B-7.

TaBle B-7: Key Properties of Label

ProPerTy PurPose

Background The color behind the text

BorderBrush The color of the control’s edge

BorderThickness The control edge’s thickness

ListView ❘ 433

ProPerTy PurPose

Content The control’s content, usually simple text

FontFamily The name of the font family as in Times New Roman, Arial, or Segoe
(pronounced see-go)

FontSize The text’s font size. Append cm, in, px, or pt to specify centimeters, inches, pix-
els (the default), or points (1/72 inch) as in “0.25in” or “12pt.”

FontStyle Can be Normal, Italic, or Oblique (simulates italic for fonts without an italic style)

FontWeight The text’s boldness. This can be Thin, ExtraLight, Light, Normal, Medium,
SemiBold, Bold, ExtraBold, Black, and ExtraBlack.

Foreground The color used to draw the text

cleVer coPying

If you want the user to be able to copy text to the clipboard, consider using a read-
only TextBox instead of a Label.

Simple LabelexamPle

The following code creates a simple Label:

<Label Content=”First Name:” FontSize=”20” FontWeight=”Bold”/>

lisTView

The ListView displays data items in one of several layouts. The GridView is probably the most
common. The key properties are given in Table B-8.

TaBle B-8: Key Properties of ListView

ProPerTy PurPose

Background The color behind the text

BorderBrush The color of the control’s edge

BorderThickness The control edge’s thickness

continues

434 ❘ aPPendix B Content Controls

ProPerTy PurPose

ItemsSource The collection used to generate the control’s contents

View Defines how the data is displayed. The most common view is GridView.

ListView BindingexamPle

The following code defines a ListView that displays book information:

<ListView Name=”lvwPeople”
 Background=”{x:Null}”
 ItemsSource=”{Binding}”>
 <ListView.View>
 <GridView>
 <GridViewColumn Header=”Author” Width=”100”
 DisplayMemberBinding=”{Binding Path=Author}”/>
 <GridViewColumn Header=”Title” Width=”300”
 DisplayMemberBinding=”{Binding Path=Title}”/>
 <GridViewColumn Header=”Year” Width=”50”
 DisplayMemberBinding=”{Binding Path=Year}”/>
 <GridViewColumn Header=”Price” Width=”50”
 DisplayMemberBinding=”{Binding Path=Price}”/>
 </GridView>
 </ListView.View>
</ListView>

The control is bound to an ObservableCollection of BookInfo objects created in code-behind.

Each GridViewColumn object’s DisplayMemberBinding property gives the name of the property in the
corresponding BookInfo object that the column should display. For example, the first column displays
the BookInfo object’s Author property.

See the “ListView” section in Chapter 5 for more information about this control.

mediaelemenT

The MediaElement displays audio or video media. See Appendix E for more information about
MediaElement.

PoPuP

The Popup displays a floating area over a window. ContextMenu and ToolTip controls display simi-
lar floating areas. See Table B-9 for the key properties.

TaBle B-8 (continued)

ProgressBar ❘ 435

PoP-uPs The easy way

If you need a context menu or a tooltip, use a ContextMenu or ToolTip control
instead of building one with a Popup. There’s no point in making things harder
than necessary.

TaBle B-9:
Key Properties of Popup

ProPerTy PurPose

HorizontalOffset Determines the horizontal offset between the target and the Popup’s origin.

IsOpen Determines whether the Popup is visible. Set this to True to open the
Popup in code-behind.

Placement Determines how the Popup is positioned relative to the PlacementTarget.
This can be Absolute, Relative, Bottom, Center, Right, AbsolutePoint,
RelativePoint, Mouse, MousePoint, Left, Top, and Custom.

PlacementRectangle Determines the area in which the Popup is positioned.

PlacementTarget Determines the control relative to which the Popup is positioned.

VerticalOffset Determines the vertical offset between the target and the Popup’s origin.

Button and PopupexamPle

The following code creates a Button. It then makes a Popup that appears 5 pixels to the right of the
Button. The Popup contains a Label.

<Button Name=”btnClickMe” Content=”Click Me” Width=”75” Height=”30”/>

<Popup Visibility=”Visible” Placement=”Right”
 HorizontalOffset=”5” IsOpen=”True”
 PlacementTarget=”{Binding ElementName=btnClickMe}”>
 <Label Background=”Yellow” BorderBrush=”Black” BorderThickness=”1”
 Content=”You should click this button!”/>
</Popup>

ProgressBar

The ProgressBar displays progress information to the user. See Table B-10 for the key properties.

436 ❘ aPPendix B Content Controls

TaBle B-10:
Key Properties of ProgressBar

ProPerTy PurPose

Maximum Determines the largest value displayed by the control.

Minimum Determines the smallest value displayed by the control.

Orientation Determines whether the control is oriented horizontally or vertically.

Value Determines the value currently displayed by the control.

Defining a ProgressBarexamPle

The following code creates a simple ProgressBar that can display values between 0 and 100, and that
is currently displaying the value 60:

<ProgressBar Height=”15” Width=”200”
 Minimum=”0” Maximum=”100” Value=”60”/>

seParaTor

The Separator displays a simple horizontal separator line in a Menu or a vertical separator line in a
ToolBar.

Using SeparatorsexamPle

The following code creates a Menu and a ToolBar that include Separators:

<Menu>
 <MenuItem Header=”File”>
 <MenuItem Header=”New”/>
 <MenuItem Header=”Save”/>
 <MenuItem Header=”Open”/>
 <Separator/>
 <MenuItem Header=”Exit”/>
 </MenuItem>
</Menu>

<ToolBar Height=”50” VerticalAlignment=”Top”>
 <Button><Image Source=”New.jpg”/></Button>
 <Button><Image Source=”Open.jpg”/></Button>
 <Button><Image Source=”Save.jpg”/></Button>
 <Separator/>
 <Button><Image Source=”Delete.jpg”/></Button>
</ToolBar>

TextBlock ❘ 437

TexTBlock

The TextBlock displays read-only text much as a Label does but with additional features such
as line wrapping, italics, and bold text (see Table B-11). The TextBlock is intended to display
only a few lines of text. For more complex documents, consider using a FlowDocument. (See the
“FlowDocument” section earlier in this appendix.)

You can use special style inline tags or inlines to give a piece of the text a special style such as bold
or italic. For example, the following code displays text with the word bold in bold:

<TextBlock>A TexBlock can display <Bold>bold</Bold> text.</TextBlock>

TaBle B-11: Key Properties of TextBlock

ProPerTy PurPose

Background The color used to fill the control’s interior

FontFamily The name of the font family as in Times New Roman, Arial, or Segoe

FontSize The text’s font size. Append cm, in, px, or pt to specify centimeters, inches,
pixels (the default), or points (1/72 inch) as in “0.25in” or “12pt.”

FontStyle Can be Normal, Italic, or Oblique (simulates italic for fonts without an
italic style)

FontWeight The text’s boldness. This can be Thin, ExtraLight, Light, Normal,
Medium, SemiBold, Bold, ExtraBold, Black, and ExtraBlack, although
many fonts look the same for many of these values.

Foreground The color used to draw the text

LineHeight The vertical spacing between lines. Append cm, in, px, or pt to specify cen-
timeters, inches, pixels (the default), or points (1/72 inch) as in “0.25in” or
“12pt.”

LineStackingStrategy Determines how the control sizes its lines. This can be MaxHeight (a line is
tall enough to hold all of its content) or BlockLineHeight (a line’s height
is determined by the control’s LineHeight property).

Padding The extra space added between the control’s edges and the text it
contains

Text The text displayed by the control (simple text only)

TextAlignment Determines how text is aligned within the TextBlock. This can be Left,
Right, Center, or Justify.

continues

438 ❘ aPPendix B Content Controls

ProPerTy PurPose

TextTrimming Determines how text is trimmed if it doesn’t fit. This can be None (text is
truncated), CharacterEllipsis (text is trimmed to the nearest character
and followed by an ellipsis), or WordEllipsis (text is trimmed to the near-
est word and followed by an ellipsis).

TextWrapping Determines whether the control wraps text across multiple lines. This can
be Wrap, NoWrap, and WrapWithOverflow.

Table B-12 summarizes the most useful inlines supported by the TextBlock.

TaBle B-12: Key Inlines for TextBlock

ProPerTy PurPose

Bold Makes the enclosed text bold.

Hyperlink Creates a hyperlink. If the project is running in a web browser, Frame, or
other host that provides navigation, then you can set the Hyperlink’s
NavigateUri property to the URL or filename that you want opened when
the user clicks on the Hyperlink. If the host does not provide navigation, you
can handle the Hyperlink’s RequestNavigate event if the NavigateUri
property is filled in. You can also catch the Hyperlink’s Click event.

InlineUIContainer Contains a user interface element such as a Button or TextBox.

Italic Makes the enclosed text italic.

LineBreak Inserts a line break.

Run Contains a run of formatted text. Use the Run’s Foreground, Background,
and other properties to format the enclosed text.

Span Groups other inlines. Span can contain the inlines Bold, Figure, Floater,
Hyperlink, InlineUIContainer, Italic, LineBreak, Run, Span, and
Underline.

Underline Makes the enclosed text underlined.

TextBlock with InlinesexamPle

The following code creates a TextBlock that demonstrates various inlines:

<TextBlock Grid.Row=”0” Grid.Column=”0” Background=”White”
 HorizontalAlignment=”Stretch”
 TextWrapping=”NoWrap” TextAlignment=”Left”>

TaBle B-11 (continued)

ToolTip ❘ 439

 This long line of text includes <Bold>bold</Bold>, <Italic>italic</Italic>,
 and <Underline>underlined</Underline> text.
 <LineBreak/>

 Here’s a button:
 <InlineUIContainer>
 <Button Content=”Click Me”/>
 </InlineUIContainer>
 You could even give it a Click event handler.
 <LineBreak/>

 Here’s a really <Run FontSize=”20” FontWeight=”Bold”>BIG</Run> word.
 <LineBreak/>

 This Hyperlink goes to the
 <Hyperlink NavigateUri=”http://www.vb-helper.com”>
 VB Helper Web site
 </Hyperlink>,
 although it won’t work unless you run it inside a navigation host
 or add code-behind.
</TextBlock>

UseTextBlock

The example program UseTextBlock uses this code to
produce the TextBlock on the right in Figure B-1. The
TextBlock on the left displays the same content but with
the TextWrapping property set to NoWrap.

ToolTiP

As you can probably guess, the ToolTip displays a tool-
tip (see Table B-13). Usually it’s easier to simply set the
control’s ToolTip property than it is to create a ToolTip
object. One case in which you might want to make the
ToolTip a separate object is if you want to change its
properties.

consisTenT TiPs

If you do change the ToolTip’s properties, you will make it look different from
other applications’ tooltips. While that will make your program less consistent with
the rest of the system, it probably won’t distract the user too much as long as you
don’t go overboard (e.g., by displaying tooltips in a 60-point font).

Figure B-1

440 ❘ aPPendix B Content Controls

TaBle B-13:
Key Properties of ToolTip

ProPerTy PurPose

Background The color used to fill the control’s interior

Foreground The color used to draw the text

BorderBrush The color of the control’s edge

BorderThickness The control edge’s thickness

FontFamily The name of the font family as in Times New Roman, Arial, or Segoe

FontSize The text’s font size. Append cm, in, px, or pt to specify centimeters, inches, pixels
(the default), or points (1/72 inch) as in “0.25in” or “12pt.”

FontStyle Can be Normal, Italic, or Oblique (simulates italic for fonts without an italic style)

FontWeight The text’s boldness. This can be Thin, ExtraLight, Light, Normal, Medium,
SemiBold, Bold, ExtraBold, Black, and ExtraBlack, although many fonts
look the same for many of these values.

Using ToolTipsexamPle

The following code creates two Buttons with ToolTips. The first uses property element syntax to
define a ToolTip object and sets several of its property values. The second uses the simpler ToolTip
property attribute syntax and uses default property values.

<Button Content=”New”>
 <Button.ToolTip>
 <ToolTip Content=”Make a new file”
 Background=”Yellow” Foreground=”Red” BorderBrush=”Blue” BorderThickness=”5”
 FontWeight=”Bold” FontSize=”16” FontStyle=”Italic”/>
 </Button.ToolTip>
</Button>

<Button Content=”Open” ToolTip=”Open an existing file”/>

TreeView

The TreeView displays hierarchical data in a tree-like format similar to the one used by Windows
Explorer to show directory structure. It should contain TreeViewItem objects that represent the
entries.

See Chapter 18 for information about binding TreeView controls to data sources. Key properties of
TreeView are given in table B-14.

TreeView ❘ 441

TaBle B-14:

Key Properties of TreeViewProPerTy PurPose

Background The color used to fill the control’s interior

BorderBrush The color of the control’s edge

BorderThickness The control edge’s thickness

FontFamily The name of the font family as in Times New Roman, Arial, or Segoe

FontSize The text’s font size. Append cm, in, px, or pt to specify centimeters, inches, pix-
els (the default), or points (1/72 inch) as in “0.25in” or “12pt.”

FontStyle Can be Normal, Italic, or Oblique (simulates italic for fonts without an italic style)

FontWeight The text’s boldness. This can be Thin, ExtraLight, Light, Normal, Medium,
SemiBold, Bold, ExtraBold, Black, and ExtraBlack, although many fonts
look the same for many of these values.

Padding The extra space added between the control’s edges and its contents

The TreeViewItem control provides the same key properties as the TreeView control.

iTem inheriTance

Note that a TreeViewItem’s subitems inherit font properties. For example, if you
make an item bold, then all of its descendants in the tree are also bold.

Using TreeViewsexamPle

The following code builds a TreeView listing the Major League Baseball teams. The two topmost nodes
for the American League and National League use property element syntax to display baseball pictures
in addition to text. The division and team items display only text. The code shows only the first two
divisions completely. The other teams are omitted to save space.

<TreeView>
 <TreeViewItem IsExpanded=”True”>
 <TreeViewItem.Header>
 <StackPanel Orientation=”Horizontal”>
 <Image Source=”baseball.png” Height=”40”/>
 <Label Content=”American League” VerticalAlignment=”Center”/>
 </StackPanel>
 </TreeViewItem.Header>
 <TreeViewItem Header=”East” IsExpanded=”True”>
 <TreeViewItem Header=”Baltimore Orioles”/>
 <TreeViewItem Header=”Boston red Sox”/>
 <TreeViewItem Header=”New York Yaknees”/>

442 ❘ aPPendix B Content Controls

 <TreeViewItem Header=”Tampa Bay Rays”/>
 <TreeViewItem Header=”Toronto Blue Jays”/>
 </TreeViewItem>
 <TreeViewItem Header=”Central” IsExpanded=”True”>
 <TreeViewItem Header=”Chicago White Sox”/>
 <TreeViewItem Header=”Cleveland Indians”/>
 <TreeViewItem Header=”Detroit Tigers”/>
 <TreeViewItem Header=”Kansas City Royals”/>
 <TreeViewItem Header=”Minnesota Twins”/>
 </TreeViewItem>
 <TreeViewItem Header=”West” IsExpanded=”True”>
 <!-- Teams omitted. -->
 </TreeViewItem>
 </TreeViewItem>

 <TreeViewItem IsExpanded=”True”>
 <TreeViewItem.Header>
 <StackPanel Orientation=”Horizontal”>
 <Image Source=”baseball.png” Height=”40”/>
 <Label Content=”National League” VerticalAlignment “Center”/>
 </StackPanel>
 </TreeViewItem.Header>
 <TreeViewItem Header=”East” IsExpanded=”True”>
 <!-- Teams omitted. -->
 </TreeViewItem>
 <TreeViewItem Header=”Central” IsExpanded=”True”>
 <!-- Teams omitted. -->
 </TreeViewItem>
 <TreeViewItem Header=”West” IsExpanded=”True”>
 <!-- Teams omitted. -->
 </TreeViewItem>
 </TreeViewItem>
</TreeView>

Baseball

Layout Controls
This appendix summarizes controls that are designed to arrange and contain other controls.
They help you position the controls that make up the user interface.

The following sections very briefly summarize these controls. They list the controls’ most
important properties and provide simple XAML examples. For more detail, see Chapter 6.

Many of the controls define attached properties for use by child controls to tell the layout
control how to position the children. Tables in this appendix summarize the key attached
properties.

Because these controls are designed to hold other controls, they make logical places to define
styles. For example, to make all of the Labels inside a Grid use the same font styles, you can
add an unnamed Label style to the Grid’s Resources section.

Canvas

The Canvas is a very simple layout control that lets you arrange its contents by explicitly set-
ting the distances between their edges and those of the Canvas. See Table C-1 for the key
properties.

Table C-1: Key Properties of Canvas

ProPerTy PurPose

Background The color used to fill the control’s interior

ClipToBounds Determines whether the control clips its children to its boundaries.

C

444 ❘ aPPendix C Layout ControLs

A child control can use attached properties to tell the Canvas how to position the child. The key
attached properties for Canvas are given in Table C-2.

Table C-2: Key Attached Properties of Canvas

ProPerTy PurPose

Canvas.Bottom Sets the distance between the child’s bottom edge and the Canvas’s bottom edge.

Canvas.Left Sets the distance between the child’s left edge and the Canvas’s left edge.

Canvas.Right Sets the distance between the child’s right edge and the Canvas’s right edge.

Canvas.Top Sets the distance between the child’s top edge and the Canvas’s top edge.

The control will only honor one attached property vertically or horizontally. For example, if you
specify both Canvas.Left and Canvas.Right, then the Canvas honors the Left value and ignores
the Right value.

Using CanvasexamPle

The following code positions a Label 10 pixels from the upper-left corner of a Canvas and a TextBox
10 pixels from the lower-right corner:

<Canvas>
 <Label Canvas.Left=”10” Canvas.Top=”10” Content=”First Name:”/>
 <TextBox Canvas.Right=”10” Canvas.Bottom=”10” Width=”100”/>
</Canvas>

doCkPanel

The DockPanel lets you attach child controls to its top, left, right, and bottom edges. The key prop-
erties of DockPanel are given in Table C-3.

Table C-3: Key Properties of DockPanel

ProPerTy PurPose

Background The color used to fill the control’s interior

LastChildFill If True, then the DockPanel makes its last child fill all remaining available space.

A child control can use these properties to tell the DockPanel how to position the child. The key
attached properties of DockPanel are given in Table C-4.

Expander ❘ 445

Table C-4: Key Attached Properties of DockPanel

ProPerTy PurPose

DockPanel.Bottom Makes the child fill the bottom of the DockPanel’s remaining area.

DockPanel.Left Makes the child fill the left side of the DockPanel’s remaining area.

DockPanel.Right Makes the child fill the right side of the DockPanel’s remaining area.

DockPanel.Top Makes the child fill the top of the DockPanel’s remaining area.

Using DockPanelexamPle

The following code makes a DockPanel that contains a Menu and a Grid. The Menu is attached to the
DockPanel’s top as you would normally expect. The Grid occupies the rest of the DockPanel and
would contain whatever else you want on the window.

<DockPanel LastChildFill=”True”>
 <Menu DockPanel.Dock=”Top”>
 <!-- MenuItems omitted. -->
 </Menu>
 <Grid>
 <!-- Other controls omitted. -->
 </Grid>
</DockPanel>

exPander

The Expander displays a header and an icon that you can click to show or hide a single child. The
key properties of Expander are given in Table C-5.

Table C-5: Key Properties of Expander

ProPerTy PurPose

Background The color used to fill the control’s interior

BorderBrush The color of the control’s edge

BorderThickness The control edge’s thickness

ExpandDirection Determines the direction in which the content is expanded. This
can be Down, Left, Right, or Up.

FontFamily The name of the font family as in Times New Roman, Arial, or
Segoe (pronounced see-go)

continues

446 ❘ aPPendix C Layout ControLs

ProPerTy PurPose

FontSize The text’s font size. Append cm, in, px, or pt to specify centimeters,
inches, pixels (the default), or points (1/72 inch) as in “0.25in” or “12pt.”

FontStyle Can be Normal, Italic, or Oblique (simulates italic for fonts with-
out an italic style)

FontWeight The text’s boldness. This can be Thin, ExtraLight, Light, Normal,
Medium, SemiBold, Bold, ExtraBold, Black, and ExtraBlack,
although many fonts look the same for many of these values.

Foreground The color used to draw the Expander’s Header

Header The text displayed at the top of the Expander beside its Expand/
Hide button

HorizontalContentAlignment Determines how the content is aligned horizontally within the con-
trol. This can be Center, Left, Right, or Stretch.

IsExpanded Determines whether the control is expanded to show its child.

Padding The extra space added between the control’s edges and its contents

VerticalContentAlignment Determines how the content is aligned vertically within the control.
This can be Bottom, Center, Stretch, or Top.

Using ExpanderexamPle

The following code creates an Expander that contains a StackPanel. The StackPanel would contain
other controls that the user could show and hide.

<Expander Header=”Details” IsExpanded=”True” BorderBrush=”Blue”>
 <StackPanel>
 <!-- Other controls omitted. -->
 </StackPanel>
</Expander>

exPression blend examPle

Expression Blend’s Properties tab uses Expanders to let you show and hide differ-
ent groups of properties such as Brushes, Appearance, Layout, and so forth.

Table C-5 (continued)

Grid ❘ 447

Grid

One of the more powerful and useful layout controls, Grid lets you arrange children in rows and
columns. The key properties of Grid are given in Table C-6.

Table C-6:
Key Properties of Grid

ProPerTy PurPose

Background The color used to fill the control’s interior

ColumnDefinitions This property element contains ColumnDefinition objects that define
column widths

RowDefinitions This property element contains RowDefinition objects that define row heights

A child control can use these properties to tell the Grid how to position the child. The key attached
properties of Grid are given in Table C-7.

Table C-7:
Key Attached Properties of Grid

ProPerTy PurPose

Grid.Column The column that contains the child

Grid.ColumnSpan The number of columns that the child occupies

Grid.Row The row that contains the child

Grid.RowSpan The number of rows that the child occupies

Making a Data Entry GridexamPle

The following code builds a fairly standard data-entry form that lets the user enter name, address, and
other information:

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height=”40”/>
 <RowDefinition Height=”30”/>
 <RowDefinition Height=”30”/>
 <!-- Other row definitions omitted. -->
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”100”/>
 <ColumnDefinition Width=”*”/>
 </Grid.ColumnDefinitions>

 <Label Grid.Row=”0” Grid.Column=”0” Grid.ColumnSpan=”2” Content=”New Customer”

448 ❘ aPPendix C Layout ControLs

 HorizontalContentAlignment=”Center” FontSize=”20” FontWeight=”Bold”
 Background=”LightBlue”/>

 <Label Grid.Row=”1” Grid.Column=”0” Content=”First Name:”/>
 <TextBox Grid.Row=”1” Grid.Column=”1”/>

 <Label Grid.Row=”2” Grid.Column=”0” Content=”Last Name:”/>
 <TextBox Grid.Row=”2” Grid.Column=”1”/>

 <!-- Other rows omitted. -->
</Grid>

sCrollviewer

The ScrollViewer displays a single child inside a scrollable region. The key properties of
ScrollViewer are given in Table C-8.

Table C-8: Key Properties of ScrollViewer

ProPerTy PurPose

Background The color used to fill the control’s interior

HorizontalContentAlignment If the ScrollViewer is wider than its content, then this
determines how the content is aligned horizontally within
the control. This can be Center, Left, Right, or Stretch.

HorizontalScrollBarVisibility Determines whether the horizontal scrollbar is displayed.
This can be Auto, Disabled, Hidden, or Visible.

IsDeferredScrollingEnabled If True, the control doesn’t redisplay its contents until the
user finishes dragging the scrollbar thumb. This is useful if
the contents are very complex and take a while to display.

Padding The extra space added between the control’s edges and its
contents

VerticalContentAlignment If the ScrollViewer is taller than its content, then this
determines how the content is aligned vertically within the
control. This can be Bottom, Center, Stretch, or Top.

VerticalScrollBarVisibility Determines whether the vertical scrollbar is displayed. This
can be Auto, Disabled, Hidden, or Visible.

StackPanel ❘ 449

The ScrollViewer also supports font properties (FontFamily, FontSize, FontStyle, FontWeight).
It doesn’t draw any text itself, but contained Labels, TextBoxes, and other controls that draw text
inherit these values.

silly sCrollbars

For some odd reason, the HorizontalScrollBarVisibility property defaults
to Disabled and the VerticalScrollBarVisibility defaults to Visible, so the
horizontal scrollbar is never visible even if it is needed, and the vertical scrollbar is
always visible even if it is not needed.

You may want to set both of these properties to Auto so that they appear when
needed and disappear when not needed.

Using ScrollViewerexamPle

The following code creates a ScrollViewer holding an Image control that displays a large picture. The
scrollbars appear as needed when the window is too small to display the entire picture.

<Grid>
 <ScrollViewer
 HorizontalScrollBarVisibility=”Auto”
 VerticalScrollBarVisibility=”Auto”>
 <Image Stretch=”None”
 Source=”http://www.vb-helper.com/camil_moujaber_2_compressed.jpg” />
 </ScrollViewer>
</Grid>

sTaCkPanel

The StackPanel is one of the more powerful and useful layout controls. It arranges its children either
vertically or horizontally in a single column or row. If the control runs out of room before it runs out
of children, it clips any remaining children. The key properties of StackPanel are given in Table C-9.

Table C-9: Key Properties of StackPanel

ProPerTy PurPose

Background The color used to fill the control’s interior

Orientation Determines whether the control arranges its children in a row
(Orientation = Horizontal) or a column (Orientation = Vertical).

450 ❘ aPPendix C Layout ControLs

Using StackPanelexamPle

The following code creates three buttons arranged in a column. The StackPanel’s Resource section
creates an unnamed style that gives the Buttons consistent Margin, Width, and Height properties.

<StackPanel>
 <StackPanel.Resources>
 <Style TargetType=”Button”>
 <Setter Property=”Margin” Value=”5”/>
 <Setter Property=”Width” Value=”100”/>
 <Setter Property=”Height” Value=”40”/>
 </Style>
 </StackPanel.Resources>

 <Button Content=”Add Customer”/>
 <Button Content=”Find Customer”/>
 <Button Content=”Delete Customer”/>
</StackPanel>

sTaTusbar

The StatusBar creates an area, typically at the bottom of the window, where you can give the user
status information. You can place StatusBarItems, Labels, Buttons, ComboBoxes, and other con-
trols inside the StatusBar. The key properties of StatusBar are given in Table C-10.

Table C-10: Key Properties of StatusBar

ProPerTy PurPose

Background The color used to fill the control’s interior

BorderBrush The color of the control’s edge

BorderThickness The control edge’s thickness

The StatusBar also supports font properties (FontFamily, FontSize, FontStyle, FontWeight). It
doesn’t draw any text itself, but contained Labels, TextBoxes, and other controls that draw text
inherit these values.

Using StatusBarexamPle

You can place controls such as Label and Button directly in the StatusBar, but you can get slightly
better results if you place StatusBarItems inside the StatusBar. In that case, the StatusBar acts
much like a horizontal StackPanel that stretches its last child to fill the available space. If you place
controls directly inside the StatusBar, it doesn’t stretch the last control.

TabControl ❘ 451

The following code builds a DockPanel that displays a Menu on top, a StatusBar on the bottom, and a
Grid in the middle:

<DockPanel>
 <Menu DockPanel.Dock=”Top”>
 <!-- Menu items omitted. -->
 </Menu>

 <StatusBar DockPanel.Dock=”Bottom”>
 <StatusBarItem>
 <Label Content=”Status:”/>
 </StatusBarItem>
 <StatusBarItem>
 <Label Content=”Normal” Background=”White” Padding=”10,6,10,6”>
 <Label.BitmapEffect>
 <BevelBitmapEffect EdgeProfile=”BulgedUp”/>
 </Label.BitmapEffect>
 </Label>
 </StatusBarItem>

 <StatusBarItem HorizontalAlignment=”Right” >
 <Button Content=”Disconnect”/>
 </StatusBarItem>
 </StatusBar>

 <Grid>
 <!-- Other controls omitted. -->
 </Grid>
</DockPanel>

The StatusBar contains a pair of StatusBarItems holding Labels. The third StatusBarItem has
HorizontalAlignment = Right, so that item is moved to the StatusBar’s right edge.

TabConTrol

The TabControl displays a series of tabs where you can place different sets of information. The con-
trol should contain a series of TabItems, each of which holds a single content item (which is often a
container such as a Grid). The key properties of TabControl are given in Table C-11.

Table C-11: Key Properties of TabControl

ProPerTy PurPose

Background The color used to fill the interior of the tab contents. This color does not fill the
header area.

BorderBrush The color of the edge of the tab contents. This does not include the header area.

continues

452 ❘ aPPendix C Layout ControLs

ProPerTy PurPose

BorderThickness The tab contents’ border thickness. This does not include the header area.

FlowDirection Determines whether the tabs are arranged right-to-left or left-to-right.

FontFamily The name of the font family as in Times New Roman, Arial, or Segoe

FontSize The text’s font size. Append cm, in, px, or pt to specify centimeters, inches,
pixels (the default), or points (1/72 inch) as in “0.25in” or “12pt.”

FontStyle Can be Normal, Italic, or Oblique (simulates italic for fonts without an italic style)

FontWeight The text’s boldness. This can be Thin, ExtraLight, Light, Normal, Medium,
SemiBold, Bold, ExtraBold, Black, and ExtraBlack, although many fonts
look the same for many of these values.

Padding The extra space added between the control’s edges and the tab contents.
This does not include the header area.

SelectedIndex The zero-based index of the currently selected tab.

TabStripPlacement Determines where the tab strip is positioned. This can be Bottom, Left,
Right, or Top.

Table C-12 summarizes the most important properties of the TabItem objects that you place inside
the TabControl.

Table C-12: Key Properties of TabItem Objects

ProPerTy PurPose

Foreground The color used to draw the header text

Header The content displayed on the tab. Often this is plaintext.

IsSelected Determines whether this tab is currently selected.

Padding The extra space added between the header area’s edges and the header content

Using TabControlexamPle

The following code creates a TabControl that contains three TabItems with headers Customers,
Products, and Employees:

<TabControl>
 <TabItem Header=”Customers”>
 <Grid>
 <!-- Controls omitted. -->

Table C-11 (continued)

TabControl ❘ 453

 </Grid>
 </TabItem>
 <TabItem Header=”Products”>
 <Grid>
 <!-- Controls omitted. -->
 </Grid>
 </TabItem>
 <TabItem Header=”Employees”>
 <Grid>
 <!-- Controls omitted. -->
 </Grid>
 </TabItem>
</TabControl>

Using a Rotated TabControlexamPle

The following code is to the previous example similar except it places the tabs on the left side of the
TabControl. The code uses the styTabHeader style to rotate the headers by –90 degrees so they don’t
take up a huge amount of space.

<TabControl TabStripPlacement=”Left”>
 <TabControl.Resources>
 <Style x:Key=”styTabHeader” TargetType=”TextBlock”>
 <Setter Property=”FontSize” Value=”14”/>
 <Setter Property=”FontWeight” Value=”Bold”/>
 <Setter Property=”Padding” Value=”4,0,4,0”/>
 <Setter Property=”LayoutTransform”>
 <Setter.Value>
 <RotateTransform Angle=”-90”/>
 </Setter.Value>
 </Setter>
 </Style>
 </TabControl.Resources>

 <TabItem>
 <TabItem.Header>
 <TextBlock Text=”Customers” Style=”{StaticResource styTabHeader}”/>
 </TabItem.Header>
 <Grid>
 <!-- Controls omitted. -->
 </Grid>
 </TabItem>
 <TabItem>
 <TabItem.Header>
 <TextBlock Text=”Products” Style=”{StaticResource styTabHeader}”/>
 </TabItem.Header>
 <Grid>
 <!-- Controls omitted. -->
 </Grid>
 </TabItem>
 <TabItem>
 <TabItem.Header>
 <TextBlock Text=”Employees” Style=”{StaticResource styTabHeader}”/>

454 ❘ aPPendix C Layout ControLs

 </TabItem.Header>
 <Grid>
 <!-- Controls omitted. -->
 </Grid>
 </TabItem>
</TabControl>

RotatedTabs

Figure C-1 shows the result.

FiGure C-1

Toolbar and ToolbarTray

The ToolBar displays a series of Buttons, ComboBoxes, and other tools that the user can access easily.

The ToolBarTray displays an area, normally at the top of the window below the menus, that con-
tains one or more ToolBars. The user can drag the ToolBars around within the ToolBarTray. The
key properties of ToolBarTray are given in Table C-13.

Table C-13:
Key ToolBarTray Properties

ProPerTy PurPose

Background The color used to fill the interior of the control

FlowDirection Determines whether the ToolBars are arranged right-to-left or left-to-right.

IsLocked If True, then the user cannot move ToolBars within the ToolBarTray.

Orientation Determines whether the ToolBarTray arranges the ToolBars horizontally or vertically.

A ToolBarTray can arrange its ToolBars in rows called bands. The ToolBar’s Band and BandIndex
properties determine where a ToolBar initially appears within a ToolBarTray. These properties can
be any numeric values. The ToolBarTray automatically creates bands as needed and arranges the
ToolBars within them. The key properties of ToolBar are given in Table C-14.

ToolBar and ToolBarTray ❘ 455

Table C-14:
Key Properties of ToolBar

ProPerTy PurPose

Background The color used to fill the interior of the control

Band Determines which ToolBarTray band holds this ToolBar.

BandIndex Determines the ordering of this ToolBar within its band.

BorderBrush The color of the control’s edge

BorderThickness The control edge’s thickness

FlowDirection Determines whether the ToolBar arranges its content right-to-left or left-to-right.

FontFamily The name of the font family as in Times New Roman, Arial, or Segoe

FontSize The text’s font size. Append cm, in, px, or pt to specify centimeters, inches, pixels
(the default), or points (1/72 inch) as in “0.25in” or “12pt.”

FontStyle Can be Normal, Italic, or Oblique (simulates italic for fonts without an italic style)

FontWeight The text’s boldness. This can be Thin, ExtraLight, Light, Normal, Medium,
SemiBold, Bold, ExtraBold, Black, and ExtraBlack, although many fonts
look the same for many of these values.

Header Defines an object to display at the beginning of the ToolBar. For example,
you could set this to text that indicates the category of tools in this ToolBar. Or you
could set it to a Label that does the same but with a smaller font and a lighter color.

Padding The extra space added between the control’s edges and the contents it contains

Using ToolBarsexamPle

The example program Toolbars shown in Figure C-2 uses the following code to create a window with a
Menu, ToolBarTray, StatusBar, and TabControl. The ToolBarTray contains three ToolBars arranged
in two bands. To save space, only the code that builds the ToolBarTray and ToolBars is shown here.

<ToolBarTray DockPanel.Dock=”Top” Background=”LightGray”>
 <ToolBar Band=”0” BandIndex=”0”>
 <Button>
 <Image Source=”New.ico”/>
 </Button>
 <Button>
 <Image Source=”Open.ico”/>
 </Button>
 </ToolBar>
 <ToolBar Band=”0” BandIndex=”1”>
 <Button>
 <Image Source=”Copy.ico”/>
 </Button>
 <Button>
 <Image Source=”Cut.ico”/>

456 ❘ aPPendix C Layout ControLs

 </Button>
 <Button>
 <Image Source=”Paste.ico”/>
 </Button>
 </ToolBar>
 <ToolBar Band=”1” Height=”30”>
 <Button>
 <Image Source=”Add.png”/>
 </Button>
 <Button>
 <Image Source=”Cancel.png”/>
 </Button>
 <Button>
 <Image Source=”Ok.png”/>
 </Button>
 </ToolBar>
</ToolBarTray>

Toolbars

FiGure C-2

uniFormGrid

The UniformGrid arranges its children in rows and columns of uniform size. The key properties of
UniformGrid are given in Table C-15.

Table C-15:
Key Properties of UniformGrid

ProPerTy PurPose

Background The color used to fill the interior of the control

Columns Indicates the number of columns in the grid.

Viewbox ❘ 457

ProPerTy PurPose

FirstColumn Indicates the first column used in the grid’s first row. Cells before that one remain empty.

FlowDirection Determines whether the cells are filled in right-to-left or left-to-right order.

Rows Indicates the number of rows in the grid.

Using UniformGridexamPle

The following code defines a UniformGrid that displays six Buttons:

<UniformGrid Rows=”2” Columns=”3”>
 <Button Margin=”5” Content=”1”/>
 <Button Margin=”5” Content=”2”/>
 <Button Margin=”5” Content=”3”/>
 <Button Margin=”5” Content=”4”/>
 <Button Margin=”5” Content=”5”/>
 <Button Margin=”5” Content=”6”/>
</UniformGrid>

Also see the WrapPanel control described at the end of this appendix.

viewbox

The Viewbox stretches its single child in one of several ways depending on whether its Stretch
property is set to Fill, None, Uniform, or UniformToFill.

Normally, you don’t need to use a Viewbox to stretch images because the Image control has its own
Stretch property. The Viewbox is more useful for stretching other controls that don’t normally
stretch themselves, such as Labels, Buttons, or Grids containing more controls. The key properties
of Viewbox are given in Table C-16.

Table C-16: Key Properties of Viewbox

ProPerTy PurPose

Stretch Determines how the control stretches its contents. This can be Fill (fill the
Viewbox even if it distorts the contents), None, Uniform (make the contents
as large as possible without distortion), or UniformToFill (enlarge the con-
tents without distortion until they fill the Viewbox even if parts are clipped off).

StretchDirection Determines whether the control can enlarge or shrink its contents, or both. This
can be Both (enlarge or shrink), DownOnly (shrink only), or UpOnly (enlarge only).

458 ❘ aPPendix C Layout ControLs

Using ViewboxexamPle

The following code creates a Viewbox that contains a Grid. The Grid contains several Labels and TextBoxes.
The Viewbox stretches the Grid and its contents to fit, possibly squeezing or stretching the controls.

<Viewbox Stretch=”Fill” Margin=”10”>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height=”*”/>
 <RowDefinition Height=”*”/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”*”/>
 <ColumnDefinition Width=”*”/>
 </Grid.ColumnDefinitions>
 <Label Grid.Row=”0” Grid.Column=”0” Content=”First Name:”/>
 <TextBox Grid.Row=”0” Grid.Column=”1” Text=”Rod”/>
 <Label Grid.Row=”1” Grid.Column=”0” Content=”Last Name:”/>
 <TextBox Grid.Row=”1” Grid.Column=”1” Text=”Stephens”/>
 </Grid>
</Viewbox>

windowsFormsHosT

The WindowsFormsHost lets you place Windows Forms controls inside a WPF application.

Before you can use a WindowsFormsHost, you must:

 1. Add a reference to the WindowsFormsIntegration library.

 2. Add a reference to the System.Windows.Forms.dll library.

 3. Add a namespace declaration to the XAML file similar to this one:

xmlns:wf=”clr-namespace:System.Windows.Forms;assembly=System.Windows.Forms”

The final step allows your XAML code to refer to the controls in the Windows Forms library by
using the prefix wf.

Using WindowsFormsHostexamPle

The following code creates a WindowsFormsHost that contains a DateTimePicker:

<WindowsFormsHost Margin=”5” x:Name=”wfhAppt”>
 <WindowsFormsHost.Child>
 <wf:DateTimePicker x:Name=”dtpAppt” Enabled=”False” />
 </WindowsFormsHost.Child>
</WindowsFormsHost>

See the section “WindowsFormsHost” in Chapter 6 for more details and a more complete example.

WrapPanel ❘ 459

wraPPanel

The WrapPanel displays its children in a row or column, wrapping to a new row or column when
necessary. The key properties of WrapPanel are given in Table C-17.

Table C-17:
Key Properties of WrapPanel

ProPerTy PurPose

Background The color used to fill the control’s interior

FlowDirection Determines whether the control arranges its contents in right-to-left or left-to-right
order. Columns are always arranged in top-to-bottom order.

ItemHeight Gives items a uniform height.

ItemWidth Gives items a uniform width.

Orientation Determines whether the control fills rows or columns. This can be Horizontal or
Vertical.

Using WrapPanelexamPle

The following code creates a WrapPanel that contains five Buttons, arranged in columns:

<WrapPanel Orientation=”Vertical”>
 <Button Margin=”5” Width=”50” Height=”50” Content=”1”/>
 <Button Margin=”5” Width=”50” Height=”50” Content=”2”/>
 <Button Margin=”5” Width=”50” Height=”50” Content=”3”/>
 <Button Margin=”5” Width=”50” Height=”50” Content=”4”/>
 <Button Margin=”5” Width=”50” Height=”50” Content=”5”/>
</WrapPanel>

User Interaction Controls
This appendix summarizes controls that are designed to let the user control the application.
They let the user initiate and control actions.

Because these controls let the user control the program, they must have some way to interact
with the program’s executing code. That means they typically use event handlers written in
code-behind, events in XAML code, or a mix of both.

The following sections very briefly summarize the WPF user interaction controls. They list the
controls’ most important properties and provide simple examples. For more detail, see Chapter 7.

Applications often use these controls to start some action and thus catch events raised by the
controls. That makes these events more important than those raised by the controls described
in previous appendixes.

This appendix focuses more on events than properties. It describes only properties that affect
a control’s behavior, not the simpler properties that determine the control’s appearance.

The IsEnabled property is particularly important to many of the controls described here. It
determines whether the control will interact with the user. When IsEnabled is False, the con-
trol may change its appearance, but it definitely won’t let the user interact with it.

Button

The Button lets the user initiate an action (see Table D-1).

taBle D-1: Key Events for Button

event PurPose

Click Fires when the user clicks the Button.

Often a Button displays a simple text value, but if a Button contains several other controls, it
automatically raises its Click event when the user clicks on any of them.

D

462 ❘ aPPenDix D User InteractIon controls

Using ButtonexamPle

The following code creates two Buttons. The first uses a simple text caption. The second contains a
StackPanel that holds a Label and an Image.

<Button Content=”Click Me” Click=”btnClickMe_Click”/>

<Button Click=”btnSmile_Click”>
 <StackPanel>
 <Image Source=”smiley.jpg” Height=”50”/>
 <Label Content=”Smile!” HorizontalAlignment=”Center”/>
 </StackPanel>
</Button>

The previous code’s Click attributes give the names of each Button’s event handler in the code-behind.
The following C# code shows simple Click event handlers for these Buttons. This code just displays a
message box so that you know the Buttons have done something.

private void btnClickMe_Click(object sender, RoutedEventArgs e)
{
 MessageBox.Show(“Click me clicked”);
}

private void btnSmile_Click(object sender, RoutedEventArgs e)
{
 MessageBox.Show(“Smile clicked”);
}

CheCkBox

The CheckBox lets the user check or uncheck an option. The user can check and uncheck any num-
ber of CheckBoxes in any combination. (Contrast this with the RadioButton, where only one in
a group can be selected at a time.) Table D-2 gives the key properties of CheckBox, and Table D-3
gives the key events.

taBle D-2: Key Properties of CheckBox

ProPerty PurPose

IsChecked Determines whether the control is currently checked.

IsThreeState Determines whether the control cycles through three values —
checked (IsChecked = True), unchecked (IsChecked = False), and
indeterminate (IsChecked = null).

ComboBox ❘ 463

taBle D-3: Key Events for CheckBox

event PurPose

Checked Occurs when the control is checked.

Unchecked Occurs when the control is unchecked.

Click Occurs when the control is checked or unchecked.

Using CheckBoxexamPle

The following code creates a CheckBox that fires chkLunch_Checked and chkLunch_Unchecked events
when it is checked or unchecked:

<CheckBox Name=”chkLunch” Content=”Lunch” IsChecked=”True”
 Checked=”chkLunch_Checked” Unchecked=”chkLunch_Unchecked”/>

The following code-behind shows the control’s event handlers. They hide or show a GroupBox named
grpLunchMenu, which contains options that should only be available when the CheckBox is checked.

private void chkLunch_Checked(object sender, RoutedEventArgs e)
{
 grpLunchMenu.Visibility = Visibility.Visible;
}

private void chkLunch_Unchecked(object sender, RoutedEventArgs e)
{
 grpLunchMenu.Visibility = Visibility.Hidden;
}

ComBoBox

The ComboBox lets the user pick from a list of allowed choices. The control should contain
ComboBoxItems that hold the choices. The SelectedIndex, SelectedItem, and SelectedValue
properties let you get and set the currently selected item (see Tables D-4 and D-5).

taBle D-4: Key Properties of ComboBox

ProPerty PurPose

IsEditable Determines whether the user can type a new value into the control.

SelectedIndex Determines the index of the currently selected item.

464 ❘ aPPenDix D User InteractIon controls

taBle D-5: Key Events for ComboBox

event PurPose

DropDownClosed Occurs when the control closes its dropdown list.

DropDownOpened Occurs when the control opens its dropdown list.

SelectionChanged Occurs when the user makes a new selection.

The ComboBoxItem objects inside a ComboBox also provide some useful events (see Table D-6).

taBle D-6: Key Events for ComboBoxItem Objects

event PurPose

Selected Occurs when the item is selected.

Unselected Occurs when the item is unselected.

Using ComboBoxexamPle

The following XAML code builds a ComboBox that lists the names of the solar system’s planets. (I put
parentheses around Pluto because it’s technically no longer considered a planet.)

<ComboBox SelectedIndex=”2”>
 <ComboBoxItem Content=”Mercury”/>
 <ComboBoxItem Content=”Venus”/>
 <ComboBoxItem Content=”Earth”/>
 <ComboBoxItem Content=”Mars”/>
 <ComboBoxItem Content=”Jupiter”/>
 <ComboBoxItem Content=”Saturn”/>
 <ComboBoxItem Content=”Uranus”/>
 <ComboBoxItem Content=”Neptune”/>
 <ComboBoxItem Content=”(Pluto)”/>
</ComboBox>

Contextmenu

The ContextMenu displays a pop-up menu associated with another control (see Table D-7). The
ContextMenu should contain MenuItems that act like any other MenuItems do.

taBle D-7: Key Properties of ContextMenu

ProPerty PurPose

IsOpen Determines whether the ContextMenu is displayed. You can use this property to dis-
play the menu programmatically.

Frame ❘ 465

Normally you can simply react to events raised by the MenuItems inside the ContextMenu, but you
can also respond to the following events (see Table D-8).

taBle D-8: Key Events for ContextMenu

event PurPose

Closed Occurs when the ContextMenu closes.

Opened Occurs when the ContextMenu opens.

Using ContextMenuexamPle

The following code builds two Rectangles that have ContextMenus:

<StackPanel>
 <StackPanel.Resources>
 <ContextMenu x:Key=”ctxColor”>
 <MenuItem Header=”Red”/>
 <MenuItem Header=”Green”/>
 <MenuItem Header=”Blue”/>
 </ContextMenu>
 </StackPanel.Resources>

 <Rectangle Width=”20” Height=”20” Fill=”Red”
 ContextMenu=”{StaticResource ctxColor}”/>

 <Rectangle Width=”20” Height=”20” Fill=”Orange”>
 <Rectangle.ContextMenu>
 <ContextMenu>
 <MenuItem Header=”Orange”/>
 <MenuItem Header=”Yellow”/>
 <MenuItem Header=”Purple”/>
 </ContextMenu>
 </Rectangle.ContextMenu>
 </Rectangle>
</StackPanel>

The code first defines a ContextMenu resource named ctxColors that displays menu items Red, Green,
and Blue. It then creates a red Rectangle, setting the Rectangle’s ContextMenu property to the resource.

Next the code creates an orange Rectangle. It gives the new Rectangle a ContextMenu element attri-
bute that has menu items Orange, Yellow, and Purple.

Frame

The Frame displays Web or XAML content and provides navigation buttons (see Tables D-9
through D-11).

466 ❘ aPPenDix D User InteractIon controls

taBle D-9:
Key Properties of Frame

ProPerty PurPose

CanGoBack Indicates whether the control can move backward in its navigation history.

CanGoForward Indicates whether the control can move forward in its navigation history.

Source The location of the web page or XAML file that the Frame should display

taBle D-10:
Key Methods for Frame

ProPerty PurPose

GoBack Moves to the previous entry in the navigation history if one exists.

GoForward Moves to the next entry in the navigation history if one exists.

Navigate Moves to a new Source.

Refresh Reloads the current Source.

taBle D-11:
Key Events for Frame

event PurPose

ContentRendered Occurs after the Frame finishes displaying its content.

LoadCompleted Occurs after a Source has been loaded and rendering is beginning.

Loaded Occurs after a Source has been loaded and rendered, and the control is
ready to interact with the user.

Navigated Occurs when content has been found and is available through the Content
property but may not yet be fully displayed.

Navigating Occurs when the control is starting a new navigation.

NavigationFailed Occurs when a navigation fails.

NavigationProgress Occurs during navigation to give progress information.

NavigationStopped Occurs when navigation stops because of a call to the Frame’s
StopLoading method or because a new navigation began.

Using FrameexamPle

The following simple XAML example creates a Frame control that loads the web page www.vb-helper.com:

<Frame Source=”http://www.vb-helper.com”/>

GridSplitter ❘ 467

Using a Frame Bound to a ComboBoxexamPle

The following more interesting XAML code creates a Grid that contains a ComboBox and a Frame. The
Frame’s Source property is bound to the ComboBox’s SelectedItem.Tag value so when you pick a new
entry from the ComboBox, the Frame displays the corresponding web page.

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height=”35”/>
 <RowDefinition Height=”*”/>
 </Grid.RowDefinitions>
 <ComboBox Grid.Row=”0” SelectedIndex=”0” Name=”cboSites” Margin=”5”>
 <ComboBoxItem Content=”Beginning Database Design Solutions”
 Tag=”http://www.vb-helper.com/db_design.htm”/>
 <ComboBoxItem Content=”VB Helper”
 Tag=”http://www.vb-helper.com”/>
 <ComboBoxItem Content=”VB Helper Bookstore”
 Tag=”http://astore.amazon.com/vbhelper/about”/>
 <ComboBoxItem Content=”Books To Keep”
 Tag=”http://www.BooksToKeep.com”/>
 <ComboBoxItem Content=”Astronomy Picture of the Day”
 Tag=”http://antwrp.gsfc.nasa.gov/apod”/>
 </ComboBox>
 <Frame Name=”fraGo” Grid.Row=”1” HorizontalAlignment=”Stretch”
 VerticalAlignment=”Stretch” Margin=”5”
 Source=”{Binding ElementName=cboSites, Path=SelectedItem.Tag}”>
 </Frame>
</Grid>

UseFrame

The following C# code makes the Frame named fraGo navigate to the URL
http://astore.amazon.com/vbhelper/about:

fraGo.Navigate(new Uri(“http://astore.amazon.com/vbhelper/about”));

GriDsPlitter

The GridSplitter lets the user resize two adjacent rows or columns in a Grid control (see Table D-12).

To use a vertical GridSplitter, add it to a cell in the Grid’s first row and set its Grid.RowSpan
property so it spans all of the Grid’s rows. Next, set its HorizontalAlignment property to Left or
Right. That makes the GridSplitter stick to the side of its column and determines which other
column it will adjust. Finally, set the control’s Width to something big enough for the user to grab
and drag, perhaps 3 or 5.

To make a horizontal GridSplitter, switch the roles of the Grid’s rows and columns, use the
GridSplitter’s VerticalAlignment property, and set its Height to a reasonable value.

468 ❘ aPPenDix D User InteractIon controls

taBle D-12:

Key Properties of GridSplitterProPerty PurPose

Grid.Column Sets the Grid cell where the splitter starts. For horizontal splitters, set this to 0.

Grid.ColumnSpan For a horizontal splitter, set this so the control spans all columns.

Grid.Row Sets the Grid cell where the splitter starts. For vertical splitters, set this to 0.

Grid.RowSpan For a vertical splitter, set this so the control spans all rows.

HorizontalAlignment For a vertical splitter, determines which side of its column the splitter sticks
to and adjusts.

ShowsPreview Determines whether the control actually resizes the Grid’s rows or col-
umns while you drag it, or whether it only shows a preview by displaying a
gray version of the GridSplitter moving. If ShowsPreview is False, the
control resizes the rows or columns. If ShowsPreview is True, the control
displays the gray splitter and only resizes the rows or columns when you
release the mouse. (A preview is more efficient if the contents of the rows or
columns take a long time to redraw.)

VerticalAlignment For a horizontal splitter, determines which side of its column the splitter
sticks to and adjusts.

Usually the Grid and the controls it contains can rearrange themselves when the user drags the
GridSplitter, but the following events let you take special action during the drag if you must (see
Table D-13).

taBle D-13: Key Events for GridSplitter

event PurPose

DragCompleted Occurs when the user has finished dragging the control.

DragDelta Occurs when the user has moved the splitter during a drag.

DragStarted Occurs when the user has started dragging the control.

Using GridSplitterexamPle

The following code creates a Grid control with three rows and columns. It places two GridSplitters
inside the middle Grid cell. The first splitter has HorizontalAlignment set to Left so it lets the user
adjust the left and middle columns. The second splitter has HorizontalAlignment set to Right so it
lets the user adjust the middle and right columns.

<Grid>
 <Grid.ColumnDefinitions>

GridSplitter ❘ 469

 <ColumnDefinition Width=”*”/>
 <ColumnDefinition Width=”*”/>
 <ColumnDefinition Width=”*”/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height=”*”/>
 <RowDefinition Height=”*”/>
 <RowDefinition Height=”*”/>
 </Grid.RowDefinitions>
 <GridSplitter Grid.Column=”1” Grid.RowSpan=”10”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Stretch”
 Background=”Blue”
 ShowsPreview=”False”
 Width=”5”/>
 <GridSplitter Grid.Column=”1” Grid.RowSpan=”10”
 HorizontalAlignment=”Right”
 VerticalAlignment=”Stretch”
 Background=”Red”
 ShowsPreview=”False”
 Width=”5”/>
</Grid>

The following code creates horizontal GridSplitters for the same Grid used in the previous example:

<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”*”/>
 <ColumnDefinition Width=”*”/>
 <ColumnDefinition Width=”*”/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height=”*”/>
 <RowDefinition Height=”*”/>
 <RowDefinition Height=”*”/>
 </Grid.RowDefinitions>
 <GridSplitter Grid.Row=”1” Grid.ColumnSpan=”20”
 HorizontalAlignment=”Stretch”
 VerticalAlignment=”Top”
 Background=”Blue”
 ShowsPreview=”False”
 Height=”5”/>
 <GridSplitter Grid.Row=”1” Grid.ColumnSpan=”20”
 HorizontalAlignment=”Stretch”
 VerticalAlignment=”Bottom”
 Background=”Red”
 ShowsPreview=”False”
 Height=”5”/>
 <Image Source=”baseball.jpg” Grid.Row=”1” Grid.Column=”1”/>
</Grid>

470 ❘ aPPenDix D User InteractIon controls

make room

Be sure to allow room for the splitters when you place other objects inside the Grid.
For example, if you place a 5-pixel-wide GridSplitter on the left edge of the sec-
ond column, then any other controls in that column should have a left margin of at
least 5 so they don’t overlap with the splitter.

listBox

The ListBox displays a list of items and lets the user select one or more, depending on how the con-
trol is configured (see Tables D-14 and D-15).

The control should contain ListBoxItems that hold the choices. The SelectedIndex,
SelectedItem, and SelectedValue properties let you get and set the currently selected item.

taBle D-14: Key Properties of ListBox

ProPerty PurPose

HorizontalContentAlignment Determines how the ListboxItems are aligned. This can be
Center, Left, Right, or Stretch.

SelectedIndex Determines the index of the currently selected item.

SelectedItems Returns the currently selected items. (You cannot use
SelectedIndex, SelectedItem, or other single selection proper-
ties to see which items are selected if more than one is selected.)

SelectionMode Determines how many items the user can select. This can be
Single (one item only), Multiple (can select multiple items by
clicking on them individually), or Extended (can use [Shift]+click
and [Ctrl]+click to select multiple items).

taBle D-15: Key Events for ListBox

event PurPose

SelectionChanged Occurs when the selected items change.

The ListBoxItem objects inside a ListBox also provide some useful events (see Table D-16).

Menu ❘ 471

taBle D-16:
Key Events for ListBoxItem Objects

event PurPose

Selected Occurs when the item is selected.

Unselected Occurs when the item is unselected.

Using ListBoxexamPle

The following XAML code builds a ListBox that lists the names of the solar system’s planets. It also
displays a Label that shows the name of the currently selected planet.

<StackPanel>
 <ListBox Name=”lstPlanets” SelectedIndex=”2”>
 <ListBoxItem Content=”Mercury”/>
 <ListBoxItem Content=”Venus”/>
 <ListBoxItem Content=”Earth”/>
 <ListBoxItem Content=”Mars”/>
 <ListBoxItem Content=”Jupiter”/>
 <ListBoxItem Content=”Saturn”/>
 <ListBoxItem Content=”Uranus”/>
 <ListBoxItem Content=”Neptune”/>
 <ListBoxItem Content=”(Pluto)”/>
 </ListBox>
 <Label Content=”{Binding ElementName=lstPlanets, Path=SelectedItem.Content}”/>
</StackPanel>

menu

The Menu displays a main menu for a Window. While you can place controls such as Labels,
Buttons, and TextBoxes in a Menu, a Menu normally holds MenuItem objects that contain the
Window’s top-level menus (see Tables D-17 through D-19).

A MenuItem’s Header property determines what it displays. A MenuItem can contain other
MenuItems to build a menu hierarchy.

taBle D-17:
Key Properties of Menu

ProPerty PurPose

IsMainMenu Determines whether the control is the main menu. If a Window contains more than
one menu, all other menus should set this to False so they are not notified when
the user presses the [Alt] key or [F10].

472 ❘ aPPenDix D User InteractIon controls

taBle D-18:
Key MenuItem Properties

ProPerty PurPose

Command Determines the command associated with the menu item.

CommandParameter Determines the parameter passed to a Command.

CommandTarget Determines the object on which to raise a Command.

IsCheckable Determines whether the menu item can be checked. If this is True, then the
item automatically checks and unchecks itself. If this is False, your code-
behind can still check and uncheck the item.

IsChecked Determines whether the menu item is currently checked.

IsSubmenuOpen Determines whether the item’s submenu is open.

For more information on commands, see Chapter 19.

taBle D-19:
Key MenuItem Events

event PurPose

Checked Occurs when the menu item is checked.

Click Occurs when the user clicks the menu item either with the mouse or logically by
using the keyboard. Normally the item executes some action when it is clicked.

SubmenuClosed Occurs when the menu’s submenu is closing.

SubmenuOpened Occurs when the menu’s submenu is about to open. For example, you can
dynamically modify the submenu in this event.

Unchecked Occurs when the menu item is unchecked.

Using MenuexamPle

For this example, imagine a network drawing application. The following code builds the program’s
Data menu, which provides tools for loading networks and setting options:

<Menu DockPanel.Dock=”Top”>
 <!-- Other main menus omitted. -->
 <MenuItem Name=”mnuData” Header=”Data”
 SubmenuOpened=”mnuData_SubmenuOpened”>
 <MenuItem Name=”mnuDataShowCosts” Header=”Show Costs”
 IsCheckable=”True” IsChecked=”True”
 Checked=”mnuDataShowCosts_Checked” Unchecked=”mnuDataShowCosts_Unchecked”/>
 <!-- Other Data menu items omitted. -->
 </MenuItem>
</Menu>

PasswordBox ❘ 473

When the user opens the Data menu, the mnuData_SubmenuOpened event handler executes. It searches
a data directory and adds menu items to this menu that list network data files that the user might want
to load.

The Show Costs menu item is checkable and is initially checked. When the user checks it, the mnu-
DataShowCosts_Checked event handler executes and redisplays the current network with costs dis-
played. When the user unchecks this menu item, the mnuDataShowCosts_Unchecked event handler
executes and redisplays the current network with costs hidden.

PassworDBox

The PasswordBox is a textbox that hides its text on the screen, displaying a dot, asterisk, or other
character for each character typed (see Tables D-20 and D-21).

taBle D-20: Key Properties of PasswordBox

ProPerty PurPose

Password Determines the current password in plaintext.

PasswordChar Determines the character displayed on the screen for each character entered in
the PasswordBox.

SecurePassword Returns the current password as a SecureString.

taBle D-21: Key Events for PasswordBox

event PurPose

PasswordChanged Occurs when the password changes.

Using PasswordexamPle

The following code creates two PasswordBoxes. The first uses the default font and PasswordChar so it
displays a filled circle for each character. The second uses the Wingdings font with PasswordChar = N
so it displays little skulls and crossed bones.

<PasswordBox Password=”Secret”/>
<PasswordBox Password=”Secret” FontFamily=”Wingdings” PasswordChar=”N”/>

474 ❘ aPPenDix D User InteractIon controls

raDioButton

The RadioButton lets the user select one of an exclusive set of options (see Table D-22). When the
user selects one RadioButton, all others in the same container are deselected. (Contrast this with
the CheckBox, where any number can be selected at a time.)

Clever ComBo

Note that the ComboBox also lets the user select one of a series of choices so you
could consider using a ComboBox instead of a group of RadioButtons, particularly
if you need to save screen space.

You can create multiple RadioButton groups by placing them in different containers or by using the
GroupName property.

taBle D-22:
Key Properties of RadioButton

ProPerty PurPose

IsChecked Determines whether the control is currently checked.

GroupName Defines different RadioButton groups. RadioButtons that share the same non-null
GroupName value are part of the same group, even if they lie in different containers.

IsThreeState Determines whether the control cycles through three values —
checked (IsChecked = True), unchecked (IsChecked = False), and
indeterminate (IsChecked = null).

Only code can set a RadioButton to an indeterminate state. The user can only check or uncheck a
RadioButton.

When a RadioButton is in an indeterminate state, it doesn’t uncheck if the user checks a different
RadioButton in the same group (see Table D-23).

taBle D-23:
Key Events for RadioButton

event PurPose

Checked Occurs when the control is checked.

Unchecked Occurs when the control is unchecked.

Click Occurs when the control is checked or unchecked.

RepeatButton ❘ 475

Using RadioButtonexamPle

The following code creates three GroupBoxes that let the user select a T-shirt’s color, size, and design.
Each GroupBox contains a RadioButton group.

<GroupBox Header=”Color”>
 <StackPanel>
 <RadioButton Content=”Bisque”/>
 <RadioButton Content=”BlanchedAlmond”/>
 <RadioButton Content=”Teal”/>
 <RadioButton Content=”Thistle”/>
 </StackPanel>
</GroupBox>
<GroupBox Header=”Size”>
 <StackPanel>
 <RadioButton Content=”Small”/>
 <RadioButton Content=”Medium”/>
 <RadioButton Content=”Large”/>
 </StackPanel>
</GroupBox>
<GroupBox Header=”Design”>
 <StackPanel>
 <RadioButton Content=”Smiley”/>
 <RadioButton Content=”Heart”/>
 <RadioButton Content=”VB”/>
 <RadioButton Content=”C#”/>
 </StackPanel>
</GroupBox>

rePeatButton

The RepeatButton acts like a normal Button except it repeatedly fires its Click event as long as the
user holds the button down (see Tables D-24 and D-25).

taBle D-24: Key Properties of RepeatButton

ProPerty PurPose

Delay Determines the time in milliseconds after the button is pressed that it starts repeating
Click events.

Interval Determines the time in milliseconds between repeated Click events.

taBle D-25: Key Events for RepeatButton

event PurPose

Click Occurs when the control is first pressed and when repeat clicks occur.

476 ❘ aPPenDix D User InteractIon controls

Using RepeatButtonexamPle

The following code creates a Rectangle and two RepeatButtons. The btnWider_Click and
btnThinner_Click event handlers catch the Buttons’ Click events.

<Rectangle Name=”rectColor” Fill=”Red” Width=”100” Height=”100”/>
<RepeatButton Content=”Wider” Delay=”250” Interval=”50”
 Click=”btnWider_Click” />
<RepeatButton Content=”Thinner” Delay=”250” Interval=”50”
 Click=”btnThinner_Click” />

The following C# code-behind shows the event handlers:

// Make the Rectangle wider.
private void btnWider_Click(object sender, RoutedEventArgs e)
{
 rectColor.Width += 10;
}

// Make the Rectangle thinner.
private void btnThinner_Click(object sender, RoutedEventArgs e)
{
 if (rectColor.Width > 10) rectColor.Width -= 10;
}

When you press the Wider button, the event handler immediately makes the rectangle 10 pixels wider.
A quarter-second (250 milliseconds) later, the first repeat click occurs, and the event handler widens
the rectangle again. Every 50 milliseconds after that until you release the mouse, the Click event fires
again, and the event handler widens the control.

The Thinner button works similarly.

riChtextBox

The RichTextBox lets the user enter formatted text (see Table D-26). Place a FlowDocument with
formatting inside the RichTextBox. For more information on FlowDocuments, see the section
“FlowDocument” in Appendix B.

taBle D-26: Key Properties of RichTextBox

ProPerty PurPose

AcceptsReturn Determines whether the control accepts the [Return] key and creates a
new line.

AcceptsTab Determines whether the control accepts the [Tab] key or whether that key
moves focus to another control.

AutoWordSelection Determines whether the control automatically selects entire words if the
user drags the mouse across them.

RichTextBox ❘ 477

ProPerty PurPose

CanRedo Returns True if the control has an undone action that it can redo.

CanUndo Returns True if the control has an action that it can undo.

CaretPosition Gets or sets the current insertion position.

Document Gets or sets the FlowDocument displayed by the control.

IsReadOnly Determines whether the control can interact with the user.

Selection Returns a TextSelection object that represents the current selection.
That object’s Text property returns the selection’s plaintext.

SpellCheck Returns a SpellCheck object that manages spell-checking for the control.
Its IsEnabled property determines whether the control highlights mis-
spelled words.

SpellCheck.IsEnabled Enables or disables spell-checking.

UndoLimit Determines the number of actions stored in the Undo queue.

The RichTextBox has many important methods that you may need to use (see Tables D-27 and D-28).

taBle D-27:
Key Methods for RichTextBox

methoD PurPose

AppendText Adds text to the end of the control’s contents.

BeginChange Starts adding changes into a change block created by
DeclareChangeBlock.

Copy Copies the control’s current selection to the clipboard.

Cut Cuts the control’s current selection to the clipboard.

DeclareChangeBlock Creates a change block to group subsequent changes as a
single group for undo and redo.

EndChange Stops adding changes into a change block created by
DeclareChangeBlock.

GetNextSpellingErrorPosition Returns a TextPointer that represents the position of the next
spelling error.

GetSpellingError Returns a SpellingError object for any spelling error at a
given point.

GetSpellingErrorRange Returns a TextRange object for any spelling error at a given point.

continues

478 ❘ aPPenDix D User InteractIon controls

methoD PurPose

LineDown Scrolls the control’s contents down one line.

LineLeft Scrolls the control’s contents left one line.

LineRight Scrolls the control’s contents right one line.

LineUp Scrolls the control’s contents up one line.

PageDown Scrolls the control’s contents down one page.

PageLeft Scrolls the control’s contents left one page.

PageRight Scrolls the control’s contents right one page.

PageUp Scrolls the control’s contents up one page.

Paste Pastes the clipboard’s contents over the control’s current selection.

Redo Redoes the most recently undone action.

ScrollToEnd Scrolls to the end of the control’s content.

ScrollToHome Scrolls to the beginning of the control’s content.

SelectAll Selects all of the control’s contents.

Undo Undoes the most recently performed action.

taBle D-28:
Key Events for RichTextBox

event PurPose

TextChanged Occurs when the control’s contents change.

Using RichTextBoxexamPle

The following code creates a RichTextBox that contains a simple FlowDocument:

<RichTextBox Name=”rchNotes” Grid.Row=”1” SpellCheck.IsEnabled=”True”>
 <FlowDocument>
 <Paragraph FontSize=”18” FontWeight=”Bold”>
 XAML Example
 </Paragraph>
 <Paragraph FontSize=”14”>
 The following code creates a RichTextBox that contains
 a simple FlowDocument.
 </Paragraph>
 </FlowDocument>
</RichTextBox>

taBle D-27 (continued)

RichTextBox ❘ 479

The example program SimpleRichEditor, which is shown in Figure D-1 and available for download on
the book’s web site, adds some simple formatting commands to a RichTextBox.

FiGure D-1

The following C# code shows how the SimpleRichEditor program responds when the user selects a new
entry from the size ComboBox.

// Give the selection the chosen size.
private void cboSize_SelectionChanged(object sender, SelectionChangedEventArgs e)
{
 if (rchNotes == null) return;
 if (e.AddedItems.Count < 1) return;
 ComboBoxItem item = (ComboBoxItem)e.AddedItems[0];
 string value = item.Content.ToString();

 rchNotes.Selection.ApplyPropertyValue(TextElement.FontSizeProperty, value);
 rchNotes.Focus();
}

SimpleRichEditor

The code first checks that the user has made a choice. It then converts the newly selected value into a
string. It uses the RichTextBox’s Selection’s ApplyPropertyValue method to give the current selec-
tion the new font size.

The following code shows how the program responds when the user selects a new color:

// Give the selection the chosen color.
private void cboColor_SelectionChanged(object sender, SelectionChangedEventArgs e)
{
 if (rchNotes == null) return;
 if (e.AddedItems.Count < 1) return;
 ComboBoxItem item = (ComboBoxItem)e.AddedItems[0];
 string value = item.Content.ToString();

 switch (value)
 {
 case “Black”:
 rchNotes.Selection.ApplyPropertyValue(TextElement.ForegroundProperty,
 Brushes.Black);

480 ❘ aPPenDix D User InteractIon controls

 break;
 case “Red”:
 rchNotes.Selection.ApplyPropertyValue(TextElement.ForegroundProperty,
 Brushes.Red);
 break;
 case “Green”:
 rchNotes.Selection.ApplyPropertyValue(TextElement.ForegroundProperty,
 Brushes.Green);
 break;
 }

 rchNotes.Focus();
}

SimpleRichEditor

The code again checks that the user has made a selection and converts the newly selected item into a
string. It then uses a switch statement to give the text the correct color.

The code for the other ComboBoxes is similar to these two examples.

The following code executes when the RichTextBox’s selection changes. For example, if the user
moves the insertion cursor or clicks-and-drags to select a new piece of text, the selection changes and
this code executes. The code updates the ComboBoxes to display the values that actually apply to the
new selection.

For example, if the selection uses the Arial font, then the code makes the font name ComboBox display Arial.

 <// Display the selection’s properties.
private void rchNotes_SelectionChanged(object sender, RoutedEventArgs e)
{
 if (rchNotes == null) return;

 // Font family.
 FontFamily font_family = rchNotes.Selection.GetPropertyValue(
 TextElement.FontFamilyProperty) as FontFamily;
 if (font_family == null)
 {
 cboFont.Text = “”;
 } else {
 cboFont.Text = font_family.Source;
 }

 // Size.
 cboSize.Text = rchNotes.Selection.GetPropertyValue(
 TextElement.FontSizeProperty).ToString();

 // Color.
 SolidColorBrush br = rchNotes.Selection.GetPropertyValue(
 TextElement.ForegroundProperty) as SolidColorBrush;
 if (br == null)
 {
 cboColor.Text = “”;
 } else {
 switch (br.Color.ToString())

RichTextBox ❘ 481

 {
 case “#FF000000”:
 cboColor.Text = “Black”;
 break;
 case “#FFFF0000”:
 cboColor.Text = “Red”;
 break;
 case “#FF008000”:
 cboColor.Text = “Green”;
 break;
 default:
 cboColor.Text = “”;
 break;
 }
 }

 // Weight.
 cboWeight.Text = rchNotes.Selection.GetPropertyValue(
 TextElement.FontWeightProperty).ToString();

 // Style.
 cboStyle.Text = rchNotes.Selection.GetPropertyValue(
 TextElement.FontStyleProperty).ToString();
}

SimpleRichEditor

The code first gets the FontFamily property value. If the value is null, the program sets the font
ComboBox’s text to a blank string. Otherwise, it sets the ComboBox’s text to the font’s family name.

Next, the code gets the selection’s font size, converts it into a string, and displays the value in the size
ComboBox. There’s one trick here. If the current selection contains different pieces of text that have different
font sizes, then the call to GetPropertyValue doesn’t return a size. Instead it returns a NamedObect that
has the special value UnsetValue. The call to ToString returns “{DependencyProperty.UnsetValue}”
and the code tries to make the size ComboBox display that value. Because that ComboBox doesn’t have such a
value, it displays nothing.

Having displayed the font name and size, the code gets the selection’s Foreground property. If this is not
an unset value, it is a SolidColorBrush. The Brush’s Color .ToString property returns a hexadecimal
value representing the color’s red, green, and blue components. The code uses a switch statement to
determine which color it is and displays the corresponding result.

Finally, the code displays the selection’s weight and style property values.

The FlowDocument contained in a RichTextBox can provide far more features than those demonstrated
by this simple editor. For example, it provides lists, floaters, figures, and other more advanced features
that the RichTextBox is not particularly suited to edit. To create and edit more complex documents,
you should probably use some other tool like Microsoft Word.

482 ❘ aPPenDix D User InteractIon controls

sCrollBar

The ScrollBar lets the user select a numeric value from a range of values (see Tables D-29 and D-30).
Typically, a program uses that value to adjust some parameter or scroll some object such as an image
or drawing.

sCant sCrollinG

Often you can avoid using a ScrollBar to scroll an object such as an Image by
using a ScrollViewer. The ScrollViewer automatically provides scrollbars
and scrolls its contents as needed.

taBle D-29:
Key Properties of ScrollBar

ProPerty PurPose

LargeChange The amount by which Value is changed when the user clicks between the con-
trol’s thumb and an arrow

Maximum The largest value the control allows

Minimum The smallest value the control allows

Orientation Horizontal or Vertical

SmallChange The amount by which Value is changed when the user clicks an arrow at one of
the control’s ends

Value The control’s current value

taBle D-30:
Key Events for ScrollBar

event PurPose

Scroll Occurs when the user changes the ScrollBar’s Value.

ValueChanged Occurs when the ScrollBar’s Value changes either programmatically or because
the user changed it.

Slider ❘ 483

sliDer

Like the ScrollBar, the Slider lets the user select a numeric value from a range of values (see
Tables D-31 and D-32).

taBle D-31: Key Properties of Slider

ProPerty PurPose

IsSnapToTickEnabled If True, then the Slider’s thumb snaps to the nearest tick mark.

LargeChange The amount by which Value is changed when the user clicks between the
control’s thumb and an arrow

Maximum The largest value the control allows

Minimum The smallest value the control allows

Orientation Horizontal or Vertical

SelectionEnd Determines the largest value for the control’s current range selection.

SelectionStart Determines the smallest value for the control’s current range selection.

SmallChange The amount by which Value is changed when the user clicks an arrow at
one of the control’s ends

TickFrequency Determines the distance between tick marks.

TickPlacement Determines where the tick marks are positioned. This can be Both (top
and bottom for horizontal Sliders, left and right for vertical Sliders),
BottomRight (bottom for horizontal Sliders, right for vertical Sliders),
None, or TopLeft (top for horizontal Sliders, left for vertical Sliders).

Ticks An array that determines the positions of individual tick marks

Value The control’s current value

taBle D-32: Key Events for Slider

event PurPose

ValueChanged Occurs when the ScrollBar’s Value changes either programmatically or
because the user changed it.

484 ❘ aPPenDix D User InteractIon controls

textBox

The TextBox lets the user enter text (see Tables D-33 through D-35). Unlike the RichTextBox, the
TextBox can display text with only a single style (font, size, color, etc.).

taBle D-33: Key Properties of TextBox

ProPerty PurPose

AcceptsReturn Determines whether the control accepts the [Return] key and
creates a new line.

AcceptsTab Determines whether the control accepts the [Tab] key or
whether that key moves focus to another control.

AutoWordSelection Determines whether the control automatically selects entire
words if the user drags the mouse across them.

CanRedo Returns True if the control has an undone action that it can redo.

CanUndo Returns True if the control has an action that it can undo.

CaretIndex Gets or sets the current insertion position.

CharacterCasing Determines how the control sets the case of characters typed
by the user. This can be Lower, Upper, or Normal.

HorizontalContentAlignment Determines how the text is aligned horizontally. This can be
Center, Left, Right, or Stretch.

HorizontalScrollBarVisibility Determines whether the horizontal scrollbar is visible. This
can be Auto, Disabled, Hidden, or Visible.

IsReadOnly Determines whether the control can interact with the user.

LineCount Returns the number of lines of text in the control.

MaxLength Determines the maximum number of characters allowed in
the control.

MaxLines Determines the maximum number of visible lines.

MinLines Determines the minimum number of visible lines.

SelectedLength The length of the current selection.

SelectedStart The index of the first character in the current selection.

SelectedText Determines the currently selected text. If you set this value,
the currently selected text is replaced by the new value.

TextBox ❘ 485

ProPerty PurPose

SpellCheck Returns a SpellCheck object that manages spell-checking
for the control. Its IsEnabled property determines whether
the control highlights misspelled words.

SpellCheck.IsEnabled Enables or disables spell-checking.

Text Determines the control’s textual contents.

TextAlignment Determines how text is aligned within the control. This can be
Center, Justify, Left, or Right.

TextWrapping Determines how text is wrapped. This can be NoWrap, Wrap,
or WrapWithOverflow.

UndoLimit Determines the number of actions stored in the Undo queue.

VerticalContentAlignment Determines how the text is aligned vertically. This can be
Bottom, Center, Stretch, or Top.

VerticalScrollBarVisibility Determines whether the vertical scrollbar is visible. This can
be Auto, Disabled, Hidden, or Visible.

taBle D-34: Key Methods for TextBox

methoD PurPose

AppendText Adds text to the end of the control’s contents.

Clear Clears the control’s contents.

Copy Copies the control’s current selection to the clipboard.

Cut Cuts the control’s current selection to the clipboard.

DeclareChangeBlock Creates a change block to group subsequent changes
as a single group for undo and redo.

EndChange Stops adding changes into a change block created by
DeclareChangeBlock.

GetNextSpellingErrorCharacterIndex Returns the index of the character at the start of the next
spelling error.

GetSpellingError Returns a SpellingError object for any spelling error
at a given point.

GetSpellingErrorLength Returns the length of the spelling error including the
indicated character.

continues

486 ❘ aPPenDix D User InteractIon controls

methoD PurPose

GetSpellingErrorStart Returns the index of the character that begins the spell-
ing error including the indicated character.

LineDown Scrolls the control’s contents down one line.

LineLeft Scrolls the control’s contents left one line.

LineRight Scrolls the control’s contents right one line.

LineUp Scrolls the control’s contents up one line.

PageDown Scrolls the control’s contents down one page.

PageLeft Scrolls the control’s contents left one page.

PageRight Scrolls the control’s contents right one page.

PageUp Scrolls the control’s contents up one page.

Paste Pastes the clipboard’s contents over the control’s
selection.

Redo Redoes the most recently undone action.

ScrollToEnd Scrolls to the end of the control’s content.

ScrollToHome Scrolls to the beginning of the control’s content.

ScrollToLine Scrolls so a particular line is visible.

Select Selects a specified range of text in the control.

SelectAll Selects all of the control’s contents.

Undo Undoes the most recently performed action.

taBle D-35: Key Events for TextBox

event PurPose

TextChanged Occurs when the control’s contents change.

taBle D-34 (continued)

MediaElement Control
This appendix summarizes the MediaElement control’s most useful properties, methods, and events.

Note that many of these properties shown in Tables E-1 through E-3 are read-only.

Table e-1: Key Properties of Media

ProPerTy PurPose

Balance Determines the speaker balance.

BufferingProgress Returns the percentage of buffering complete.

CanPause Returns True if the media can be paused.

DownloadProgress Returns the percentage of download complete.

HasAudio Returns True if the media has audio.

HasVideo Returns True if the media has video.

IsBuffering Returns True if the control is buffering its media.

IsMuted Returns True if the audio is muted.

LoadedBehavior Determines what the control does when it is loaded. This can be Manual
(control “manually” in code), Play (play when there’s valid media), Close
(close and release all memory), Pause (prepare to play and then pause), or
Stop (prepare to play and then stop).

NaturalDuration Returns the media’s natural duration. This can be a TimeSpan (use the
NaturalDuration.HasTimeSpan to see if it has one before using
NaturalDuration.TimeSpan), Automatic, or Forever.

NaturalVideoHeight Returns the video’s height.

E

continues

488 ❘ aPPendix e MediaeleMent Control

ProPerTy PurPose

NaturalVideoWidth Returns the video’s width.

Position Determines the playback position.

ScrubbingEnabled Determines whether the control updates itself when a seek is performed
while the control is paused.

Source The media’s source

SpeedRatio Determines the speed ratio. Use a value less than 1 for slow motion or a
value greater than 1 for fast motion.

Volume Determines the audio volume between 0 and 1.

Table e-2: Key Methods for Media

MeThods PurPose

Pause Pauses media playback. Use the Play method to restart playback.

Play Starts media playback.

Stop Stops media playback and resets the control to play from the beginning.

Table e-3: Key Events for Media

evenT PurPose

BufferingEnded Occurs when the control finishes buffering.

BufferingStarted Occurs when the control starts buffering.

MediaEnded Occurs when the media ends.

MediaFailed Occurs when the control has an error.

MediaOpened Occurs when the media is loaded.

Controlling MediaexaMPle

The ControlMedia example program shown in Figure E-1 uses a MediaElement to play a video. The
buttons from left to right allow you to rewind 5 seconds, play, pause, stop, skip 5 seconds, and add a
bookmark to the ListBox. If you click on a bookmark entry, the control jumps to that position in the
video. The scrollbar at the bottom lets you view and change the playback position.

Table e-1 (continued)

MediaElement Control ❘ 489

Figure e-1

Since this program’s XAML code is reasonably straightforward, it isn’t shown here. Download the
example program and look it over.

The following code shows the program’s C# code-behind. (As is the case for all of the examples, you
can also download a Visual Basic version.)

private DispatcherTimer tmrProgress = new DispatcherTimer();

// Prepare the timer.
private void Window1_Loaded(object sender, RoutedEventArgs e)
{
 tmrProgress = new DispatcherTimer();
 tmrProgress.Tick += tmrProgress_Tick;
}

private void btnRewind_Click(object sender, RoutedEventArgs e)
{
 mmBear.Position = mmBear.Position.Add(new TimeSpan(0, 0, -5));
}
private void btnPlay_Click(object sender, RoutedEventArgs e)
{
 mmBear.Play();
 tmrProgress.Start();
}
private void btnPause_Click(object sender, RoutedEventArgs e)
{
 mmBear.Pause();
 tmrProgress.Stop();
}
private void btnStop_Click(object sender, RoutedEventArgs e)
{
 mmBear.Stop();
 tmrProgress.Stop();
}

490 ❘ aPPendix e MediaeleMent Control

private void btnForward_Click(object sender, RoutedEventArgs e)
{
 mmBear.Position = mmBear.Position.Add(new TimeSpan(0, 0, 5));
}
private void btnBookmark_Click(object sender, RoutedEventArgs e)
{
 lstBookmarks.Items.Add(mmBear.Position);
}

// Jump to this bookmark.
private void lstBookmarks_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
{
 if (mmBear == null) return;
 if (e.AddedItems.Count < 1) return;
 TimeSpan bookmark = (TimeSpan)e.AddedItems[0];
 mmBear.Pause();
 mmBear.Position = bookmark;
 scrProgress.Value = mmBear.Position.TotalSeconds;
 lstBookmarks.SelectedIndex = -1;
}

// Display the media’s progress.
private void tmrProgress_Tick(Object sender, System.EventArgs e)
{
 scrProgress.Value = mmBear.Position.TotalSeconds;
}

// Prepare the progress ScrollBar.
private void mmBear_MediaOpened(System.Object sender,
 System.Windows.RoutedEventArgs e)
{
 if (mmBear.NaturalDuration.HasTimeSpan)
 {
 TimeSpan ts = mmBear.NaturalDuration.TimeSpan;
 scrProgress.Maximum = ts.TotalSeconds;
 scrProgress.SmallChange = 1;
 scrProgress.LargeChange = ts.TotalSeconds / 10;
 } else {
 scrProgress.Visibility = Visibility.Hidden;
 }
}

// Go to the selected position.
private void scrPosition_Scroll(object sender,
 System.Windows.Controls.Primitives.ScrollEventArgs e)
{
 mmBear.Position = TimeSpan.FromSeconds(e.NewValue);
}

ControlMedia

When the window loads, the program creates a new DispatcherTimer and registers the
tmrProgress_Tick event handler to receive the timer’s Tick events.

MediaElement Control ❘ 491

The program’s rewind, play, pause, stop, and forward event handlers are straightforward. They simply
invoke the MediaElement’s corresponding methods.

The bookmark Button’s event handler adds the MediaControl’s current position to the lstBookmarks
ListBox.

When you select an entry in the ListBox, the lstBookmarks_SelectionChanged event handler exe-
cutes. After verifying that the ListBox has a selection, the code gets the selected TimeSpan, pauses the
media playback, sets the control’s position to the selected TimeSpan, and updates the ScrollBar to
show the new position.

When the timer’s Tick event occurs, the tmrProgress_Tick event handler sets the ScrollBar’s Value
to show the control’s position in the media.

When the MediaElement raises its MediaOpened event, the code determines whether the control’s
NaturalDuration property has a TimeSpan value and, if it does, prepares the ScrollBar to display the
media’s progress.

Finally, when you scroll the ScrollBar, the program adjusts the media’s position accordingly.

Pens
This appendix summarizes Pens. A Pen defines the colors and geometry of linear features such
as lines, paths, and the edges of drawn shapes like Rectangles.

Typically Pen properties are provided by some other object rather than the Pen itself and
determine how the object defines its Pen.

For example, the Ellipse control’s Stroke and StrokeThickness properties determine how
the control draws its border. The following code draws an ellipse with a red border that’s 10
pixels wide:

<Ellipse Width=”200” Height=”100” Stroke=”Red” StrokeThickness=”10”/>

Table F-1 summarizes Pen’s key properties.

Table F-1: Key Properties of Pen

ProPerTy PurPose

Stroke Determines the Pen’s Brush. This can be a solid color like red or an
element attribute that specifies a more complicated brush such as a
LinearGradientBrush.

StrokeDashArray Determines the Pen’s pattern of drawn and skipped segments in units of
the pen’s thickness. For example, the pattern 3,1 means “draw three pen
widths, skip one pen width, and repeat.”

StrokeDashCap Determines the shape of the ends of each dash. This can be Flat, Round,
Square, or Triangle.

StrokeDashOffset Determines how far into the first dash the line starts.

StrokeEndLineCap Determines the shape of the Pen’s finishing end. This can be Flat, Round,
Square, or Triangle.

StrokeLineJoin Determines how the Pen draws corners. This can be Bevel, Miter, or Round.

F

continues

494 ❘ aPPendix F Pens

ProPerTy PurPose

StrokeMiterLimit Determines how pointy a corner can be when two segments connect as in a
Polygon.

StrokeStartLineCap Determines the shape of the Pen’s starting end. This can be Flat, Round,
Square, or Triangle.

StrokeThickness Determines the Pen’s thickness.

Understanding StrokeMiterLimitexamPle

The StrokeMiterLimit example program shown in Figure F-1 uses the following code to draw its shape. This
example defines the Pen’s Stroke property with an element attribute containing a RadialGradientBrush. It
also sets StrokeMiterLimit to 3 so the sharpest corner on the lower right is beveled.

<Polygon Points=”100,30 250,200 30,70 200,50 75,170” StrokeThickness=”20”
 StrokeLineJoin=”Miter” StrokeMiterLimit=”3”>
 <Polygon.Stroke>
 <RadialGradientBrush>
 <GradientStop Offset=”0” Color=”Gray”/>
 <GradientStop Offset=”0.5” Color=”Gray”/>
 <GradientStop Offset=”1” Color=”Black”/>
 </RadialGradientBrush>
 </Polygon.Stroke>
</Polygon>

StrokeMiterLimit

The StrokeDashes example program shown in Figure F-2 demonstrates the StrokeStartLineCap,
StrokeEndLineCap, and StrokeDashCap values.

Figure F-1 Figure F-2

Table F-1 (continued)

Brushes
This appendix summarizes brushes. A Brush defines the colors used to fill an area such as a
Rectangle or Ellipse. Brushes also define the colors used by many controls’ Foreground
and Background properties.

The following section briefly describes each of the types of Brushes available. The sections
that follow describe each of the Brush types in greater detail.

Brush Classes

Table G-1 summarizes the Brush classes.

TaBle G-1:
Classes of Brush

Brush Class PurPose

DrawingBrush Fills areas with a drawing.

ImageBrush Fills areas with one or more copies of an image.

LinearGradientBrush Fills areas with a color gradient that shades between two or more
colors in a linear direction.

RadialGradientBrush Fills areas with a color gradient that shades between two or more
colors radially.

SolidColorBrush Fills areas with a solid color.

VisualBrush Fills areas with a visual. (Loosely speaking, a visual is an object that
provides rendering support for WPF. It’s basically something that
can draw itself such as a control.)

G

496 ❘ aPPendix G Brushes

The Brushes example program shown in Figure G-1 demonstrates these kinds of brushes. The
SolidColorBrush fills its Ellipse with dark gray, the LinearGradientBrush shades from white at
the top to black at the bottom, and the RadialGradientBrush shades from white at the middle to
black at the edges.

FiGure G-1

drawinGBrush

A DrawingBrush fills areas with a Drawing object.

Table G-2 summarizes the DrawingBrush’s most important properties.

TaBle G-2:
Key Properties of DrawingBrush

ProPerTy PurPose

AlignmentX Determines how the Brush is aligned if its Stretch property is set to None so it
doesn’t stretch to fill the tile area.

AlignmentY Determines how the Brush is aligned if its Stretch property is set to None so it
doesn’t stretch to fill the tile area.

Drawing The Brush’s content

Stretch Determines how the Brush is stretched to fill its tiles. This can be None (the draw-
ing is used at its original size), Uniform (the drawing is uniformly stretched to be
as large as possible within the tile), UniformToFill (the drawing is uniformly
stretched to fill the tile), and Fill (the drawing is stretched to fill the tile even if it
distorts the drawing).

TileMode Determines how the tile is repeated if necessary to fill the area. This can be None
(the rest of the area is unfilled), Tile (the tile is repeated), FlipX (the tile is repeated
with every other tile in the X direction flipped horizontally), FlipY (the tile is repeated
with every other tile in the Y direction flipped vertically), and FlipXY (both FlipX and
FlipY). This only has an effect if Viewport is smaller than the filled area.

Viewbox Defines the part of the content used for the Brush.

DrawingBrush ❘ 497

ProPerTy PurPose

ViewboxUnits Defines the units used by Viewbox. This can be Absolute (pixels) or
RelativeToBoundingBox [where (0, 0) is the upper-left corner and (1, 1)
is the lower right corner].

Viewport Defines the part of the filled area that is covered by a single tile.

ViewportUnits Defines the units used by Viewport. This can be Absolute (pixels) or
RelativeToBoundingBox [where (0, 0) is the upper-left corner and (1, 1) is
the lower right corner].

drawing Types
Table G-3 lists the kinds of Drawing objects you can use to make a DrawingBrush.

TaBle G-3:
Types of Drawing Objects for DrawingBrush

drawinG TyPe PurPose

DrawingGroup Contains a group of other Drawing objects.

GeometryDrawing Draws shapes.

GlyphRunDrawing Draws text.

ImageDrawing Draws an image.

VideoDrawing Draws a video file.

Using DrawingBrushesexamPle

The following code shows how the Brushes program shown in Figure G-1 creates its DrawingBrush:

<Ellipse Grid.Row=”0” Grid.Column=”0” Stroke=”Black”>
 <Ellipse.Fill>
 <DrawingBrush TileMode=”Tile” Viewbox=”0,0,1,1”
 Viewport=”0,0,0.33,0.5” ViewportUnits=”RelativeToBoundingBox”>
 <DrawingBrush.Drawing>
 <GeometryDrawing Brush=”Gray”>
 <GeometryDrawing.Geometry>
 <GeometryGroup>
 <PathGeometry>
 <PathFigure IsClosed=”True” StartPoint=”10,0”>
 <PolyLineSegment Points=”20,10 10,20 0,10”/>
 </PathFigure>

498 ❘ aPPendix G Brushes

 </GeometryDrawing.Geometry>
 <GeometryDrawing.Pen>
 <Pen Thickness=”2”>
 <Pen.Brush>
 <LinearGradientBrush
 StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Offset=”0.0” Color=”Black” />
 <GradientStop Offset=”0.5” Color=”White” />
 <GradientStop Offset=”1.0” Color=”Black” />
 </LinearGradientBrush>
 </Pen.Brush>
 </Pen>
 </GeometryDrawing.Pen>
 </GeometryDrawing>
 </DrawingBrush.Drawing>
 </DrawingBrush>
 </Ellipse.Fill>
</Ellipse>

Brushes

The code starts an Ellipse object and creates the Brush in the Ellipse.Fill element attribute. The
Brush uses TileMode = Tile so it will repeat as needed.

The property value Viewbox = 0,0,1,1 makes the Brush use the entire drawing area for its content.
(By default, ViewboxUnits is RelativeToBoundingBox.)

The code sets Viewport = 0,0,0.33,0.5 and ViewportUnits = RelativeToBoundingBox so the first
tile fills an area that is a third of the Ellipse’s width and half of its height.

Next, the code defines the Brush’s Drawing property. That element contains a GeometryDrawing. The
GeometryDrawing’s Geometry attribute contains a GeometryGroup that holds a PathGeometry and an
EllipseGeometry.

The PathGeometry contains a PathFigure that draws a single polyline (series of connected lines). The figure
is closed (the endpoint connects to the start point) and starts at the point (10, 0). The points defined by the
PolyLineSegment draw a diamond shape.

The EllipseGeometry object draws an ellipse of radius 2 centered at (20, 20), which is also the center
of the diamond.

After finishing the GeometryGroup, the code defines the GeometryDrawing object’s Pen. This is a Pen
of thickness 2 drawn with a LinearGradientBrush that shades from black to white and back to black.

imaGeBrush

The ImageBrush fills an area with an image.

Table G-4 summarizes the ImageBrush’s most important properties.

ImageBrush ❘ 499

TaBle G-4:
Key Properties of ImageBrush

ProPerTy PurPose

AlignmentX Determines how the Brush is aligned if its Stretch property is set to None so it
doesn’t stretch to fill the tile area.

AlignmentY Determines how the Brush is aligned if its Stretch property is set to None so it
doesn’t stretch to fill the tile area.

ImageSource The URI of the image drawn by the Brush

Stretch Determines how the Brush is stretched to fill its tiles. This can be None (the draw-
ing is used at its original size), Uniform (the drawing is uniformly stretched to be
as large as possible within the tile), UniformToFill (the drawing is uniformly
stretched to fill the tile), and Fill (the drawing is stretched to fill the tile even if it
distorts the drawing).

TileMode Determines how the tile is repeated if necessary to fill the area. This can be None
(the rest of the area is unfilled), Tile (the tile is repeated), FlipX (the tile is repeated
with every other tile in the X direction flipped horizontally), FlipY (the tile is repeated
with every other tile in the Y direction flipped vertically), and FlipXY (both FlipX and
FlipY). This only has an effect if Viewport is smaller than the filled area.

Viewbox Defines the part of the content used for the Brush.

ViewboxUnits Defines the units used by Viewbox. This can be Absolute (pixels) or
RelativeToBoundingBox [where (0, 0) is the upper-left corner and (1, 1) is
the lower-right corner].

Viewport Defines the part of the filled area that is covered by a single tile.

ViewportUnits Defines the units used by Viewport. This can be Absolute (pixels) or
RelativeToBoundingBox [where (0, 0) is the upper-left corner and (1, 1) is
the lower-right corner].

Using ImageBrushesexamPle

The following code shows how the Brushes program shown in Figure G-1 creates its ImageBrush:

<Ellipse Grid.Row=”0” Grid.Column=”1” Stroke=”Black”>
 <Ellipse.Fill>
 <ImageBrush ImageSource=”Smiley.bmp”
 TileMode=”Tile”
 Viewbox=”0,0,1,1” ViewboxUnits=”RelativeToBoundingBox”
 Viewport=”0,0,50,50” ViewportUnits=”Absolute”/>
 </Ellipse.Fill>
</Ellipse>

Brushes

500 ❘ aPPendix G Brushes

linearGradienTBrush

A LinearGradientBrush fills areas with a color gradient that shades between two or more colors in
a linear direction.

Table G-5 summarizes the LinearGradientBrush’s most important properties.

TaBle G-5: Key Properties of LinearGradientBrush

ProPerTy PurPose

EndPoint The point where the gradient ends

GradientStops A collection of objects that determine the Brush’s colors at different parts of the
gradient

MappingMode Determines how the StartPoint and EndPoint are mapped to the
Brush. This can be Absolute (the points’ coordinates are in pixels) or
RelativeToBoundingBox [the point (0, 0) is the upper-left corner of the
brush and (1, 1) is the lower-right corner].

SpreadMethod Determines how an area is filled if the Brush doesn’t completely cover it. This
can be Pad, Reflect, or Repeat.

StartPoint The point where the gradient begins

The SpreadMethods example program shown in Figure G-2 dem-
onstrates the different SpreadMethod values.

The LinearGradientBrush should contain a series of
GradientStop objects that define the colors along the gradient.
The ordering of these objects is unimportant.

Table G-6 summarizes the GradientStop object’s two most use-
ful properties.

TaBle G-6: Key Properties of GradientStop

ProPerTy PurPose

Offset The offset in the gradient where this color should be used. This value is usually
between 0 (the start of the gradient) and 1 (the end of the gradient).

Color The color that should be drawn at this location

FiGure G-2

RadialGradientBrush ❘ 501

Using LinearGradientBrushesexamPle

The following code shows how the program Brushes shown in Figure G-1 creates its LinearGradientBrush:

<Ellipse Grid.Row=”0” Grid.Column=”2” Stroke=”Black”>
 <Ellipse.Fill>
 <LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Offset=”0” Color=”White”/>
 <GradientStop Offset=”1” Color=”Black”/>
 </LinearGradientBrush>
 </Ellipse.Fill>
</Ellipse>

Brushes

radialGradienTBrush

A RadialGradientBrush fills areas with a color gradient that shades between two or more colors
radially.

Table G-7 summarizes the RadialGradientBrush’s most important properties.

TaBle G-7: Key Properties of RadialGradientBrush

ProPerTy PurPose

Center The center point of the outer ellipse to which the gradient shades

GradientOrigin The point where the gradient begins

GradientStops A collection of objects that determine the Brush’s colors at different parts of the
gradient

MappingMode Determines how the StartPoint and EndPoint are mapped to the
Brush. This can be Absolute (the points’ coordinates are in pixels) or
RelativeToBoundingBox [the point (0, 0) is the upper-left corner of the
brush and (1, 1) is the lower-right corner].

RadiusX The X radius (half-width) of the outer ellipse to which the gradient shades

RadiusY The Y radius (half-height) of the outer ellipse to which the gradient shades

SpreadMethod Determines how an area is filled if the Brush doesn’t completely cover it. This
can be Pad, Reflect, or Repeat.

The gradient starts at the object’s GradientOrigin point and shades to the edges of an ellipse cen-
tered at the point Center.

502 ❘ aPPendix G Brushes

The LinearGradientBrush should contain a series of GradientStop objects that define the colors
along the gradient. The ordering of these objects is unimportant.

Table G-8 summarizes the GradientStop object’s two most useful properties.

TaBle G-8: Key Properties of GradientStop

ProPerTy PurPose

Offset The offset in the gradient where this color should be used. This value is usually
between 0 (the start of the gradient) and 1 (the end of the gradient).

Color The color that should be drawn at this location

Using ImageBrushesexamPle

The following code shows how the Brushes program shown in Figure G-1 creates its
RadialGradientBrush:

<Ellipse Grid.Row=”2” Grid.Column=”0” Stroke=”Black”>
 <Ellipse.Fill>
 <RadialGradientBrush>
 <GradientStop Offset=”0” Color=”White”/>
 <GradientStop Offset=”1” Color=”Black”/>
 </RadialGradientBrush>
 </Ellipse.Fill>
</Ellipse>

Brushes

The RadialCenter example program shown in Figure G-3 dem-
onstrates some of the RadialGradientBrush’s more confusing
properties. The gradient shades from the point indicated by the
GradientOrigin property (in the upper left) to the edges of the
dashed circle. The RadiusX and RadiusY properties give the size
of the dashed circle. The Center property determines where that
circle is centered.

solidColorBrush

The SolidColorBrush has a single important property: Color. You can use an element attribute to
make a SolidColorBrush, but usually it’s easier to simply set the property of the control using the
brush to a color.

FiGure G-3

VisualBrush ❘ 503

For example, the following code creates two Ellipses that are both filled with green. The first uses
an element attribute, while the second simply sets the Ellipse’s Fill property to Green.

<Ellipse Stroke=”Black”>
 <Ellipse.Fill>
 <SolidColorBrush Color=”Green”/>
 </Ellipse.Fill>
</Ellipse>

<Ellipse Stroke=”Black” Fill=”Green”/>

VisualBrush

The VisualBrush fills areas with a visual such as a control.

Table G-9 summarizes the VisualBrush’s most important properties.

TaBle G-9: Key Properties of VisualBrush

ProPerTy PurPose

AlignmentX Determines how the Brush is aligned if its Stretch property is set to None so it
doesn’t stretch to fill the tile area.

AlignmentY Determines how the Brush is aligned if its Stretch property is set to None so it
doesn’t stretch to fill the tile area.

Stretch Determines how the Brush is stretched to fill its tiles. This can be None (the draw-
ing is used at its original size), Uniform (the drawing is uniformly stretched to be
as large as possible within the tile), UniformToFill (the drawing is uniformly
stretched to fill the tile), and Fill (the drawing is stretched to fill the tile even if it
distorts the drawing).

TileMode Determines how the tile is repeated if necessary to fill the area. This can be None
(the rest of the area is unfilled), Tile (the tile is repeated), FlipX (the tile is repeated
with every other tile in the X direction flipped horizontally), FlipY (the tile is repeated
with every other tile in the Y direction flipped vertically), and FlipXY (both FlipX
and FlipY). This only has an effect if Viewport is smaller than the filled area.

Viewbox Defines the part of the content used for the Brush.

ViewboxUnits Defines the units used by Viewbox. This can be Absolute (pixels) or
RelativeToBoundingBox [where (0, 0) is the upper-left corner and (1, 1)
is the lower-right corner].

Viewport Defines the part of the filled area that is covered by a single tile.

continues

504 ❘ aPPendix G Brushes

ProPerTy PurPose

ViewportUnits Defines the units used by Viewport. This can be Absolute (pixels) or
RelativeToBoundingBox [where (0, 0) is the upper-left corner and (1, 1)
is the lower-right corner].

Visual Determines the Brush’s contents. This can be a reference to an existing visual or a
new one.

Using ImageBrushesexamPle

The following code shows how the Brushes program shown in Figure G-1 creates its VisualBrush that
displays the text Visual normally and reflected vertically:

<Ellipse Grid.Row=”2” Grid.Column=”2” Stroke=”Black”>
 <Ellipse.Fill>
 <VisualBrush TileMode=”FlipY” AlignmentX=”Left” AlignmentY=”Top”
 Viewbox=”0,5,50,25” ViewboxUnits=”Absolute”
 Viewport=”0,0,30,20” ViewportUnits=”Absolute”>
 <VisualBrush.Visual>
 <Label Content=”Visual” FontFamily=”Comic Sans MS”/>
 </VisualBrush.Visual>
 </VisualBrush>
 </Ellipse.Fill>
</Ellipse>

Brushes

The Brush’s Visual property is an element attribute that defines a new Label containing the Brush’s
content.

The Reflections example program shown in Figure G-4
demonstrates a VisualBrush that uses an existing visual.
On the top, it displays a horizontal StackPanel that holds a
TextBox, an Image, and a Button. On the bottom, it draws
a Rectangle filled with a reflected image of the StackPanel.
The visual even updates at run time so if you type into the
TextBox, the reflection immediately updates to match.

The following code shows how the Reflections program works:

<StackPanel Margin=”10”>
 <StackPanel Name=”spReflect” Height=”50” Orientation=”Horizontal”>
 <TextBox Name=”txtOriginal” Text=”Reflection”>
 <TextBox.Background>
 <LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Offset=”0” Color=”LightGray”/>
 <GradientStop Offset=”1” Color=”Black”/>
 </LinearGradientBrush>
 </TextBox.Background>

FiGure G-4

TaBle G-9 (continued)

VisualBrush ❘ 505

 </TextBox>
 <Image Source=”Smiley.bmp” Margin=”5”/>
 <Button Content=”Click Me!”/>
 </StackPanel>
 <Rectangle Height=”50” Margin=”0,3,0,0”>
 <Rectangle.Fill>
 <VisualBrush Opacity=”0.5” TileMode=”Tile”
 Stretch=”None” AlignmentX=”Left”
 Visual=”{Binding ElementName=spReflect}”>
 <VisualBrush.RelativeTransform>
 <TransformGroup>
 <ScaleTransform ScaleX=”1” ScaleY=”-1”/>
 </TransformGroup>
 </VisualBrush.RelativeTransform>
 </VisualBrush>
 </Rectangle.Fill>
 </Rectangle>
</StackPanel>

Reflections

The first half of the program is straightforward and simply creates the first StackPanel and its TextBox,
Image, and Button.

The second half of the code creates a Rectangle filled with a VisualBrush. Note how the Brush’s
Visual property refers to the previously defined StackPanel.

The Brush’s RelativeTransform property reflects the brush vertically by multiplying the Y coordi-
nates by a factor of –1.

reFleCTion reViewed

The reflection actually moves the result below the X axis so the default view-
port (0, 0) to (1, 1) doesn’t contain any of the image. This code sets the Brush’s
TileMode property to Tile so the Brush repeats its image as needed and that fills
the Rectangle properly.

Alternatively, you could follow the ScaleTransform with a TranslateTransform
that translates by distance 1 in the Y direction to move the image back into the vis-
ible area.

506 ❘ aPPendix G Brushes

ViewPorTs and ViewBoxes

Two of the more confusing concepts behind tiled brushes are viewports and viewboxes. Briefly, the
viewbox defines the part of the brush’s defined content that is used to fill the area. The viewport
defines the part of the output area that should be filled with one tile of the brush.

The ViewportsAndViewboxes example program shown in
Figure G-5 demonstrates viewports and viewboxes.

In the image on the left, the lighter area shows
the viewbox defined by the property value
Viewbox = 0.5,0,0.5,0.5. These numbers represent the
left, top, width, and height of the Brush’s content that is
used to draw the Brush. In this example, the coordinates
are relative so the upper-left corner is at (0, 0) and the
lower-right corner is at (1, 1).

The middle of Figure G-5 shows a Rectangle with the viewport 0,0,0.25,0.5 filled with white.
These values also give the left, top, width, and height of the area and are relative coordinates.

The right of Figure G-5 shows the result. The area defined by the viewbox on the left is stretched to
fill the viewport defined in the middle. That result is then tiled to fill the Rectangle.

The following code shows how the program draws the final rectangle:

<Rectangle Width=”100” Height=”75” Stroke=”Black”>
 <Rectangle.Fill>
 <ImageBrush ImageSource=”Smiley.bmp” Stretch=”Fill” TileMode=”Tile”
 AlignmentX=”Left” AlignmentY=”Top”
 Viewbox=”0.5,0,0.5,0.5” ViewboxUnits=”RelativeToBoundingBox”
 Viewport=”0,0,0.25,0.5” ViewportUnits=”RelativeToBoundingBox”/>
 </Rectangle.Fill>
</Rectangle>

ViewportsAndViewboxes

FiGure G-5

Path Mini-Language
This appendix summarizes the Path mini-language (or path markup syntax) that you can use
to concisely define the lines and curves drawn by Path objects. Place mini-language commands
in the Path control’s Data property.

Table H-1 describes the Path mini-language’s commands. Uppercase versions use absolute
coordinates, while lowercase versions use points relative to the previous points.

Table H-1: Path Mini-Language Commands

Command meaning

F0 Use Odd/Even fill rule. (See Figure H-1.)

F1 Use Non-Zero fill rule. (See Figure H-1.)

M or m Move to the following point.

L or l Draw lines to the following points.

H or h Draw a horizontal line to the given X coordinate.

V or v Draw a vertical line to the given Y coordinate.

C or c Draw a cubic Bézier curve. This command takes three points as parameters: two
control points and an endpoint. The curve starts at the current point moving toward
the first control point and ends at the endpoint moving away from the second control
point. (See Figure H-2.)

S or s Draw a smooth Bézier curve. This command takes two points as parameters: a control
point and an endpoint. The curve defines an initial control point by reflecting the final
control point from the previous S command. It then draws a cubic Bézier curve using
the newly defined control point and the two parameter points. This makes the second
curve smoothly join with the previous one. (See Figure H-2.)

H

continues

508 ❘ appendix H Path Mini-Language

Command meaning

Q or q Draw a quadratic Bézier curve. This command takes two points as parameters: a control
point and an endpoint. The curve starts at the current point moving toward the control
point and ends at the endpoint moving away from the control point. (See Figure H-2.)

T or t Draw a smooth Bézier curve defined by a single point. This command takes a single
point as a parameter and draws a smooth curve to that point. It reflects the previous
T command’s control point to define a control point for the new section of curve and
uses it to draw a quadratic Bézier curve. The result is a smooth curve that passes
through the points sent to consecutive T commands. (See Figure H-2.)

A or a Draws an elliptical arc starting at the current point and defined by five parameters:

size➤➤ — The X and Y radii of the arc

rotation_angle➤➤ — The ellipse’s angle of rotation in degrees

large_angle➤➤ — 0 if the arc should span less than 180 degrees; 1 if it should
span 180 or more degrees

sweep_direction➤➤ — 0 for counterclockwise; 1 for clockwise

end_point➤➤ — The point where the arc should end (see Figure H-3)

Z or z Close the figure by drawing a line from the current point to the first point.

The FillRules example program shown in Figure H-1 demonstrates the Odd/Even and Non-Zero fill
rules by drawing two shapes filled with white.

Figure H-1

The BezierCommands example program shown in Figure H-2 demonstrates the different Bézier
drawing commands. The straight lines show where the curves’ control points are.

Table H-1 (continued)

Path Mini-Language ❘ 509

Figure H-2

The Arc example program shown in Figure H-3 demonstrates the arc command.

Figure H-3

For more information on the Path object, see the “Path” section in Chapter 8.

XPath
A program that binds to XML data uses XPath to determine which data is selected and which
data is displayed. This appendix summarizes XPath and provides several examples.

XML in XAML

To include XML data inside XAML code, build an XmlDataProvider object containing an
x:XData object. Inside that object, place well-formed XML data.

The XmlXDataProvider’s XPath property gives the name of the data’s root. Later code can
refer to this root.

The following XAML code defines XML data used by later examples in this appendix. The
root data element is named Customers. That element contains a series of Customer objects,
each holding Order objects that contain Item objects. An Item object’s value gives its descrip-
tion. Attributes give additional information about the various kinds of objects.

<XmlDataProvider x:Key=”customers” XPath=”Customers”>
 <x:XData>
 <Customers xmlns=””>
 <Customer CustName=”Bob Farkle”>
 <Order OrderDate=”4/1/2010”>
 <Item Quantity=”12” UnitPrice=”0.10”>Pencils</Item>
 <Item Quantity=”3” UnitPrice=”0.95”>Notepad</Item>
 <Item Quantity=”1” UnitPrice=”3.99”>Cookies, Dozen</Item>
 </Order>
 </Customer>
 <Customer CustName=”Edwin Cumberbund”>
 <Order OrderDate=”4/13/2010”>
 <Item Quantity=”6” UnitPrice=”0.10”>Pencils</Item>
 <Item Quantity=”6” UnitPrice=”1.40”>Green Tea</Item>
 <Item Quantity=”1” UnitPrice=”39.95”>Book</Item>
 </Order>
 <Order OrderDate=”5/1/2010”>
 <Item Quantity=”1” UnitPrice=”6.99”>Napkins</Item>

I

512 ❘ AppendiX i XPath

 <Item Quantity=”1” UnitPrice=”13.95”>Rechargeable
 Batteries</Item>
 </Order>
 </Customer>
 <Customer CustName=”Emily Pickle”>
 <Order OrderDate=”4/1/2010”>
 <Item Quantity=”1” UnitPrice=”13.95”>Rechargeable
 Batteries</Item>
 <Item Quantity=”2” UnitPrice=”2.99”>Duct Tape</Item>
 </Order>
 <Order OrderDate=”4/26/2010”>
 <Item Quantity=”3” UnitPrice=”1.90”>Highlighter</Item>
 <Item Quantity=”1” UnitPrice=”499.90”>1 PB Flash Drive</Item>
 <Item Quantity=”2” UnitPrice=”0.10”>Pencils</Item>
 </Order>
 <Order OrderDate=”4/27/2010”>
 <Item Quantity=”1” UnitPrice=”1.25”>Soda</Item>
 </Order>
 </Customer>
 </Customers>
 </x:XData>
</XmlDataProvider>

XmlCustomerOrders

The XmlCustomerOrders example program shown in Figure I-1 uses bound ListBoxes to show dif-
ferent views of the data.

Figure i-1

Binding to XML dAtA

Generally an item bound to XML data needs an item source that tells it where to get its data items
and an item template that tells it how to display the items it selects. (See Chapter 18 for more
detailed information on data binding.)

Selection ❘ 513

For example, the following code shows how the XmlCustomerOrders program displays the data
shown in Figure I-1:

<ListBox>
 <ListBox.ItemsSource>
 <Binding Source=”{StaticResource customers}” XPath=”//Order”/>
 </ListBox.ItemsSource>
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”Ordered on “/>
 <TextBlock Text=”{Binding XPath=@OrderDate}” FontWeight=”Bold”/>
 <TextBlock Text=” by “/>
 <TextBlock Text=”{Binding XPath=../@CustName}” FontWeight=”Bold”/>
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

XmlCustomerOrders

The ListBox’s ItemsSource property tells the control to get its data from the StaticResource
named customers, which is the XmlDataProvider. The XPath value “//Order” tells the control to
select all Order items from the data.

The ListBox’s ItemTemplate tells the control how to display the Order objects that it selects. This
template holds a StackPanel that contains several TextBlocks. The first TextBlock contains a
simple string that says “Ordered on.”

The second TextBlock uses a binding to extract data from the selected Order object. In this case,
“@OrderDate” means to take the object’s OrderDate attribute.

The third TextBlock displays the text “by.” The final TextBlock uses the binding “../@CustName”
to select the CustName attribute from the Order’s parent node, which is a Customer.

The following sections describe the XPath used in these two ways: to select data objects and to
determine what is displayed for the objects.

SeLection

To select nodes in XML data, you build a path that is somewhat similar to a directory path leading
through the data starting at the root node. For example, in the previous data, the path /Customers/
Customer/Order/Item means to follow the path from the root element Customers, enter Customer
objects, enter Order objects, and finally select Item objects.

Table I-1 summarizes XPath selection symbols.

514 ❘ AppendiX i XPath

tABLe i-1:
XPath Selection Symbols

SyMBoL purpoSe

node_name Selects child nodes with the given name.

/ At the beginning of an XPath, selects the root node. In the middle of an XPath, sepa-
rates node names.

// Matches any number of nodes. For example, //Item matches all Item nodes no mat-
ter where they are in the data.

. Matches the current node.

.. Moves to the parent node.

@ Selects an attribute.

* Matches any single node.

@* Matches any single attribute.

predicAteS

Predicates are placed in square brackets as part of an XPath to restrict a selection. Predicates often
refer to node values or attributes.

For example, the following XPath matches all Item nodes with a UnitPrice attribute greater than 5.00.

//Item[@UnitPrice>5.00]

You can combine more than one selection statement by using the | symbol. For example, the fol-
lowing binding selects Order objects where the parent node is a Customer with CustName attribute
equal to either ‘Bob Farkle’ or ‘Emily Pickle’. (Notice that white space is ignored, so this
example uses extra spaces in the XML data to make things line up nicely.)

<Binding Source=”{StaticResource customers}”
 XPath=”//Customer[@CustName=’Bob Farkle’]/Order |
 //Customer[@CustName=’Emily Pickle’]/Order”/>

conStrAint FunctionS

XPath provides several functions that you can use in predicates to restrict the results. For example,
the contains function selects nodes if the first parameter contains the second parameter as a sub-
string. The following XPath statement selects Item nodes where the item’s value (specified by the .
symbol) contains the character p:

XPath=”//Item[contains(.,’p’)]”/>

Constraint Functions ❘ 515

Table I-2 summarizes the most useful constraint functions.

tABLe i-2:
Constraint Functions

Function purpoSe

ceiling Returns the smallest integer greater than or equal to the input parameter.

concat Concatenates two or more strings.

contains Returns True if the first parameter contains the second as a substring. Note
that the comparison is case-sensitive.

count Returns a count of the parameter. For example, the XPath statement
//Order[count(Item)>2] selects an Order node if it has more than two
children named Item.

floor Returns the largest integer less than or equal to the input parameter.

name Returns the current node’s name. For example, the XPath expression
//*[contains(name(),’Person’)] selects all nodes with node names that
contain Person.

normalize-space Removes leading and trailing white space from a string.

position Returns a node’s position within its parent’s list of children. For example, the
XPath expression //Order[position()=1] returns Order nodes that are
the first Order inside their Customer node.

round Rounds a number to the nearest integer.

string-length Returns a string’s length.

substring Returns part of a string. The parameters are the original string, the 1-based
start character, and the number of characters.

substring-after Returns the substring that comes after some other specified substring.

substring-before Returns the substring that comes before some other specified substring.

text Selects a text node. For example, the values of the Item nodes in the XML
code shown earlier in this appendix are stored in text nodes.

translate Searches the first parameter for characters in the second parameter and
replaces them with the corresponding characters in the third parameter. For
example, the expression translate(“confusing”, “aeiou”, “AEIOU”)
returns ‘cOnfUsIng’.

Selection paths also allow you to use arithmetic and comparison operators. For example, the follow-
ing XPath expression selects Item nodes where the UnitPrice attribute is greater than 5.00.

//Item[@UnitPrice>5.00]

516 ❘ AppendiX i XPath

The following expression selects Item nodes where the product of the Quantity and UnitPrice
attributes is greater than 5:

//Item[@Quantity * @UnitPrice > 5]

The following section describes some example XPath expressions used by the XmlCustomerOrders
program to select nodes from the XAML data shown in the “XML in XAML” section earlier in this
appendix. The section after that describes XAML code that the program uses to display data start-
ing from the selected nodes.

Selection expressions
These expressions select nodes from the XML code. The XmlCustomerOrders program uses them
for ListBox ItemsSource properties as in the following example:

<ListBox.ItemsSource>
 <Binding Source=”{StaticResource customers}”
 XPath=”//Order”/>
</ListBox.ItemsSource>

The following list summarizes the selection XPath expressions used by the example program:

//Order➤➤ — All Order nodes

/Customers/Customer/Order➤➤ — Order nodes that are children of Customer nodes that are
children of Customers nodes that are children of the data root. (In this data, the result is the
same as //Orders.)

//Order[@OrderDate=’4/1/2010’]➤➤ — All Order nodes that have an OrderDate attribute
with value 4/1/2010 — in other words, orders placed on 4/1/2010

//Order[@OrderDate=’4/1/2010’]//Item➤➤ — Item nodes that are children of Order nodes
that have an OrderDate attribute with value 4/1/2010 — in other words, the Items that
make up Orders placed on 4/1/2010

//Customer[@CustName=’Bob Farkle’]/Order |➤➤

//Customer[@CustName=’Emily Pickle’]/Order — Order nodes that are children of
Customer nodes that have CustName attribute ‘Bob Farkle’ plus Order nodes that are
children of Customer nodes that have CustName attribute ‘Emily Pickle’ — in other
words, orders placed by Bob or Emily

//Item➤➤ — All Item nodes

//Item[.=’Pencils’]➤➤ — Item nodes that have the value ‘Pencils’. The value of a node
is the text sitting between its opening and closing elements — in other words, all Pencils
Items. Contrast this syntax with the syntax used to select attribute values, which includes an
@ symbol.

//Order[Item=’Pencils’]”➤➤ — Order nodes that have at least one Item with the value
‘Pencils’ — in other words, orders that include pencils

//Item[@UnitPrice>5.00]➤➤ — Item nodes with UnitPrice attribute greater than 5.00

Constraint Functions ❘ 517

//Item[@Quantity * @UnitPrice > 5]➤➤ — Item nodes where the Quantity attribute
times the UnitPrice attribute is greater than 5 — in other words, Items where the total
price is greater than 5

Arithmetic expressions work for selecting nodes but don’t work for displaying
values. For example, you cannot bind a TextBlock’s Text property to the result
of an arithmetic expression. You can work around this with type converters, but
I don’t know of a pure XAML solution.

//Item[floor(@Quantity * @UnitPrice) > 8]➤➤ — Item nodes where the floor of the
Quantity attribute times the UnitPrice attribute is greater than 8. (Recall that floor
returns the largest integer greater than or equal to the input.)

//Item[contains(translate(.,’P’,’p’),’p’)]➤➤ — Item nodes with values that con-
tain p or P. The call to translate takes the current node’s value (specified by the “.”) and
replaces ‘P’ with ‘p’. The call to contains then determines whether the result contains p.
The result includes Items with values such as Pencils, Napkins, and Duct Tape.

//Order[count(Item)>2]➤➤ — Order nodes that contain more than two Item nodes

display expressions
These expressions find data to display starting from a particular node. For example, the follow-
ing code assumes that an Order node is currently selected. The first binding selects the node’s
OrderDate attribute, and the second binding selects the node’s parent’s CustName attribute. (The
node’s parent is a Customer in this example.)

<ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”Ordered on “/>
 <TextBlock Text=”{Binding XPath=@OrderDate}” FontWeight=”Bold”/>
 <TextBlock Text=” by “/>
 <TextBlock Text=”{Binding XPath=../@CustName}” FontWeight=”Bold”/>
 </StackPanel>
 </DataTemplate>
</ListBox.ItemTemplate>

The following sections include lists that summarize the display XPath expressions used by the
XmlCustomerOrders example program while different types of nodes are currently selected. For
example, the previous code assumes that an Order node is selected.

Order Node Selected
@OrderDate➤➤ — The Order’s OrderDate attribute

../@CustName➤➤ — The Order’s parent’s CustName attribute. In this data, the Order’s parent
is a Customer node.

518 ❘ AppendiX i XPath

Item Node Selected
@Quantity➤➤ — The Item’s Quantity attribute

@UnitPrice➤➤ — The Item’s UnitPrice attribute

.➤➤ — The Item’s value

../@OrderDate➤➤ — The Item’s parent’s OrderDate attribute. In this data, the Item’s parent
is an Order node.

../../@CustName➤➤ — The Item’s grandparent’s CustName attribute. In this data, the Item’s
grandparent is a Customer node.

Data Binding
This appendix briefly summarizes useful data-binding techniques. You can use it to refresh
your memory about specific data-binding scenarios. For more information on data binding,
see Chapter 18.

Binding Components

Data bindings have these four basic pieces:

Target➤➤ — The object that will use the result of the binding

Target Property➤➤ — The target object’s property that will use the result

Source➤➤ — The object that provides a value for the target object to use

Path➤➤ — A path that locates the value within the source object

Binding to elements By name

The following code binds a Label to a TextBox so it displays whatever you type in the TextBox.
This version places a separate Binding object inside the TextBlock to define its contents.

<TextBox Name=”txtTypeHere” Margin=”5” Height=”30”
 VerticalAlignment=”Top” Text=”Type here!”/>

<Label Margin=”5” BorderBrush=”Yellow” BorderThickness=”1”>
 <Binding ElementName=”txtTypeHere” Path=”Text”/>
</Label>

The following code makes a similar binding but using an attribute:

<TextBox Name=”txtTypeHere” Margin=”5” Height=”30”
 VerticalAlignment=”Top” Text=”Type here!”/>

<Label Margin=”5” BorderBrush=”Yellow” BorderThickness=”1”
 Content=”{Binding ElementName=txtTypeHere, Path=Text}”/>

J

520 ❘ appendix J Data BinDing

Binding to RelativesouRCe

The binding’s RelativeSource property lets you specify a source object via its relationship to
the target control. Sometimes this is useful for binding two properties to each other for the same
control.

For example, the following code binds a TextBox’s Background property to its Text property. When
you type the name of a color in the TextBox, the control uses that color for its Background.

<TextBox Margin=”10” Height=”30” VerticalAlignment=”Top”
 Background=”{Binding RelativeSource={RelativeSource Self}, Path=Text}”/>

A relative source can also be TemplatedParent (the object to which a template is being applied),
FindAncestor (an ancestor that contains the control), or PreviousData (refers to a previous item in
a ListBox or other control that displays multiple values).

The following code makes a Label display the width of the third column of the grid that contains it.
(The columns are numbered starting with 0, so “[2]” means the third column.)

<Label Grid.Column=”2”
 Content=”{Binding RelativeSource={
 RelativeSource FindAncestor, AncestorType={x:Type Grid}},
 Path=ColumnDefinitions[2].Width}”/>

Binding to Classes in Code-Behind

Suppose the PersonList program defines a Person class that has FirstName and LastName proper-
ties. (Note that the class must have an empty constructor for XAML to be able to create instances.)

The following namespace declaration inside the main Window element allows the XAML code to
refer to the Person class and other classes defined in the PersonList program:

xmlns:local=”clr-namespace:PersonList”

Now the XAML code can define a Person object like this:

<Window.Resources>
 <local:Person x:Key=”perAuthor” FirstName=”Rod” LastName=”Stephens”/>
<Window.Resources>

The XAML code can then bind to this object’s properties like this:

<Label Content=”{Binding Source={StaticResource perAuthor}, Path=FirstName}”/>
<Label Content=”{Binding Source={StaticResource perAuthor}, Path=LastName}”/>

You can make displaying the entire name easier by overriding the class’s default ToString method.
The following version returns the concatenated first and last names:

public override string ToString()
{
 return FirstName + “ “ + LastName;
}

Making Collections of Data ❘ 521

Now if XAML code refers to the object without a Path parameter, the binding returns the object’s
default value, which is the string returned by ToString.

<Label Content=”{Binding Source={StaticResource perAuthor}}”>

Binding to Classes in xaml Code

The previous section described a scenario in which XAML code creates and binds to a Person
object. This section describes the scenario where the code binds to a Person object that is created
in code-behind.

Suppose the PersonSource program defines a Person class with FirstName and LastName proper-
ties, and an overridden ToString method as described in the previous section.

Now suppose you want the program’s code-behind to create a Person object and you want the
XAML code to bind to it.

In the code-behind, add code to create the object, and create a property that returns the object simi-
lar to the following:

private Person m_ThePerson = new Person {FirstName = “Rod”, LastName = “Stephens”};
public Person ThePerson
{
 get { return m_ThePerson; }
 set { m_ThePerson = value; }
}

In the XAML code, add a namespace declaration that refers to the local program namespace:

xmlns:local=”clr-namespace:PersonList”

Note that the main Window element also specifies the Window’s name by using a Name or x:Name
attribute. Now the XAML code can use that element name to refer to the window that is running
the code. It can then refer to that window’s property that returns the Person object.

The following code binds a Label to the object returned by TheWindow’s ThePerson property:

<Label Content=”{Binding ElementName=TheWindow, Path=ThePerson}”/>

The following code binds a Label to the same object’s FirstName property:

<Label Content=”{Binding ElementName=TheWindow, Path=ThePerson.FirstName}”/>

making ColleCtions of data

Since item controls like ListBox, ComboBox, and TreeView display groups of items, it makes sense
that any data bound to them should contain groups of values.

The following sections explain how you can bind controls to collections defined in XAML code and
in code-behind.

522 ❘ appendix J Data BinDing

Collections in xaml Code
To use XAML code to make a collection that holds simple system-defined data types such as strings
or integers, add the following namespace declaration to the main Window element:

xmlns:sys=”clr-namespace:System;assembly=mscorlib”

Now you can use the x:Array element to create an array of objects that use the system data types.
The following code defines an array of strings called names:

<Window.Resources>
 <x:Array x:Key=”names” Type=”sys:String”>
 <sys:String>Brain</sys:String>
 <sys:String>Yakko</sys:String>
 <sys:String>Dot</sys:String>
 <sys:String>Wakko</sys:String>
 <sys:String>Pinky</sys:String>
 </x:Array>
</Window.Resources>

Now you can bind the array to an item control. The following statement makes a ListBox that
takes its items from the names array:

<ListBox ItemsSource=”{StaticResource names}”/>

Collections in Code-Behind
Suppose that the PersonSource program defines a Person class with FirstName and LastName prop-
erties and an overridden ToString method that returns the concatenated first and last names as
described in the earlier sections.

Now suppose that you want the program’s code-behind to create an array of Person objects and you
want the XAML code to bind a ListBox to it.

In the code-behind, add code to create the array and create a property that returns that array. For
example, the following code defines an array of Person objects, and the property ThePeople returns
the array:

private Person[] m_ThePeople = new Person[] {
 new Person {FirstName=”Ann”, LastName=”Archer”},
 new Person {FirstName=”Bob”, LastName=”Baker”},
 new Person {FirstName=”Cat”, LastName=”Carter”},
 new Person {FirstName=”Dan”, LastName=”Duster”}
};
public Person[] ThePeople
{
 get { return m_ThePeople; }
 set { m_ThePeople = value; }
}

In the XAML code, add a namespace declaration that refers to the local program namespace:

xmlns:local=”clr-namespace:PersonList”

Using TreeView Templates ❘ 523

Note that the main Window element also specifies the window’s name by using a Name or x:Name
attribute. The XAML code can use that element name to refer to the window that is running the
code. It can then refer to that Window’s property that returns the array of Person objects.

The following code binds a ListBox to the array returned by the Window’s ThePeople property.

<ListBox ItemsSource=”{Binding ElementName=TheWindow, Path=ThePeople}”/>

using listBox and ComBoBox templates

The previous two sections explained how to create arrays of items and gave examples that bind data to
ListBoxes. Binding ComboBoxes is similar. See those sections for more information on basic binding.

These controls also let you specify a DataTemplate that determines how the control displays each item.

Create an ItemTemplate element. Inside that, place a DataTemplate element containing the
controls that you want to use to display each data item. Bind the controls to the ListBox’s (or
ComboBox’s) data context.

The following code binds a ListBox to the array named ThePeople described in the previous sec-
tion. The DataTemplate makes the control display each item in two TextBlocks separated by a
third containing a space.

<ListBox ItemsSource=”{Binding ElementName=TheWindow, Path=ThePeople}”>
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”{Binding FirstName}” FontWeight=”Normal”/>
 <TextBlock Text=” “/>
 <TextBlock Text=”{Binding LastName}” FontWeight=”Bold”/>
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

The code for ComboBoxes is similar.

using tReeview templates

To make a TreeView display hierarchical data, you must perform three tasks:

Build the hierarchical classes.➤➤

Make the hierarchical data.➤➤

Define ➤➤ HierarchicalDataTemplate elements.

Attach the ➤➤ TreeView to the data.

The hierarchical classes define the data. They should provide properties that return collections of
objects at the next level of the hierarchy. For example, a Department class representing a corporate

524 ❘ appendix J Data BinDing

department might have Managers and Projects properties that return lists of Manager and
Project objects, respectively.

To build the hierarchical data, create instances of the classes. Initialize their collection properties so
they properly represent the hierarchy.

To tell the TreeView how to display data and how to follow the hierarchy, place one or more
HierarchicalDataTemplate elements inside the control’s Resources section. The DataType attri-
bute tells what kind of object the template handles. The ItemsSource attribute tells which property
the TreeView should use to descend farther into the data hierarchy after it is done with the current
item. The HierarchicalDataTemplate’s content should define the values that the control should
display for the current object. Typically, this includes Label, TextBlock, and other controls with
content bound to the current hierarchical object.

The following code snippet shows a HierarchicalDataTemplate that handles Department objects.
The TextBlock displays the current Department object’s Name property. The element’s ItemsSource
attribute makes the TreeView visit the Department’s Managers property next.

<HierarchicalDataTemplate
 DataType=”{x:Type local:Department}”
 ItemsSource=”{Binding Path=Managers}”>
 <TextBlock Text=”{Binding Path=Name}” Foreground=”Blue”/>
</HierarchicalDataTemplate>

There are a couple of ways you can attach the TreeView to the hierarchical data. First, you can
make the control’s ItemsSource refer to a property defined by the form. That property can return a
collection holding the top-level data items.

The following XAML code attaches the TreeView to the MainWindow object’s TopLevelData property.
For more information on binding to properties defined by the Window, see the section, “Collections in
Code-Behind,” earlier in this appendix.

<TreeView ItemsSource=”{Binding ElementName=MainWindow, Path=TopLevelData}”>

A second approach is to make the code-behind bind the TreeView to the data. The following code
snippet binds the TreeView named trvParts to the list named parts:

trvParts.ItemsSource = parts;

For more information on binding TreeView controls to data, see the section, “TreeView Templates,”
in Chapter 18.

Binding to xml data

See Chapter 18 and Appendix I for information about binding to XML data.

Commanding Classes
This appendix summarizes predefined commanding classes. WPF provides these objects as
static methods in the five classes described in the following sections. For more information
about commanding, see Chapter 19.

ApplicAtioncommAnds

The ApplicationCommands class provides commands that apply at the application level. Table K-1
shows the commands and their keyboard gestures (or “N/A” for commands without gestures).

tAble K-1: ApplicationCommand Commands

commAnd Gesture

CancelPrint N/A

Close [Ctrl]+X or [Shift]+[Delete]

ContextMenu [Shift]+[F10]

Copy [Ctrl]+C, [Shift]+[Delete]

CorrectionList N/A

Cut [Ctrl]+X

Delete [Delete]

Find [Ctrl]+F

Help [F1]

New [Ctrl]+N

NotACommand N/A

Open [Ctrl]+O

K

continues

526 ❘ Appendix K Commanding Classes

commAnd Gesture

Paste [Ctrl]+V

Print [Ctrl]+P

PrintPreview [Ctrl]+[F2]

Properties [F4]

Redo [Ctrl]+Y

Replace [Ctrl]+H

Save [Ctrl]+S

SaveAs [Ctrl]+H

SelectAll [Ctrl]+A

Stop [Escape]

Undo [Ctrl]+Z

componentcommAnds

The ComponentCommands class defines commands that make sense for many kind of components.
Many of these deal with changing focus or selection. Table K-2 shows the commands and their
keyboard gestures.

tAble K-2: ComponentCommands Commands

commAnd Gesture

ExtendSelectionDown [Shift]+Down

ExtendSelectionLeft [Shift]+Left

ExtendSelectionRight [Shift]+Right

ExtendSelectionUp [Shift]+Up

MoveDown Down

MoveFocusBack [Ctrl]+Left

MoveFocusDown [Ctrl]+Down

MoveFocusForward [Ctrl]+Right

MoveFocusPageDown [Ctrl]+[PageDown]

tAble K-1 (continued)

Editing Commands ❘ 527

commAnd Gesture

MoveFocusPageUp [Ctrl]+[PageUp]

MoveFocusUp [Ctrl]+Up

MoveLeft Left

MoveRight Right

MoveToEnd [End]

MoveToHome [Home]

MoveToPageDown [PageDown]

MoveToPageUp [PageUp]

MoveUp Up

ScrollByLine N/A

ScrollPageDown [PageDown]

ScrollPageLeft N/A

ScrollPageRight N/A

ScrollPageUp [PageUp]

SelectToEnd [Shift]+[End]

SelectToHome [Shift]+[Home]

SelectToPageDown [Shift]+[PageDown]

SelectToPageUp [Shift]+[PageUp]

editinG commAnds

The EditingCommands class defines commands for use by editing applications. These make the most sense
for the text editing applications that inspired them, but you can apply some of them to other types of edit-
ing applications such as drawing programs. Table K-3 shows the commands and their keyboard gestures.

tAble K-3: EditingCommands Commands

commAnd Gesture

AlignCenter [Ctrl]+E

AlignJustify [Ctrl]+J

continues

528 ❘ Appendix K Commanding Classes

commAnd Gesture

AlignLeft [Ctrl]+L

AlignRight [Ctrl]+R

Backspace [Backspace]

CorrectSpellingError N/A

DecreaseFontSize [Ctrl]+OemOpenBracket

DecreaseIndentation [Ctrl]+[Shift]+T

Delete [Delete]

DeleteNextWord [Ctrl]+[Delete]

DeletePreviousWord [Ctrl]+[Backspace]

EnterLineBreak [Shift]+[Enter]

EnterParagraphBreak [Enter]

IgnoreSpellingError N/A

IncreaseFontSize [Ctrl]+OemCloseBracket

IncreaseIndentation [Ctrl]+T

MoveDownByLine Down

MoveDownByPage [PageDown]

MoveDownByParagraph [Ctrl]+Down

MoveLeftByCharacter Left

MoveLeftByWord [Ctrl]+Left

MoveRightByCharacter Right

MoveRightByWord [Ctrl]+Right

MoveToDocumentEnd [Ctrl]+[End]

MoveToDocumentStart [Ctrl]+[Home]

MoveToLineEnd [End]

MoveToLineStart [Home]

MoveUpByLine Up

tAble K-3 (continued)

Editing Commands ❘ 529

commAnd Gesture

MoveUpByPage [PageUp]

MoveUpByParagraph [Ctrl]+Up

SelectDownByLine [Shift]+Down

SelectDownByPage [Shift]+[PageDown]

SelectDownByParagraph [Ctrl]+[Shift]+Down

SelectLeftByParagraph [Shift]+Left

SelectLeftByWord [Ctrl]+[Shift]+Left

SelectRightByParagraph [Shift]+Right

SelectRightByWord [Ctrl]+[Shift]+Right

SelectToDocumentEnd [Ctrl]+[Shift]+[End]

SelectToDocumentStart [Ctrl]+[Shift]+[Home]

SelectToLineEnd [Shift]+[End]

SelectToLineStart [Shift]+[Home]

SelectUpByLine [Shift]+Up

SelectUpByPage [Shift]+[PageUp]

SelectUpByParagraph [Ctrl]+[Shift]+Up

TabBackward [Shift]+[Tab]

TabForward [Tab]

ToggleBold [Ctrl]+B

ToggleBullets [Ctrl]+[Shift]+L

ToggleInsert [Insert]

ToggleItalic [Ctrl]+I

ToggleNumbering [Ctrl]+[Shift]+N

ToggleSubscript [Ctrl]+OemPlus

ToggleSuperscript [Ctrl]+[Shift]+OemPlus

ToggleUnderline [Ctrl]+U

530 ❘ Appendix K Commanding Classes

mediAcommAnds

The MediaCommands class defines commands that are appropriate for different kinds of media such as
audio and video. None of these commands have predefined gestures. Table K-4 shows the commands.

tAble K-4: MediaCommands Commands

commAnd

BoostBass

ChannelDown

ChannelUp

DecreaseBass

DecreaseMicrophoneVolume

DecreaseTreble

DecreaseVolume

FastForward

IncreaseBass

IncreaseMicrophoneVolume

IncreaseTreble

IncreaseVolume

MuteMicrophoneVolume

MuteVolume

NextTrack

Pause

Play

PreviousTrack

Record

Rewind

Select

Stop

ToggleMicrophoneOnOff

TogglePlayPause

Commands in XAML ❘ 531

nAviGAtioncommAnds

The NavigationCommands class defines commands that make sense to applications that follow a
Web-like navigation model. Table K-5 shows the commands and their keyboard gestures.

tAble K-5:

NavigationCommands CommandscommAnd Gesture

BrowseBack [Alt]+Left

BrowseForward [Alt]+Right

BrowseHome [Alt]+[Home]

BrowseStop [Alt]+[Escape]

DecreaseZoom N/A

Favorites [Ctrl]+I

FirstPage N/A

GoToPage N/A

IncreaseZoom N/A

LastPage N/A

NavigateJournal N/A

NextPage N/A

PreviousPage N/A

Refresh [F5]

Search [F3]

Zoom N/A

commAnds in xAml

To use a command in XAML code, simply set a control’s Command property to the appropriate object.
For example, the following code defines several items in an Edit menu and sets their Command properties:

<MenuItem Header=”Edit”>
 <!-- Menu items that invoke default commands. -->
 <MenuItem Command=”ApplicationCommands.Copy”/>
 <MenuItem Command=”ApplicationCommands.Cut”/>
 <MenuItem Command=”ApplicationCommands.Paste”/>
 <Separator/>
 <MenuItem Command=”ApplicationCommands.Undo”/>

532 ❘ Appendix K Commanding Classes

 <MenuItem Command=”ApplicationCommands.Redo”/>
</MenuItem>

Use the CommandTarget property to make a command apply to a specific control. The following code
makes a Button that applies the ApplicationCommands.Cut command to the TextBox named txtTop:

<Button Grid.Row=”0” Grid.Column=”1” Margin=”2”
 Content=”{Binding RelativeSource={RelativeSource Self}, Path=Command.Text}”
 Command=”ApplicationCommands.Cut”
 CommandTarget=”{Binding ElementName=txtTop}”/>

commAnds in code-behind

Some commands, such as the editing commands, have predefined behaviors. For other commands,
you need to define behaviors.

The following code shows how a program can define command bindings. These tie commands like
New to the code-behind event handlers that the command needs to determine when it is available and
what actions it should perform.

<Window.CommandBindings>
 <CommandBinding Command=”New”
 CanExecute=”DocumentNewAllowed” Executed=”DocumentNew”/>
 <CommandBinding Command=”Open”
 CanExecute=”DocumentOpenAllowed” Executed=”DocumentOpen”/>
 <CommandBinding Command=”Save”
 CanExecute=”DocumentSaveAllowed” Executed=”DocumentSave”/>
 <CommandBinding Command=”SaveAs”
 CanExecute=”DocumentSaveAsAllowed” Executed=”DocumentSaveAs”/>
 <!-- The Close binding is defined in code
 just to show how it’s done.
 <CommandBinding Command=”Close”
 CanExecute=”DocumentCloseAllowed” Executed=”DocumentClose”/>
 -->
</Window.CommandBindings>

The following C# code shows the code-behind for the New command:

// Return True if we can perform the New action.
private void DocumentNewAllowed(Object sender, CanExecuteRoutedEventArgs e)
{
 e.CanExecute = (!m_IsDirty);
}

// Perform the New action.
private void DocumentNew(Object sender, ExecutedRoutedEventArgs e)
{
 // Remove any existing controls on the Canvas.
 cvsDrawing.Children.Clear();

 // Display the canvas.
 borDrawing.Visibility = Visibility.Visible;
 m_FileName = null;
}

Bitmap Effects
Table L-1 summarizes WPF’s bitmap effects.

Table l-1:
Bitmap Effect Classes

effecT class ResulT

BevelBitmapEffect Beveled appearance

BlurBitmapEffect Blurred appearance

DropShadowBitmapEffect Drop shadow behind the object

EmbossBitmapEffect Embossed appearance

OuterGlowBitmapEffect Glow behind the object

The BitmapEffects example program shown in Figure L-1 demonstrates the bitmap effect classes.

figuRe l-1

L

534 ❘ appendix l Bitmap EffEcts

The following XAML code shows how the program BitmapEffects displays drop shadows. The
other bitmap effect classes work similarly.

<StackPanel>
 <Image Source=”Volleyball.png” Stretch=”Uniform” Height=”90”>
 <Image.BitmapEffect>
 <DropShadowBitmapEffect/>
 </Image.BitmapEffect>
 </Image>
 <Label Content=”Drop Shadow”>
 <Label.BitmapEffect>
 <DropShadowBitmapEffect/>
 </Label.BitmapEffect>
 </Label>
</StackPanel>

Styles
A Style lets you define a package of properties that you can later assign as a group to make
controls more consistent and to make the code easier to read.

You can define Styles in a control’s Resources section. If you are going to share a Style, it is
most convenient to place it in a container’s Resources section.

Typically a Style contains Setter and EventSetter objects that define specific property val-
ues and event handlers for the controls that use the Style.

You can make two kinds of Styles: named and unnamed.

Named StyleS

To make a named Style, give it an x:Name attribute. Later you can refer to the Style as a
StaticResource.

The following XAML code defines and uses a Style named styButton:

<StackPanel Orientation=”Horizontal”>
 <StackPanel.Resources>
 <Style x:Key=”styButton” TargetType=”Button”>
 <Setter Property=”Width” Value=”100”/>
 <Setter Property=”Height” Value=”30”/>
 <Setter Property=”Margin” Value=”5”/>
 <Setter Property=”FontSize” Value=”14”/>
 <Setter Property=”FontWeight” Value=”Bold”/>
 <EventSetter Event=”Click” Handler=”MenuButton_Clicked”/>
 </Style>
 </StackPanel.Resources>

 <Button Style=”{StaticResource styButton}” Content=”Customers”
 Width=”150”/>
 <Button Style=”{StaticResource styButton}” Content=”Orders”/>
 <Button Style=”{StaticResource styButton}” Content=”Inventory”/>
 <Button Content=”Maintenance” Width=”75” Height=”25”
 Click=”Maintenance_Clicked”/>
</StackPanel>

M

536 ❘ appeNdix m StyleS

The Style defines the Button properties Width, Height, Margin, FontSize, and FontWeight.
It also makes the Click event of any Button that uses the Style invoke the MenuButton_Clicked
code-behind routine.

The code following the Resources section defines four Buttons. The first three use the Style so
they have a consistent appearance and behavior. The first Button overrides the Style’s Width prop-
erty by assigning its own value.

The fourth Button does not use the Style so it gets the default Button appearance. It sets its own
Width and Height properties, and Click event handler.

UNNamed StyleS

To make an unnamed Style, simply omit the x:Name attribute. Unnamed Styles apply to all
objects of the appropriate target type within their scope. For example, if you define a Button Style
in a StackPanel’s Resources section, then any Button within the StackPanel uses the Style.

The following code defines an unnamed Style similar to the one described in the previous section
inside a StackPanel’s Resources section:

<StackPanel Orientation=”Horizontal”>
 <StackPanel.Resources>
 <Style TargetType=”Button”>
 <Setter Property=”Width” Value=”100”/>
 <Setter Property=”Height” Value=”30”/>
 <Setter Property=”Margin” Value=”5”/>
 <Setter Property=”FontSize” Value=”14”/>
 <Setter Property=”FontWeight” Value=”Bold”/>
 <EventSetter Event=”Click” Handler=”MenuButton_Clicked”/>
 </Style>
 </StackPanel.Resources>

 <Button Content=”Customers” Width=”150”/>
 <Button Content=”Orders”/>
 <Button Content=”Inventory”/>
 <Button Content=”Maintenance” Style=”{x:Null}”
 Width=”75” Height=”25” Click=”Maintenance_Clicked”/>
</StackPanel>

The code following the Resources section defines four Buttons. The first three automatically use the
unnamed Style so they have a consistent appearance and behavior. The first Button overrides the
Style’s Width property by assigning its own value.

The fourth Button explicitly sets its Style attribute to {x:Null} so it doesn’t use a Style.

Inherited Styles ❘ 537

temptiNg targetS

In an unnamed Style, the TargetType attribute is required, but it need not be a
specific type of control. For example, you could set TargetType = Control to
make the Style available for any control.

In that case, the Style can only specify properties and events that are available to
the Control class. For example, it could not specify a Click event handler because
the Control class doesn’t define a Click event.

iNherited StyleS

You can make one Style inherit from another by setting its BasedOn attribute. The second Style
can add new properties or override values defined by the first Style.

While a parent Style must have a name, you can define an unnamed Style based on a named Style.

The following code creates a Style named styAllButtons. It then creates another Style based on
it named styMainButtons. Next the code defines an unnamed Style based on styAllButtons so
any Button that does not have an explicit Style uses styAllButtons.

<StackPanel Orientation=”Horizontal”>
 <StackPanel.Resources>
 <Style x:Key=”styAllButtons” TargetType=”Button”>
 <Setter Property=”Width” Value=”100”/>
 <Setter Property=”Height” Value=”30”/>
 <Setter Property=”Margin” Value=”5”/>
 </Style>
 <Style x:Key=”styMainButtons” TargetType=”Button”
 BasedOn=”{StaticResource styAllButtons}”>
 <Setter Property=”FontSize” Value=”14”/>
 <Setter Property=”FontWeight” Value=”Bold”/>
 </Style>
 <Style TargetType=”Button” BasedOn=”{StaticResource styAllButtons}”/>
 </StackPanel.Resources>

 <Button Content=”Customers” Style=”{StaticResource styAllButtons}”/>
 <Button Content=”Orders” Style=”{StaticResource styMainButtons}”/>
 <Button Content=”Inventory”/>
 <Button Content=”Maintenance” Style=”{x:Null}”
 Width=”75” Height=”25” Click=”Maintenance_Clicked”/>
</StackPanel>

Templates
This appendix summarizes control templates. For more detailed information, see Chapter 15.

A control template defines a control’s constituent controls and how they behave. Typically a
ControlTemplate object contains the controls that make up the template. The ControlTemplate
can have a Triggers section that determines the control’s behavior, and it can have a Resources
section to define necessary resources.

The following sections show examples of simple templates for different kinds of controls. You
can use these as starting points for your own templates.

LabeL

The following template makes a Label control display its contents in a wrapped TextBlock. It
provides one Trigger that grays out the contents and covers the control with translucent gray
stripes when IsEnabled is False.

<ControlTemplate x:Key=”temWrappedLabel” TargetType=”Label”>
 <Grid>
 <Border Name=”brdMain”
 Background=”{TemplateBinding Background}”
 BorderBrush=”{TemplateBinding BorderBrush}”
 BorderThickness=”{TemplateBinding BorderThickness}”>
 <TextBlock Name=”txtbContent” Margin=”4” TextWrapping=”Wrap”
 Text=”{TemplateBinding ContentPresenter.Content}”/>
 </Border>
 <Canvas Name=”canDisabled” Opacity=”0”>
 <Canvas.Background>
 <LinearGradientBrush StartPoint=”0,0” EndPoint=”3,3”
 MappingMode=”Absolute”
 SpreadMethod=”Repeat”>
 <GradientStop Color=”LightGray” Offset=”0”/>
 <GradientStop Color=”Black” Offset=”1”/>
 </LinearGradientBrush>
 </Canvas.Background>

N

540 ❘ appendix n TemplaTes

 </Canvas>
 </Grid>
 <ControlTemplate.Triggers>
 <Trigger Property=”IsEnabled” Value=”False”>
 <Setter TargetName=”canDisabled”
 Property=”Opacity” Value=”0.5”/>
 <Setter TargetName=”txtbContent”
 Property=”Foreground” Value=”Gray”/>
 </Trigger>
 </ControlTemplate.Triggers>
</ControlTemplate>

BareBonesLabel

The example BareBonesLabel program demonstrates this template.

CheCkbox

The following template makes a CheckBox control display a different appearance. The CheckBox
displays a gray Border surrounding a second Border. The inner Border changes background color
when the CheckBox is checked, unchecked, or in an indeterminate state.

<ControlTemplate x:Key=”temCheckBox” TargetType=”CheckBox”>
 <BulletDecorator>
 <BulletDecorator.Bullet>
 <Grid Height=”15” Width=”15”>
 <Border CornerRadius=”2” BorderBrush=”Black” BorderThickness=”1”/>
 <Border Name=”brdChecked” Margin=”2” CornerRadius=”6”/>
 </Grid>
 </BulletDecorator.Bullet>
 <ContentPresenter Margin=”5,0,0,0”/>
 </BulletDecorator>
 <ControlTemplate.Triggers>
 <Trigger Property=”IsChecked” Value=”True”>
 <Setter TargetName=”brdChecked” Property=”Background” Value=”Green”/>
 </Trigger>
 <Trigger Property=”IsChecked” Value=”False”>
 <Setter TargetName=”brdChecked” Property=”Background” Value=”Red”/>
 </Trigger>
 <Trigger Property=”IsChecked” Value=”{x:Null}”>
 <Setter TargetName=”brdChecked” Property=”Background” Value=”Gray”/>
 </Trigger>
 </ControlTemplate.Triggers>
</ControlTemplate>

BareBonesCheckBox

You could add other Triggers such as one to change the control’s appearance when its IsEnabled
property is False.

The BareBonesCheckBox example program demonstrates this template.

ProgressBar ❘ 541

Radiobutton

The following template makes a RadioButton control display a different appearance. Instead of the
usual filled circle, the template displays an X if the control is checked.

<ControlTemplate x:Key=”temRadioButton” TargetType=”RadioButton”>
 <BulletDecorator>
 <BulletDecorator.Bullet>
 <Grid Height=”15” Width=”15”>
 <Path Name=”pathChecked” Data=”M4,11 L11,4 M4,4 L11,11”
 Stroke=”Blue” StrokeThickness=”2” Opacity=”1”/>
 <Ellipse Stroke=”Black” StrokeThickness=”1”/>
 </Grid>
 </BulletDecorator.Bullet>
 <ContentPresenter Margin=”5,0,0,0”/>
 </BulletDecorator>
 <ControlTemplate.Triggers>
 <Trigger Property=”IsChecked” Value=”True”>
 <Setter TargetName=”pathChecked” Property=”Stroke” Value=”Green”/>
 <Setter TargetName=”pathChecked” Property=”Opacity” Value=”1”/>
 </Trigger>
 <Trigger Property=”IsChecked” Value=”False”>
 <Setter TargetName=”pathChecked” Property=”Opacity” Value=”0”/>
 </Trigger>
 <Trigger Property=”IsChecked” Value=”{x:Null}”>
 <Setter TargetName=”pathChecked” Property=”Stroke” Value=”Gray”/>
 <Setter TargetName=”pathChecked” Property=”Opacity” Value=”1”/>
 </Trigger>
 </ControlTemplate.Triggers>
</ControlTemplate>

BareBonesRadioButton

You could add other Triggers such as one to change the control’s appearance when its IsEnabled
property is False.

The BareBonesRadioButton example program demonstrates this template.

pRogRessbaR

The following template redefines how a ProgressBar works:

<ControlTemplate x:Key=”temProgressBar” TargetType=”ProgressBar”>
 <Border BorderBrush=”Green” BorderThickness=”5”>
 <Border Name=”PART_Track” Background=”Red”>
 <Rectangle Name=”PART_Indicator” HorizontalAlignment=”Left”
 Fill=”Blue”/>
 </Border>
 </Border>
</ControlTemplate>

BareBonesProgressBar

542 ❘ appendix n TemplaTes

The template uses a Border to draw the control’s background track area. The special name PART_Track
tells the underlying ProgressBar what control to use as its background.

The template uses a Rectangle control to display the ProgressBar’s current value. The special
name PART_indicator tells the underlying ProgressBar what control to use for this.

The ProgressBar uses the PART_Track and PART_Indicator controls to determine how to display
progress. It assumes that the indicator completely fills the track when the Value property has its
maximum value. If that isn’t true, then the control may behave oddly.

For example, suppose the track has a 5-pixel border. Then the indicator sits 5 pixels inside the track
so it grows to completely fill the track 10 pixels early (5 pixels for each side), before the Value prop-
erty reaches its maximum. It continues to grow beyond that point, but the rest of the indicator isn’t
visible because it is hidden by the track’s border.

The BareBonesProgressBar example program demonstrates this template.

oRiented pRogRessbaR

The template shown in the previous section only works for a ProgressBar that is oriented horizon-
tally. The indicator’s HorizontalAlignment property is set to Left, and its VerticalAlignment
property defaults to Stretch, so the indicator fits properly within the track. For a vertical align-
ment, you would need to change the indicator’s HorizontalAlignment to Stretch and its
VerticalAlignment to Bottom.

To allow the control to handle either orientation, you can use the ControlTemplate’s Triggers sec-
tion to either modify the properties or select different styles.

The following code shows such a Triggers section:

<ControlTemplate.Triggers>
 <Trigger Property=”Orientation” Value=”Horizontal”>
 <Setter TargetName=”PART_Indicator”
 Property=”VerticalAlignment” Value=”Stretch”/>
 <Setter TargetName=”PART_Indicator”
 Property=”HorizontalAlignment” Value=”Left”/>
 </Trigger>
 <Trigger Property=”Orientation” Value=”Vertical”>
 <Setter TargetName=”PART_Indicator”
 Property=”VerticalAlignment” Value=”Bottom”/>
 <Setter TargetName=”PART_Indicator”
 Property=”HorizontalAlignment” Value=”Stretch”/>
 </Trigger>
</ControlTemplate.Triggers>

OrientedProgressBar

You could add other Triggers such as one to change the control’s appearance when its IsEnabled
property is False.

The OrientedProgressBar example program demonstrates the template with the Triggers section.

ScrollBar ❘ 543

LabeLed pRogRessbaR

The following template changes the ProgressBar’s appearance even more than the previous versions. In
addition to the track and indicator controls, this version adds a Label centered in the track. It binds the
Label’s Content property to the ProgressBar’s Value property so the Label displays the control’s Value.

<ControlTemplate x:Key=”temProgressBar” TargetType=”ProgressBar”>
 <Border BorderBrush=”Green” BorderThickness=”1”>
 <Grid Name=”PART_Track” Background=”Red”>
 <Rectangle Name=”PART_Indicator” Fill=”Blue”/>
 <Label Foreground=”Yellow” FontWeight=”Bold”
 HorizontalAlignment=”Center” VerticalAlignment=”Center”
 ContentStringFormat=”0” Content=”{TemplateBinding Value}”/>
 <!-- Alternate using a TextBox:
 <TextBox HorizontalAlignment=”Left”
 Text=”{Binding Path=Value,
 RelativeSource={RelativeSource TemplatedParent},
 StringFormat=0}”/>
 -->
 </Grid>
 </Border>
 <ControlTemplate.Triggers>
 <Trigger Property=”Orientation” Value=”Horizontal”>
 <Setter TargetName=”PART_Indicator”
 Property=”VerticalAlignment” Value=”Stretch”/>
 <Setter TargetName=”PART_Indicator”
 Property=”HorizontalAlignment” Value=”Left”/>
 </Trigger>
 <Trigger Property=”Orientation” Value=”Vertical”>
 <Setter TargetName=”PART_Indicator”
 Property=”VerticalAlignment” Value=”Bottom”/>
 <Setter TargetName=”PART_Indicator”
 Property=”HorizontalAlignment” Value=”Stretch”/>
 </Trigger>
 </ControlTemplate.Triggers>
</ControlTemplate>

LabeledProgressBar

The code also includes a commented TextBox that can replace the Label. The Label is probably a
better choice for this template. The TextBox code is just included to show how to bind a TextBox to
the template control’s Value property.

You could add other Triggers such as one to change the control’s appearance when its IsEnabled
property is False.

The LabeledProgressBar example program demonstrates this template.

sCRoLLbaR

A normal ScrollBar displays five pieces:

A thumb that the user can drag back and forth➤➤

544 ❘ appendix n TemplaTes

Two long repeat buttons on either side of the thumb. When the user clicks on one of these, ➤➤

the ScrollBar adds or subtracts its LargeChange value.

Two smaller repeat buttons on the ends of the control. When the user clicks on one of these, ➤➤

the ScrollBar adds or subtracts its SmallChange value.

Like the ProgressBar, this control has a component with a special name — PART_Track. This rep-
resents the area containing the LargeChange RepeatButtons and the thumb.

The RepeatButtons can make the control perform the normal scrolling actions by executing these
commands:

ScrollBar.LineLeftCommand➤➤

ScrollBar.PageLeftCommand➤➤

ScrollBar.PageRightCommand➤➤

ScrollBar.LineRightCommand➤➤

ScrollBar.LineUpCommand➤➤

ScrollBar.PageUpCommand➤➤

ScrollBar.PageDownCommand➤➤

ScrollBar.LineDownCommand➤➤

The following code shows the layout portion of a ScrollBar template:

<ControlTemplate x:Key=”temScrollBar” TargetType=”ScrollBar”>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height=”Auto”/>
 <RowDefinition Height=”*”/>
 <RowDefinition Height=”Auto”/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”Auto” />
 <ColumnDefinition Width=”*” />
 <ColumnDefinition Width=”Auto” />
 </Grid.ColumnDefinitions>

 <RepeatButton Name=”btnSmallDown” Grid.Column=”0”
 Command=”ScrollBar.LineLeftCommand”>
 <Path HorizontalAlignment=”Center” VerticalAlignment=”Center”
 Data=”M2,3 L10,3” Stroke=”Blue” StrokeThickness=”3”
 StrokeStartLineCap=”Round” StrokeEndLineCap=”Round”/>
 </RepeatButton>
 <Track Grid.Column=”1” Name=”PART_Track”>
 <Track.DecreaseRepeatButton>
 <RepeatButton Name=”btnDecrease”
 Command=”ScrollBar.PageLeftCommand” />
 </Track.DecreaseRepeatButton>
 <Track.IncreaseRepeatButton>
 <RepeatButton Name=”btnIncrease”
 Command=”ScrollBar.PageRightCommand” />
 </Track.IncreaseRepeatButton>

Modified ScrollBar ❘ 545

 <Track.Thumb>
 <Thumb Background=”Blue” />
 </Track.Thumb>
 </Track>
 <RepeatButton Name=”btnSmallUp” Grid.Column=”2”
 Command=”ScrollBar.LineRightCommand”>
 <Path HorizontalAlignment=”Center” VerticalAlignment=”Center”
 Data=”M2,3 L10,3 M6,0 L6,7” Stroke=”Blue” StrokeThickness=”3”
 StrokeStartLineCap=”Round” StrokeEndLineCap=”Round”/>
 </RepeatButton>
 </Grid>
 <ControlTemplate.Triggers>
 ... Triggers omitted ...
 </ControlTemplate.Triggers>
</ControlTemplate>

BareBonesScrollBar

The template’s Triggers change the locations of the components in the Grid depending on the con-
trol’s Orientation property. They also set the RepeatButtons’ Command properties to the Left/
Right commands or the Up/Down commands. To save space, the Triggers section isn’t shown here.
Download the example program to see the full code.

You could add other Triggers such as one to change the control’s appearance when its IsEnabled
property is False.

The BareBonesScrollBar example program demonstrates this template.

Modified sCRoLLbaR

The ScrollBar template described in the previous section makes a ScrollBar that looks like it’s
made up of a bunch of buttons (which it is). The following template gives a scrollbar a more distinc-
tive appearance:

<ControlTemplate x:Key=”temScrollBar” TargetType=”ScrollBar”>
 <ControlTemplate.Resources>
 <ControlTemplate x:Key=”temSmallChangeButtons” TargetType=”RepeatButton”>
 <Grid>
 <Ellipse Fill=”Blue” MinHeight=”12” MinWidth=”10”/>
 <ContentPresenter/>
 </Grid>
 </ControlTemplate>
 <ControlTemplate x:Key=”temLargeChangeButtonsH” TargetType=”RepeatButton”>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height=”*”/>
 <RowDefinition Height=”2*”/>
 <RowDefinition Height=”*”/>
 </Grid.RowDefinitions>
 <Rectangle Grid.Row=”1” RadiusX=”10” RadiusY=”10”
 Fill=”SkyBlue” Stroke=”Blue”/>
 <ContentPresenter/>
 </Grid>
 </ControlTemplate>

546 ❘ appendix n TemplaTes

 <ControlTemplate x:Key=”temLargeChangeButtonsV” TargetType=”RepeatButton”>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”*”/>
 <ColumnDefinition Width=”2*”/>
 <ColumnDefinition Width=”*”/>
 </Grid.ColumnDefinitions>
 <Rectangle Grid.Column=”1” RadiusX=”10” RadiusY=”10”
 Fill=”SkyBlue” Stroke=”Blue”/>
 <ContentPresenter/>
 </Grid>
 </ControlTemplate>
 <ControlTemplate x:Key=”temThumb” TargetType=”Thumb”>
 <Ellipse Fill=”Blue”/>
 </ControlTemplate>
 </ControlTemplate.Resources>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height=”Auto”/>
 <RowDefinition Height=”*”/>
 <RowDefinition Height=”Auto”/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”Auto” />
 <ColumnDefinition Width=”*” />
 <ColumnDefinition Width=”Auto” />
 </Grid.ColumnDefinitions>

 <RepeatButton Name=”btnSmallDown” Grid.Column=”0”
 Command=”ScrollBar.LineLeftCommand”
 Template=”{StaticResource temSmallChangeButtons}”>
 <Path Margin=”1” HorizontalAlignment=”Center” VerticalAlignment=”Center”
 Data=”M2,3 L10,3” Stroke=”Yellow” StrokeThickness=”3”
 StrokeStartLineCap=”Round” StrokeEndLineCap=”Round”/>
 </RepeatButton>
 <Track Grid.Column=”1” Name=”PART_Track”>
 <Track.DecreaseRepeatButton>
 <RepeatButton Name=”btnDecrease” Command=”ScrollBar.PageLeftCommand”
 Template=”{StaticResource temLargeChangeButtonsH}” />
 </Track.DecreaseRepeatButton>
 <Track.IncreaseRepeatButton>
 <RepeatButton Name=”btnIncrease”
 Command=”ScrollBar.PageRightCommand”
 Template=”{StaticResource temLargeChangeButtonsH}” />
 </Track.IncreaseRepeatButton>
 <Track.Thumb>
 <Thumb Background=”Blue” Template=”{StaticResource temThumb}” />
 </Track.Thumb>
 </Track>
 <RepeatButton Name=”btnSmallUp” Grid.Column=”2”
 Command=”ScrollBar.LineRightCommand”
 Template=”{StaticResource temSmallChangeButtons}”>
 <Path Margin=”1” HorizontalAlignment=”Center” VerticalAlignment=”Center”
 Data=”M2,4 L10,4 M6,0 L6,8” Stroke=”Yellow” StrokeThickness=”3”
 StrokeStartLineCap=”Round” StrokeEndLineCap=”Round”/>
 </RepeatButton>

Button ❘ 547

 </Grid>
 <ControlTemplate.Triggers>
 <Trigger Property=”Orientation” Value=”Horizontal”>
 ... Some Setters omitted ...
 <Setter TargetName=”btnDecrease” Property=”Template”
 Value=”{StaticResource temLargeChangeButtonsH}”/>
 <Setter TargetName=”btnIncrease” Property=”Template”
 Value=”{StaticResource temLargeChangeButtonsH}”/>
 </Trigger>
 <Trigger Property=”Orientation” Value=”Vertical”>
 ... Some Setters omitted ...
 <Setter TargetName=”btnDecrease” Property=”Template”
 Value=”{StaticResource temLargeChangeButtonsV}”/>
 <Setter TargetName=”btnIncrease” Property=”Template”
 Value=”{StaticResource temLargeChangeButtonsV}”/>
 </Trigger>
 </ControlTemplate.Triggers>
</ControlTemplate>

ModifiedScrollBar

The code starts by defining templates for the ScrollBar’s pieces. It then creates the components that
make up the ScrollBar.

The Triggers section changes properties appropriately for vertical and horizontal orientations. A
new technique shown in this example is the way the Triggers change the template used by the
LargeChange Buttons. This lets those Buttons use very different layouts depending on the control’s
orientation.

You could add other Triggers such as one to change the control’s appearance when its IsEnabled
property is False.

The ModifiedScrollBar example program demonstrates this template.

button

Many applications customize Buttons extensively to give them new shapes, highlights, translucency,
and other graphical effects. To keep this code simple, the following template makes its Button from
a simple Rectangle and changes the Rectangle’s color to show different Button states:

<ControlTemplate x:Key=”temButton” TargetType=”Button”>
 <!-- Styles for different states. -->
 <ControlTemplate.Resources>
 <!-- Style for “normal” status. -->
 <Style TargetType=”Rectangle”>
 <Setter Property=”Fill” Value=”Green”/>
 </Style>
 <Style x:Key=”styIsDefaulted” TargetType=”Rectangle”>
 <Setter Property=”Fill” Value=”DarkGreen”/>
 </Style>
 <Style x:Key=”styDisabled” TargetType=”Rectangle”>
 <Setter Property=”Fill” Value=”Gray”/>
 </Style>
 <Style x:Key=”styIsMouseOver” TargetType=”Rectangle”>

548 ❘ appendix n TemplaTes

 <Setter Property=”Fill” Value=”Lime”/>
 </Style>
 <Style x:Key=”styIsFocused” TargetType=”Rectangle”>
 <Setter Property=”Fill” Value=”White”/>
 </Style>
 <Style x:Key=”styIsPressed” TargetType=”Rectangle”>
 <Setter Property=”Fill” Value=”Yellow”/>
 </Style>
 </ControlTemplate.Resources>

 <!-- The controls that make up the Button. -->
 <Grid Name=”grdMain” ClipToBounds=”True”
 Width=”{TemplateBinding Width}”
 Height=”{TemplateBinding Height}”>
 <Rectangle Name=”rectMain”/>
 <ContentPresenter VerticalAlignment=”Center” HorizontalAlignment=”Center”/>
 </Grid>

 <!-- Behaviors. -->
 <ControlTemplate.Triggers>
 <Trigger Property=”IsMouseOver” Value=”True”>
 <Setter TargetName=”rectMain” Property=”Style”
 Value=”{StaticResource styIsMouseOver}”/>
 </Trigger>
 <Trigger Property=”IsFocused” Value=”True”>
 <Setter TargetName=”rectMain” Property=”Style”
 Value=”{StaticResource styIsFocused}”/>
 </Trigger>
 <Trigger Property=”IsDefaulted” Value=”True”>
 <Setter TargetName=”rectMain” Property=”Style”
 Value=”{StaticResource styIsDefaulted}”/>
 </Trigger>
 <Trigger Property=”IsPressed” Value=”True”>
 <Setter TargetName=”rectMain” Property=”Style”
 Value=”{StaticResource styIsPressed}”/>
 </Trigger>
 <Trigger Property=”IsEnabled” Value=”False”>
 <Setter TargetName=”rectMain” Property=”Style”
 Value=”{StaticResource styDisabled}”/>
 </Trigger>
 </ControlTemplate.Triggers>
</ControlTemplate>

BareBonesButton

The code begins by defining different Styles for the Button’s different states: normal, defaulted,
disabled, mouse over, focused, and pressed.

The template then creates the Button from a simple Rectangle.

Next, the template includes a series of Triggers that handle the Button’s different states. Each
Trigger simply selects the appropriate Style.

Keeping all of the details in Styles makes the template easier to read than it would be if all of the
property settings were contained directly in the template’s Triggers. In this example, the property-
setting code is quite simple so the difference is small. In a more complex example that uses lots of
decorative controls and animations, the difference can be significant.

Triggers and Animation
This appendix summarizes triggers and animations. For more detailed information, see Chapter 14.

EvEnttriggErs

You can place EventTriggers inside a control’s Triggers section to take action when an event
occurs. Inside the EventTrigger, you can place actions that should occur when the event
takes place.

tEmpting triggErs

Despite its general-sounding name and the fact that IntelliSense lists other options,
the Triggers section can only hold EventTriggers, not property Triggers.

The most useful of these actions include:

PauseStoryboard➤➤ — Pauses a Storyboard.

ResumeStoryboard➤➤ — Resumes a paused Storyboard.

SeekStoryboard➤➤ — Moves the Storyboard to a specific position in its timeline.

StopStoryboard➤➤ — Stops a Storyboard. This resets properties to their original values.

RemoveStoryboard➤➤ — Stops a Storyboard and frees its resources.

The following code gives a Button an EventTrigger. When the Button raises its Click event,
the EventTrigger starts a Storyboard that changes the Button’s Canvas.Left property to
300 over a period of 0.5 seconds. The animation’s AutoReverse property is True, so after the
animation completes, it changes the Canvas.Left property back to its original value.

<Button Name=”btnClickMe” Canvas.Left=”10” Canvas.Top=”10” Content=”Click Me”>
 <Button.Triggers>

O

550 ❘ AppEndix O Triggers and animaTion

 <EventTrigger RoutedEvent=”Button.Click”>
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Duration=”0:0:0.5” To=”300”
 Storyboard.TargetProperty=”(Canvas.Left)”
 AutoReverse=”True”/>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
 </Button.Triggers>
</Button>

prOpErty triggErs

While you cannot place event triggers inside a control’s Triggers section, you can add them to a
Style and then apply the Style to a control in its Triggers section. The following code defines a
Style named styGrowButton:

<Style x:Key=”styGrowButton” TargetType=”Button”>
 <Style.Triggers>
 <Trigger Property=”IsMouseOver” Value=”True”>
 <Setter Property=”Width” Value=”150”/>
 <Setter Property=”Height” Value=”75”/>
 </Trigger>
 </Style.Triggers>
</Style>

This code’s property trigger occurs when the IsMouseOver property becomes True. As long as that
property’s value is True, the trigger changes the control’s Width and Height values. When the prop-
erty is no longer True, the control’s Width and Height return to their normal values.

The following code creates a Button that uses the styGrowButton Style:

<Button Style=”{StaticResource styGrowButton}”
 Canvas.Left=”10” Canvas.Top=”10” Content=”Grow Me”/>

In addition to Setters, a Trigger element can contain Trigger.EnterActions and
Trigger.ExitActions sections that can contain Storyboard control commands (such as
BeginStoryboard) to take action when the property gets and loses its target value.

The following code defines a Style that makes a Button larger when the IsMouseOver property
becomes True and makes it smaller when IsMouseOver becomes False:

<Style x:Key=”styGrowActions” TargetType=”Button”>
 <Style.Triggers>
 <Trigger Property=”IsMouseOver” Value=”True”>
 <Trigger.EnterActions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Duration=”0:0:0.25” To=”300”
 Storyboard.TargetProperty=”Width”/>

Storyboard Properties ❘ 551

 </Storyboard>
 </BeginStoryboard>
 </Trigger.EnterActions>
 <Trigger.ExitActions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Duration=”0:0:0.25” To=”100”
 Storyboard.TargetProperty=”Width”/>
 </Storyboard>
 </BeginStoryboard>
 </Trigger.ExitActions>
 </Trigger>
 </Style.Triggers>
</Style>

Unlike event triggers, property triggers do not undo their changes when the property no longer has
its target value. In this example, that means the Button is left with a Width of 100 no matter what
its initial Width was.

stOrybOArd prOpErtiEs

Table O-1 summarizes the most useful Storyboard properties.

tAblE O-1: Storyboard Properties

prOpErty purpOsE

AccelerationRatio Determines the percentage of the Storyboard’s Duration that it spends
accelerating to full speed.

AutoReverse Determines whether the Storyboard should replay itself backward after it
finishes running.

BeginTime Determines when the Storyboard starts running animations after it begins. This
can be useful to coordinate multiple Storyboards running at the same time.

DecelerationRatio Determines the percentage of the Storyboard’s Duration that it spends
decelerating from full speed to a stop.

Duration Determines the Storyboard’s duration in days, hours, minutes, and sec-
onds. For example, the value 0.1:23:45.67 means 0 days, 1 hour, 23 min-
utes, 45.67 seconds.

RepeatBehavior Determines whether the Storyboard repeats and how many times. This can
be an iteration count (2x or 10x), a duration during which the Storyboard
should repeat (0.0:0:2.5), or the word Forever.

SpeedRatio Determines the Storyboard’s speed relative to its parent. Values between
0 and 1 make the Storyboard slower. Values greater than 1 make the
Storyboard faster.

552 ❘ AppEndix O Triggers and animaTion

AnimAtiOn ClAssEs

WPF provides many animation classes that you can use in Storyboards. For each data type that
these classes animate, there are three possible kinds of animation.

A basic animation moves a property from one value to another in a straightforward way. These ani-
mation classes have names ending with Animation. For example, the basic class that animates the
Double data type is DoubleAnimation.

A key frame animation uses key frames to define points along the animation. These classes have names
ending with AnimationUsingKeyFrames, as in DoubleAnimationUsingKeyFrames.

A path animation uses a PathGeometry to specify values during the animation. These classes have
names ending with AnimationUsingPath, as in DoubleAnimationUsingPath.

Table O-2 summarizes WPF’s most useful animation classes. The Basic, Key Frame, and Path columns
indicated the types of animations that WPF provides for each data type.

tAblE O-2: Animation Classes

dAtA typE bAsiC KEy FrAmE pAth

Boolean X

Byte X

Char X

Color X X

Decimal X X

Double X X X

Int16 X X

Int32 X X

Int64 X X

Matrix X

Point3D X X X

Rect X X

Rotation3D X X

Single X X

Size X X

String X

Animation Classes ❘ 553

dAtA typE bAsiC KEy FrAmE pAth

Thickness X X

Vector X X

Vector3D X X

Key frame animations use a collection of key frames to define the values that the animation should visit
and the way in which the values change from one to another. For example, a LinearDoubleKeyFrame
object makes a Double property value vary linearly from its previous value to the one defined by the
key frame object.

Table O-3 lists the key frame classes. The name of a particular key frame class starts with the value
shown in this table, followed by the data type, followed by KeyFrame, as in LinearDoubleKeyFrame.

tAblE O-3: Key Frame Classes

KEy FrAmE typE purpOsE

Discrete Makes the property jump to its new value discretely.

Linear Makes the property move linearly to its new value.

Spline Makes the property move smoothly between values using a spline to control
the movement’s speed. For example, you can use a spline to make the prop-
erty’s change start slowly, speed up in the middle, and then slow to a stop.

Index of Example Programs

Chapter 1

Chapter 1 contains the following example programs:

Clutter➤➤ — A cluttered interface with garish colors, too much animation, and annoying
sound effects. [Page 2, 3].

Clutter_FakeRotation➤➤ — A static version of Clutter to simulate rotation. Figure 1-1.
[Page 2].

Critters➤➤ — A simple demonstration of properly nested XAML elements, in this case, a
horizontal StackPanel holding a vertical StackPanel. Figure 1-4. [Page 6].

FlowDocument➤➤ — Demonstrates many FlowDocument elements including tables, con-
trols, shapes, lists, figures, and even a rotating three-dimensional shape. Figure 1-14.
[Page 19].

Gasket3D➤➤ — Uses code-behind to build a complex rotating three-dimensional object.
Figure 1-9. [Page 12].

GrowingButtons➤➤ — Makes buttons that grow and shrink when the mouse moves on
and off them. Figure 1-12. [Page 14].

Multimedia➤➤ — Plays video and audio. Figure 1-6. [Page 11].

SetBackgrounds➤➤ — Sets background linear gradient brushes in code-behind.

SimpleCritters➤➤ — A simple demonstration of properly nested XAML elements, in this
case, a horizontal StackPanel holding a vertical StackPanel. Figures 1-2 and 1-3.
[Page 6].

StackPanelButton➤➤ — Displays buttons that contain StackPanels. Figure 1-13. [Page 16].

P

556 ❘ appendix p Index of example programs

Star➤➤ — Demonstrates the Polygon object. Figure 1-10. [Page 13].

TransformedControls➤➤ — Displays labels that are rotated 90 degrees. Figure 1-7. [Page 11].

TransformedVideo➤➤ — Displays video that is rotated, skewed, and stretched. Figure 1-8. [Page 12].

Zoom➤➤ — Shows the difference between enlarged bitmap images and enlarged vector-based
images. Figure 1-11. [Page 13].

Chapter 2

Chapter 2 contains the following example program:

ImageColors➤➤ — Demonstrates different ways to attach buttons to Click event handlers in the
code-behind. Figure 2-12. [Page 32].

Chapter 3

Chapter 3 contains the following example programs:

GradientBrushes➤➤ — Demonstrates linear gradient and radial gradient brushes. Figure 3-8.
[Page 45].

MakeDrawingBrush➤➤ — Used in a walk-through that creates a drawing brush. Figure 3-17.
[Page 50].

MakeImageBrush➤➤ — Used in a walk-through that creates an image brush. Figures 3-12
through 3-15. [Page 46-47].

MissionBriefing➤➤ — Used to demonstrate various Blend features. Figures 3-1 through 3-4.
[Page 38, 39, 41, 42].

ModifiedGradientBrushes➤➤ — Used to demonstrate how to modify gradient brushes.
Figures 3-9 through 3-11. [Page 45].

ReflectingBrush➤➤ — Uses visual brushes to simulate reflections of textboxes. Figure 3-19.
[Page 52].

ResourcesAndStyles➤➤ — Demonstrates how to use resources and styles. Figures 3-22 through
3-25. [Page 53-54].

SpinningButtons➤➤ — Demonstrates a storyboard that make a button spin 360 degrees.
Figure 3-28. [Page 56].

UseBrushes➤➤ — Displays a rectangle and a polygon that use gradient brushes for interiors and
lines. Figure 3-5. [Page 43].

UseImageBrushes➤➤ — Displays image brushes with different viewbox and viewport values.
Figure 3-16. [Page 48].

UsePens➤➤ — Demonstrates a Polygon’s StrokeThickness, StrokeMiterLimit, and Stroke
properties. Figure 3-21. [Page 52].

Chapter 5 ❘ 557

UseTileBrushes➤➤ — Uses image, drawing, and visual brushes. Figure 3-20. [Page 52].

UseVisualBrush➤➤ — Uses a visual brush. Figure 3-18. [Page 51].

Chapter 4

Chapter 4 contains the following example programs:

FontProperties➤➤ — Demonstrates an assortment of font property values. Figure 4-5. [Page 66].

FontWeights➤➤ — Demonstrates FontWeight values for Segoe and Arial fonts. Figure 4-6.
[Page 66].

GradientOpacityMask➤➤ — Uses a RadialGradientBrush as an OpacityMask for an Image.
Figure 4-8. [Page 67].

GroupBoxColors➤➤ — Demonstrates Foreground and Background properties in a GroupBox.
Figure 4-7. [Page 67].

ImageOpacityMask➤➤ — Uses an Image to make an ImageBrush and uses it as an
OpacityMask for an Image and a Button. Figure 4-9. [Page 69].

Margins➤➤ — Displays Buttons with different Margin values. Figure 4-3. [Page 64].

MaxMinSizes➤➤ — Demonstrates MinHeight and MaxHeight properties as a window is resized.
Figure 4-4. [Page 65].

SizeInContainers➤➤ — Demonstrates how controls are sized inside different containers.
Figure 4-1. [Page 62].

SizeInSingleChildContainers➤➤ — Demonstrates how controls are sized inside different contain-
ers that can hold only a single child. Figure 4-2. [Page 63].

Chapter 5

Chapter 5 contains the following example programs:

PopupPlacement➤➤ — Demonstrates the Popup control’s Placement values Top, Left, Right,
and Bottom. Figure 5-10. [Page 86].

UseBorder➤➤ — Displays a Border control with curved corners. Figure 5-14. [Page 90].

UseBulletDecorator➤➤ — Uses the BulletDecorator to make a bulleted list. Figure 5-15.
[Page 91].

UseDocumentViewer➤➤ — Displays a fixed format document in a DocumentViewer. Figure 5-4.
[Page 80].

UseFlowDocument➤➤ — Displays a FlowDocument that is not inside a viewer (so it behaves like
it’s in a FlowDocumentReader).

UseFlowDocumentPageViewer➤➤ — Displays a FlowDocument in a FlowDocumentPageViewer
(in Page mode). Figure 5-5. [Page 81].

558 ❘ appendix p Index of example programs

UseFlowDocumentReader➤➤ — Displays a FlowDocument in a FlowDocumentReader (in Page,
Scroll, or TwoPage mode). Figure 5-6. [Page 82].

UseFlowDocumenScrollViewer➤➤ — Displays a FlowDocument in a FlowDocumentScrollViewer
(in Scroll mode). Figure 5-7. [Page 82].

UseGroupBox➤➤ — Demonstrates the GroupBox control. Figure 5-16. [Page 84].

UseImage➤➤ — Demonstrates the Image control. Figure 5-2. [Page 86].

UseLabel➤➤ — Demonstrates the Label control. Figure 5-8. [Page 87].

UseListView➤➤ — Demonstrates the ListView control. Figure 5-17. [Page 92].

UseMediaElement➤➤ — Demonstrates the MediaElement control to play audio and video. Also
demonstrates the XAML SoundPlayerAction command to play sounds. Figure 5-3. [Page 78].

UsePopup➤➤ — Demonstrates the Popup control to display information above the window.
Figure 5-9. [Page 84].

UseProgressBar➤➤ — Demonstrates the ProgressBar control. Figure 5-18. [Page 97].

UseSeparator➤➤ — Demonstrates the Separator control in menus and toolbars. Figure 5-19.
[Page 97].

UseTextBlock➤➤ — Demonstrates the TextBlock control and many of the inlines and other
objects that it can contain. Figure 5-12. [Page 89].

UseTextTrimming➤➤ — Demonstrates the TextBlock’s TextTrimming property. Figure 5-11.
[Page 87].

UseToolTip➤➤ — Shows how to make tooltips with the ToolTip attribute and with a separate
ToolTip object. Figure 5-13. [Page 89].

UseTreeView➤➤ — Demonstrates the TreeView control. Figure 5-20. [Page 98].

Chapter 6

Chapter 6 contains the following example programs:

ScrollBarVisibility➤➤ — Shows the difference between the ScrollBar control’s Visibility
property values Disabled and Hidden. Figure 6-5. [Page 107].

UseCanvas➤➤ — Demonstrates the Canvas control. Figure 6-1. [Page 102].

UseDockPanel➤➤ — Demonstrates the DockPanel control. Figure 6-2. [Page 104].

UseExpander➤➤ — Demonstrates the Expander control. Figure 6-3. [Page 105].

UseGrid➤➤ — Demonstrates the Grid control. Figure 6-4. [Page 107].

UseScrollViewer➤➤ — Demonstrates the ScrollViewer control. Figure 6-6. [Page 108].

UseStackPanel➤➤ — Demonstrates the StackPanel control. Figure 6-7. [Page 108].

UseStatusBar➤➤ — Demonstrates the StatusBar control. Figure 6-8. [Page 109].

Chapter 7 ❘ 559

UseTabControl➤➤ — Demonstrates the TabControl control. Figure 6-9. [Page 110].

UseToolBar➤➤ — Demonstrates the ToolBarTray and ToolBar controls. Figures 6-10 and 6-11.
[Page 112].

UseUniformGrid➤➤ — Demonstrates the UniformGrid control. Figure 6-13. [Page 114].

UseVerticalToolBar➤➤ — Demonstrates the ToolBar control with vertical orientation.
Figure 6-12. [Page 113].

UseViewbox➤➤ — Demonstrates the Viewbox control and its different Stretch property values.
Figure 6-14. [Page 115].

UseWindowsFormsHost➤➤ — Demonstrates the WindowsFormsHost control. Figure 6-15.
[Page 116].

UseWrapPanel➤➤ — Demonstrates the WrapPanel control. Figure 6-16. [Page 117].

Chapter 7

Chapter 7 contains the following example programs:

UseButtons➤➤ — Demonstrates Button controls. Figure 7-1. [Page 121].

UseCheckBoxes➤➤ — Demonstrates CheckBox controls. Figure 7-2. [Page 121].

UseComboBox➤➤ — Demonstrates ComboBox controls including a ComboBox with complex items.
Figures 7-3 and 7-4. [Page 122-123].

UseContextMenu➤➤ — Demonstrates ComboBox controls including a ComboBox with complex
items. Figure 7-5. [Page 124].

UseFrame➤➤ — Demonstrates a Frame used to display web pages. Figure 7-6. [Page 126].

UseGridSplitter➤➤ — Demonstrates GridSplitter controls that let the user resize a Grid con-
trol’s rows and columns. Figure 7-7. [Page 127].

UseListBox➤➤ — Demonstrates the ListBox control making an extended selection. Figure 7-8.
[Page 129].

UseMenu➤➤ — Demonstrates the Menu control with MenuItems that display accelerators, short-
cuts, and complex content such as images. Figures 7-9 and 7-10. [Page 131, 131].

UsePasswordBox➤➤ — Demonstrates the PasswordBox control to let the user enter a password
that is hidden on the screen. Figure 7-11. [Page 132].

UseRadioButton➤➤ — Demonstrates three groups of RadioButtons. Figure 7-12. [Page 133].

UseRepeatButton➤➤ — Demonstrates the RepeatButton control. Figure 7-13. [Page 134].

UseRichTextBox➤➤ — Demonstrates the RichTextBox control. Menus let you change the
selected text’s style (bold, italic, underline), size (small, medium, large), color, background
color, and font family (Times New Roman, Arial, Courier New). Menus also let you control
paragraph alignment, bulleted and numbered lists, undo, and redo. Figure 7-14. [Page 137].

560 ❘ appendix p Index of example programs

UseScrollBar➤➤ — Demonstrates three ScrollBars to let the user define a custom color.
Figure 7-15. [Page 140].

UseSlider➤➤ — Demonstrates three Sliders to let the user define a custom color. Figure 7-16.
[Page 141].

UseTextBox➤➤ — Demonstrates the TextBox control. Menus let you change the selected text’s
style (bold, italic, underline), size (small, medium, large), color, background color, and font
family (Times New Roman, Arial, Courier New). Menus also let you control paragraph
alignment, undo, and redo. Figure 7-17. [Page 143].

Chapter 8

Chapter 8 contains the following example programs:

PathBezier➤➤ — Uses the Path mini-language’s Bézier curve commands to draw cubic, smooth,
quadratic, and smooth “T” Bézier curves. Figure 8-4. [Page 149].

PathFillRules➤➤ — Shows the difference between the Odd/Even and Non-Zero fill rules.
Figure 8-3. [Page 149].

PathObjects➤➤ — Draws shapes by using the Path mini-language and using objects (which is
much more verbose). Figure 8-5. [Page 150].

PolygonPolylineDifference➤➤ — Demonstrates the difference between a Polygon and a Polyline
that has first and last points at the same place. Figure 8-6. [Page 151].

UseEllipseLine➤➤ — Demonstrates the Ellipse and Line controls. Figure 8-1. [Page 147].

UsePathPolygonPolyline➤➤ — Demonstrates the Path, Polygon, and Polyline controls.
Figure 8-2. [Page 148].

UseRectangle➤➤ — Demonstrates the Rectangle control including one with a thick dashed bor-
der. Figure 8-7. [Page 152].

Chapter 9

Chapter 9 contains the following example programs:

AttachedProperties➤➤ — Demonstrates several attached properties and property elements.
Figure 9-5. [Page 162].

ComplexBrush➤➤ — Fills a form with a many-colored radial gradient brush. Figure 9-2. [Page 155].

Heart➤➤ — Uses a Path to draw a filled heart shape. Figure 9-1. [Page 154].

InheritedProperties➤➤ — Demonstrates that some properties are inherited from a control’s con-
tainer and some are not. Figure 9-4. [Page 160].

MakeComplexBrush➤➤ — Builds a complex radial gradient brush in code-behind similar to the
one shown in Figure 9-2. [Page 155].

PropertyElements➤➤ — Demonstrates several property elements. Figure 9-3. [Page 158].

Chapter 10 ❘ 561

Chapter 10

Chapter 10 contains the following example programs:

FillRules➤➤ — Demonstrates the FillRule property values Nonzero and EvenOdd. Figure 10-12.
[Page 170].

GradientPens➤➤ — Draws several shapes with pens that use linear color gradients. Figure 10-4.
[Page 167].

ImageBrushTileModes➤➤ — Uses ImageBrushes to demonstrate the TileMode property values
FlipX, FlipY, FlipXY, Tile, and None. Figure 10-16. [Page 174].

MagnifiedDrawingBrush➤➤ — Draws Rectangles filled with a DrawingBrush at various scales.
Figure 10-17. [Page 175].

MagnifiedLines➤➤ — Draws the same line magnified to show that you can tell the difference
between dash caps only when a line is fairly thick. Figure 10-2. [Page 166].

MagnifiedVisualBrush➤➤ — Draws Rectangles filled with a VisualBrush at various scales.
The result looks similar to Figure 10-17. [Page 177].

Opacity➤➤ — Draws several overlapping translucent shapes on top of some text. Figure 10-3.
[Page 167].

PensAndBrushes➤➤ — Draws an ellipse to demonstrate a simple pen and brush. Figure 10-1.
[Page 165].

PictureFilledText➤➤ — Uses an ImageBrush to draw text that is filled with a picture. Figure 10-11.
[Page 170].

SpreadMethods➤➤ — Demonstrates the SpreadMethod property’s Pad, Reflect, and Repeat
values for gradient brushes. Figure 10-13. [Page 171].

StrokeDashArrays➤➤ — Draws lines with different StrokeDashArray values. Figure 10-5.
[Page 168].

StrokeDashCaps➤➤ — Draws lines with different StrokeDashCap values. Figure 10-6. [Page 168].

StrokeDashOffsets➤➤ — Draws lines with different StrokeDashOffset values. Figure 10-7.
[Page 168].

StrokeLineCaps➤➤ — Draws lines with different StrokeEndLineCap and StrokeStartLineCap
values. Figure 10-8. [Page 168].

StrokeLineJoins➤➤ — Draws lines with different StrokeLineJoin values. Figure 10-9. [Page 169].

StrokeMiterLimits➤➤ — Draws lines with different StrokeMiterLimit values. Figure 10-10.
[Page 169].

UseLinearGradientBrush➤➤ — Draws several different kinds of LinearGradientBrush.
Figure 10-14. [Page 172].

UseRadialGradientBrush➤➤ — Draws several different kinds of RadialGradientBrush.
Figure 10-15. [Page 174].

UseSolidBrush➤➤ — Draws two overlapping ellipses that are filled with solid colors. [Page 171].

562 ❘ appendix p Index of example programs

Chapter 11

Chapter 11 contains the following example programs:

EventNameAttributes➤➤ — Attaches event handlers to controls by placing event name attributes
in the XAML code. Figure 11-1. [Page 181].

EventNameAttributesRelaxed➤➤ — This Visual Basic program is similar to the program
EventNameAttributes except it uses relaxed delegates to simplify the code-behind. The result
looks similar to Figure 11-1. [Page 188].

HandlesClause➤➤ — This Visual Basic program uses Handles clauses to attach event handlers
to events. The result looks similar to Figure 11-1. [Page 190].

ImageColors➤➤ — Demonstrates various techniques for attaching buttons to code-behind.
Figure 11-2. [Page 181].

RuntimeEventHandlers➤➤ — Attaches event handlers to controls at run time. The result looks
similar to Figure 11-1. [Page 189].

Chapter 12

Chapter 12 contains the following example programs:

ButtonResources➤➤ — Displays several buttons that use resources to achieve a common appear-
ance. The XAML file contains a second set of resources commented out so you can easily
switch to another appearance. Figures 12-1 and 12-2. [Page 195, 197].

ContentResource➤➤ — Demonstrates that you can use a resource that is a control by setting a
Button’s Content property to a TextBlock. Figure 12-3. [Page 197].

ContextMenuResource➤➤ — Uses resources to make several controls use the same ContextMenu.
Shows how to tell which control displayed the ContextMenu. Figure 12-4. [Page 199].

DynamicLabelResource➤➤ — Uses a DynamicResource to allow a Label to use a value in its
own resources. [Page 208].

MultiWindowResource➤➤ — Uses merged resource dictionaries to allow several windows to
share resources, giving a common appearance. Figure 12-8. [Page 206].

ResourceDictionaries➤➤ — Uses two merged resource dictionaries in external files to display one
of two appearances. Figures 12-9 and 12-10. [Page 207].

ResourceHierarchy➤➤ — Demonstrates a resource hierarchy in which Labels find resources of
their own, in their container, in the window, and in the application. Figures 12-6 and 12-7.
[Page 204].

SimpleClock➤➤ — Demonstrates static and dynamic resources by displaying a resource changed
by code-behind and by using system colors as they change. Figure 12-11. [Page 211].

SysDataTypes➤➤ — Displays examples of the simple data types defined in mscorlib.
Figure 12-5. [Page 200].

Chapter 14 ❘ 563

Chapter 13

Chapter 13 contains the following example programs:

ButtonResources➤➤ — Displays button-like rectangles similar to those displayed by the program
ButtonValues except it uses Resources to make the code a bit more consistent. Similar to
Figure 13-1. [Page 213-215].

ButtonStyles➤➤ — Displays button-like rectangles similar to those displayed by the program
ButtonValues except it uses Styles to make the code much simpler and more maintainable.
Similar to Figure 13-1. [Page 220, 221, 226, 227, 229].

ButtonValues➤➤ — Displays button-like rectangles by setting individual property values for
each button. Figure 13-1. [Page 213].

ControlStyle➤➤ — Displays two Buttons and a Label that use various Styles. One Button
and the Label share the same Style. Figure 13-3. [Page 220].

ImageTriggers➤➤ — Displays a series of Images and Labels with Opacity = 0.5.
When IsMouseOver is True, a trigger changes the Opacity to 1 and sets the controls’
LayoutTransform property to a ScaleTransform object that enlarges the controls.
Figure 13-10. [Page 231].

InheritedStyles➤➤ — Demonstrates Styles that inherit from each other by using the BasedOn
keyword. Figure 13-6. [Page 226].

IsActiveTrigger➤➤ — Uses Triggers on the Window’s IsActive property and on the TextBox
IsFocused property. Figure 13-11. [Page 233].

IsMouseOverTriggers➤➤ — Demonstrates Triggers on Button IsMouseOver properties to
enlarge a Button when the mouse is over it. Figure 13-8. [Page 230].

LabelAndRectStyle➤➤ — Displays a Button, Label, and Rectangle that all share a common
Style. Figure 13-4. [Page 221].

MenuMouseOverTriggers➤➤ — Uses a MenuItem IsMouseOver trigger to change the
MenuItem’s LayoutTransform and BitmapEffect properties. Figure 13-9. [Page 231].

RedRectangles➤➤ — Uses a named style to set properties on rectangles. Figure 13-2. [Page 217].

TextTriggers➤➤ — Demonstrates Triggers on TextBox and ComboBox Text properties to high-

564 ❘ appendix p Index of example programs

AnimatedText➤➤ — Demonstrates a StringAnimationUsingKeyFrames with
DiscreteStringKeyFrame objects to make text appear a few characters at a time.
Figure 14-10. [Page 254].

AnimationWithoutStoryboards➤➤ — Uses code-behind to animate an Ellipse’s Canvas.Left
and Canvas.Top properties. Figure 14-12. [Page 259].

BouncingBall➤➤ — Displays a bouncing ball that plays a sound whenever it touches the
“ground.” Demonstrates spline key frames and ParallelTimeline objects to play a revers-
ing animation with sounds. Figure 14-11. [Page 258].

CentralizedTriggers➤➤ — Uses EvenTriggers centralized in a Canvas control to handle
MouseLeftButtonDown events raised by the controls contained in the Canvas. Figure 14-2.
[Page 238].

GrowingButtons➤➤ — Demonstrates the three combinations of property triggers with Setters, prop-
erty triggers with Storyboards, and event triggers with Storyboards. Figure 14-4. [Page 243].

JumpingButton➤➤ — Shows how complex the code is for even a very simple Storyboard that
animates a single control property. [Page 261].

PropertyTriggerButton➤➤ — Demonstrates a property trigger that executes Storyboards in its
EnterActions and ExitActions sections. Figure 14-3. [Page 242].

RepeatingSound➤➤ — Runs a repeating animation that plays a sound. [Page 257].

RovingButton➤➤ — Displays a Button that follows a rectangular path. Demonstrates methods
to start, pause, resume, stop, and remove a Storyboard. Figure 14-6. [Page 248].

RovingButtonDiscrete➤➤ — Displays a Button that follows a rectangular path in discrete
jumps. Demonstrates methods to start, pause, resume, stop, and remove a Storyboard.
Similar to Figure 14-6. [Page 251].

RovingButtonMixedKeyFrames➤➤ — Makes a Button follow a path by using linear key frames,
discrete key frames, path animation, and simple linear animation. Demonstrates methods to
start, pause, resume, stop, and remove a Storyboard. Figure 14-9. [Page 252].

RovingButtonWithKeyFrames➤➤ — Uses a DoubleAnimationUsingKeyFrames object with lin-
ear key frames to make a button follow a rectangular path. Demonstrates methods to start,
pause, resume, stop, and remove a Storyboard. Similar to Figure 14-6. [Page 249].

RovingButtonWithPath➤➤ — Displays a Button that follows a path. Demonstrates methods to
start, pause, resume, stop, and remove a Storyboard. Figure 14-8. [Page 251].

RovingButtonWithSplines➤➤ — Uses a DoubleAnimationUsingKeyFrames object with spline key
frames to make a button follow a rectangular path. The button starts crossing each side of the
path slowly, accelerates, and then slows into the corner. Similar to Figure 14-6. [Page 250].

SoundEvents➤➤ — Plays sound files when the user clicks on a button or moves the mouse over a
second button. [Page 256].

SpinButton➤➤ — Makes a button spin 360 degrees when clicked. Demonstrates a Storyboard
defined as a resource. Figure 14-1. [Page 237].

SplineGraph➤➤ — Displays a drawing of a spline curve with its control points. Figure 14-7.
[Page 249].

Chapter 17 ❘ 565

Chapter 15

Chapter 15 contains the following example programs:

BetterLabelTemplate➤➤ — Demonstrates a Label template that honors the client control’s
Background, BorderBrush, BorderThickness, HorizontalContentAlignment, and
VerticalContentAlignment properties. Figure 15-3. [Page 266].

DisabledLabelTemplate➤➤ — Demonstrates a Label template that displays multi-line text and a
distinctive appearance when the Label is disabled. Figure 15-5. [Page 268].

EllipseButton➤➤ — Demonstrates an elliptical Button template that uses different appearances
for normal, disabled, and defaulted buttons. It uses animation when the mouse is over the
button to display a moving “sparkle” highlight. Figures 15-9 through 15-12. [Page 275–277].

GlassButton➤➤ — Demonstrates a semitransparent Button template that uses different appear-
ances for normal, disabled, and defaulted buttons. Figures 15-6 through 15-8. [Page 270–271].

InterestingLabelTemplates➤➤ — Demonstrates two Label templates — one that displays a dou-
ble border and one that displays multi-line text. Figure 15-4. [Page 266].

ShowTemplate➤➤ — Displays a control’s default template’s XAML code. Figure 15-13. [Page 281].

SimpleLabelTemplate➤➤ — Demonstrates a simple Label template with preset brushes.
Figure 15-2. [Page 265].

SliderParts➤➤ — This program just displays a Slider so it’s easy to see its parts. Figure 15-1.
[Page 263].

Chapter 16

Chapter 16 contains the following example programs:

AnimatedSkins➤➤ — Lets the user switch skins by animating property values so the user sees
one skin morph into another. Figures 16-9 through 16-11. [Page 295-296].

OrderTracking➤➤ — Uses resource dictionaries to display one of three skins for use by different
kinds of users: manager, billing clerk, or order entry clerk. Figure 16-7. [Page 289].

ShowThemes➤➤ — Displays controls that use the default, Aero, Classic, Luna, and Royale
themes. Figures 16-1 and 16-3. [Page 284, 285].

SkinInterfaces➤➤ — Lets the user switch skins by loading XAML code at run time. Figures
16-12 and 16-13. [Page 298].

Skins➤➤ — Lets the user switch skins by loading resource files at run time. Figure 16-8. [Page 293].

Chapter 17

Chapter 17 contains the following example programs:

PrintFixedDocument➤➤ — Uses the PrintDialog’s PrintDocument method to print a
FixedDocument. Figure 17-10. [Page 315].

566 ❘ appendix p Index of example programs

PrintFlowDocument➤➤ — Uses the PrintDialog’s PrintDocument method to print a
FlowDocument. Figures 17-6 through 17-9. [Page 314-315].

PrintShapes➤➤ — Uses a DocumentPaginator class to print four pages of shapes generated by
code at print time. Figure 17-5. [Page 310].

PrintWindow➤➤ — Prints a window centered and optionally enlarged. Figures 17-1, 17-3, and
17-4. [Page 304, 306, 309].

SimplePrintWindow➤➤ — Uses the PrintDialog’s PrintVisual method to print an image of a
window. The result is clipped on the upper and left sides. [Page 305].

Chapter 18

Chapter 18 contains the following example programs:

ColorList➤➤ — Uses bindings to make a Label display the color selected in a ListBox. The data
source is in the parent Grid’s DataContext so the ListBox and Label share the same binding
source. The Label’s bindings demonstrate setting Source = /. Figure 18-7. [Page 324].

ColumnWidths➤➤ — Uses a binding with RelativeSource = FindAncestor to display Grid
column widths in Labels. Figure 18-5. [Page 321].

DockPanelValues➤➤ — Uses a binding with RelativeSource = Self and
Path = (DockPanel.Dock) to make Labels display their DockPanel.Dock values.
[Page 324].

GridColumns➤➤ — Uses a binding with RelativeSource = Self and Path = (Grid.Column)
to make a Label display its own Grid.Column value. [Page 323].

NumberList➤➤ — Makes a ListBox bound to an array of Int32 defined in XAML code.
Figure 18-8. [Page 325].

OrgChartMasterDetail➤➤ — Displays an organizational chart by using ListBoxes to show the
master–detail relationships among objects. Figure 18-13. [Page 332].

OrgChartTreeView➤➤ — Uses TreeView controls to display two different views of a hierarchi-
cal organizational chart built with objects in code-behind. Figure 18-12. [Page 330].

OrgChartXaml➤➤ — Uses TreeView controls to display two different views of a hierarchical
organizational chart built with objects defined in the XAML code. Similar to Figure 18-12.
[Page 334–335, 338].

OrgChartXml➤➤ — Uses TreeView controls to display two different views of a hierarchi-
cal organizational chart built with objects defined by XML code. Similar to Figure 18-12.
[Page 336–337].

PersonList➤➤ — Displays a simple Person class in a bound ListBox with and without an over-
ridden ToString method. Figure 18-9. [Page 326].

PersonSource➤➤ — Uses a binding with Source set to a Person object. The Person class is
defined in code-behind, and it is created in XAML code. Figure 18-2. [Page 320].

Chapter 20 ❘ 567

PersonSource2➤➤ — Uses a binding with DataContext set to a Person object so controls can
share the context. The Person class is defined in code-behind, and it is created in XAML
code. Similar to Figure 18-2. [Page 323].

Planets➤➤ — Demonstrates the ItemTemplates property for ListBox and ComboBox controls.
Figure 18-10. [Page 327].

PlanetsPanel➤➤ — Demonstrates the ItemsPanel property for a ListBox control. Figure 18-11.
[Page 329].

PreviousData➤➤ — Uses a binding with RelativeSource = PreviousData to display a list of
values and their previous values. Figure 18-6. [Page 322].

SliderToHeight➤➤ — When you drag a Slider, uses simple binding to resize the window and
display the Slider’s value in a Label.

StudentData➤➤ — Uses ADO.NET to display data from a database. Demonstrates how to link a
ComboBox to a lookup table and how to display master-detail data. Figure 18-14. [Page 338].

TemplatedParent➤➤ — Uses a binding with RelativeSource = TemplatedParent to display
the margins in a Label that uses a Template. Figure 18-4. [Page 321].

TextBoxToLabel➤➤ — Uses simple bindings to make two Label controls display whatever is
typed in a textbox. Figure 18-1. [Page 318].

TypeAColor➤➤ — Uses a binding with RelativeSource = Self to make a TextBox use its
text as its background color name. Figure 18-3. [Page 320].

Chapter 19

Chapter 19 contains the following example programs:

CommandTarget➤➤ — Demonstrates command objects that have specific command targets.
Figure 19-3. [Page 351].

DocumentCommands➤➤ — Demonstrates the predefined document-oriented command objects
New, Open, Save, SaveAs, and Close. Figure 19-4. [Page 353].

ImageColors➤➤ — Demonstrates custom RoutedUICommand objects. Figure 19-5. [Page 356].

TextBoxCommands➤➤ — Demonstrates predefined commands that are supported by the
TextBox control: Copy, Cut, Paste, Undo, and Redo. Figure 19-2. [Page 349].

Chapter 20

Chapter 20 contains the following example programs:

BevelEffects➤➤ — Demonstrates BevelBitmapEffect styles. Figure 20-5. [Page 364].

CombinedTransformations➤➤ — Demonstrates combined rotation and translation transforma-
tion and shows that the transformation order is important. Figure 20-2. [Page 361].

Effects➤➤ — Demonstrates bitmap effects. Figure 20-4. [Page 364].

568 ❘ appendix p Index of example programs

Games➤➤ — Demonstrates transformations and subtler bitmap effects that are more useful than
the other examples in this chapter. Figure 20-7. [Page 365].

LayoutVsRender➤➤ — Demonstrates the difference between LayoutTransform and
RenderTransform properties. Figure 20-3. [Page 362].

Transformations➤➤ — Demonstrates rotation, scaling, skew, translation, and matrix render
transformations. Figure 20-1. [Page 360].

TransparentEffects➤➤ — Demonstrates bitmap effects on unfilled objects. Figure 20-6. [Page 365].

Chapter 21

Chapter 21 contains the following example programs:

SimpleFixedDocument➤➤ — Draws a simple FixedDocument containing four pages of shapes.
Figure 21-2. [Page 371].

SaveFixedDocument➤➤ — Draws a simple FixedDocument much as the program
SimpleFixedDocument does and saves it into an XPS file. [Page 372].

ShowFlowDocument➤➤ — Draws a FlowDocument that demonstrates many flow document
objects including BlockUIContainer, List, Paragraph, Figure, Floater, Run, Span, and
Table. Figures 21-3 through 21-6. [Page 373-375, 378].

ViewFixedDocument➤➤ — Loads an XPS file created externally in Microsoft Word, WordPad,
or some other application. Figure 21-1. [Page 369].

Chapter 22

Chapter 22 contains the following example programs:

FrameApp➤➤ — Displays Page objects inside a Frame. Figure 22-5. [Page 386].

PageApp➤➤ — Displays several Pages. Code-behind uses a NavigationService’s Navigate
method to move between pages and to a Web URL. Figures 22-3 and 22-4. [Page 383, 384].

PageBorder➤➤ — Displays a Page with a Style targeted at Border controls to show that a
Page displays a Border. Figure 22-1. [Page 380].

PageDocument➤➤ — Displays Pages containing FlowDocuments that navigate using hyperlinks.
Figure 22-2. [Page 381].

Chapter 23

Chapter 23 contains the following example programs:

BarChart➤➤ — Draws a three-dimensional bar chart. Figure 23-11. [Page 403].

CameraTypes➤➤ — Displays the same scene with perspective and orthographic cameras. Figure 23-6.
[Page 395].

Appendix B ❘ 569

Graph➤➤ — Draws a three-dimensional ribbon graph. Figure 23-12. [Page 403].

LabeledBarChart➤➤ — Draws a three-dimensional bar chart with labels on the end of each bar.
Figure 23-13. [Page 404].

Lights➤➤ — Demonstrates the differences between AmbientLight, DirectionalLight,
PointLight, and SpotLight. Figure 23-7. [Page 397].

MakeSurface➤➤ — Draws a three-dimensional surface. Figure 23-14. [Page 405].

Materials➤➤ — Demonstrates diffuse, specular, and emissive material types. Figure 23-9. [Page 399].

RectanglesAndBoxes➤➤ — Demonstrates code-behind routines that build textured rectangles,
boxes, cylinders, and spheres. Figure 23-10. [Page 401].

SingleMeshSpheres➤➤ — Draws spheres such that each sphere is defined by a single
MeshGeometry3D object. Figure 23-4. [Page 393].

SpheresWithNormals➤➤ — Draws spheres wherein each triangle is a separate MeshGeometry3D
object with and without explicit normals. Figure 23-3. [Page 392].

Tetrahedrons➤➤ — Shows how you generally need many light sources to produce a realistic
result. Figure 23-8. [Page 398].

TexturedBlock➤➤ — Draws a three-dimensional block with sides textures with various materi-
als that you can rotate. Figure 23-1. [Page 387].

TextureCoordinates➤➤ — Shows how to map texture coordinates to points in a
MeshGeometry3D. Figure 23-5. [Page 393].

Chapter 24

Chapter 24 contains the following example programs:

Bouncing Balls➤➤ — Silverlight application that displays balls bouncing around on the browser.
Figure 24-5. [Page 412].

SelectColor➤➤ — Silverlight application that lets the user pick a color by adjusting three scrollbars.
Figure 24-4. [Page 410].

appendix a

There are no example programs for Appendix A.

appendix B

Appendix B contains the following example program:

UseTextBlock➤➤ — Demonstrates TextBlock inlines. Figure B-1. [Page 438].

570 ❘ appendix p Index of example programs

appendix C

Appendix C contains the following example programs:

RotatedTabs➤➤ — Displays a TabControl with the tabs on the left and rotated sideways.
Figure C-1. [Page 454].

Toolbars➤➤ — Displays a ToolBarTray containing three ToolBars in two bands. Figure C-2.
[Page 456].

appendix d

Appendix D contains the following example program:

SimpleRichEditor➤➤ — Implements a simple RichtextBox Editor that lets you change the
selected text’s font, size, color, weight, and style. Figure D-1. [Page 479].

UseFrame➤➤ — Uses a Frame control to provide navigation between several web sites. [Page 467].

appendix e

There are no example programs for Appendix E.

appendix F

Appendix F contains the following example programs:

StrokeDashes➤➤ — Demonstrates the StrokeStartLineCap, StrokeEndLineCap, and
StrokeDashCap values. Figure F-2. [Page 494].

StrokeMiterLimit➤➤ — Draws a Polygon that defines its Stroke property with an element attri-
bute and that demonstrates the StrokeMiterLimit property. Figure F-1. [Page 494].

appendix G

Appendix G contains the following example programs:

Brushes➤➤ — Demonstrates solid, linear gradient, and radial gradient brushes. Figure G-1.
[Page 496].

RadialCenter➤➤ — Demonstrates the RadialGradientBrush Center, and GradientOrigin
properties. Figure G-3. [Page 502].

Reflections➤➤ — Makes a VisualBrush that displays a reflection of a StackPanel containing
several other controls. Figure G-4. [Page 504].

SpreadMethods➤➤ — Demonstrates the different SpreadMethod values. Figure G-2. [Page 500].

ViewportsAndViewboxes➤➤ — Demonstrates viewports and viewboxes used by tiled brushes.
Figure G-5. [Page 506].

copy/ please visit www.wrox.com to purchase your own copy.

Appendix N ❘ 571

appendix h

Appendix H contains the following example programs:

Arc➤➤ — Illustrates the parameters for the Path mini-language arc command. Figure H-3.
[Page 509].

BezierCommands➤➤ — Uses the Path mini-language’s Bézier curve commands to draw cubic,
smooth, quadratic, and smooth “T” Bézier curves. Figure H-2. [Page 509].

FillRules➤➤ — Shows the difference between the Odd/Even and Non-Zero fill rules. Figure H-1.
[Page 508].

appendix i

Appendix I contains the following example program:

XmlCustomerOrders➤➤ — Demonstrates various XPath expressions. Figure I-1. [Page 512].

appendix J

There are no example programs for Appendix J.

appendix K

There are no example programs for Appendix K.

appendix L

Appendix L contains the following example program:

BitmapEffects➤➤ — Demonstrates the BitmapEffect classes. Figure L-1. [Page 533].

appendix M

There are no example programs for Appendix M.

appendix n

Appendix N contains the following example programs:

BareBonesButton➤➤ — Uses a template that changes a button’s appearance. [Page 547–548].

BareBonesCheckBox➤➤ — Uses a template that changes a checkbox’s appearance and changes its
dot color depending on whether it is checked, unchecked, or in an indeterminate state. [Page 540].

572 ❘ appendix p Index of example programs

BareBonesLabel➤➤ — Uses a template that makes a Label wrap its text and display a different
appearance when IsEnabled is False. [Page 539–540].

BareBonesProgressBar➤➤ — Uses a template that changes a ProgressBar’s appearance.
[Page 541].

BareBonesRadioButton➤➤ — Uses a template that changes a RadioButton’s appearance to dis-
play an X when it is checked. [Page 541].

BareBonesScrollBar➤➤ — Uses a template that changes a ScrollBar’s appearance. It contains a
Triggers section to handle horizontal and vertical orientations. [Page 544–545].

LabeledProgressBar➤➤ — Uses a template to make a ProgressBar containing a Label that dis-
plays the control’s current value. [Page 543].

ModifiedScrollBar➤➤ — Uses a template that changes a ScrollBar’s appearance drastically. It
contains a Triggers section to handle horizontal and vertical orientations. [Page 545–547].

OrientedProgressBar➤➤ — Uses a template that changes a ProgressBar’s appearance. It con-
tains a Triggers section to handle horizontal and vertical orientations. [Page 542].

appendix O

There are no example programs for Appendix O.

appendix p

There are no example programs for Appendix P.

573

Index

numbers
2D drawing controls
Ellipse/Line/, 147
overview, 145
Path, 147–150
Polygon, 150
Polyline, 151
Rectangle, 151–152
stroke properties, 146–147
summary, 152

3D drawing
basic structure/geometry, 388–389
building complex scenes. See

complex 3D scenes
cameras, 394–395
lighting, 396–398
materials, 399–400
Normals, 391–393
outward orientation, 389–391
overview, 387–388
Positions/TriangleIndices, 389
summary, 405–406
TextureCoordinates, 393–394
WPF improvement, 12

3D scenes
charts and graphs, 402–403
generated textures, 404
geometric shapes, 400–402
overview, 400
surfaces, 405

A
A/a command, 149
AccelDecelRatios program, 246, 248
AccelerationRatio property, 245

accelerator characters, with Menu
control, 130

AcceptsReturn property, 142
with RichTextBox control, 138
with TextBox control, 142–143

AcceptsTab property
with RichTextBox control, 138
with TextBox control, 142

action wrappers, event Triggers
and, 256

active animations, 224. See also
animation

AddBackEntry property, 384
ADO.NET objects, binding. See

database objects, binding
AmbientLight, 396–398
animated skins, 295–296. See also

skin(s)
AnimatedText program, 254–255
animation

classes, 552–553
easy, 261–262
motion in, 276
overload, 3
overview, 243–244
for skinning, 295–296
Storyboards and, properties,

245–247
types. See animation types
without Storyboards, 259–261

animation, and Triggers. See also
EventTriggers, and animation

animation classes, 552–553
EventTriggers, 549–550
property Triggers, 227–228,

241–243, 550–551
Storyboard properties, 551

animation types

discrete key frame, 250–251
linear key frame, 249
mix and match key frame, 252–254
overview, 247
path, 251–252
simple linear, 247–248
special cases, 254–255
spline key frame, 249–250

AnimationWithoutStoryboards
program, 259–261

ApplicationCommands class,
525–526

ApplicationCommands.Copy

function of, 349
optional use of, 350

applications
Expression Blend. See Expression

Blend
new, in Visual Studio, 22
types, in WPF, 9–10

applications, navigation-based
Frame control, 385–386
Hyperlink, 381–382
NavigationService, 382–385
overview, 379
Page object, 380–381
summary, 386

arrows, with ScrollBar control, 141
artboard, Window Designer, 39
Assets window, 40
attached properties, 160–163
attributes

event name. See event name
attributes

XAML, 5
Auto value, with ScrollViewer

control, 107–108
AutoReverse property, 245

574

Back button – CheckBox

B
Back button, 379, 382
backface removal, in 3D drawing, 391
background color

with TabControl, 111
transparent, 232

Background property
of Border control, 90
of ComboBox control, 124
of Expander control, 105

Background=”Blue” property,
127–128

BackgroundWorker class, 95–97
Band property, 111–113
BandIndex property, 111–113
BarChart/Graph programs, 403
BasedOn attribute, 225
basic animation, 552. See also

animation
BeginStoryboard element, 236–237
BeginTime property, 245
BetterLabelTemplate program, 266
Bevel value, 168–169
BevelBitmapEffect property,

363–365
binding collections
ListBox/ComboBox templates,

327–329
overview, 325–327
TreeView templates, 329–332

binding, command, 348, 352–354
binding components, 519
binding database objects

binding Scores ListBox, 344
binding student name ListBox,

342–343
displaying Student details, 343–344
loading data, 339–341
overview, 338–339
saving changes, 341–342
summary, 345

binding master-detail data, 332–333
binding path, 323–325
binding source
DataContext, 322–323
defined, 317–318
ElementName, 319
RelativeSource, 320–322
Source, 319–320

binding target, 317–319

binding target property, 317–319
binding, template, 265–266
BitmapEffect(s)

classes, 533–534
classes and features, 363–365
functions of, 423
property element, 156
summary, 366
with Triggers, 230–231

BlockUIContainer control, 373
BlurBitmapEffect property, 363–364
Bold

element, 374–375
inline, 88

Boolean data types, 254
Border

overview, 425–426
spatial control, 89–90

BorderBrush/Thickness properties
of Border control, 90
of Expander control, 105
of TabControl control, 110

BouncingBall(s) program
Silverlight and, 412–415
Storyboards and, 257–259

Brush types
classes, 495–496
DrawingBrush, 496–498
ImageBrush, 68–69, 498–499
LinearGradientBrush, 172–173,

500–501
RadialGradientBrush, 173–174,

501–502
SolidColorBrush, 171, 502–503
TileBrush, 174–178
Viewports/Viewboxes, 506
VisualBrush, 503–505

Brushes

drawing, 49–50
FillRule property, 170
gradient, 44–45
image, 46–49
making, 43–44
overview, 165–166, 170
radial gradient, 68
SpreadMethod property, 170–171
summary, 178
tile, 46
transformed gradient, 45
types. See Brush types
visual, 50–52

BulletDecorator

overview, 426
spatial control function, 91

Button

Command properties, 350–351
control template, 547–548
controls in SizeInContainers

program, 62–63
EllipseButton controls, 277
EllipseButton program, 275–276
EllipseButton Triggers, 278–280
GlassButton program, 270–271
GlassButton Styles, 272–273
GlassButton Template overview,

271–272
GlassButton Triggers, 274–275
modifying with resources, 213–215
mouse over, 231
non-specific TargetTypes and,

219–220
properties and features of, 120–121
rotation, 237–238
simplifying with Styles, 217–218
in SkinInterfaces program, 298–301
in UnnamedStyles program, 222–223
user interaction control, 461–462

ButtonResources program, 195–196,
213–215

ButtonStyles program, 217–218
By property, of animation, 246

C
C/c command, 148
cameras, for 3D drawing, 394–395
CameraTypes program, 395
CanGoBack property, 385
CanGoForward property, 385
CanUndo/CanRedo properties, 137–138
Canvas

attached properties, 424
BouncingBalls program and,

412–415
container, 62–64
functions of, 102–103
layout control, 443–444

CentralizedTriggers program, 238–239
Char data types, 254
charts, 3D, 402–403
CheckBox

control template, 540

575

Checked event – content controls

properties and features of, 121–122
user interaction control, 462–463

Checked event, 122
child controls
Button, 121
Canvas, 102–103
DockPanel, 103–104
Expander, 105
Grid, 105–107
ListBox, 129
ScrollViewer, 107–108
StackPanel, 108–109
StatusBar, 109
TabControl, 110–111
UniformGrid, 113–114
Viewbox, 114–115
WrapPanel, 117

child Style, 225
classes

animation, 243–244
binding to, 520–521
BitmapEffect. See

BitmapEffect(s)

Brush. See Brushes
command. See command classes
to define objects in XAML, 326
ImageBrush. See ImageBrush class
Setter element, 215–217, 222

Click events
for event name attributes. See event

name attributes
Relaxed Delegates and, 186–189
with RepeatButton control,

134–135
in SkinInterfaces program, 298–301

Clutter program, 2
code-behind

animation without Storyboards,
259–261

building FixedDocuments in,
370–371

collections in, 522–523
commands in, 532
for complex 3D scenes. See complex

3D scenes
defined, 179
events and. See events and

code-behind
in Expression Blend, 58
separate from UI, 17
Silverlight and, 412–415
for WPF in Visual Studio, 31

code-generated output, 309–312
code reuse

abuse of, 194
resources and. See resources

code(s)
colorized in XAML Editor, 27
example, 181
simplifying with Styles, 218

collections, data binding
ListBox/ComboBox templates,

327–329
overview, 325–327
TreeView templates, 329–332

collections, in XAML code/code-
behind, 522–523

color
changing with ListBox control, 129
properties, 66–67
selection, with Silverlight, 408–412
Stroke property and, 166–167

colorized code, in XAML Editor, 27
ColorList program, 324–325
column properties

with Grid control, 105–107
with Gridsplitter control,

127–128
with StackPanel control, 108–109
with Table control, 376–378
with UniformGrid control, 113–114
with WrapPanel control, 117
with XAML Editor, 27

ColumnWidths program, 321–322
CombinedTransformations

program, 361
ComboBox control

overview, 463–464
properties and features of, 122–124
templates, for data binding,

327–329, 523
command binding

defined, 348
in DocumentCommands program,

352–354
command classes
ApplicationCommands, 525–526
in code-behind, 532
ComponentCommands, 526–527
EditingCommands, 527–529
MediaCommands, 530
NavigationCommands, 531
in XAML, 531–532

command source, 348
command target, 348
CommandImageInvert, 355–357
commanding

concepts, 348–349
overview, 347–348

Command(s)

custom, 355–358
defined, 348–349
Path mini-language, 148–149
predefined with actions, 349–352
predefined without actions, 352–354
RichTextBox control editing,

135–137
summary, 358

CommandTarget properties, 351–352
common properties
BitmapEffect, 423
Canvas attached, 424
color, 66–67
DockPanel attached, 423–424
drawing, 422
font, 65–66, 421–422
general, 417–421
Grid attached, 423
image shape, 67–69
miscellaneous, 69–71
overview, 61
size and position. See size/position

properties
summary, 71

complex 3D scenes
charts and graphs, 402–403
generated textures, 404
geometric shapes, 400–402
overview, 400
surfaces, 405

ComplexBrush program, 155
ComponentCommands class, 526–527
container control

deleting drawings, 50
transformations and, 362
for WPF in Visual Studio, 23–25

container inheritance, 224
content controls

binding, 325
Border, 89–90, 425–426
BulletDecorator, 91, 426
defined/categories, 73
DocumentViewer, 426–427
FlowDocument. See FlowDocuments

576

content controls – DirectX

FlowDocumentPageViewer, 18,
19, 430

FlowDocumentReader, 81–82,
313–315, 430

FlowDocumentScrollViewer, 82, 431
graphical, 75–76
GroupBox, 91–92, 431
Image. See Image control
Label. See Label(s)
ListView, 92–94, 433–434
MediaElement, 77–79, 434, 487–491
overview, 75
Popup, 83–86, 434–435
ProgressBar, 94–97, 435–436,

541–542
properties, methods and events, 74
Separator, 97–98, 436
spatial. See spatial controls
TextBlock. See TextBlock control
textual. See textual controls
ToolTip, 70, 89, 439–440
TreeView. See TreeView control

ContentMenuResource program,
198–199

ContentPresenter

in EllipseButton controls, 277
for templates, 264–265

ContentProvider, 264–265
ContentResource program, 197–198
contested inheritance, 16, 370
ContextMenu

building and functions of, 124–125
overview, 156
property, function of, 70
resource controls and, 198–199
user interaction control, 464–465

control templates
Button. See Button
CheckBox, 121–122, 462–463, 540
defined, 16, 539
Label. See Label(s)
LabeledProgressBar, 543
ModifiedScrollBar, 545–547
OrientedProgressBar, 542
ProgressBar, 541–542
RadioButton, 133–134, 474–475, 541
ScrollBar, 140–141, 482, 543–545

Control Toolbox, 57–58
control(s)

2D drawing. See 2D drawing controls

categories, 73
child. See child controls
container. See container control
content. See content controls
double-clicking, 185
dropdown, 56
EllipseButton, 277
Grid. See Grid control
item, 325
layout. See layout controls
MediaElement, 77–79, 434, 487–491
modifying appearance, 15–16
modifying structure/behavior, 16
necessary names for, 30–31, 70
new, in WPF, 17–18
property inheritance in, 15
resource, 197–199
skinning, 298
templates. See control templates
user interaction. See user interaction

controls
visual brush, 50–51
in Window Designer, 23–25

ControlStyle program, 220
copying

approaches to, 347–348
with TextBox, 433

CornerRadius property, 90
[Ctrl]+Y, for redoing, 137
[Ctrl]+Z, for undoing, 137
culling, in 3D drawing, 391
custom Commands, 355–358

d
data

hierarchical, 329–332
loading, 339–341
master-detail, 332–333

Data attribute, 148–149
data binding

basics, 317–318
binding components, 519
to classes in code-behind, 520–521
to classes in XAML code, 521
collections. See collections, data

binding
database objects. See database

objects, binding
to elements by name, 519

ListView and, 92–94
making data collections, 521–523
master-detail data, 332–333
overview, 317
to provide animation, 14
to RelativeSource, 520
source, 319–323
target and target property, 318–319
using ListBox/ComboBox

templates, 523
using TreeView templates, 523–524
XAML, 333–335
XML, 335–338

data templates, 16
data types

animation classes with, 247
Char, 254
simple, storing in resources, 199–201

database objects, binding
displaying Student details, 343–344
loading data, 339–341
overview, 338–339
saving changes, 341–342
Scores ListBox, 344
student name ListBox, 342–343
summary, 345

DataContext property, 322–323
DateTimePicker control, 115–117
DecelerationRatio property, 245
declarative programming, in WPF, 18
default Button, 270–271
default event handlers, 32–33
default Style

in GlassButton program, 272–273
property values and, 224

Delay property, 134–135
dependency properties

binding, to provide animation, 14
data binding, 319

dictionaries
merged resource, 204–207
resource, 194, 200–201

DiffuseMaterial, 399–400
Direct3D, 387
DirectionalLight, 396–398
DirectX

defined, 10
Direct3D in, 387
multimedia support with, 11–12

content controls (continued)

577

disabled Style – EventTriggers

transformations, effects and.
See BitmapEffect(s);
transformations

disabled Style, 272–273
Disabled value, 107–108
DisabledLabelTemplates program,

268–269
disadvantages, of WPF, 19
discrete key frame animation, 250–251
display XPath expressions

item node selected, 518
order node selected, 517

DisplayMemberPath property, 343
DockPanel

attached properties, 423–424
binding Path and, 324
container, 62–64
functions of, 103–104
layout control, 444–445

document printing
FixedDocuments, 315–316
FlowDocuments, 313–315
overview, 312
of pictures, 304

Document property, 135
DocumentCommands program,

352–354
DocumentNewAllowed routine, 354
DocumentPaginator class
FlowDocument printing and,

313–315
in PrintDialog object, 310–312

documents
FixedDocuments.

See FixedDocuments
FlowDocuments. See FlowDocuments
overview, 367
saving as XPS file, 371–372
summary, 378

DocumentViewer control
for displaying XPS documents, 369
functions of, 79–80, 426–427
in PrintFixedDocument program,

315–316
in SimpleFixedDocument program,

370–371
double-clicking control, 185
DoubleAnimation objects, 244, 248
Drawing

property element, 175–177, 422
retained-mode, 12–13

types, 497
DrawingBrush

Brush types, 496–498
in Expression Blend, 49–50
properties and features of, 175–177

drop shadows
BitmapEffect property, 363–364
with MenuItem control, 131
TileMode property and, 48

dropdown list, 122–124
DropShadowBitmapEffect property,

363–364
Duration property, 245
dynamic resources, 207–211
dynamically loaded skins, 297–301
DynamicLabelResource program,

207–208

e
editing commands, most useful,

136–137
EditingCommands class, 135–137,

527–529
editors

in Expression Blend, 40
in Visual Studio, 29

effects. See BitmapEffect(s)
Effects Program, 363–364
ElementName property, 322–323
elements, in XAML, 5
Ellipse control

properties and features of, 147
in SkinInterfaces program, 298–301

EllipseButton program
basics, 275–276
controls, 277
Triggers, 278–280

EmbossBitmapEffect property,
363–364

EmissiveMaterial, 399–400
EndPoint property, 172–173
EnterActions sections

EllipseButton Triggers and,
278–279

in property Triggers, 241–242
EvenOdd value, 170
event

control feature, 74
template, 268–269

event handlers
with Button control, 120–121
creating in Expression Blend,

184–185
creating in Visual Studio, 185–186
default, 32–33
examples, 32
loading XAML files with, 297
non-default/handmade, 33
at run time, 189–190
run time attached/other

Visual Basic, 34
SizeChanged, 412–415
Window_Loaded, 333, 340

event name attributes
for attaching code-behind to UI,

181–184
creating event handlers in Expression

Blend, 184–185
creating event handlers in Visual

Studio, 185–186
Relaxed Delegates, 186–189

events and code-behind
code-behind files, 179–180
event handlers at run time, 189–190
event name attributes. See event name

attributes
example code, 181
Handles clauses, 190
overview, 179
summary, 191

EventTriggers, 549–550
EventTriggers, and animation.

See also animation, and
Triggers

animation types. See animation types
animation without Storyboards,

259–261
controlling Storyboards, 255–256
easy animations, 261–262
event Trigger functions, 236–237
locations, 237–240
media and timelines, 256–259
overview, 235
property Trigger animations,

241–243
Storyboards and animation

properties, 245–247
Storyboards, building, 243–244
Storyboards in property

elements, 240

578

EventTriggers – graphics hardware improvement

Storyboards in Styles, 240–241
summary, 262

example(s)
codes, 181
downloading, 3

ExitActions sections
EllipseButton Triggers and,

278–279
in property Triggers, 241–242

ExpandDirection property, 105
Expander

layout control, 445–446
properties and features of, 105

Expression Blend
Assets window/Projects window

tab, 40
code-behind, 58
Control Toolbox, 57–58
creating event handlers in, 184–185
default namespace declarations, 204
displaying XPS documents, 369
easy animation and, 261–262
events/code-behind in. See events and

code-behind
example, 446
new WPF projects in, 38–39
Objects and Timeline, 54–55
opening programs, 22
overview/installation, 37
Pens, 52–53. See also Pen(s)
Properties window.

See Properties window
Property resources, 53
Resources window, 54
specific themes in, 287
Storyboards, 55–56. See also

Storyboards

Styles, 53–54. See also Style(s)
summary, 58–59
Triggers, 56–57. See also

Trigger(s)

updating ToolBars, 112
Window Designer, 40–41
with WindowsFormsHost control, 117

Extended value, 128–129
eXtensible Application Markup

Language. See XAML (eXtensible
Application Markup Language)

F
F0 command, 148
F1 command, 148
Figure element, 374–375
Fill property, 146
Fill value, 115
FillBehavior property, 245
FillRule property, 170, 171
FixedDocuments

building in XAML, 370–371
building XPS documents, 368
displaying XPS documents, 368–369
for document printing, 315–316
overview, 367

FixedPage object, 370–371
Flat value, 168, 169
Floater element, 374–375
floaters, in FlowDocuments, 19
FlowDocumentPageViewer

content controls, 430
example of, 18, 19

FlowDocumentPageViewer controls, 81
FlowDocumentReader

bug alert, 315
content control, 430
displaying FlowDocument, 81–82
in PrintFlowDocument program,

313–315
FlowDocuments

BlockUIContainer, 373
content controls, 427–429
controls, 81–82
for document printing, 313–315
List control, 373–374
overview, 372–373
Paragraph control, 374–376
Section control, 376
special features of, 18
Table control, 376–378

FlowDocumentScrollViewer

content control, 431
displaying FlowDocument, 82

font properties
most useful, 65–66
summary, 421–422

FontFamily property, 65
FontSize property, 66
FontStyle property, 66
FontWeight property, 66
Foreground property, 105

Foundation Expression Blend 3 with
Silverlight (Gaudioso), 37

Frame control
overview, 385–386
properties and features of, 126,

465–467
FrameApp program, 385–386
From property

of animation, 246, 247
in BouncingBall program, 258–259

G
Gasket3D program, 12
general properties, 417–421
generated textures, 404
geometry, of 3D drawing, 388–389
GetPage method, 311–312
GlassButton program

basics, 270–271
Styles, 272–273
Template overview, 271–272
Triggers, 274–275

goals of WPF
better use of graphics hardware,

10–13
consistent control containment, 16
declarative programming, 18
new controls, 17–18
property binding for animation, 14
property inheritance, 15
separate UI and code-behind, 17
styles, 15–16
templates, 16

GoBack property, 385
GoForward property, 385
gradient Brushes, 44–45
GradientOpacityMask program, 67–68
GradientOrigin property, 173–174
GradientPens program, 167
graphical controls, 75–76
graphics. See 2D drawing controls;

3D drawing
graphics hardware improvement

3D graphics, 12
better multimedia support, 11
high resolution vector graphics, 13
overview, 10
retained-mode drawing, 12–13
transformations, 11–12

EventTriggers (continued)

579

graphs – LabelAndRectStyle program

graphs, 3D, 402–403
Grid attached properties, 423
Grid container, 62–64
Grid control

functions of, 105–107
layout control, 447–448
layout controls, 4
for PrintWindow program, 308–309
in SkinInterfaces program, 298–301

Grid.Background property
element, 155

Grid.Column=”1” property, 127–128
Grid.ColumnDefinitions property

element, 156
Grid.RowDefinitions property

element, 156
Grid.RowSpan=”2” property, 127–128
Gridsplitter

properties and features, 127–128
user interaction control, 467–470

GroupBox

overview, 431
with RadioButton control, 133–134
spatial control function, 91–92

GroupBoxColors program, 67
Growing Buttons program, 14

property animation and, 243

H
H/h command, 148
Handles clauses, 190
handmade event handlers, 33
Header property

of Expander control, 105
with MenuItem control, 130–132

Header property element, 156
Height property

for control’s alignment, 61–64
with Ellipse control, 147
with Rectangle control, 151–152

Hidden value, 107–108
HierarchicalDataTemplate

in OrgChartTreeView program,
329–332

in OrgChartXaml program, 335
in OrgChartXml program, 337–338

hierarchies, resource, 201–204
high resolution vector graphics, 13
HorizontalAlignment property

for control’s alignment, 61–64

with Ellipse control, 147
with Rectangle control, 151–152

HorizontalAlignment=”Left”
property, 127–128

HorizontalContentAlignment
property, 129

HorizontalOffset property, 84
HorizontalScrollBarVisibility

property default, 449
with RichTextBox control, 138
with ScrollViewer control,

107–108
with TextBox control, 142

Hyperlink

element, 375
inline, 88
navigation, 381–382

I
Icon property, 132
IDocumentPaginatorSource

interface, 313–315
Image control

features of, 76, 432
in Planets program, 328
shape properties, 67–69
in UnnamedStyles program, 222–223
using resources, 198–199

ImageBrush class
Brush types, 498–499
in Expression Blend, 46–49
for opacity masks, 68–69
properties and features of, 174–175

ImageColors program, 355–358
ImageOpacityMask program, 68–69
ImageTriggers program, 231–233
indeterminate state

with Checkbox control, 121–122
with RadioButton control, 134

inheritance
contested, 16, 370
property, 15

inherited Styles, 225–227, 537
inlines, most useful TextBlock, 88
InlineUIContainer element, 375
InlineUIContainer inline, 88
IntelliSense, 186
InterestingLabelTemplates program,

266–268

Interval property, 134–135
IsActive property, 233–234
IsCheckable property, 131–132
IsChecked property

with CheckBox control, 122
with MenuItem control, 131
with RadioButton control, 134

IsEnabled property
function of, 70
with RichTextBox control, 139
with TextBox control, 142

IsExpanded property, 105
IsFocused property, 233–234
IsMouseOver property

EllipseButton Triggers and,
278–280

Null background and, 232
overview, 229–230

IsReadOnly property
with RichTextBox control, 139
with TextBox control, 142

IsSelectRangeEnabled property, 141
IsSnapToTickEnabled property, 141
IsThreeState property

with CheckBox control, 122
with RadioButton control, 134

Italic element, 375
Italic inline, 88
item controls, 325
item node selected, 518
ItemsSource property

in OrgChartMasterDetail program,
332–333

in StudentData program, 343
ItemTemplate property, 327–329

K
key frame animation

defined, 552
discrete, 250–251
linear, 249
spline, 249–250, 258

keys, for resources, 194–196
KeySpline attribute, 250

L
L/l command, 148
LabelAndRectStyle program, 221

580

LabeledBarChart program – MyShape property

LabeledBarChart program, 404
LabeledProgressBar, 543
Label(s)

control template, 539–540
creating a better template, 265–266
disabled, 268–269
in FrameApp program, 385–386
functions of, 82–83
InterestingLabelTemplates program

and, 266–268
in LayoutVsRender program,

362–363
overview, 432–433
RotateTransform and, 360
SimpleLabelTemplate program and, 265
in UnnamedStyles program, 222–223

LargeChange property, 140
layout controls
Canvas, 102–103, 443–444
DockPanel, 103–104, 444–445
Expander, 105, 445–446
Grid, 105–107, 447–448
overview, 101–102
ScrollViewer, 107–108, 448–449
StackPanel, 108–109, 449–450
StatusBar, 109, 450–451
summary, 117
TabControl, 110–111, 451–454
ToolBar/ToolBarTray, 111–113,

454–456
UniformGrid, 113–114, 456–457
Viewbox, 114–115, 457–458
WindowsFormsHost, 115–117, 458
WrapPanel, 117, 459

LayoutTransform property
function of, 156, 362–363
with Triggers, 230–231

LayoutVsRender program, 362–363
lighting, for 3D drawing, 396–398
Lights program, 397–398
Line control, 147
linear animations, 247–248
linear key frame animation, 249
LinearGradientBrush

Brush types, 500–501
properties and features of, 172–173

LineBreak element, 375
LineBreak inline, 88
LineHeight property, 87
LineStackingStrategy property, 87
List control, 373–374

ListBox

binding Scores, 344
binding student name, 342–343
properties and building of, 128–129
templates, for data binding,

327–329, 523
user interaction control, 470–471

ListView

overview, 433–434
spatial control function, 92–94

local values, 224
locations, for event Triggers,

237–240
logical trees, 6
LookDirection camera property,

394–395
loose XAML pages

in Expression Blend, 38
type of application, 9

M
M/m command, 148
MagnifiedDrawingBrush program,

175–177
MagnifiedLines program, 166
MagnifiedVisualBrush program,

177–178
MakeBox routine, 402
MakeDrawingBrush program, 50
MakeLabel routine, 404
MakeRectangle routine, 401–402
MakeSurface program, 405
Margin property

for control’s alignment, 64
with Ellipse control, 147
with Rectangle control, 151–152

master-detail data, 332–333
materials, for 3D drawing, 399–400
MatrixTransform class, 360
MaxDropdownHeight property, 124
MaxHeight property, 65
Maximum property, 140
MaxWidth property, 65
media, Storyboards and, 256–257
MediaCommands class, 530
MediaElement

overview, 434
properties and features, 77–79,

487–491

MediaTimeLine object, 257
Menu control

overview, 471–473
properties and features of, 130–132

MenuItem objects
with ContextMenu control, 125
with Menu control, 130–132
mouse over, 231

MenuMouseOverTriggers program,
230–231

merged resource dictionaries
features of, 204–207
in Skins program, 294–295
for specific themes, 285–286

MeshGeometry3D

Normals property and, 391–393
Positions property, 389
in RectanglesAndBoxes program, 402

method feature, of controls, 74
Microsoft Expression Blend Unleashed

(Williams, Sams), 37
Microsoft Word, for XPS documents, 368
Microsoft XPS Document Writer

downloading/installing, 368
as printer, 306, 309

Microsoft XPS Viewer, 368–369
MinHeight property, 65
mini-language

features and commands, 148–149
Path, 507–509

Minimum property, 140
MinWidth property, 65
m_IsDirty, 354
Miter value, 168–169
mix and match key frames, for

animation, 252–254
ModelVisual3D object, 388–389
ModifiedScrollBar control template,

545–547
MouseDown event

in SkinInterfaces program, 298–301
in Skins program, 294

multi-page printouts, 309–312
Multiiple value, 128–129
multimedia support, in WPF, 11
multiple TargetType attributes,

220–221
MultiWindowResources program,

204–206
MyShape property, 414–415

copy/ please visit www.wrox.com to purchase your own copy.

Name property – Position camera property

n
Name property, 69, 70
named Styles

overview, 535–536
property values and, 224

names
importance for controls, 30–31, 70
for template control, 269

namespace declarations
data binding XAML and, 334
resource dictionaries and, 204

Navigate method
with Frame control, 126
with NavigationService, 385

navigation-based applications
Frame control, 385–386
Hyperlink, 381–382
NavigationService, 382–385
overview, 379
Page object, 380–381
summary, 386

NavigationCommands class, 531
NavigationService object, 382–385
NavigationWindow, 381
new projects

in Expression Blend, 38–39
in Visual Studio, 22–23

Next button, 379, 382
non-default event handlers, 33
non-specific TargetType attributes,

219–220
non-treelike structure, in WPF, 7–8
None value, 115
Nonzero value, 170
normal property values, of resource

types, 197
normal Style, 272–273
Normals property
MeshGeometry3D and, 391–393
outward orientation and, 389–391

Nothing, in Visual Basic, 365
null

for margin Thickness, 308–309
for unfilled areas, in C#, 365

Null background, 232
NumberList program, 325

object trees
logical, 6
visual, 7

Objects and Timeline, in Expression
Blend, 54–55

objects, placing in Path control, 150
Opacity

program, 167
setting with Triggers, 231–233

Opacity=0, template trick, 269
OpacityMask property, 67
optical illusions, with orthographic

cameras, 395
order node selected, 517
OrderTracking program, 289–292
OrgChartMasterDetail program,

332–333
OrgChartTreeView program, 329–332
OrgChartXaml program, 334–335
OrgChartXml program, 336, 337–338
OrgTreeXml program, 336–337
Orientation property, 140

with StackPanel control, 108–109
with ToolBarTray control, 113
with WrapPanel control, 117

OrientedProgressBar control
template, 542

orthographic camera, 394–395
outer Normal, 389–391
OuterGlowBitmapEffect property,

363–364
outward orientation, for 3D drawing,

389–391
OverflowMode property, 112–113
overwriting resources, 206

P
Pad value, 170–171
Padding property, 65
Page object, 380–381
PageApp program, 383–385
PageBorder program, 380–381
PageContent property, 370–371
PageDocument program, 381–382
Paragraph control, for

FlowDocuments, 374–376
Parent property, 69–70

PasswordBox

overview, 473
properties and features of, 132–133

PasswordChar property, 133
Path

animation, 251–252, 552
data binding, 317–318, 323–325
holding objects, 149–150
mini-language, 148–149, 507–509
overview, 147

PathBezier program, 149
PathObjects program, 150
PauseStoryboard control class,

255–256
Pen(s)

in Expression Blend, 52–53
overview, 165–166
properties of, 493–494
Stroke, 166–167
StrokeDashArray, 167–168
StrokeDashCap/DashOffset/

EndLineCap/StartLineCap,
168

StrokeLineJoin, 168–169
StrokeMiterLimit, 169
StrokeThickness, 167
units, 167–168

PensAndBrushes program, 165, 166
PersonList program, 326
PersonSource program, 320
perspective camera, 394–395
PictureFilledText program, 170
Placement property, 84
PlacementRectangle property, 84
PlacementTarget property, 84
Planets program, 327–328
PlanetsPanel program, 328–329
PointLight, 396–398
Polygon

2D drawing control, 150
skins and, 298–301

PolygonPolylineDifference program, 151
Polyline object, 151
pop-up menu, 124–125, 435
Popup control

overview, 434–435
properties and features of, 83–86

PopupPlacement program, 86
Position camera property, 389,

582

predefined Commands – resources

predefined Commands
with actions, 349–352
without actions, 352–354

predicates, XPath, 514
PreviousData value, 322
PrintDialog class
PrintDocument method in, 310–312
ShowDialog method in, 304–305

PrintDocument method
for documents, 312
in PrintDialog object, 310–312

PrintFixedDocument program, 315–316
PrintFlowDocument program, 313–315
printing

code-generated output, 309–312
document pictures, 304
documents. See document printing
overview, 303–304
summary, 316
visual objects, 304–309

PrintShapes program, 310–312
PrintVisual

advanced printing with, 306–309
simple printing with, 305–306

PrintWindow program, 306–309
ProgressBar

control template, 541–542
overview, 435–436
spatial control function, 94–97

Projects window tab, in Expression
Blend, 40

Properties window
Brushes. See Brushes
creating event handlers using,

185–186
in Expression Blend, 42–43, 53
for WPF in Visual Studio, 29–31

property animation, 295–296
property element syntax, 155–159
property inheritance

features of, 159–160
in WPF, 15

property resources, 53
property Trigger(s)

animations, 241–243
defined, 235
IsActive and IsFocused, 233–234
IsMouseOver, 229–230
overview, 550–551
setting LayoutTransform/

BitmapEffect, 230–231
setting Opacity, 231–233

in Styles, 227–228
Text, 228–229

property value
normal resource, 197
precedence, 224–225

PropertyElements program, 157–159
property(ies)

alignment, 61–64
attached, 160–163
basics, 153–154
color, 66–67
column. See column properties
common. See common properties
defined, 74
dependency, 14, 319
Document, 135
EmbossBitmapEffect, 363–364
EndPoint, 172–173
font, 65–66, 421–422
From, 246, 247, 258–259
general, 417–421
image shape, 67–69
Margin, 64
miscellaneous, 69–71
most useful Border, 90
oddity, with Properties window, 30
overview, 153
Padding, 65
for Popup placement, 84
precedence rules, 224–225
row and column, 27
simplifying with Styles, 213–217
Stroke, 52–53
summary, 163
target, in data binding, 317–318
TextBlock. See TextBlock control
TileMode, 47–49
Triggers. See Trigger(s)
type converters, 154–155
values, 15, 197

PropertyTriggerButton program,
242–243

Q
Q/q command, 149

R
RadialGradientBrush

in GradientOpacityMask program, 68

key properties of, 501–502
overview, 173–174

RadioButton

overview, 541
properties and features of, 133–134
user interaction control, 474–475

RadiusX/Y properties, 173–174
Rectangle control

for PrintWindow program, 308–309
properties and features of, 151–152
in SkinInterfaces program, 298–301

RectangleResources.xaml, 204–205
RectanglesAndBoxes program,

400–402
RedRectangles program, 216–217
Reflect value, 170–171
ReflectingBrush program, 51
RelativeSource property,

320–322, 520
Relaxed Delegates

event name attributes, 186–189
in Visual Basic, 34

RemoveBackEntry property, 385
RemoveStoryboard control class,

255–256
RenderTransform property, 362–363
Repeat value, 170–171
RepeatBehavior property, 245
RepeatButton

properties and features of, 134–135,
475–476

ScrollBar’s arrows as, 141
RepeatingSound program, 257
resource skins, 292–295
resource types

controls, 197–199
normal property values, 197
overview, 196
simple data types, 199–201

ResourceDictionary

functions of, 194, 200–201
merged, 204–207
with OrderTracking program,

289–292
resource skins and, 292, 294–295
skins and, 287–288
for specific themes, 285–286

ResourceHierarchy program, 202–204
resources

defining, 194–196
dynamic, 207–211
hierarchies, 201–204

583

Resources property element – Span inline

merged resource dictionaries,
204–207

overview, 193–194
summary, 211
types. See resource types

Resources property element, 194
Resources window, 54
restricted skins, 293
ResumeStoryboard control class,

255–256
retained-mode drawing, in WPF, 12–13
reusing code

abuse of, 194
resources and. See resources

RichTextBox

additional features, 138–139
editing commands feature, 135–137
overview, 135, 476–481
spell checking feature, 137
undo and redo feature, 137–138

right-hand rule, 389–390
RotateTransform transformation, 359
Round value, 168–169
RoutedUICommand object, 355
RovingButton program, 248
RovingButtonDiscrete program, 251
RovingButtonMixedKeyFrames

program, 252–254, 255–256
RovingButtonWithKeyFrames

program, 249
RovingButtonWithPath program,

251–252
RovingButtonWithSplines program, 250
row properties

with Grid control, 105–107
with Gridsplitter control, 127–128
with StackPanel control, 108–109
with Table control, 376–378
with UniformGrid control, 113–114
with WrapPanel control, 117
with XAML Editor, 27

Run

element, 375
inline, 88

run time
attached event handlers, 34
event handlers and, 189–190

S
S/s command, 149
SaveFixedDocument program, 372

saving changes, in Visual Studio and
Expression Blend, 180

sbSpinStoryboard element, 237–238
ScaleTransform transformation, 359
ScrollBar

control template, 543–545
overview, 482
properties and features of, 140–141

ScrollViewer layout control
overview, 448–449
properties and functions of, 107–108

Section control, 376
SeekStoryboard control class,

255–256
SelectColor program, 409–412
SelectedIndex property, 110, 124
SelectedItem property, 110, 124
SelectedValue property, 343
SelectedValuePath property, 343
selection symbols, XPath, 513–514
selection XPath expressions, 516–517
SelectionMode property, 128–129
separate designers theory, 17
Separator content control

overview, 436
spatial function, 97–98

Setter element
classes used in, 222
functions of, 215–217

ShapesPaginator class, 311–312
ShowDialog method, 304–305
ShowFlowDocument program,

373–378
ShowsPreview=”False” property,

127–128
ShowTemplate program, 281–282
ShowThemes program, 284–285, 286
Silverlight

additional information on, 415–416
BouncingBalls program, 412–415
color selection program, 408–412
overview, 8–9, 407–408
summary, 416

Silverlight 3 Programmer’s Reference
(Little), 415

Silverlight 4 Problem-Design-Solution
(Lecrenski), 415

simple data types, 199–201
simple linear animations, 247–248
SimpleClock program, 208–210
SimpleFixedDocument program,

370–371

SimpleLabelTemplate program, 265
SimplePrintWindow program, 305
Single value, 128–129
SingleMeshSpheres program, 392
size/position properties

additional properties, 64–65
alignment, 61–64
overview, 61

size specifications, for child controls,
103–104

SizeChanged event handler, 412–415
SizeInContainers program, 62
SizeInSingleChildContainers program,

63–64
sizing windows, 28
SkewTransform transformation, 359
SkinInterfaces program, 298–301
skinning, 295–296
skin(s)

animated, 295–296
controls and events, 298
defined, 283
dynamically loaded, 297–301
overview, 287–288
purposes, 288–292
resource, 292–295
summary, 301–302

Skins program, 293–295
Slider, 141–142

properties and features of, 263
Slider control, 483
SmallChange property, 140
SolidColorBrush

Brush types, 502–503
features of, 171

Solution Explorer, 28–29
sound, inside Storyboards, 256–257
SoundEvents program, 256
SoundPlayerAction control class, 256
source, command, 348
source, data binding
DataContext, 322–323
defined, 317–318
ElementName, 319
RelativeSource, 320–322
Source, 319–320

Source property
data binding, 319–320
with Frame control, 126
with NavigationService, 385

Span element, 375
Span inline, 88

584

spatial controls – Template(s)

spatial controls
Border, 89–90, 425–426
BulletDecorator, 91, 426
GroupBox, 91–92, 133–134, 431
ListView, 92–94, 433–434
overview, 89
ProgressBar, 94–97, 435–436,

541–542
Separator, 97–98, 436
summary, 99
TreeView. See TreeView control

specific themes, 285–287
SpecularMaterial, 399–400
SpeedRatio property, 245
spell checking, with RichTextBox

control, 137, 142
SpheresWithNormals program, 392
SpinButton storyboard, 56
spline key frame animation

in BouncingBall program, 258
overview, 249–250

splines, 249
split windows, with Window Designer/

XAML Editor, 28
SpotLight, 396–398
SpreadMethod property, 170–171
Square value, 168, 169
StackPanel

layout control, 4, 449–450
in LayoutVsRender program,

362–363
in Planets program, 328
properties and features of, 108–109
in UnnamedStyles program, 222–223
WrapPanel compared to, 117

StackPanel container, 62–64
StackPanelButton program, 16
stand-alone application, 9
Star program, 13
StartPoint property, 172–173
static objects, for custom commands,

355–356
static resources vs. dynamic resources,

207–211
StaticResource keyword

in ButtonResources program,
214–215

in ButtonStyles program, 217–218
in ControlStyle program, 220
in LabelAndRectStyle program, 221
in RedRectangles program, 216

StatusBar layout control
functions of, 109
overview, 450–451

StopStoryboard control class,
255–256

Storyboards

for AnimatedText program, 254–255
animation and, properties of,

245–247
animation types. See animation types
animation without, 259–261
controlling, 255–256
definition/overview, 243–244
easy animation and, 261–262
in Expression Blend, 55–56
media and timelines in, 256–259
properties, 551
in Styles, 240–241
transformations and, 238

Stretch property
Image control, 76
with Viewbox control, 64, 114–115

StretchDirection property, 76
String data types, 254
Stroke properties

for Pens, 52–53, 166–167
summary, 146

StrokeDashArray property, 146,
167–168

StrokeDashCap property, 146, 168
StrokeDashOffset property, 146, 168
StrokeEndLineCap property, 146, 168
StrokeLineJoin property, 146, 168–169
StrokeMiterLimit, 494
StrokeMiterLimit property, 169
StrokeStartLineCap property,

146, 168
StrokeThickness property, 146, 167
Student

details, 343–344
name ListBox, 342–343

StudentData program
binding Scores ListBox, 344
binding Student name ListBox,

342–343
displaying Student details, 343–344
loading data, 339–341
overview, 338–339
saving changes, 341–342

Style(s)

child, 225

default, property values and, 224
in Expression Blend, 53–54
GlassButton program, 272–273
inheritance, 225–227
inherited, 537
modifying control appearance, 15–16
multiple TargetTypes in, 220–221
named, 224, 535–536
non-specific TargetTypes in,

219–220
overview, 213
property Triggers in.

See property Trigger(s)
property value precedence and,

224–225
simplifying properties, 213–217
Storyboard elements in, 240–241
summary, 234
unnamed, 221–223, 224, 536–537

subclass, 159
surface Normal, for a triangle,

389–391
surfaces, 3D, 405
SysDataTypes program, 200
system themes, 284–285

T
T/t command, 149
TabControl

overview, 451–454
properties and features of, 110–111

Table control, 376–378
TabStripPlacement property, 110
Tag property

function of, 70
in SkinInterfaces program, 298–301
in Skins program, 294–295

target, command, 348
target, data binding, 317–319
target property, data binding, 317–319
TargetType attributes

multiple, 220–221
non-specific, 219–220
with unnamed Styles, 221–223

TemplatedParent program, 321
Template(s)

binding, 265–266
changing control appearance,

266–268

585

Tetrahedrons program – Uniform value

ComboBox, 327–329, 523
ContentPresenter, 264–265
control. See control templates
EllipseButton controls, 277
EllipseButton program, 275–276
EllipseButton Triggers, 278–280
events, 268–269
GlassButton program, 270–271
GlassButton Styles, 272–273
GlassButton Template overview,

271–272
GlassButton Triggers, 274–275
HierarchicalDataTemplate, 329–

332, 335, 337–338
ListBox, 327–329, 523
modifying control structure and

behavior, 16
overview, 263–264
researching, 280–282
summary, 282
TreeView, 329–332, 523–524
tricks, 269, 280

Tetrahedrons program, 398
text copying, 347–348
Text element, 374–375
TextBlock control

ButtonResources program and,
195–196

features of, 87–89
overview, 437–439
in Planets program, 328

TextBox control
features of, 142–143
or Label, 83
overview, 484–486
in Planets program, 328
predefined Commands in, 349–352

TextBoxCommands program, 349–351
TextBoxToLabel program, 318
TextTriggers program, 229
TextTrimming property, 87
textual controls
DocumentViewer. See

DocumentViewer control
FlowDocument. See FlowDocuments
Label. See Label(s)
overview, 79
Popup, 83–86, 434–435
TextBlock. See TextBlock control
ToolTip, 70, 89, 439–440

TextureCoordinates property,
393–394

textured rectangles, 401–402
TextWrapping property, 87
themes

defined, 283
specific, 285–287
system, 284–285

three-dimensional drawing
basic structure/geometry, 388–389
building complex scenes.

See complex 3D scenes
cameras, 394–395
lighting, 396–398
materials, 399–400
Normals, 391–393
outward orientation, 389–391
overview, 387–388
Positions/TriangleIndices, 389
summary, 405–406
TextureCoordinates, 393–394

TickFrequency/Placement
properties, 141

Ticks property, 141–142
TileBrush class
DrawingBrush, 175–177
in Expression Blend, 46, 52
ImageBrush, 174–175
overview, 174
VisualBrush, 177–178

TileMode property
in Expression Blend, 46–47, 48–49
with ImageBrush, 174–175

timelines, Storyboards and, 257–259
To property, with animation, 246
ToolBar/ToolBarTray layout controls

overview, 454–456
properties and features of, 111–113

Toolbox, 28
ToolTip

content control, 89
overview, 439–440
property, 70

ToString method, 326–327
transformations

combining, 361
graphics, 11–12
Layout/RenderTransform, 362–363
overview, 359–361
Storyboard element and, 238
summary, 366

transformed gradient Brushes, 45
TranslateTransform

transformation, 359
transparent background, 232
TransparentEffects Program, 365
TreeView control

overview, 440–442
spatial control function, 98–99
templates, 329–332
templates, for data binding, 523–524

TreeViewItem, subitem font
properties, 441

TriangleIndices property, 389
Trigger(s)

EllipseButton program, 278–280
Event. See EventTriggers, and

animation
in Expression Blend, 56–57
GlassButton, 274–275
order of applying, 275
property. See property Trigger(s)

Triggers, and animation
animation classes, 552–553
EventTriggers, 549–550
property Triggers, 550–551
Storyboard properties, 551

two-dimensional drawing controls
Ellipse/Line/, 147
overview, 145
Path, 147–150
Polygon, 150
Polyline, 151
Rectangle, 151–152
stroke properties, 146–147
summary, 152

type converters, XAML, 154–155
TypeAColor program, 320–321

U
UI. See user interface (UI)
UnChecked event, 122
Underline

element, 375
inline, 88

undo and redo
with RichTextBox control, 137–138
with TextBox control, 142

unfilled areas, 365
Uniform value, 115

586

UniformGrid container – WPF in Visual Studio

UniformGrid container, 62–64
UniformGrid layout control

functions of, 113–114
overview, 456–457

UniformToFill value, 115
unit indicators, 106
unit Normal, 389–391
unnamed Styles

features of, 221–223
overview, 536–537
property values and, 224

UnnamedStyles program, 222–223
UpDirection camera property,

394–395
UseImageBrushes program, 48–49
UseMediaElement program, 78
user interaction controls
Button. See Button
CheckBox, 121–122, 462–463, 540
ComboBox. See ComboBox control
ContextMenu. See ContextMenu
Frame, 126, 385–386, 465–467
Gridsplitter, 127–128, 467–470
ListBox. See ListBox
Menu, 130–132, 471–473
overview, 119–120
PasswordBox, 132–133, 473
RadioButton, 133–134, 474–475, 541
RepeatButton, 134–135, 141,

475–476
RichTextBox. See RichTextBox
ScrollBar, 140–141, 482, 543–545
Slider, 141–142, 263, 483
summary, 143
TextBox. See TextBox control

user interface (UI)
attaching code-behind to. See events

and code-behind
for BlockUIContainer control, 373
separate from code behind it, 17

UseTileBrushes program, 52

V
V/v command, 148
Value property, 140
values, Placement property and, 85–86
vector graphics, 13
VerticalAlignment property

for control’s alignment, 61–64

with Ellipse control, 147
with Rectangle control, 151–152

VerticalAlignment=”Stretch”
property, 127–128

VerticalContentAlignment
property, 129

VerticalOffset property, 84
VerticalScrollBarVisibility

property default, 449
with ScrollViewer control, 107–108

VerticalScrollBarVisibility
property

with RichTextBox control, 139
with TextBox control, 142

Viewbox control
Brushes and, 506
in Expression Blend, 47–49
overview, 457–458
for PrintWindow program, 308–309
properties and features of, 114–115
Stretch property, 64

ViewFixedDocument program, 369
Viewport3D control, 388–389
Viewports

Brushes and, 506
in Expression Blend, 47–49

Visibility property
function of, 71
in Skins program, 294

Visible value, 107–108
Visual Basic

event handlers in Visual Studio, 34
Handles clause in, 190
Nothing for unfilled areas, 365
Relaxed Delegates, 186–189

Visual Basic 2010 Programmer’s
Reference (Stephens), 21

visual brushes, 50–51
visual objects, printing

advanced, with PrintVisual,
306–309

overview, 304–305
simple, with PrintVisual, 305–306

Visual Studio
building color selection program in,

408–412
creating event handlers in, 185–186
default namespace declarations, 204
displaying XPS documents, 369
editors in, 29

events/code-behind in. See events and
code-behind

finding data types in, 200
for WindowsFormsHost control, 117
WPF in. See WPF in Visual Studio

visual trees, 7
VisualBrush

Brush types, 503–505
in Expression Blend, 50–52
properties and features of, 177–178

W
web pages/sites

for downloading Microsoft XPS
Viewer, 369

for editing commands, 137
for exporting files in XPS, 368
for Expression Blend, 37
for Expression Blend animation, 262
for ListView examples, 94
for MatrixTransform class, 360
for Microsoft standard themes, 286
for researching templates, 281
for RichTextBox control, 135
for RichTextBox features, 139
for Silverlight, 9, 407, 416
for WPF’s 3D capabilities, 405

Width property
for control’s alignment, 61–64
with Ellipse control, 147
with Rectangle control, 151–152

Width=”5” property, 127–128
Window Designer

in Expression Blend, 40–41
for WPF in Visual Studio, 23–25

Window tabs, 31
Window_Loaded event handler,

333, 340
Windows Presentation Foundation.

See WPF (Windows Presentation
Foundation)

WindowsFormsHost layout control
functions of, 115–117
overview, 458

WPF in Visual Studio
code-behind, 31
default event handlers, 32–33
new projects, 22–23

587

WPF overview – Zoom program

non-default/handmade event
handlers, 33

overview, 21
Properties window, 29–31
runtime attached/other Visual Basic

event handlers, 34
Solution Explorer, 28–29
summary, 35
Toolbox, 28
Window Designer, 23–25
Window tabs, 31
XAML Editor, 25–27

WPF overview
application types, 9–10
disadvantages, 19
goals and benefits. See goals of WPF
introduction, 1–3
non-treelike structure, 7–8
object trees, 6–7
Silverlight, 7–8
summary, 20
WPF explained, 3–4
XAML explained, 4–6

WPF (Windows Presentation
Foundation)

3D capabilities. See 3D drawing
Expression Blend application and.

See Expression Blend
goals. See goals of WPF

WrapPanel

container, 62–64
control functions, 117
overview, 459
in PlanetsPanel program, 328–329
UniformGrid compared to, 114

x
X1 property, with Line control, 147
X2 property, with Line control, 147
XAML Browser Application (XBAP), 9
XAML Editor

colorized code in, 27
for WPF in Visual Studio, 25–27

XAML (eXtensible Application
Markup Language)

attribute, 5
binding to classes in, 521
building FixedDocuments in,

370–371
collections in, 522
commands in, 531–532
data binding, 333–335
defining objects using classes, 326
IntelliSense, 186
loading with event handlers, 297
overview, 4–6
type converters, 154–155
XML data in, 511–512
{x:Null} for unfilled areas, 365

XBAP, 9
X:Key attribute

for resources, 194–196
for Styles, 215, 216

XML
binding to, 512–513
data binding, 335–338
Paper Specification documents. See

XPS (XML Paper Specification)
documents

in XAML code, 511–512

XmlDataProvider, 336
{x:Null}, in XAM, 365
XPath

binding to XML data, 512–513
constraint functions, 514–516
predicates, 514
selection expressions, 516–517
selection symbols, 513–514
XML in XAML, 511–512

XPS (XML Paper Specification)
documents

building, 368
displaying, 368–369
saving FixedDocuments as, 371–372

XpsDocumentWriter class
FlowDocument printing and,

313–315
saving FixedDocuments, 372

X:Type markup extension, 216

Y
Y1 property, with Line control, 147
Y2 property, with Line control, 147

Z
Z/z command, 149
Zoom program, 13 element, 375

Programmer to ProgrammerTM

Take your library
wherever you go.

Now you can access complete Wrox books online, wherever
you happen to be! Every diagram, description, screen capture,
and code sample is available with your subscription to the
Wrox Reference Library. For answers when and where you need
them, go to wrox.books24x7.com and subscribe today!

• ASP.NET
• C#/C++
• Database
• Java
• Mac
• Microsoft Office
• .NET

• Open Source
• PHP/MySQL
• SQL Server
• Visual Basic
• Web
• XML

Find books on

www.wrox.com

Related Wrox Books
Beginning ASP.NET 4: in C# and VB
ISBN: 9780470502211
This introductory book offers helpful examples and step-by-step format and has code examples written in both C# and Visual Basic.
With this book you will gradually build a Web site example that takes you through the processes of building basic ASP.NET Web
pages, adding features with pre-built server controls, designing consistent pages, displaying data, and more.

Beginning Microsoft Visual Basic 2010
ISBN: 9780470502228
This book not only shows you how to write Windows applications, Web applications with ASP.NET, and Windows mobile and
embedded CE apps with Visual Basic 2010, but you’ll also get a thorough grounding in the basic nuts and bolts of writing good code.
You’ll be exposed to the very latest VB tools and techniques with coverage of both the Visual Studio 2010 and .NET 4 releases.

Beginning Microsoft Visual C# 2010
ISBN: 9780470502266
Using this book, you will first cover the fundamentals such as variables, flow control, and object-oriented programming and
gradually build your skills for Web and Windows programming, Windows forms, and data access. Step-by-step directions walk
you through processes and invite you to “Try it Out,” at every stage. By the end, you’ll be able to write useful programming code
following the steps you’ve learned in this thorough, practical book. If you’ve always wanted to master Visual C# programming, this
book is the perfect one-stop resource.

Professional ASP.NET 4: in C# and VB
ISBN: 9780470502204
Written by three highly recognized and regarded ASP.NET experts, this book provides all-encompassing coverage on ASP.NET 4 and
offers a unique approach of featuring examples in both C# and VB, as is the incomparable coverage of core ASP.NET. After a fast-
paced refresher on essentials such as server controls, the book delves into expert coverage of all the latest capabilities of ASP.NET 4.
You’ll learn site navigation, personalization, membership, role management, security, and more.

Professional C# 4 and .NET 4
ISBN: 9780470502259
After a quick refresher on C# basics, the author dream team moves on to provide you with details of language and framework
features including LINQ, LINQ to SQL, LINQ to XML, WCF, WPF, Workflow, and Generics. Coverage also spans ASP.NET program-
ming with C#, working in Visual Studio 2010 with C#, and more. With this book, you’ll quickly get up to date on all the newest
capabilities of C# 4.

Professional Visual Basic 2010 and .NET 4
ISBN: 9780470502242
If you’ve already covered the basics and want to dive deep into VB and .NET topics that professional programmers use most, this is
your guide. You’ll explore all the new features of Visual Basic 2010 as well as all the essential functions that you need, including .NET
features such as LINQ to SQL, LINQ to XML, WCF, and more. Plus, you’ll examine exception handling and debugging, Visual Studio
features, and ASP.NET web programming.

Professional Visual Studio 2010
ISBN: 9780470548653
Written by an author team of veteran programmers and developers, this book gets you quickly up to speed on what you can expect
from Visual Studio 2010. Packed with helpful examples, this comprehensive guide explains and examines the features of Visual Studio
2010, which allows you to create and manage programming projects for the Windows platform. It walks you through every facet of the
Integrated Development Environment (IDE), from common tasks and functions to its powerful tools.

Visual Basic 2010 Programmer’s Reference
ISBN: 9780470499832
This reference guide provides you with a broad, solid understanding of essential Visual Basic 2010 topics and clearly explains how
to use this powerful programming language to perform a variety of tasks. As a tutorial, the book describes the Visual Basic language
and covers essential Visual Basic topics. The material presents categorized information regarding specific operations and reveals
useful tips, tricks, and tidbits to help you make the most of the new Visual Basic 2010.

Get more out of
wrox.com

Programmer to Programmer™

Interact
Take an active role online by participating in our
P2P forums @ p2p.wrox.com

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and code
to keep you up to date and out of trouble!

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

Prepared for STEPHEN EISEMAN/ email0 REISEMAN071@COMCAST.NET Order number0 55771330 This PDF is for the purchaser’s personal
use in accordance with the Wrox Terms of Service and under US copyright as stated on this book’s copyright page. If you did not purchase this
copy/ please visit www.wrox.com to purchase your own copy.

Rod Stephens

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

Programmer’s Reference
WPF
Windows® Presentation Foundation with C# 2010 and .NET 4

 $54.99 USA
 $65.99 CAN

Windows Presentation Foundation (WPF) enables you to build effective
and unique graphical user interfaces. However, it takes a steep learning
curve to master the exceptions and shortcuts that are built into WPF.
This reference provides you with a solid foundation of fundamental
WPF concepts so you can start building attractive, dynamic, and
interactive applications quickly and easily. As the book progresses,
topics gradually become more advanced, and you’ll discover how to
use WPF to build applications that run in more environments, on more
hardware, using more graphical tools, and providing a more engaging
visual experience than is normally possible with Windows Forms.

WPF Programmer’s Reference:

• Explains with full color code examples how code is connected to
the user interface and shows how operations can be performed using
both XAML and C#

• Features a series of essential appendices that summarize WPF syntax
and concepts for easy reference

• Covers the latest release of WPF, along with Visual Studio® 2010,
Expression Blend™ 3, and .NET 4

• Shows how to position and arrange content, layout, interaction,
and drawing controls; define their properties; and manipulate those
properties to produce stunning visual effects

• Addresses event triggers and animation, templates, themes and skins,
data binding, and transformations and effects

• Provides comparable Visual Basic versions of all code examples
on the companion web site

Rod Stephens is a professional software developer who has built a wide variety
of software and database applications in his career that spans two decades. He is
the author of more than twenty books and 250 articles, and is a regular contributor
to DevX.com (www.devx.com).

Wrox guides are crafted to make learning programming languages and
technologies easier than you think. Written by programmers for programmers,
they provide a structured, tutorial format that will guide you through all the
techniques involved.

Programming/C# (.NET)

Go beyond what you thought possible
in user interface development

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

W
PF

Programmer’s
Reference

Stephens

	WroxBooks
	WPF Programmer's Reference: Windows Presentation Foundation with C# 2010 and .NET 4
	About the Author
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers (and What It Doesn’t)
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: WPF Overview
	WPF in a Nutshell
	Project Types
	Goals and Benefits
	Disadvantages
	Summary

	Chapter 2: WPF in Visual Studio
	New Projects
	Window Designer
	XAML Editor
	Toolbox
	Solution Explorer
	Properties Window
	Window Tabs
	Code-Behind
	Summary

	Chapter 3: Expression Blend
	New Projects
	Assets Window
	Projects Window Tab
	Window Designer
	Properties Window
	Resources Window
	Objects and Timeline
	Triggers
	Control Toolbox
	Code-Behind
	Summary

	Chapter 4: Common Properties
	Size and Position
	Font
	Color
	Image Shape
	Miscellaneous
	Summary

	Chapter 5: Content Controls
	Control Overview
	Graphical Controls
	Textual Controls
	Spatial Controls
	Summary

	Chapter 6: Layout Controls
	Control Overview
	Canvas
	DockPanel
	Expander
	Grid
	ScrollViewer
	StackPanel
	StatusBar
	TabControl
	ToolBar and ToolBarTray
	UniformGrid
	Viewbox
	WindowsFormsHost
	WrapPanel
	Summary

	Chapter 7: User Interaction Controls
	Control Overview
	Button
	CheckBox
	ComboBox
	ContextMenu
	Frame
	GridSplitter
	ListBox
	Menu
	PasswordBox
	RadioButton
	RepeatButton
	RichTextBox
	ScrollBar
	Slider
	TextBox
	Summary

	Chapter 8: Two-Dimensional Drawing Controls
	Control Overview
	Stroke Properties
	Ellipse
	Line
	Path
	Polygon
	Polyline
	Rectangle
	Summary

	Chapter 9: Properties
	Property Basics
	Type Converters
	Property Element Syntax
	Property Inheritance
	Attached Properties
	Summary

	Chapter 10: Pens and Brushes
	Pens
	Brushes
	Summary

	Chapter 11: Events and Code-Behind
	Code-behind Files
	Example Code
	Event Name Attributes
	Event Handlers at Run Time
	The Handles Clause
	Summary

	Chapter 12: Resources
	Defining Resources
	Resource Types
	Resource Hierarchies
	Merged Resource Dictionaries
	Dynamic Resources
	Summary

	Chapter 13: Styles and Property Triggers
	Simplifying Properties
	Keys and Target Types
	Property Value Precedence
	Style Inheritance
	Triggers
	Summary

	Chapter 14: Event Triggers and Animation
	Event Triggers
	Property Trigger Animations
	Storyboards
	Controlling Storyboards
	Media and Timelines
	Animation without Storyboards
	Easy Animations
	Summary

	Chapter 15: Templates
	Template Overview
	ContentPresenter
	Template Binding
	Changing Control Appearance
	Template Events
	Glass Button
	Ellipse Button
	Researching Control Templates
	Summary

	Chapter 16: Themes and Skins
	Themes
	Skins
	Summary

	Chapter 17: Printing
	Printing Visual Objects
	Printing Code-Generated Output
	Printing Documents
	Summary

	Chapter 18: Data Binding
	Binding Basics
	Binding Collections
	Binding Master-Detail Data
	Binding XAML
	Binding XML
	Binding Database Objects
	Summary

	Chapter 19: Commanding
	Commanding Concepts
	Predefined Commands with Actions
	Predefined Commands without Actions
	Custom Commands
	Summary

	Chapter 20: Transformations and Effects
	Transformations
	Combining Transformations
	Layout and Render Transforms
	Effects
	Summary

	Chapter 21: Documents
	Fixed Documents
	Flow Documents
	Summary

	Chapter 22: Navigation-Based Applications
	Page
	Hyperlink Navigation
	NavigationService
	Frame
	Summary

	Chapter 23: Three-Dimensional Drawing
	Basic Structure
	Cameras
	Lighting
	Materials
	Building Complex Scenes
	Summary

	Chapter 24: Silverlight
	What Is Silverlight?
	A Color Selection Example
	A Bouncing Ball Example
	For More Information
	Summary

	Appendix A: Common Properties
	General Properties
	Font Properties
	Drawing Properties
	Bitmap Effect Properties
	Grid Attached Properties
	DockPanel Attached Properties
	Canvas Attached Properties

	Appendix B: Content Controls
	Border
	BulletDecorator
	DocumentViewer
	FlowDocument
	FlowDocumentPageViewer
	FlowDocumentReader
	FlowDocumentScrollViewer
	GroupBox
	Image
	Label
	ListView
	MediaElement
	Popup
	ProgressBar
	Separator
	TextBlock
	ToolTip
	TreeView

	Appendix C: Layout Controls
	Canvas
	DockPanel
	Expander
	Grid
	ScrollViewer
	StackPanel
	StatusBar
	TabControl
	ToolBar and ToolBarTray
	UniformGrid
	Viewbox
	WindowsFormsHost
	WrapPanel

	Appendix D: User Interaction Controls
	Button
	CheckBox
	ComboBox
	ContextMenu
	Frame
	GridSplitter
	ListBox
	Menu
	PasswordBox
	RadioButton
	RepeatButton
	RichTextBox
	ScrollBar
	Slider
	TextBox

	Appendix E: MediaElement Control
	Appendix F: Pens
	Appendix G: Brushes
	Brush Classes
	DrawingBrush
	ImageBrush
	LinearGradientBrush
	RadialGradientBrush
	SolidColorBrush
	VisualBrush
	Viewports and Viewboxes

	Appendix H: Path Mini-Language
	Appendix I: XPath
	XML in XAML
	Binding to XML Data
	Selection
	Predicates
	Constraint Functions
	Selection Expressions
	Display Expressions

	Appendix J: Data Binding
	Binding Components
	Binding to Elements by Name
	Binding to RelativeSource
	Binding to Classes in Code-Behind
	Binding to Classes in XAML Code
	Making Collections of Data
	Collections in XAML Code
	Collections in Code-Behind
	Using ListBox and ComboBox Templates
	Using TreeView Templates
	Binding to XML Data

	Appendix K: Commanding Classes
	ApplicationCommands
	ComponentCommands
	Editing Commands
	MediaCommands
	NavigationCommands
	Commands in XAML
	Commands in Code-Behind

	Appendix L: Bitmap Effects
	Appendix M: Styles
	Named Styles
	Unnamed Styles
	Inherited Styles

	Appendix N: Templates
	Label
	CheckBox
	RadioButton
	ProgressBar
	Oriented ProgressBar
	Labeled ProgressBar
	ScrollBar
	Modified ScrollBar
	Button

	Appendix O: Triggers and Animation
	EventTriggers
	Property Triggers
	Storyboard Properties
	Animation Classes

	Appendix P: Index of Example Programs
	Index

