
Web Standards Programmer’s Reference:
HTML, CSS, JavaScript®, Perl,

Python®, and PHP

Steven M. Schafer

01_588206 ffirs.qxd 6/30/05 12:25 AM Page i

C1.jpg

01_588206 ffirs.qxd 6/30/05 12:25 AM Page i

Web Standards Programmer’s Reference:
HTML, CSS, JavaScript®, Perl,

Python®, and PHP

Steven M. Schafer

01_588206 ffirs.qxd 6/30/05 12:25 AM Page i

Web Standards Programmer’s Reference:
HTML, CSS, JavaScript®, Perl, Python®, and PHP
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-7645-8820-4
ISBN-10: 0-7645-8820-6

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1MA/SQ/QX/QV/IN

Library of Congress Cataloging-in-Publication Data:

Schafer, Steven M.
Web standards programmer's reference : HTML, CSS, JavaScript, Perl, Python, and PHP / Steven M. Schafer.

p. cm.
Includes index.
ISBN-13: 978-0-7645-8820-4 (paper/website)
ISBN-10: 0-7645-8820-6 (paper/website)
1. HTML (Document markup language) 2. Web site development. I. Title.
QA76.76.H94S2525 2005
006.7'4--dc22

2005012600

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or
online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESEN-
TATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF
THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WAR-
RANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY
SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS
NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFES-
SIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM.
THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER
ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY
HAVE CHANGED OR DISAPPEARED BETWEEN THEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

01_588206 ffirs.qxd 6/30/05 12:25 AM Page ii

www.wiley.com

Credits
Senior Acquisitions Editor
Jim Minatel

Development Editor
Marcia Ellett

Technical Editors
Bill Patterson
David Schultz
Dilip Thomas

Production Editor
Gabrielle Nabi

Copy Editor
Publication Services

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
Kristie Rees

Graphics and Production Specialists
Kelly Emkow
April Farling
Carrie A. Foster
Lauren Goddard
Denny Hager
Jennifer Heleine
Julie Trippetti

Quality Control Technicians
Laura Albert
Leeann Harney
Jessica Kramer
Carl William Pierce

Proofreading and Indexing
TECHBOOKS Production Services

01_588206 ffirs.qxd 6/30/05 12:25 AM Page iii

About the Author
Steve Schafer is a veteran of technology and publishing. He programs in several languages, works with
a variety of technologies, and has been published in several technical publications and articles. He cur-
rently is the COO for Progeny, an open source-based service and support company. Steve can be reached
by email at sschafer@synergy-tech.com.

01_588206 ffirs.qxd 6/30/05 12:25 AM Page iv

Contents

Introduction xxiii

Part One: HyperText Markup Language (HTML)

Chapter 1: The Basics of HTML 1

What Is the World Wide Web? 1
Creating a Web 3
HTTP: The Protocol of the Web 4

Hypertext Markup Language 7
In the Beginning — HTML 7
HTML Concept and Syntax 9

Your First Web Page 11
Summary 12

Chapter 2: Document Tags 13

Understanding Document-Level Tags 13
Document Type Tag 14
HTML Tag 15
Head Tag Section 15

Specifying the Document Title 16
Meta Tags 16
Style Section 19
Script Section 20

Body Section 20
Summary 21

Chapter 3: Paragraphs and Lines 23

Paragraphs — The Basic Block Element 23
Manual Line Breaks 25
Headings 27
Horizontal Rules 28
Preformatted Text 30
Block Divisions 31
Summary 33

02_588206 ftoc.qxd 6/30/05 12:26 AM Page v

vi

Contents

Chapter 4: Lists 35

Understanding Lists 35
Ordered (Numbered) Lists 37

Changing the Number Style 37
Changing the Position of the Ordinal 39
Changing the Starting Number of Ordered Lists 41

Unordered (Bulleted) Lists 42
Changing the List Item Marker 43
Changing the Position of the Ordinal 46

Definition Lists 46
Nesting Lists 47
Summary 49

Chapter 5: Images 51

Image Formats 51
Web Formats 51
Transparency 53
Interlaced and Progressive Storage and Display 54
Animation 54

Creating Images 57
Commercial Applications 57
Open Source Applications 57
Operating System Built-In Applications 58
Using Premade Images 58

Inserting Images into Web Documents 58
Image Attributes 60

Specifying Text for Nongraphical Browsers 60
Image Size 61
Image Alignment and Borders 62

Image Maps 63
Specifying an Image Map 63
Specifying Clickable Regions 64
Putting It All Together 66

Summary 67

Chapter 6: Links 69

Understanding URLs 69
Absolute versus Relative Paths 71
Using the Anchor Tag 71
Attributes of the Anchor Tag 72

Link Titles 72

02_588206 ftoc.qxd 6/30/05 12:26 AM Page vi

vii

Contents

Keyboard Shortcuts and Tab Orders 73
Link Colors 74

Document Relationships 75
The Link Tag 76
Summary 77

Chapter 7: Text 79

Methods of Formatting Text 79
The Font Tag 79
Inline Text Attributes 80
CSS Text Control 81

Special In-Line Text Elements 82
Nonbreaking Spaces 82
Soft Hyphens 83

Bold and Italic 84
Monospaced Text 85
Superscript, Subscript, Big, and Small Text 85
Insertions and Deletions 86
Abbreviations 87
Grouping In-Line Elements 87
Summary 88

Chapter 8: Tables 89

Parts of a Table 89
Formatting Tables 91

Table Width and Alignment 91
Cell Spacing and Padding 94
Borders and Rules 96
Rows 99
Cells 100
Captions 102
Header, Footer, and Body Sections 103
Backgrounds 105
Spanning Columns and Rows 106
Grouping Columns 109

Using Tables for Page Layout 111
Floating Page 113
Odd Graphic and Text Combinations 116
Navigational Blocks 119
Multiple Columns 120

A Word About Frames 121
Summary 122

02_588206 ftoc.qxd 6/30/05 12:26 AM Page vii

viii

Contents

Chapter 9: Forms 123

Understanding Forms 123
Form Handling 127
Passing Form Data 128
The Form Tag 129
The Input Tag 129
The name and id Attributes 130
Text Input Boxes 130
Password Input Boxes 131
Radio Buttons 131
Checkboxes 132
List Boxes 132
Large Text Areas 134
Hidden Fields 135
Buttons 135
Images 136
File Fields 137
Submit and Reset Buttons 137
Field Labels 138
Fieldsets and Legends 138
Tab Order and Keyboard Shortcuts 140
Preventing Changes to Fields 141
Summary 142

Chapter 10: Objects and Plugins 143

Understanding Plugins 143
The Old Way — The Embed Tag 144
The Object Tag 146
Parameters 147
Object Examples 147
Support for Older, Netscape Browsers 150
Summary 151

Chapter 11: XML 153

XML Basics 153
XML Syntax 155

XML Declaration and DOCTYPE 155
Elements 156
Attributes 157
Comments 157

02_588206 ftoc.qxd 6/30/05 12:26 AM Page viii

ix

Contents

Nonparsed Data 158
Entities 158
Namespaces 159
Style Sheets 159

Using XML 160
Extensible Stylesheet Language Transformations (XSLT) 161
XML Editing 161
XML Parsing 161

Summary 162

Part Two: Cascading Style Sheets (CSS)

Chapter 12: CSS Basics 163

The Purpose of Styles 163
Styles and HTML 164
CSS Levels 1, 2, and 3 165
Defining Styles 166
Cascading Styles 167
Summary 169

Chapter 13: Style Definitions 171

The Style Definition Format 171
Property Values 172
Understanding Selectors 173

Matching Elements by Name 173
Matching Using the Universal Selector 174
Matching Elements by Class 174
Matching Elements by Identifier 175
Matching Elements by Specific Attributes 175
Matching Child, Descendant, and Adjacent Sibling Elements 176

Understanding Style Inheritance 179
Using Pseudoclasses 179

Anchor Styles 180
The :first-child Pseudoclass 180
The :lang Pseudoclass 181

Pseudoelements 181
:first-line 181
:first-letter 183
:before and :after 184

Shorthand Expressions 185
Summary 187

02_588206 ftoc.qxd 6/30/05 12:26 AM Page ix

x

Contents

Chapter 14: Text 189

Aligning Text 189
Horizontal Alignment 189
Vertical Alignment 191

Indenting Text 194
Controlling White Space 195

Floating Objects 195
The white-space Property 198

Letter and Word Spacing 198
Capitalization 200
Text Decorations 200
Formatting Lists 201

Any Element Can Be a List Item 201
The list-style-type Property 202
Positioning of Markers 203
Images as List Markers 204

Autogenerating Text 205
Define and Display Quotation Marks 205
Automatic Numbering 205

Fonts 210
Font Selection 210
Font Sizing 211
Font Styling 212
Line Spacing 213
Font Embedding 213

Summary 214

Chapter 15: Padding, Margins, and Borders 215

Understanding the CSS Box Formatting Model 215
Element Padding 218
Element Borders 219

Border Width 219
Border Style 220
Border Color 222
The Border Property Shortcut 222
Border Spacing 223

Element Margins 223
Dynamic Outlines 224
Summary 225

02_588206 ftoc.qxd 6/30/05 12:26 AM Page x

xi

Contents

Chapter 16: Colors and Backgrounds 227

Element Colors 227
Foreground Colors 227
Background Colors 228

Background Images 231
Repeating and Scrolling Images 232
Positioning Background Images 236

Summary 236

Chapter 17: Tables 237

CSS Properties and Table Attributes 237
Defining Borders 238
Border and Cell Spacing 239
Collapsing Borders 241

Table Layout 244
Caption Alignment and Positioning 244
Summary 244

Chapter 18: Element Positioning 245

Understanding Positioning Methods 245
Static Positioning 245
Relative Positioning 246
Absolute Positioning 248
Fixed Positioning 249

Specifying an Element’s Position 252
Floating Elements 255
Controlling an Element’s Size 256

Specifying an Exact Size 257
Specifying a Minimum or Maximum Size 257
Controlling Overflow 257

Element Layers 258
Controlling Visibility 261
Summary 262

Part Three: JavaScript and DHTML

Chapter 19: JavaScript Basics 263

History of JavaScript 263
Different Implementations 264

02_588206 ftoc.qxd 6/30/05 12:26 AM Page xi

xii

Contents

Determining the Document Object Model 264
Uses for JavaScript 265
Incorporating JavaScript in Your Documents 266

Anatomy of the <script> Tag 266
Placement of the Script Tag 267
Execution of Scripts 267

Summary 268

Chapter 20: The JavaScript Language 269

Basic JavaScript Syntax 269
Data Types and Variables 270

Data Types 270
Variables 271

Calculations and Operators 272
Control Structures 274

Do While 274
While 274
For and For In 275
If Else 276
Switch 277
Break and Continue 278

Labels 278
Built-in Functions 279
User-Defined Functions 280
Objects 281

Built-in Objects 282
User-Created Objects 283

Event Handling 284
JavaScript Errors and Troubleshooting 286

Using the Right Tools 287
Common JavaScript Syntactical Mistakes 287
Identifying Problems 288

Summary 290

Chapter 21: The Document Object Model 291

The History of the DOM 291
Understanding the Document Object Model 292
DOM Node Properties and Methods 295
Traversing a Document’s Nodes 296
Changing Nodes 302
Summary 310

02_588206 ftoc.qxd 6/30/05 12:26 AM Page xii

xiii

Contents

Chapter 22: JavaScript Objects and Dynamic HTML 311

Built-in JavaScript Objects 311
Window Object 311
Document Object 312
Form Object 313
Location Object 314
History Object 315
The Self Object 315

Accessing an Element by Its ID 316
Dynamic HTML 316
Summary 322

Chapter 23: Using JavaScript 323

How and When to Use JavaScript 323
The Case Against Using JavaScript 323
Guidelines for Using JavaScript 324

JavaScript Resources 324
JavaScript Examples 325

Writing Text to a Document 325
Using Other Windows 329
Images 333
Working with Forms 341
Dynamic HTML Tricks 347

Summary 361

Part Four: Common Gateway Interface (CGI)

Chapter 24: CGI Basics 363

CGI History and Operation 363
Understanding HTTP Request and Response 363
HTTP Data Encapsulation 364
How CGI Works 366

Serving CGI 367
A Simple CGI Example 368
Summary 370

Chapter 25: Perl Language 371

The History of Perl 371
Additional Perl Resources 371

02_588206 ftoc.qxd 6/30/05 12:26 AM Page xiii

xiv

Contents

Basic Perl Syntax 372
Data Types and Variables 372

Data Types 372
Variables 373
Special Variables 374

Calculations and Operators 377
Control Structures 380

While and Until 380
For 380
Foreach 381
If Else 381
More Loop Control — Continue, Next, Last, Redo 382

Regular Expressions 383
Regular Expression Operations 383
Regex Special Characters 384
Example Expressions 385
Modifying Expressions 385
Memorizing Substrings 386

Built-in Functions 386
User-Defined Functions 387
File Operations 387

Standard Operating Procedure 388
Opening a File 388
Reading from a Text File 388
Writing to a Text File 389
Closing a File 389
Working with Binary Files 389
Getting File Information 390
Other File Functions 391

Objects 391
Perl’s Object Nomenclature 391
Perl Constructors 392
Accessing Property Values 392

Modules 393
Using Perl for CGI 393
Perl Errors and Troubleshooting 394

Maximum Error Reporting 394
The Apache Internal Server Error Message 395

Summary 396

02_588206 ftoc.qxd 6/30/05 12:26 AM Page xiv

xv

Contents

Chapter 26: The Python Language 397

The History of Python 397
Additional Python Resources 398
Modules 398
Python Interpreter 398
Basic Python Syntax 400
Data Types and Variables 400

Data Types 400
1077685140Variables 407
Variable Scope 407

Calculations and Operators 408
Control Structures 410

While Loop 410
For Loop 411
If Statement 411
Try Statement 412
More Loop Control — Continue, Break 412

Regular Expressions 413
Regular Expression Operations 414
Regex Special Characters 414

Built-in Functions 415
User-Defined Functions 416

Lamda Functions 417
File Operations 417

Standard Operating Procedure 417
Opening a File 417
Reading From a Text File 418
Writing to a Text File 419
Closing a File 420
Working with Binary Files 420

Objects 420
Python Errors and Exception Handling 421
Troubleshooting in Python 421

Run the Code in the Interpreter 421
Using the cgitb Module 421
Redirecting the Error Stream 422

Summary 422

02_588206 ftoc.qxd 6/30/05 12:26 AM Page xv

xvi

Contents

Chapter 27: Scripting with Other Executable Code 423

Requirements for CGI 423
Sample CGI Using Bash Shell Scripting 424

Configuring Apache to Deliver Bash Scripts 424
Getting Data into the Script 425
Getting Data Out of the Script 426
Doing Useful Things 428

Summary 430

Chapter 28: Using CGI 431

How and When to Use CGI 431
Sample Data 432

Sample Form 432
Sample MySQL Data 434

Perl Examples 439
Date and Time Handling 439
Handling Form Data 444
Using Form Data 447
Accessing Databases 453

Python Examples 457
Date and Time Handling 457
Handling Form Data 460
Using Form Data 463
Accessing Databases 467

Summary 469

Part Five: PHP

Chapter 29: PHP Basics 471

The History of PHP 471
Requirements for PHP 472
PHP Fundamentals 473

PHP Beginning and Ending Tags 473
Command Termination Character and Blocks of Code 474
PHP’s Use of White Space 474
Commenting Code 474
PHP Variables 475

A Sample PHP Script 475
Summary 477

02_588206 ftoc.qxd 6/30/05 12:26 AM Page xvi

xvii

Contents

Chapter 30: The PHP Language 479

Calculations and Operators 479
Control Structures 482

Do-while 482
While 482
For 482
Foreach 483
If Else 484
Switch 485
Break and Continue 486

Built-in PHP Functions 486
User-Defined Functions 490

Return Values 490
Arguments 490
Variable Scope 491

Objects 491
Class Definitions 491
Constructors and Destructors 491
Methods and Properties 492
Working with Objects 493
Additional Object Conventions 494

File Operations 495
Opening a File 495
Reading Text from a File 496
Writing Text to a File 497
Closing a File 497
Working with Binary Files 497
Locking Files 499
Other File Functions 499

PHP Errors and Troubleshooting 500
Use the Right Tools 500
Avoiding Common Syntactical Mistakes 501
Identifying Problems 502
Error Control and Processing 503

Summary 506

Chapter 31: Using PHP 507

How and When to Use PHP 507
PHP Resources 508

02_588206 ftoc.qxd 6/30/05 12:26 AM Page xvii

xviii

Contents

PHP Examples 509
Date and Time Handling 509
Handling Form Data 514
Using Form Data 517
Accessing Databases 523

Summary 526

Part Six: Appendixes

Appendix A: XHTML Reference 527

Element Listings 528
Event Attributes 570

Standard Events 570
Other Events 571

Other Common Attributes 571
Core Attributes 571
Internationalization Attributes 571
Common Color Codes 571

Appendix B: CSS Properties 577

Selector Examples 577
Property Listings 578

Background 578
List 580
Generated Content 581
Font and Text 582
Text Direction 587
Block 588
Positioning 591
Borders 594
Table 596
Printing 598
Miscellaneous 599

Selector Review 600
Name Matching 600
Attribute Matching 600
Position Matching 600
Pseudo-classes 601
Pseudo-elements 601

02_588206 ftoc.qxd 6/30/05 12:26 AM Page xviii

xix

Contents

Appendix C: JavaScript Language Reference 603

Constants 603
Operators 604
Statements 606
Standard Elements 610

Standard Methods 610
Standard Properties 610
Standard Event Handlers 610

Top-Level Functions 611
Objects 612

Anchor Object 612
Area Object 613
Array Object 613
Boolean Object 614
Button Object 615
Checkbox Object 616
Date Object 617
Document Object 620
Event Object 622
FileUpload Object 623
Form Object 624
Function Object 625
Hidden Object 626
History Object 627
Image Object 627
Link Object 629
Location Object 630
Math Object 631
Navigator Object 632
Number Object 633
Object Object 633
Option Object 634
Password Object 634
Radio Object 635
RegExp Object 636
Reset Object 637
Screen Object 637
Select Object 638
String Object 639
Submit Object 641
Text Object 642
Textarea Object 643
Window Object 644

02_588206 ftoc.qxd 6/30/05 12:26 AM Page xix

xx

Contents

Appendix D: Perl Language Reference 649

Command Line Arguments 649
Perl Symbolic Debugger Commands 650
Operators 652

Perl Arithmetic Operators 652
Perl Assignment Operators 652
Perl Comparison Operators 652
Perl Logical Operators 653
Perl Bitwise Operators 653
Perl Miscellaneous Operators 654
String Operators 654
String Tokens 654

Standard Variables 655
Global Variables 655
Context-Dependent Variables 656
Localized Variables 656
Special Arrays 656

Statements 657
Subroutines, Packages, and Modules 657
Loops and Conditions 658

Functions 660
Arithmetic Functions 660
Conversion Functions 661
Structure Conversion 661
String Functions 663
Array and List Functions 664
Search and Replace Functions 665
File and File Handle Test Functions 666
File Operations 667
Input and Output Functions 668
Directory Functions 670
System Functions 670
Networking Functions 671
Miscellaneous Functions 672

Regular Expressions 673
Matching Expressions and Characters 673
Match Count Modifiers 674
Escape Characters 674

02_588206 ftoc.qxd 6/30/05 12:26 AM Page xx

xxi

Contents

Appendix E: Python Language Reference 675

Built-in Functions 675
array Module 680
asyncore Module 681
asynchat Module 683
binascii Module 684
cgi Module 685
cgitb Module 686
Cookie Module 687
cookielib Module 687
email Module 688
file Object 691
gc Module Functions and Variables (Garbage Collection) 692

httplib Module Functions and Variables 693
imaplib Module 696
mimetools Module 697
os Module 697
os.path Module 698
poplib Module 700
smtpd Module 701
smtplib Module 702
socket Module 703
string Module 704
sys Module 705
random Module 708
urllib Module 709
urllib2 Module 709

Appendix F: PHP Language Reference 717

Apache 717
Arrays 718
BCMath 722
BZip2 723
Calendar 724
Class/Object 725
Character Type 726
Curl 726
Date and Time 727
Directory 729
Error Handling 729
Filesystem 730

02_588206 ftoc.qxd 6/30/05 12:26 AM Page xxi

xxii

Contents

FTP 733
Function Handling 736
HTTP 737
Iconv Library 737
Image 738
IMAP 745
Mail 750
Math 751
MIME 753
Miscellaneous 754
MS SQL 755
MySQL 757
Network Functions 760
ODBC 761
Output Buffering 765
PCRE 766
PHP Options and Info 766
Program Execution 769
Regular Expressions 769
Sessions 770
Simple XML 771
Sockets 772
SQLite 774
Streams 776
Strings 778
URL 784
Variable Functions 784
XML 786
ZLib 787

Index 789

02_588206 ftoc.qxd 6/30/05 12:26 AM Page xxii

Introduction

The Web has matured quickly from a textual reference to a medium suitable for publishing just about
any document imaginable, conveying any idea, containing any type of information. As the Web grows,
it envelopes people of all types—research professionals, companies, and even individuals. People from

all walks of life and with all levels of technical ability are expected to have a Web presence.

As a consequence, most technical people have been relied upon to know more about the technologies
involved in publishing on the Web. Unfortunately, despite what most non-technical people think, tech-
nical people don’t automatically understand all things Web-related. The evolving standards, increasing
number of platforms that are Web capable, and number of technologies that can be employed in Web
publishing conspire to create a morass of technologies that must be addressed.

That’s where this book comes in.

This book does its best to cover the basics of all of the technologies central to Web publishing:

❑ XHTML—The latest Hypertext Markup Language standard, incorporating XML constructs in
the language used to describe Web content.

❑ CSS—Cascading Style Sheets, a structured method for defining and applying formatting to Web
documents.

❑ JavaScript—The premier, client-side scripting language providing scripting access to document
content and base-level automation to Web documents.

❑ CGI Scripting—Server-side, common gateway interface scripts (via the Perl and Python lan-
guages) that bring even more power, capability, and interconnectivity to Web content.

❑ PHP—The revolutionary Hypertext Pre-Processing scripting language built from the ground up
to deliver dynamic Web content.

This book is not designed to be a comprehensive beginner’s tutorial for every standard in Web publish-
ing. That would require six or seven books each this size or larger. In fact, if you’ve never done any Web
publishing or other programming, this may not be the right book for you to start with. (See the next sec-
tion, “Who Is This Book For?”) However, if you don’t need an exhaustive tutorial on each language and
are looking for core usage examples and syntax for several popular Web standards, this book is the all-
in-one reference for Web standards that programmers should turn to when needing to learn or reference
information on the core publishing technologies.

Wiley and WROX have several additional books that should be considered as supplements to this
book. Almost all of the technologies covered in this book have appropriate Beginning and Professional
titles that cover the technology in more depth. Browse for the subjects that most interest you at
http://www.wrox.com.

03_588206 flast.qxd 6/30/05 12:35 AM Page xxiii

xxiv

Introduction

Who Is This Book For?
This book is in the WROX Programmer’s Reference series, designed for programmers. However, this book
expands the concept of “programmer” to include Web coders familiar with HTML. Essentially, there are
two categories of readers that can benefit from this book:

❑ Programmers familiar with traditional programming languages who wish to learn more about
Web technologies so they can expand their programming capabilities to deliver standards-
compliant Web content

❑ Web designers familiar with HTML and related-technologies who wish to become familiar with
scripting languages to expand their capabilities on the Web

The first third of this book covers XHTML and CSS, the backbone technologies for Web content.
Programmers who want to learn about the current XHTML and CSS standards and how they are used
to format and convey content should spend time working through the chapters in these parts.

The second third of the book covers scripting—client-side JavaScript, server-side CGI (Perl and Python),
and PHP are covered. These parts of the book introduce the programming technologies prevalent on the
Web. These programming languages (commonly known as scripting languages) can be used to help cre-
ate and deploy more dynamic and powerful content via the Web. Anyone looking to learn how to use
scripting to expand the capabilities of their online documents should read this part of the book.

The last third of the book contains reference Appendices useful for looking up the syntax and capabili-
ties of the specific technologies.

See the section, “How This Book Is Organized” later in this Introduction for a full breakdown of the
book’s contents.

A Word about Standards
Standards are vastly more important than most people give them credit for. Fortunately, most program-
mers are familiar with learning and adhering to standards of many types. However, the Web has become
a very forgiving platform, allowing Web developers to create and deploy documents that only loosely
conform to the published standards. However, as the publishing platforms for Web content continue to
expand and grow, the need for standards becomes more important to ensure content can be viewed on
as many platforms as possible.

Personally, I’ve been coding for the Web for several years. However, only recently have I begun to adhere
to the W3C specifications and produce standards-compliant HTML. The road to this point has been a bit
painful, but also very rewarding and something I hope to communicate in every example within this
book.

It’s important to understand that you can code for the Web while ignoring the standards, but you shouldn’t.
Most browsers (especially the oft-used Microsoft Internet Explorer) will allow sloppy coding, actually
correcting common code errors. However, this doesn’t guarantee that your document will appear the
way you intended. The auto-correcting behavior of some browsers can also make designers complacent
in their non-conformance. I’ve often heard designers claim, “It looks fine in browser X,” when trying to
defend a non-standards-conforming document.

03_588206 flast.qxd 6/30/05 12:35 AM Page xxiv

xxv

Introduction

You should do the following:

❑ Code to the standards, not the browsers. Trust that most browsers will support the W3C stan-
dards and correctly render documents that are coded to said standards.

❑ Test your documents against the most popular browsers (Microsoft IE and Mozilla Firefox) or
your target browser(s), if known.

This book does its best to cover only the published standards for XHTML and CSS, ignoring browser-
specific extensions, transitional DTDs, quirks-modes, and anything else non-standard. There are a few
areas where this approach is difficult to achieve:

❑ Some tags/attributes that have been deprecated have not had their features replaced with CSS.
In those cases, the deprecated tags or attributes are covered, but discouraged.

❑ JavaScript is especially testy when required to be cross-platform (Internet Explorer and Mozilla).
As such, the JavaScript chapters cover tricks to help your scripts exist peacefully on both
platforms.

In the event that a desired effect can only be achieved by deprecated methods, the methods are covered
but disclaimed as deprecated, and their use is not recommended.

The author recognizes that there are more user agent platforms than just Internet Explorer and Mozilla
Firefox, such as Opera, for example. However, the author also recognizes that the most popular browsers
are IE and Firefox themselves, or are based on the IE or Mozilla (Gecko) codebase. As such, this book
highlights these two browsers—the few times we highlight any specific browser.

How This Book Is Organized
This book is broken up into distinct Parts, each Part covering a specific Web technology.

Part I—HyperText Markup Language (HTML)
The first part of this book concentrates on HTML, specifically the XHTML standard. The chapters in
this part of the book start with the basics of HTML (Chapter 1) and progresses through coverage of how
XHTML is used to format specific elements in a document (Chapters 2–10). The last chapter in this sec-
tion discusses XML, its structure, schema(s), and role in XHTML (Chapter 11).

Part II—Cascading Style Sheets (CSS)
The second part of this book concentrates on CSS. It starts with a description of how CSS works and how
selectors are defined to apply styles in a document (Chapters 12 and 13). Specific chapters cover specific
formatting uses of CSS—text, margins, colors, and so on (Chapter 14–17). The last chapter in this section
covers using CSS to arrange and position elements (Chapter 18)—a topic that is revisited in the next
part’s coverage of Dynamic HTML.

Part III—JavaScript and DHTML
This part of the book covers the JavaScript client-side scripting language. The first chapter covers the
basics of the language, how and why it is used, and its basic syntax (Chapter 19). The next chapter dives
into the guts of the language, covering its constructs, functions, objects, and more (Chapter 20). The next

03_588206 flast.qxd 6/30/05 12:35 AM Page xxv

xxvi

Introduction

chapter covers the Document Object Model, a standard method of identifying document elements and
working with their attributes and properties (Chapter 21). The concept of Dynamic HTML—the practice
of creating dynamic content through the synergy of JavaScript and HTML—is covered in the next chap-
ter (Chapter 22). The last chapter in this part shows you practical examples of JavaScript in use, includ-
ing sample code and explanations thereof (Chapter 23).

Part IV—Common Gateway Interface (CGI)
This part of the book covers the technology involved in using CGI—using server-side scripting languages
to deliver XHTML content. The first chapter of this section covers the basics of the technology, how and
why it is used, and so forth (Chapter 24). The next two chapters cover the specific language conventions
of the two most prominent CGI scripting languages, Perl and Python (Chapters 25–26). CGI can be
accomplished with most any executable language, a concept that is demonstrated in the next chapter
(Chapter 27). Practical examples using Perl and Python are shown in the last chapter in this part
(Chapter 28).

Part V—PHP
This part of the book covers the relatively new, but exciting and powerful, Web scripting language PHP.
The first chapter in this part covers the basics of the PHP language (Chapter 29), the second chapter
covers the language in-depth (Chapter 30), and the third chapter covers practical examples of using PHP
(Chapter 31).

Part VI—Appendixes
The reference appendixes of this book provide comprehensive referential material on the technologies
covered in this book. These references are designed to be used with the chapters where the technology is
covered. The chapters cover learning and using the technologies while the appendixes provide the com-
prehensive reference into the technologies as a whole.

Conventions Used in this Book
This book follows fairly standard technical book conventions, outlined in the next few sections.

Terminology
This book uses fairly unique terminology regarding the World Wide Web and content published thereon.
Most references of this type refer to content on the Web in terms of pages or sites. However, the author
maintains that the Web has grown into an actual publishing medium, allowing rich content to be easily
developed and deployed, allowing for use of the term “document” in lieu of page or site. On today’s
Web, content can be as rich as any book, magazine, or other document-based medium.

In fact, with the abundance of multimedia options available, the Web often exceeds “document” publish-
ing standards.

To the same end, this book routinely refers to XHTML tags by their name, not their coding. For example,
you will see descriptions of the span element, instead of . Also, because all XHTML tags need to
have open and closed pairs in XHTML, when we do refer to the tags by their codes we will only refer to
the open tag (for example, <body> tags, instead of <body> and </body> tags).

03_588206 flast.qxd 6/30/05 12:35 AM Page xxvi

xxvii

Introduction

This book also avoids using the familiar term browser when referring to the application rendering XHTML
and other Web-related technologies into visual presentations. Instead, the book refers to such applica-
tions as user agents. This is due to the fact that a wide range of software and devices now render Web
technologies into presentation formats. The scope of serviceable XHTML rendering tools isn’t as narrow
as it once was—reserved for a few applications known as browsers (Internet Explorer, Mozilla, Opera,
and so on). This book assumes that the reader wants to provide content for as many platforms as possi-
ble, even those outside the familiar application (browser) setting.

Code Listings
There are several ways that code is conveyed in this book.

When code is represented in line, within normal text, it is presented in a special, monotype font such as:
The Wiley Web site can be found at http://www.wiley.com.

Inline code is reserved for short examples, URLs, and other short pieces of text.

When longer listings are required, they appear in a listing format similar to the following:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>Document Title</title>
</head>
<body>
<p>Document body text goes here.</p>
</body>
</html>

If particular sections of the listing need to be specially referenced, they will appear with a gray back-
ground like the <title> section in the preceding listing.

Within code listings we often need to show that the listings contain placeholder information that may be
different in actual use. For example, the following code shows that the margin-top property needs an
argument indicating what the margin should be set to:

margin-top: margin-value;

In such cases, we will use italic keywords representing the variable information. In the preceding listing,
margin-value is the placeholder for the value of the margin. In actual use, margin-value would be
replaced by an actual value, such as the following:

margin-top: 25px;

Tips, Notes, and Cautions
Text that deserves special attention will appear offset in special box as shown in the following paragraph:

This paragraph contains important information that deserves the reader’s attention. It is reserved for
special notes outside the normal flow of the text, cautions that the reader should be aware of, and other
information of special importance.

03_588206 flast.qxd 6/30/05 12:35 AM Page xxvii

xxviii

Introduction

Source Code
Code from this book can be found on the WROX Web site, namely http://www.wrox.com. You can use
the search function to search for this book or use the topical listings to find it. Note that many books are
similar in title and searching for the ISBN (0-7645-8820-6) instead of the title might yield quicker
results.

What You Need to Work with Examples in This Book
This book is full of examples that you can use to help learn the technologies discussed. To replicate code
from the book as well as build your own code, you will need the following:

❑ Access to a Web server, preferably Apache

❑ Shell/command prompt-level access on the system running the Web server

❑ A robust text-editing program, preferably one that does syntax highlighting. On Linux, vim and
Emacs are good choices. Windows users should use TextPad (http://www.textpad.com/),
Homesite (http://www.macromedia.com/software/homesite/) or other full-featured code
editors.

❑ Installed copies of PHP, Perl, and Python. (Needed only for the appropriate chapters that cover
those languages.)

❑ A computer running a recently released browser for testing your code—Mozilla Firefox or
Microsoft Internet Explorer is recommended.

03_588206 flast.qxd 6/30/05 12:35 AM Page xxviii

The Basics of HTML
Before you begin to code HTML pages for the Web, it is important to understand some of the tech-
nology, standards, and syntax behind the Web. This chapter introduces you to HTML and answers
the following questions:

❑ What is the World Wide Web?

❑ How does the Web work?

❑ What is HTML?

❑ What is the basic syntax of HTML?

Subsequent chapters in this section delve into the specifics of HTML, covering various tags you
can use to format your pages.

What Is the World Wide Web?
The Internet is a worldwide network of computers all attached in a global networking scheme.
This scheme, known as TCP/IP, assigns and uses unique addresses to communicate between com-
puters on the Internet.

The World Wide Web is a network of computers that, using the Internet, are able to exchange text,
graphics, and even multimedia content using standard protocols. Web servers — special computers
that are set up for the distinct purpose of delivering content — are placed on the Internet with spe-
cific content for others to access. Web clients — which are generally desktop computers but can also
be dedicated terminals, mobile devices, and more — access the servers’ content via a browser. The
browser is a specialized application for displaying Web content.

For example, Google maintains many Web servers that connect to their database of content found
on the Web. You use your home or office PC to connect to the servers via a browser such as
Microsoft’s Internet Explorer or Mozilla’s Firefox (shown in Figure 1-1).

04_588206 ch01.qxd 6/30/05 12:36 AM Page 1

Figure 1-1

If you were to make a diagram of the relationships between all the technical components involved in
requesting and delivering a document over the Web, it would resemble the diagram shown in Figure 1-2.

Figure 1-2

Server
Storage

Web
Server

User Agent

Requests

Documents

2

Chapter 1

04_588206 ch01.qxd 6/30/05 12:36 AM Page 2

Creating a Web
The Web was created as a replacement for the aging Gopher protocol. Gopher allowed documents across
the Internet to be linked to each other and searched. The inclusion of hyperlinks — embedded links to other
documents on the Web — gives the resulting technology its name because it resembles a spider’s web.

Figure 1-3 shows a graphic representation of a handful of sites on the Web. When a line is drawn
between the sites that link to one another, the web becomes more obvious.

Figure 1-3

National
Business
Directory

Company X
(Acme Partner)

Acme Inc.
(U.K.)

Acme Inc.
(U.S.) Bob’s Web log

(Acme COO)

ISO and
Standards

U.S. Stock
Exchange

3

The Basics of HTML

04_588206 ch01.qxd 6/30/05 12:36 AM Page 3

However, the Web doesn’t operate as the diagram would have you believe. One Web site doesn’t go to
another for information; your browser requests the information directly from the server where the infor-
mation can be found. For example, suppose you are on the Acme Inc US site in Figure 1-3 and click the
link to Company X. The Acme Inc US server doesn’t handle the request for the external page; your
browser reads the address of the new page from the hyperlink and requests the information from the
server that actually hosts that page (Company X in the example from Figure 1-3).

Hyperlinks contain several pieces of vital information that instruct the Web browser where to go for the
content. The following information is provided:

❑ The protocol to use (generally HTTP)

❑ The server to request the document from

❑ The path on the server to the document

❑ The document’s name (optional)

The information is assembled together in a URL. The information is presented in the following form:

❑ The protocol followed by a colon (for example, http:)

❑ The fully qualified domain name of the server, prefixed by two slashes (for example,
//www.google.com)

❑ The path to the file being requested, beginning with a slash, with a slash between each directory
in the path and a slash at the end (for example, /options/)

❑ The name of the file being requested (for example, index.html)

Most Web servers are configured to deliver specific documents if the browser doesn’t explicitly request a
document. These specific documents differ between server applications and configurations but are gen-
erally documents such as index.html and home.html. For example, the following two URLs will
return the same document (index.html):

http://www.google.com/options/
http://www.google.com/options/index.html

Taken all together, a URL resembles that shown in Figure 1-4.

Figure 1-4

HTTP: The Protocol of the Web
As previously mentioned, the Web operates by sending data using specific protocols. The main protocol
used for the Web is Hypertext Transfer Protocol (HTTP). HTTP defines how the computers on the Web,
specifically the server and client, exchange data.

http://www.google.com/options/index.html

Protocol Server Path File

4

Chapter 1

04_588206 ch01.qxd 6/30/05 12:36 AM Page 4

Although HTTP is the protocol of choice for the Web, most browsers support additional protocols such
as the File Transfer Protocol (FTP).

Much like other protocols, an HTTP conversation consists of a handful of commands from the client and
a stream of data from the server. Although discussing the whole HTTP protocol is beyond this book’s
scope, it is important to grasp the basics of how the protocol operates. By using a telnet client, you can
“talk” to a Web server and try the protocol manually as shown in the following code (text typed by the
user appears with a gray background):

telnet localhost 80
Trying 127.0.0.1...
Connected to localhost.
Escape character is ‘^]’.
GET /index.html HTTP/1.1
Accept: text/plain,text/html
Host: localhost
User-Agent: Telnet

HTTP/1.1 200 OK
Date: Sun, 17 Oct 2004 23:47:49 GMT
Server: Apache/1.3.26 (Unix) Debian GNU/Linux PHP/4.1.2
Last-Modified: Sat, 26 Oct 2002 09:12:14 GMT
ETag: “19b498-100e-3dba5c6e”
Accept-Ranges: bytes
Content-Length: 4110
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 3.2//EN”>
<HTML>
<HEAD>

<META HTTP-EQUIV=”Content-Type” CONTENT=”text/html; charset=iso-8859-1”>
<META NAME=”GENERATOR” CONTENT=”Mozilla/4.05 [en] (X11; I; Linux 2.3.99-pre3

i686) [Netscape]”>
<META NAME=”Author” CONTENT=”johnie@debian.org (Johnie Ingram)”>
<META NAME=”Description” CONTENT=”The initial installation of Debian/GNU

Apache.”>
<TITLE>Welcome to Your New Home Page!</TITLE>

</HEAD>
<BODY TEXT=”#000000” BGCOLOR=”#FFFFFF” LINK=”#0000EF” VLINK=”#55188A”
ALINK=”#FF0000”>

<H1>Welcome to Your New Home in Cyberspace!</H1>

<HR NOSHADE>

5

The Basics of HTML

04_588206 ch01.qxd 6/30/05 12:36 AM Page 5

<P>This is a placeholder page installed by the Debian
release of the Apache web server package,
because no home page was installed on this host.
...
</BODY>
</HTML>
Connection closed by foreign host.

The telnet client is started with the name of the host to connect to and the port number (80):

telnet localhost 80

Once the client is connected, the server waits for a command. In this case, the client (our telnet session)
sends a block of commands, including the following:

❑ The document to be retrieved and the protocol to return the document (GET and HTTP 1.1)

❑ The types of documents the client expects or can support (plain text or HTML text)

❑ The host the request is destined for (typically the fully qualified domain name of the server)

❑ The name of the user agent (browser) doing the requesting (Telnet)

GET /index.html HTTP/1.1
Accept: text/plain,text/html
Host: localhost
User-Agent: Telnet

Note that only the first three pieces of data are necessary; the user agent name is provided only as a
courtesy to the Webmaster on the server as it gets recorded in the server logs accordingly.

This block of commands is known as the header and is required to be followed by a blank line, which
indicates to the server that the client is done with the header. The server then responds with information
of its own, including the following:

❑ A response to the command

HTTP/1.1 200 OK

❑ The current date (as known by the server)

Date: Sun, 17 Oct 2004 23:47:49 GMT

❑ The server identification string, which usually identifies the type and capabilities of the server
but can be configured differently

Server: Apache/1.3.26 (Unix) Debian GNU/Linux PHP/4.1.2

6

Chapter 1

04_588206 ch01.qxd 6/30/05 12:36 AM Page 6

❑ Information about the document being delivered (date modified, size, encoding, and so on)

Last-Modified: Sat, 26 Oct 2002 09:12:14 GMT
ETag: “19b498-100e-3dba5c6e”
Accept-Ranges: bytes
Content-Length: 4110
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html; charset=iso-8859-1

❑ The content of the document itself (in this case, the default Debian/GNU Linux Apache wel-
come page)

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 3.2//EN”>
<HTML>
<HEAD>

<META HTTP-EQUIV=”Content-Type” CONTENT=”text/html; charset=iso-8859-1”>
. . .

A few seconds after the full document is delivered, the server closes the connection.

Connection closed by foreign host.

This dialog is HTTP at its simplest, but it does a good job of illustrating how the protocol works.

Hyper text Markup Language
Hypertext Markup Language (HTML) was devised as an easy means to format textual documents. HTTP
is the method for delivering HTML documents, which the client browser then renders into an on-screen
image. This section covers the development and evolution of HTML.

In the Beginning — HTML
HTML and HTTP were both invented by Tim Berners-Lee, who was then working as a computer and
networking specialist at a Swiss research institute. He wanted to give the institute’s researchers a simple
markup language that would enable them to share their research papers via the Internet. Berners-Lee
based HTML on Standard Generalized Markup Language (SGML), an international standard for marking
up text for presentation on a variety of physical devices. The basic idea of SGML is that the document’s
structure should be separated from its presentation.

To date, HTML has gone through four major standards, including the latest, 4.01. In addition to HTML,
Cascading Style Sheets (CSS) and Extensible Markup Language (XML) have also provided valuable con-
tributions to the way of the Web.

Most of the standards used on the Web are developed and/or ratified by the World Wide Web Consortium
(W3C). The resulting specifications can be found online at the W3C Web site, www.w3c.org.

7

The Basics of HTML

04_588206 ch01.qxd 6/30/05 12:36 AM Page 7

HTML 1.0
HTML 1.0 was never specified by the W3C, as it predated the organization. The standard supported a few
basic tags and graphics, although the latter needed to be in GIF format if used in-line or JPEG format if the
image was out-of-line. You couldn’t specify the font, background images, or colors, and there were no
tables or forms. At the time, only one browser, Mosaic 1.0, was available to view Web documents.
However, the standard became the stepping-stone to the modern Web.

HTML 2.0
The HTML 2.0 standard provided a wealth of improvement over the 1.0 version. Background colors and
images were supported, as were tables and rudimentary forms. Between 1.0 and 2.0, a new browser was
launched (Netscape), and several HTML features created to support features in the new browser became
part of the 2.0 standard.

HTML 3.2
The HTML 3.2 standard significantly increased the capability of HTML and the Web. Many of the new
features enabled Web designers to create feature-rich and elegant designs via new layout tags. Although
the 3.2 specification introduced Cascading Style Sheets (CSS level 1), browsers were slow to adopt the
new way of formatting. However, the standard did not include frames, but the feature was implemented
in the various browsers anyway.

There was an HTML 3.0 proposed standard, but it could not be ratified by the W3C in time. Hence, the
next ratified standard was HTML 3.2.

HTML 4.0
HTML 4.0 did not introduce many new features, but it ushered in a new way of implementing Web
design. Instead of using explicit formatting parameters in HTML tags, HTML 4.0 encouraged moving
the formatting parameters to style sheets instead. HTML 3.2 had become burdensome to support with
several dozen tags with several parameters each. The 4.0 standard emphasized the use of CSS, where
formatting changes could be made within one document (the style sheet) instead of individually editing
every page on a site.

XML 1.0
The Extensible Markup Language (XML) was created as a stepping-stone to bring Standard Generalized
Markup Language (SGML) concepts to HTML. Although it was the precursor to HTML, SGML was not
widely endorsed. As such, the W3C sought to create a usable subset of SGML targeted specifically
toward the Web. The new standard was meant to have enough flexibility and power to provide tradi-
tional publishing applications on the Web. XML became part of the new XHTML standard.

CSS 1.0 and 2.0
As mentioned previously, Cascading Style Sheets were devised to move formatting methods used in
Web documents into centralized, formal style sheets. A CSS document contains formatting specifics for
various tags and is applied to applicable documents. This mechanism provides a formal means to sepa-
rate the formatting from the content of a page.

8

Chapter 1

04_588206 ch01.qxd 6/30/05 12:36 AM Page 8

When the formatting needs to change, the CSS document alone can be updated, and the changes are
then reflected in all documents that use that style sheet. The “cascade” in the name refers to the feature
that allows styles to be overridden by subsequent styles. For example, the HR department Web pages
for Acme Inc. can use the company style sheet but also use styles specific for the individual department.
The result is that all of the Acme Inc. Web pages look similar, but each department has a slightly unique
look and feel.

Note: CSS is covered in depth in Part II of this book.

HTML 4.01
Heralded as the last of the HTML standards, 4.01 fixed errors inherent in the 4.0 specification and made
the final leap to embracing CSS as the vehicle for document formatting (instead of using parameters in
HTML tags).

XHTML 1.0
Extensible Hypertext Markup Language is the latest standard for Web documents. This standard infuses
the HTML 4.01 standard with extensible language constructs courtesy of XML. It was designed to be
used in XML-compliant environments yet be compatible with standard HTML 4.01 user agents. As of
this writing, adoption of the XHTML standard for Web documents has been slow. Although most
browsers natively support HTML 4.01, most do not support the extensibility features of XHTML 1.0.

HTML Concept and Syntax
The concept and use of HTML is straightforward. Individual tags — special text strings that are inter-
preted as formatting commands by the browser — are placed within a document to lend structure and
format accordingly. Each tag has a beginning and an ending tag; everything between the tags is format-
ted according to the tag’s parameters or related style sheet.

HTML Tags
Each tag begins with a left-pointing angle bracket (<) and ends with a right-pointing angle bracket (>).
Between the brackets are keywords that indicate the type of tag. Beginning tags include any parameters
necessary for the tag; ending tags contain only the keyword prefixed by a slash.

For example, if you want a word to be bold in a document, you would surround it with bold tags (
and) similar to the following:

If I wanted this word to be bold I would use bold tags.

Many tags require children tags to operate. For example, the <table> tag itself only marks the position
in the document where a table will appear; it does nothing to format the table into rows and columns.
Several child tags —<tr> for rows, <td> for cells/columns, and so on — are used between the begin-
ning and ending <table> tags accordingly:

<table border=”0” >
<tr>

<td>Cell 1</td>
<td>Cell 2</td>

</tr>

9

The Basics of HTML

04_588206 ch01.qxd 6/30/05 12:36 AM Page 9

<tr>
<td>Cell 3</td>
<td>Cell 4</td>

</tr>
</table>

Notice how the tags are closed in the opposite order they were opened. Although intuitive for structures
like tables, it isn’t always as intuitive. For example, consider the following fragment where the phrase
“italic and bold” is formatted with italic and bold tags:

This sentence uses <i>italic and bold</i> tags for emphasis.

Although this example would generally not cause a problem when rendered via a user agent, there are
many instances where overlapping tags can cause problems. Well-formed HTML always uses nested
tags — tags are closed in the exact opposite order that they were opened.

Simple Rules for Formatting HTML Documents
As with most programming languages, formatting plays a big role in writing Web documents that not
only display as intended but also are easily understood and maintained. These simple rules should
always be followed when creating Web documents:

❑ Use liberal white space. Browsers ignore superfluous white space, so you can make use of it to
create documents that are more easily read and maintained. Insert blank lines and follow stan-
dard coding rules for indentation whenever possible.

❑ Use well-formed code. This means following the XHTML standard to the letter — not taking
shortcuts that some browsers allow. In particular, you should pay attention to the following:

❑ Always include a <doctype> tag (<doctype> and other document-level tags are dis-
cussed in Chapter 2.

❑ Elements (tags) must be nested, not overlapping.

❑ All nonempty elements need to be terminated. Most browsers allow for nonclosed
elements, but to meet the XHTML standard you need to supply closing tags for each
open one (for example, supply a closing paragraph tag [</p>] for every open one
[<p>]).

❑ All tags need to be closed. Although the HTML standard allows tags such as <hr>
without a closing tag — in fact, the <hr> tag has no closing mate — in XML all tags
must be closed. In the case of tags like <hr>, you close the tag by putting a slash at the
end of the tag: <hr />.

❑ All attribute values must be quoted. Again, most browsers allow nonquoted
attributes, but the XHTML standard does not.

❑ All attributes must have values. Older HTML standards allowed for tags similar to
the following:

<input type=”checkbox” checked>

10

Chapter 1

04_588206 ch01.qxd 6/30/05 12:36 AM Page 10

However, XHTML does not allow attributes without values (for example, checked).
Instead, you must supply a value, such as the following:

<input type=”checkbox” checked=”checked”>

❑ Comment your code. Using the comment tag pair (<!-- and -->) should be as natural as com-
menting code in programming languages. Especially useful are comments at the end of large
blocks, such as nested tables. It can help identify which part of the document you are editing:

</table> <!-- End of floating page -->

Your First Web Page
As you will see in the other chapters within this section, many elements can make up a Web document,
and you can use many HTML entities to format your documents. However, the following simple example
uses only the basic, necessary tags to produce a page.

11

The Basics of HTML

Example: A Simple Web Page

This example produces a simple HTML document with one line of text, using the bare minimum
number of HTML tags.

Source
Type the following code into a document and save it, in plain text format, as sample.html on
your local hard drive.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”
“http://www.w3.org/TR/html4/strict.dtd”>

<html>
<!-- sample.html - A simple, sample web document -->
<head>

<title>A simple HTML document</title>
</head>
<body>
<p>This is sample text.</p>
</body>
</html>

Output
Now open the document in a Web browser. In most graphical operating environments, you can
simply use a file manager to find the sample.html file and then double-click on it. Your default
Web browser should open and load the file. If not, select Open (or Open File) from the File menu
and find the sample.html file using the browser’s interface.

Your screen should resemble that shown in Figure 1-5.

04_588206 ch01.qxd 6/30/05 12:36 AM Page 11

At this point, you may be asking yourself, “Why don’t I need a Web server?” The reason is simple: The
browser loads and interprets the HTML file from the local hard drive; it doesn’t have to request the file
from a server. However, the file uses only HTML, which is interpreted only by the client side. If you
used any server-side technologies (Perl, PHP, and so on), you would have to load the sample file onto a
Web server that had the appropriate capabilities to process the file before giving it to the client. More
information on server-side technologies can be found in Parts V and VI of this book.

Summary
This chapter introduced you to the World Wide Web and the main technology behind it, HTML. You saw
how the Web works, how clients and servers interact, and what makes up a hyperlink. You also learned
how HTML evolved and where it is today. This basic background serves as a foundation for the rest of
the chapters in this section, where you will learn more about specific HTML coding.

12

Chapter 1

Figure 1-5

04_588206 ch01.qxd 6/30/05 12:36 AM Page 12

Document Tags
HTML documents are much like word processing documents — they contain information about
the document itself, not just its contents. Understanding the layout of the document is as impor-
tant as forming the document itself. This chapter delves into the details of document-level tags.

Understanding Document-Level Tags
Web documents are made up of several nested layers, and each layer is typically delimited by a
particular HTML tag. Most Web veterans know that HTML documents start and end with <html>
tags. However, those new to HTML or those who haven’t kept up with the HTML standards might
not realize that the document should start with a doctype tag and that the top layer doesn’t have
to be <html> (although it usually is).

The tags that make up the framework of a typical HTML document include the following:

❑ A document type tag

❑ The top-level tag, generally <html>

❑ A header section, delimited by <head> tags

❑ Title, style, and script information enclosed in the <head> section

The following sections detail the various tags and sections in a typical Web document.

Web document is used in this book to refer to HTML documents due to the Web becoming closer
to a true publishing platform.

05_588206 ch02.qxd 6/30/05 12:34 AM Page 13

Document Type Tag
The DOCTYPE tag is one of the most overlooked tags in HTML. Strictly speaking, it isn’t an HTML tag but
a generic document identifier used to tell validation tools and clients what format and conventions the
document content follows. A typical document type tag resembles the following:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML Basic 1.0//EN”
“http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd”>

This tag specifies the following information:

❑ The document’s top tag level is HTML (html).

❑ The document adheres to the formal public identifier (FPI) “W3C XHTML Basic 1.0 English”
standards (PUBLIC “-//W3C//DTD XHTML Basic 1.0//EN”).

❑ The full DTD can be found at the URI http://www.w3.org/TR/xhtml-basic/
xhtml-basic10.dtd.

The DTD specifies each valid element that can be contained in the document, including the attributes for
the element and types of values each can contain. For example, the XHTML 1.0 Strict DTD contains the
following section for the anchor tag (<a>):

<!--================== The Anchor Element ================================-->

<!-- content is %Inline; except that anchors shouldn’t be nested -->

<!ELEMENT a %a.content;>
<!ATTLIST a

%attrs;
%focus;
charset %Charset; #IMPLIED
type %ContentType; #IMPLIED
name NMTOKEN #IMPLIED
href %URI; #IMPLIED
hreflang %LanguageCode; #IMPLIED
rel %LinkTypes; #IMPLIED
rev %LinkTypes; #IMPLIED
shape %Shape; “rect”
coords %Coords; #IMPLIED
>

This section specifies the relationship the <a> tag has to the document (in-line) as well as the valid
attributes (charset, type, name, and so on). The structure of the sections within the DTD also indicates
where elements can appear in relationship to one another.

The XHTML Basic 1.0 DTD is a bit different because it applies to a modular standard — its sections
refer to other modular DTD that contains the actual specification. For example, the DTD contains the
following section on tables:

14

Chapter 2

05_588206 ch02.qxd 6/30/05 12:34 AM Page 14

<!-- Tables Module ... -->
<!ENTITY % xhtml-table.module “INCLUDE” >
<![%xhtml-table.module;[
<!ENTITY % xhtml-table.mod

PUBLIC “-//W3C//ELEMENTS XHTML Basic Tables 1.0//EN”
“xhtml-basic-table-1.mod” >

%xhtml-table.mod;]]>

The xhtml-basic-table-1.mod document contains the specifications on table elements within
XHTML.

The DTD is important because without it validation tools and certain clients won’t know how to validate
or otherwise handle your document. You should get in the habit of always including a valid document
type tag at the beginning of your documents.

You can find a list of valid, public DTDs on the W3C Web site at http://www.w3.org/QA/2002/04/
valid-dtd-list.html.

This book uses the XHTML 1.0 DTD (http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict
.dtd) unless otherwise indicated.

HTML Tag
The HTML tag (<html>) is the tag that indicates the beginning and end of an XHTML document. Your
documents should always begin with the opening HTML tag (<html>) and end with the closing HTML
tag (</html>).

A variety of browsers (including Microsoft’s Internet Explorer) correctly handle documents that are
missing one, or both, of these tags. However, you should never count on your audience using a particu-
lar user agent or browser and should therefore strive to always write standards-compliant code.

Head Tag Section
The head section of a document provides extra information about the document as well as serving as a con-
tainer for sections such as styles and global scripts. A document’s head section begins with the opening
head tag (<head>) and ends with the closing head tag (</head>). Added to the other two elements previ-
ously discussed in this chapter, your HTML document should always resemble the following structure:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>Title of Document Goes Here</title>
</head>
<body>
Body text of document goes here...
</body>
</html>

15

Document Tags

05_588206 ch02.qxd 6/30/05 12:34 AM Page 15

The <title> and <body> elements are discussed in the appropriately titled sections later in this chapter.

The following sections detail some of the various elements found in the head section.

Specifying the Document Title
The document title element supplies the title of the document to the user agent, who treats it appropri-
ately: GUI-enabled agents usually display the title in their title bar, audible agents speak it aloud, and so
on. As you would expect, the title appears in between opening and closing title tags (<title> and
</title>).

For example, a document with the following title code would cause Mozilla’s Firefox to display “A syn-
opsis of last quarter’s earnings” in its title bar:

<title>A synopsis of last quarter’s earnings</title>

The document title is also routinely used as a label for the document when added to user favorites, as
the descriptive text for the document in search engines, and so forth. Because of the limited space
granted to document titles, it’s important to keep the title to a reasonable length and on one line.
However, given the wide range of places it can appear, to describe your document you should make
the title as apropos to the document content as possible.

Meta Tags
Meta tags enable Web authors to embed extra information in their documents. Meta tags are used to pro-
vide information to search engines, control browser caching of documents, and much more. Most of a
document’s meta information is generated by the Web server that delivers the document. However, by
using <meta> tags, you can supply different or additional information about the document.

A typical meta tag follows this syntax:

<meta name=”name_of_data” content=”data_content” />

For example, a meta tag that provides a description of a document’s content would resemble the following:

<meta name=”description” content=”A site where programmers can vent” />

The full breadth of meta tag uses is outside the scope of this book because, since meta tags are simple
data containers, any entity, program, or user agent can accept unique meta tags if required. For example,
a user agent may require the author’s name on every page. For pages displayed with that user agent,
you could use the following tag:

<meta name=”author” content=”Steve Schafer” />

The following sections detail some of the more popular meta tag uses.

Over the last few years, meta tag use and support has been declining. As a result, you should never
depend on meta tags to drive any functionality of your documents.

16

Chapter 2

05_588206 ch02.qxd 6/30/05 12:34 AM Page 16

Providing Search Engine Information
A meta tag can be used to provide more information about a document so that when a search engine
indexes the page it can include the extended information. A sample of providing a description was shown
in the previous section; you can also provide keywords and ask that search engine robots (programs that
automatically search and categorize Web documents) not index or follow links in a particular document.

<meta name=”keywords” content=”open, source, PHP, programming, code” />

The preceding tag provides keywords (to those agents requesting them) for the document. Some search
engines use these keywords to categorize the document for searching.

<meta name=”robots” content=”noindex, nofollow” />

The preceding tag tells conforming robots not to index the current document or follow any links from it.
Note that not all robots follow such directions.

Setting the Default Path
When defining links and other elements requiring paths and URIs, it is important to be as exact as possi-
ble with your references. For example, when defining the path to an image for use with an image tag
(), you should consider using an absolute path. An absolute path provides all the information nec-
essary to find the content regardless of the scope of the current document. For example, the following is
an absolute path because it includes the server address and the full path to the image:

http://www.example.com/products/images/imscr.jpg

Relative paths provide information relative to the location of the current document. For example, if the
same image was referenced in a document contained in the products directory, you could use a relative
path such as the following:

images/imscr.jpg

When the user agent receives that path, it typically appends the path to the content onto the path of the
current document (http://www.example.com/products/). This creates the absolute path to the content
being referenced.

However, both approaches have their drawbacks:

❑ When you move a document, for example, to the legacy_products directory, internal absolute
paths will be broken — they will still refer to resources in the products directory.

❑ Some servers do not handle relative links properly, resulting in broken links due to the server or
user agent incorrectly building the absolute path. This is mostly due to configuration issues but
is something to consider if you don’t have control over the server configuration.

One method to help ensure that all your links continue to function is to provide the correct context to all
parties (server and user agent) via the base tag (<base>). For example, the following tag indicates that
the document exists in the products directory and all relative links should be applied against that path:

<base http=”http://www.example.com/products/” />

17

Document Tags

05_588206 ch02.qxd 6/30/05 12:34 AM Page 17

Thereafter, if you have to move the documents in a particular path, you can simply change the base tag
at the top of each:

<base http=”http://www.example.com/legacy_products/” />

The rest of the links in the document (if relative) will be correctly handled.

Directing User Agent Caching
You can control the caching behavior of some user agents with appropriate meta tags. For example, you
can direct the user agent not to cache the current document with one of the following tags:

<meta name=”Cache Control” content=”no-cache”
<meta http-equiv=”pragma” content=”no-cache”>

The first tag (Cache Control) is generally understood by modern browsers. The second should be used
for browsers that are only HTTP 1.0 compliant, as they do not recognize Cache Control. (When in doubt
as to the user agents accessing your content, include both.)

Furthermore, you can control how long the document stays in the cache:

<meta name=”Cache Control” content=”max-age=86400”

The value of max-age is given in seconds from the user agent receiving the document. In the preceding
example, the user agent is instructed to cache the document for one day (86,400 seconds), at which
point the cached copy should expire.

As previously stated, it is up to the user agent as to whether it will abide by such requests; you should
never design documents that rely on behavior specified in meta tags.

Creating Automatic Refreshes and Redirects
You can direct the user agent to automatically reload the current document or another document after a
specified amount of time has passed. The syntax of the corresponding meta tag is as follows:

<meta http-equiv=”refresh” content=”seconds_to_wait; url=path_to_document”>

For example, the following tag will reload the document specified after 5 seconds:

<meta http-equiv=”refresh” content=”5;
URL=http://www.example.com/new_products/index.html”>

Typical uses of such tags include the following:

❑ Notifying users of a moved page. I’m sure you have seen at least one page resembling the
following:

This page has moved. You will be redirected in 5 seconds.

Such pages use the meta tag to direct the user to the appropriate location after the specified
time. Note that the redirection is done by the user agent, not the server.

18

Chapter 2

05_588206 ch02.qxd 6/30/05 12:34 AM Page 18

❑ Refreshing content that changes. A document that tracks stock prices or inventory quantities
should be refreshed automatically so that the data is reasonably accurate. In this case, the docu-
ment specified in the tag should be the current document, causing the document to simply
reload, refreshing its contents. Note that this use generally requires a no-cache directive as
well, helping prevent the user agent from simply loading the same copy from cache.

Overriding Server Meta Information
As previously mentioned, most of the meta data sent to user agents is sent from the server delivering the
Web document. However, if you use the HTTP-EQUIV parameter in the <meta> tag, you can replace
HTTP header information. For example, the following <meta> tag defines the content type of the docu-
ment as HTML with the Latin character set (ISO-8859-1):

<meta http-equiv=”Content-Type” content=”text/html; charset=ISO-8859-1” />

For a comprehensive list of HTTP 1.1 headers, including cache and other directives, see the HTTP 1.1
definition on the W3C Web site: http://www.w3.org/Protocols/rfc2616/rfc2616.html.

Style Section
The head section is also the area where you should declare any general and local styles for the docu-
ment. All style definitions should be contained within style tags accordingly:

<head>
<title>ACME Products Corporate Web Site</title>
<style type=”text/css”>

...style definitions go here ...
</style>

...
</head>

Note that the opening style tag includes a type definition so that the user agent knows what to expect —
textual information in CSS format.

Styles are covered in depth within Part II of this book.

You can also refer to an external document containing style definitions (commonly referred to as a style
sheet) using the <link> tag. For example, the following code refers the user agent to an external style
sheet named site.css:

<link rel=”stylesheet” type=”text/css” href=”site.css” />

The <link> tag can also be used to provide information on documents that are related to the current
document — an index, the next or previous document in a series, and so on. For more information on
attributes and values necessary to specify such information, see Appendix A.

19

Document Tags

05_588206 ch02.qxd 6/30/05 12:34 AM Page 19

Script Section
You should also place any global scripts inside the head section of the document. For example, if you use
JavaScript for certain features, your head would include a section similar to the following:

<script type=”text/javascript”>
...script code goes here...

</script>

As with other non-HTML content containers, the opening <script> tag includes identifiers of the content
contained in the section (in this case, textual JavaScript code).

Scripting is covered in Part III of this book.

The <script> tag can also be used to refer to an external document containing the script code by
adding the src (source) attribute:

<script type=”text/javascript” src=”myscripts.js” />

The preceding code would direct the user agent to find the code for the scripts in the file myscripts.js.

Note that you can (and usually should) include an absolute or relative path to the external script file.

Body Section
The body section of the document is where the visible content appears. This content is typically a series
of block tags containing in-line content — similar to paragraphs containing words and sentences.

The body section is delimited by opening and closing <body> tags and appears after the <head> section
but within the <html> tags. For example, the following code shows the typical structure for a Web
document:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>...document title goes here...</title>
<style type=”text/css”>

...style definitions go here ...
</style>
<script type=”text/javascript”>

...script code goes here...
</script>

</head>
<body>
...document body goes here...
</body>
</html>

20

Chapter 2

05_588206 ch02.qxd 6/30/05 12:34 AM Page 20

Prior to HTML 4.01 the <body> tag played host to a wealth of document format information, including
the following:

❑ Background color

❑ Background image

❑ The color of text

❑ The color of links in the document

However, those attributes have been deprecated, and the appropriate CSS styles are now used instead.

Styles are covered in depth within Part II of this book.

The <body> tag does retain all of its event attributes —onload, onunload, onclick, and so on. These
events can be used to trigger scripts upon the appropriate action. For example, the following <body> tag
will cause the current document to close when the user clicks anywhere in the document:

<body onclick= “self.close()”>

Events and scripts are covered in depth in Part III of this book. Dynamic HTML, which makes good use
of events and scripting, is covered in Chapters 24 and 25.

Summary
This chapter discussed the various document-level tags and how they are used to set up the basic format
of HTML documents. You learned that a <doctype> tag should be mandatory for all Web documents
and how the other document tags relate to one another. As you progress through the rest of the chapters
in this section, you will learn about content-level tags and how to construct and format the actual docu-
ment contents.

21

Document Tags

05_588206 ch02.qxd 6/30/05 12:34 AM Page 21

05_588206 ch02.qxd 6/30/05 12:34 AM Page 22

Paragraphs and Lines
In Chapter 2, you learned how to correctly set up an HTML document. Now that you have the
basic framework for a document, you can get to work on filling it with content. The first elements
that you need to learn are block tags, which define blocks of content within the body of a docu-
ment. This chapter teaches you about the top-level block elements — paragraphs, line breaks, and
divisions — as well as some of the additional block elements.

Paragraphs — The Basic Block Element
Like most documents, Web documents are broken up into discrete blocks. The main textual blocks
are delimited by paragraph tags (<p>). Paragraph tags surround each paragraph in the document.

Using Paragraph Tags

For example, consider the following paragraphs from Homer’s Iliad:

“Thus did he speak, and they did even as he had said. Those who were about Ajax and King
Idomeneus, the followers moreover of Teucer, Meriones, and Meges peer of Mars called all
their best men about them and sustained the fight against Hector and the Trojans, but the
main body fell back upon the ships of the Achaeans.

“The Trojans pressed forward in a dense body, with Hector striding on at their head. Before
him went Phoebus Apollo shrouded in cloud about his shoulders. He bore aloft the terrible
aegis with its shaggy fringe, which Vulcan the smith had given Jove to strike terror into the
hearts of men. With this in his hand he led on the Trojans.”

Note how the lines within the paragraph are spaced using single line spacing, with double-
spacing between the paragraphs.

06_588206 ch03.qxd 6/30/05 12:27 AM Page 23

Despite the name of the tag implying text (paragraph), the <p> tag can be used to enclose any distinct
piece of a document. In fact, the <p> tag is the block tag most used within documents.

Each element within the body of an HTML document (anything between the <body> tags) must be
enclosed within block tags.

24

Chapter 3

Source
To display the paragraphs similarly in a Web document, you would simply place each paragraph
within paragraph tags:

<p>Thus did he speak, and they did even as he had said. Those who were about
Ajax and King Idomeneus, the followers moreover of Teucer, Meriones, and Meges
peer of Mars called all their best men about them and sustained the fight
against Hector and the Trojans, but the main body fell back upon the ships of
the Achaeans.</p>
<p>The Trojans pressed forward in a dense body, with Hector striding on at their
head. Before him went Phoebus Apollo shrouded in cloud about his shoulders. He
bore aloft the terrible aegis with its shaggy fringe, which Vulcan the smith had
given Jove to strike terror into the hearts of men. With this in his hand he led
on the Trojans.</p>

Output
In a browser, the code generates the document shown in Figure 3-1.

Figure 3-1

06_588206 ch03.qxd 6/30/05 12:27 AM Page 24

For example, a document body with two tables would resemble the following code:

<body>
<p>

<table>
...body of table one...

</table>
</p>
<p>

<table>
...body of table two...

</table>
</p>
</body>

Early Web developers used <p> tags only to create space. For example, two paragraphs would be coded
similarly to the following:

...paragraph one...
<p>
...paragraph two...

No closing tags (</p>) were used and therefore no elements were enclosed within block tags. This practice
will still render basic text properly in most browsers but is not standards compliant and impacts some of
the features of cascading style sheets.

Manual Line Breaks
Occasionally, you need to break a text line prematurely (that is, before the paragraph break). In such
cases, use the line break tag (
).

25

Paragraphs and Lines

Use of Line Break Tags

For an example of how line breaks are used, consider these lines from William Shakespeare’s
play Hamlet:

Fran.
I think I hear them.--Stand, ho! Who is there?

[Enter Horatio and Marcellus.]

Hor.
Friends to this ground.

Mar.
And liegemen to the Dane.

Fran.
Give you good-night.

06_588206 ch03.qxd 6/30/05 12:27 AM Page 25

26

Chapter 3

Mar.
O, farewell, honest soldier;

Who hath reliev’d you?

This text has the distinct format of a play script where each paragraph is formatted like the fol-
lowing example:

Actor

Dialog

For example, dialog for Fran would resemble the following:

Fran.

Give you good-night.

Source
To format text such as in the preceding example, you make each actor-dialog pair a separate para-
graph with a line break between the two:

<p>Fran.

I think I hear them.--Stand, ho! Who is there?</p>
<p>[Enter Horatio and Marcellus.]</p>
<p>Hor.

Friends to this ground.</p>
<p>Mar.

And liegemen to the Dane.</p>
<p>Fran.

Give you good-night.</p>
<p>Mar.

O, farewell, honest soldier;
Who hath reliev’d you?</p>

Notice the following two things about the preceding code: (1) The code uses white space to help break
up the document; this will have no effect on how the browser renders the text. (2) The
 tag,
because it has no closing tag, includes the slash (
) so that it closes itself and is XHTML
compliant.

06_588206 ch03.qxd 6/30/05 12:27 AM Page 26

27

Paragraphs and Lines

Output
When rendered by a Web browser, the preceding code results in the display shown in Figure 3-2.

Figure 3-2

Unlike the <p> tag, you can use multiple
 tags to create vertical white space in documents.
However, the use of CSS is still preferred for spacing issues; see the information in Part II of this
book, especially Chapters 15 and 16.

Headings
Standard HTML tags allow for six levels of headings, <h1> through <h6>. The higher the heading number,
the smaller the heading. Figure 3-3 shows a simple page with all six headers and a line of standard text.

The user agent’s settings affect the size of the different headings.

The code to generate the document shown in Figure 3-3 appears here:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>Sample Headings</title>
</head>
<body>
<p>

06_588206 ch03.qxd 6/30/05 12:27 AM Page 27

<h1>Heading One</h1>
<h2>Heading Two</h2>
<h3>Heading Three</h3>
<h4>Heading Four</h4>
<h5>Heading Five</h5>
<h6>Heading Six</h6>
A line of normal text.</p>
</body>
</html>

Notice how the headings have implicit line breaks and how the entire document is set inside paragraph
tags. Although there are no attributes that you can use to modify the format and behavior of heading tags,
you can change their appearance and behavior with styles (which are discussed in Part II of this book).

As a general rule, you should not include any other tags within a heading.

Figure 3-3

Horizontal Rules
Horizontal rules appear as lines across the user agent screen, and they are generally used to separate
information visually. A typical <hr/> is shown in Figure 3-4.

The tag to generate a horizontal rule is <hr />. Like any other nonpaired tag, the <hr /> tag should
include a slash so that it operates as an open and close tag.

28

Chapter 3

06_588206 ch03.qxd 6/30/05 12:27 AM Page 28

Previous versions of HTML included various attributes that could be used to modify the width, thick-
ness, and look of the line. These attributes have been deprecated in favor of applicable styles.

You will learn more about styles in Part II of this book. Figure 3-5 shows a few sample rules using differ-
ent styles.

Figure 3-4

Figure 3-5

29

Paragraphs and Lines

06_588206 ch03.qxd 6/30/05 12:27 AM Page 29

Preformatted Text
Occasionally you will need to present content that has already been formatted — tabbed or spaced data,
for example — that you do not want the user agent to reformat. For example, suppose you had the fol-
lowing output from a SQL query:

+---------------+-------------------+
| name | value |
+---------------+-------------------+
newsupdate	1069455632
releaseupdate	Tue, 1/28, 8:18pm
status	0
feedupdate	1069456261
+---------------+-------------------+

If you allow a user agent to reformat this text, it will end up looking something like what is shown in
Figure 3-6, which is nothing like what was intended.

Figure 3-6

Keep in mind that all white space (spaces, line breaks, and so on) will usually be condensed by the user
agent into one single space. Use the <pre> tag as required to have the user agent interpret and render
white space verbatim.

In such cases, use the preformatted text tag (<pre>). This tag tells the user agent not to reformat the text
within the <pre> block but to render it verbatim as it appears in the document.

30

Chapter 3

06_588206 ch03.qxd 6/30/05 12:27 AM Page 30

If you use a <pre> block with the example text (as shown in the following code), the user agent will ren-
der it correctly, as shown in Figure 3-7.

<pre>
+---------------+-------------------+
| name | value |
+---------------+-------------------+
| newsupdate | 1069455632 |
| releaseupdate | Tue, 1/28, 8:18pm |
| status | 0 |
| feedupdate | 1069456261 |
+---------------+-------------------+
</pre>

Figure 3-7

Block Divisions
You may sometimes want to format a large block of text in a similar fashion but in a way that is different
from other block(s) in the same document. For example, you might want to set apart a quote so that it
appears in a different style than the text around it.

You could change the format of the paragraphs manually or you could set them off in their own block
using the division tag (<div>).

31

Paragraphs and Lines

06_588206 ch03.qxd 6/30/05 12:27 AM Page 31

32

Chapter 3

Using the <div> Tag

The use of the <div> tag is straightforward. Simply place the tags around sections of text you
want to treat as a special division.

Source
The following shows a few paragraphs of text, surrounding a quote that should be set off in a dif-
ferent format.

<p>Despite recent setbacks, Acme Inc still intends on releasing its super-
duper gaming console on Tuesday. Company CEO Morgan Webb had this to say:</p>

<div class=”quote”><p>“Although the company has seen better times, we
are confident that the release of the new system will prove our continued
strength in the market. I’m sure that our customers--who have waited
patiently for the X22-B12--will not be disappointed.</p>
<p>The release of multiple games and the launch of our online servers will
further increase our lead over the competition. At the next industry event we
will also be launching a new controller interface that will leave gamers
breathless.”</p></div>

<p>Although Acme has not released a single product in over four years, the
new X22-B12 console holds the promise of revolutionizing gameplay--that is,
if it arrives on time and garners enough support from the masses.</p>

The styles for the document, inserted into the document <head> section, include the format for
the quote class of <div>:

<style type=”text/css”>
div.quote { padding-right: 4em; padding-left: 4em;

font-style: italic; }

</style>

06_588206 ch03.qxd 6/30/05 12:27 AM Page 32

33

Paragraphs and Lines

Output
The resulting output, once rendered in a user agent, is shown in Figure 3-8. Note how the
quote is indented from the right and left margins and is in italic type, as defined by the style.

Figure 3-8

Summary
This chapter introduced you to the basic block tags and how best to use them within your content. The
coverage in this chapter was pretty basic, formatting-wise. You saw how the block tags can be used to sep-
arate text but not to format it. That is because most of the formatting attributes have been deprecated in
favor of styles, which are covered in Part II of this book. Chapter 4 introduces the list tags, and subsequent
chapters introduce other elements of HTML.

06_588206 ch03.qxd 6/30/05 12:27 AM Page 33

06_588206 ch03.qxd 6/30/05 12:27 AM Page 34

Lists
XHTML supports many different block text elements due to its roots as a text document description
and formatting language. One of the more often used blocks is lists, of which XHTML supports
three different varieties:

❑ Ordered lists — Lists whose elements must appear in a certain order. Such lists usually
have their items prefixed with a number or letter.

❑ Unordered lists — Lists whose elements can appear in any order, usually referred to as
bulleted or laundry-style lists. Such lists usually have their items prefixed with a bullet
or other graphic symbol.

❑ Definition lists — Lists that contain two pieces of information — a term and a definition
of said term — for each list element.

This chapter covers all three lists, their syntax, and various options that can be used to customize
their appearance.

This chapter introduces several Cascading Style Sheet concepts. For more information about
Cascading Style Sheets, see Part II of this book.

Understanding Lists
Both ordered and unordered lists share a similar syntax in XHTML, as shown in the following
pseudocode example:

<list_tag>
<item_tag>List item</item_tag>
<item_tag>List item</item_tag>
<item_tag>List item</item_tag>

</list_tag>

07_588206 ch04.qxd 6/30/05 12:26 AM Page 35

Definition lists are different in syntax due to their unique structure — that is, two items for each list
element. See the section on definition lists later in this chapter for more information.

Each list is encapsulated in opening and closing list tags, and each list element in turn is encapsulated in
opening and closing list item tags.

Ordered lists have their list items prefixed by incrementing numbers or letters indicating the order of the
items. Unordered lists have their list items prefixed by a bullet or other symbol, indicating that their
order does not matter.

The following is an example of an ordered list:

1. Choose Open from the File menu.

2. Use the File Open dialog to navigate to the file you want to open.

3. Double-click the file or click the file and then click the Open button.

The following is an example of an unordered list:

❑ Banana

❑ Chocolate

❑ Strawberry

Definition lists have two pieces of information per list item, usually a term and a definition, as shown in
the following example:

❑ Mozilla

❑ Developed by the Mozilla Project, an open source browser for multiple platforms

Ordered and unordered lists have many options that can be used to customize their appearance.

❑ Ordered lists can have their items preceded by the following:

❑ Arabic numbers

❑ Roman numerals (upper- or lowercase)

❑ Letters (upper- or lowercase)

❑ Numerous other language-specific numbers/letters

❑ Unordered lists can have their items preceded by the following:

❑ Several styles of bullets (filled circle, open circle, square, and so on)

❑ Images

More information on the individual list types is provided in the following sections.

36

Chapter 4

07_588206 ch04.qxd 6/30/05 12:26 AM Page 36

Ordered (Numbered) Lists
Ordered lists have a simple format, but many options can be used to customize their appearance in a
document. Each ordered list is encapsulated in ordered list tags (), and each item within the list is
encapsulated in list item tags (), as shown in this example:

List item 1
List item 2
List item 3

The default numbering method uses Arabic numbers. When rendered in a user agent, this basic list
resembles that shown in Figure 4-1.

Figure 4-1

Previous versions of HTML did not require the closing item tag (). However, as you should know
by now, XHTML requires each tag to have a closing mate. Therefore, it is important always to close
your list items with an appropriate tag.

Changing the Number Style
To change the numbering method for the list, you would use the list-style-type property to define
the style you want for the numbers.

37

Lists

Example: Using Letters for an Ordered List

This example shows how to use the list-style-type property to change an ordered list’s
ordinal to uppercase letters.

Source
The source code for the list would resemble the following code. Note the use of the style
attribute in the tag.

07_588206 ch04.qxd 6/30/05 12:26 AM Page 37

38

Chapter 4

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”><html>

<head>
<title>Example Ordered List - Letters</title>

</head>
<body>
<p>
<ol style=”list-style-type: upper-alpha”>

In Internet Explorer, open the Web page that displays
the graphic you wish to use as wallpaper for your
desktop.

Right-click on the image to open the context menu.
Choose Set as Background to save the image and use it

as your desktop wallpaper.

</p>
</body>

</html>

Output
When rendered in a user agent, the list appears as shown in Figure 4-2.

Figure 4-2

The list-style-type property supports the following values in CSS2:

❑ decimal

❑ decimal-leading-zero

❑ lower-roman

❑ upper-roman

❑ lower-greek

❑ lower-alpha

07_588206 ch04.qxd 6/30/05 12:26 AM Page 38

❑ lower-latin

❑ upper-alpha

❑ upper-latin

❑ hebrew

❑ armenian

❑ georgian

❑ cjk-ideographic

❑ hiragana

❑ katakana

❑ hiragana-iroha

❑ katakana-iroha

❑ none

The values are self-explanatory. For example, the decimal-leading-zero will produce numbers with
leading zeros (“01” instead of “1”). Keep in mind that the default style is decimal on most user agents,
but if you want to ensure that the list displays as decimal on all agents, you should explicitly set it to
such using the list-style property.

Some of the list-style-type values are font dependent (that is, they are supported only on certain
fonts). If you are using a type such as hiragana with a Latin-based font, you will not get the results
you intend.

Changing the Position of the Ordinal
Ordered lists also support the list-style-position property, which controls where the ordinal
appears in relation to the list item. The list-style-position property supports three values:
inherit, inside, and outside.

The inherit value causes the list to adopt the list style of its parent(s). The inside value moves the
ordinal inside the paragraph of the item, for a more compact list. The outside value (the default) places
the ordinal outside the list item. A sample of inside and outside items is shown in Figure 4-3, which uses
the following list code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”><html>

<head>
<title>Example Ordered List - Positioning</title>

</head>
<body>
<p>Outside positioning
<ol style=”list-style-position: outside”>

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis

39

Lists

07_588206 ch04.qxd 6/30/05 12:26 AM Page 39

aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis
aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis
aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
</p>
<p>Inside positioning
<ol style=”list-style-position: inside”>

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis
aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis
aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis
aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
</p>
</body>
</html>

The various list properties can all be defined within one property, list-style. The list-style
property has the following syntax:

list-style: <list-style-type> <list-style-image> <list-style-position>

You can use this one property to specify one, two, or all three list-style properties in one style
declaration.

40

Chapter 4

07_588206 ch04.qxd 6/30/05 12:26 AM Page 40

Figure 4-3

Changing the Starting Number of Ordered Lists
Previous versions of HTML allowed the use of the start attribute in the ordered list tag to control what
number or letter the list would begin with. For example, the following code would have started a list
with the decimal number 10:

<ol start=”10” style=”list-style: decimal;”>

However, the start attribute of the tag has been deprecated. To date, no replacement CSS style has
been defined. Although you can use the start attribute, your document will no longer be XHTML
compliant.

To implement flexible numbering, use the new CSS2 automatic counters and numbering feature. This
feature uses the content property along with the new counter-increment and counter-reset
properties to provide a flexible yet powerful automatic counter function.

41

Lists

07_588206 ch04.qxd 6/30/05 12:26 AM Page 41

The following style code will define a counter and cause any list to begin with 10:

<style type=”text/css”>
ol { counter-reset: list 9; }
li { list-style-type: none; }
li:before {

content: counter(list,decimal) “. “;
counter-increment: list; }

</style>

This code introduces quite a few CSS2 concepts — pseudoelements, counters, and related properties and
methods. However, it isn’t as complex as it might first appear:

❑ The ol definition sets the counter (list) to be reset to 9 every time an tag is used in the
document.

❑ The li definition sets the list-style-type to none — the counter will display our number. If
the type was left alone or set to decimal, there would be an additional number displayed with
each item.

❑ The li:before definition accomplishes two distinct purposes:

❑ It causes the counter to be displayed before the item (using the begin pseudoelement
and the content property) along with a period and a space.

❑ It also increments the counter. Note that the counter increment happens first, before the
item is displayed. That is why the counter is initialized to one lower than the starting num-
ber desired (9 instead of 10).

Using the preceding styles along with the following list code in a document results in a list with items
numbered 10–15:

Item 10
Item 11
Item 12
Item 13
Item 14
Item 15

Unfortunately, at the time of this writing, only the Opera browser fully supports counters. However, the
other user agents should adopt this feature in the future.

Unordered (Bulleted) Lists
Unordered lists are generally used to present lists whose order does not matter. For example, when list-
ing the flavors of milkshakes available, you might use a list similar to the following:

❑ Chocolate

❑ Vanilla

42

Chapter 4

07_588206 ch04.qxd 6/30/05 12:26 AM Page 42

❑ Strawberry

❑ Mocha

This same list can be implemented in HTML documents using the unordered list tag (), as shown in
the following HTML code:

Chocolate
Vanilla
Strawberry
Mocha

Note that the use of the unordered list tag is very similar to the use of the ordered list tag — only the out-
put is different, as shown in Figure 4-4.

Figure 4-4

Changing the List Item Marker
As you can with ordered lists, you can change the marker used to prefix each unordered list item. To do
so, use the list-style-type property with one of the following values:

43

Lists

07_588206 ch04.qxd 6/30/05 12:26 AM Page 43

❑ disc

❑ circle

❑ square

❑ none

You can also use the list-style-image property to specify a graphic image for use as the list item marker.

44

Chapter 4

Changing the List Item Marker Example

This example shows how to change the list item marker, specifying one of the preset markers or a
specific graphic image.

Source
The following code uses several different types of list markers:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”><html>

<head>
<title>Example Unordered List Markers</title>
<style type=”text/css”>

ul.normal { }
ul.circle { list-style-type: circle; }
ul.image { list-style-image: url(“shake.jpg”); }
ul.none { list-style-type: none; }

</style>
</head>
<body>
<p>
<ul class=”normal”>

Chocolate
Vanilla
Strawberry
Mocha

<ul class=”circle”>

Chocolate
Vanilla
Strawberry
Mocha

<ul class=”image”>

Chocolate
Vanilla
Strawberry
Mocha

<ul class=”none”>

Chocolate
Vanilla
Strawberry

07_588206 ch04.qxd 6/30/05 12:26 AM Page 44

45

Lists

Mocha

</p>
</body>

</html>

Note that to use an image for a marker, the image must conform to the following:

❑ Accessible to the document via HTTP (be on the same Web server or deliverable from
another Web server)

❑ In a suitable format for the Web (jpg, gif, or png)

❑ Sized appropriately for use as a bullet

If the image used in the list-style-image property is not found, most user agents will substi-
tute the default marker.

Output
The code results in a document that resembles that shown in Figure 4-5.

Figure 4-5

07_588206 ch04.qxd 6/30/05 12:26 AM Page 45

As you can see from Figure 4-5, all user agents do not use a standard round bullet for the default
item marker. In this case, Mozilla Firefox uses a solid diamond for the standard bullet. If you want to
ensure that your document is always displayed using a particular marker in its unordered lists, you
should explicitly define it.

Changing the Position of the Ordinal
Unordered lists support the list-style-position property, controlling where the marker appears in
relation to the list item. The list-style-position property supports three values: inherit, inside,
and outside. The effect is similar to that of ordered lists, as demonstrated in the ordered list section ear-
lier in this chapter.

Definition Lists
Definition lists seem more complex than the other two lists due to their having two elements per list item.
However, the sparse number of options available for definition lists makes them easy to implement.

The definition list itself is encapsulated within definition list tags (<dl>). The list items consist of a defi-
nition term (<dt>) and definition (<dd>), each delimited by its own tag pair.

For example, the following code results in the document shown in Figure 4-6:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”><html>

<head>
<title>Example Definition List</title>

</head>
<body>
<p>
<dl>

<dt>Internet Explorer</dt>
<dd>Developed by Microsoft, an integral piece of Windows

products.</dd>
<dt>Mozilla</dt>
<dd>Developed by the Mozilla Project, an open source

browser for multiple platforms.</dd>
<dt>Netscape</dt>
<dd>Developed by Netscape Communications Corporation, one

of the first graphical browsers.</dd>
<dt>Safari</dt>
<dd>Developed by Apple Computer, Inc, for Apple’s OSX

operating system.</dd>
<dt>Firefox</dt>
<dd>A “next generation” open source browser developed by Mozilla

and available on multiple platforms.</dd>
</dl>
</p>
</body>
</html>

46

Chapter 4

07_588206 ch04.qxd 6/30/05 12:26 AM Page 46

Figure 4-6

Nesting Lists
You can nest lists of the same or different types as necessary. For example, you can generate a list similar
to the following, incorporating an ordered list within an unordered one:

❑ Call the number below.

❑ Send us a letter, being sure to include the following:

1. Your full name

2. Your order number

3. Your contact information

4. A detailed description of the problem

❑ Use the Web form to send us an e-mail.

47

Lists

07_588206 ch04.qxd 6/30/05 12:26 AM Page 47

This combination of lists can be constructed using the following code and results in the display shown in
Figure 4-7:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”><html>

<head>
<title>Example Nested Lists</title>

</head>
<body>
<p>

Call the number below
Send us a letter, being sure to include:

Your full name
Your order number
Your contact information
A detailed description of the problem

Use the Web form to send us an email

</p>
</body>
</html>

Figure 4-7

48

Chapter 4

07_588206 ch04.qxd 6/30/05 12:26 AM Page 48

Summary
As you learned in this chapter, XHTML lists are flexible text constructs that can be used for a variety of
purposes. Using the many optional formatting options, you can construct a list, or nested series of lists,
for just about any purpose. The new counters feature of CSS can also be used to extend even more func-
tionality and flexibility to your lists.

49

Lists

07_588206 ch04.qxd 6/30/05 12:26 AM Page 49

07_588206 ch04.qxd 6/30/05 12:26 AM Page 50

Images
Previously a haven of text-only mediums, the Internet became mainstream due to graphic content
on the Web. Today capabilities exist to deliver much more than static graphics — multimedia
of every variety can be found on Web pages. This chapter covers the inclusion of basic graphic
format — static images — in Web documents.

Including other multimedia formats in Web documents is covered in Chapter 10.

Image Formats
Although static images can seem unexciting in today’s world of Web-delivered content, the Web
would be a very boring place without their use. As you will see in the following sections, there are
plenty of options and formats to consider when using images in your Web documents.

Web Formats
The Web supports three main formats of graphics — GIF, JPEG, and PNG. The following sections
detail the capabilities and suggested uses for each type of graphic.

GIF
The Graphics Interchange Format (GIF) was created in the late 1980s. It was originally used by the
CompuServe online service to deliver graphic content to their subscribers. The GIF format uses
LWZ compression to help keep the file size small. Version 89a of the GIF format added the ability
to encapsulate several images within one file, giving the format animation functionality.

The GIF format has the following characteristics:

❑ Supports up to 8-bit color (256 colors)

❑ Supports transparency

❑ Is stored in a compressed, lossless format

❑ Can be interlaced and used for rudimentary animations

08_588206 ch05.qxd 6/30/05 12:22 AM Page 51

As you can see, GIF is a versatile format. The main drawback to the GIF format is the limit of 256 colors,
which can limit what the format can display.

Patent problems plagued the GIF format’s adoption in the late 1990s. Unisys, the patent holder of LWZ
compression, chose to terminate their royalty-free licenses and charge royalties for use of the format.
This practice spurred the development of alternative formats for platforms like the Web, resulting in
new and/or more robust JPEG and PNG format support.

JPEG
The Joint Photographic Experts Group (JPEG) graphic file format is actually two standards: one specifies
how an image is translated into a series of bytes, and the second (JPEG File Interchange Format [JFIF])
specifies how the data is encapsulated into a file format. JPEG files are stored using one of several lossy
compression methods — to keep images at a reasonable size, the compression scheme sacrifices being
able to accurately reconstruct all data present in the original image.

The JPEG format has the following characteristics:

❑ Supports 24-bit color (64,000 colors)

❑ Does not support transparency

❑ Is stored using a lossy compression format; the smaller the file, the lower the quality of the
image (although the compression level can be configured when an image is created in an image
editing program)

❑ Can be stored in a “progressive” format

The JPEG format is not as versatile as the GIF format, but its support of 24-bit color and compression
make it a good format for quality images across a bandwidth-constrained medium.

PNG
The Portable Network Graphics (PNG) format was developed during the GIF patent confusion. PNG
was created specifically for delivery over online services such as the Web and specifically to solve some
of the problems with the GIF format. PNG uses a nonpatented lossless compression scheme to keep file
sizes smaller while maintaining image quality.

The PNG format has the following characteristics:

❑ Supports 24-bit color (64,000 colors)

❑ Supports transparency

❑ Is stored using a lossless compression scheme

❑ Can be stored and displayed in interlaced format

PNG is a relatively new format, and as such, support for the format and its various features is still some-
what spotty. For example, as of this writing, Microsoft’s Internet Explorer supports only the single-color
transparency option of the PNG format. However, this format promises to be a large step in the evolu-
tion of online graphics.

52

Chapter 5

08_588206 ch05.qxd 6/30/05 12:22 AM Page 52

In 2004 an animation standard was proposed for the PNG format. As of this writing, the standard has
not made it into the mainstream and is not in use on the Web.

Transparency
Transparent graphics can be displayed with one or more of their colors transparent, causing what is
under the image to be shown instead of the image data. The effect is as if the specified colors were
turned to clear glass. For example, consider the two images in Figure 5-1.

Figure 5-1

The first image was not saved with transparency information — its white background clearly outlines
the image. The second image contains transparency information — the white background is transparent,
allowing the grid to show through areas of the image that are completely white.

As previously mentioned in the “Web Formats” section of this chapter, both GIF and PNG formats sup-
port transparency, though many user agents do not fully support PNG’s transparency feature set.

53

Images

08_588206 ch05.qxd 6/30/05 12:22 AM Page 53

Interlaced and Progressive Storage and Display
In the days before broadband went mainstream, large images took far too long to transfer across modem
lines. An interlaced encoding scheme was created to help solve this problem. An image was stored so that
when it was displayed it would display alternating scan lines, revealing the picture a bit at a time; as the
image loaded, it would also display the full length of the image. Images that are not interlaced display
each scan line in turn, and the user must wait for the full image to load to see the bottom of the image.

Figure 5-2 shows how an interlaced graphic and a noninterlaced graphic load in a user agent.

Figure 5-2

The effect of an interlaced image is similar to horizontal blinds being opened. Pieces of the image, top to
bottom, are revealed at the same time, allowing the user to get the general idea of what the image con-
tains without having to wait for the entire image to load.

The JPG image format supports a similar feature. An interlaced JPG image is saved in progressive format
but displays similarly to that of an interlaced GIF image.

Interlaced and progressive images are not used very often, due to the proliferation of broadband
throughout the Web’s intended audience (consumers). Most images load fast enough that the advan-
tages provided by interlacing or progressive display are negligible. However, you should avoid going
overboard with images to keep your documents’ load times to a minimum.

Animation
The GIF format supports displaying, encapsulating several images within one image file. The images
can then be displayed one after another, resulting in a rudimentary animation technique. The technique
is similar to that of an animator’s flipbook: basic sketches are drawn on the pages of the book, and when
the book’s pages are rapidly flipped, the images seem to animate.

Keep in mind that an animated GIF file contains one image for each frame of animation. As such, they
are significantly larger than static images.

Image is revealed
top-to-bottom,
alternating scan lines.

Interlaced

Bottom of image
is revealed in piecemeal
fashion while image loads.

Image is revealed
top-to-bottom, one
scan line at a time.

Non-Interlaced

Bottom of image
cannot be seen until
entire image is loaded.

54

Chapter 5

08_588206 ch05.qxd 6/30/05 12:22 AM Page 54

Animated GIFs have several options that can be used to aid in the animation:

❑ Each image within the file can be displayed with its own delay value so the animation can be
slowed or sped up as necessary.

❑ Each image can replace the previous image in a variety of ways — by overwriting it with trans-
parency, a palette color, and so on.

❑ The animation can be set to play a limited number of times or set to repeat indefinitely.

55

Images

Example: GIF Animation Example

This example animates a clock’s hour hand.

Source
You need to assemble all the images in your animation. For this example, you will take a clock
face and move the hour hand through a 12-hour cycle, saving each image as shown in Figure 5-3
(images viewed in Jasc Software’s Media Center application).

Figure 5-3

Assembling the Animation
Using an animation tool (such as JASC Software’s Animation Shop, shown in Figure 5-4), you
assemble the individual images into an animated GIF file, specifying the options for each frame
and the entire animation.

08_588206 ch05.qxd 6/30/05 12:22 AM Page 55

56

Chapter 5

Figure 5-4

Output
When placed in a Web document, the finished image animates the clock by showing each
image/frame in order (see Figure 5-5).

Figure 5-5

08_588206 ch05.qxd 6/30/05 12:22 AM Page 56

Animated GIFs do not interpolate motion between the individual frames. As such, extreme changes
between frame images will appear very jerky and sudden. When creating the images for animation
frames, try to keep your motions slow and spanning several frames.

There are several graphic editing programs that support animated GIFs. This example shows JASC
Software’s Animation Shop, available as part of their Paint Shop Pro product (www.jascsoftware.com).

Creating Images
Many graphic editing packages and applications are available to create images for your Web documents.
This section lists a few of the more popular solutions.

Commercial Applications
Several commercial editing applications can be purchased to create and edit graphic images:

❑ Adobe Photoshop — Known for its high-end feature set, Adobe Photoshop is the extreme top
end of graphic editing products. Its numerous features, large number of add-ons, and huge
install base are among its benefits; its large price tag is among its deficits.

❑ Adobe Illustrator — Another Adobe product, Illustrator, is known for its vector editing abilities.
Its native editing of Postscript-compatible files is one of its benefits, though it also is fairly
expensive and doesn’t handle raster graphic formats as well.

❑ JASC Software Paint Shop Pro — Paint Shop Pro has been a contender for second place in the
graphic editor championships. However, its latest versions all but put it in the same class as
Adobe’s products. Its ability to handle both vector and raster graphics and its compatibility
with many Photoshop add-ons mean that Paint Shop Pro can handle almost any task.

❑ Macromedia Freehand and Fireworks — Although known mainly for its Flash and Director
products, Macromedia has its own suite of graphic editing programs as well. Of those products,
Freehand and Fireworks are of particular note. Freehand is similar to Adobe’s Illustrator prod-
uct, excelling in editing vector graphics. Fireworks, by comparison, edits raster graphics and has
a host of animation features as well.

Several of the commercial packages are available in suite form. For example, the Macromedia suite bun-
dles Dreamweaver, Fireworks, Flash, and Freehand in one package (for less than the individual applica-
tions bought separately). If you need more than one capability (vector editing, raster editing, animation,
and so on), look for one of the suites instead of individual applications.

Open Source Applications
A few open source graphical editors are also available. These applications tend to be free for use but sup-
port varies from community-driven to nonexistent.

57

Images

08_588206 ch05.qxd 6/30/05 12:22 AM Page 57

The most full-featured and supported open source application is the GNU Image Manipulation
Program (GIMP). Rivaling Photoshop in features and capabilities, GIMP is a great solution for the
cash conscious — its price (free) belies its wide range of features and Photoshop compatibility. Visit
www.gimp.org for more information.

Operating System Built-In Applications
Most operating systems come with rudimentary graphic editing programs. Windows, for example,
includes the Windows Picture Viewer (which can only resize and rotate) and Paint (which can edit
raster graphics). If your needs are meager, you can get by using these applications.

Using Premade Images
Several sources for premade images may also suit your needs. You can find several commercial image
packages at your favorite software store and several image repositories online.

One important issue when dealing with other people’s content is rights. It’s important to be aware of
what rights are granted for the images’ use. For example, some image products and sites do not allow
their images to be used for commercial purposes. You can use them for internal company use or for
things like greeting cards or party invitations. However, you might not be able to use the images for a
commercial Web site.

Before using an image for online and/or commercial use, read the license info that accompanies the
graphic (if from a retail package) or query the author for license information. When in doubt, don’t use
the image.

In addition, although it may be tempting to use images you find elsewhere on the Web, you should
remember that someone else holds the rights on almost every image, rights that don’t automatically
translate to anyone who downloads and reuses them.

Inser ting Images into Web Documents
The image tag () is used to insert images into XHTML documents. The tag has the following mini-
mal syntax:

The two parameters, src and alt, define where to find the image and text to display if the user agent
can’t display the image (or is set not to display images at all). These two parameters comprise the mini-
mal set of parameters for any image tag.

As with other tags that lack a closing mate, you should end the tag with a slash to be XHTML
compliant.

For example, the following tag will insert an image, cat.jpg, into the document with the alternate text
“A picture of a cat”:

58

Chapter 5

08_588206 ch05.qxd 6/30/05 12:22 AM Page 58

In this case, because the src does not contain a server and full path, the image is assumed to be in the
same directory, on the same server, as the XHTML document. The following tag gives the full URL to the
image, which could conceivably be on a different server than the document:

Note that it is a good practice to store images separately from documents. Most Web authors use a
directory such as images to store all images for their documents.

The user agent will attempt to display the image in-line (that is, alongside elements around it). For
example, consider the following code snippet:

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. <img
src=”book.jpg” alt=”A book” /> Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id
est laborum.</p>

When displayed in a user agent, the code results in the document being rendered similarly to that shown
in Figure 5-6.

Figure 5-6

As you can see, the image doesn’t quite fit where placed. However, the user agent dutifully renders it
where the tag appears. A better choice would be to place the image at the beginning or end of the text,
as in the following code (whose results are shown in Figure 5-7):

<p> Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id
est laborum.</p>

59

Images

08_588206 ch05.qxd 6/30/05 12:22 AM Page 59

Figure 5-7

The tag has several attributes to help control how user agents will display an image; those
attributes are covered in the next section. You can also use several CSS style attributes to control how
an image is formatted in relation to other elements. Part II of this book covers CSS in detail.

Image Attributes
The tag supports several attributes that can be used to help adjust how an image is rendered in
a user agent. The basic XHTML attributes are described in the following sections.

Earlier versions of HTML supported additional attributes such as align, border, hspace, and
vspace to help position the image. However, those attributes have been deprecated; to adjust the factors
controlled by those attributes, you must now use their CSS equivalents.

Specifying Text for Nongraphical Browsers
As previously mentioned in this chapter, the alt attribute is used to provide text for nongraphical
browsers. This text is generally displayed in place of the graphic in text-only browsers or in browsers
that have images disabled. Alt-text is also used by nonvisual browsers — for example, audio browsers
will speak the value of the alt attribute as it renders the page. Lastly, some user agents will use the alt
tag’s value as a tooltip or other textual hint, as shown in Figure 5-8.

Because of the utility of the attribute, you should endeavor to always include the alt tag with a descrip-
tive value.

Resist the urge to embed extra information in an alt attribute value. Doing so will obscure the infor-
mation from browsers that display the image and otherwise don’t use the alt-text. Additionally, it will
not give alternative user agents (nongraphical) the information they need to understand the purpose of
the graphic that they cannot see.

60

Chapter 5

08_588206 ch05.qxd 6/30/05 12:22 AM Page 60

If you have a lot of information to convey, consider using the longdesc (long description) attribute as
well as the alt attribute. The longdesc attribute specifies a URL to a document that is to be used as
the long description for the figure. Note that it is up to the user agent to decide how to enable access to
the long description, if at all.

Figure 5-8

Image Size
Two attributes exist to control the physical image size. The attributes are suitably named width and
height. Both attributes support pixel and percentage values. You can use a pixel value to specify an
exact size that the image should be rendered at in the user agent. A percentage value will size the image
according to the size of the user agent’s window.

Note that changing the image’s display size, via tag attributes, does not alter the amount of data trans-
mitted to the user, only the size at which it displays.

For example, if you wanted a square image to be rendered to 100 pixels square, you could use the fol-
lowing tag:

Tooltip showing the alt text

61

Images

08_588206 ch05.qxd 6/30/05 12:22 AM Page 61

Note that you can use only one of the size attributes if you want; the user agent will use the image’s
proportion to determine the other dimension’s correct value. However, the value in specifying both
dimensions is that the user agent can reserve the space for the image — rendering the rest of the page as
it waits for the image data.

Contrary to what you might think, using percentage values for width and height scales the image
according to the user agent’s window. For example, consider the following tag, shown in two differently
sized browser windows in Figure 5-9:

Figure 5-9

As you can see, instead of resizing the image to 50 pixels square (25% of 200), the image is sized to 25%
of the browser’s width.

Be careful to preserve an image’s aspect ratio when specifying both dimensions in an alt tag. Specifying
dimensions that do not adhere to the same aspect ratio as the original image will cause the image to
appear distorted in the user agent much like a funhouse mirror distorts reflections.

Image Alignment and Borders
Previous versions of HTML contained an align attribute for the tag to aid in aligning the image
to other elements around it. This attribute has been deprecated in favor of CSS alignment styles. Previous
HTML versions also contained a border attribute to control the border shown around an image.

62

Chapter 5

08_588206 ch05.qxd 6/30/05 12:22 AM Page 62

The images shown in the figures of this chapter are vertically aligned to the baseline of neighboring text.
Although some user agents use this default alignment, not all user agents can be relied on to exhibit
this default behavior; if you need an image aligned in a certain manner, it is best to explicitly code the
alignment.

The CSS styles for positioning are covered in Chapter 19. The CSS styles for controlling margins and
borders are covered in Chapter 16.

Image Maps
Image maps provide a method to map areas of images to actions. For example, a company Web site
might want to provide a map of the United States that allows customers to click on a state to find a local
office or store.

There are two types of image maps: client-side and server-side. Client-side image maps rely on the user
agent to process the image, the area where the user clicks, and the expected action. Server-side image
maps rely on the user agent only to tell the server where the user clicked; an agent on the Web server
does all the processing.

Between the two methods, client-side image maps are preferred. The user agent is able to offer immedi-
ate feedback to the user (like being over a clickable area). Most user agents support client-side image
maps. Server-side agents can also bog down a server if the map draws consistent traffic, hides many
details necessary to provide immediate feedback to the user, and might not be compatible with some
user agents.

If you want images to be clickable and take the user to one particular destination, you don’t have to use an
image map. Instead, embed the tags in appropriate anchor tags (<a>) similarly to the following:

<img alt=”Go to the cat page”
src=”cat.jpg”>

Specifying an Image Map
A client-side image map’s data (clickable regions) is specified within the contents of a <map> tag and
linked to an appropriate tag with the usemap attribute. For example, to specify a map for an
image, travel.jpg, you could use this code:

<img alt=”Travel reservations” src=”travel.jpg”
usemap=”#map1”>

<map name=”map1”>
...
</map>

Note that all src attributes should usually include a full relative or absolute path to the resource.

Inside the <map> tag pair, you specify the various clickable regions of the image, as covered in the next
section.

63

Images

08_588206 ch05.qxd 6/30/05 12:22 AM Page 63

Specifying Clickable Regions
To create an image map, a list of polygonal regions must be defined on an image and referenced in the
HTML document. Three different types of polygons are supported: rectangle, circle, and free-form
polygon.

❑ rect— Defines a rectangular area by specifying the coordinates of the upper-left and lower-
right corners of the rectangle

❑ circle— Defines a circular area by specifying the coordinates of the center of the circle and the
circle’s radius

❑ poly— Defines a free-form polygon area by specifying the coordinates of each point of the
polygon

All coordinates of the image map are relative to the top-left corner of the image (referenced as 0, 0) and
are measured in pixels. For example, suppose you wanted to create an image map for a travel site with
an icon of a car, plane, and hotel. When users click on one of the icons, they are taken to the reservation
page for auto rentals, airfare, or hotel reservations, respectively. Such an image would resemble the
image shown in Figure 5-10.

Figure 5-10

The regions that will be used for the map are within the three icon squares (the white squares around the
icons). The regions are all rectangular, are uniform in size (121 pixels square), and have the following
upper-left coordinates:

❑ car — 35 x, 11 y

❑ plane — 190 x, 11 y

❑ hotel — 345 x, 11 y

64

Chapter 5

08_588206 ch05.qxd 6/30/05 12:22 AM Page 64

Knowing the upper-left corner coordinates and the size of each rectangle, you can easily figure out the
coordinates of the bottom-right corner of each rectangle by adding the width (121) and height (121) to
the upper-left coordinates.

Several tools are available to help create image map coordinates. Use your favorite search engine to find
software dedicated to mapping regions, or examine your graphics program to see if it can create regions for
you. Paint Shop Pro is an excellent Windows-based image editor that has image mapping tools built in.

Specifying Regions Using Anchor Tags
You can use anchor tags to specify regions with shape and coords attributes. For example, to specify
the three regions previously outlined, you could use the following code:

<map name=”map1”>

Plane Reservations

Rental Cars

Hotel Reservations
</map>

The link text (between the anchor tags) helps the user determine what the clickable area leads to, as
shown by the Internet Explorer tooltip in Figure 5-11.

Specifying Regions Using Area Tags
Another way to define regions is by using <area> tags instead of anchor tags:

<map name=”map1”>
<area href=”plane.html”

shape=”rect” coords=”35,11,156,132”
alt=”Plane Reservations”>

<area href=”car.html”
shape=”rect” coords=”190,11,311,132”
alt=”Rental Cars”>

<area href=”hotel.html”
shape=”rect” coords=”345,11,466,132”
alt=”Hotel Reservations”>

</map>

Using the alt attribute helps the user determine what the clickable area leads to, as shown by the
Internet Explorer tooltip in Figure 5-11.

65

Images

08_588206 ch05.qxd 6/30/05 12:22 AM Page 65

Figure 5-11

Putting It All Together
A document with a working image map (as outlined in this section) would resemble the following code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>A working image map</title>
</head>
<body>

<map name=”map1”>

<area href=”plane.html”
shape=”rect” coords=”35,11,156,132”
alt=”Plane Reservations”>

<area href=”car.html”
shape=”rect” coords=”190,11,311,132”
alt=”Rental Cars”>

<area href=”hotel.html”
shape=”rect” coords=”345,11,466,132”
alt=”Hotel Reservations”>

</map>
</body>
</html>

Tooltip

66

Chapter 5

08_588206 ch05.qxd 6/30/05 12:22 AM Page 66

The image map example in this chapter is somewhat simplistic. Image maps can be used for more com-
plex purposes, such as letting customers click on a U.S. map as mentioned earlier in this chapter or
allowing users to click on various buildings on a map or parts on an exploded diagram of a machine for
more information on the building or part clicked.

Summary
This chapter introduced you to the tag and the various graphic formats it supports. You also
learned about image qualities such as transparency, interlacing, and animation, which can be used to
make your image use more inventive and visually appealing. As you can see, adding graphics to a Web
document is straightforward, but using them to increase the value and usability of your documents can
be more challenging. Use this chapter as a basis for including images, but supplement it with informa-
tion from Part II of this book for how to effectively position images within your documents.

67

Images

08_588206 ch05.qxd 6/30/05 12:22 AM Page 67

08_588206 ch05.qxd 6/30/05 12:22 AM Page 68

Links
Links are what turn plain documents into Web-enabled content. Each document on the Web can
contain one or more links to other documents — allowing users to easily access information
related to the current document or entirely different information. As you will see in this chapter,
you can also include information within links to describe the actual relationship between the
document doing the linking and the document being linked to.

Understanding URLs
A Uniform Resource Locator (URL) is the unique address of a resource (usually a document) on
the Web. This addressing scheme allows user agents and other Internet-enabled programs to find
documents and ask for their contents.

URLs are made up of several different parts, all working together to provide a unique address for
Internet content. Figure 6-1 shows an example of a typical URL and its various parts.

The various pieces of the URL are described as follows:

❑ The protocol section is a protocol abbreviation followed by a colon. For example, the
standard HTTP protocol is designated as http:. Another popular protocol supported
by many user agents is File Transfer Protocol (FTP), designated in URLs as ftp:.

❑ The server name is prefixed with two slashes and typically includes a fully qualified
domain name, as in //www.example.com. The www is the server name, and example.com
is the domain. Note that it is a misnomer that Web servers need to be named www;
although www (World Wide Web) is a common convention, the server name can be any
valid name. For example, the fully qualified name of the U.S.-based server for the Internet
Movie Database is us.imdb.com. Note that an IP address can be specified instead of a
server name.

09_588206 ch06.qxd 6/30/05 12:22 AM Page 69

Figure 6-1

The URL can also include a username and password before the server name (description follows). This
is especially true for FTP URLs. The username and password should appear after the protocol, separated
by a colon (:) and ending with an ampersand (@). When used in this form, the URL would resemble the
following:

http://username:password@www.example.com/...

❑ If necessary, the server name is followed by a port number — a colon separates the name and
port. For example, some Web servers run their HTTP services on a port other than port 80. In
those cases, the URL needs to include the alternate port number. In the example shown in
Figure 6-1, the port number is 85.

The standard port for HTTP is port 80. For FTP the standard port is 25. Most user agents know the
default ports and will use the default if no port is specified.

❑ After the server name (and optional port number) is the path on the server where the document
or file can be found. In this case, the path to the document is /products/details/, that is, the
details subdirectory of the products directory, which is off the root of the server. Note that
the path of the URL doesn’t directly correspond to the path on the file system of the server — the
Web server software is configured to remap file system directories into URLs.

❑ The next piece of the URL puzzle is the actual document or filename. In this example, the name
is inventory.cgi and the server looks for that file in the directory specified to return to the
requesting user agent.

❑ After the filename, the URL can contain optional arguments for the server to pass to the file. If
the file is an executable (CGI or other script), the arguments can be used for a variety of pur-
poses. The argument list is separated from the filename by a question mark; the arguments
appear in name/value pairs (separated by equal signs), the pairs separated by ampersands (&).
For example, suppose you need to pass inventory.cgi the following name/value pairs:

❑ product_id = 123887

❑ description = long

❑ lang = EN

That list of arguments would appear as follows:

?product_id=123887&description=long&lang=EN

Strictly speaking, the arguments are not a part of the URL — the URL itself contains only information
about where to find a resource. Arguments are covered here for the sake of completeness. See Part IV of
this book for more on URL arguments and programs to interpret them.

http://www.example.com:85/products/details/inventory.cgi?product_id=123887

Protocol Host Port Path File Argument(s)

70

Chapter 6

09_588206 ch06.qxd 6/30/05 12:22 AM Page 70

Absolute versus Relative Paths
Two styles of paths can be used in URLs: absolute and relative. Absolute paths contain all the relevant
information to find the resource indicated by the URL. Relative paths contain information relative to
the current document. For example, suppose that the user agent had loaded a document from the fol-
lowing URL:

http://www.example.com/products/gizmo.html

Suppose the document has a link to another document, doodad.html, which resides on the same server,
in the same directory. Both of the following URLs can be used to reference the other document:

http://www.example.com/products/doodad.html
doodad.html
./doodad.html
http:doodad.html

The first URL uses an absolute path to the document — everything from the protocol, server name, and
path to the document are specified. The other three URLs are relative — they contain only enough infor-
mation for the document to be found relative to the location of the current document.

If you don’t specify the protocol in a URL, the user agent will attempt to use its default protocol to
request the document.

Note that relative paths can be used only with documents on the same Web server because documents
on other servers require substantially more information to guide the user agent to them. Relative paths
are best used on sections of Web sites where the documents in the section never change relationships to
one another. In most cases, absolute paths should be used in URLs.

Using the Anchor Tag
The anchor tag (<a>) is used to provide links within Web documents to other documents or resources
on the Internet. The anchor tag has a simple format:

textual_description_of_link

The anchor tag can appear by itself or around other HTML elements. For example, a link to product
information could appear in a document as follows:

<p>More information on product XYZ can be found here.</p>

In this case, the paragraph would appear as shown in Figure 6-2, with the word here being the link to
the other document.

According to the XHTML standard, anchor links need to be placed within block elements (headings,
paragraphs, and so on).

71

Links

09_588206 ch06.qxd 6/30/05 12:22 AM Page 71

Figure 6-2

As previously mentioned, URLs can refer to other resources besides HTML documents. You can refer to
other resources to be delivered via other protocols by specifying the correct protocol and server in the
anchor tag. For example, the following tag would refer to a ZIP compressed file delivered via the FTP
protocol:

ZIP version of the file

You can also use an anchor tag to spawn helper applications on the user’s computer. For example, this
anchor would open the default e-mail application on the user’s computer to send an e-mail message to
sschafer@example.com:

Email me

You can also embed other elements within the anchor to use as links. For example, you can include an
image in the anchor so that the user can click on the image to activate the link:

<img src=”companylogo.gif”
alt=”Company Logo” />

There are many other ways to link documents, including using image maps (covered in Chapter 5) and
using event attributes in other elements (covered in Chapters 20 and 21).

Attributes of the Anchor Tag
The anchor tag supports several different attributes. This section details the various attributes you can
use with the anchor tag.

Link Titles
The title attribute can be used to give more information about the document being linked to. It takes
one argument, a string of characters, to title the link. For example, the following anchor tag uses a title
attribute:

About

72

Chapter 6

09_588206 ch06.qxd 6/30/05 12:22 AM Page 72

The use of the title is left up to the user agent. Some agents, such as Mozilla Firefox, use the title as a
tooltip, as shown in Figure 6-3.

Figure 6-3

Keyboard Shortcuts and Tab Orders
In the modern world of computers, it is easy to make assumptions about users, their hardware, and
capabilities. Several years ago, no one would have dreamt of delivering rich, multimedia content over
the Web. Today, however, it is easy to assume that everyone is using the latest browser, on a high-end
computer, across a broadband connection.

However, that isn’t always the case. In fact, some users who visit your site may not even have a mouse
to aid in browsing. The reason could be a physical handicap, a text-only browser, or just a fondness for
using the keyboard. It is important to accommodate these users by adding additional methods to access
links on your page.

The anchor tag includes two attributes to aid non-mouse users, keyboard shortcuts, and tab ordering.

Keyboard shortcuts define a single key that can be used to access the link. The accesskey attribute
takes one letter as its value. For example, the following link defines “C” as the access key:

Table of
Contents

Note that different user agents and different operating systems treat shortcut keys differently. For exam-
ple, Windows users on Internet Explorer need to hold the Alt key while they press the access key. Note
also that different browsers handle the actual access of the link differently; some browsers will activate
the link as soon as the access key is pressed, while others only select the link, requiring another key to be
pressed to actually activate the link (usually Enter).

As with most graphical operating systems, the Tab key can be used to move through elements of the
interface, including links. Typically, the tab order of links corresponds to the order in which the links
appear in the document. The tabindex attribute can be used to define an alternate order in which the
links in a document should be accessed. The tabindex attribute uses a number to define the position
the link should occupy in the tab order. For example, the following three links have the tab order

73

Links

09_588206 ch06.qxd 6/30/05 12:22 AM Page 73

reversed — pressing the tab key several times will select the last link, then the second, and finally
the first:

First link
Second link
Third link

As with most interface elements in XHTML, the browser defines how tabindex is implemented and
how tabbed elements are accessed.

Link Colors
To differentiate text used for links from other text in the document, user agents use different text colors.
Different colors are used to show different modes of links:

❑ Link — The standard link in the document that is not active and has not been visited (see other
modes).

❑ Active — The target of the link is active in another browser window.

❑ Visited — The target of the link has been previously visited (typically, this means the target can
be found in the browser’s cache).

❑ Hover — The mouse pointer is over the link.

The various links are colored differently so that the user can tell the status of each link on your page. The
standard colors of each link status are as follows:

❑ Link — Blue, underlined text

❑ Active — Red, underlined text

❑ Visited — Purple, underlined text

❑ Hover — No change in the appearance of the link (remains blue, red, or purple)

As with other presentation attributes in HTML, the user agent plays a significant role in setting link col-
ors and text decorations. Most user agents follow the color scheme outlined in this section, but there are
those that don’t conform to this scheme.

To change the color of links, you use CSS. For example, to choose another color (and possibly display
property) for visited links, you could use something similar to the following:

<head>
<style type=”text/css”>

a:visited { color: yellow; font-weight: bold; }
</style>

</head>

This changes the visited links in the document to yellow, bold text. The link, active, and hover style
properties can be used to change the other link modes.

More information on using CSS can be found in Part II of this book.

74

Chapter 6

09_588206 ch06.qxd 6/30/05 12:22 AM Page 74

Document Relationships
There are a host of other attributes that you can add to your anchor tags to describe the form of the tar-
get being linked to, the relationship between the current document and the target, and more.

The following table lists these descriptive attributes and their possible values.

Link Target Details

Attribute Meaning Value(s)

charset The character encoding of the target char_encoding
for example, “ISO 8859-1”

hreflang The base language of the target language_code
for example, “en-US”

rel The relationship between the current alternate
document and the target designates

stylesheet
start
next
prev
contents
index
glossary
copyright
chapter
section
subsection
appendix
help
bookmark

rev The relationship between the target alternate
and the current document designates

stylesheet
start
next
prev
contents
index
glossary
copyright
chapter
section
subsection
appendix
help
bookmark

type The MIME type of the target Any valid MIME type

75

Links

09_588206 ch06.qxd 6/30/05 12:22 AM Page 75

An example of how the relationship attributes (rel, rev) can be used is shown in the following code
snippet:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>
<title>Chapter 10</title>
</head>
<body>
<p>Table
of Contents</p>
<p>Chapter
9</p>
<p>Chapter
11</p>
. . .

The anchor tags define the relationships between the chapters (next, previous) and the table of con-
tents (chapter, contents).

The Link Tag
The link tag (<link>) can be used to provide additional information on a document’s relationship to
other documents, whether the document links to those other documents or not. The link tag supports
the same attributes as the anchor tag but uses slightly different syntax:

❑ The link tag must appear in the <head> section of the document.

❑ The link tag does not encapsulate any text.

❑ The link tag does not have a matching close tag.

For example, the following code could be used in chapter10.html to define that document’s relation-
ship to chapter9.html and chapter11.html:

<head>
<title>Chapter 10</title>
<link href=”chapter9.html” rel=”next” rev=”prev” />
<link href=”chapter11.html” rel=”prev” rev=”next” />

</head>

Link tags do not result in any text being rendered by the user agents but can be used to provide other
information, such as to provide alternate content for search engines. For example, the following link ref-
erences a French version of the current document (chapter10.html):

<link lang=”fr” rel=”alternate” hreflang=”fr”
href=”http://www.example.com/chapter10-fr.html” />

76

Chapter 6

09_588206 ch06.qxd 6/30/05 12:22 AM Page 76

Other relationship attribute values (start, contents, and so on) can likewise be used to provide rele-
vant information on document relationships to search engines.

Summary
This chapter reviewed the anchor tag (<a>), how it is used to provide links to other documents, and how
additional information can be provided to illustrate the relationship between linked documents. You
also learned how to provide alternative navigational methods through the use of the tabindex and
accesskey attributes. As you learn the rest of the XHTML tags and elements, you will see how to effec-
tively weave links into your documents’ structure.

77

Links

09_588206 ch06.qxd 6/30/05 12:22 AM Page 77

09_588206 ch06.qxd 6/30/05 12:22 AM Page 78

Text
Although most Web documents are chock-full of graphics and multimedia, text still plays a very
important part in communicating on the Web. Previous versions of HTML (prior to 4.01) included
several tags for direct text formatting. Many of those tags have been deprecated in favor of CSS,
but many still exist and can be used and still be in XHTML compliance.

Methods of Formatting Text
Previous chapters have shown you how to format different block elements. You have seen many
tags that can be used to format large chunks of a document. As you can imagine, there are several
additional tags and methods to format text. However, the road through text formatting options is
complex; many of the text formatting methods used in previous versions of HTML have been dep-
recated. Still, many other legacy methods still survive in XHTML. The following sections detail
some of the more popular methods of formatting text.

The Font Tag
The font tag () used to be the predominant way to control text within documents.
However, with HTML 4.01 (and hence, XHTML) the tag was deprecated and should not
be used. To aid in understanding legacy document coding, the format of the tag is as
follows:

<font face=”font_name” size=”relative_size”
color=”font_color”>...text...

The font size is given relative to the default document font size. The default size is typically con-
trolled via the <basefont> tag (also deprecated). The <basefont> tag supports the same argu-
ments as the tag, but it has no closing mate.

Default font types and sizes are left up to the user agent. No standard correlation exists between
the size used in a tag and the actual font size used by the user agent.

To be XHTML compliant, you should use CSS methods for font control.

10_588206 ch07.qxd 6/30/05 12:30 AM Page 79

Inline Text Attributes
Several tags still exist in the XHTML standard for emphasizing text. These tags are shown in the follow-
ing table.

Tag Use

<cite> Citation

<code> Computer code text

<dfn> Definition term

 Emphasized text

<kbd> Keyboard text

<samp> Sample computer code text

 Strongly emphasized text

<var> Variable(s)

Examples of these tags in action are shown in Figure 7-1.

Figure 7-1

80

Chapter 7

10_588206 ch07.qxd 6/30/05 12:30 AM Page 80

The adoption and support of these tags is very haphazard across the various user agents. As such, these
tags are best avoided. Use of CSS instead of these tags is strongly encouraged.

Tags for italic and bold text are still part of the current XHTML specification and are covered in their
own section later in this chapter.

CSS Text Control
CSS is the preferred method of text control in all versions of HTML, 4.01 and above (including XHTML).
Some of the more popular CSS text control properties are listed in the following table.

CSS Property Values Use

color color Change the color of text

font font-style Shortcut property for
font-variant setting font style, variant,
font-weight weight, and size
font-size

font-family family-name Set the font family (face)

font-size font-size Set the font size

font-stretch normal | wider | narrower | Expand or compress the
ultra-condensed | letter spacing
extra-condensed |condensed |
semi-condensed |semi-expanded |
expanded |extra-expanded |
ultra-expanded

font-style normal | italic | oblique Set font to italic

font-variant normal | small-caps Set small-caps

font-weight normal | bold | bolder | lighter Set font to bold

text-decoration none | underline | overline | Set under/overlining
line-through | blink

text-transform none | capitalize | uppercase | Transform font capitalization
lowercase

Control of text via CSS involves creating style definitions in style sections within your document, in an
externally linked style sheet, or within individual tags. For example, both of the paragraphs in the fol-
lowing code will be rendered in all caps, the first via a definition in a <style> section and the second
from style code directly in the paragraph tag:

81

Text

10_588206 ch07.qxd 6/30/05 12:30 AM Page 81

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<style type=”text/css”>
p.caps { text-transform: capitalize; }

</style>
</head>
<body>
<p class=”caps”> Lorem ipsum dolor sit amet, consectetur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat.</p>

<p style=” text-transform: capitalize;”> Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi
ut aliquip ex ea commodo consequat.</p>
</body>
</html>

Smaller sections of text can use the span tag () to incorporate text changes in-line. For example,
to specify that a handful of words should be rendered in red, you would use a span tag similar to the
following:

<p> Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat.</p>

More information on the tag appears in a separate section later in this chapter. More informa-
tion on CSS can be found in Part II of this book.

Special In-Line Text Elements
Usually, you can leave the formatting of text lines up to the user agent, allowing it to flow text freely
according to the width of its window. However, at times you will want to prevent the user agent from
breaking lines across certain phrases. There are also times when you may want to allow a user agent to
hyphenate long words to help preserve formatting.

Nonbreaking Spaces
Just as you will want to break some text into discrete chunks, other times you will want to keep text
together. For example, you wouldn’t want words separated in dates (December 25, 2004), awkward
phrases that include letters and numbers (24 hours), or in some company names (International Business
Machine Corporation).

82

Chapter 7

10_588206 ch07.qxd 6/30/05 12:30 AM Page 82

Suppose you were to use the phrase “12 Angry Men.” You would not want a user agent to split the “12”
and “Angry” across two lines as shown in the following:

A good example of this argument appears in the movie 12
Angry Men.

Whenever you don’t want the user agent to break text, you should use a nonbreaking space entity
() instead of a normal space. For example, when coding the “12 Angry Men” paragraph, you
could use something similar to the following:

<p>A good example of this argument appears in the movie
<i>12 Angry Men</i>.</p>

As discussed in previous chapters, user agents tend to collapse white space. This is typically a desirable
effect — allowing you to be more liberal with white space when formatting your documents. However,
sometimes you need to explicitly include spaces in your documents. The nonbreaking space entity can
also be used to space-fill text. For example, to indent a line of text by three spaces, you could use code
similar to the following:

 Indented by three spaces

However, space-fill formatting techniques should be avoided — the use of CSS instead is highly
recommended.

The nonbreaking space code, , is known as an entity in HTML-speak. There are entities for
many characters that can’t be typed on a conventional keyboard. Many of the supported entities are
listed in Appendix A.

Soft Hyphens
Soft hyphens can be used to indicate where a user agent can hyphenate a word, if necessary. For exam-
ple, consider the following code and its resulting output shown in Figure 7-2:

<p style=”text-align: justify;”>The morbid fear of the number
13, or triskaidekaphobia, has plagued some important historic
figures like Mark Twain and Napoleon.</p>

Figure 7-2

83

Text

10_588206 ch07.qxd 6/30/05 12:30 AM Page 83

To tell the user agent where a word can be hyphenated, you insert a soft-hyphen entity (­). Using
the preceding example, you can hyphenate the word “triskaidekaphobia” with soft hyphens, as follows:

<p style=”text-align: justify;”>The morbid fear of the number
13, or tris­kai­deka­pho­bia, has plagued
some important historic figures like Mark Twain and
Napoleon.</p>

The resulting output, shown in Figure 7-3, shows how the optional hyphens are used to achieve better
justification results.

Figure 7-3

Note that not all user agents support soft hyphens.

Bold and Italic
Two tags are used to designate text as bold () and italic (<i>). As with other XHTML tags, both tags
have opening and closing elements and are used to surround the text you want to modify. For example,
consider the following code and the results rendered in a user agent as shown in Figure 7-4:

<p>This is normal text.</p>
<p>This is bold text.</p>
<p><i>This is italic text.</i></p>

Previous versions of HTML contained an underline attribute. However, the underline tag has been dep-
recated. Underlining should be accomplished using CSS.

Not every font has a bold and/or italic variant. Whenever possible, the user agent will substitute a simi-
lar font when bold or italic is asked for but not available. However, not all user agents are font savvy. In
short, your mileage with these tags may vary depending on the user agent being used.

For the same reasons mentioned elsewhere, it is advisable to use CSS instead of hard-coded bold and
italic tags.

84

Chapter 7

10_588206 ch07.qxd 6/30/05 12:30 AM Page 84

Figure 7-4

Monospaced Text
Another text formatting tag that has survived deprecation in XHTML is the teletype (<tt>), or
monospaced, tag. This tag tells the user agent that text should be rendered in a monospaced font. You
can use this tag to format reserved words in documentation, code listings, and so on. The following code
shows an example of the teletype tag in use:

<p>Consider using the <tt>date()</tt> function for this purpose.</p>

This tag is named for the teletype terminals used with the first computers, which were capable of print-
ing only in a monospaced font.

Again, the use of styles is preferred over individual in-line tags. If you need text rendered in a
monospaced font, consider using styles instead of the <tt> tag.

Superscript, Subscript, Big, and Small Text
The superscript (<sup>) and subscript (<sub>) tags can be used to specify superscript and subscript text.
For example, consider the following code and the results shown in Figure 7-5:

<p>This is normal text.</p>
<p>This is the 16th day of the month. (superscripted “th”)</p>
<p>Water tanks are clearly marked as H₂O. (subscripted “2”)</p>

85

Text

10_588206 ch07.qxd 6/30/05 12:30 AM Page 85

Figure 7-5

The big (<big>) and (<small>) tags are used as you would expect: to delimit text you want rendered
bigger or smaller than the default text. For example, consider the following example code and the result
shown in Figure 7-6:

<p>This is default text.</p>
<p>This word is <big>bigger</big> than the default text.</p>
<p>This word is <small>smaller</small> than the default text.</p>

Figure 7-6

Inser tions and Deletions
To strengthen the printed-material capabilities of Web documents, the insert (<ins>) and delete ()
tags have been added to HTML. Both tags are used for redlining documents — that is, a visually
marked-up document showing suggested changes.

86

Chapter 7

10_588206 ch07.qxd 6/30/05 12:30 AM Page 86

The following paragraph has been marked up with text to be inserted (underlined) and deleted
(strikethrough). The output of this code is shown in Figure 7-7.

<p>Peter are<ins>is</ins> correct, the proposal
from Acme is lacking a few minor details.</p>

Figure 7-7

Abbreviations
The abbreviation tag (<abbr>) can be used to mark a word as an abbreviation and to give users the
expansion of the acronym. For example, consider the following code:

<abbr title=”Hypertext Markup Language”>HTML</abbr>

It is up to the user agent as to how the title attribute’s value will be shown, if at all. Some user agents
will display the value when the mouse is over the acronym.

Grouping In-Line Elements
When using CSS for text formatting, you need a method to combine several text-formatting attributes
into one delimiting tag. If you are coding block elements, you can use the division (<div>) tag to delimit
the block, but with smaller chunks (in-line elements) you should use the span tag ().

The tag is used like any other in-line tag (, <i>, <tt>, and so on), surrounding the text/
elements that it should affect. You use the style or class attribute to define what style should be
applied. For example, both of the paragraphs in the following code sample would cause the word “red”
to be rendered in red, bold text:

87

Text

10_588206 ch07.qxd 6/30/05 12:30 AM Page 87

<head>
<style type=”text/css”>

.boldredtext { color: red; font-weight: bold; }
</style>

</head>
<body>
<!-- Paragraph 1, using direct style coding -->
<p>We should paint the document
red.</p>

<!-- Paragraph 2, using a style class -->
<p>We should paint the document
red.</p>
</body>

Of the two methods, the use of the class attribute is preferred over the style attribute because class
attribute avoids directly (and individually) coding the text. Instead, it references a separate style defini-
tion that can be repurposed for other text or changed globally, as required.

Summary
As Web publishing evolves, so do the tools to adequately provide publishing capabilities to Web
documents. As you have seen, most of the document-formatting capabilities — including textual
formatting — have been relegated to CSS instead of direct coding via HTML tags. However, there are
still quite a few formatting tags that can be used to format text in your Web documents. This chapter
introduced those remaining tags that are still XHTML compliant. However, you should always strive
to encode text formatting in CSS instead of directly coding text using tags.

88

Chapter 7

10_588206 ch07.qxd 6/30/05 12:30 AM Page 88

Tables
Tables were created in HTML as a means to display tabular data — typically scientific or academic
data. However, as the Web became more of a traditional publishing medium, tables evolved from
only supporting plain textual data to being a flexible platform for arranging all sorts of elements to
accomplish all sorts of layouts.

Today, XHTML tables can be used to display tabular data, align elements in a form, or even pro-
vide entire document layout structures. This chapter introduces you to tables and their various
uses and formats.

Par ts of a Table
A table in XHTML can be made up of the following parts:

❑ Header row(s)

❑ Column groupings

❑ Body row(s)

❑ Header cells

❑ Body cells

❑ Rows

❑ Columns

❑ Footer row(s)

❑ Caption

Figure 8-1 shows an example of a table with its various parts labeled.

11_588206 ch08.qxd 6/30/05 12:33 AM Page 89

Figure 8-1

The table in Figure 8-1 was rendered from the following code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”><html>

<html>
<head>

<title>A XHTML Table</title>
</head>
<body>

<p>
<!-- Table definition -->
<table border=”1”>

<!-- Column grouping -->
<colgroup>

<col width=”35%”>
<col width=”65%”>

</colgroup>
<!-- Table caption -->
<caption>Table Caption</caption>
<!-- Table header -->
<thead>

<tr><td colspan=”2”>Table Header</td></tr>
</thead>
<!-- Table footer -->
<tfoot>

<tr><td colspan=”2”>Table Footer</td></tr>
</tfoot>

90

Chapter 8

11_588206 ch08.qxd 6/30/05 12:33 AM Page 90

<!-- Table body -->
<tbody>

<tr><th>Header Cell 1</th><th>Header Cell 2</th></tr>
<tr><td>Row 1, Cell 1</td><td>Row 1, Cell 2</td></tr>
<tr><td>Row 2, Cell 1</td><td>Row 2, Cell 2</td></tr>

</tbody>
</table>
</p>

</body>
</html>

Not all of the parts contained in this example are mandatory. It is possible to create a table using only the
table tag (<table>) and row (<tr>) and cell/column (<td>) tags. For example, the following table is
completely valid:

<table>
<tr><td>Row 1, Cell 1</td><td>Row 1, Cell 2</td></tr>
<tr><td>Row 2, Cell 1</td><td>Row 2, Cell 2</td></tr>

</table>

However, as you will see in the rest of this chapter, the breadth and depth of table tags and options
allow you to encapsulate a lot of information within XHTML tables.

It is possible to nest tables within one another. In fact, a particularly popular XHTML technique is to use
tables for sophisticated page layout (covered later in this chapter) — doing so depends on nested tables.

It’s important to note that most user agents build tables in memory before displaying them. This can
cause a delay in displaying a large table.

Formatting Tables
Tables are one of the most versatile elements in XHTML. You can use them to simply align other ele-
ments or as layout control for a full document. Along with functionality usually comes complexity, and
tables are no exception — you can use many options and attributes to format tables. The following sec-
tions detail the various formatting options available.

Table Width and Alignment
Typically, a table will expand to accommodate the data stored within its cells. For example, consider the
two tables in the following code, whose output is shown in Figure 8-2:

<p>
Short Text Table

<table border=”1”>

<tr><td>Short Text 1</td><td>Short Text 2</td></tr>
</table>

</p>

91

Tables

11_588206 ch08.qxd 6/30/05 12:33 AM Page 91

<p>
Longer Text Table

<table border=”1”>

<tr><td>Much Longer Text 1</td><td>Much Longer Text 2</td></tr>
</table>

</p>

Figure 8-2

Once a table expands to the limits of the user agent’s window, the content of its cells will wrap within
their respective cells.

Note that both tables are left-aligned in the user agent window.

However, there are times when you want to explicitly define a table’s width and possibly its alignment.

Controlling Table Width
Using the width attribute in the <table> tag, you can set a table’s size by specifying the table width in
pixels or as a percentage of the containing object. For example, consider the following table whose width
is set to 50 percent.

<p>
50% Table Width

<table border=”1” width=”50%”>

<tr>
<td>Cell 1</td><td>Cell 2</td>
<td>Cell 3</td><td>Cell 4</td>

</tr>
</table>

</p>

92

Chapter 8

11_588206 ch08.qxd 6/30/05 12:33 AM Page 92

The containing object is a nonconstrained paragraph that spans the width of the user agent. The result is
that the table will occupy 50 percent of the user agent’s window width, as shown in Figure 8-3.

Figure 8-3

To specify an exact width of a table, use pixel width specifications instead. For example, if you need a
table to be 500 pixels wide, you could use a table definition similar to the following:

<table width=”500px”>

If the specified table width exceeds the user agent’s window width, it is up to the user agent to handle
the overflow, via resizing the table, wrapping it, or providing scroll bars as shown in Figure 8-4.

Figure 8-4

93

Tables

11_588206 ch08.qxd 6/30/05 12:33 AM Page 93

Besides specifying the width of the table as a whole, you can also specify the width of each column
within the table, using width attributes in <th> and <td> tags or specifying width within <col> or
<colgroup> tags. These techniques are covered in the “Cells” and “Grouping Columns” sections later
in this chapter.

Aligning a Table Horizontally
The <table> tag supports an align attribute to control how the table is aligned horizontally in its con-
taining block. The align attribute supports three values: left (default), right, and center.

For example, if you wanted a table to be centered in the user agent’s window, you could use code similar
to the following (whose result is shown in Figure 8-5):

<p>Centered Table</p>
<p>

<table border=”1” align=”center”>
<tr>

<td>Cell 1</td><td>Cell 2</td>
<td>Cell 3</td><td>Cell 4</td>

</tr>
</table>

</p>

Figure 8-5

Note that the align attribute has no visible effect on a table that occupies the full width of its container
object.

Cell Spacing and Padding
There are two attributes to table cell spacing: padding and spacing. Padding refers to the distance
between a cell’s contents and its border. Spacing refers to the distance between cells (that is, the distance
between a cell’s border and neighboring elements’ boundaries).

94

Chapter 8

11_588206 ch08.qxd 6/30/05 12:33 AM Page 94

Figure 8-6 shows a graphical representation of cell padding and spacing.

Figure 8-6

Cell padding is controlled with the <table> tag’s cellpadding attribute and can be specified in pixels
or percentages. When specified by percentage, the browser uses half of the specified percentage for each
side of the cell. The percentage is of the available space for the dimension (size of the cell), vertical or
horizontal.

Cell spacing is controlled with the cellspacing attribute. Like cellpadding, the cellspacing attribute
can be specified in pixels or percentages. Figure 8-7 shows a table whose cellspacing attribute has been
set to 20 percent using the following <table> tag:

<table border=”1” width=”100%” cellspacing=”20%”>

Figure 8-7

Cell
Contents

Cell Padding

Cell Border

Cell Spacing

95

Tables

11_588206 ch08.qxd 6/30/05 12:33 AM Page 95

Borders and Rules
The border around tables and between cells can be configured in many ways. The following sections
cover the various ways you can configure table borders and rules.

CSS offers several additional formatting options for tables and their elements. CSS is covered in Part II
of this book.

Table Borders
The <table> tag’s border attribute can be used to control the width of the border surrounding the
table. For example, consider the following three tables and the resulting output shown in Figure 8-8:

<p>
No Borders

<table border=”0”>

<tr><td>Cell 1</td><td>Cell 2</td></tr>
<tr><td>Cell 3</td><td>Cell 4</td></tr>

</table>
</p>
<p>

Border = 1

<table border=”1”>

<tr><td>Cell 1</td><td>Cell 2</td></tr>
<tr><td>Cell 3</td><td>Cell 4</td></tr>

</table>
</p>
<p>

Border = 5

<table border=”5”>

<tr><td>Cell 1</td><td>Cell 2</td></tr>
<tr><td>Cell 3</td><td>Cell 4</td></tr>

</table>
</p>

The border attribute’s value specifies the width of the border in pixels. The default border width is 0,
or no border.

Borders can be an effective troubleshooting tool when dealing with table problems in XHTML. If you
are having trouble determining what is causing a problem in a table, try turning on the borders to bet-
ter visualize the individual rows and columns. If you are using nested tables, turn on the borders of
individual tables (possibly using different border values for different tables) until you narrow down the
scope of the problem.

96

Chapter 8

11_588206 ch08.qxd 6/30/05 12:33 AM Page 96

Figure 8-8

To specify which outside borders are displayed, use the frame attribute with the <table> tag. The
frame attribute supports the values displayed in the following table:

Value Definition

void Display no borders.

above Display a border on the top of the table only.

below Display a border on the bottom of the table only.

hsides Display borders on the horizontal sides (top and bottom) only.

lhs or rhs Display only the left side or the right side border.

vsides Display borders on the vertical sides (right and left) only.

box or border Display borders on all sides of the table (the default when the border
attribute is set without specifying frame).

Not all user agents use the same defaults for table borders. If you want a table rendered a particular way,
use care to explicitly define each border option.

97

Tables

11_588206 ch08.qxd 6/30/05 12:33 AM Page 97

Table Rules
The <table> tag’s rules attribute controls which rules (borders between cells) are displayed within a
table. The rules attribute supports the values shown in the following table:

Value Definition

none Display no rules.

groups Display rules between row groups and column groups only.

rows Display rules between rows only.

cols Display rules between columns only.

all Rules will appear between all rows and columns.

For example, the following table code will cause the table to render with rules between columns only, as
shown in Figure 8-9:

<table cellpadding=”5px” rules=”cols”>
<tr><td>Cell 1</td><td>Cell 2</td></tr>
<tr><td>Cell 3</td><td>Cell 4</td></tr>

</table>

Figure 8-9

98

Chapter 8

11_588206 ch08.qxd 6/30/05 12:33 AM Page 98

Note that the width of rules is governed by the setting of the cellspacing attribute. For example, set-
ting cellspacing to a value of 3px will result in rules 3 pixels wide.

Rows
Rows are the horizontal elements of the table grid and are delimited with table row tags (<tr>). For
example, a table with five rows would use the following pseudocode:

<table>
<tr> row 1 </tr>
<tr> row 2 </tr>
<tr> row 3 </tr>
<tr> row 4 </tr>
<tr> row 5 </tr>

</table>

The rows are divided into columns (individual cells within the row) via table data (<td>) or table head-
ing (<th>) tags, which are covered in the next section.

The <tr> tag supports the options shown in the following table:

Attribute Definition

align Set to right, left, center, justify, or char (character), this attribute
controls the horizontal alignment of data in the row. Note that if you use
char alignment, you should also specify the alignment character with
the char attribute described below.

char Specifies the alignment character to use with character (char) alignment.

charoff Specifies the offset from the alignment character to align the data on. Can
be specified in pixels or as a percentage.

valign Set to top, middle, bottom, or baseline, this attribute controls the
vertical alignment of data in the row. Baseline vertical alignment aligns
the baseline of the text across the cells in the row.

Bottom vertical alignment aligns the row to the bottom of neighboring elements. Setting the vertical
alignment to baseline will cause the row to be aligned to the baseline of neighboring text (the line
text rests upon when written on ruled paper).

You can use the align value of char to align columns on a particular character — a decimal (.) if you
want to align numbers, for example. If you set alignment to char, you will also need to specify the align-
ment character using the char attribute. For example, to align a cell’s data on a decimal point, you
would use something similar to the following:

<td align=”char” char=”.”>145.99</td>

99

Tables

11_588206 ch08.qxd 6/30/05 12:33 AM Page 99

You can also use the charoff value for alignment to set the alignment to be offset from a particular
character. When using charoff alignment, you also need to use the char attribute to specify the charac-
ter to offset from.

Note that using alignment attributes in a table row tag will cause all cells in that row to be formatted
accordingly. If you want to format individual cells in the row differently, use attributes in the appropri-
ate table data or table header tags instead.

Cells
The cells of a table are the elements that actually hold data. The cell definitions also define the column in
which they reside. Table cells are delimited by table data tags (<td>), as shown in the following example:

<table>
<tr> <!-- Row 1 -->

<td>Column 1</td><td>Column 2</td><td>Column 3</td>
</tr>
<tr> <!-- Row 2 -->

<td>Column 1</td><td>Column 2</td><td>Column 3</td>
</tr>

</table>

Formatting your tables with ample white space (line breaks and indents) will help you accurately for-
mat and understand your tables. There are just as many ways to format a table in XHTML as there are
Web programmers — find a style that suits your tastes and stick to it.

This code defines a table with two rows and three columns, due to the three sets of <td> tags within
each row (<tr>).

You can also use table header tags (<th>) to define cells that are to be used as headers for the columns.
Expanding on the previous example, the following adds column headers:

<table>
<tr> <!-- Header Row -->

<th>Header 1</th><th>Header 2</th><th>Header 3</th>
</tr>
<tr> <!-- Body Row 1 -->

<td>Column 1</td><td>Column 2</td><td>Column 3</td>
</tr>
<tr> <!-- Body Row 2 -->

<td>Column 1</td><td>Column 2</td><td>Column 3</td>
</tr>

</table>

Most user agents render the table header cells (those delimited by <th> tags) in a different font, usually
bold. This allows an easy method to format headings without using additional character formatting tags.
However, as with all formatting defaults, each user agent is free to define its own default formatting for
table headers. If you want your headers to appear with specific textual formatting, you should take care
to explicitly code them as such.

100

Chapter 8

11_588206 ch08.qxd 6/30/05 12:33 AM Page 100

Some user agents will not properly render an empty cell (for example, <td></td>). When you find
yourself needing an empty cell, get in the habit of placing a nonbreaking space entity () in the cell
(for example, <td> </td>) to help ensure that the user agent will render your table correctly.

Although cells represent the smallest element in a table, they have the most attributes for their tags.
Supported attributes include those shown in the following table:

Attribute Definition

abbr An abbreviated form of the cell’s contents. User agents can use the
abbreviation where appropriate (using a voice synthesizer to speak a
short form of the contents, displaying on a small device, and so on).
As such, the value of the abbr attribute should be as short and concise
as possible.

align The horizontal alignment of the cell’s contents —left, center, right,
justify, or char (character).

axis Used to define a conceptual category for the cell, which can be used to
place the cell’s contents into dimensional space. How the categories are
used (if at all) is up to the individual user agent.

char The character used to align the cell’s contents if the alignment is set
to char.

charoff The offset from the alignment character to use when aligning the cell’s
contents by character.

colspan How many columns the cell should span (the default is 1). See the
“Spanning Columns and Rows” section of this chapter for more
information.

headers A space-separated list of header cell id attributes that correspond with
the cells used as headers for the current cell. User agents use this informa-
tion at their discretion — a verbal agent might read the contents of all
header cells before the current cell’s contents.

rowspan How many rows the cell should span (the default is 1). See the “Spanning
Columns and Rows” section of this chapter for more information.

scope The scope of the current cell’s contents when used as a header —row,
col (column), rowgroup, or colgroup (column group). If set, the cell’s
contents are treated as a header for the corresponding element(s).

valign The vertical alignment of the cell’s contents —top, middle, bottom, or
baseline.

Previous versions of HTML also supported a nowrap attribute for cell tags. In HTML version 4.01
(and hence, XHTML) that attribute was deprecated in favor of CSS formatting.

101

Tables

11_588206 ch08.qxd 6/30/05 12:33 AM Page 101

Captions
Captions allow you to annotate your tables, detailing the contents or its meaning for the reader. The
caption section of an XHTML table is encapsulated in caption tags (<caption>) within the table tags
(<table>). For example, consider the following table and the resulting output shown in Figure 8-10:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>Table with a Caption</title>
</head>
<body>
<p>
<table border=”1” width=”25%”>

<caption>The Nobel Gases occupy the last
column of the Periodic Chart of the Elements</caption>

<tbody>
<tr><th>Element</th><th>Symbol</th></tr>
<tr><td>Helium</td><td>He</td></tr>
<tr><td>Neon</td><td>Ne</td></tr>
<tr><td>Argon</td><td>Ar</td></tr>
<tr><td>Krypton</td><td>Kr</td></tr>
<tr><td>Xenon</td><td>Xe</td></tr>
<tr><td>Radon</td><td>Rn</td></tr>

</tbody>
</table>
</p>
</body>
</html>

Note that the caption must come immediately after the <table> tag so that the user agent will know
to reserve space for it. Also, the caption generally appears centered above the table, but different user
agents may display it differently.

You can use styles to format the caption. For more information on styles, see Part II of this book.

102

Chapter 8

11_588206 ch08.qxd 6/30/05 12:33 AM Page 102

Figure 8-10

Header, Footer, and Body Sections
There are three section tags that can (and should) be used to delimit sections of your table: the header
(<thead>), footer (<tfoot>), and body (<tbody>) tags. There are several advantages to using the sec-
tion tags within your table, including the following:

❑ Each section can be easily styled differently.

❑ The user agent allows the user to scroll the body separately from the headers and footers.

❑ The various sections can be easily identified for later modification.

103

Tables

11_588206 ch08.qxd 6/30/05 12:33 AM Page 103

Each section supports the same tags delimiting columns and rows — table rows (<tr>), table headings
(<th>), and table data (<td>). For example, a table heading section might resemble the following:

<thead>
<tr>

<th>Cust #</th>
<th>Customer Name</th>
<th>Last Order Date</th>

</tr>
</thead>

Note that, in this case, <th> tags are used to ensure that the cells are formatted as headings. However,
you could just as easily use <td> tags if you wanted.

A sample use of these tags is shown in the following code, and the result is displayed in a user agent
within Figure 8-11:

Notice the use of the rules=”groups” attribute in the <table> tag. This causes the rules to be
inserted between the sections (row groups) only (see Figure 8-11).

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>Page Estimates</title>
</head>
<table border=”1” cellpadding=”3” cellspacing=”2”

rules=”groups”>
<caption>Page estimates for the first four chapters.</caption>
<thead align=”center”>

<tr>
<th>Chapter</th><th>Pages</th><th>Figures</th>

<th>Illustrations</th>
</tr>

</thead>
<tfoot align=”center”>

<tr>
<td>Totals</td><td>51</td><td>13</td><td>6</td>

</tr>
</tfoot>
<tbody align=”center”>

<tr>
<td>1</td><td>10</td><td>0</td><td>2</td>

</tr>
<tr>

<td>2</td><td>12</td><td>4</td><td>1</td>
</tr>
<tr>

<td>3</td><td>9</td><td>2</td><td>0</td>
</tr>

104

Chapter 8

11_588206 ch08.qxd 6/30/05 12:33 AM Page 104

<tr>
<td>4</td><td>20</td><td>7</td><td>3</td>

</tr>
</tbody>
</table>
</body>
</html>

Although counterintuitive, the <tfoot> section should be placed before the <tbody> section in the table
code. This allows the user agent to anticipate the footer section when rendering the table.

Figure 8-11

Backgrounds
Previous versions of HTML supported a bgcolor attribute in table, row, header, and cell tags. The
attribute was used to define a color for the element it was included with. However, in HTML 4.01 that
attribute was deprecated. To specify background colors in table elements, you must now use CSS.

105

Tables

11_588206 ch08.qxd 6/30/05 12:33 AM Page 105

For example, the following style definition defines a CSS class for a table with a red background:

table.redbg { background-color: red; }

Using CSS, you can also use graphic images as backgrounds for tables:

table.graphic { background-image: url(“marble.jpg”); }

Many user agents do not currently support color or image backgrounds in tables.

More information on CSS and backgrounds can be found in Chapter 16.

Spanning Columns and Rows
You can use the colspan and rowspan attributes to span cells across multiple columns and rows,
respectively. The following two sections outline the use of both attributes.

Spanning Columns
Using the colspan attribute in table header (<th>) and table data (<td>) tags, you can span a cell over
two or more columns. For example, consider the following table and the result in a user agent, shown in
Figure 8-12:

<table border=”1” cellpadding=”5”>
<caption>Respondent Summary by Answer</caption>
<tr align=”center”>

<!-- Spanning group headers -->
<th> </th>
<th colspan=”2” width=”150”>Aggressive</th>
<th colspan=”2” width=”150”>Passive</th>
<th colspan=”2” width=”150”>Passive/Aggressive</th>

</tr>
<tr align=”center”>

<!-- Individual column headers -->
<th>Respondent</th><th>A</th><th>B</th>
<th>C</th><th>D</th><th>E</th><th>F</th>

</tr>
<!-- Table data -->
<tr>

<td>Mike</td>
<td>0</td><td>3</td><td>4</td><td>0</td><td>5</td><td>2</td>

</tr>
<td>Terri</td>
<td>0</td><td>0</td><td>4</td><td>6</td><td>2</td><td>2</td>

</tr>

106

Chapter 8

11_588206 ch08.qxd 6/30/05 12:34 AM Page 106

<td>Amy</td>
<td>7</td><td>7</td><td>0</td><td>0</td><td>0</td><td>0</td>

</tr>
<td>Ted</td>
<td>2</td><td>2</td><td>4</td><td>2</td><td>2</td><td>2</td>

</tr>
<td>Thomas</td>
<td>7</td><td>3</td><td>4</td><td>0</td><td>0</td><td>0</td>

</tr>
<td>Corinna</td>
<td>0</td><td>0</td><td>4</td><td>10</td><td>0</td><td>0</td>

</table>

The colspan attributes were added to table header tags so the result is formatted as a header. The row
where the colspan attributes are used has fewer columns (by necessity, one fewer for each column
spanned).

Figure 8-12

107

Tables

11_588206 ch08.qxd 6/30/05 12:34 AM Page 107

Spanning Rows
You can use the rowspan attribute in table data (<td>) and table header (<th>) tags to span a cell
across several rows. For example, consider the following table and the results shown in Figure 8-13:

<table border=”1” cellpadding=”5”>
<caption>Respondent Summary to Questions 1-4</caption>
<tr align=”center”>

<th>Category</th>
<th>Age</th><th>#1</th><th>#2</th><th>#3</th><th>#4</th>

</tr>
<tr>

<td rowspan=”3”>Male
Respondents</td>
<!-- Above cell spans 3 rows -->
<td>23</td><td>A</td><td>C</td><td>F</td><td>B</td>

</tr>
<tr>

<!-- First cell is the span cell -->
<td>29</td><td>B</td><td>F</td><td>A</td><td>A</td>

</tr>
<tr>

<!-- First cell is the span cell -->
<td>25</td><td>C</td><td>C</td><td>C</td><td>C</td>

</tr>
<!-- End of first span -->
<tr>

<td rowspan=”3”>Female
Respondents</td>
<!-- Above cell spans 3 rows -->
<td>28</td><td>F</td><td>E</td><td>B</td><td>B</td>

</tr>
<tr>

<!-- First cell is the span cell -->
<td>21</td><td>B</td><td>B</td><td>B</td><td>A</td>

</tr>
<tr>

<!-- First cell is the span cell -->
<td>23</td><td>F</td><td>F</td><td>C</td><td>C</td>

</tr>
<!-- End of second span -->
</table>

108

Chapter 8

11_588206 ch08.qxd 6/30/05 12:34 AM Page 108

Figure 8-13

Grouping Columns
HTML 4.01 added a few extra tags to make defining and formatting groups of columns easier. The two
tags, <colgroup> and <col>, are used together to define and optionally format column groups and
individual columns.

The <colgroup> tag is used to define and optionally format groups of columns. The tag supports the
same formatting attributes as the <tr> and <td>/<th> tags (align, valign, width, and so on). Any
columns defined by the <colgroup> will inherit the formatting contained in the <colgroup> tag’s
attributes and styles.

The <colgroup> tag’s span attribute indicates how many columns are in the group. For example, the
following code defines the first three columns in a group and sets their alignment to center:

<table>
<colgroup span=”3” align=”center”>
</colgroup>
...

109

Tables

11_588206 ch08.qxd 6/30/05 12:34 AM Page 109

Additional <colgroup> tags create additional column groups. You must use additional column groups
if the columns you are grouping are not contiguous or do not start with the first column. For example,
the following HTML table code creates three column groups:

❑ Columns 1 and 2, formatted with centered alignment

❑ Columns 3–5, formatted with decimal alignment

❑ Columns 6–10, formatted with right alignment and bold text

<table>
<colgroup span=”2” align=”center”>
<!-- This group contains columns 1 & 2 -->
</colgroup>
<colgroup span=”3” align=”char” char=”.”>
<!-- This group contains columns 3 - 5 -->
</colgroup>
<colgroup span=”5” align=”right” style=”font-weight: bold;” >
<!-- This group contains columns 6 - 10 -->
</colgroup>
...

Column groups that do not have explicit formatting attributes defined in their respective <colgroup>
tags inherit the standard formatting for the columns of the table. However, the group is still defined as a
group and will respond accordingly to table attributes that affect groups (rules=”groups”, and so on).

What if you don’t want all the columns within the group formatted identically? For example, in a group
of three columns, suppose you wanted the center column (column number 2 in the group) to have its
text formatted as bold text? To define specific formatting for the columns in the group, you use the
<col> tag. To format a group using the preceding example (middle column bold), you could use code
similar to the following:

<table>
<colgroup span=”3”>
<!-- This group contains columns 1 & 3 -->
<col></col>
<col style=”font-weight: bold;”></col>
<col></col>
</colgroup>
...

The <col> tag follows similar rules to that of the <colgroup> tag:

❑ Empty tags (those without explicit formatting) are simply placeholders.

❑ You must define columns in order, and in a contiguous group, using blank <col> tags where
necessary.

❑ Missing or empty <col> tags result in the corresponding columns inheriting the standard for-
matting for columns in the table.

110

Chapter 8

11_588206 ch08.qxd 6/30/05 12:34 AM Page 110

In standard HTML the <col> tag has no closing tag. However, in XHTML the tag must be appropriately
closed.

Using the <colgroup> or <col> tags does not eliminate or change the necessity of <td> tags (which
actually form the columns). You must still take care in placing the rest of the tags within the table to
ensure proper formatting of your tables.

Using Tables for Page Layout
One relatively new use for tables is using them for intricate page layout — aligning text and graphics.
This method is quite popular because it is both easy and versatile. Other methods, such as CSS, are more
exact but harder to code and aren’t as well supported by user agents.

For example, take a look at Figure 8-14.

Figure 8-14

111

Tables

11_588206 ch08.qxd 6/30/05 12:34 AM Page 111

At first glance you wouldn’t think that many tables were involved in this document’s creation. However,
if you enable borders on all the tables, their use and multitude becomes quite apparent, as shown in
Figure 8-15.

Figure 8-15

This section covers some of the more popular uses of tables for page layout purposes. However, the pos-
sibilities for using tables are endless; feel free to experiment with different layouts or with combining
layouts.

Most table layout schemes use nested tables to accomplish their formatting. Remember that tables can
be nested only within cells of other tables (between <th> or <td> tags).

112

Chapter 8

11_588206 ch08.qxd 6/30/05 12:34 AM Page 112

Floating Page
The floating page layout (as shown in Figure 8-16) is quite popular and used for documents of all kinds,
from corporate sites to personal online diaries.

Figure 8-16

The effect is fairly easy to create using a few nested tables, as shown in the following code, the output of
which is shown in Figure 8-17.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>Floating Table Format</title>
<style type=”text/css”>

113

Tables

11_588206 ch08.qxd 6/30/05 12:34 AM Page 113

<!-- Sets “desktop” color (behind page) -->
body { background-color: #B0C4DE; }

</style>
</head>
<body>
<p>
<!-- /Body container -->

<!-- (background = border, padding = border width
margin = centered table) -->

<table border=”0” cellpadding=”4px” cellspacing=”0”
style=”background-color: black;
margin: 0 auto;”>

<tr>
<td>

<!-- Floating page -->
<!-- (padding = page margin) -->

<table border=”0” cellpadding=”5px” cellspacing=”0”
width=”732px” height=”900px”
style=”background-color: #FFFFFF;”>

<tr align=”left” valign=”top”>
<td>

<!-- Page content -->
<p>Content goes here.<p>
<!-- Page content -->

</td>
</tr>

</table>
<!-- /Floating page -->

</td>
</tr>
</table>
<!-- /Body container -->
</p>
</body>
</html>

The comments in the code delimit the individual tables and content areas. It is a good practice to follow
standard code formatting (indentation, liberal white space, and so on) and to include sufficient com-
ments to easily keep track of all your tables, how they are formatted, and what they accomplish.

114

Chapter 8

11_588206 ch08.qxd 6/30/05 12:34 AM Page 114

For more of a drop-shadow effect, set two adjacent borders to a nonzero value, as shown in the follow-
ing code:

<!-- Floating page -->
<!-- (padding = page margin) -->

<table border=”0” cellpadding=”5px” cellspacing=”0”
width=”732px” height=”900px”
style=”background-color: #FFFFFF;
border-right: 4px solid black;
border-bottom: 4px solid black;”>

Figure 8-17

115

Tables

11_588206 ch08.qxd 6/30/05 12:34 AM Page 115

This will increase the width of the right and bottom borders, giving the page a more realistic, drop-
shadow effect.

Note that not all browsers correctly support attaching a background-color CSS style to the
body tag.

Odd Graphic and Text Combinations
As you have probably noticed, most HTML elements are rectangular, making it tough to combine irregu-
larly shaped images with text. However, by breaking up the image(s) into rectangles and placing the
chunks into table cells, you can combine images and text in almost any way you desire.

For example, consider the logo shown in Figure 8-18, which is typical of current Web document mast-
heads using a nonrectangular graphic. A sidebar containing nonvital information appears under the
planet on the logo, while the main body of the document appears under the logo text.

Figure 8-18

Using a graphic editor like Paint Shop Pro, you can break the image into three parts, as shown in
Figure 8-19.

116

Chapter 8

11_588206 ch08.qxd 6/30/05 12:34 AM Page 116

Figure 8-19

Those parts can then be placed into a table; the top of the planet and the text are placed in the first row,
and the bottom of the planet and the main body of the document in the second row, as shown in the fol-
lowing code, which renders similarly to Figure 8-20.

<table border=”0” cellpadding=”0” cellspacing=”0”>
<colgroup>

<col valign=”top” style=”padding-left: 10px;”></col>
<col valign=”top” style=”padding-right: 10px;”></col>

</colgroup>
<tbody>
<tr>

<td></td>
<td></td>

</tr>
<tr>

<td>

<!-- Sidebar Content Here -->
<p>Sidebar Content</p>

</td>
<td align=”top”>

117

Tables

11_588206 ch08.qxd 6/30/05 12:34 AM Page 117

<!-- Main Page Content Starts Here -->
<p>Main Page Content</p>

</td>
</tr>
</tbody>

</table>

The appropriate content replaces the placeholders, creating a seamless page design like that shown in
Figure 8-19.

Many graphic editing programs have a Slice feature that can help break apart an image, and some appli-
cations will even build the appropriate HTML for you. The Slice feature in Paint Shop Pro (accessed via
File➪Export➪Image SLicer) is shown in Figure 8-20.

Figure 8-20

Note that white space in your code can create inadvertent problems when embedding graphics in table
cells. Be careful not to leave any white space between table data tags (<td>) and the image tags ().
For example, the following code will result in a small margin between the image and the edge of the
table cell due to the line breaks and spaces used to indent the tag:

<td>

</td>

118

Chapter 8

11_588206 ch08.qxd 6/30/05 12:34 AM Page 118

Navigational Blocks
Tables can also be used to provide more simple layouts for navigational panes. For example, you can
provide a navigational pane on top of a document or at either margin. Figure 8-21 shows an example of
a navigational pane at the top of a document. Figure 8-22 shows an example of a navigational pane on
the left margin of the document.

Figure 8-21

The table borders in both examples (Figures 8-21 and 8-22) have been turned on to show the layout of
the tables involved. Although most layout designs use no borders, it may be advantageous to turn some
borders on to help delimit certain sections of your documents.

The top navigation pane (Figure 8-21) provides an area where a menu can be placed. The left-margin
pane (Figure 8-22) provides individual cells for individual menu items; you can use this approach to
uniquely position the individual menu items.

119

Tables

11_588206 ch08.qxd 6/30/05 12:34 AM Page 119

Figure 8-22

Multiple Columns
Tables can also be used to provide a newspaper-like format for your documents. This layout is quite sim-
ple, relying on two (or more) parallel columns, as shown in Figure 8-23.

120

Chapter 8

11_588206 ch08.qxd 6/30/05 12:34 AM Page 120

Figure 8-23

A Word About Frames
Previous versions of HTML supported a flexible, multipane scheme called frames. Frames enable a user
agent window to be divided into defined areas, each capable of displaying different content that can be
set to scroll independently from one another.

121

Tables

11_588206 ch08.qxd 6/30/05 12:34 AM Page 121

XHTML allows a special document type definition (DTD) for frame support, the Extensible HTML ver-
sion 1.0 Frameset DTD, available at http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd.

There is no frameset DTD for XHTML 1.1.

Although once very popular with Web designers, frames have become an outdated construct and should
not be used for the following reasons:

❑ Frames are hard to code (requiring a special frameset document in addition to content documents)
and are reasonably hard to manage.

❑ Frame support in user agents cannot be relied on as the Web moves to more resource-
constrained platforms (mostly in the mobile arena).

❑ Frames are going the route of deprecation and aren’t XHTML 1.1 compliant.

Summary
This chapter introduced you to one of the most powerful and flexible XHTML elements, the table.
You learned about the various pieces that make up the table whole, as well as how to format each. You
also learned about the evolution of the table and how some of the table-formatting attributes have
migrated — much like other elements’ formatting attributes — into CSS. In addition, you learned how
to stretch the boundaries of tables to provide layout structures for text and even entire documents.

122

Chapter 8

11_588206 ch08.qxd 6/30/05 12:34 AM Page 122

Forms
The Web was built as a one-way communication medium — designed to deliver content to a user
but not gather data from the user. However, the usefulness of a World Wide Web soon drove con-
structs to enable users to send information as well as receive it. Enter the form, which allows
graphical user controls to be placed in Web documents, allowing users to use methods they are
familiar with to send data to interact with databases, submit orders to retailers, and more. This
chapter details the ins and outs of XHTML forms and their controls.

Understanding Forms
HTML forms allow users to interact with Web documents by providing GUI controls for data
entry. The HTML side of forms simply collects the data. A separate handler, usually a script of
some sort, is used to do something useful with the data. A typical interaction with an HTML form
resembles that shown in Figure 9-1.

Figure 9-1

The steps in the flow are as follows:

1. The Web server sends the HTML document (containing the form) to the user agent.

2. The user uses the form’s GUI controls to enter data and submits the completed form.

User
Agent

HTTP
Document

Form
Data

Web Server

Form
HandlerForm

Data

12_588206 ch09.qxd 6/30/05 12:30 AM Page 123

3. The form is submitted to a specified server (typically the same server that delivered the form
document) to be passed to a handler.

4. The server passes the data stream to a specified handler, which uses the data in a prescribed
method.

A sample form, using the various form fields, is shown in the following code and rendered in a user
agent in Figure 9-2.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>A Simple Form</title>
</head>
<body>
<p>
<form action=”formdata.cgi” method=”post”>

<table cellspacing=”20”>
<tr><td>

<!-- Text boxes -->
<p><label for=”fname”>First Name: </label>

<input type=”text” name=”fname” id=”fname” size=”20”>

<label for=”lname”>Last Name: </label>

<input type=”text” name=”lname” id=”lname” size=”20”>
</p>

<!-- Text area -->
<p><label for=”address”>Address:</label>

<textarea name=”address” id=”address”
cols=20 rows=4></textarea>

</p>

<!-- Password -->
<p><label for=”password”>Password: </label>

<input type=”password” name=”password” id=”password”
size=”20” />

</p>

</td>
<td>

<!-- Select list -->
<p><label for=”products”>What product(s) are you

interested in? </label>

<select name=”prod[]” id=”products” multiple=”multiple”

size=”4” />
<option id=”MB”>Motherboards</option>
<option id=”CPU”>Processors</option>
<option id=”Case”>Cases</option>
<option id=”Power”>Power Supplies</option>
<option id=”Mem”>Memory</option>
<option id=”HD”>Hard Drives</option>

124

Chapter 9

12_588206 ch09.qxd 6/30/05 12:30 AM Page 124

<option id=”Periph”>Peripherals</option>
</select>
</p>

<!-- Check boxes -->
<fieldset>

<legend>Contact me via: </legend>
<p><input type=”checkbox” name=”email” id=”email” checked=”checked” />

<label for=”email”>Email</label>

<input type=”checkbox” name=”postal” id=”postal” />

<label for=”postal”>Postal Mail</label></p>
</fieldset>

</td>
</tr>
<tr>
<td>

<!-- Radio buttons -->
<p>How soon will you be buying hardware?</p>
<fieldset>
<legend>I plan to buy:</legend>
<p><input type=”radio” name=”buy” value=”ASAP” id=”buyASAP” />

<label for=”buyASAP”>ASAP</label>

<input type=”radio” name=”buy” value=”10” id=”buy10” />

<label for=”buy10”>Within 10 business days</label>

<input type=”radio” name=”buy” value=”30” id=”buy30” />

<label for=”buy30”>Within the month</label>

<input type=”radio” name=”buy” value=”Never” id=”buyNever” />

<label for=”buyNever”>Never!</label></p>
</fieldset>
</td>

<td>
<!-- Submit and Reset buttons -->
<p>
<input type=”submit” name=”submit” id=”submit” value=”Submit”/>

<input type=”reset” name=”reset” id=”reset” />
</p>

<!-- Button -->
<p>
<input type=”button” name=”leave” id=”leave” value=”Leave site!” />
</p>

<!-- Image -->
<input type=”image” name=”coupon” id=”coupon” src=”coupon.jpg” />

<!-- Hidden field -->
<input type=”hidden” name=”referredby” id=”referredby” value=”Google” />

</td>
</tr>
</table>

125

Forms

12_588206 ch09.qxd 6/30/05 12:30 AM Page 125

</form>
</p>
</body>
</html>

Figure 9-2

The various fields and options are covered in appropriate sections later in this chapter.

Text

Radio Buttons

Text Area Select List

Legend and Fieldset Check Boxes

Submit and Reset ButtonsPassword

Legend and Fieldset

Image

Button

126

Chapter 9

12_588206 ch09.qxd 6/30/05 12:30 AM Page 126

Form Handling
As previously mentioned, a separate form handler is necessary to do something useful with the data.
Form handlers are generally script files designed to interact with e-mail, databases, or some other sys-
tem. For example, a Perl program might be used to query a database based on user input and then pass
the results back to the user via a separate document.

A simple PHP form handler that logs form data to a file might resemble the following:

<?php

// Open LOG file
$log = fopen(“formdata.log”,”a”);

// For each value pair, output value to LOG
$firstvalue=TRUE;
foreach ($_POST as $key => $value) {

if (!$firstvalue) { fwrite($log,”, “); }

// If value is array (multiple select list)
// output array to LOG (elements sep by -)
if (is_array($value)) {

$firstelement=TRUE;
fwrite($log,”\””);
foreach ($value as $element) {

if (!$firstelement) {
fwrite($log,”-”);
$firstelement=FALSE;

}
fwrite($log,$element);

}
} else {

// Not array, output simple value
fwrite($log,”\”$value\””);
$firstvalue=FALSE;

}
}

// Line feed and close LOG
fwrite($log,”\n”);
fclose($log);

?>

Note that this form handler is very basic — it doesn’t do any error checking, convert encoded values,
or provide any feedback to the user. It simply takes the fields data passed to it and puts it in a comma-
separated value (CSV) log file.

Common form handlers are created in Perl, Python, PHP, or other server-side programming languages.

More information on scripting languages that can be used for form handling can be found in Parts IV
and V of this book.

127

Forms

12_588206 ch09.qxd 6/30/05 12:30 AM Page 127

Security is an issue that should be considered when creating form handlers. One of the earliest, most
popular form handlers, formmail.cgi, was found to have a vulnerability that allowed anyone to send
data to the script and have it e-mail the data to whomever the sender wanted. This functionality was an
instant hit with e-mail spammers, who still use unsecured formmail scripts to send anonymous spam.

If you want a generic form handler to simply store or e-mail the data, you can choose from a few routes.

Several sites on the Internet have generic form handlers available. For example, CGI Resource Index, at
http://cgi.resourceindex.com/, has several dozen scripts that you can download and use for your
form handling.

Several services are also available that allow you to process your form data through their server
and scripts. You may need such a service if you cannot run scripts on your server or want a generic,
no-hassle solution. A partial list of script services is also available at the CGI Resource Index,
http://cgi.resourceindex.com/. From the main page, select Remotely Hosted and browse for a
service that meets your needs.

Passing Form Data
There are two methods that can be used to send the form data via HTTP, GET, and POST. Each method
passes the form data back to the specified form handler in name/value pairs (name of the variable/form
field and its value). Only the method for passing the data varies.

The HTTP GET protocol transfers data by attaching it to the URL text passed to the form handler. You
have probably noticed URLs that resemble the following:

http://www.example.com/forms.cgi?id=45677&character=Taarna

The data appears after the question mark and is in name/value pairs. For example, the variable named
id has the value of 45677, and the variable character has the value of Taarna. In most cases, the vari-
able name corresponds to field names from the form, but how they translate to values within the form
handler is up to the handler itself.

Because the data is passed as plain text in the URL, it is easy to implement — you can pass data by sim-
ply adding the appropriate coding to the URL used to call the data handler. However, GET is also inher-
ently insecure. You should never use GET to send confidential data to a handler, because the data is
clearly visible in most user agents and can be easily sniffed by hackers.

The HTTP POST method passes data by encoding it in the HTTP protocol stream. As such, it is not
normally visible to a user and is a more secure method to pass data, but it can be harder to implement.
Thankfully, most Web technologies make passing data via POST trivial.

Note that GET data is also limited in size due to being encapsulated in the URL.

128

Chapter 9

12_588206 ch09.qxd 6/30/05 12:30 AM Page 128

The Form Tag
You insert a form into your document by placing form fields within form (<form>) tags. The entire form
or any of the tags within can be formatted like any other element in your document and can be placed
within any element capable of holding other elements (paragraphs, tables, and so on).

The <form> tag has the following minimum format:

<form action=”url_to_send_data” method=”get|post”>

The action attribute provides a URL to a suitable form handler that will process the form data accord-
ingly. The method attribute specifies how the form data should be passed to the handler, via GET or POST.

The <form> tag has several additional attributes, shown in the following table:

Attribute Values

accept A comma-separated list of content types that the handler’s server will
accept

accept-charset A comma-separated list of character sets the form data may be in

enctype The content type the form data is in

id The ID of the form (used instead of name)

name The name of the form (deprecated, use the id attribute instead)

target Where to open the handler URL (deprecated)

Although you may not need these attributes in all forms, they can be very useful. The accept, accept-
charset, and enctype attributes are invaluable for processing nontextual and international data. The
id attribute is used to uniquely identify a form in your document. This is essential for scripting, espe-
cially if you use more than one form in the same document.

The Input Tag
Many form fields share the same tag, namely the input (<input>) tag. This tag uses a type attribute to
tell the user agent what type of field it signifies. The input tag is used for the following types of fields:

❑ button

❑ checkbox

❑ file

❑ hidden

❑ image

❑ password

129

Forms

12_588206 ch09.qxd 6/30/05 12:30 AM Page 129

❑ radio

❑ reset

❑ submit

❑ text

For example, the following two tags define a text field and a submit button:

<input type=”text” name=”username” id=”username” size=”30” />
<input type=”submit” name=”submit” id=”submit” value=”Submit” />

More information on the various fields supported by the input tag appears in appropriate sections later
in this chapter.

The name and id Attributes
There are two attributes used in most form fields that serve similar purposes: name and id. However,
their uses are extremely different.

HTML requires that all fields contain name attributes for their data to be submitted with the form. Any
field that does not have a name attribute will not be included in the form data submission. Furthermore,
HTML uses the name attribute to identify the value — as a sort of variable name, if you will. Therefore, it
is important that you include name attributes in all your form fields. It is also suggested that the name
values be succinct and machine-readable — that is, devoid of spaces and nonalphanumeric characters.

Some applications (some scripts and the <label> tag) require that fields also contain an id attribute. For
example, user agents use the <label> tags’ for attribute to match other fields’ id attribute, resulting in
a label-field match. JavaScript and other scripting languages can use the id attribute to directly access
form fields.

To be on the safe side, it’s usually best to include both attributes in all form fields.

Text Input Boxes
The text input field is one of the most used fields in HTML forms. This field allows for the input of one
line of text — generally used for names, addresses, search terms, and so on.

The text input field tag has the following format:

<input type=”text” name=”name_of_field” id=”id_of_field” value=”initial_value”
size=”size_of_field” maxlength=”max_characters_allowed” />

130

Chapter 9

12_588206 ch09.qxd 6/30/05 12:30 AM Page 130

Although all the attributes previously listed are not required, they represent the minimum attributes that
you should always use with text input fields. The following sample text box is displayed 30 characters
long, accepts a maximum of 40 characters, and has no initial value:

<p>Name: <input type=”text” name=”username” id=”username” value=””
size=”30” maxlength=”40” /></p>

The following code example defines a text box that is displayed as a box 40 characters long, only accepts
40 characters, and has an initial value of “email@example.com” (supplied via the value attribute):

<p>Email: <input type=”text” name=”email” id=”email”
value=”email@example.com” size=”40” maxlength=”40” /></p>

Password Input Boxes
The password input box is similar to the text box, but it visually obscures data entered into the box by
displaying asterisks or bullets instead of the actual characters entered into the field. The following exam-
ple displays a password field that accepts 20 characters.

<p>Password: <input type=”password” name=”password” id=”password” value=””
size=”20” maxlength=”20” /></p>

Note that the password field only visibly obscures the data to help stop casual snoops from seeing what
a user inputs into a field. It does not encode or in any way obscure the information at the data level. As
such, be careful how you use this field.

Radio Buttons
The radio input field defines one in a series of radio buttons. When one is selected, the others in the
group are deselected, making the buttons mutually exclusive from each other.

The radio button field has the following format:

<input type=”radio” name=”name_of_group” id=”id_of_group” [checked=”checked”]
value=”value_if_selected” />

The value attribute defines what value is returned to the handler if the button is selected. This attribute
should be unique between buttons in the same group. Note that all radio buttons within a group share
the same name attribute value, which defines them as a group.

The following code defines a group of radio buttons that allows a user to select their gender:

<p>Gender:
<input type=”radio” name=”gender” id=”male” value=”male”> Male
<input type=”radio” name=”gender” id=”female” value=”female”> Female</p>

131

Forms

12_588206 ch09.qxd 6/30/05 12:30 AM Page 131

If you want a radio button selected by default, use the checked attribute within the appropriate button’s
tag. Remember that XML and its variants do not allow attributes without values. Although HTML will
allow the checked attribute to be used with or without a value, you should specify the checked
attribute as checked=”checked” instead of just checked to remain XHTML compliant.

Fieldsets are handy elements to use with radio buttons. More information on fieldsets appears in a sepa-
rate section later in this chapter.

Checkboxes
The checkbox field has the following format:

<input type=”checkbox” name=”name_of_field” id=”id_of_field” [checked=”checked”]
value=”value_if_selected” />

Checkboxes are very similar in definition to radio buttons; however, unlike radio buttons, multiple
checkboxes can be selected from the same group. The following example displays a checkbox allowing
the user to select whether they should receive solicitous e-mails:

<p><input type=”checkbox” name=”spam_me” checked=”checked”
value=”spam_me” /> Add me to your email list</p>

You can use the checked attribute to preselect checkboxes in your forms. Also, just like radio buttons,
the value attribute is used as the value of the checkbox if it is selected. If no value is given, selected
checkboxes are typically given the value of “on” by the user agent.

List Boxes
List boxes are used to allow a user to pick one or more textual items from a list. The list can be presented
in its entirety, with each element visible, or as a drop-down list where users must scroll to their choices.

List boxes are delimited using select (<select>) tags, with their options delimited using option
(<option>) tags. Optionally, you can use the option group (<optgroup>) tag to group related options
within the list.

The <select> tag provides the container for the list and has the following format:

<select name=”name_of_field” id=”id_of_field” size=”number_of_items_to_show”
[multiple=”multiple”]>

The size attribute determines how many items will initially be displayed by the control. If the number
of items in the list exceeds the number of lines to display, the user agent will provide scroll bars so that
the user can navigate to the additional items in the list. If the size attribute is set to 1, the list will
become a drop-down list; clicking the list will expand it to show multiple items with a scroll bar.

132

Chapter 9

12_588206 ch09.qxd 6/30/05 12:30 AM Page 132

The select tag does not include an attribute to control the width of the control. The select box is automati-
cally sized according to the longest element (<option>) it contains. If you wish a select list to be wider,
a common practice is to include a placeholder option of the appropriate length, similar to the following:

<option value=”null”>-------- Please make a selection --------</option>

However, including such an option places an additional burden on the form handling; you must ensure
that this option is not selected if the field is not optional.

The <option> tag delimits the items to be contained in the list. Each item is given its own <option> tag
pair. The option tag has the optional attributes shown in the following table:

Attribute Values

label A shorter label for the item that the user agent can use

selected Indicates that the item should be initially selected

value The value that should be sent to the handler if the item is selected; if omitted,
the text of the item is sent

The label attribute is useful for fields where you need to provide human-readable text (including
spaces, punctuation, and so on) in the field for the user’s benefit but wish to return a more succinct
value to the form handler.

An example of an <option> list follows:

<option value=”sun”>Sunday</option>
<option value=”mon”>Monday</option>
<option value=”tue”>Tuesday</option>
<option value=”wed” selected=”selected”>Wednesday</option>
<option value=”thr”>Thursday</option>
<option value=”fri”>Friday</option>
<option value=”sat”>Saturday</option>

Occasionally, you will want to group options of a list together for clarity. For this, you can use option
group (<optgroup>) tags to delimit the groups of options. For example, the following code defines two
groups for the preceding list of options, weekend and weekday:

<optgroup label=”Weekend”>
<option>Sunday</option>
<option>Saturday</option>

</optgroup>
<optgroup label=”Weekday”>

<option>Monday</option>
<option>Tuesday</option>
<option>Wednesday</option>
<option>Thursday</option>
<option>Friday</option>

</optgroup>

133

Forms

12_588206 ch09.qxd 6/30/05 12:30 AM Page 133

It is up to the user agent as to how to display the option groups. A popular method of displaying the
groups is to display the group label above the options to which they apply, as shown in Figure 9-3.

Figure 9-3

Combining the various list tags to create a list would look similar to the following code:

<p>Select the days you are available: </p>
<p>
<select name=”DaysAvail” size=”5” multiple=”multiple”>

<optgroup label=”Weekend”>
<option>Sunday</option>
<option>Saturday</option>

</optgroup>
<optgroup label=”Weekday”

<option>Monday</option>
<option>Tuesday</option>
<option>Wednesday</option>
<option>Thursday</option>
<option>Friday</option>

</optgroup>
</select>
</p>

Large Text Areas
The text area tag (<textarea>) is used for larger pieces of text — this tag can accept up to 1024 charac-
ters and uses a multiline text box for input.

The <textarea> tag has the following format:

<textarea name=”name_of_field” cols=”number_of_columns”
rows=”number_of_rows”>default_value_of_field</textarea>

134

Chapter 9

12_588206 ch09.qxd 6/30/05 12:30 AM Page 134

The cols and rows attributes define the size of the text box in the user agent. If the content of the box
exceeds its dimensions, the user agent will provide a vertical scroll bar to scroll the content appropri-
ately. Note that the text area tag is one of the few form tags that has a formal closing tag. If the field
should have a default value, it is placed between the tags. The tags should be adjacent to one another
if the field is to be blank.

It is important to carefully watch the formatting of your code around a text area tag. For example, if you
want the field to be initially blank, you cannot place the open and close tags on separate lines in the code:

<textarea>
</textarea>

This would result in the field containing a newline character — it would not be blank.

The text entered into the <textarea> field wraps within the width of the box, but the text is sent as one
long string to the handler. However, where the user enters line breaks, those breaks are also sent to the
handler, embedded in the string.

Previous versions of HTML supported a wrap attribute for the <textarea> tag. This attribute was
used to control how text wrapped in the text box as well as how it was sent to the handler. However,
user agent support for this attribute was inconsistent — you could not rely on an agent to follow the
intent of the attribute. The attribute has been deprecated and should not be used.

Hidden Fields
You can place additional, nonvisible data in your forms using hidden fields. The hidden field has the fol-
lowing format:

<input type=”hidden” name=”name_of_field” value=”value_of_field” />

Other than not being visibly displayed, hidden fields are much like any other field. Hidden fields are
used mostly for tracking data and the state of a process. For example, in a multipage form, a userid
field can be hidden in the form to ensure that subsequent forms, when submitted, are tied to the same
user data. For instance, the following code could be used to track a user by a unique number:

<input type=”hidden” name=”userid” value=”4384572332” />

Keep in mind that while hidden fields do not display in the user agent interface, they are still visible in
the code of the document. Hidden fields should never be used for sensitive data.

Buttons
You can add custom text buttons on your forms using the button field. The button field has the follow-
ing format:

<input type=”button” name=”name_of_field” value=”text_for_button” />

135

Forms

12_588206 ch09.qxd 6/30/05 12:30 AM Page 135

This tag results in a simple button being displayed on the form using the style of the current GUI. The
following code results in the button shown in Figure 9-4:

<input type=”button” name=”BuyNow” id=”buynow” value=”Buy Now!” />

Figure 9-4

Buttons by themselves are relatively useless on a form. To have the button actually perform an action,
you need to link it to a script via the onclick or other event attribute. For example, the following code
results in a button that, when clicked, executes the JavaScript function buynow():

<input type=”button” name=”buynow” id=”buynow” value=”Buy Now!”
onclick=”JavaScript:buynow()” />

More information on JavaScript and events can be found in Part III of this book.

Images
You can include additional graphic images in your form to help convey a message. The image field dis-
plays a graphic image much like the image tag () and has the following format:

<input type=”image” name=”name_of_field” src=”url_to_image_file” />

However, much like the button field, the image field is useless without being tied to an event handler.
The following example causes the image buynow.jpg to be displayed on a form. When the image is
clicked, the JavaScript function buynow() is executed:

<input type=”image” name=”buynow” src=”buynow.jpg” onclick=”JavaScript:buynow()” />

Images by themselves are not intuitive user interface mechanisms. The image field exists to help encapsu-
late graphics into the form element within the document object model. If you use images for user interface
purposes, be sure to include enough hints as to their purpose using nongraphical (text, and so on) means.

136

Chapter 9

12_588206 ch09.qxd 6/30/05 12:30 AM Page 136

File Fields
File fields allow files to be attached to form data and sent along with the data to the handler. File fields
have the following syntax:

<input type=”file” name=”name_of_field” size=”display_size_of_field” />

The file field renders as a text box with a button that enables the user to browse for a file using their plat-
form’s file browser. Alternately, the user can manually type the full path and name of the file in the text
box. Figure 9-5 shows an example of a file field.

Figure 9-5

However, to use this control in your forms, you must do the following:

❑ Specify your form encoding as multipart, which allows the file to be attached to the rest of
the data.

❑ Use the POST, not the GET, method of form delivery. File information cannot be encapsulated
using the GET method.

In other words, when using a file field, your <form> tag should resemble the following:

<form action=”form_handler” method=”post” enctype=”form/multipart”>

Submit and Reset Buttons
Submit and reset buttons provide control mechanisms for users to submit the data entered to a handler
and reset the form to its default state, respectively. These buttons have similar formats:

137

Forms

12_588206 ch09.qxd 6/30/05 12:30 AM Page 137

<input type=”submit” name=”submit” id=”submit” [value=”text_for_button”] />

and

<input type=”reset” name=”reset” id=”reset” [value=”text_for_button”] />

The value attribute for both tags is optional; if this attribute is omitted, the buttons will display default
text (usually “Submit” and “Reset,” but the text is ultimately determined by the user agent).

The submit button, when clicked, causes the form to be submitted to the handler specified in the <form>
tag’s action attribute. You can also use the onclick event attribute to call a script to preprocess the
form data prior to submission.

The reset button, when clicked, causes the form to be reloaded and its fields reset to their default values.
You can also use the onclick event attribute to change the button’s behavior, calling a script instead of
reloading the form. However, the user will expect the reset button to ultimately reset the form; if you tie
a script to the button using the onclick event, you should ensure that the script also resets the form.

Field Labels
The label tag (<label>) is used to define text labels for fields. This tag has the following format:

<label for=”id_of_related_tag”>text_label</label>

For example, the following code defines a label for a text box:

<p><label for=”FirstName”>First Name: </label>
<input type=”text” name=”FirstName” id=”FirstName” value=””
size=”30” maxlength=”40”></p>

The label field’s for attribute should match the id of the field for which it is intended. The main pur-
pose of the label tag is accessibility — most users will be able to ascertain the purpose of fields in your
forms by sight. However, if the user agent does not have a visual component, or if the user is visually
impaired, the visual layout of the form cannot be relied on to match labels and fields. Note that if the
user agent supports it, the user can also click on the field label to select the appropriate field.

The <label> tag’s for attribute ensures that the user agent can adequately match labels with fields for
the user, if necessary.

Notice the use of both the id and name attributes in the text input field tag. HTML requires a field to
have a name tag for its data to be submitted. However, the label tag requires an id value in its matching
input field.

Fieldsets and Legends
Sometimes it is advantageous to visually group certain controls on your form. This is a standard practice
for graphical user agents, as in the Mozilla Firebird Options dialog shown in Figure 9-6.

138

Chapter 9

12_588206 ch09.qxd 6/30/05 12:30 AM Page 138

Figure 9-6

The fieldset tag (<fieldset>) is used as a container for form elements and results in a thin border being
displayed around the contained elements. For example, the following code results in the output shown
in Figure 9-7.

<fieldset>
<p>Gender:

<input type=”radio” name=”gender” id=”male” value=”male”> Male

<input type=”radio” name=”gender” id=”female” value=”female”> Female</p>
</fieldset>

Figure 9-7

139

Forms

12_588206 ch09.qxd 6/30/05 12:30 AM Page 139

The legend tag (<legend>) allows the surrounding fieldset box to be captioned. For example, the fol-
lowing code adds a “Gender” caption to the previous example. The output of this change is shown in
Figure 9-8.

<fieldset>
<p><legend>Gender </legend>
<input type=”radio” name=”gender” id=”male” value=”male”> Male

<input type=”radio” name=”gender” id=”female” value=”female”> Female</p>
</fieldset>

Figure 9-8

Tab Order and Keyboard Shor tcuts
Two additional attributes, tabindex and accesskey, should be used with your form fields to increase
their accessibility.

The tabindex attribute defines what order the fields are selected in when the user presses the Tab key.
This attribute takes a numeric argument that specifies the field’s order on the form. The fields are then
accessed in their numeric, tabindex order —tabindex 1, then 2, and so forth.

The accesskey attribute defines a key that the user can press to directly access the field. This attribute
takes a single letter as an argument; that letter becomes the key the user can press to directly access the
field. Keys specified in accesskey attributes typically require an additional key to be pressed with the
specified key. For example, user agents running on Microsoft Windows typically require the Alt key to
be pressed along with the letter specified by accesskey. Other platforms require similar keys; such keys
typically follow the GUI interface conventions of the platform.

The following example defines a text box that can be accessed by pressing Alt+F (on Windows platforms)
and is third in the tab order:

<p><label for=”FirstName”>First Name: </label>
<input type=”text” id=”FirstName” name=”FirstName” value=””
tabindex=”3” accesskey=”F” size=”30” maxlength=”40”></p>

140

Chapter 9

12_588206 ch09.qxd 6/30/05 12:30 AM Page 140

Note the use of the tag to delimit the corresponding letter (“F”) in the field’s label. Deprecation
of the underline element caused a slight problem when using accesskey attributes. It is customary
to underline shortcut keys in GUI interfaces so that the user knows what key is mapped to what
field/function. However, with the deprecation of the underline element, you must use CSS (hence the
span tag) to appropriately code the letter corresponding to the access key.

The tag is covered in Chapter 7, while CSS is covered in Part II of this book.

Preventing Changes to Fields
There are two ways to display information in form fields without allowing a user to change the data: by
setting the field to read only or by disabling the field.

You can add the readonly attribute to text fields to keep the user from being able to edit the data con-
tained therein. This method has the advantage of displaying the data in field form while prohibiting the
user from being able to modify it.

The disabled attribute causes the corresponding field to appear as disabled (usually graying out the
control, consistent with the user agent’s platform method of showing disabled controls) so the user can-
not use the control.

The following code shows examples of both a read-only and a disabled control. The output of this code
is shown in Figure 9-9.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>Read Only and Disabled Fields</title>
</head>
<body>

<p>
<form action=”formhandler.php” method=”post”>
<table cellspacing=”10” width=”600”>

<tr>
<td width=”25%”>
<p>Customer Code (readonly):</p>
</td><td>
<input type=”text” size=”12” value=”X234GG”

name=”code” id=”code” readonly=”readonly”>
</td>

</tr>
<tr>

<td>
<p>Discount (disabled):</p>
</td><td>
<input type=”text” size=”10” value=””

name=”discount” id=”discount” disabled=”disabled”>
</td>

</tr>

141

Forms

12_588206 ch09.qxd 6/30/05 12:30 AM Page 141

</table>
</form>
</p>
</body>
</html>

Figure 9-9

Although the two attributes make the fields look similar on-screen, the readonly field can be selected
but not edited. The disabled field cannot be selected at all. You should also note the field’s read-only or
disabled status in text — whether in the field label or additional text near the field. This courtesy is for
non-GUI users or users of agents that do not plainly indicate the field’s status.

Summary
This chapter detailed XHTML forms, showing you how to define a form and populate it with appropri-
ate controls for gathering data from users. You learned the basics of form handling and how to create
documents to effectively gather and submit data. Parts IV and V of this book cover scripting and give
examples of how to create script handlers for various purposes.

142

Chapter 9

12_588206 ch09.qxd 6/30/05 12:30 AM Page 142

Objects and Plugins
The Web isn’t just for text anymore. Today’s user agents support many different types of data —
from sound files to rich multimedia presentations. Including such content in your Web documents
is not only welcome but also expected.

Many helpful applications — known as plugins — help extend a user agent’s capability. The most
popular plugin, Macromedia’s Flash Player, allows for complex animation and even full naviga-
tion through non-HTML content delivered via the user agent.

This chapter introduces you to the world of non-HTML content, plugins, and how to use them in
your documents.

Understanding Plugins
Plugins are small applications that extend the capabilities of user agents by running on the client
machine and handling data delivered via HTTP supplied by the user agent. A typical plugin
works with a user agent as shown in the diagram in Figure 10-1.

Figure 10-1

Web Server

Browser

Request

Data

Data

Plugin

Content/
Presentation

User

13_588206 ch10.qxd 6/30/05 12:25 AM Page 143

The user agent requests the content as normal but receives a file it doesn’t know how to deal with.
However, it has a plugin registered for the file it receives. The browser launches the plugin and passes
the file to the plugin for processing. The plugin presents the data to the user in an environment native
to the data while remaining in the browser environment.

Note that plugins are specialized applications requiring the end user to install and maintain them on
their system(s). Although plugins (especially Flash and the like) are common on the Web, you should
use caution in deciding to use plugin-enabled content in your pages, as it does have an impact on the
end user.

The first plugins enabled the Netscape browser to deliver content other than text and basic graphics. The
earliest plugins included programs from Macromedia for its Shockwave product and from Adobe for its
Acrobat (PDF) product. These programs enabled users to view Shockwave graphic presentations and
Adobe PDF files.

Today, plugins are available for almost all types of data. The old standbys are still available (Adobe
Acrobat Reader, Macromedia Flash/Shockwave, and so on), but a host of new plugins exists to allow
files to be transferred via HTTP and viewed by the end user.

There are other means for user agents to handle nonnative files. For example, Windows users can rely
on file associations. If a received file is a registered file type, Windows will automatically spawn the cor-
rect application to handle it. However, note that the file is then being handled outside of the user agent,
requiring another full application with all the associated overhead.

The Old Way — The Embed Tag
Early versions of HTML used the embed tag (<embed>) to represent non-HTML data within HTML
documents. The <embed> tag has the following syntax:

<embed src=”file_to_embed” name=”name_of_embedded_object” width=”width_in_pixels”
height=”height_in_pixels” hidden=”true|false”>

For example, the following could be used to embed a MIDI file (jinglebells.mid) in a Web document:

<embed src=”jinglebells.mid” name=”jinglebells”>

When the document is displayed in Windows Microsoft Internet Explorer, a small media player control
appears, as shown in Figure 10-2, and the MIDI file begins to play. Note that the hidden attribute could
be used to hide the player from the user and the space the player occupies can be modified with the
width and height attributes (but using values that are too small will hide some of the control).

Note, however, that many other platforms will not handle the embedded file as shown in Figure 10-2 —
Windows handles it deftly because of the built-in media player control available to applications. Other
user agents on other platforms will require a separate plugin to utilize the content. For example, Mozilla
Firefox will display a prompt, as shown in Figure 10-3, and will attempt to install Apple’s QuickTime
player if the user chooses Install Missing Plugins.

144

Chapter 10

13_588206 ch10.qxd 6/30/05 12:25 AM Page 144

Figure 10-2

Figure 10-3

Another seldom-used tag for embedding non-HTML content in HTML documents was the <applet>
tag. This tag was used mainly to call on a small application (applet) to do something useful with or in
addition to the document’s contents.

Later versions of HTML deprecated the <embed> tag, replacing it with the <object> tag, which was
designed to be more flexible.

145

Objects and Plugins

13_588206 ch10.qxd 6/30/05 12:25 AM Page 145

The Object Tag
The object tag (<object>) was introduced to replace both the <embed> and <applet> tag means of
embedding objects (non-HTML content) within HTML documents. The <object> tag has the following
syntax:

<object classid=”class_id” id=”object_id” codebase=”base_for_object_code_URI”
codetype=”MIME_type_of_object” width=”width_of_object”
height=”height_of_object” >

Alternate_text_for_object
...parameters...

</object>

The object tag encapsulates alternate text that is used if the object cannot be handled by the destination
user agent and parameters defined by parameter tags (<param>).

The <param> tag is covered in the next section.

The object tag’s attributes are listed in the following table:

Attribute Value(s) Use

archive URL(s) URLs to archives related to the object

classid class_id A URL to the implementation for the object

codebase URL A URL to the location of the code to utilize the object

codetype MIME type The MIME type of the object

data URL A URL to the object’s data

declare true|false Determines if the object should only be declared but
not initialized (true), or initialized and displayed
after loaded (false)

height pixels|percentage The displayed height of the object

name unique_name A unique name for the object (used in scripting)

standby text Defines text to display while the object loads

type MIME type The MIME type of the data specified by the data
attribute

usemap URL Specifies the location of a client-side image map to
use with the object

width pixels|percentage The displayed width of the object

The object tag can be used in the <head> or <body> section of a document. If used in the <body>, the
object appears where placed in the document and uses the format of its containing block. If it is placed in
the head, its positioning is determined by other criteria — options in the <object> block, styles dictat-
ing object placement, and so on.

146

Chapter 10

13_588206 ch10.qxd 6/30/05 12:25 AM Page 146

The classid and codebase attributes are essential — they tell the user agent what plugin should be
used to display the content. The classid attribute corresponds to the internal identifier of the plugin.
For example, on Windows platforms this value is stored in the Windows Registry along with the location
of the plugin. The codebase attribute points to the Flash player (plugin) that can be downloaded if the
plugin isn’t already available on the platform.

The rest of the attributes are important to help tailor the appearance of the object (width, height,
declare) or to provide the user agent more information about the object’s data.

Note that the <object> tag can be formatted like any other block tag using CSS.

Parameters
Most objects require parameters to customize their appearance and operation. The <param> tag is
used within the <object> tag to provide the appropriate parameters. The <param> tag has the follow-
ing syntax:

<param name=”name_of_param” value=”value_of_param” type=”MIME_type_of_param”
valuetype=”data|ref|object” />

The <param> tag has no closing mate. To be XHTML compliant, the tag should end with the slash.

The name and value attributes are necessary; they are the two attributes that provide the actual param-
eter for the object. The other attributes are necessary in certain circumstances to help define the type and
scope of the parameter.

Multiple parameters can be added to an object by using multiple parameter tags.

Object Examples
More data/media formats are delivered via the Web than can be readily counted. Each of the non-HTML-
based formats has its own plugin, format for the <object> tag, and parameters. The best way to deter-
mine the correct format of the <object> tag is to consult the owner of the data format or applicable
plugin (Macromedia for Flash content, Apple Computer Inc. for QuickTime, and so on).

Many GUI-based HTML editors include features to help embed non-HTML content in Web documents.
For example, Macromedia’s Dreamweaver provides several features to embed and control various objects
within your documents.

The following two examples show how to embed commonly used data types: a MIDI file and a Flash file.

147

Objects and Plugins

Example: Adding a MIDI Sound File to a Web Document

Although not as popular as it once was, background music on Web documents is still common.
This example shows how to use the <object> tag to place a MIDI file (and appropriate media
controls) in a Web document.

13_588206 ch10.qxd 6/30/05 12:25 AM Page 147

148

Chapter 10

Source
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>
<head>

<title>A MIDI Object</title>
</head>
<body>
<p>
<object classid=”clsid:22D6F312-B0F6-11D0-94AB-0080C74C7E95” id=’jinglebells’

height=”45” width=”300” />
Jingle Bells!
<param name=”autostart” value=”true” />
<param name=”filename” value=”jinglebells.mid” />

</object>
</p>
</body>
</html>

This example will work only on Windows, with Microsoft Internet Explorer or a browser with an
appropriate plugin allowing access to the Windows Media Player controls.

Output
The code results in a media player panel being displayed in the document at the <object> tag’s
location, as shown in Figure 10-4. The MIDI file begins to play as soon as the document is loaded.

Figure 10-4

13_588206 ch10.qxd 6/30/05 12:25 AM Page 148

149

Objects and Plugins

Example: Adding Shockwave Flash to a Web Document

Flash content is perhaps the most dominant multimedia content on the Web. This example
shows how to use the <object> tag to place a Flash animation in a document.

Source
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>
<head>

<title>A Flash Object</title>
</head>
<body>
<p>
<object classid=”clsid:D27CDB6E-AE6D-11cf-96B8-444553540000”
codebase=”http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#ve
rsi
on=6,0,40,0” width=”150” height=”150”>

Radar Screen
<param name=”movie” value=”radar.swf” />
<param name=”quality” value=”high” />
<param name=”loop” value=”1” />
<param name=”play” value=”1” />

</object>
</p>
</body>
</html>

Output
The preceding document displays as shown in Figure 10-5, with the Flash movie in the place of
the <object> tag.

13_588206 ch10.qxd 6/30/05 12:25 AM Page 149

Suppor t for Older, Netscape Browsers
Older, Netscape-based browsers do not support the <object> tag. If you need to include support for
these browsers, you have only one choice — use the <embed> tag. However, you shouldn’t use only the
<embed> tag; some newer browsers do not support it. Using both tags is also problematic; some user
agents support both tags, resulting in the object data being embedded twice in the document.

The answer is to include an appropriate <embed> tag within the <object> tag. Newer browsers will
ignore the <embed> tag because it doesn’t belong within the <object> tag, while older browsers will
ignore the <object> and <param> tags but will process the <embed> tag.

For example, to use <embed> with the earlier Flash example, you would use code similar to the following:

<object classid=”clsid:D27CDB6E-AE6D-11cf-96B8-444553540000”
codebase=”http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#versi
on=6,0,40,0” width=”150” height=”150”>

Radar Screen
<param name=”movie” value=”radar.swf” />
<param name=”quality” value=”high” />
<param name=”loop” value=”1” />
<param name=”play” value=”1” />
<EMBED src=”radar.swf” quality=”high” width=”150” height=”150”

type=”application/x-shockwave-flash”
pluginspage=”http://www.macromedia.com/go/getflashplayer” />

</object>

150

Chapter 10

Figure 10-5

13_588206 ch10.qxd 6/30/05 12:25 AM Page 150

Placing the <embed> tag within the <object> tag will cause newer user agents to ignore it; they will
perceive it as an invalid part of the <object> block due to its context. Older user agents (that don’t sup-
port <object>) will ignore the <object> tags but will recognize and use the embed block. Note that if
you place the embed section outside of the object block, the older user agents will still handle it properly,
but the newer user agents will understand both tags individually, displaying the object twice.

Use of the <embed> tag will cause your code to be non–XHTML compliant.

Summary
This chapter introduced you to non-HTML content and how you can embed it in your documents. You
learned how plugins operate, how to tell the user agent that it needs a plugin, as well as how to pass
parameters to the plugin to help control the content.

Unfortunately, multimedia is one of the areas where the user agent market has fragmented. Microsoft
builds a lot of functionality into Internet Explorer through the native Windows platform, while other
user agents rely on plugins to handle non-HTML content. Properly coding for all cases becomes a chore
not easily accomplished. The best advice is to stick to popular formats (such as Flash) or ensure that a
plugin exists (and is accessible via your code) for most platforms.

151

Objects and Plugins

13_588206 ch10.qxd 6/30/05 12:25 AM Page 151

13_588206 ch10.qxd 6/30/05 12:25 AM Page 152

XML
The Extensible Markup Language (XML) is a popular scheme for representing data. Although
created as a more portable version of SGML, XML lives mostly on the application side of the com-
puter world. XML is used to store preferences and data from applications, provide unified data
structure for transferring data, encapsulate syndicated feeds from Web sites, and more. The XML
standards are being adopted by other data formats such as HTML (creating XHTML).

This chapter presents a primer on XML, including its format, methods, and tools.

Full coverage of XML is outside the scope of this book — full coverage of XML can occupy an entire
book of its own. In the case of the Web, XML is a bystander technology, useful to know but not
entirely critical for publishing on the Web. However, because XHTML is XML compliant, coverage
is mandatory. If you desire more information about XML, you would do well to pick up a book dedi-
cated to the subject, such as WROX Beginning XML, 3rd Edition, WROX XSLT 2.0 Programmer’s
Reference, 3rd Edition, or Wiley’s XML Weekend Crash Course or XML Programming Bible.

XML Basics
The Extensible Markup Language (XML) was created to bring the advantages of the bloated
Standard Generalized Markup Language (SGML) standard to smaller platforms such as Web
browsers. XML retains the flexibility of its older sibling but has been redesigned for the Web with
the ability to be easily transmitted via the Internet’s architecture and displayed with less overhead.

The XML design strategy attempted to address the following points:

❑ Form should follow function. In other words, the language should be flexible enough to
encapsulate many types of data. Instead of shoehorning multiple forms of data into one
structure, the structure should be able to change to adequately fit the data.

❑ Documents should be easily understood by their content alone. The markup should be
constructed in such a way that there is no doubt about the content it frames. XML docu-
ments are often referred to as self-describing because of this attribute.

14_588206 ch11.qxd 6/30/05 12:20 AM Page 153

❑ Format should be separated from presentation. The markup language should represent the dif-
ference in pieces of data only and should make no attempt to describe how the data will be pre-
sented. For example, elements should be marked with tags such as <emphasis> instead of
(bold), leaving the presentation of the data (which should be emphasized, but not necessarily
bold) to the platform using the data.

❑ The language should be simple and easily parsed, with intrinsic error checking.

These attributes are evident in the goals stated in the W3C’s Recommendation for XML 1.0 (found at
http://www.w3.org/TR/1998/REC-xml-19980210):

1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs that process XML documents.

5. The number of optional features in XML is to be kept to the absolute minimum, ideally zero.

6. XML documents should be human-legible and reasonably clear.

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance.

As-is, XML is ill-suited for the World Wide Web. Because XML document elements can be author-
defined, user agents cannot possibly interpret and display all XML documents in the way the author
would have intended. However, standardized XML structures are excellent for storing application data.
For example, consider the following applications of XML:

❑ The popular RSS syndication format defines particular element tags in XML format to encapsu-
late syndicated news and blog feeds. This enables many applications to easily disseminate the
information contained within the feed.

❑ Several online statistic sites (computer game stats, and so on) store their information in XML
because it can be easily parsed and understood by a variety of applications.

❑ Many applications store their preferences in XML-formatted files. This format proves to be easily
parsed, changed, and rewritten, as necessary.

❑ Many word processing and other document-based applications (spreadsheets, and so on) store
their documents in XML format.

❑ Many B2B applications use XML to share and transfer data between each other.

Note that while XML provides an ideal data structure, it should be used only for smaller, sequential col-
lections of data. Data collections that require random access or have thousands of records would benefit
from an actual database format instead of XML.

154

Chapter 11

14_588206 ch11.qxd 6/30/05 12:20 AM Page 154

XHTML was designed to bring HTML into XML compliance (each element being properly closed, and
so on), not the other way around (add extensibility to HTML). In short, XHTML adheres to XML stan-
dards, but it is not itself an extensible markup language.

XML Syntax
XML follows guidelines we have already set forth for XHTML:

❑ Element and attribute names are case sensitive.

❑ All elements must be properly closed.

❑ Elements must be properly nested, not overlapping.

❑ All attributes must have values.

❑ All attribute values must be quoted.

Within documents, the structure is similar to that of HTML, where element tags are used to encapsulate
content that may itself contain tag-delimited content.

The following sections outline the particular syntax of the various XML document elements.

XML Declaration and DOCTYPE
Each XML document should begin with an XML declaration similar to the following:

<?xml version=”1.0” encoding=”UTF-8”?>

The declaration is <?xml?>, with version and encoding attributes. The version attribute specifies the
version of XML the document uses, and the encoding attribute specifies the character encoding used
within the document’s content.

As with other markup languages, XML supports document type definitions (DTDs), which specify the
rules used for the elements within documents using the DTD. Applications can then use the DTD to check
the document’s syntax. An XML document’s DTD declaration resembles that of an XHTML document,
specifying a SYSTEM or PUBLIC definition. For example, the following DTD is used for OpenOffice
documents:

<!DOCTYPE office:document-content PUBLIC
“-//OpenOffice.org//DTD OfficeDocument 1.0//EN” “office.dtd”>

The following is an example of an XHTML document’s DTD definition:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

155

XML

14_588206 ch11.qxd 6/30/05 12:20 AM Page 155

Elements
XML elements resemble XHTML elements. However, due to the nature of XML (extensible), elements
are generally not of the HTML variety. For example, consider the following snippet from an RSS feed,
presented in XML format:

<?xml version=”1.0” ?>
<rss version=”2.0”>

<channel>
<title>Liftoff News</title>
<link>http://liftoff.msfc.nasa.gov/</link>
<description>Liftoff to Space Exploration.</description>
<language>en-us</language>
<pubDate>Tue, 10 Jun 2003 04:00:00 GMT</pubDate>
<item>

<title>Star City</title>
<link>http://liftoff.msfc.nasa.gov/news/2003/news-starcity.asp</link>
<description>How do Americans get ready to work with Russians aboard the

International Space Station? They take a crash course in culture, language and
protocol at Russia’s Star
City.</description>

<pubDate>Tue, 03 Jun 2003 09:39:21 GMT</pubDate>
</item>
<item>

<description>Sky watchers in Europe, Asia, and parts of Alaska and Canada
will experience a partial
eclipse of the Sun on Saturday, May 31st.</description>

<pubDate>Fri, 30 May 2003 11:06:42 GMT</pubDate>
</item>

</channel>
</rss>

In this case, the following elements are used. <channel>, the container for the channel (that is, the feed
itself), has the following subcontainers:

❑ <title>— the title of the channel or feed

❑ <link>— the link to the feed on the Web

❑ <description>— the description of the feed

❑ <language>— the language of the feed’s content

❑ <pubDate>— the publication date for this feed

The feed then encapsulates each news item within an <item> element, which has the following
subelements:

❑ <title>— the title of the item

❑ <link>— a link to the item on the Web

❑ <description>— a short description of the item

❑ <pubDate>— the publication date of the item

156

Chapter 11

14_588206 ch11.qxd 6/30/05 12:20 AM Page 156

Note that several elements have multiple contexts. For example, the <channel> and <item> elements
both provide context for <title> elements; the placement of each <title> element (usually its parent)
determines what element the <title> refers to.

Attributes
XML elements support attributes much like XHTML. Again, the difference is that the attributes can be
defined in accordance with the document’s purpose. For example, consider the following code snippet:

<employee sex=”female”>
<lastName>Moore</lastName>
<firstName>Terri</firstName>
<hireDate>2003-02-20</hireDate>

</employee>
<employee sex=”male”>

<lastName>Robinson</lastName>
<firstName>Branden</firstName>
<hireDate>2000-04-30</hireDate>

</employee>

In this example, the sex of the employee is coded as an attribute of the <employee> tag.

In most cases, the use of attributes instead of elements is arbitrary. For example, the preceding example
could have been coded with sex as a child element instead of as an attribute:

<employee>
<sex>female</sex>
<lastName>Moore</lastName>
<firstName>Terri</firstName>
<hireDate>2003-02-20</hireDate>

</employee>
<employee>

<sex>male</sex>
<lastName>Robinson</lastName>
<firstName>Branden</firstName>
<hireDate>2000-04-30</hireDate>

</employee>

The mitigating factor in deciding how to code data is whether the content is ever to be used as data,
instead of just a modifier. If an application will use the content as data, it’s best to code it within an ele-
ment where it is more easily parsed as such.

Comments
XML supports the same comment tag as HTML:

<!-- comment_text -->

You can embed comments anywhere inside an XML document as long as the standard XML conventions
and corresponding DTD rules are not violated by doing so.

157

XML

14_588206 ch11.qxd 6/30/05 12:20 AM Page 157

Nonparsed Data
On occasion, you will need to define content that should not be parsed (interpreted by the application
reading the data). Such data is defined as character data or CDATA. Nonparsed data is formatted within
a CDATA element, which has the following syntax:

<!CDATA [non_parsed_data]]>

CDATA elements are generally used to improve the legibility of documents by placing reserved characters
within a CDATA element instead of using cryptic entities. For example, both of the following paragraph
elements result in identical data, but the first is more legible due to the CDATA elements:

<p>The <table> element should be used instead of the <pre> element
whenever possible.</p>

<p>The <!CDATA [<table>]]> element should be used instead of the <!CDATA [<pre>]]>
Element whenever possible.</p>

Entities
XML also allows for user-defined entities. Entities are content mapped to mnemonics; the mnemonics
can then be used as shorthand for the content within the rest of the document. Entities are defined using
the following syntax:

<!ENTITY entity_name “entity_value”>

Entities are defined within a document’s DTD. For example, the following document prologue defines
“Acme, Inc.” as the entity company:

<?xml version=”1.0”?>
<!DOCTYPE report SYSTEM “/xml/dtds/reports.dtd” [

<!ENTITY company “Acme, Inc.”>
]>

Elsewhere in the document, the entity (referenced by &entityname;) can be used to insert the company
name:

<report>
<title>TPS Report</title>
<date>2005-01-25</date>
<summary>The latest run of the regression test have yielded perfect results. The

job for &company; can now determinately be completed and final code
delivered.</summary>
...

Entities can also be declared as external resources. Such external resources are generally larger than a
few words or a phrase, like complete documents. A system entity, used for declaring external resources,
is defined using the following syntax:

<!ENTITY entity_name SYSTEM “URL”>

158

Chapter 11

14_588206 ch11.qxd 6/30/05 12:20 AM Page 158

For example, the following code defines a chapter01 entity that references a local document named
chapter01.xml:

<!ENTITY chapter01 SYSTEM “chapter01.xml”>

The chapter01 entity can then be used to insert the contents of chapter01.xml in the current document.

Namespaces
The concept of namespaces is relatively new to XML; they allow you to group elements together by their
purpose using a unique name. Such groupings can serve a variety of purposes, but they are commonly
used to distinguish elements from one another.

For example, an element named <table> can refer to a data construct or a physical object (such as a
dining room table):

<!-- Data construct -->
<table>

<tr><th>Date</th><th>Customer</th><th>Amount</th></tr>
<tr><td>2005-01-25</td><td>Acme, Inc</td><td>125.61</td></tr>

...
</table>

<!-- Home furnishing -->
<table>

<type>Dining</type>
<width>4</width>
<length>8</width>
<color>Cherry</color>

</table>

If both elements are used in the same document, there will be a conflict because the two refer to two
totally different things. This is a perfect place to specify namespaces.

Namespace designations are added as prefixes to element names. For example, you could use a furniture
namespace to identify the table elements that refer to furnishings:

<furniture:table>
<type>Dining</type>
<width>4</width>
<length>8</width>
<color>Cherry</color>

</furniture:table>

Style Sheets
XML also offers support for style sheets. Style sheets are linked to XML documents using the xml-
stylesheet tag, which has the following syntax:

<?xml-stylesheet type=”mime_type” href=”url_to_stylesheet”?>

159

XML

14_588206 ch11.qxd 6/30/05 12:20 AM Page 159

For example, to link a CSS style sheet to a document, you could use a tag similar to the following:

<?xml-stylesheet type=”text/css” href=”mystyles.css”?>

Using XML
Actual use of an XML document requires that the document be transformed into a usable format. There
are many means and formats to translate XML — the limits are governed only by your imagination and
tools at hand.

Viewing XML documents doesn’t require special tools. Many of the modern user agents can view XML
documents and even add capabilities such as tag highlighting and the ability to collapse portions of the
document, as shown in Figure 11-1, where Internet Explorer is displaying an RSS document.

Figure 11-1

Collapsed elements

160

Chapter 11

14_588206 ch11.qxd 6/30/05 12:20 AM Page 160

Extensible Stylesheet Language Transformations (XSLT)
The Extensible Stylesheet Language transforms XML documents into formatted documents and can also
rearrange document contents to generate new document elements. XSLT takes two items as its input, the
XML document (sometimes referred to as the source tree) and a style sheet to determine the transforma-
tion. The output document (sometimes referred to as the result tree) is in the desired format ready for
output to the desired device.

There are many tools that can help you manage XML documents and perform XSLT, including many
open source solutions (search for “XSLT” on sourceforge.org).

XML Editing
You have many choices for editing XML files. Because XML is a text-only format, you can use any text
editor (emac, vi, notepad, and so on) to create and edit XML documents. However, dedicated XML edi-
tors make the editing job easier by adding syntax highlighting, syntax checking, validation, auto-code
completion, and more.

❑ Many open source XML editors are available (search “XML editor” on sourceforge.net).

❑ Lennart Staflin has developed a major mode for Emacs called PSGML (http://www.lysator
.liu.se/projects/about_psgml.html).

❑ XMetal — formerly owned by Corel, now owned by Blast Radius — is a well-known, capable
(albeit commercial and expensive) XML editor (http://www.xmetal.com).

❑ XMLSpy, by Altova, is another capable XML editor in the same price range as XMetal, though
the personal edition is free (http://www.altova.com).

❑ <oXygen/>, by SyncRO Soft Ltd., is a lower-cost, multiplatform XML editor and XSLT debugger
(http://www.oxygenxml.com).

XML Parsing
You may choose to use XML to store various types of data, or you may have the need to access other
people’s data that is stored in XML.

Many XML parsing applications are available, including many open source applications (search for
“XML parsing” on sourceforge.org). In addition, there are XML parsing modules for most program-
ming languages:

❑ James Clark’s XML parser, expat, is well-known as the standard for XML parsing
(http://expat.sourceforge.net and http://www.jclark.com/xml/expat.html).

❑ Many XML modules are available for Perl via CPAN (http://www.cpan.org).

❑ Several XML tools are available for Python, including the many found at the Python Web site
(http://pyxml.sourceforge.net/topics).

161

XML

14_588206 ch11.qxd 6/30/05 12:20 AM Page 161

❑ PHP has a handful of XML functions built in as extensions to support expat (http://www.php
.net/manual/en/ref.xml.php).

❑ The PHP Extension and Application Repository has several additional extensions for XML
maintenance and manipulation (http://pear.php.net).

Summary
This chapter covered the basics of XML, its format, structure, and use. The basics of creating and main-
taining an XML document and tools for working with XML data were all covered. You should now have
a basic understanding of the standard and how it is affecting other data schemes and Web technologies.

162

Chapter 11

14_588206 ch11.qxd 6/30/05 12:20 AM Page 162

CSS Basics
In the grand scheme that is the World Wide Web, Cascading Style Sheets (CSS) are a relatively new
invention. The Web was founded on HTML and plain text documents. Over the last few years, the
Web has become a household mainstay and has matured into a viable publishing platform thanks
in no small part to CSS.

CSS enables Web authors and programmers to finely tune elements for publishing both online
and across several different types of media, including print format. This chapter serves as the
introduction to CSS. Subsequent chapters in this section will show you how to use styles with
specific elements.

The Purpose of Styles
Styles are an electronic publishing invention for dynamically coding text and other document ele-
ments with formatting. For example, a style called “Heading” would be attached to every heading
in the document. The style definition would contain information on how headings should be for-
matted. In this book, for example, headings (such as “The Purpose of Styles,” above) use a larger,
bold font.

The advantage of styles is that you can change the definition once and the change affects every
element using that style. Coding each element individually, by contrast, would require that each
element be recoded when you wanted them all to change. Thus, styles provide an easy means to
update document formatting and maintain consistency across a site.

Also, coding individual elements is best done while the document is being created. This means
that the document must be formatted by the author — not always the best choice. Instead, the ele-
ments can be tagged with appropriate styles (such as heading) while the document is created, and
the final formatting can be left up to another individual who defines the styles.

Styles can be grouped into purpose-driven style sheets. Style sheets are just that, groups of styles
relating to a common purpose. Style sheets allow for multiple styles to be attached to a document
all at once. It also allows for all the style formatting in a document to be changed at once. This
allows documents to be quickly formatted for different purposes — one style sheet can be used for
online documents, another for brochures, and so on.

15_588206 ch12.qxd 6/30/05 12:21 AM Page 163

Styles and HTML
For a tangible example using XHTML, consider the following code:

<p><u>Heading One</u></p>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.</p>
<p><u>Heading Two</u></p>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.</p>
<p><u>Heading Three</u></p>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.</p>

For the purpose of this example, ignore the fact that most of the text formatting tags (underline, center,
and so on) have been deprecated.

Note that all three headings are coded bold and underlined. Now suppose that you wanted the headings
to be larger and italic. Each heading would have to be recoded similar to the following:

<p><i>Heading One</i></p>

Although using a decent editor with global search and replace makes this change pretty easy, consider
managing an entire site, with several documents — if not tens or hundreds — each with several head-
ings. Each document makes the change exponentially harder.

Now, let’s look at how styles would change the example. Using styles, the example could be coded simi-
larly to the following:

<p class=”heading”>Heading One</p>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.</p>
<p class=”heading”>Heading Two</p>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.</p>
<p class=”heading”>Heading Three</p>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.</p>

There are several ways to apply styles to document elements. Various ways to define and use styles are
covered in Chapter 13.

164

Chapter 12

15_588206 ch12.qxd 6/30/05 12:21 AM Page 164

The style is defined in the head section of the document, similar to the following:

<head>
<style type=”text/css”>

p.heading { font-weight: bold; text-decoration: underline; }
</style>

</head>

This definition defines a heading class that formats text as bold and underlined.

Style definitions are covered in Chapter 13. Style properties are covered in appropriate chapters (“Text,”
and so on) later in this part of the book.

To change all the headings in the document to a larger, italic font, the one definition can be recoded:

<head>
<style type=”text/css”>

p.heading { font-size: larger; font-style: italic; }
</style>

</head>

CSS Levels 1, 2, and 3
There are three levels of CSS — two levels are actual specifications while the third level is in recommen-
dation status. The main differences between the three levels are as follows:

❑ CSS1 defines basic style functionality, with limited font and limited positioning support.

❑ CSS2 adds aural properties, paged media, and better font and positioning support. Many other
properties have been refined as well.

❑ CSS3 adds presentation-style properties, allowing you to effectively build presentations from
Web documents (similar to Microsoft PowerPoint presentations).

You don’t have to specify the level of CSS you are using. However, you should be conscientious about
what user agents will be accessing your site. Most modern browsers support CSS, but the level of sup-
port varies dramatically between user agents. It’s always best to test your implementation on target user
agents before widely deploying your documents.

When using styles, it is important to keep in mind that not all style properties are well supported by all
user agents. This book attempts to point out major inconsistencies and differences in the most popular
user agents, but the playing field is always changing. One invaluable reference for style compatibility is
Brian Wilson’s excellent resources at http://www.blooberry.com/indexdot/index.html.

165

CSS Basics

15_588206 ch12.qxd 6/30/05 12:21 AM Page 165

Defining Styles
Styles can be defined in several different ways and attached to a document. The most popular method
for defining styles is to add a style block to the head of a document:

<head>
<style type=”text/css”>

Style definitions
</style>

</head>

Using this method, all style definitions are placed within a style element, delimited by <style> tags.
The opening style tag has the following syntax:

<style type=”MIME_type” media=”destination_media”>

In most cases, the MIME type is “text/css.” The media attribute is typically not used unless the destina-
tion media is nontextual. The media attribute supports the following values:

❑ all

❑ aural

❑ braille

❑ embossed

❑ handheld

❑ print

❑ projection

❑ screen

❑ tty

❑ tv

Note that multiple definitions, each defining a style for a different medium, can appear in the same doc-
ument. This powerful feature allows you to easily define styles for a variety of document usage and
deployment.

Alternately, the style sheet can be contained in a separate document and linked to documents using the
link (<link>) tag:

<head>
<link rel=”stylesheet” type=”text/css” href=”mystyles.css” />

</head>

The style sheet document, mystyles.css, contains the necessary styles:

p.heading { font-size: larger; font-style: italic; }

166

Chapter 12

15_588206 ch12.qxd 6/30/05 12:21 AM Page 166

Then, when the style definitions in the external style sheet change, all documents that link to the external
sheet reflect the change. This presents an easy way to modify a document’s format — whether to affect
new formatting for visual sake or for a specific purpose.

Attaching external style sheets via the link tag should be your preferred method of applying styles to a
document, as it provides the most scalable use of styles — you have to change only one external style
sheet to affect many documents.

You can add comments to your style section or style sheet by delimiting the comment with /* and */.
For example, the following is a style comment:

/* Define a heading style with a border */

Cascading Styles
So where does the “cascading” in Cascading Style Sheets come from? It comes from the fact that styles
can stack, or override, each other. For example, suppose that an internal corporate Web site’s appearance
varies depending on the department that owns the various documents. It is important that all the docu-
ments follow the corporate look and feel, but the Human Resources department might use people-
shaped bullets or other small changes unique to that department. The HR department doesn’t need a
separate, complete style sheet for its documents. The department needs only a sheet containing the dif-
ferences from the corporate sheet. For example, consider the following two style sheet fragments:

corporate.css

body {
font-family:verdana, palatino, georgia, arial, sans-serif;
font-size:10pt;

}

p {
font-family:verdana, palatino, georgia, arial, sans-serif;
font-size:10pt;

}

p.quote {
font-family:verdana, palatino, georgia, arial, sans-serif;
font-size:10pt;
border: solid thin black;
background: #5A637B;
padding: .75em;

}

h1, h2, h3 {
margin: 0px;
padding: 0px;

}

ul {
list-style-image: url(“images/corp-bullet.png”)

}
...

167

CSS Basics

15_588206 ch12.qxd 6/30/05 12:21 AM Page 167

humanresources.css

ul {
list-style-image: url(“images/hr-bullet.png”)

}

The humanresources.css sheet contains only the style definitions that differ from the corporate.css
sheet, in this case, only a definition for ul elements (using the different bullet). The two sheets are linked
to the HR documents using the following <link> tags:

<head>
<link rel=”stylesheet” type=”text/css” href=”corporate.css” />
<link rel=”stylesheet” type=”text/css” href=”humanresources.css” />

</head>

When a user agent encounters multiple styles that could be applied to the same element, it uses CSS
rules of precedence, covered later in this section.

Likewise, other departments would have their own style sheets, and their documents would link to the
corporate and individual department sheets. As another example, the engineering department might use
their own style sheet and declare it in the head of their documents:

<head>
<link rel=”stylesheet” type=”text/css” href=”corporate.css” />
<link rel=”stylesheet” type=”text/css” href=”engineering.css” />

</head>

Furthermore, individual XHTML elements can contain styles themselves:

<ul style=”list-style-image: url(“images/small-bullet.png”);” >

The styles embedded in elements take precedence over all previously declared styles.

CSS refers to the location of declarations as follows:

❑ Author origin — The author of a document includes styles in a <style> section or linked sheets
(via <link>).

❑ User origin — The user (viewer of document) specifies a style sheet.

❑ User Agent origin — The user agent specifies default style sheet (when no other exists).

Styles that are critical to the document’s presentation should be coded as important by placing the text
!important at the end of the declaration. For example, the following style is marked as important:

<ul style=”list-style-image: url(“images/small-bullet.png”); !important” >

Such styles are treated differently from normal styles when the correct style to use is determined from
the cascade.

168

Chapter 12

15_588206 ch12.qxd 6/30/05 12:21 AM Page 168

The CSS standard uses the following rules to determine which style to use when multiple styles exist for
an element:

1. Find all style declarations from all origins that apply to the element.

2. For normal declarations, author style sheets override user style sheets, which override the
default style sheet. For !important style declarations, user style sheets override author style
sheets, which override the default style sheet.

3. More specific declarations take precedence over less specific declarations.

4. Styles specified last have precedence over otherwise equal styles.

Summary
This chapter taught you the basics of CSS — how styles are attached to a document, how they are best
used, what the different levels of CSS are, and how the cascade in Cascading Style Sheets works. You
learned the various ways to embed and define styles and more about the separation between content and
formatting that CSS can provide. Chapter 13 delves into the ins and outs of style definitions. Subsequent
chapters in this part of the book will show you how styles are best used with various elements.

169

CSS Basics

15_588206 ch12.qxd 6/30/05 12:21 AM Page 169

15_588206 ch12.qxd 6/30/05 12:21 AM Page 170

Style Definitions
By this point in the book, you should recognize the power, consistency, and versatility that styles
can bring to your documents. You have seen how styles can make format changes easier and
how they adhere to the content versus formatting separation. Now it’s time to learn how to create
styles — the syntax and methods used to define styles for your documents.

The Style Definition Format
CSS style definitions all follow this format:

selector_expression {
element_property: property_value(s);
element_property: property_value(s);
...

}

The selector_expression is an expression that can be used to match specific elements in the
document. Its simplest form is an element’s name, such as h1 to match all <h1> elements. At its
most complex, you can match individual subelements of particular elements or elements that
have particular relationships to other elements.

Selectors are covered in depth within the next section of this chapter.

The element_property specifies which properties of the element the definition will affect. For
example, to change the color of an element, the color property is used. Note that some properties
affect only one aspect of an element, while others combine several properties into one declaration.
For example, the border property can be used to define the width, style, and color of an element’s
border; each of the properties (width, style, color) has its own property declarations, as well
(border-width, border-style, and border-color).

Individual properties are covered within chapters relating to the type of element they affect. For
example, the font properties are covered in the next chapter, “Text.”

16_588206 ch13.qxd 6/30/05 12:19 AM Page 171

The property_values(s) specify how the property should affect the element to which it applies. For
example, to specify an element’s color as red, you would use the value red as the property value for the
color property.

More information on property values can be found in the “Property Values” section later in this chapter.

Now let’s look at the elements of a style declaration in a real example. The following style definition can
be used to change all the heading-one (<h1>) elements in a document to have red text:

h1 {
color: red;

}

The actual formatting of the style declarations can vary. The syntax is as follows:

declaration { property:value; property:value; property:value;... }

The declaration should be separated from the left brace (which begins the property/value section) by
white space, and each property/value pair should end in a semicolon. The property/value pair section
ends in a right brace. Extra white space can appear between all elements, and the amount of white space
(whether spaces, new lines, or tabs) doesn’t matter. For example, both of the following definitions pro-
duce identical results, but they are formatted quite differently:

h1 { color: red; border: thin dotted black; font-family: helvetica, sans-serif;
text-align: right; }

h1 {
font-family: helvetica, sans-serif;
border: thin dotted black;
text-align: right;
color: red;

}

Proper ty Values
Throughout this chapter, you will see how to apply values to properties using CSS. First, it is important
to talk a bit about the values themselves. Property values can be expressed in several different metrics
according to the individual property and the desired result.

CSS supports the following metrics for property values:

❑ CSS keywords and other properties, such as thin, thick, transparent, ridge, and so forth

❑ Real-world measures

❑ Inches (in)

❑ Centimeters (cm)

❑ Millimeters (mm)

172

Chapter 13

16_588206 ch13.qxd 6/30/05 12:19 AM Page 172

❑ Points (pt) — The points used by CSS2 are equal to 1/72 of an inch

❑ Picas (pc) — 1 pica is equal to 12 points

❑ Screen measures in pixels (px)

❑ Relational to font size (font size (em) or x-height size (ex))

❑ Percentages (%)

❑ Color codes (#rrggbb or rgb(r,g,b))

❑ Angles

❑ Degrees (deg)

❑ Grads (grad)

❑ Radians (rad)

❑ Time values (seconds (s) and milliseconds (ms)) — Used with aural style sheets

❑ Frequencies (hertz (Hz) and kilohertz (kHz)) — Used with aural style sheets

❑ Textual strings

Which metric is used depends on the value you are setting and your desired effect. For example, it doesn’t
make sense to use real-world measures (inches, centimeters, and so on) unless the user agent is calibrated
to use such measures or your document is meant to be printed. The em unit can be quite powerful, allow-
ing a value that changes as the element sizes change. However, using the em unit can have unpredictable
results. The em metric is best used when you need a relational, not absolute, value.

In the case of relational property values (percentages, em, and so on), the value is calculated on the
element’s parent values.

Understanding Selectors
Selectors are essentially patterns that enable a user agent to identify what elements get what styles. For
example, the following style in effect says, “If it is a paragraph tag, give it this style”:

p { text-indent: 2em; }

The selector is the first element before the brace, in this case, p (which matches the <p> tag).

This section shows you how to construct selectors of different types to best match styles to your elements
within your documents.

Matching Elements by Name
The easiest selector to understand is the plain element selector, as in the following example:

h1 { color: red; }

173

Style Definitions

16_588206 ch13.qxd 6/30/05 12:19 AM Page 173

Using the actual element name (h1) as the selector causes all occurrences of those tags to be formatted
with the property/values section of the definition (color: red). You can also specify multiple selectors
by listing them all in the selector area, separated by commas. For example, this definition will affect all
levels of heading tags in the document:

h1, h2, h3, 4h, h5, h6 { color: red; }

Matching Using the Universal Selector
The universal selector can be used to match any element in the document. The universal selector is an
asterisk (*). As an extreme example, you can use the universal selector to match every tag in a document:

* { color: red; }

Every tag will have the color: red property/value applied to it. Of course, you would rarely want a
definition to apply to all elements of a document — you can also use the universal selector to match
other elements of the selector. The following selector matches any tag that is a descendant of a
<td> tag, which is a descendant of a <tr> tag:

tr td ol { color: red; }

More information on child/descendant selectors can be found in the “Matching Child, Descendant, and
Adjacent Sibling Elements” section later in this chapter.

However, this selector rule is very strict, requiring all three elements. If you also wanted to include
descendant elements of <td> elements, you would need to specify a separate selector or use the
universal selector to match all elements between <tr> and , as in the following example:

tr * ol { color: red; }

In essence, the universal selector is a wildcard, used to represent any one or more elements. For exam-
ple, the selector immediately preceding would also match elements embedded within a paragraph
element within a cell, within a row (tr td p ol). You can use the universal selector with any of the selec-
tor forms discussed in this chapter.

Matching Elements by Class
You can also use selectors to define element classes, which can be adopted by any element. Suppose
that you had two areas on your page with different backgrounds, one light and one dark. You would
want to use dark-colored text within the light background area and light-colored text within the dark
background area. You could then define light_area and dark_area classes to ensure that the appro-
priate text styles were applied within the areas.

To specify a class to match with a selector, you append a period and the class name to the selector. For
example, this style will match any paragraph tag with a class of dark_area:

p.dark_area { color: white; }

174

Chapter 13

16_588206 ch13.qxd 6/30/05 12:19 AM Page 174

For example, suppose that this paragraph was in the area of the document with the dark background:

<p class=”dark_area”>Lorem ipsum dolor sit amet, consectetuer
adipiscing elit, sed diam nonummy nibh euismod tincidunt ut
laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad
minim veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.</p>

The specification of the dark_area class with the paragraph tag will cause the paragraph’s text to be
rendered in white.

The universal selector can be used to match multiple elements with a given class. For example, the fol-
lowing style definition will apply to all elements that specify the dark_area class:

*.dark_area { color: white; }

You can also omit the universal selector, specifying only the class itself (beginning with a period):

.dark_area { color: white; }

You could also take the example one step further, specifying the background and foreground in the same
style:

.dark_area { color: white;
background-color: blue; }

Matching Elements by Identifier
You can also match element identifiers (the id attribute). To match identifiers, you use the pound sign
(#) in the selector as a prefix for the id. For example, the following style will match any tag that has an
id attribute of comment:

#comment { background-color: green; }
...
<p id=”comment”>This paragraph is a comment.</p>

Matching Elements by Specific Attributes
You can use a selector to match any attribute in elements, not just class and id. To do so, you specify
the attribute and the value(s) you want to match at the end of the selector, offset in square brackets. This
form of the selector has the following format:

element[attribute=”value”]

For example, if you want to match any table with a border attribute set to 3, you could use this selector:

table[border=”3”]

175

Style Definitions

16_588206 ch13.qxd 6/30/05 12:19 AM Page 175

You can also match elements that contain the attribute no matter what the value of the attribute by omit-
ting the equal sign and attribute value. To match any table with a border attribute, you could use this
selector:

table[border]

Combine two or more selector formats for even more specificity. For example, the following selector will
match table elements with a class value of datalist and a border value of 3:

table.datalist[border=”3”]

You can also specify multiple attributes for more specificity. Each attribute is specified in its own brack-
eted expression. For example, if you wanted to match tables with a border value of 3 and a width value
of 100%, you could use this selector:

table[border=”3”][width=”100%”]

You can also match single values within a space- or hyphen-separated list value. To match a value in a
space-separated list, use tilde equal (~=) instead of the usual equal sign (=). To match a value in a hyphen-
separated list, you use bar equal (|=) instead of the usual equal sign (=). For example, the following selec-
tor would match any attribute that has “us” in a space-separated value of the language attribute:

[language~=”us”]

Matching Child, Descendant, and Adjacent
Sibling Elements

The most powerful selector methods match elements by their relationships with other elements. For
example, you can specify a selector style that matches italic elements only when appearing within a
heading, or list items only within ordered lists.

Understanding Document Hierarchy
The elements in an XHTML document are related hierarchically to the other elements in the document.
The hierarchy follows the same nomenclature as family trees — ancestors, parents, children, descen-
dants, and siblings. For example, consider the following code and Figure 13-1, which shows a document
and its hierarchy.

<html>
<body>
<div class=”div1”>

<h1>Heading 1</h1>
<table>

<tr><td>Cell 1</td><td>Cell 2</td></tr>
<tr><td>Cell 3</td><td>Cell 4</td></tr>

</table>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet
dolore magna aliquam erat volutpat. Ut wisi enim ad minim

176

Chapter 13

16_588206 ch13.qxd 6/30/05 12:19 AM Page 176

veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.</p>

</div>
<div class=”div2”>

<h1>Heading 2</h1>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet
dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.</p>
An ordered list

First element
Second element
Third element

</div>
</body>
</html>

Figure 13-1

div1

h1 table p

tr

body

td td

tr

td td

div2

h1 p ol

li

li

li

177

Style Definitions

16_588206 ch13.qxd 6/30/05 12:19 AM Page 177

Ancestors and Descendants
Ancestors and descendants are elements that are linked by lineage, no matter the distance. For example,
in Figure 13-1 the list elements under div2 are descendants of the body element, and the body element
is their ancestor, even though multiple elements separate the two.

Parents and Children
Parents and children are elements that are directly connected in lineage. For example, in Figure 13-1 the
table rows (<tr>) under div1 are children of the table element, which is their parent.

Siblings
Siblings are children that share the same, direct parent. In Figure 13-1, the list elements under div2 are
siblings of each other. The header, paragraph, and table elements are also siblings because they share
the same, direct parent (div1).

Selecting by Hierarchy
You can use several selector mechanisms to match elements by their hierarchy in the document.

To specify ancestor and descendant relationships, you list all involved elements separated by spaces. For
example, the following selector matches the list elements in Figure 13-1 (li elements within a div with a
class of div2):

div.div2 li

To specify parent and child relationships, list all involved elements separated by a right angle bracket
(>). For example, the following selector matches the table element in Figure 13-1 (a table element that is
a direct descendant of a div with a class of div1):

div.div1 > table

To specify sibling relationships, list all involved elements separated by plus signs (+). For example, the
following selector matches the paragraph element under div1 in Figure 13-1 (a paragraph that has a sib-
ling relationship with a table):

table + p

You can mix and match the hierarchy selector mechanisms for even more specificity. For example, the
following selector will match only table and paragraph elements that are children of the div with a class
value of div1:

div.div1 > table + p

178

Chapter 13

16_588206 ch13.qxd 6/30/05 12:19 AM Page 178

Understanding Style Inheritance
Inheritance is the act of picking up property values from one’s ancestors. In CSS, all foreground properties
(properties that are used in displaying visible elements, font color, and so on) are inherited by descen-
dant elements. The following definition would result in all elements being rendered in green, because
every element in the document descends from the body tag:

body { color: green; }

Note that this inheritance rule is valid only for foreground properties. Background properties (background
color, image, and so on) are not automatically inherited by descendant elements.

You can override inheritance by defining a style for an element with a different value for the otherwise
inherited property. For example, the following definitions result in all elements, except for paragraphs
with a nogreen class, being rendered in green:

body { color: green; }
p.nogreen { color: red; }

Instead of green, the nogreen paragraph elements are rendered in red.

Attributes that are not in conflict are cumulatively inherited by descendant elements. For example, the
following rules result in paragraphs with an emphasis class being rendered in bold, green text:

body { color: green; }
p.emphasis { font-weight: bold; }

Using Pseudoclasses
You can use a handful of pseudoclasses to match attributes of elements in your document. Pseudoclasses
are identifiers that are understood by user agents and apply to elements of certain types without the ele-
ments having to be explicitly styled. Such classes are typically dynamic and tracked by other means than
the actual class attribute.

For example, there are pseudoclasses used to modify visited and unvisited anchors in the document
(explained in the next section). Using the pseudoclasses, you don’t have to specify classes in individual
anchor tags — the user agent determines which anchors are in which class (visited or not) and applies
the style(s) appropriately.

The following sections discuss the pseudoclasses available.

179

Style Definitions

16_588206 ch13.qxd 6/30/05 12:19 AM Page 179

Anchor Styles
A handful of pseudoclasses can be used with anchor elements (<a>). The anchor pseudoclasses begin
with a colon and are listed in the following table.

Pseudoclass Matches

:link Unvisited links

:visited Visited links

:active Active links

:hover The link that the browser pointer is hovering over

:focus The link that currently has the user interface focus

For example, the following definition will cause all unvisited links in the document to be rendered in
blue, visited links in red, and when hovered over, green:

: link { color: blue; }
:visited { color: red; }
:hover {color: green; }

The order of the definitions is important; because the link membership in the classes is dynamic, :hover
must be the last definition. If the order of :visited and :hover were reversed, visited links would not
turn green when hovered over because the :visited color attribute would override the :hover color
attribute. Ordering is also important when using the :focus pseudoclass — it should be placed last in
the definitions.

Pseudoclass selectors can also be combined with other selector methods. For example, if you wanted all
nonvisited anchor tags with a class attribute of important to be rendered in a bold font, you could use
the following code:

/* Add explicit “important” class to non-visited pseudo class */
:link.important { font-weight: bold; }
...
<!-- The following link is important! -->
<a href=”http://something.example.com/important.html”

class=”important”>An important message

The :first-child Pseudoclass
The :first-child pseudoclass is used to assign style definitions to the first-child element of a specific
element. You can use this pseudoclass to add more space or otherwise change the formatting of a first-
child element. For example, if you need to indent the first paragraph inside specific <div> elements, you
could use the following definition:

div > p:first-child { text-indent: 25px; }

This code results in only the first paragraph of all div elements being indented by 25px.

180

Chapter 13

16_588206 ch13.qxd 6/30/05 12:19 AM Page 180

The :lang Pseudoclass
The :lang pseudoclass is used to change elements according to the language being used for the docu-
ment. For example, the French language uses angle brackets (< and >) to offset quotes, while the English
language uses quote marks (“ and “). If you need to address this difference in a document (seen by both
French and English native readers), you could use a definition similar to the following:

/* Two levels of quotes for two languages */
.quote:lang(en) { quotes: ‘“‘ ‘“‘ “‘“ “‘“; }
.quote:lang(fr) { quotes: “«” “»” “<” “>”; }

/* Add quotes (before and after) to quote class */
.quote:before { content: open-quote; }
.quote:after { content: close-quote; }

The pseudoelements :before and :after are covered in the “Pseudoelements” section later in this
chapter.

The :lang selectors apply to all elements with a quote class within the document. The second two defi-
nitions in the preceding example add quote characters to any quote classed element.

Pseudoelements
Pseudoelements are another virtual construct to help apply styles dynamically to elements within a doc-
ument. For example, the :first-line pseudoelement applies a style to the first line of an element
dynamically — that is, as the first changes size (longer or shorter), the user agent adjusts the style cover-
age accordingly.

:first-line
The :first-line pseudoelement specifies a different set of property values for the first line of elements.
This is a powerful feature; as the browser window changes widths, the “first line” of an element can grow
or shrink accordingly, and the style is applied appropriately. This is illustrated in the following code and
in Figure 13-2, which shows two browser windows of different widths:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>First-line formatting</title>
<style type=”text/css”>

p:first-line { text-decoration: underline; }
p.noline:first-line { text-decoration: none; }

</style>
</head>
<body>
<h1>IN CONGRESS, July 4, 1776.</h1>
<p class=”noline”>The unanimous Declaration of the thirteen
United States of America,</p>

181

Style Definitions

16_588206 ch13.qxd 6/30/05 12:19 AM Page 181

<p>When in the Course of human events, it becomes necessary
for one people to dissolve the political bands which have
connected them with another, and to assume among the powers
of the earth, the separate and equal station to which
the Laws of Nature and of Nature’s God entitle them, a decent
respect to the opinions of mankind requires that they should
declare the causes which impel them to the separation.</p>

</body>
</html>

The preceding code example manages element formatting by exception. Most paragraphs in the docu-
ment should have their first line underlined. A universal selector is used to select all paragraph tags. A
different style, using a class selector (noline), is defined to select elements that have a class of
noline. Using this method, you only have to add class attributes to the exceptions (the minority)
instead of the rule (the majority).

Figure 13-2

182

Chapter 13

16_588206 ch13.qxd 6/30/05 12:19 AM Page 182

The :first-line pseudoelement has a limited range of properties it can affect. Only properties in the
following groups can be applied using :first-line:

❑ Font properties

❑ Color properties

❑ Background properties

❑ word-spacing

❑ letter-spacing

❑ text-decoration

❑ vertical-align

❑ text-transform

❑ line-height

❑ text-shadow

❑ clear

:first-letter
The :first-letter pseudoelement is used to affect the properties of the first letter of an element. This
selector can be used to achieve typographic effects such as drop caps, as illustrated in the following code
and Figure 13-3:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>Drop cap formatting</title>
<style type=”text/css”>

p.dropcap:first-letter { font-size: 3em;
font-weight: bold; float: left;
border: solid 1px black; padding: .1em;
margin: .2em .2em 0 0; }

</style>
</head>
<body>
<h1>IN CONGRESS, July 4, 1776.</h1>
<p>The unanimous Declaration of the
thirteen united States of America,</p>
<p class=”dropcap”>When in the Course of human events,
it becomes necessary for one people to dissolve the political
bands which have connected them with another, and to assume
among the powers of the earth, the separate and equal station
to which the Laws of Nature and of Nature’s God entitle them,
a decent respect to the opinions of mankind requires that
they should declare the causes which impel them to the
separation.</p>
</body>
</html>

183

Style Definitions

16_588206 ch13.qxd 6/30/05 12:19 AM Page 183

Figure 13-3

:before and :after
The :before and :after pseudoelements are used to add additional text to specific elements. These
pseudoelements were used in the section “The :lang Pseudoclass” to add quote marks to the beginning
and ending of elements with a quote class:

.quote:before { content: ‘“‘; }

.quote:after { content: ‘“‘; }

Notice the use of the content property. This property assigns the actual value to content-generating
selectors. In this case, quote marks are assigned as the content to add before and after elements with a
quote class. The following code and Figure 13-4 illustrate how a supporting user agent (Opera, in this
case) generates content from the :before and :after pseudoelements:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>Auto-quote marks</title>
<style type=”text/css”>
.quote:before { content: ‘“‘; }
.quote:after { content: ‘“‘; }
</style>

</head>
<body>
<p class=”quote”>When in the Course of human events, it becomes necessary for
one people to dissolve the political bands which have connected them with another,
and to assume among the powers of the earth, the separate and equal station to
which the Laws of Nature and of Nature’s God entitle them, a decent respect to the

184

Chapter 13

16_588206 ch13.qxd 6/30/05 12:19 AM Page 184

opinions of mankind requires that they should declare the causes which impel them
to the separation.</p>
</body>
</html>

Figure 13-4

Generated content breaks the division of content and presentation. However, adding presentation con-
tent is sometimes necessary to enhance the content being presented. Besides adding elements such as
quote marks, you can also create counters for custom numbered lists and other more powerful features.

Additional content-generating methods are covered in Chapter 14.

Shor thand Expressions
CSS supports many properties for formatting control over elements. For example, the following proper-
ties all apply to borders:

❑ border

❑ border-collapse

❑ border-spacing

❑ border-top

❑ border-right

❑ border-bottom

❑ border-left

❑ border-color

185

Style Definitions

16_588206 ch13.qxd 6/30/05 12:19 AM Page 185

❑ border-top-color

❑ border-right-color

❑ border-bottom-color

❑ border-left-color

❑ border-style

❑ border-top-style

❑ border-right-style

❑ border-bottom-style

❑ border-left-style

❑ border-width

❑ border-top-width

❑ border-right-width

❑ border-bottom-width

❑ border-left-width

Several of these properties can be used to set multiple properties within the same definition. For example,
to set an element’s border, you could use code similar to the following:

p.bordered {
border-top-width: 1px;
border-top-style: solid;
border-top-color: black;

border-right-width: 2px;
border-right-style: dashed;
border-right-color: red;

border-bottom-width: 1px;
border-bottom-style: solid;
border-bottom-color: black;

border-left-width: 2px;
border-left-style: dashed;
border-left-color: red;

}

Alternately, you could use the shorthand property border-side to shorten this definition considerably:

p.bordered {
border-top: 1px solid black;
border-right: 2px dashed red;
border-bottom: 1px solid black;
border-left: 2px dashed red;

}

186

Chapter 13

16_588206 ch13.qxd 6/30/05 12:19 AM Page 186

This definition could be further simplified by use of the border property, which sets all sides of an ele-
ment to the same values:

p.bordered {
border: 1px solid black;
border-right: 2px dashed red;
border-left: 2px dashed red;

}

This code first sets all sides to the same values and then sets the exceptions (right and left borders).

As with all things code, avoid being overly ingenious when defining your styles. Doing so will dramati-
cally decrease the legibility of your code.

Summary
This chapter taught you the basics of defining styles — from formatting and using the various selector
methods to formatting property declarations and setting their values. You also learned about special
pseudoclasses and elements that can make your definitions more dynamic. The next series of chapters
in this part delve into specific style use — for text, borders, tables, and more.

187

Style Definitions

16_588206 ch13.qxd 6/30/05 12:19 AM Page 187

16_588206 ch13.qxd 6/30/05 12:19 AM Page 188

Text
Although the Web is rife with multimedia of all types, plain text is still the main medium used to
convey messages across the Internet. As with other elements, CSS provides many properties for
controlling how your text is rendered in your document, including alignment, letter and word
spacing, white-space control, and even the font itself. This chapter covers how to use CSS to for-
mat text in your documents.

Aligning Text
Multiple properties in CSS can be used to align text, both horizontally and vertically. This section
covers the various properties used to align text to other elements around it.

Horizontal Alignment
The text-align property can be used to align text horizontally using four different values/styles:
left (default), right, center, and full. Consider the following code and the results shown in Figure 14-1:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<style type=”text/css”>
p { border: thin solid black; padding: 10px; }
p.left { text-align: left; }
p.right { text-align: right; }
p.center { text-align: center; }
p.full { text-align: justify; }

</style>
</head>
<body>
<h2>Left Aligned (default)</h2>
<p class=”left”>Lorem ipsum dolor sit amet, consectetuer adipiscing elit,
sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat
volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper

17_588206 ch14.qxd 6/30/05 12:23 AM Page 189

suscipit lobortis nisl ut aliquip ex ea commodo consequat.</p>
<h2>Right Aligned</h2>
<p class=”right”>Lorem ipsum dolor sit amet, consectetuer adipiscing elit,
sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat
volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper
suscipit lobortis nisl ut aliquip ex ea commodo consequat.</p>
<h2>Center Aligned</h2>
<p class=”center”>Lorem ipsum dolor sit amet, consectetuer adipiscing elit,
sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat
volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper
suscipit lobortis nisl ut aliquip ex ea commodo consequat.</p>
<h2>Fully Aligned</h2>
<p class=”full”>Lorem ipsum dolor sit amet, consectetuer adipiscing elit,
sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat
volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper
suscipit lobortis nisl ut aliquip ex ea commodo consequat.</p>
</body>
</html>

Figure 14-1

190

Chapter 14

17_588206 ch14.qxd 6/30/05 12:23 AM Page 190

Note that justification is specified by how the text aligns to a specific margin. For example, left-aligned
text aligns against the left margin while right-aligned text aligns to the right margin. Any side of the text
not justified remains ragged.

You can also use the text-align property to align columns of text on a specific character, for example,
monetary amounts aligned to a decimal point. The following code causes the numbers in the Amount
Due column to align on their decimal points:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>Decimal Justification</title>
<style type=”text/css”>

td.dec { text-align: “.”; }
</style>

</head>
<body>
<p>

<table border=”1”>
<tr>

<th>Customer</th>
<th>Amount Due</th>

</tr>
<tr>

<td>Acme Industries</td>
<td class=”dec”>$50.95</td>

</tr>
<tr>

<td>RHI LLC</td>
<td class=”dec”>$2084.56</td>

</tr>
<tr>

<td>EMrUs</td>
<td class=”dec”>$0.55</td>

</tr>
</table>

</p>
</body>
</html>

This use of text-align (character alignment) is not well supported in today’s browsers. As such, you
should avoid depending on it.

Vertical Alignment
The vertical-align property can be used to align text on the vertical axis. The vertical-align
property supports the values shown in the following table.

191

Text

17_588206 ch14.qxd 6/30/05 12:23 AM Page 191

Value Effect

baseline The default vertical alignment; this value aligns the text’s baseline to other
objects around it.

bottom Causes the bottom of the element’s bounding box to be aligned with the
bottom of the element’s parent bounding box.

length Causes the element to ascend (positive value) or descend (negative value) by
the value specified.

middle Causes the text to be aligned using the middle of the text and the midline of
objects around it.

percentage Causes the element to ascend (positive value) or descend (negative value) by
the percentage specified. (The percentage is computed from the line height
of the element.)

sub Causes the text to descend to the level appropriate for subscripted text, based
on its parent’s font size and line height. (Has no effect on the actual size of the
text, only the position of the element.)

super Causes the text to ascend to the level appropriate for superscripted text, based
on its parent’s font size and line height. (Has no effect on the actual size of the
text, only the position of the element.)

text-bottom Causes the bottom of the element’s bounding box to be aligned with the
bottom of the element’s parent text.

text-top Causes the top of the element’s bounding box to be aligned with the top of the
element’s parent text.

top Causes the top of the element’s bounding box to be aligned with the top of the
element’s parent bounding box.

The following code and Figure 14-2 illustrate the effect of each vertical-align value:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>Vertical Text Alignment</title>
<style type=”text/css”>

.baseline { vertical-align: baseline; }

.sub { vertical-align: sub; }

.super { vertical-align: super; }

.top { vertical-align: top; }

.text-top { vertical-align: text-top; }

.middle { vertical-align: middle; }

.bottom { vertical-align: bottom; }

.text-bottom { vertical-align: text-bottom; }

.length { vertical-align: .5em; }

.percentage { vertical-align: -50%; }

192

Chapter 14

17_588206 ch14.qxd 6/30/05 12:23 AM Page 192

/* All elements get a border */
body * { border: 1px solid black; }
/* Reduce the spans’ font by 50% */
p * { font-size: 50%; }

</style>
</head>
<body>

<p>Baseline: Parent
aligned text text</p>

<p>Sub: Parent
aligned text text</p>

<p>Super: Parent
aligned text text</p>

<p>Top: Parent
aligned text text</p>

<p>Text-top Parent
aligned text text</p>

<p>Middle: Parent
aligned text text</p>

<p>Bottom: Parent
aligned text text</p>

<p>Text-bottom: Parent
aligned text text</p>

<p>Length: Parent
aligned text text</p>

<p>Percentage: Parent
aligned text text</p>

</body>
</html>

Figure 14-2

193

Text

17_588206 ch14.qxd 6/30/05 12:23 AM Page 193

Text isn’t the only type of element that you can affect with the vertical-align property. For example,
note the document displayed in Figure 14-3; the sphere image has its vertical-align property set to
middle. Note how the image and the text are aligned on their vertical midpoints.

Figure 14-3

Indenting Text
The text-indent property can be used to indent the first line of an element. For example, to indent the
first line of a paragraph by 5 percent of its overall width, you could use code similar to the following
(whose results are shown in Figure 14-4):

<p style=”text-indent: 5%;”>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat
volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper
suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum
iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum
dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim
qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla
acilisi.</p>

The text-indent property indents only the first line of the element to which it is applied. If you want
to indent the entire element, use the margin property instead. The margin property is discussed in
Chapter 15.

194

Chapter 14

17_588206 ch14.qxd 6/30/05 12:23 AM Page 194

Figure 14-4

You can use any of the valid property value metrics in defining the value of the indentation. Note that
the user agent’s window size can play a significant role in the size of the actual indent if you use values
computed from the containing block (percentages, em, and so on).

Possible metrics for CSS properties were covered in the “Property Values” section of Chapter 12.

Controlling White Space
Typically, you won’t concern yourself over how white space is rendered in documents. However, there
are times when you will need finer control over how a user agent pads elements or converts white space.

Floating Objects
Allowing elements to float in your documents can make them seem more dynamic. Floating elements
float against a margin, allowing other elements to flow around them. For example, consider the follow-
ing code and the results shown in Figure 14-5:

<p>Floating Image

 Lorem ipsum
dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod
tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex
ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate
velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero
eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril
delenit augue duis dolore te feugait nulla facilisi.</p>

195

Text

17_588206 ch14.qxd 6/30/05 12:23 AM Page 195

<p>Non-Floating Image

 Lorem ipsum
dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod
tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex
ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate
velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero
eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril
delenit augue duis dolore te feugait nulla facilisi.</p>
<p>

Figure 14-5

Floating images ignore the normal flow of the document, sticking to the margin closest to their location and
allowing items to flow around them. You can set an element’s float property to right, left, or none.

However, there are times when you might not want an element to flow around a floating element. For
example, headings look odd when floated away from their home margin, as shown in Figure 14-6.

When you don’t want an element to flow around floating elements, you should set its clear property.
The clear property has four possible values: none (default), right, left, or both. This property makes
sure that the specified side (or sides, if set to both) is clear of floated elements before the element is
placed. For example, adding this style to the example shown in Figure 14-6 ensures that both sides of all
headings are clear and results in the appearance shown in Figure 14-7 (the heading isn’t placed until the
left margin is clear):

h1, h2, h3, h4, h5, h6 { clear: both; }

196

Chapter 14

17_588206 ch14.qxd 6/30/05 12:23 AM Page 196

Figure 14-6

Figure 14-7

197

Text

17_588206 ch14.qxd 6/30/05 12:23 AM Page 197

The white-space Property
You might occasionally want to preserve particular white space in a document. You have seen how the
preformatted (<pre>) tag can be used to do this, but sometimes you might prefer to format the text with
another tag instead and still preserve the white space.

The white-space property supports the following values:

❑ normal

❑ nowrap

❑ pre

The default value, none, allows the user agent to compress white space normally. Using the pre value
causes the text to be formatted as preformatted text, preserving all the white space in the element. The
nowrap value results in the element not wrapping at the border of the user agent’s screen — the text con-
tinues on the current line until the next line break. Most user agents will add horizontal scroll bars to
allow the user to scroll such content.

For example, the following paragraph will be rendered as is, with all its superfluous white space intact,
but otherwise will inherit the formatting of the paragraph element (<p>):

<p style=”white-space: pre;”>Lorem ipsum

dolor sit amet,
consectetuer adipiscing

elit, sed diam nonummy nibh euismod tincidunt
ut laoreet dolore magna aliquam
erat volutpat.</p>

Letter and Word Spacing
The letter-spacing and word-spacing properties can be used to control an element’s letter spacing
and word spacing, respectively. Both properties take absolute or relative values — positive values add
space; negative values remove space.

For example, consider the following code and output shown in Figure 14-8, which illustrates three dif-
ferent letter-spacing values:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>Letter Spacing</title>
<style type=”text/css”>

.normal { letter-spacing: normal; }

.tight { letter-spacing: -.2em; }

.loose { letter-spacing: .2em; }
</style>

</head>
<body>

198

Chapter 14

17_588206 ch14.qxd 6/30/05 12:23 AM Page 198

<h3>Normal</h3>
<p class=”normal”>Lorem ipsum dolor sit amet, consectetuer
adipiscing elit, sed diam nonummy nibh euismod tincidunt
ut laoreet dolore magna aliquam erat volutpat. Ut wisi
enim ad minim veniam, quis nostrud exerci tation
ullamcorper suscipit obortis nisl ut aliquip ex ea commodo
consequat.</p>
<h3>Tight</h3>
<p class=”tight”>Lorem ipsum dolor sit amet, consectetuer
adipiscing elit, sed diam nonummy nibh euismod tincidunt
ut laoreet dolore magna aliquam erat volutpat. Ut wisi
enim ad minim veniam, quis nostrud exerci tation
ullamcorper suscipit obortis nisl ut aliquip ex ea commodo
consequat.</p>
<h3>Loose</h3>
<p class=”loose”>Lorem ipsum dolor sit amet, consectetuer
adipiscing elit, sed diam nonummy nibh euismod tincidunt
ut laoreet dolore magna aliquam erat volutpat. Ut wisi
enim ad minim veniam, quis nostrud exerci tation
ullamcorper suscipit obortis nisl ut aliquip ex ea commodo
consequat.</p>

</body>
</html>

Figure 14-8

Note that the user agent can govern how much letter spacing is allowed to change. Also, changing the
spacing by too drastic a value (as in the tight paragraph in Figure 14-8) can have unpredictable results.

The word-spacing property behaves exactly like the letter-spacing property, except that it controls
spacing between words.

199

Text

17_588206 ch14.qxd 6/30/05 12:23 AM Page 199

Capitalization
The text-transform property can be used to force particular capitalization on elements. This property
has four possible values:

❑ none (default)

❑ capitalize

❑ uppercase

❑ lowercase

Setting the appropriate value will force the user agent to render the text (if possible) using that setting.
For example, you may want all your headings in title case (as in this book, where most words begin with
a capital letter). To do so, you could use a style similar to the following:

h1, h2, h3, h4, h5, h6 { text-transform: capitalize; }

This won’t quite have the desired effect, as conjunctions (and, or, and so on) and other words not com-
monly capitalized in initial-caps schemes will still be capitalized.

Text Decorations
You can add additional text effects with the text-decoration and text-shadow properties.

The text-decoration property has five possible values:

❑ none (default)

❑ underline

❑ overline

❑ line-through

❑ blink

This property’s use is straightforward, as shown in this style code example:

<p style=”text-decoration: none;”>No Decoration</p>
<p style=”text-decoration: underline;”>Underlined</p>
<p style=”text-decoration: overline;”>Overlined</p>
<p style=”text-decoration: line-through;”>Line Through</p>
<p style=”text-decoration: blink;”>Blink</p>

However, the use of this property isn’t recommended. Blinking text has never had a welcome place on
the Web, underlined text can be confused with links, and the delete tag () should be used to gener-
ate strikethrough text.

200

Chapter 14

17_588206 ch14.qxd 6/30/05 12:23 AM Page 200

The advice to use a specific tag (namely,) for formatting seems contrary to what we preach about
styles — that is, use styles instead of dedicated tags. However, in this case, the recommendation is made
because of the meaning of the tag, namely deletion, instead of its ornamentation function (strikethrough).
The same way you would use <emphasis> instead of when you wanted text to be emphasized (but
not necessarily bold), you would use to indicate that text is to be deleted, not just decorated in
strikethrough. The advantage in this case is that the user agent could be configured not even to show text
contained in tags.

The text-shadow property, used to provide a drop shadow on affected text, is more complex than most
properties discussed in this chapter, having the following syntax:

text-shadow: “[color] horizontal-distance vertical-distance [blur]”

At its most basic, the text-shadow property takes two distance arguments: one vertical, the other hori-
zontal. Positive values will place the shadow down and to the right, negative values will place the
shadow up and to the left. The color value sets the color for the shadow, and the blur value specifies
the area of effect. You can also use multiple definitions to spawn multiple shadows of the same element.
When using multiple definitions, you should separate them with a comma.

For example, consider the following code, which defines a shadow above and to the right (2em, -2em) of
the heading and another lighter shadow directly underneath the text:

<h1 style=”text-shadow: #666666 2em -2em, #AAAAAA 0em 0em 1.5em;”>A Drop
Shadow Heading</h1>

Most user agents do not support the text-shadow property. If you desire this effect, you would be better
off creating it in graphic image form.

Formatting Lists
Chapter 4 of this book covered XHTML lists, both of the ordered (or numbered) and unordered (or bul-
leted) variety. You learned how to embed list items () in both list types to construct lists. Using CSS,
you can be much more creative with your lists, as this section will quickly demonstrate.

Any Element Can Be a List Item
CSS lists don’t need to use the standard list item () tags. CSS supports the list-item value of the
display property, which, in effect, makes any element a list item. The tag is a list item by default.

There is a list-style shortcut property that you can use to set list properties with one value assign-
ment. You can use the list-style property to define the other list properties, as follows:

list-style: <list-style-type> <list-style-position> <list-style-image>

To create a new list item, you can define a class as a list item:

.item { display: list-item; }

201

Text

17_588206 ch14.qxd 6/30/05 12:24 AM Page 201

Then you can use that class to declare elements as list items:

<p class=”item”>This is now a list item, not just a normal paragraph.</p>

As you read through the rest of this section, keep in mind that the list properties can apply to any ele-
ment defined as a list-item.

Both bullets and numbers that precede list items are known as markers. Markers have additional value
with CSS, as shown in the “Generated Content” section later in this chapter.

The list-style-type Property
The list-style-type property sets the type of the list and, therefore, what marker(s) are used with
each item (bullet, number, Roman numeral, and so on).

The list-style-type property can have the following values:

❑ armenian

❑ circle

❑ cjk-ideographic

❑ decimal

❑ decimal-leading-zero

❑ disc

❑ georgian

❑ hebrew

❑ hiragana

❑ hiragana-iroha

❑ katakana

❑ katakana-iroha

❑ lower-alpha

❑ lower-greek

❑ lower-latin

❑ lower-roman

❑ none (default)

❑ square

❑ upper-alpha

❑ upper-latin

❑ upper-roman

202

Chapter 14

17_588206 ch14.qxd 6/30/05 12:24 AM Page 202

Setting the style provides a list with appropriate item identifiers. For example, consider this code and the
output shown immediately after:

HTML Code:

<ol style=”list-style-type:lower-roman;”>
A Roman Numeral List
Step 1
Step 2
Step 3

Output:

A Roman Numeral List
i. Step 1

ii. Step 2
iii. Step 3

You can also use the none value of list-style-type to suppress bullets or numbers for individual
items. However, this does not change the number of those items; the numbers are just not displayed.
For example, consider the following revised code and output:

HTML Code:

<ol style=”list-style-type:lower-roman;”>
A Roman Numeral List
Step 1
<li style=”list-style-type:none;”>Step 2
Step 3

Output:

A Roman Numeral List
i. Step 1

Step 2
iii. Step 3

Note that the third item is still number 3 (Roman iii), despite the fact that the number for item 2 is
suppressed.

Positioning of Markers
The list-style-position property sets the position of the marker in relation to the list item. The
valid values for this property are inside or outside. The outside value is the more typical list style;
the marker is offset from the list item, and the entire text of the item is indented. The inside value sets
the list to a more compact style; the marker is indented with the first line of the item. Figure 14-9 shows
an example of both list marker positions:

203

Text

17_588206 ch14.qxd 6/30/05 12:24 AM Page 203

Figure 14-9

To set the marker position for an entire list, use the list-style-position property in the list ele-
ment (or) instead of in the list item element.

Images as List Markers
Images can also be used as list markers by using the list-style-image property. The image to use is
specified with the url construct. For example, the following code references sphere.jpg and cone.jpg
as images to use in the list.

<li style=”list-style-image: url(sphere.jpg)”>
Lorem ipsum dolor sit amet, consectetuer
adipiscing elit, sed diam nonummy nibh euismod tincidunt
ut laoreet dolore magna aliquam erat volutpat.
<li style=”list-style-image: url(cone.jpg)”>
Lorem ipsum dolor sit amet, consectetuer
adipiscing elit, sed diam nonummy nibh euismod tincidunt
ut laoreet dolore magna aliquam erat volutpat.

Note that you can use any URL-accessible image with the list-style-image property. Remember to
use images sized appropriately for your lists.

204

Chapter 14

17_588206 ch14.qxd 6/30/05 12:24 AM Page 204

Autogenerating Text
One of the strengths of CSS is its ability to generate additional text, not just format existing text. You saw
how the :before and :after pseudoelements could be used to add text in Chapter 13. This section
expands on the autogenerated text mechanisms.

Many user agents do not support generated content.

Define and Display Quotation Marks
The autogeneration features of CSS can be used to both define and display quotation marks. First, you
need to define appropriate quote marks, and then you can add them to elements.

The quotes property takes a list of arguments in string format to use for the open and close quotes at
multiple levels. This property has the following form:

quotes: <open_first_level> <close_first_level>
<open_second_level> <close_second_level> ... ;

The standard definition for most English uses (double quotes on first level, single quotes on second
level) is as follows:

quotes: ‘“‘ ‘“‘ “‘“ “‘“;

The opposite quote type is used to encapsulate each quote character (single quote enclosing double and
vice versa).

Once you define the quotes, you can use them along with the :before and :after pseudoelements, as
in the following example:

blockquote:before { content: open-quote; }
blockquote:after { content: close-quote; }

The open-quote and close-quote words are mnemonics for the values set in the quotes property.
The content property also accepts string values, so you can use almost anything for its value.

Automatic Numbering
The content property can also be used to automatically generate numbers, which, in turn, can be used
to automatically number elements. The advantage to using automatic counters over standard list num-
bering comes in the form of flexibility, enabling you to start at an arbitrary number, combine numbers
(for example, 1.1), and so on.

As with all generated content, most user agents do not support counters.

205

Text

17_588206 ch14.qxd 6/30/05 12:24 AM Page 205

The counter Object
A special counter object is used to hold the actual counter value. This object’s value can be incremented
and reset by other style operations. The counter object has the following syntax when used with the
content property:

content: counter(counter_name);

This places the current value of the counter specified in the content object. For example, the following
style definition will cause the user agent to display “Chapter” and the current value of the counter
named chapter_num at the beginning of each <h1> element:

h1:before { content: “Chapter “ counter(chapter_num) “ “; }

Of course, it’s of no use to always assign the same number to the element. The counter-increment and
counter-reset objects are used to change the value of the counter.

Changing a Counter’s Value
The counter-increment property is used to increment a counter. It has the following syntax:

counter-increment: counter_name [increment_value];

If the increment value is not specified, the counter is incremented by 1. You can increment several coun-
ters with the same statement by specifying the additional counters after the first, separated by spaces.
For example, to increment the chapter and section counters each by 2, you could use the following:

counter-increment: chapter 2 section 2;

You can also specify negative numbers to decrement the counter(s). To decrement the chapter counter
by 1, you could use the following:

counter-increment: chapter -1;

The other method for changing a counter’s value is to use the counter-reset property. This property
resets the counter to 0 or a number expressly specified with the property. The counter-reset property
has the following format:

counter-reset: counter_name [value];

For example, to reset the chapter counter to 1, you could use this definition:

counter-reset: chapter 1;

You can reset multiple counters with the same property by specifying all the counters on the same line,
separated by spaces.

If a counter is used and incremented or reset in the same context (in the same definition), the counter is
first incremented or reset before being used. For example, the following code will not use the value of

206

Chapter 14

17_588206 ch14.qxd 6/30/05 12:24 AM Page 206

the chapter counter before the heading; it will increment the counter and use the incremented value
despite the fact that the content property comes before the counter-increment property:

h1:before {content: “Chapter “ counter(chapter) “: “;
counter-increment: chapter; }

Autonumbering Examples
Using counters, you can easily implement autonumbering schemes for many things. This section shows
two examples — one for chapters and sections, the other for lists.

207

Text

Example: Chapter and Section Numbers

To implement this autonumbering, use <h1> elements for chapter titles and <h2> elements for
sections. You will use two counters: chapter and section, respectively.

First, set up your chapter heading definition, as follows:

h1:before {content: “Chapter “ counter(chapter) “: “;
counter-increment: chapter;
counter-reset: section; }

This definition will display “Chapter chapter_num:” before the text in each <h1> element. The
chapter counter is incremented and the section counter is reset for each <h1> element.

The next step is to set up the section numbering, which is similar to the chapter numbering:

h2:before {content: “Section “ counter(chapter) “.”
counter(section) “: “;
counter-increment: section;

Now the styles are complete.

Source
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>
<head>

<title>Chapter Auto-Numbering</title>
<style type=”text/css”>

h1:before {content: “Chapter “ counter(chapter) “: “;
counter-increment: chapter;
counter-reset: section; }

h2:before {content: “Section “ counter(chapter) “.”
counter(section) “: “;
counter-increment: section; }

</style>
</head>
<body>

17_588206 ch14.qxd 6/30/05 12:24 AM Page 207

208

Chapter 14

<h1>First Chapter</h1>
<h2>Section Name</h2>
<h2>Section Name</h2>

<h1>Second Chapter</h1>
<h2>Section Name</h2>

<h1>Third Chapter</h1>
</body>
</html>

Output
The code results in the output shown in Figure 14-10.

Figure 14-10

In this example, starting both counters at 0 is ideal. However, if you needed to start the counters at
another value, the resets should be attached to a higher tag in the document hierarchy (such as <body>):

body:before {counter-reset: chapter 12 section 10;}

Example: Custom List Numbering

You can use a similar construct for custom list numbering.

Source
For example, consider the following code, which starts numbering the list at 30:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>

17_588206 ch14.qxd 6/30/05 12:24 AM Page 208

209

Text

<head>
<title>List Auto-Number</title>
<style type=”text/css”>

li:before {content: counter(list) “: “;
counter-increment: list; }

</style>
</head>
<body>

<ol style=”counter-reset: list 29;
list-style-type:none;”>

First item
Second item
Third item

</body>
</html>

Output
The output of the preceding code appears in Figure 14-11.

Figure 14-11

You can use multiple instances of a counter in your documents, and each instance can operate inde-
pendently. The key is each counter’s scope: A counter’s scope is within the element that initialized
the counter with the first reset. In the list example, it is the tag. If you nested another
tag within the first, the nested list could have its own instance of the list counter.

17_588206 ch14.qxd 6/30/05 12:24 AM Page 209

Fonts
Fonts are stylized collections of letters and symbols. Different fonts can be used to convey different
information; specialized fonts can be used to provide special characters or symbols. Although fonts can
be quite different from each other, they share the same basic characteristics, as shown in Figure 14-12.

Figure 14-12

Fonts are mapped according to a system similar to ruled paper. The line that the characters or symbols
sit on is called the baseline. The distance between the baseline and the top of the highest characters (usu-
ally capital letters and lowercase letters such as l, f, or t) is known as the ascension. The distance between
the baseline and the lowest point of characters that dip below it (such as p, g, or q) is known as the
descension.

Vertical font measurements, such as line spacing or leading, are typically measured between the baselines
of text, at least as far as CSS is concerned.

Just as CSS offers many properties to control lines and paragraphs, it also offers many properties to con-
trol the font(s) of the text in your documents.

Font Selection
CSS supports five different font family types. These general types can be used to apprise a user agent of
the type of font face it should use. Those five families are as follows:

❑ Serif — Serif fonts have little ornamentation on each glyph (character — includes letters, numbers,
and symbols). Typically, serif fonts are used in body text; the finishing strokes, flared or tapering
ends, or serifed endings, make the lines of characters flow and tend to be easier on the eyes.

❑ Sans serif — These fonts are fairly plain, having little or no ornamentation on their glyphs. Sans
serif fonts are typically used for headings or other large areas of emphasis.

❑ Cursive — Cursive fonts are quite ornate, approximating cursive writing. Such fonts should be
used only in extreme cases where emphasis is on ornamentation rather than legibility.

❑ Fantasy — Fantasy fonts, much like cursive fonts, emphasize ornamentation over legibility.
Fantasy fonts come in many styles but still retain the basic shape of letters. Like cursive fonts,
fantasy fonts are generally used for logos and other ornamentation purposes where legibility is
secondary.

Font GlyphsBaseline

Ascent

Descent

210

Chapter 14

17_588206 ch14.qxd 6/30/05 12:24 AM Page 210

❑ Monospace — Monospace fonts come in serif and sans serif varieties but all share the same
attribute: all characters in the font have the same width. The effect is much like characters on a
text-based terminal or typewriter. Such fonts are generally used in code listings and other list-
ings approximating terminal output.

The font-family property defines the font or fonts that should be used for elements in the document.
This property has the following format:

font-family: [[<family-name> | <generic-family>],]
[<family-name> | <generic-family>] ;

For example, to select a sans serif font, you might use a definition similar to the following:

font-family: Verdana, Arial, Helvetica, Sans-Serif;

Note that this definition uses three family names (Verdana, Arial, Helvetica) and a generic family
name (Sans-Serif) for versatility. The definition instructs the user agent that the sans serif font
Verdana should be used. If it is unavailable, the Arial font (popular on Windows-based platforms)
should be used. If neither of those fonts is available, the Helvetica font should be used (popular on
Macintosh-based platforms and other PostScript systems). If none of the previously specified fonts are
available, the user agent should use its default sans serif font.

The preceding font-family definition is a good, universal sans serif font specification that can be used for
any platform. Likewise, the following definition can be used for a universal serif font specification:

font-family: Palatino, “Times New Roman”, “Times Roman”, Serif;

Note that the font-family definition doesn’t control the font variant (bold, italic, and so on) but the
font that should be used as the basis for fonts in the element where the font-family definition is
placed. Individual font variant tags and elements (, <i>, and so on) determine the variant of the font
used when such elements are encountered by the browser. If the base font cannot be used, one of the
variants (if any) of the definition is used in its stead.

Style definitions to set up a document in traditional serif font body text with sans serif font headings
would resemble the following:

body { font-family: Palatino, “Times New Roman”, “Times Roman”, Serif; }
h1, h2, h3, h4, h5, h6 {

font-family: Verdana, Arial, Helvetica, Sans-Serif;
font-weight: bold; }

Font Sizing
Two properties can be used to control font sizing: font-size and font-size-adjust. Both properties
can adjust a font absolutely or relative to the current font size. Possible value metrics are shown in the
following table:

211

Text

17_588206 ch14.qxd 6/30/05 12:24 AM Page 211

Metric Description

Absolute size keywords Keywords corresponding to user agent absolute font sizes. These
keywords include xx-small, x-small, small, medium, large,
x-large, and xx-large.

Relative size keywords Keywords corresponding to user agent relative font sizes. These
keywords include larger and smaller.

Length absolute An absolute value corresponding to a font size. Negative values
are not supported, but supported values include point sizes (for
example, 12pt) and optionally (though not as exact) other size
values such as pixels (for example, 10px).

Percentage relative A percentage corresponding to a percentage of the current font.
These values can be expressed in actual percentages (for example,
150%) or other relative metrics such as ems (for example, 1.5em).

Font Styling
Four properties can be used to affect font styling: font-style, font-variant, font-weight, and
font-stretch. The syntax of each is shown in the following listing:

font-style: normal | italic | oblique;

font-variant: normal | small-caps;

font-weight: normal | bold | bolder | lighter | 100 | 200 |
300 | 400 | 500 | 600 | 700 | 800 | 900;

font-stretch: normal | wider | narrower | ultra-condensed |
extra-condensed | condensed | semi-condensed | semi-expanded |
expanded | extra-expanded | ultra-expanded;

The font-style property is used to control the italic style of the text, while the font-weight property
is used to control the bold style of the text. The other two properties control other display attributes of
the font; font-variant controls whether the font is displayed in small caps, and font-stretch does
exactly what its name implies.

The various values for the font-weight property can be broken down as follows:

❑ 100-900— The darkness of the font, where 100 is the lightest and 900 the darkest. Various
numbers correspond to other values as described below.

❑ lighter— Specifies the next lightest setting for a font unless the font weight is already near the
weight value corresponding to 100, in which case, it stays at 100.

❑ normal— The normal darkness for the current font (corresponds to weight 400).

❑ bold— The darkness corresponding to the bold variety of the font (corresponds to weight 700).

❑ bolder— Specifies the next darkest setting for a font unless the font weight is already near the
weight value corresponding to 900, in which case, it stays at 900.

212

Chapter 14

17_588206 ch14.qxd 6/30/05 12:24 AM Page 212

The font-style and font-weight properties can be used to control a font’s bold and italic properties
without coding document text directly with italic (<i>) and bold () elements. For example, you
might define a bold variety of a style using definitions similar to the following:

p { font-family: Palatino, “Times New Roman”, “Times Roman”, Serif; }
p.bold { font-weight: bold; }

The bold class of the paragraph element inherits the base font from its parent, the paragraph element.
The font-weight property in the bold class of the paragraph element simply makes such styled ele-
ments render as a bold variety of the base font.

Line Spacing
The line-height property controls the line height of text. The line height is the distance between the
baselines of two vertically stacked lines of text. This value is also known as leading.

Refer back to Figure 14-12 for reference on the baseline of a font.

This property has the following syntax:

line-height: normal | <number> | <length> | <percentage>

This property sets the size of the surrounding box of the element for which it is applied. The normal
value sets the line height to the default size for the current font. Specifying a number (for example, 2)
causes the current line height to be multiplied by the number specified. Absolute lengths (for example,
1.2em) cause the line height to be set to that absolute value. A percentage value is handled like a number
value; the percentage is applied to the value of the current font.

For example, the following two definitions both set a class up to double-space text:

p.doublespace { line-height: 2; }
p.doublespace { line-height: 200%; }

Font Embedding
There are two technologies for providing fonts embedded into your documents. Embedding fonts allows
your readers to download the specific font to their local machine so that your documents use the exact
font you designate. Unfortunately, as with most progressive Web technologies, the market is split into
two distinct factions:

❑ OpenType is a standard developed by Microsoft and Adobe Systems. OpenType fonts, thanks to
the creators of the standard, share similar traits to PostScript and TrueType fonts used in other
publishing applications. Currently, only Internet Explorer supports OpenType.

❑ TrueDoc is a standard developed by Bitstream, a popular font manufacturer. Currently, only
Netscape-based browsers natively support TrueDoc fonts; however, Bitstream does make an
ActiveX control for support on Internet Explorer.

Even though a font is available for low cost or even for free, it doesn’t mean you can reuse it, especially
in a commercial application. When acquiring fonts for use on the Web, you need to ensure that you will
have the appropriate rights for the use you intend.

213

Text

17_588206 ch14.qxd 6/30/05 12:24 AM Page 213

To embed OpenType fonts in your document, you use an @font-face definition in the style section of
your document. The @font-face definition has the following syntax:

@font-face { font-definition }

The font-definition contains various information on the font, including stylistic information and the
path to the font file. This information is contained in typical style property: value form, similar to
the following:

@font-face {
font-family: Dax;
font-weight: bold;
src: url(‘http://www.example.com/fontdir/Dax.pfr’);

}

To embed TrueDoc fonts in your document, you use the link (<link>) tag in a format similar to the
following:

<link rel=”fontdef” src=”http://www.example.com/fontdir/Amelia.pfr”>

To use TrueDoc fonts in Internet Explorer, you also have to include the TrueDoc ActiveX control using
code similar to the following:

<script language=”JavaScript” src=”http://www.truedoc.com/activex/tdserver.js”>
</script>

Several fonts are available for use on the TrueDoc Web site. Visit www.truedoc.com for more
information.

Embedding fonts is not recommended for several reasons, including the following:

❑ The two standards make implementing embedded fonts difficult.

❑ Embedded fonts increase the download time of your document and increase the overall load on
the user agent (many of which won’t support the downloadable font).

❑ Embedded fonts decrease the flexibility of your documents, limiting how user agents can adjust
the display of text.

Instead, it is recommended that you stick to CSS definitions for specifying font attributes. If you know
your audience and their platform and you need your document to look exactly as you intend, investigate
embedded fonts.

Summary
This chapter introduced you to the various CSS properties and definitions used to control text in your
documents. You learned how to align text, control the spacing, and specify the font used. You also
learned about two different font technologies that enable you to embed specific fonts in your documents.

214

Chapter 14

17_588206 ch14.qxd 6/30/05 12:24 AM Page 214

Padding, Margins,
and Borders

All elements in an XHTML document can be formatted in a variety of ways using CSS. Previous
chapters in this part of the book covered the CSS basics — how to write a style definition and how
to apply it to various elements within your documents. This chapter begins coverage of the area
that surrounds elements and how it can be formatted, including customizing the space around an
element and giving it a border. Chapter 16 continues this discussion with colors and background
images.

Understanding the CSS Box
Formatting Model

Although it is not overtly obvious, all elements in an XHTML document are contained within a
box. That box has several properties — margins, padding, and borders — that can be configured to
help distinguish the enclosed element from nearby elements.

To illustrate this point, take a look at Figure 15-1. This figure shows a document that isn’t overtly
boxy.

18_588206 ch15.qxd 6/30/05 12:23 AM Page 215

Figure 15-1

The same document is shown in Figure 15-2, but a thin border has been added to all elements, courtesy
of the following style:

* { border: thin solid black; }

Note how all the XHTML elements in the document pick up the border in a rectangular box shape.

As previously mentioned in this part of the book, all elements have a margin, padding, and border prop-
erty. These properties control the space around the element’s contents and the elements around it. These
properties stack around elements, as shown in Figure 15-3.

216

Chapter 15

18_588206 ch15.qxd 6/30/05 12:23 AM Page 216

Figure 15-2

Figure 15-3

Element
Content

Padding

Border

Margin

217

Padding, Margins, and Borders

18_588206 ch15.qxd 6/30/05 12:23 AM Page 217

The element contents (text, image, and so on) are immediately surrounded by padding. The padding
defines the distance between the element’s contents and border.

The element’s border (if any) is drawn right outside the element’s padding.

The element’s margin surrounds the element’s border, or the space the border would occupy if no border
is defined. The margin defines the distance between the element and neighboring elements.

The next few sections cover these properties in more detail.

Element Padding
An element’s padding defines the space between the element and the space its border would occupy. This
space can be increased or decreased, or set to an absolute value, using the following padding properties:

❑ padding-top

❑ padding-right

❑ padding-left

❑ adding-bottom

❑ padding

The first four properties are predictable in their behavior; for example, padding-top will change the
padding on the top of the element, padding-right will change the padding on the right side of the ele-
ment, and so forth. The fifth property, padding, is a shortcut for all sides; its effect is determined by the
number of values provided, as explained in the following table.

Number of Values The Effect of the Values

One All sides are set to the value provided.

Two The top and bottom are set to the first value provided; the left and
right are set to the second value provided.

Three The top is set to the first value provided, the left and right are set to
the second value provided, and the bottom is set to the third value
provided.

Four The top is set to the first value provided, the right is set to the second
value provided, the bottom is set to the third value provided, and the
left is set to the fourth value provided. (In this case, the values are
applied in a clockwise order around the element, starting with the top.)

For example, the following style will set the top and bottom padding value to 5 pixels and the right and
left padding to 10 pixels:

padding: 5px 10px;

218

Chapter 15

18_588206 ch15.qxd 6/30/05 12:23 AM Page 218

Although changing an element’s padding value will change its distance from neighboring elements, you
should use an object’s margin property to increase or decrease the distance from neighboring elements.

Note, however, that an element’s background color extends to the edge of the element’s padding. Therefore,
increasing an element’s padding can extend the background away from an element. This is one reason to
use padding instead of margins to increase space around an element. For more information on back-
grounds, see Chapter 16.

As with all CSS properties, you can specify an absolute value (as in the preceding example) or a relative
value. When specifying a relative value, the value is applied to the size of the element’s content (such as
font size, and so on), not to the default value of the padding. For example, the following code would
define padding as two times the element’s font size:

padding: 200%;

Element Borders
Borders are among the most versatile CSS properties. As you saw in Figure 15-2, every element in an
XHTML document can have a border. However, that figure showed only one type of border, a single, thin,
black line around the entire element. Each side of an element can have a different border, all controlled by
CSS properties corresponding to width, style (solid, dashed, dotted, and so on), and color of the border.
The following sections detail how each of the respective CSS properties can be used to affect borders.

Border Width
The width of an element’s border can be specified using the border width properties, which include the
following:

❑ border-top-width

❑ border-right-width

❑ border-bottom-width

❑ border-left-width

❑ border-width

As with other properties that affect multiple sides of an element, there are border width properties for
each side and a shortcut property that can be used for all sides, border-width.

The border-width shortcut property accepts one to four values. The way the values are mapped to
the individual sides depends on the number of values specified. The rules for this behavior are the same
as those used for the padding property. See the “Element Padding” section earlier in this chapter for
the specific rules.

As with other properties, the width can be specified in absolutes or relative units. For example, the first
style in the following code example sets all of an element’s borders to 2 pixels wide. The second style
sets all of an element’s borders to 50 percent of the element’s size (generally font size):

219

Padding, Margins, and Borders

18_588206 ch15.qxd 6/30/05 12:23 AM Page 219

p.two-pixel { border-width: 2px; }

p.fifty-percent { border-width: 50%; }

You can also use keywords such as thin, medium, or thick to roughly indicate a border’s width. The
actual width used when the document is rendered is up to the user agent. However, if you want exact
control over a border’s width, you should specify it using absolute values.

Border Style
There are 10 different types of predefined border styles. These types are shown in Figure 15-4, generated
by the following code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>Border Types</title>
<style type=”text/css”>

p { font-size: 12pt; border-width: 6pt;
text-align: center; padding: 20px;
margin: 10px; font-weight: bold; }

</style>
</head>
<body>
<p>
<table width=”100%” cellspacing=”20px”>
<tr><td width=”50%”>

<p style=”border-style:none ;”>None & Hidden</p>
<p style=”border-style:dotted ;”>Dotted</p>
<p style=”border-style:dashed ;”>Dashed</p>
<p style=”border-style:solid ;”>Solid</p>
<p style=”border-style:double ;”>Double</p>

</td><td>
<p> </p>
<p style=”border-style:groove;”>Groove</p>
<p style=”border-style:ridge ;”>Ridge</p>
<p style=”border-style:inset;”>Inset</p>
<p style=”border-style:outset;”>Outset</p>
</td></tr>
</table>
</p>
</body>
</html>

The border type hidden is identical to the border type none, except that the border type hidden is
treated like a border for border conflict resolutions. Border conflicts happen when adjacent elements
share a common border (when there is no spacing between the elements). In most cases, the most eye-
catching border is used. However, if either conflicting element has the conflicting border set to hidden,
the border between the elements is unconditionally hidden.

220

Chapter 15

18_588206 ch15.qxd 6/30/05 12:23 AM Page 220

Figure 15-4

As with other properties of this type, there are several different border style properties:

❑ border-top-style

❑ border-right-style

❑ border-bottom-style

❑ border-left-style

❑ border-style

The first four properties affect the side for which they are named. The last, border-style, acts as a
shortcut for all sides, following the same rules as other shortcuts covered in this chapter. See the section
“Element Padding” for more information.

221

Padding, Margins, and Borders

18_588206 ch15.qxd 6/30/05 12:23 AM Page 221

Border Color
The border color properties allow you to set the color of the element’s visible border. As with the other
properties in this chapter, there are border color properties for each side of an element (border-top-
color, border-right-color, and so on) as well as a shortcut property (border-color) that can affect
all sides.

You can choose from three different methods to specify colors in the border colors properties:

❑ Color keywords —Black, white, maroon, and so on. Note that the exact color (mix of red,
green, and blue) is left up to the browser and its default colors. (See Appendix A for a list of
common color keywords.)

❑ Color hexadecimal values — Values specified in the form #rrggbb, where rrggbb is two digits
(in hexadecimal notation) for each of the colors red, green, and blue. For example, #FF0000
specifies red (255 red, 0 green, 0 blue) and #550055 specifies purple (equal parts of red and
blue, no green).

❑ Color decimal or percentage values — Values specified using the rgb() function. This function
takes three values, one each for red, green, and blue. The value can be an integer between 0 and
255 or a percentage. For example, the following specifies the color purple (equal parts red and
blue, no green) in integer form and then again in percentages:

rgb(100, 0, 100)
rgb(50%, 0, 50%)

Most graphic editing programs supply color values in multiple formats, including percentage
RGB values and perhaps even HTML-style hexadecimal format. Lynda Weinman’s site,
www.lynda.com, contains a multitude of information on Web colors, especially the following page:
http://www.lynda.com/hex.html.

The Border Property Shortcut
You can use the border property as a shortcut when specifying an element’s border properties. The
border property has the following syntax:

border: <border-width> <border-style> <border-color>;

For example, the following two styles set the same border for different paragraph styles:

p.one { border-width: thin;
border-style: solid;
border-color: black; }

p.two (border: thin solid black; }

222

Chapter 15

18_588206 ch15.qxd 6/30/05 12:23 AM Page 222

Border Spacing
Two additional border properties bear mentioning here, both of which are primarily used with tables:

❑ border-spacing— This property controls how the user agent renders the space between cells
in tables.

❑ border-collapse— This property selects the collapsed method of table borders.

These properties are covered in more depth along with other table properties in Chapter 17.

Element Margins
Margins are the space between an element’s border and neighboring elements. Margins are an important
property to consider and adjust as necessary within your documents. Most elements have suitable
default margins, but sometimes you will find it necessary to increase or decrease an element’s margin(s)
to suit your unique needs.

For example, consider the image and text shown in Figure 15-5, rendered using the following code:

<p>Text next
to an image using default margins</p>

Figure 15-5

Notice how the “T” in “Text” is almost touching the image next to it. In this case, an additional margin
would be welcome.

223

Padding, Margins, and Borders

18_588206 ch15.qxd 6/30/05 12:23 AM Page 223

As with other properties in this chapter, margin properties exist for each individual side (margin-top,
margin-left, and so on) as well as a shortcut property to set all sides at once (margin). As with the
other shortcut properties describe herein, the margin property accepts one to four values, and the num-
ber of values specified determines how the property is applied to an element. See the “Element
Padding” section earlier in this chapter for more information.

For example, you can increase the margins of the image in Figure 15-5 using a style similar to the
following:

border-right: 5px;

This would set the right border of the image (the edge next to the text) to 5 pixels. Likewise, you can
change all four margins using a shortcut such as the following:

border: 2px 4px 10px 4px;

There are no guidelines for which margins you should adjust on what elements. However, it’s usually
best to modify the least number of margins or to be consistent with which margins you do change.

Dynamic Outlines
Outlines are another layer that exists around an element to allow the user agent to highlight the element,
if necessary. This generally happens when a form element receives focus. The position of the outline can-
not be moved, but it can be influenced by the position of the element’s border. Note that outlines do not
occupy any space; the element occupies the same amount of space whether its outline is visible or not.

Figure 15-6 shows an example of a dynamic outline around the Phone label.

Figure 15-6

224

Chapter 15

18_588206 ch15.qxd 6/30/05 12:23 AM Page 224

Using CSS you can modify the look of outlines. However, unlike other properties covered in this chapter,
all sides of an outline must be the same. The CSS properties governing outlines include outline-color,
outline-style, outline-width, and the shorthand property outline. These properties operate
much like the other properties in this chapter, allowing the same values and having the same effects.
The format of the outline shortcut property is as follows:

outline: outline-color outline-style outline-width;

To use the outline properties dynamically, use the :focus and :active pseudoelements. These two
pseudoelements specify when an element’s outline should be visible — when it has focus or when it is
active. For example, the following definitions specify a thick green border when form elements have
focus and a thin blue border when they are active:

form *:focus { outline-width: thick; outline-color: green; }
form *:active { outline-width: thin; outline-color: blue; }

However, as of this writing, user agent support for outlines is very inconsistent, when it exists at all. If
you intend to use outlines in your documents, you should test your code extensively on all platforms
you expect your audience to use.

Summary
This chapter introduced you to the box model of CSS and how you can use various properties of an ele-
ment’s surrounding box to help format your documents. You learned how padding, borders, and margins
comprise a layered structure around an element and how each can be manipulated to change how ele-
ments render in the document. You learned about the extensive border options and finished with cover-
age of dynamic outlines. Chapter 16 covers the other customizable pieces of the box model, namely the
foreground and background, both colors and images.

225

Padding, Margins, and Borders

18_588206 ch15.qxd 6/30/05 12:23 AM Page 225

18_588206 ch15.qxd 6/30/05 12:23 AM Page 226

Colors and Backgrounds
In Chapter 15, you learned about the box-formatting model of CSS and how you can manipulate
an element’s containing box to format your XHTML documents. This chapter continues that dis-
cussion, teaching you about element foreground and background colors and using images for ele-
ment backgrounds.

Element Colors
Most elements in an XHTML document have two color properties: a foreground property and a
background property. Both of these properties can be controlled using CSS styles. The following
sections discuss both types of color properties.

Foreground Colors
The foreground color of an element is typically used as the visible portion of an element — in most
cases, the color of the font or other visible part of the element. You can control the foreground
color of an element using the CSS color property, which has the following format:

color: <color_value>;

As with other properties using color values, the value can be expressed using one of three methods:

❑ Predefined color names (such as blue, red, black, or green)

❑ Hexadecimal color values in #rrggbb form (#000000 for black, #FF0000 for red,
#FF00FF for dark purple, and so on)

❑ An RGB value using the rgb() function (rgb(100%,0,0) or rgb(255,0,0) for red)

More information on color values can be found in the “Border Color” section of Chapter 15.

19_588206 ch16.qxd 6/30/05 12:21 AM Page 227

For example, the following style defines a class of the paragraph element, which will be rendered with a
red font:

p.redtext { color: red; }

The following paragraph, when used with the preceding style, will be rendered with red text:

<p class=”redtext”>This paragraph is important, and as such, appears in
red text. Other paragraphs in this section that are less important, appear
in standard black text.</p>

As with all style properties, you are not limited to element-level definitions. As shown in the following
code, you can define a generic class that can be used with elements, spans, divisions, and more:

.redtext { color: red; }

When defining an element’s foreground color, you should pay attention to what that element’s back-
ground color will be, avoiding dark foregrounds on dark backgrounds and light foregrounds on light
backgrounds. However, matching foreground and background colors can have its uses — see the note
near the end of the following section for an example of this practice.

Keep in mind that the user settings of the user agent can affect the color of elements, as well. If you don’t
explicitly define an element’s color using appropriate styles, the user agent will use its default colors.

Background Colors
An element’s background color can be thought of as the color of the virtual page the element is rendered
upon. For example, consider Figure 16-1, which shows two paragraphs: the first is rendered against the
user agent’s default background (in this case, white) and the second against a light-gray background.

Figure 16-1

Saying that a document has a default color of white is incorrect. The document will have the color speci-
fied in the user agent’s settings if not otherwise instructed to change it.

228

Chapter 16

19_588206 ch16.qxd 6/30/05 12:21 AM Page 228

You can use the CSS background-color property to define a particular color that should be used for
an element’s background. The background-color property’s syntax is similar to other element color
properties:

background-color: <color_value>

For example, you could use this property to define a navy blue background for the entire document
(or at least its body section):

body { background-color: navy;
color: white; }

Note that this definition also sets a foreground color so that the default text will be visible against the
dark background.

Sometimes it can be advantageous to use similar foreground and background colors together. For exam-
ple, on a forum that pertains to movie reviews, users may wish to publish spoilers — pieces of the plot
that others may not wish to know prior to seeing the movie. On such a site, a style can be defined such
that the text cannot be viewed until it is selected in the user agent, as shown in Figure 16-2. The style
could be defined as follows:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>Spoiler Text</title>
<style type=”text/css”>

.spoiler { background-color: gray; color: gray; }
</style>

</head>
<body>
<p>I was surprised by the ending of <i>Titanic</i>: At
the end of the movie, the boat sinks.</p>
</body>
</html>

Figure 16-2

229

Colors and Backgrounds

19_588206 ch16.qxd 6/30/05 12:21 AM Page 229

Note that an element’s background extends to the end of its padding. If you want to enlarge the back-
ground of an element, expand its padding accordingly. For example, both paragraphs in Figure 16-3
have a lightly colored background. However, the second paragraph has had its padding expanded, as
laid out in the following code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>Expanding Backgrounds</title>
<style type=”text/css”>

p { background-color: #CCCCCC; }
p.larger-background { padding: 20px; }

</style>
</head>
<body>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed
diam nonummy nibh euismod tincidunt ut laoreet dolore magna
aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud
exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea
commodo consequat. Duis autem vel eum iriure dolor in hendrerit in
vulputate velit esse molestie consequat, vel illum dolore eu feugiat
nulla facilisis at vero eros et accumsan et iusto odio dignissim qui
blandit praesent luptatum zzril delenit augue duis dolore te feugait
nulla facilisi.</p>
<p class=”larger-background”>Lorem ipsum dolor sit amet, consectetuer
adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet
dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis
nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea
commodo consequat. Duis autem vel eum iriure dolor in hendrerit in
vulputate velit esse molestie consequat, vel illum dolore eu feugiat
nulla facilisis at vero eros et accumsan et iusto odio dignissim qui
blandit praesent luptatum zzril delenit augue duis dolore te feugait
nulla facilisi.</p>
</body>
</html>

Figure 16-3230

Chapter 16

19_588206 ch16.qxd 6/30/05 12:21 AM Page 230

Background Images
In addition to solid colors, you can specify that an element use an image as its background. To do so, you
use the background-image property. This property has the following syntax:

background-image: url(“<url_to_image>”);

For example, the following code results in the document rendered in Figure 16-4, where the paragraph is
rendered over a light gradient:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>Background Images</title>
<style type=”text/css”>

p { background-image: url(“gradient.gif”); }
</style>

</head>
<body>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed
diam nonummy nibh euismod tincidunt ut laoreet dolore magna
aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud
exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea
commodo consequat. Duis autem vel eum iriure dolor in hendrerit in
vulputate velit esse molestie consequat, vel illum dolore eu feugiat
nulla facilisis at vero eros et accumsan et iusto odio dignissim qui
blandit praesent luptatum zzril delenit augue duis dolore te feugait
nulla facilisi.</p>
<p>Background image:

</p>
</body>
</html>

Background images can be used for interesting effects, such as that shown in Figure 16-5, rendered from
the following code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>Text Frame</title>
<style type=”text/css”>

p.catborder { height: 135px; width: 336px;
background-image: url(“catframe.gif”);
padding: 80px 135px 18px 18px; }

</style>
</head>
<body>
<p class=”catborder”>Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed
diam nonummy nibh euismod tincidunt ut laoreet dolore magna
aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud
exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea
commodo consequat. </p>
<p>Background image:

231

Colors and Backgrounds

19_588206 ch16.qxd 6/30/05 12:21 AM Page 231

</p>
</body>
</html>

Note how the various sides of the paragraph were padded to ensure that the text appears in the correct
position relative to the background.

Figure 16-4

Repeating and Scrolling Images
Element background images tile themselves to fill the available space, as you saw in Figure 16-4, where
the gradient tiles horizontally to span the width of the paragraph. You can control the scrolling and
placement properties of a background image using the background-repeat and background-
attachment properties.

The background-repeat property has the following syntax:

background-repeat: repeat | repeat-x | repeat-y | no-repeat;

The background-attachment property has the following format:

background-attachment: scroll | fixed;

232

Chapter 16

19_588206 ch16.qxd 6/30/05 12:21 AM Page 232

Figure 16-5

Using the background-repeat property is straightforward — its values specify how the image repeats.
For example, to repeat our smiley face across the top of the paragraph, specify repeat-x, as shown in
the following definition code and Figure 16-6:

p.smiley { background-image: url(“smiley.gif”);
background-repeat: repeat-x;
/* Border to clarity paragraph size */
border: thin solid black; }

233

Colors and Backgrounds

19_588206 ch16.qxd 6/30/05 12:21 AM Page 233

Figure 16-6

Specifying repeat-y would repeat the image vertically instead of horizontally. If you specify just
repeat, the image tiles both horizontally and vertically. Specifying no-repeat will cause the image to
be placed once only, not repeating in either dimension.

The background-attachment property specifies how the background image is attached to the element.
Specifying scroll allows the image to scroll with the contents of the element, as shown with the second
paragraph in Figure 16-7. Both paragraphs were rendered with the following paragraph definition; the
second paragraph has been scrolled a bit, vertically shifting both text and image:

p.smileyscroll { height: 220px; width: 520px;
/* Scroll the element’s content */
overflow: scroll;
/* Define a background image and set

it to scroll */

234

Chapter 16

19_588206 ch16.qxd 6/30/05 12:21 AM Page 234

background-image: url(“smiley.gif”);
background-attachment: scroll;
/* Border for clarity only */
border: thin solid black; }

Figure 16-7

Specifying a value of fixed for the background-attachment property will fix the background image
in place, causing it not to scroll if/when the element’s content is scrolled. This value is particularly use-
ful for images used as the background for entire documents for a watermark effect.

The use of the overflow property in the code for Figure 16-7 controls what happens when an element’s
content is larger than its containing box. The scroll value enables scroll bars on the element so that the
user can scroll to see the entire content. The overflow property also supports the values visible
(which causes the element to be displayed in its entirety, despite its containing box size) and hidden
(which causes the portion of the element that overflows to be clipped and remain inaccessible to the user).

235

Colors and Backgrounds

19_588206 ch16.qxd 6/30/05 12:21 AM Page 235

Positioning Background Images
You can use the background-position property to control where an element’s background image is
placed in relation to the element’s containing box. The background-position property’s syntax isn’t as
straightforward as some of the other properties. This property has three different forms for its values:

❑ Two percentages are used to specify where the upper-left corner of the image should be placed
in relation to the element’s padding area.

❑ Two lengths (in inches, centimeters, pixels, em, and so on) specify where the upper-left corner of
the image should be placed in relation to the element’s padding area.

❑ Keywords specify absolute measures of the element’s padding area. The supported keywords
include top, left, right, bottom, and center.

No matter what format you use for the background-position values, the format is as follows:

background-position: <horizontal_value> <vertical_value>;

If only one value is given, it is used for the horizontal placement and the image is centered vertically.
The first two formats can be mixed together (for example, 10px 25%), but keywords cannot be mixed
with other values (for example, center 30% is invalid).

For example, to center a background image behind an element, you can use either of the following
definitions:

background-position: center center;

background-position: 50% 50%;

If you want to specify an absolute position behind the element, you can do so as well:

background-position: 10px 10px;

You can combine the background image properties to achieve diverse effects. For example, you can use
background-position to set an image to appear in the center of the element’s padding, and you can
specify background-attachment: fixed to keep it there. Furthermore, you could use background-
repeat to repeat the same image horizontally or vertically, creating striping behind the element.

Summary
This chapter completed the discussion of the CSS box-formatting model and how you can manipulate
the foreground and background of the containing box of elements. You learned about foreground and
background colors as well as how to use images as the background for elements. Chapter 17 covers
table-formatting properties, and the CSS coverage wraps up in Chapter 18 with an explanation of ele-
ment positioning.

236

Chapter 16

19_588206 ch16.qxd 6/30/05 12:21 AM Page 236

Tables
In Chapter 8, you learned about all the formatting attributes available for table elements in your
XHTML documents. It should come as no surprise that CSS has analogous properties to match
each of the table element attributes. However, the various CSS properties do not apply to tables
exactly like the element attributes. This chapter breaks down the CSS properties into their respec-
tive groups and shows you how to use them to format tables using CSS instead of tag attributes.

CSS Proper ties and Table Attributes
There are many CSS properties that can be used to control table attributes in your document. The
following table lists the basic properties available and how they correspond to table element
(<table>) attributes.

Purpose Table Attribute CSS Property(ies)

Borders border border properties

Spacing inside cell cellpadding padding properties

Spacing between cells cellspacing border-spacing

Width of table width width and table-layout properties

Table framing frame border properties

Alignment align, valign text-align, vertical-alignment
properties

Because many of the table element’s attributes have not been deprecated in XHTML, you may be
tempted to embed all of your document’s table formatting within individual table tags. Resist that
temptation. Using tag attributes increases the editing difficulty of the document — each table using
tag attributes instead of CSS properties must be edited individually. If you use CSS properties

20_588206 ch17.qxd 6/30/05 12:35 AM Page 237

instead, you can modify many tables by editing only one style (or a few styles). Furthermore, if you use
external style sheets, you can effect changes in multiple documents by editing only a few styles.

The next few sections detail the CSS properties for formatting tables.

Defining Borders
Tables use border properties to control the border of document tables and their subelements. For example,
to surround every table and their subelements with a single 1pt border, you could use a style definition
similar to the following:

/* Format for tables and their elements */
table, table * { border: 1pt solid black; }

The results of this definition can be seen on the table shown in Figure 17-1.

Figure 17-1

Note that the style specifies the table element (table) as well as its descendants (table *) to ensure that
the table itself as well as all of its subelements receive a border. You can define your selectors in creative
ways to create unique borders — placing one style around cells, another around the table, a third around
the caption, and so on.

To use CSS to create table borders similar to borders created with a border=”1” attribute, you can use
styles similar to those in the following code, whose results are shown in Figure 17-2:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>Table Borders</title>

238

Chapter 17

20_588206 ch17.qxd 6/30/05 12:35 AM Page 238

<style type=”text/css”>
/* More padding for legibility */
table td { padding: 5px; }
/* Formatting similar to border attribute */
table.attrib-similar { border: outset 1pt; }
table.attrib-similar td { border: inset 1pt; }

</style>
</head>
<body>
<p><table border=”1”>
<caption>border=”1” attribute</caption>
<tr><td>Cell 1</td><td>Cell 2</td><td>Cell 3</td></tr>
<tr><td>Cell 4</td><td>Cell 5</td><td>Cell 6</td></tr>
</table></p>

<p><table class=”attrib-similar”>
<caption>CSS styles</caption>
<tr><td>Cell 1</td><td>Cell 2</td><td>Cell 3</td></tr>
<tr><td>Cell 4</td><td>Cell 5</td><td>Cell 6</td></tr>
</table></p>
</body>
</html>

Figure 17-2

Border and Cell Spacing
To adjust the space around table borders, use the border-spacing and padding properties. The
border-spacing property adjusts the spacing between element borders much like the table element’s
cellspacing attribute. The padding properties adjust the space between the table elements’ contents
and the elements’ border, much like these properties do with other elements.

239

Tables

20_588206 ch17.qxd 6/30/05 12:35 AM Page 239

The border-spacing property has the following syntax:

border-spacing: horizontal_spacing vertical_spacing;

For example, the following definition will create more space between columns than between rows, as
shown in the table in Figure 17-3:

table, table * { padding: 5px;
border-collapse: separate;
border: thin solid black;
border-spacing: 5px 15px; }

Figure 17-3

The border-spacing property is not supported in current versions of Microsoft Internet Explorer.
Also note that this property works only in concert with the border-collapse property (described in
the next section) set to separate.

The table padding properties function exactly as they do with other elements. For example, to increase
the space between a table cell’s contents and its border, you could explicitly specify the padding value in
an appropriate style:

/* Add more interior space to table cells */
td.morespace { padding: 10px; }

For a full discussion of padding properties, see Chapter 15.

240

Chapter 17

20_588206 ch17.qxd 6/30/05 12:35 AM Page 240

Collapsing Borders
As you may have noticed, the default CSS border handling leaves spaces between the borders of adjacent
elements. For example, consider the table in Figure 17-4.

When you want adjacent elements to collapse their borders into one border, you enter the border-
collapse property, which has the following syntax:

border-collapse: separate | collapse;

The two values do what you would expect; separate causes the borders of each element to be rendered
separately, spaced according to the user agent default or the border-spacing property’s value, while
collapse causes adjacent elements to be separated by one border. The table in Figure 17-4 is identical
to the table in Figure 17-3 except that the border-collapse property has been set to collapse, as
demonstrated in the following code:

table, table * { padding: 5px;
border-collapse: collapse;
border: thin solid black;
border-spacing: 5px 15px; }

Figure 17-4

Notice how setting border-collapse to collapse causes the user agent to ignore the border-spacing
property.

241

Tables

20_588206 ch17.qxd 6/30/05 12:35 AM Page 241

When two adjacent elements have different borders, it is up to the user agent to decide which border to
render when the borders are collapsed. Typically, the most ornate border is chosen. For example, consider
the following code and the results shown in Figure 17-5:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>Border Collapse</title>
<style type=”text/css”>

table { width: 400px; }
table.one, table.one td { border: solid 2pt black; border-collapse: separate;

}
table.one th { border: inset 3pt; }

table.two, table.two td { border: solid 2pt black; border-collapse: collapse;
}

table.two th { border: inset 3pt; }

</style>
</head>
<body>
<p><pre>

table, table td { border: solid 2pt black;
border-collapse: separate; }

table th { border: inset 3pt; }
</pre></p>
<p>
<table class=”one”>

<tr><th>Employee</th><th>Start Date</th><th>Next Review</th></tr>
<tr><td>Vicki S.</td><td>2/15/04</td><td>2/28/04</td></tr>
<tr><td>Teresa M.</td><td>11/15/03</td><td>3/31/04</td></tr>
<tr><td>Tamara D.</td><td>8/25/02</td><td>n/a</td></tr>
<tr><td>Steve H.</td><td>11/02/00</td><td>3/31/04</td></tr>

</table>
</p>

<p><pre>
table, table td { border: solid 2pt black;

border-collapse: collapse; }
table th { border: inset 3pt; }

</pre></p>
<p>
<table class=”two”>

<tr><th>Employee</th><th>Start Date</th><th>Next Review</th></tr>
<tr><td>Vicki S.</td><td>2/15/04</td><td>2/28/04</td></tr>
<tr><td>Teresa M.</td><td>11/15/03</td><td>3/31/04</td></tr>
<tr><td>Tamara D.</td><td>8/25/02</td><td>n/a</td></tr>
<tr><td>Steve H.</td><td>11/02/00</td><td>3/31/04</td></tr>

</table>
</p>
</body>
</html>

242

Chapter 17

20_588206 ch17.qxd 6/30/05 12:35 AM Page 242

Figure 17-5

Notice how the border between the header row and first data row of the second table (Figure 17-5) is
inset. This is because the header row’s border was more ornate and won the conflict between the header
row and data row borders when collapsed.

The empty-cells property controls whether empty cells will have a border rendered for them or not.
This property has the following syntax:

empty-cells: show | hide;

As you would expect, setting the property to show (the default) will cause borders to be rendered, while
setting the property to hide will cause them to be hidden.

Current versions of Microsoft Internet Explorer disregard this property. To ensure that borders are ren-
dered around “empty” cells in Internet Explorer, you can insert nonbreaking space entities () in
each otherwise empty cell.

243

Tables

20_588206 ch17.qxd 6/30/05 12:35 AM Page 243

Table Layout
Typically, the user agent is in charge of how to render the table to best fit its platform’s display based in
part on the contents of cells and in part on the default table rendering settings of the platform. You can
force the user agent to render the table using only the width values of its elements by using the table-
layout property. This property has the following syntax:

table-layout: auto | fixed;

Setting the property value to auto (the default) allows the user agent to consider the contents of the
table cells when formatting the table. Setting the property’s value to fixed causes the user agent to dis-
regard the contents of the table and format it only according to explicit width values given within the
document (via CSS) or the table itself (CSS or tag attributes).

Caption Alignment and Positioning
As you saw in Chapter 8, table captions appear centered above the table to which they are attached.
However, using the caption-side and text alignment properties, you can change this behavior. The
caption-side property has the following syntax:

caption-side: top | bottom | left | right;

Setting the appropriate value will position the caption to the corresponding side of the table. If you wish to
change the default alignment (center) of the caption, you can use text alignment properties such as text-
align or vertical-align. The text alignment properties are covered in more depth in Chapter 14.

Note that you can use the text alignment properties to help control where a table is placed by placing the
table within paragraph tags that use appropriate text-align properties.

For example, the following definition will position the corresponding table’s caption to the right of the
table, with a left-justified, horizontal alignment and a top vertical alignment:

table { caption-side: right; }
caption { margin-left: 10px;

text-align: left;
vertical-align: top; }

Summary
This chapter covered the CSS formatting properties of tables. You learned what properties are available
and how most of them match up to the table element’s attributes. In most cases, you can accomplish the
same formatting with either method (CSS or attributes), though the use of CSS is strongly encouraged.
Because of the diversity possible with the various combinations of table properties, the examples in this
chapter only scratched the surface of formatting possibilities. However, using these examples, you should
be able to construct style definitions for just about any table-formatting chore.

244

Chapter 17

20_588206 ch17.qxd 6/30/05 12:35 AM Page 244

Element Positioning
In Chapter 11 you learned how XHTML tables could be used to create document layouts, position-
ing elements in a grid-like pattern to format a document. The table layout method allows for fairly
diverse and complex layouts. However, CSS provides several sizing and positioning properties
that allow you much more control over your document. CSS-based document layout has several
other advantages, as well, especially when used in conjunction with other technologies (such as
Dynamic HTML, covered in Chapters 21 and 22). This chapter covers the various positioning,
sizing, and visibility properties available in CSS.

Understanding Positioning Methods
Several element-positioning methods are available via CSS. Which method you choose depends on
how you want an element’s position to be affected by other elements and changes the user makes
to the user agent view port (resizing the view port, moving the view port window, and so on). The
positioning model an element uses can be specified using the position property. This property
has the following syntax:

position: static | relative | absolute | fixed;

The following sections detail the various positioning methods (static, relative, absolute, and
fixed) available via the position property.

Not all user agents support all positioning models. If you choose to use a positioning method, you
should test your code on all platforms you wish to support.

Static Positioning
Static positioning is the default positioning model used if no other method is specified. This
method causes elements to be rendered within their in-line or other containing block, placed in
the document as the user agent would normally flow them. The three paragraphs shown in
Figure 18-1 are all positioned statically, though the second paragraph has its positioning model
explicitly defined with the following style:

21_588206 ch18.qxd 6/30/05 12:56 AM Page 245

p.static { width: 400px; height: 200px;
border: 1pt solid black;
position: static;

}

Figure 18-1

Several styles have been added to the demonstration paragraphs within this section to help illustrate the
difference in positioning models. Sizing and border properties have been implemented to help visualize
the paragraphs’ position. Sizing properties are covered later in this chapter, and border properties are
covered in Chapter 15.

Other than the sizing and border properties added for clarity, the position of the paragraph is similar to
its position using no styles — hence the default static positioning — as shown in Figure 18-2, which has
no styles added to the second paragraph.

Relative Positioning
Relative positioning moves an element from its normal position by using measurements relative to that
normal position. For example, you can nudge an element a bit to the right of its normal position by set-
ting the positioning model to relative and specifying a value for the left edge of the element, as in the
following example:

p.nudge-right { position: relative; left: 25px; }

246

Chapter 18

21_588206 ch18.qxd 6/30/05 12:56 AM Page 246

Figure 18-2

This example places the left edge of the paragraph 25 pixels to the right of where it would have been
placed using static positioning.

When specifying relative measures, you can use the side properties (top, left, bottom, and right)
to move the corresponding side of the element. Any unspecified sides of the element will be positioned
according to other factors affecting their position — their size, margins, neighboring elements, bounding
box, and so on.

Figure 18-3 shows an example of relative positioning; the second paragraph has been moved down and
to the right using the following styles:

p.relative { width: 400px; height: 200px;
border: 1pt solid black;
position: relative;
top: 50px; left: 50px

}

Note that the movement of the second paragraph causes it to overlap (and cover) the text of the third
paragraph. Using layer properties, you can control which paragraph ends up on top. (Element layer
properties are covered in the “Element Layers” section later in this chapter.) This example also intro-
duces element transparency; without a defined background color, the top element has a transparent
background, allowing elements beneath it to show through.

247

Element Positioning

21_588206 ch18.qxd 6/30/05 12:56 AM Page 247

Figure 18-3

Also note that the user agent does not flow elements into the hole created due to the element(s) being
repositioned — the third paragraph remains in the position it would occupy had the second paragraph
not been repositioned.

Absolute Positioning
Absolute positioning uses absolute measures to position an element in relation to the view port of the
user agent. The normal (static) position of the element is not taken into account when this positioning
method is used.

The second paragraph in Figure 18-4 has been positioned using absolute positioning with the following
styles:

p.absolute { width: 400px; height: 200px;
border: 1pt solid black;
background-color: white;
position: absolute;
top: 50px; left: 50px

}

A white background has been added to the demonstration paragraph — overriding the transparent back-
ground — to help clarify its position in the document.

Element repositioned 50 pixels down and to the right

248

Chapter 18

21_588206 ch18.qxd 6/30/05 12:56 AM Page 248

Figure 18-4

Note that the upper-left corner of the user agent view port is referenced as zero; the preceding code
results in the paragraph’s upper-left corner being positioned 50 pixels down and to the right from the
upper-left corner of the user agent view port. Also note that absolute positioning removes elements from
the normal flow of the document; the user agent flows neighboring elements as though the repositioned
element did not exist. As with other methods, the repositioned element floats to the top layer of the ele-
ment stack, overlapping elements below it.

Absolute positioning specifies only the initial position of an element when it is rendered. If the user
agent scrolls its view port or the display otherwise changes, the element will move accordingly. See the
next section on fixed positioning for a method to fix an element in place.

Fixed Positioning
Although not immediately evident, elements repositioned using other positioning methods are still
subject to the flow of the document and scrolling of the user agent’s view port. For example, consider
Figures 18-5 and 18-6, which both show an element repositioned using absolute positioning. The view
port in Figure 18-6 has been scrolled down a bit, causing the repositioned element to scroll accordingly.

Element positioned 50 pixels down and to the right
from the user agent's upper-left corner of the view port

249

Element Positioning

21_588206 ch18.qxd 6/30/05 12:56 AM Page 249

Figure 18-5

Figure 18-6

250

Chapter 18

21_588206 ch18.qxd 6/30/05 12:56 AM Page 250

Using fixed positioning, you can force an element to retain its initial position despite any movement of
the user agent’s view port. For example, Figures 18-7 and 18-8 show the same document as the previous
two figures (the document has been scrolled a bit in Figure 18-8). However, in the following two figures,
the repositioned paragraph uses fixed positioning defined with the following styles:

p.fixed { width: 400px; height: 200px;
border: 1pt solid black;
background-color: white;
position: fixed;
top: 50px; left: 50px

}

As you can see in Figure 18-8, despite the document being scrolled in the user agent, the repositioned
element retains the position defined by its style thanks to the fixed-positioning method.

Figure 18-7

251

Element Positioning

21_588206 ch18.qxd 6/30/05 12:56 AM Page 251

Figure 18-8

Specifying an Element’s Position
The top, right, bottom, and left CSS properties can be used to position an element. The effect that
these properties have on the actual position of the element largely depends on the positioning method
being used (positioning methods were covered in the previous section).

The side positioning properties all have the following syntax:

side: <length> | <percentage>;

The specified side of the element (top, right, bottom, or top) is the side used to position the element. The
element’s other properties (size, borders, and so on) determine the position of the sides not explicitly
positioned. The positioning method being employed also plays a role in the actual position of the ele-
ment (see the previous section).

For absolutely positioned elements, the side values are related to the element’s containing block. For rel-
atively positioned elements, the side values are related to the outer edges of the element itself.

For example, the following styles result in positioning an element 50 pixels down from its normal position
in the document flow:

p.fiftypxdown { position: relative;
top: 50px; }

252

Chapter 18

21_588206 ch18.qxd 6/30/05 12:56 AM Page 252

Using percentages causes the user agent to position an element according to a percentage of its size (or
its bounding-box size). For example, to move an element left by 50% of its width, the following style can
be used, whose result is shown in Figure 18-9:

p.fiftypercentleft { border: 1pt solid black;
background-color: white;
position: relative;
right: 50%; }

Figure 18-9

As you might expect, changing the positioning model changes the effect of the positioning, as shown
with the following code whose result appears in Figure 18-10:

p.fiftypercentleft { border: 1pt solid black;
background-color: white;
position: absolute;
right: 50%; }

In this example, the right side of the element is positioned at the 50% mark (center) of the user agent
view port because the positioning method is specified as absolute.

Element repositioned left by 50% of its width

253

Element Positioning

21_588206 ch18.qxd 6/30/05 12:56 AM Page 253

Figure 18-10

Positioning alone can also drive an element’s size. For example, the following code will result in para-
graph elements being scaled horizontally to 25% of the view port, the left side of each positioned at the
25% horizontal mark, and the right at the 50% horizontal mark.

p { position: absolute;
left: 25%; right: 50%; }

However, due to the cascade behavior of CSS, whichever property appears last in the definition drives
the final size of the element. So, the following definition will result in paragraph elements that have their
left side positioned at the view port’s horizontal 25% mark, but each will be 400 pixels wide (despite the
size of the view port) because the width property overrides the setting of the right property:

p { position: absolute;
left: 25%; right: 50%;
width: 400px; }

Properties explicitly defining an element’s size are covered in the “Controlling an Element’s Size” sec-
tion later in this chapter.

Element's right side repositioned at 50% of user agent's view port

254

Chapter 18

21_588206 ch18.qxd 6/30/05 12:56 AM Page 254

Floating Elements
Occasionally, it is useful to float an element outside of the normal flow of a document’s elements. When
elements are floated, they are removed from the normal flow and are placed against the specified margin
of the user agent’s view port.

The float property is used to control the floating behavior of elements and has the following syntax:

float: right | left | none;

The default behavior of elements is none— the element is positioned in the normal flow of elements. If
the float property is set to right, the element is floated to the right margin of the user agent’s view
port; if the float property is set to left, the element is floated to the left margin.

For example, the sphere image in Figure 18-11 is not floated; it appears in the position where it is placed
in the document’s code — in-line with neighboring elements.

Figure 18-11

The same image appears in Figure 18-12 with the following style applied:

img { float: left; }

255

Element Positioning

21_588206 ch18.qxd 6/30/05 12:56 AM Page 255

Figure 18-12

Neighboring elements flow around floated elements instead of being rendered in-line with them. The
flow is still subject to appropriate margin and other values of the associated elements.

If you do not want elements to flow around neighboring floating elements, you can use the clear prop-
erty to inhibit this behavior. The clear property has the following syntax:

clear: left | right | both | none;

Setting clear to left or right will ensure that the affected element is positioned after any floated ele-
ments on the specified side so that they will not flow around them. Setting clear to both ensures that
both sides of the element are clear of floaters. Setting clear to none (the default) allows elements to
flow normally around floating elements.

Headings are one type of element that can benefit from the clear property’s setting; typically, you
would want headings to avoid flowing around floating elements. You can use the following style to
ensure that headings avoid flowing around floating elements:

h1, h2, h3, h4, h5, h6 { float: none; }

Controlling an Element’s Size
You can control an element’s size using CSS. You can specify an exact size for the element to be rendered
or specify a minimal size that the element can occupy. You can also control what the user agent should
do with any content that doesn’t fit in the element. The following sections detail the use of CSS in sizing
elements.

256

Chapter 18

21_588206 ch18.qxd 6/30/05 12:56 AM Page 256

Specifying an Exact Size
You can use the width and height properties to define an element’s size. Both properties have a similar
syntax:

width | height: <length> | <percentage> | auto;

As with most properties, you can use various metrics to specify an element’s size. For example, the fol-
lowing style specifies that an element should be rendered 100 pixels square:

p.hundredsquare { width: 100px; height: 100px; }

The following code sets an element to 150 percent of its normal width:

p.wider { width: 150%; }

Specifying auto causes the element’s dimension (width or height) to be sized according to its contents or
other relevant properties.

Specifying a Minimum or Maximum Size
Sometimes you will want to specify the maximum or minimum size an element can be instead of an
absolute size. This allows the user agent to size the element using normal parameters for doing so, but
within certain constraints. For those purposes, you can use min and max dimension properties:

❑ min-height

❑ max-height

❑ min-width

❑ max-width

These properties all have the same syntax:

property: <length> | <percentage>;

For example, if you want an element to be at least 200px square, you could use the following style:

p.atleast200 { min-width: 200px; min-height: 200px; }

Controlling Overflow
Whenever you take the chore of sizing elements away from the user agent, you run the risk of element
contents overflowing the size of the element. The overflow property can be used to help control what
the user agent does when content overflows an element. This property has the following syntax:

overflow: visible | hidden | scroll | auto;

257

Element Positioning

21_588206 ch18.qxd 6/30/05 12:56 AM Page 257

This property controls what the user agent should do with the content that overflows. The visible value
ensures that all the content remains visible, even if it must flow outside the bounds of its margins. The
hidden value causes any content that overflows to be hidden and therefore inaccessible to the user.
The scroll value causes the element to inherit scroll bars if any content overflows the element. Lastly,
the auto value allows the user agent to handle the element using the default settings of the user agent.

Figure 18-13 shows an example of the first three values of the overflow property.

Figure 18-13

As with many CSS properties, support for the overflow property isn’t consistent. If you rely on this
property in your code, you should test it on all intended platforms.

Element Layers
CSS also supports a third dimension for elements, allowing you to control what elements are placed on
top of what elements. You can usually anticipate how elements will stack and leave control of the stack-
ing up to the user agent. However, if you want more control over the element stack, you can use the
z-index property to specify an element’s position in the stack.

258

Chapter 18

21_588206 ch18.qxd 6/30/05 12:56 AM Page 258

Named for the stacking dimension (z-axis), this property has the following syntax:

z-index: <integer> | auto;

If an integer is specified as the value for the z-index property, the affected elements will be stacked
accordingly — elements with higher z-index values are stacked on top of elements with lower z-index
values.

Figure 18-14 provides an illustrative example of how elements stack given different z-index values,
using the following code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”><html>

<head>
<title>Element Stacking</title>
<style type=”text/css”>

p { width: 400px; height: 200px;
padding: 5px;
border: 1px solid black;
background-color: white;
position: absolute;
}

.zlevelone { left: 200px; top: 100px;
z-index: 1; }

.zleveltwo { left: 250px; top: 150px;
z-index: 2; }

.zlevelthree { left: 300px; top: 200px;
z-index: 3; }

</style>
</head>
<body>
<p>z-index: 0 (default)

Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis
aute irure dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.</p>

<p class=”zlevelone”>z-index: 1

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.</p>

259

Element Positioning

21_588206 ch18.qxd 6/30/05 12:56 AM Page 259

<p class=”zleveltwo”>z-index: 2

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.</p>

<p class=”zlevelthree”>z-index: 3

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.</p>
</body>
</html>

Figure 18-14

260

Chapter 18

21_588206 ch18.qxd 6/30/05 12:56 AM Page 260

Note that the elements have an explicitly coded background color (white). This is because overlapping
objects (and, therefore, also those stacked using the z-index property) inherit a transparent background
so that elements under them can be seen through the transparency. If the background-color setting is
omitted, the document will render similar to that shown in Figure 18-15.

Figure 18-15

Controlling Visibility
You can use the visibility property to control whether an element is visible in the user agent. This
property has the following syntax:

visibility: visible | hidden | collapse;

The first two values accomplish exactly what their names imply: visible makes the affected element(s)
visible in the user agent, and hidden hides them (makes them invisible). Setting this property to the
value collapse will have the same effect as hidden on any element except for table columns or rows. If
this value is used on a table row or column, the content in that column or row is removed from the table
and that space is made available for other content.

261

Element Positioning

21_588206 ch18.qxd 6/30/05 12:56 AM Page 261

You can use positioning, sizing, and visibility properties with JavaScript to create impressive anima-
tions in your document. See Chapters 28 and 29 for examples of this and other automation techniques
using Dynamic HTML.

Summary
This chapter covered the basics of CSS-based document layout. Using the positioning properties, you can
accurately position elements within your documents. Combining the positioning properties with sizing
and other visible CSS properties, you can create complex layouts with ease. As you will see in the next
section, JavaScript works well with CSS and can be used for further control, automation, and animation of
your documents.

262

Chapter 18

21_588206 ch18.qxd 6/30/05 12:56 AM Page 262

JavaScript Basics
Up to this point in the book, you have learned only about static technology for Web documents.
Starting in this section, you will learn about technologies that can be used to dynamically deliver
content and manipulate content based on various criteria. This section of the book covers
JavaScript, a mainstay of XHTML document scripting. This chapter covers the origins of
JavaScript, its typical uses, and methods to incorporate scripts into your documents.

History of JavaScript
In the early days of the World Wide Web, it became obvious to the Netscape team that rudimen-
tary scripting would improve the medium greatly. JavaScript was created in 1996, released with
Netscape 2.0, to fill that role and is still the most popular scripting language used on the Web. The
Netscape team that created JavaScript was the same team that created the Netscape browser —
a team that understood the innovations the Web was bringing to the Internet. The scripting lan-
guage was designed to be integrated into the user agent and to be able to parse details of any doc-
ument the agent rendered and affect changes in some elements. The parsing was available because
of the time the team took to construct the Document Object Model (DOM), a method to access doc-
ument links, anchors, form and form objects, and other objects.

Shortly after the base language was constructed, it was turned over to the European Computer
Manufacturers Association (ECMA) for standardization. The ECMA produced the ECMAscript
standard, which embodied most of the features and capabilities of the JavaScript language.
Additional capabilities were added to JavaScript over the next few years and matured as other
technologies (such as CSS) matured as well.

Despite its naming, JavaScript is not Java. It inherited the moniker “Java” due to many similarities
with Sun’s Java language. However, the similarities today are slight — noticeable to most pro-
grammers, but slight.

VBScript is an extension of Visual Basic created by Microsoft as a competitor to JavaScript, and it
is mostly used to help integrate other Microsoft technologies such as ActiveX. VBScript and other
Microsoft technologies are largely proprietary — support for these technologies can be relied on
only in versions of Microsoft’s user agent, Internet Explorer. As such, this book chooses to cover
JavaScript only, which is supported in the majority of user agents (including Internet Explorer).

22_588206 ch19.qxd 6/30/05 12:39 AM Page 263

Different Implementations
Unfortunately, as with many of the Web technologies, development of JavaScript and the DOM fractured
over the next few years as other entities adopted and expanded the technologies. The largest gap was
created around the DOM, an area of JavaScript long neglected by the Netscape team.

Contrary to popular belief, Microsoft did not initially fork the DOM for its own benefit. The DOM that
existed in JavaScript around the release of Internet Explorer was plagued with bugs and was poorly
implemented. The open source community and other user agent programmers banded together and
embraced a DOM guideline constructed by the World Wide Web Consortium. The benefits of forking
the DOM from the flawed Netscape implementation were seen and seized by many.

Despite the existence of a well-known standard, several entities have made subtle changes to their
JavaScript implementations. Microsoft, for example, has tweaked its version of JavaScript (JScript),
creating quite a few inconsistencies in implementation and use.

Unfortunately, this causes many problems for the scripting programmer who must create code that
works on the majority of user agents.

Determining the Document Object Model
The main problem facing programmers is different DOM implementations. Previous implementations of
Netscape (prior to the latest Mozilla Firebird release) used the earlier layer implementation. This forces
programmers to determine what user agent is being used prior to accessing the DOM.

The following table outlines the Netscape, Internet Explorer, and Mozilla support for the different
Document Object Model specifications.

Browser Level 0 Netscape IE Level 1
W3C Support DOM Support DOM Support W3C Support

Netscape 2.0+ X X

Netscape 4 X

IE 3.0 X X

IE 5.0+ X X X

Mozilla (Firebird) X X

Most user agents report some of their capabilities via their headers. However, this information cannot be
relied on — some user agents can be configured as to what information to report and implementations
vary. The easiest way to determine a user agent’s capabilities is to test for specific capabilities. For example,
the following code tests for the layer and W3C DOM so that you can program your scripts accordingly:

if (document.all) {
// IE4+ code (IE4+ uses the document.all collection)
} else if (document.layers) {

264

Chapter 19

22_588206 ch19.qxd 6/30/05 12:39 AM Page 264

// NS4+ code (Older versions of Netscape use the layers collection)
} else if (document.getElementById) {
// NS6+ code and IE5+ (The latest browsers use getElementById)
}

Implicit in the preceding code is the support for the getElementById function. This is one break
afforded to script programmers; using this one function, you can ascertain the ID assigned to an element
and manipulate it using that ID. Of course, only the current crop of browsers (Netscape 6+/Firefox and
Internet Explorer 5+) supports getElementById.

Uses for JavaScript
It’s important to note a few things about JavaScript when deciding when and where you want to use it:

❑ It is a client-based language. As such, it has very limited access to server-based resources
(databases, and so on) and relies on the client supporting (and allowing) JavaScript to run.

❑ It is a scripting language with definite limitations. More robust, server-side languages (Perl,
Python, and PHP, also covered in this book) should be used for more capable applications.

❑ JavaScript source code is visible in the documents in which it appears. Even external script
files can usually be browsed with little effort. As such, you should never embed sensitive infor-
mation in your scripts.

Even with those caveats taken into account, there are still many uses for JavaScript, including the
following:

❑ Form verification. JavaScript can parse form data prior to the data being submitted to a handler
on the server, ensuring that there are no obvious errors (missing or improperly formatted data).
Form verification is covered in Chapter 22.

❑ Document animation and automation. Accessing element data and properties via the DOM,
JavaScript can affect changes in elements’ content, appearance, size, position, and so forth. By
doing so, simple scripts can create simple animations — menu items that change color, images
and text that move, and so on. Rudimentary dynamic content can also be achieved via
JavaScript — custom content can be generated according to other behavior initiated by the user.
Dynamic HTML (the name for the technology of JavaScript manipulating document objects and
elements) is covered in Chapters 23 and 24.

❑ Basic document intelligence. As mentioned in the preceding bullet, JavaScript can initiate
changes in documents based on other, dynamic criteria. Using JavaScript you can embed a base
level of intelligence and an extra layer of user interface in your documents. Elements can be
linked to scripts via events (onclick, onmouseover, and so on) to help the user better use your
documents. Sample uses of triggers can be found in Chapter 22.

265

JavaScript Basics

22_588206 ch19.qxd 6/30/05 12:39 AM Page 265

Incorporating JavaScript in Your Documents
The following sections cover the various ways you can incorporate scripts into your documents and the
benefits and detriments of each.

Anatomy of the <script> Tag
The most popular method of incorporating JavaScript in documents is by enclosing the scripts within
script (<script>) tags. The <script> tag has the following syntax:

<script type=”MIME_type”>
...script content...

</script>

Current versions of XHTML support the following Multipurpose Internet Mail Extensions (MIME) types
for the <script> tag:

❑ text/ecmascript

❑ text/javascript

❑ text/jscript

❑ text/vbscript

❑ text/vbs

❑ text/xml

Of course, for JavaScript you will want to use the text/javascript MIME type; the rest of the MIME
types are for other scripting options and languages.

The <script> tag also supports the option attributes listed in the following table:

Attribute Value(s) Use

charset charset code Defines the character encoding (charset) used in the
script

defer defer Informs the user agent that the script will not generate
content, and document processing (rendering) can con-
tinue without waiting to evaluate the script content

src URL Instructs the user agent to incorporate the contents of
the document found at the specified URL as the script
content

Note the versatility inherent in the availability of the src attribute. If you have scripts that you want to
make available to several documents, you can place them in an external document and include them via
a tag similar to the following:

<script type=”text/javascript” src=”global_scripts.js”></script>

266

Chapter 19

22_588206 ch19.qxd 6/30/05 12:39 AM Page 266

Then, whenever you need to change a script used across multiple documents, you have to edit it only
once, in the external file.

Placement of the Script Tag
Technically, the script tag should be placed within the <head> section of your document where it can be
easily located. However, in practice, you can place the <script> tag anywhere within the document.
That said, the <script> tag should always appear within a block element, though it isn’t a requirement
to be XHTML compliant.

Execution of Scripts
Unless otherwise instructed, user agents execute JavaScript code as soon as it is encountered in a docu-
ment. The exceptions to this rule include the following:

❑ Scripting being disabled in the user agent

❑ The defer attribute being set in the containing <script> tag

❑ All code being contained within functions that are not explicitly called during the document’s
rendering

For example, the first code segment in the following code listing will not be executed until an event
explicitly calls the function enclosing the code, while the second code segment will be executed as soon
as it is encountered by the rendering user agent:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>Script Execution</title>
<script type=”text/javascript”>

function runmelater() {
// script code

}
</script>

</head>
<body>
<p>

<script type=”text/javascript”>
// script code (not enclosed in function(s))

</script>
</p>
</body>
</html>

Keep in mind that you can force a script to run immediately after the document is loaded by using the
onload event in the <body> tag:

<body onload=”script_function_name”>

267

JavaScript Basics

22_588206 ch19.qxd 6/30/05 12:39 AM Page 267

Short scripts can also be embedded directly within event attributes, as in the following example:

<input type=”button” name=”doscript” id=”doscript” onclick=”short_script_code” />

Events are covered in more detail in Chapter 20 and shown in examples in Chapter 21.

Summary
This chapter began the coverage of scripting within this book. This section concentrates on JavaScript,
starting with the basics of how JavaScript can be incorporated into your documents and working toward
using the language to manipulate a document’s object model and using JavaScript for animation and
other advanced uses.

268

Chapter 19

22_588206 ch19.qxd 6/30/05 12:39 AM Page 268

The JavaScript Language
The previous chapter introduced you to JavaScript. This chapter dives into the language itself, out-
lining the language’s syntax, structure, functions, objects, and more. Note that this chapter focuses
on the ins and outs of the language, not specific uses thereof. Subsequent chapters in this section
will introduce you to specific ways to use the language in your documents.

Basic JavaScript Syntax
JavaScript follows a fairly basic syntax that can be outlined with a few simple rules:

❑ All code should appear within appropriate constructs, namely between <script> tags or
within event attributes. (Events are discussed in the “Event Handling” section later in this
chapter.)

❑ With few exceptions, code lines should end with a semicolon (;). Notable exceptions to
this rule are lines that end in a block delimiter ({ or }).

❑ Blocks of code (usually under control structures such as functions, if statements, and
so on) are enclosed in braces ({ and }).

❑ Although it is not absolutely necessary, explicit declaration of all variables is a good idea.

❑ The use of functions to delimit code fragments is recommended; it increases the ability to
execute those fragments independently from one another and encourages reuse of code.
(Functions are discussed in the “User-Defined Functions” section later in this chapter.)

❑ Comments can be inserted in JavaScript code by prefixing the comment with a double-
slash (//) or surrounding the comment with /* and */ pairs. In the former case (//), the
comment ends at the next line break. Use the latter case for multiline comments.

23_588206 ch20.qxd 6/30/05 12:44 AM Page 269

Data Types and Variables
Although JavaScript is somewhat more minimalist than full-fledged programming languages, the lan-
guage still supports a full roster of data types and variable use. The next two sections detail the data
types available in JavaScript and how variables are handled.

Data Types
JavaScript, like most other programming languages, supports a wide range of data types. However,
JavaScript employs little data type checking. It doesn’t care too much about what you store in variables
or how you use the stored data within your scripts. As such, it becomes important to monitor your data
types as you write your scripts to ensure that you pass the appropriately typed data to functions and
methods.

JavaScript supports the following data types:

❑ Booleans

❑ Integers

❑ Floating-point numbers

❑ Strings

❑ Arrays

JavaScript also supports objects — an unordered container of various data types. Objects are covered in
the “Objects” section later in this chapter.

There is little difference between JavaScript’s integer and floating-point data types because numbers are
stored in floating-point format. The JavaScript standard specifies an upper/lower bound of floating-
point numbers as 1.7976931348623157E+10308, but the user agent implementation may vary. If you need
to ensure that a value is an integer, use the parseInt() function accordingly. (Functions are covered
later in this chapter — see Appendix C for reference coverage of JavaScript functions.)

JavaScript arrays can contain a mix of the various data types and are declared using the new operator in
your declaration statement, as in the following:

a = new Array();

If you want, you can also define the array’s values at declaration time by specifying the values within
the Array() declaration, as shown in the following code:

months = new Array(“January”,”February”,”March”,”April”,”May”,”June”,
“July”,”August”,”September”,”October”,”November”,”December”);

You can similarly use the String() and Number() functions within your declarations to ensure that a
variable is declared as a specific type. For example, to declare the variable s as a string, you could use
the following:

s = new String ();

270

Chapter 20

23_588206 ch20.qxd 6/30/05 12:44 AM Page 270

Explicitly setting a variable’s type helps ensure that it will always contain the data you expect it to. If
left to its own devices, JavaScript will adapt a variable’s type as needed, perhaps causing rounding
errors or more grievous mistakes.

Variables
JavaScript variables are case sensitive and can contain a mix of letters and numbers. You should take
care to avoid variable names that use JavaScript reserved words. Unlike some other popular scripting
languages, JavaScript does not identify its variables by prefixing them with a special character, such as
a dollar sign ($) — its variables are referenced by their names only.

You may wish to use a naming convention for your variables, for example one that describes what sort
of data the variable will hold. There are several different naming methods and schemes you can use.
Although the preference of which you use is subjective, you would do well to pick one and stick with it.
One common method is Hungarian notation, where the beginning of each variable name is a three letter
identifier indicating the data type.

Appendix C covers built-in JavaScript operators, functions, objects, and more. This appendix can be
used as a source of JavaScript reserved words.

JavaScript uses the var statement to explicitly declare variables. As previously mentioned, explicit decla-
ration of variables is not necessary in JavaScript. However, it is good practice to do so.

You can declare multiple variables within one var statement by separating the variable declarations
with commas. The var statement also supports assigning an initial value to the declared variables. The
following three lines are all valid var statements:

var x;
var x = 20;
var x = 20, firstname = “Steve”;

JavaScript variables have global scope unless they are declared within a function, in which case they
have local scope within the function in which they were declared. For example, in the following code the
variable x is global while the variable y is local to the function:

<script type=”text/JavaScript”>
var x = 100;
function spacefill(text,amount) {
var y = 0;
...
}
</script>

Note that variables with global scope transcend <script> sections; that is, variables declared within
one <script> section are accessible in other <script> sections within the document.

271

The JavaScript Language

23_588206 ch20.qxd 6/30/05 12:44 AM Page 271

Calculations and Operators
JavaScript supports the standard operators for numbers and strings. The following tables outline the
basic operators available in JavaScript.

JavaScript Arithmetic Operators

Operator Use

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

++ Increment

-- Decrement

JavaScript Assignment Operators

Operator Use

= Assignment

+= Increment assignment

-= Decrement assignment

*= Multiplication assignment

/= Division assignment

%= Modulus assignment

JavaScript Comparison Operators

Operator Use

== Is equal to

=== Exactly equal to — in value and type

!= Is not equal to

> Is greater than

< Is less than

>= Is greater than or equal to

<= Is less than or equal to

272

Chapter 20

23_588206 ch20.qxd 6/30/05 12:44 AM Page 272

JavaScript Logical Operators

Operator Use

&& And

|| Or

! Not

JavaScript Bitwise Operators

Operator Use

& And

| Or

^ Xor

~ Not

<< Left shift

>> Right shift

>>> Zero fill right shift

JavaScript Miscellaneous Operators

Operator Use

. Object/property/method separator

? Condition operator

delete Delete specified object

new Create new object

this Reference current object

typeof Type of object (number, string, and so on)

void Evaluate expression without returning a value

String Operators

Operator Use

+ Concatenation

273

The JavaScript Language

23_588206 ch20.qxd 6/30/05 12:44 AM Page 273

String Tokens

Token Character

\\ Backslash

\’ Single quote

\” Double quote

\b Backspace

\f Form Feed

\n Line Feed

\r Carriage Return

\t Horizontal Tab

\v Vertical Tab

Control Structures
Like many other languages, JavaScript supports many different control structures that can be used to
execute particular blocks of code based on decisions or repeat blocks of code while a particular condition
is true. The following sections cover the various control structures available in JavaScript.

Do While
The do while loop executes one or more lines of code as long as a specified condition remains true. This
structure has the following format:

do {
// statement(s) to execute

} while (<expression>);

Due to the expression being evaluated at the end of the structure, statement(s) in a do while loop are
executed at least once. The following example will loop a total of 20 times — incrementing the variable x
each time until x reaches the value 20:

var x = 0;
do {

x++; // increment x
} while (x < 20);

While
The while loop executes one or more lines of code while a specified expression remains true. The while
loop has the following syntax:

274

Chapter 20

23_588206 ch20.qxd 6/30/05 12:44 AM Page 274

while (<expression>) {
// statement(s) to execute

}

Because the <expression> is evaluated at the beginning of the loop, the statement(s) will not be exe-
cuted if the <expression> is false at the beginning of the loop. For example, the following loop will
execute 20 times, each iteration of the loop incrementing x until it reaches 20:

var x = 0;
while (x <= 20) { // do until x = 20 (will not execute when x = 21)

x++; // increment x
}

For and For In
The for loop executes statement(s) a specific number of times governed by two expressions and a condi-
tion. It has the following syntax:

for (<initial_value>; <condition>; <loop_expression>) {
// statement(s) to execute

}

The <initial_value> expression is evaluated at the beginning of the loop; this event occurs only
before the first iteration of the loop. The <condition> is evaluated at the beginning of each loop itera-
tion. If the condition returns false, the current iteration is executed; if the condition returns true, the loop
exits and the script execution continues after the loop’s block. At the end of each loop iteration, the
<loop_expression> is evaluated.

Although their usage can vary, for loops are generally used to step through a range of values (such as
an array) via a specified increment. For example, the following example begins with the variable x equal
to 1 and exits when x equals 20; each loop iteration increments x by 1:

for (x = 1; x <= 20; x++) { // for x = 1 to 20
//statement(s) to execute

}

Note that the <loop_expression> is not limited to an increment expression. The expression should
advance the appropriate values toward the exit condition but can be any valid expression. For example,
consider the two following snippets of code:

for (x = 20; x >= 1; x--) { // for x = 20 to 1
// statement(s) to execute

}

for (x = 2; x <= 40; x+=2) { // for x = 2 to 40, by 2 (even numbers only)
// statement(s) to execute

}

275

The JavaScript Language

23_588206 ch20.qxd 6/30/05 12:44 AM Page 275

Another variation of the for loop is the for in loop. The for in loop executes statement(s) while
assigning a variable to the properties of an object or elements of an array. For example, the following
code will assign the variable i to each element in the names array:

names = new array (“Steve”,”Terri”,”Sam”,”Vicki”,”Bernie”,”Robin”);
for (i in names) {

// statement(s) to execute
}

The following loop code will assign i to all the properties of the document object:

for (i in document) {
// statement(s) to execute

}

If Else
The if and if else constructs execute a block of code depending on the evaluation (true or false) of an
expression. The if construct has the following syntax:

if (<expression>) {
// statement(s) to execute if expression is true

} [else {
// statement(s) to execute if expression is false

}]

For example, the following code tests if the value stored in i is the number 2:

if (i == 2) {
// statement(s) to execute if the value in i is 2

}

The following code will execute one block of code if the value of i is an odd number, another block of
code if the value of i is an even number:

if ((i % 2) != 0) {
// statement(s) to execute if i is odd

} else {
// statement(s) to execute if i is even

}

You can also use complex expressions in an if loop, as in the following example:

if ((i = 2) && (t = 31) && (name = “Panama”)) {
// statement(s) to execute if all three conditions are true

}

Note the use of the parentheses in the previous example. You can use parentheses to explicitly define the
precedence in the expression — important when using or/and logic.

276

Chapter 20

23_588206 ch20.qxd 6/30/05 12:44 AM Page 276

In addition, you can create else if constructs in JavaScript by nesting if statements within one
another, as shown in the following code:

if ((i % 2) != 0) {
// statement(s) to execute if i is odd

} else
if (i == 12) {
// statement(s) to execute if i is 12
}

}

However, in most cases where you are comparing against one variable, using switch (covered in the
next section) is a better choice.

Switch
The switch construct executes specific block(s) of code based on the value of a particular expression.
This structure has the following syntax:

switch (<expression>) {
case <value_1>: {

// statement(s) to be executed if <expression> = <value_1>
break; }
case <value_2>: {

// statement(s) to be executed if <expression> = <value_2>
break; }

...
default: {

// statement(s) to be executed if <expression> does not match any other case
}

}

For example, the following structure will perform the appropriate code based on the value of firstname:

switch (firstname) {
case “Steve”: {

// statement(s) to execute if firstname = “Steve”
break; }

case “Terri”: {
// statement(s) to execute if firstname = “Terri”
break; }

default: {
/* statement(s) to execute if firstname does not

equal “Steve” or “Terri”
}

}

Note that the switch statement is an efficient structure to perform tasks based on the value of one
variable — much more efficient than a series of nested if statements.

277

The JavaScript Language

23_588206 ch20.qxd 6/30/05 12:44 AM Page 277

Note that the break statements and the default section are optional. If you omit the break statements,
each case section after the matching case will be executed. For example, in the preceding code section, if
the breaks were removed and firstname was equal to “Steve,” the code in all sections (“Steve,” “Terri,”
and default) would execute.

The break statement is covered in the next section.

Note that the switch construct can only be used to compare against one value. If you need to make
decisions based on several different values, use a nested if construct instead.

Break and Continue
Occasionally, you need to break out of a loop, either the current iteration or the entire loop structure.
The break statement causes execution to break out of the current structure; the next code executed is the
code following that structure. The continue statement breaks out of the current loop iteration to the
condition expression of the loop.

For example, the following code will skip processing the number 7, but all other numbers between 1 and
20 will be processed:

var x = 1;
while (x <= 20) {

if (x == 7) continue; // skip the number 7
// statement(s) to execute if x does not equal 7

}

In the following code, the loop will be exited if the variable x ever equals 100 during the loop’s execution:

var y = 1;
while (y <= 20) {

if (x == 100) break; // if x = 100, leave the loop
// statement(s) to execute

}
// execution continues here when y > 20 or x = 100

The break statement can also be used with labels to specify which loop should be broken out of. (See the
next section, “Labels,” for more information on labels.)

Labels
JavaScript supports labels, which can be used to mark statements for reference by other statements in
other sections of a script. Labels have the following format:

<label_name>:

To use a label, place it before the statement you wish to identify with the label. For example, the follow-
ing references the while loop with the label code_loop:

278

Chapter 20

23_588206 ch20.qxd 6/30/05 12:44 AM Page 278

var x = 100;
code_loop:
while (x <= 1000) {

// statement(s)
}

You can reference labels using the break statement to exit structures outside of the current structure. For
example, both loops in the following code will be broken out of if the variable z ever equals 100:

var x = 0, y = 0;
top_loop:
while (x <= 100) {

while (y <= 50) {
...
if (z == 100) break top_loop;

}
}
/* execution resumes here after loops are complete or if

z = 100 during the loops execution */

You can also use labels to mark blocks of code, as in the following example:

code_block: {
// block of code here

}

The break statement can then be used to break out of the block, if necessary.

Built-in Functions
JavaScript provides a few built-in functions for data manipulation. Most of the built-in functions exist to
convert data between the various data types and to check if data is of a particular type. The following
table lists the supported functions:

Function Use Returns

escape Creates portable data — typically used to Encoded version of
encode URLs and other information that may, supplied argument.
but generally should not, include extended
characters. Extended characters (non-
alphanumeric) are replaced by their ASCII
number equivalent in hexadecimal %xx form.
For example, a space (ASCII 32) becomes %20.

eval Parses the supplied string for JavaScript code The value of the last valid
and executes the code if found. statement or expression

encountered in the supplied
argument.

Table continued on following page

279

The JavaScript Language

23_588206 ch20.qxd 6/30/05 12:44 AM Page 279

Function Use Returns

isFinite Tests an expression or variable to see if it is a True if the supplied
valid number. argument is a valid number,

false if the supplied argu-
ment is not a valid number.

isNaN Tests an expression or variable to see if it is Returns true if the argument
not a (valid) number. is not a number and false if

the argument is a number.

number Converts an object (typically string data) Returns the supplied
to a number. argument converted to a

number or the value NaN
(not a number) if the argu-
ment cannot be converted to
a valid number.

parseFloat Parses the given argument for a valid A floating-point representa-
floating-point number. Parsing begins with tion of the supplied
the first character and ends with the first argument or the value
character that cannot be converted. (If the NaN (not a number) if
first character of the argument is not a number, a number cannot be
the function returns NaN.) parsed from the argument.

parseInt Parses the given argument for a valid integer An integer representation of
number. Parsing begins with the first character the supplied argument or
and ends with the first character that cannot be the value NaN (not a number)
converted. (If the first character of the argument if a number cannot be parsed
is not a number, the function returns NaN.) from the argument.

string Converts the supplied argument to a A string representation of
string representation. the supplied argument.

Unescape Converts portable data back into its original Decoded version of the
form (the opposite of the Escape function). supplied argument.

User-Defined Functions
JavaScript supports user-defined functions. User-defined functions allow you to better organize your
code into discrete, reusable chunks.

User-defined functions have the following syntax:

function <function_name> (<list_of_arguments>) {
...code of function...
return <value_to_return>;

}

280

Chapter 20

23_588206 ch20.qxd 6/30/05 12:44 AM Page 280

For example, the following function will space-fill the string passed to it to 25 characters and return the
filled string:

function spacefill (text) {
while (text.length < 25) {

text = text + “ “;
}
return text;

}

Elsewhere in your code, you can use this function similarly to the following:

address = spacefill(address);

This would cause the variable address to be space-filled to 25 characters and reassigned to itself.

Strictly speaking, the return statement is optional. However, it is usually a good idea to at least
include a status code return (success/fail) for all your functions.

The arguments passed to a function can be of any type. If multiple arguments are passed to the function,
separate them with commas in both the calling statement and function definition, as shown in the fol-
lowing examples:

Calling syntax:

spacefill(address, 25)

Function syntax:

function spacefill (text, spaces) {

Note that the number of arguments in the calling statement and in the function definition should match.
If you supply fewer variables than the number expected by the function, the remaining variables will
remain undefined. If you specify more variables than the number expected by the function, the extra val-
ues will be discarded.

The variables used by the function for the arguments and any other variables declared and used by the
function are considered local variables — they are inaccessible to code outside the function and exist
only while the function is executing.

Objects
JavaScript is an object-driven language. As you will see in Chapter 21, “The Document Object Model,”
the user agent supplies a host of objects that your scripts can reference. However, you will encounter
many objects built into JavaScript that are outside of the Document Object Model.

281

The JavaScript Language

23_588206 ch20.qxd 6/30/05 12:44 AM Page 281

Built-in Objects
JavaScript has several built-in objects. For example, two specific objects exist for manipulating data:
one for performing math operations (Math) on numeric data and another for performing operations on
string values (String).

These objects have various methods for acting upon data. For example, to find the square root of vari-
able x, you could use the Math.sqrt method:

x = Math.sqrt(x); // square root of x

Or, to convert a string to lowercase, you could use the String.toLowerCase() method:

s = String.toLowerCase(s); // convert s to lowercase

As with most object-oriented languages, JavaScript supports the with statement. Using the with state-
ment can facilitate using multiple methods of the same object, as shown in the following code:

with (Math) {
y = random(200);
x = round(sqrt(y));
}

The same code without using the with statement would look like the following code:

y = Math.random(200);
x = Math.round(Math.sqrt(y));

Although the Math object was referenced only three times in the code, you can see how repeatedly refer-
encing the object could get tedious when constructing complex mathematical operations.

Another very useful object is the Date object. This object has several methods that can be used to manip-
ulate dates and times in various formats. For example, the following code will output the current date
(in month, day, year format) wherever it is placed in the document:

<script type=”text/JavaScript”>
months = new Array (“January”,”February”,”March”,”April”,”May”,”June”,

“July”,”August”,”September”,”October”,”November”,”December”);
var today = new Date(); // create new date object (with values = today)
// Set day, month, and year from today’s value
var day = today.getDate();
var month = today.getMonth();
var year = today.getYear();
// Output “month day, year” (month is textual value)
document.write(months[month]+” “+day+”, “+year);

</script>

You can use the millisecond methods of the Date object to do calculations on dates — the number of
days between two dates or the number of days until a particular date, for example.

Appendix C, “JavaScript Language Reference,” lists the available built-in objects, their properties, and
methods.

282

Chapter 20

23_588206 ch20.qxd 6/30/05 12:44 AM Page 282

User-Created Objects
The new declaration statement can be used to create new objects based on existing, built-in objects. For
example, to create a new array, you could use code similar to the following:

employees = new Array (“Steve”, “Terri”, “Sam”, “Vicki”, “Bernie”);

Teaching the concept of objects and object-oriented programming is beyond the scope of this book. As a
consequence, this section concentrates only on how to implement objects in JavaScript.

The preceding code creates a new array object, based on the built-in JavaScript array object, and
assigns values to the new object.

Creation of new, custom objects requires the existence of an object constructor. This is unnecessary when
creating objects based on built-in objects — JavaScript also includes built-in constructors for native objects.

For example, the following function can be used to construct totally new objects of a movie class:

function movie(title, genre, releasedate) {
this.title = title;
this.genre = genre;
this.releasedate = releasedate;

}

The constructor can then be called via new, as in the following example:

mov1 = new movie(“Aliens”,”Scifi”,”1986-07-18”);

You can also create a direct instance of an object, bypassing creation and use of a constructor, if you
want. For example, the following also creates a movie object, but without use of a constructor:

mov1 = new object();
mov1.title = “Aliens”;
mov1.genre = “Scifi”;
mov1.releasedate = “1986-07-18”;

You can access the new object’s properties via the normal property syntax:

if (m.genre == “Horror”) {
// do something if genre is Horror

}

Object properties can be objects themselves. For example, you could create a director object that in
turn is a property of the movie object:

function director(name,age) {
this.name = name;
this.age = age;

}
function movie(title, genre, director, releasedate) {

this.title = title;

283

The JavaScript Language

23_588206 ch20.qxd 6/30/05 12:44 AM Page 283

this.genre = genre;
this.director = director;
this.releasedate = releasedate;

}
dir1 = new director(“James Cameron”,51);
mov1 = new movie(“Aliens”,”Scifi”,dir1,”1986-07-18”);
if (mov1.director.name == “James Cameron”) // if director of mov1 is Cameron

New methods can be assigned to objects via functions. For example, if you have a function named beep
that causes the user agent to play the sound of a horn, you could assign that function as a method by
using the assignment operator:

car.honk = beep();

However, in most cases, you will find that your JavaScript objects fall into the plain old data object
model — not needing methods to be manipulated.

One very important object available to JavaScript is the Document Object Model (DOM). Using the
DOM, your scripts can access a wealth of information about the current document — every element and
every attribute is available for reading and manipulation. The Document Object Model is covered in
Chapter 21.

Event Handling
One of the more powerful and often used techniques concerning JavaScript is events. Using event
attributes in XHTML tags, such as onmouseover and onclick, you can create interactive documents
that respond to the user’s actions.

The following table lists the various events supported by JavaScript.

Event Trigger

onAbort Abort selected in browser (stop loading of image or document), usually by
clicking the Stop button

onBlur When the object loses focus

onChange When the object is changed (generally a form element)

onClick When the object is clicked

onDblClick When the object is double-clicked

onDragDrop When an object is dropped into the user agent window (generally a file)

onError When a JavaScript error occurs (not a browser error — only JavaScript code
errors will trigger this event)

onFocus When an object receives focus

onKeyDown When the user presses a key

onKeyPress When the user presses and/or holds down a key

284

Chapter 20

23_588206 ch20.qxd 6/30/05 12:44 AM Page 284

Event Trigger

onKeyUp When the user releases a key

onload When the object is loaded into the user agent (typically used with the
<body> element to run a script when the document has completed loading)

onMouseDown When the mouse button is depressed

onMouseMove When the mouse is moved

onMouseOut When the mouse pointer moves outside the boundary of an object

onMouseOver When the mouse pointer moves within the boundary of an object

onMouseUp When the mouse button is released

onMove When an object (generally a window or frame) is moved

onReset When the user selects a reset button

onResize When an object (generally a window or frame) is resized

onSelect When the user selects text within the object (generally a form element)

onSubmit When the user selects a submit button

onUnload When the object is unloaded from the user agent (generally used with
the <body> element to run a script when the user navigates away from a
document — a favorite tool of pop-up window coders)

For example, table text in the following document will turn red when the user moves the mouse over the
table (onmouseover) and back to black when the mouse is moved outside of the table (onmouseout):

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>
<title>Event Handling</title>
<style type=”text/css”>

table { border: thin solid black;
border-collapse: collapse; }

td { border: thin solid black;
padding: 5px; }

</style>
</head>
<body>

<p>
<table onmouseover=”style.color=’red’;” onmouseout=”style.color=’black’;” >

<tr><td>Cell 1</td><td>Cell 2</td></tr>
<tr><td>Cell 3</td><td>Cell 4</td></tr>
<tr><td>Cell 5</td><td>Cell 6</td></tr>

</table>
</p>

</body>
</html>

285

The JavaScript Language

23_588206 ch20.qxd 6/30/05 12:44 AM Page 285

This technique demonstrates another important technique: incorporating raw code in event attribute
values. This technique is useful if the code is unique to the element in which it appears and is a fairly
small piece of code. However, in the preceding case, what if you wanted to change other elements’ col-
ors as the user moves the mouse over them? In that case, you would be better off defining functions for
the color change and calling the functions from within the events, as in the following:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>
<title>Event Handling</title>
<script type=”text/JavaScript”>
function goRed(myobj) {

myobj.style.color = “red”;
}
function goBlack(myobj) {

myobj.style.color = “black”;
}
</script>
<style type=”text/css”>

table { border: thin solid black;
border-collapse: collapse; }

td { border: thin solid black;
padding: 5px; }

</style>
</head>
<body>

<p>
<table id=”tbl1” onmouseover=”goRed(tbl1)” onmouseout=”goBlack(tbl1)” >

<tr><td>Cell 1</td><td>Cell 2</td></tr>
<tr><td>Cell 3</td><td>Cell 4</td></tr>
<tr><td>Cell 5</td><td>Cell 6</td></tr>

</table>
</p>

</body>
</html>

Note that the event must pass the object ID to the function to correctly identify the object whose color is
to change.

Other methods of identifying objects are covered in Chapters 21–23.

JavaScript Errors and Troubleshooting
Although JavaScript syntax is fairly straightforward, it is incredibly easy to make mistakes that cause
your scripts not to function the way you intend. This section will provide some troubleshooting tips to
aid you in solving your scripting problems.

286

Chapter 20

23_588206 ch20.qxd 6/30/05 12:44 AM Page 286

Using the Right Tools
First and foremost, using an editor designed to edit code is essential. Although any text editor will work,
code-friendly editors offer features such as auto-indenting, syntax highlighting, and regular expression
search-and-replace functions.

Some of the tools in the following list are open source and others are commercial. Most of the commercial
applications offer free trial versions. Capabilities between the various editors vary — pick an editor that
offers the capabilities you need in the price range that works for you.

Windows users should explore tools such as the following:

❑ TextPad —http://www.textpad.com

❑ PSPad —http://www.pspad.com/

❑ Homesite —http://www.macromedia.com/software/homesite/

Linux users should explore tools such as the following:

❑ vim —http://www.vim.org/

❑ Emacs —http://www.gnu.org/software/emacs/emacs.html

❑ Bluefish —http://bluefish.openoffice.nl/

Macintosh users should explore tools such as the following:

❑ Many of the editors available for Linux (see preceding list)

❑ BBEdit —http://www.barebones.com/index.shtml

❑ Dreamweaver —http://www.macromedia.com/software/dreamweaver/

Common JavaScript Syntactical Mistakes
There are several mistakes that are often made when coding JavaScript. Keep the following in mind
when you encounter problems in your scripts:

❑ Matching braces — Often you might find that a block section of code is missing its beginning or
ending brace ({ or }). Adhering to strict syntax formatting will help; it’s easier to notice a miss-
ing brace if it doesn’t appear where it should. For example, consider placing the braces on lines
of their own where they are very conspicuous, similar to the following snippet:

if (windowName == “menu”)
{

// Conditional code here
}

❑ Missing semicolons — When writing quick and dirty code, it’s easy to forget the little things,
such as the semicolons on the end of statements. That is one reason why I never treat semicolons
as optional; I use them at the end of every statement even when they technically are optional.

287

The JavaScript Language

23_588206 ch20.qxd 6/30/05 12:44 AM Page 287

❑ Variable type conflicts — Because JavaScript allows for loose variable typing, it is easy to make
mistakes by assuming a variable contains data of one type when it actually contains data of
another type. For example, if you access a numeric variable with a string function, JavaScript
will interpret the numeric value as a string, resulting in the original number being rounded,
truncated, or otherwise modified.

❑ Incorrect object references — You will find that the syntax of referencing objects can sometimes
be tricky. What works in one document or user agent may not work in another. It’s important to
always reference objects starting with the top of the object hierarchy (for example, starting with
the document object) or use tools such as getElementID() to uniquely identify and reference
objects.

❑ Working with noncompliant HTML — Sometimes the problem is not in the JavaScript but in
the XHTML that JavaScript is trying to interact with. It is important to work within the XHTML
standards to ensure that elements in your document can be referenced appropriately by your
scripts. It is also important to define and adhere to naming conventions for element id and
name attributes, helping avoid typos between your document elements and scripts.

❑ Your own idiosyncrasies — After writing several scripts, you may find several personal coding
idiosyncrasies that end up constantly biting you. Try to remember those issues and check your
code for your consistent problems as you go.

Identifying Problems
One big problem with JavaScript is the lack of feedback when problems do exist. Mozilla Firefox will
simply not run a script that has syntactical errors, providing little to no feedback as to what the error is.
Internet Explorer will display an error icon in its status bar when a JavaScript syntax error is found;
clicking on the icon will usually display a message regarding the error (as shown in Figure 20-1), how-
ever cryptic the message might be.

Figure 20-1

Error icon: Double-click to display error message

288

Chapter 20

23_588206 ch20.qxd 6/30/05 12:44 AM Page 288

The error shown in Figure 20-1, Object expected, is a very common error reported by Internet
Explorer. In most cases, the error results from an event call (for example, onClick) to a function or
other external piece of code that failed to compile due to syntax errors. Beginning JavaScript program-
mers may spend a lot of time adjusting the syntax of the event call when the problem is actually in the
code being called.

There are several methods you can employ to track down the source of an error. The most common are
outlined in the following sections.

Using Alert
The alert function is a valuable tool that can be used for basic troubleshooting. You can use this function
to display values of variables or to act as simple breakpoints within the script. For example, if you need to
track the value of variable x, you could place lines similar to the following in key areas of your script:

alert(“The value of x is: “ + x);

Other alert functions can be used to create a kind of breakpoint in your script, letting you know when
and where the script enters key areas. For example, the following line could be used before a key loop
construct:

alert(“Entering main FOR loop”);

When you see the appropriate alert displayed, you know your script has at least executed to that point.

When using the alert function, be sure to include enough information to distinguish the alert from
other alerts of its type. For example, an alert reporting simply Now entering FOR loop doesn’t
tell you which for loop is actually being reported on.

Using Try . . . Catch
The try/catch construct is meant for troubleshooting scripts by trapping errors. For example, consider
the following code:

try {
//code you want to troubleshoot
// If x<23, there’s an error
if (x < 23) { throw(x); } // Throw value of x

}
catch (err) {

// Catch the error, and make a decision based on
// value passed -- in this case, just report value
alert(“Error: “ + err);

}

If your code traps an error in the try section of the script, you can throw an exception using the throw
function. Execution of the script moves immediately to the catch section where the error can be further
diagnosed and reported on. Note that multiple throws can be implemented in the try section, and the
catch section can perform more actions than demonstrated in the preceding code. For example, condi-
tional statements can be used in the catch section to report different messages depending on the value
passed by the throw.

289

The JavaScript Language

23_588206 ch20.qxd 6/30/05 12:44 AM Page 289

Using Specialized Tools
There are several additional tools available for troubleshooting your JavaScript scripts. One popular
tool is JSUnit (http://www.edwardh.com/jsunit/). JSUnit is a port of the popular JUnit
(http://www.junit.org) testing framework, used to test Java code.

Using JSUnit, you can define assertions and use those assertions to test the functionality of your code.
Note that the assertions will not protect you from simple typos and other syntactical errors; assertions
will test only for proper values going in and coming out of functions. The JSUnit site has several exam-
ples of how assertions can be defined and used. Visit the site for more information.

Summary
This chapter covered the basics of the JavaScript language to familiarize you with its syntax, structure,
data objects, and more. After reading this chapter, you should understand how JavaScript compares to
other programming languages and be ready to apply that knowledge. The next chapter discusses the
Document Object Model, the most powerful data object available to JavaScript. Subsequent chapters
cover typical uses of JavaScript as well as using JavaScript with HTML to achieve Dynamic HTML
(DHTML).

290

Chapter 20

23_588206 ch20.qxd 6/30/05 12:44 AM Page 290

The Document Object Model
Most Web programmers are familiar with Dynamic HTML (DHTML) and the underlying
Document Object Models developed by Netscape and Microsoft for their respective browsers.
However, there is a unifying Document Object Model (DOM) developed by the W3C that is
less well known and, hence, used less often. The W3C DOM has several advantages over the
DHTML DOM — using its node structure it is possible to easily navigate and change documents
despite the user agent used to display them. This chapter covers the basics of the W3C DOM
and oldChild)teaches you how to use JavaScript to manipulate it.

The W3C DOM is much more complex than shown within this chapter. There are several addi-
tional methods and properties at your disposal to use in manipulating documents, many more
than we have room to address in this chapter. Further reading and information on the standard
can be found on the W3C Web site at http://www.w3.org/TR/2000/WD-DOM-Level-
1-20000929/Overview.html. The next chapter covers the details of the DHTML DOM.

The History of the DOM
The Document Object Model was developed by the World Wide Web Consortium (W3C) to allow
programming languages access to the underlying structure of a Web document. Using the DOM a
program can access any element in the document, determining and changing attributes and even
removing, adding, or rearranging elements at will.

It’s important to note that the DOM is a type of application program interface (API) allowing
any programming language access to the structure of a Web document. The main advantage of
using the DOM is the ability to manipulate a document without another trip to the document’s
server. As such, the DOM is typically accessed and used by client-side technologies, such as
JavaScript. Therefore, the coverage of the DOM in this book appears in the JavaScript part of the
book and is very JavaScript-centric.

The first DOM specification (Level 0) was developed at the same time as JavaScript and early
browsers. It is supported by Netscape 2 onward.

24_588206 ch21.qxd 6/30/05 12:44 AM Page 291

There were two intermediate DOMs supported by Netscape 4 onward and Microsoft Internet
Explorer (IE) versions 4 and 5 onward. These DOMs were proprietary to the two sides of the browser
coin — Netscape and Microsoft IE. The former used a collection of elements referenced through a
document.layers object, while the latter used a document.all object. To be truly cross-browser
compatible, a script should endeavor to cover both of these DOMs instead of one or the other.

Techniques for accessing these DOMs are covered in Chapter22, “Dynamic HTML.”

The latest DOM specification (Level 1) is supported by Mozilla and Microsoft Internet Explorer version 5
onward. Both browser developers participated in the creation of this level of the DOM and as such sup-
port it. However, Microsoft chose to continue to support its document.all model as well, while
Netscape discontinued its document.layers model.

Keep in mind also that the DOM was originally intended to allow programs to navigate and change
XML, not HTML, documents, so it contains many features a Web developer dealing only with HTML
may never need.

Understanding the Document Object Model
The basis of the DOM is to recognize each element of the document as a node connected to other nodes
in the document and to the document root itself. The best way to understand the structure is to look at
an example. The following code shows an example document that renders as shown in Figure 21-1 and
whose resulting DOM is shown in the illustration of Figure 21-2.

<html>
<head>
<title>Sample DOM Document</title>

<style type=”text/css”>

div.div1 { background-color: #999999; }
div.div2 { background-color: #BBBBBB; }
table, table * { border: thin solid black; }
table { border-collapse: collapse; }
td { padding: 5px; }

</style>

<script type=”text/JavaScript”>

</script>

</head>
<body>
<div class=”div1”>

<h1>Heading 1</h1>
<table>

<tr><td>Cell 1</td><td>Cell 2</td></tr>
<tr><td>Cell 3</td><td>Cell 4</td></tr>

</table>

292

Chapter 21

24_588206 ch21.qxd 6/30/05 12:44 AM Page 292

<p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet
dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.</p>

</div>
<div class=”div2”>

<h1>Heading 2</h1>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet
dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.</p>
<ol id=”sortme”>An ordered list

Gamma
Alpha
Beta

</div>
</body>
</html>

Figure 21-1

293

The Document Object Model

24_588206 ch21.qxd 6/30/05 12:44 AM Page 293

Figure 21-2

As you can see, each node is joined to its neighbors using a familiar parent, child, sibling relationship. For
example, the first DIV node is a child of the BODY node, and the DIV node in turn has three children — an
H1 node, a P node, and an OL node. Those three children (H1, P, and OL) have a sibling relationship to
one another.

Plain text, usually the content of nodes such as paragraphs (P), is referenced as textual nodes and is
broken down as necessary to incorporate additional nodes. This can be seen in the first P node, which
contains a bold (B) element. The children of the P node include the first bit of text up to the bold element,
the bold element, and the text after the bold element. The bold element (B) in turn contains a text child,
which contains the bolded text.

The relationships between nodes can be explored and traversed using the DOM JavaScript bindings, as
described in the next section.

SCRIPT

STYLE

TITLE

LI

LI

LI

HEAD BODY

HTML

H1 P

B

Text

Text Text

Text

Text

Text

Text

DIV

H1 TABLE

Text Text

DIV

OL

TBODY

TD

TD Text

Text

TR

P

TD

TD Text

Text

TR

294

Chapter 21

24_588206 ch21.qxd 6/30/05 12:44 AM Page 294

DOM Node Proper ties and Methods
The DOM includes several JavaScript bindings that can be used to navigate a document’s DOM. A sub-
set of those bindings, used in JavaScript as properties and methods, is listed in the following two tables.
The first table describes JavaScript’s properties.

A full list of DOM JavaScript bindings can be found on the W3C’s Document Object Model Level 1
pages, at http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/ecma-script-
language-binding.html.

Property Description

attributes This read-only property returns a named node map-
NamedNodeMap containing the specified node’s attributes.

childNodes This read-only property returns a node list containing all the
children of the specified node.

firstChild This read-only property returns the first child node of the
specified node.

lastChild This read-only property returns the last child node of the
specified node.

nextSibling This read-only property returns the next sibling of the specified
node.

nodeName This read-only property returns a string containing the name
of the node, which is typically the name of the element
(P, DIV, TABLE, and so on).

nodeType This read-only property returns a number corresponding to the
node type (1 = element, 2 = text).

nodeValue This property returns a string containing the contents of the
node and is only valid for text nodes.

ownerDocument This read-only property returns the root document node object
of the specified node.

parentNode This read-only property returns the parent node of the speci-
fied node.

previousSibling This read-only property returns the previous sibling of the
specified node. If there is no node, the property returns null.

295

The Document Object Model

24_588206 ch21.qxd 6/30/05 12:44 AM Page 295

The second table describes JavaScript’s methods.

Method Description

appendChild(newChild) Given a node, this method inserts the newChild node at the
end of the children and returns a node.

cloneNode(deep) This method clones the node object. The parameter deep —
(a Boolean) — specifies whether the clone should include the
source object’s attributes and children. The return value is the
cloned node(s).

hasChildNodes() This method returns true if the node object has children
nodes, false if the node object has no children nodes.

insertBefore(newChild, Given two nodes, this method inserts the newChild node
refChild) before the specified refChild node and returns a node object.

removeChild(oldChild) Given a node, this method removes the oldChild node from
the DOM and returns a node object containing the node
removed.

replaceChild(newChild, Given two nodes, this method replaces the oldChild node
oldChild) with the newChild node and returns a node object. Note that if

the newChild is already in the DOM, it is removed from its
current location to replace the oldChild.

Traversing a Document’s Nodes
Using the JavaScript bindings, it is fairly trivial to navigate through a document’s nodes, as demon-
strated in the examples that follow.

296

Chapter 21

Example: Navigating and Reporting a Document’s Object Model

This example navigates through a document’s nodes and returns the document’s DOM.

Source
This example uses the document example from earlier in the chapter with scripting necessary
to navigate the DOM:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>
<title>DOM Walk and Display</title>

24_588206 ch21.qxd 6/30/05 12:44 AM Page 296

297

The Document Object Model

<style type=”text/css”>

div.div1 { background-color: #999999; }
div.div2 { background-color: #BBBBBB; }

table, table * { border: thin solid black; }
table { border-collapse: collapse; }
td { padding: 5px; }

</style>

<script type=”text/JavaScript”>
var s = new String();

// Add node’s children to the listing (String s)
function showChildren(node,lvl) {

// Only track elements (1), text (3), and the document (9)
if (node.nodeType == 1 || node.nodeType == 3 ||

node.nodeType == 9) {
// Add dashes to represent node level
for (var x = 0; x < lvl; x++) { s = s + “--”; }
// Report first 20 chars for text nodes
if (node.nodeType == 3) {

mynodeType = node.nodeValue;
if (mynodeType.length > 20) {

mynodeType = mynodeType.slice(0,16) + “...”;
}

} else {
// Report “Element/Tag” for elements
mynodeType = “Element/Tag”;

}
s = s + “+ “ + node.nodeName + “ (“ + mynodeType + “)\n”;

// If the node has children, let’s report those too
if (node.hasChildNodes()) {

var children = node.childNodes;
for (var i = 0; i < children.length; i++) {

showChildren(children[i],lvl+1);
}

}

}

}

24_588206 ch21.qxd 6/30/05 12:44 AM Page 297

298

Chapter 21

function domwalk()
// Navigate through the DOM and report it in another window
alert(“Click OK to display the document’s DOM”);
showChildren(document,0);
displaywin = window.open(“”,”displaywin”,

“width=400,height=400,scrollbars=yes,resizable=yes”);
displaywin.document.write(“<pre>”+s+”</pre>”);

}

</script>
</head>
<body onload=”domwalk()”>
<div class=”div1”>

<h1>Heading 1</h1>
<table>

<tr><td>Cell 1</td><td>Cell 2</td></tr>
<tr><td>Cell 3</td><td>Cell 4</td></tr>

</table>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet
dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.</p>

</div>
<div class=”div2”>

<h1>Heading 2</h1>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet
dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.</p>
<ol id=”sortme”>An ordered list

Gamma
Alpha
Beta

</div>
</body>

</html>

This code works by recursively calling the showChildren() function for each node that has
children in the document (identified by the hasChildNodes() property). The nodes are
added to a global string (s) until the end of the document is reached (there are no more nodes
or children). The script then spawns a new window to display the full DOM as recorded in the
string. (Note that your user agent must allow pop-up windows for this code to work.)

Output
The script displays the windows shown in Figure 21-3. The DOM is displayed with represen-
tative levels (dashes and pluses) in the new window.

24_588206 ch21.qxd 6/30/05 12:44 AM Page 298

Figure 21-3

You can also use the values and types properties of nodes to effectively search the DOM for nodes, as
demonstrated by the next example.

299

The Document Object Model

24_588206 ch21.qxd 6/30/05 12:44 AM Page 299

300

Chapter 21

Example: Finding a Particular Node

This example expands upon the previous example by searching for a node with a particular ID
in the DOM.

Source
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>
<title>DOM Find Node</title>

<style type=”text/css”>

div.div1 { background-color: #999999; }
div.div2 { background-color: #BBBBBB; }

table, table * { border: thin solid black; }
table { border-collapse: collapse; }
td { padding: 5px; }

</style>

<script type=”text/JavaScript”>

function findNode(startnode,nodename,nodeid) {

var foundNode = false;

if (startnode.nodeName == nodename &&
startnode.id == nodeid) {

foundNode = startnode;
} else {

look_thru_children:
if (startnode.hasChildNodes()) {

var children = startnode.childNodes;
for (var i = 0; i < children.length; i++) {

foundNode = findNode(children[i],nodename,nodeid);
if (foundNode) { break look_thru_children; }

}
}

}
return foundNode;

}

function dofind() {
alert(“Click OK to find ‘sortme’ node”);
var node = findNode(document,”OL”,”sortme”);
alert(“Found node: “ + node.nodeName);

}

</script>

24_588206 ch21.qxd 6/30/05 12:44 AM Page 300

301

The Document Object Model

</head>
<body onload=”dofind()”>
<div class=”div1”>

<h1>Heading 1</h1>
<table>

<tr><td>Cell 1</td><td>Cell 2</td></tr>
<tr><td>Cell 3</td><td>Cell 4</td></tr>

</table>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet
dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.</p>

</div>
<div class=”div2”>

<h1>Heading 2</h1>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet
dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.</p>
<ol id=”sortme”>An ordered list

Gamma
Alpha
Beta

</div>
</body>

</html>

This script works by traversing the DOM (using the same mechanisms from the previous
example) looking for a node with the specified name (nodeName) and ID (id). When found,
the search stops and the node is reported as found along with the type of node (element
name). In this example OL is returned because the node with the ID sortme is an OL element.

The DOM provides another, easier mechanism to find an element with a particular id, namely the
getElementById() method of the document object. In fact, the entire search function in the pre-
ceding script can be replaced with one line:

node = document.getElementById(“sortme”);

The previous method of traversing the DOM was used to illustrate how you can manually search
the DOM, if necessary. More information and uses of the getElementById() method can be found in
Chapter 22, “Dynamic HTML.”

Output
This script simply outputs the alert box shown in Figure 21-4. However, after execution the
variable node contains a reference to the node being sought and can be manipulated, as shown
in the next section.

24_588206 ch21.qxd 6/30/05 12:45 AM Page 301

Figure 21-4

Changing Nodes
As previously mentioned, you can manipulate document nodes on the fly, adding, removing, and
changing them as needed. The following sections show examples of changing nodes.

302

Chapter 21

24_588206 ch21.qxd 6/30/05 12:45 AM Page 302

303

The Document Object Model

Example: Changing a Node’s Value

This example shows how a text node’s value can be changed.

Source
This example uses previously discussed methods to find and change the text of an OL node.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>
<title>DOM Find Node</title>

<style type=”text/css”>

div.div1 { background-color: #999999; }
div.div2 { background-color: #BBBBBB; }

table, table * { border: thin solid black; }
table { border-collapse: collapse; }
td { padding: 5px; }

</style>

<script type=”text/JavaScript”>

function findNode(startnode,nodename,nodeid) {

var foundNode = false;

// Check our starting node for what we are looking for
if (startnode.nodeName == nodename &&

startnode.id == nodeid) {
foundNode = startnode;

} else {
// If not found, look through children
look_thru_children:
if (startnode.hasChildNodes()) {

var children = startnode.childNodes;
for (var i = 0; i < children.length; i++) {

foundNode = findNode(children[i],nodename,nodeid);
// Return when found
if (foundNode) { break look_thru_children; }

}
}

}
return foundNode;

}

function dofindNchange() {
alert(“Click OK to change ‘sortme’ node’s text”);
var node = document.getElementById(“sortme”);

24_588206 ch21.qxd 6/30/05 12:45 AM Page 303

Using the DOM, you can also rearrange nodes within the document, as demonstrated in the next
example.

304

Chapter 21

if (node.firstChild.nodeType == 3) {
node.firstChild.nodeValue = “Changed text”;

}
}

</script>

</head>
<body onload=”dofindNchange()”>
<div class=”div1”>

<h1>Heading 1</h1>
<table>

<tr><td>Cell 1</td><td>Cell 2</td></tr>
<tr><td>Cell 3</td><td>Cell 4</td></tr>

</table>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet
dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.</p>

</div>
<div class=”div2”>

<h1>Heading 2</h1>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet
dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.</p>
<ol id=”sortme”>An ordered list

Gamma
Alpha
Beta

</div>
</body>

</html>

The change of the node takes place in the findNchange() function, after finding the node.
The found node’s firstChild is checked to ensure it is text, and then its value is changed.

Output
Figure 21-5 shows the document after the change; note the OL node’s text now reads
“Changed text.”

24_588206 ch21.qxd 6/30/05 12:45 AM Page 304

Figure 21-5

305

The Document Object Model

Example: Sorting Elements Using the DOM

This example shows how an ordered list (OL node) can have its items (LIs) sorted using the
DOM.

Source
This example uses functions used in previous examples but expands upon them by using a
sort routine to sort the OL node’s children.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>
<title>DOM Data Sort</title>

<style type=”text/css”>

24_588206 ch21.qxd 6/30/05 12:45 AM Page 305

306

Chapter 21

div.div1 { background-color: #999999; }
div.div2 { background-color: #BBBBBB; }

table, table * { border: thin solid black; }
table { border-collapse: collapse; }
td { padding: 5px; }

</style>

<script type=”text/JavaScript”>

function findNode(startnode,nodename,nodeid) {

var foundNode = false;

// Check our starting node for what we are looking for
if (startnode.nodeName == nodename &&

startnode.id == nodeid) {
foundNode = startnode;

} else {
// If not found, look through children
look_thru_children:
if (startnode.hasChildNodes()) {

var children = startnode.childNodes;
for (var i = 0; i < children.length; i++) {

foundNode = findNode(children[i],nodename,nodeid);
// Return when found
if (foundNode) { break look_thru_children; }

}
}

}
return foundNode;

}

function sortlist(node) {

// Does object have at least 2 children?
if (node.hasChildNodes() && node.firstChild.nextSibling != null) {

for (i = 1; i < node.childNodes.length; i++) {
// Only sort LIs
if (node.childNodes[i].nodeName != “LI”) { continue; }

for (j = i+1; j < node.childNodes.length; j++) {
// Only sort LIs
if (node.childNodes[j].nodeName != “LI”) { continue; }

// Sort needed?
if (node.childNodes[i].firstChild.nodeValue >

node.childNodes[j].firstChild.nodeValue) {
// Use temporary nodes to swap nodes
tempnode_i = node.childNodes[i].cloneNode(true);

24_588206 ch21.qxd 6/30/05 12:45 AM Page 306

307

The Document Object Model

tempnode_j = node.childNodes[j].cloneNode(true);
node.replaceChild(tempnode_i, node.childNodes[j]);
node.replaceChild(tempnode_j, node.childNodes[i]);

}

}

}

}

}

function dofindNsort() {
alert(“Click OK to sort list”);
// Find and sort node
var node = findNode(document,”OL”,”sortme”);
sortlist(node);

}

</script>

</head>
<body onload=”dofindNsort()”>
<div class=”div1”>

<h1>Heading 1</h1>
<table>

<tr><td>Cell 1</td><td>Cell 2</td></tr>
<tr><td>Cell 3</td><td>Cell 4</td></tr>

</table>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet
dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.</p>

</div>
<div class=”div2”>

<h1>Heading 2</h1>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet
dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.</p>
<ol id=”sortme”>An ordered list

Gamma
Alpha
Beta

</div>
</body>

</html>

24_588206 ch21.qxd 6/30/05 12:45 AM Page 307

308

Chapter 21

This example works similarly to that of previous examples. After the node is found, its LI chil-
dren are sorted in ascending order. Note the checks built into the sort routine to ensure only
the LIs are sorted — the text of the OL and other non-LI children is ignored in the sort routine.
This is necessary because you can’t always predict the elements a user agent identifies as
nodes. For example, compare the DOM from Mozilla’s Firefox browser shown in Figure 21-6
to that of Microsoft’s Internet Explorer earlier in the chapter (Figure 21-3).

Figure 21-6

Notice the extra text elements scattered throughout the Firefox DOM, especially between ele-
ments like the LI nodes. If the script didn’t check for valid LI nodeNames, the text nodes
would be sorted into the LIs, disrupting the structure.

24_588206 ch21.qxd 6/30/05 12:45 AM Page 308

Figure 21-7

309

The Document Object Model

Also note that temporary nodes are used to swap the node contents. The swap could not be
done using traditional methods (one temporary value) using the replaceChild() function:

tempnode = node.childNodes[j].cloneNode(true);
node.replaceChild(node.childNodes[i], node.childNodes[j]);

node.replaceChild(tempnode, node.childNodes[i]);

The second line in the preceding code removes node.childNodes[i] from the document to
replace node.childNodes[j]. Therefore, that node ([i]) would not exist for the third line of
the code to operate on.

Output
The output of this script is shown in Figure 21-7. Note how the OL node’s LI children have
been sorted into ascending order.

24_588206 ch21.qxd 6/30/05 12:45 AM Page 309

Summary
This chapter introduced you to the Document Object Model, its various levels, and how you can use it to
manipulate the underlying structure of documents using client-side scripting (JavaScript). You learned
how to navigate through the DOM, find nodes of interest, and change the document by manipulating
the nodes.

Although the W3C DOM isn’t used as much as the DHTML DOM implemented by both major browser
developers, the W3C DOM is used by both browser developers and contains much power to manipulate
documents using minimal scripting. Chapter 22 delves into Dynamic HTML and the various collections,
properties, and methods at the disposal of JavaScript to effect even more changes in your documents.

310

Chapter 21

24_588206 ch21.qxd 6/30/05 12:45 AM Page 310

JavaScript Objects and
Dynamic HTML

Previous chapters in this part of the book detailed how to program using JavaScript and explained
how to hook the language into the W3C Document Object Model. In addition to being a robust
language and having access to the document object, JavaScript also has a host of built-in objects
that can be accessed and manipulated to achieve a variety of effects, including what has come to
be known as Dynamic HTML (DHTML) — the ability to manipulate a document in a dynamic
fashion within the client viewing the document. This chapter covers those built-in functions and
how they can be used to achieve DTHML.

Built-in JavaScript Objects
As previously mentioned, JavaScript’s ability to access a document’s structure and elements is per-
haps the greatest advantage of using the language. Besides being able to access the Document
Object Model (discussed in depth in Chapter 21), JavaScript also has a host of built-in objects that
can be used to access the user agent and the document it contains. This section introduces the vari-
ous objects and how JavaScript can use them.

For in-depth listings of all built-in objects, properties, and methods, see Appendix C. For more
examples of how to use JavaScript for Dynamic HTML, see Chapter 23.

Window Object
The window object is the top-level object for an XHTML document. It includes properties and
methods to manipulate the user agent window. The window object is also the top-level object for
most other objects.

25_588206 ch22.qxd 6/30/05 12:53 AM Page 311

Using the window object, you can not only work with the current user agent window, but you can also
open and work with new windows. The following code will open a new window displaying a specific
document:

NewWin = window.open(“example.htm”,”newWindow”,
“width=400,height=400,scrollbars=no,resizable=no”);

The open method takes three arguments: a URL of the document to open in the window, the name of the
new window, and options for the window. For example, the preceding code opens a window named
newWindow containing the document example.htm and will be 400 pixels square, be nonresizable, and
have no scrollbars.

The options supported by the open method include the following:

❑ toolbar = yes|no— Controls whether the new window will have a toolbar

❑ location = yes|no— Controls whether the new window will have an address bar

❑ status = yes|no— Controls whether the new window will have a status bar

❑ menubar = yes|no— Controls whether the new window will have a menu bar

❑ resizeable = yes|no— Controls whether the user can resize the new window

❑ scrollbars = yes|no— Controls whether the new window will have scrollbars

❑ width = pixels— Controls the width of the new window

❑ height = pixels— Controls the height of the new window

Not all user agents support all options.

The window object can also be used to size and move a user agent window. One interesting DHTML
effect is to shake the current window. The following function can be used to cause the user agent win-
dow to visibly shudder:

function shudder() {
// Move the document window up and down 5 times
for (var i=1; i<= 5; i++) {

window.moveBy(8,8);
window.moveBy(-8,-8);

}
}

You can use other methods to scroll a window (scroll, scrollBy, scrollTo) and to resize a window
(resizeBy, resizeTo).

Document Object
You can use the JavaScript document object to access and manipulate the current document in the user
agent window. Many of the collection objects (form, image, and so on) are children of the document
object.

312

Chapter 22

25_588206 ch22.qxd 6/30/05 12:53 AM Page 312

The document object supports a write and writeln method, both of which can be used to write con-
tent to the current document. For example, the following code results in the current date being displayed
(in mm/dd/yyyy format) wherever the code is inserted in the document:

<script type=”text/JavaScript”>
today = new Date;
document.write((today.getMonth()+1) + “/” + today.getDate() +

“/” + today.getFullYear());
</script>

The open and close methods can be used to open and then close a document for writing. Building on
the examples in the earlier “Window Object” section, the following code can be used to spawn a new
document window and write the current date to the new window:

<script type=”text/JavaScript”>
today = new Date;
newWin = window.open(“”,””,”width=400,height=400,scrollbars=no,resizable=no”);
newDoc = newWin.document.open();
newDoc.write((today.getMonth()+1) + “/” + today.getDate() +

“/” + today.getFullYear());
newDoc.close();

</script>

Form Object
You can use the form object to access form elements in a document. The form object supports length
and elements properties — the former property returns how many elements (fields) are in the form, and
the latter contains an array of form element objects, one per field. You can also access the form elements
by their name attribute. For example, the following code will set the size field to the length of the
address field using the form name and element names to address the various values:

...
<head>
<script type=”text/JavaScript”>

function dolength() {
document.form1.addlength.value =

document.form1.address.value.length;
}

</script>
</head>
<body>
<p>
<form name=”form1” action=”handler.cgi” method=”post”>
Length: <input type=”text” name=”addlength” size=”5” />

Address: <input type=”text” name=”address” size=”30” onkeyup=”dolength();”/>
</form>
</p>
...

313

JavaScript Objects and Dynamic HTML

25_588206 ch22.qxd 6/30/05 12:53 AM Page 313

The form object can be used for a variety of form automation techniques. For example, a button can be
created to check (or uncheck) all of a series of checkboxes:

<head>
<script type=”text/JavaScript”>

function checkall(field) {
for (i=0; i<field.length; i++) {

field[i].checked = true;
}

}

</script>
</head>
<body>

<p><form name=”form1” action=”handler.cgi” method=”post”>
<input type=”checkbox” name=”list” /> one

<input type=”checkbox” name=”list” /> two

<input type=”checkbox” name=”list” /> three

<input type=”checkbox” name=”list” /> four

<input type=”checkbox” name=”list” /> five

<input type=”checkbox” name=”list” /> six

<input type=”checkbox” name=”list” /> seven

<input type=”button” name=”x” value=”checkall”

onclick=”checkall(document.form1.list);” />

</form>

As you can see by the checkbox object’s checked property, JavaScript has built-in properties and meth-
ods to manipulate all manner of form fields. A comprehensive list of these properties and methods
appears in Appendix C, “JavaScript Language Reference.”

Location Object
The location object can be used to manipulate the URL information about the current document in the
user agent. Various properties of the location object are used to store individual pieces of the docu-
ment’s URL (protocol, hostname, port, and so on). For example, you could use the following code to
piece the URL back together:

with (document.location) {
var url = protocol + “//”;
url += hostname;
if (port) { url += “:” + port; }
url += pathname;
if (hash) { url += hash; }

}

314

Chapter 22

25_588206 ch22.qxd 6/30/05 12:53 AM Page 314

The preceding example is only to illustrate how the various pieces relate to one another — the
location.href property contains the full URL.

One popular method of using the location object is to cause the user agent to load a new page. To do
so, your script simply has to set the document.location object to the desired URL. For example, the
following code will cause the user agent to load the yahoo.com home page:

document.location = “http://www.yahoo.com”;

History Object
The history object is tied to the history function of the user agent. Using the history object your script
can navigate up and down the history list. For example, the following code acts as though the user used
the browser’s back feature, causing the user agent to load the previous document in the history list:

history.back();

Other properties and methods of the history object allow more control over the history list. For exam-
ple, the history.length property can be used to determine the number of entries in the history list.

As with other objects in this chapter, a full list of properties and methods supported by the object
appears in Appendix C.

The Self Object
You can use the self object to reference an element making the reference. This object is typically used
when calling JavaScript functions, allowing the function to operate on the object initiating the call. For
example, the following code passes a reference to the button to the dosomething() function:

<input type=”button” value=”Click Me” id=”button” onclick=”dosomething(self);” />

The function can then use that reference to operate on the object that initiated the call:

function dosomething(el) {
... // do something with the element referenced by el ...
}

For example, the following function can be used to change the color of an element when called with a
reference to that element:

function changecolorRed(el) {
el.style.color = “red”;

}

315

JavaScript Objects and Dynamic HTML

25_588206 ch22.qxd 6/30/05 12:53 AM Page 315

That function can then be added to an event of any element, similar to the following onclick event
example:

<p onclick=”changecolorRed(this);”>When clicked, the text will change to red.</p>

Accessing an Element by Its ID
One of the surest methods to access a document’s elements is to use the getElementById() function.
This function is supported by any DOM Level 1-compliant user agent, so it can be relied upon to access
elements that have a properly assigned ID attribute.

The syntax of the getElementById() function is straightforward:

element = getElementById(“elementID”);

For example, the following code would assign a reference to the address field to the element variable:

element = getElementById(“address”);
...
<input type=”text” size=”30” id=”address”>

Once assigned, the element variable can be used to access the referenced field’s properties and
methods:

addlength = element.length;

Before using getElementById() you should test the user agent to ensure the function is available.
The following if statement will generally ensure that the user agent supports the appropriate DOM
level and, thus, getElementById():

if (document.all || document.getElementById) {
...getElementById should be available, use it...

}

Dynamic HTML
Dynamic HTML (DHTML) involves using scripts to manipulate elements within a document. The result
is the creation of dynamic content (document automation, animation, and so on). Such manipulation
usually involves CSS styles — the manipulation of an element’s style is very efficient.

316

Chapter 22

25_588206 ch22.qxd 6/30/05 12:53 AM Page 316

To access and manipulate document elements, you can use either of the two DOMs, the W3C DOM dis-
cussed in Chapter 21 or the JavaScript DOM provided via the objects discussed earlier in this chapter.

One popular DHTML technique is to hide or reveal document elements. You can use this to create drop-
down text, collapsible outlines, and more.

317

JavaScript Objects and Dynamic HTML

Example: Using DHTML for Collapsible Lists

This example demonstrates how DHTML can be used to create collapsible lists.

Source
This code uses two classes, one to show the list items, the other to hide the list items.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>
<title>Hidden Text</title>
<style type=”text/css”>

ul.hidelist li { display: none; }
ul.showlist li { display: block; }

</style>
<script type=”text/JavaScript”>

function hideNreveal(list) {
if (list.className == “hidelist”) {

list.className = “showlist”;
} else {

list.className = “hidelist”;
}

}

</script>
</head>
<body>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur
sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.</p>

25_588206 ch22.qxd 6/30/05 12:53 AM Page 317

318

Chapter 22

<p>
<ul id=”list1” class=”hidelist”

onclick=”hideNreveal(this);”>An unordered list.
Item 1
Item 2
Item 3
Item 4

</p>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur
sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.</p>
</body>

</html>

Output
This example results in a document containing a collapsible list. When the list header (the UL
text) is clicked, the list expands or collapses. The two states of the list are shown in Figures 22-1
(collapsed) and 22-2 (expanded).

Figure 22-1

25_588206 ch22.qxd 6/30/05 12:53 AM Page 318

Figure 22-2

Another popular means of manipulating elements is to manipulate their styles directly, changing the
values instead of changing the styles applied in a wholesale manner (via className). For example, you
can move an element by changing its positioning styles, as in the following example.

319

JavaScript Objects and Dynamic HTML

Example: Moving Elements with JavaScript

This example demonstrates how you can use DHTML to move elements in a document.

Source
This code uses a relative positioned element’s top and left values to move an element when it is
clicked.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>
<title>Moving Text</title>
<style type=”text/css”>

p.movable { position: relative; top: 0; left: 0; }
</style>

25_588206 ch22.qxd 6/30/05 12:53 AM Page 319

320

Chapter 22

<script type=”text/JavaScript”>
function moveme(el) {

if (el.style) { el = el.style; }
el.top = “-5px”; el.left = “20px”;

}
</script>
</head>
<body>
<p class=”movable” onclick=”moveme(this);”>Lorem ipsum dolor sit amet,
consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore
et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.</p>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur
sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.</p>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur
sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.</p>

</body>

</html>

This code uses an onclick event to call the moveme function. That function uses the object reference
passed to it (this) to access the appropriate object’s top and left properties. The properties are
changed, creating a dynamic shift in the element (5 pixels up, 20 pixels down).

Output
Figure 22-3 shows the document immediately after loading, and Figure 22-4 shows the document
after the first paragraph is clicked and the script modified its position.

25_588206 ch22.qxd 6/30/05 12:53 AM Page 320

Figure 22-3

Figure 22-4

321

JavaScript Objects and Dynamic HTML

25_588206 ch22.qxd 6/30/05 12:53 AM Page 321

Summary
This chapter rounds out the coverage of JavaScript programming, covering the built-in objects that can
be used to access and manipulate document elements. Using the information in this chapter and previ-
ous chapters in this part, you should be able to construct scripts to perform a variety of useful functions
for your documents.

A handful of useful scripts are contained in Chapter 23, “Using JavaScript.”

322

Chapter 22

25_588206 ch22.qxd 6/30/05 12:53 AM Page 322

Using JavaScript
An entire section of this book has been dedicated to JavaScript. You learned about the language
itself as well as various ways to use it with other technologies. This chapter wraps up that cover-
age by providing useful examples of JavaScript in action. Feel free to use any of the techniques
covered on your own projects.

The code from the examples can be downloaded from this book’s companion Web site.

How and When to Use JavaScript
JavaScript is one of the easiest Web programming languages to use — it is built into the client,
requiring no server technologies, and is a reasonably easy-to-use language. However, because a
technology is accessible isn’t always a good reason to use the technology.

The Case Against Using JavaScript
JavaScript is easy to use. It’s built into most user agents, runs on the client, and can do miraculous
things to documents. However, it’s not a foregone conclusion that you should use JavaScript in
your documents — there are plenty of data points to consider before automatically jumping in
with JavaScript.

Many smaller footprint user agents (cell phones, PDAs, and so on) do not support JavaScript.
Many more user agents have JavaScript disabled by default. The net result is that JavaScript is sig-
nificantly less accessible today than it was in the early days of the Web and graphical user agents.

Those user agents that do support JavaScript cannot be counted on to adhere to any one standard.
As previously mentioned in Chapter 21, there are at least four different Document Object Models
implemented across the current user agents. Writing code that is truly cross-platform compatible is
nearly impossible, very difficult at best.

What this means is that JavaScript cannot be relied on to perform medium- to high-level tasks, and
its presence should never be relied on to use your documents.

26_588206 ch23.qxd 6/30/05 12:40 AM Page 323

The preceding statement assumes your documents are meant for public consumption where any number
of user agents may be employed to access the documents. If you are coding in a known environment where
you can control the number and type of user agents in use, you can reasonably rely on JavaScript code.

Also, JavaScript is very limited in scope. It cannot access external information, whether on the client or
server. For more complex tasks needing an interface to external resources, you should consider CGI,
PHP, or other server-based technology.

Guidelines for Using JavaScript
The following guidelines should be considered before you use JavaScript in your documents:

❑ Is the task JavaScript will perform absolutely necessary? Image rollovers and dynamic text pro-
vide cool features to your documents but don’t necessarily add functionality.

❑ Can the same thing be accomplished using simpler means (usually straight XHTML code with-
out as many bells and whistles)? If so, you are generally better off using the simpler means.

❑ Can you reasonably code cross-platform scripts? Remember that the more complex the script
(for example, DHTML), the more likely the script is not to work properly on some user agents.

❑ Can you offer alternatives to the JavaScript-enabled features? When using JavaScript for fancy
navigation menus, for example, can you also include a basic text menu for non-JavaScript-
enabled users?

Although it may sound as if I am trying to talk every reader of this book out of using JavaScript, I’m not.
I’m simply trying to make the point that because you can easily implement JavaScript doesn’t mean you
always should use JavaScript — that’s all.

JavaScript Resources
Following is a partial list of some of the best JavaScript resources the Web has to offer:

❑ The ECMA Specification — The ECMA specification from the ECMA Web site gives the
reader an in-depth look at the standards behind JavaScript. It should be kept in mind that
not all user agents adhere to the specification, but this background document will help any
coder better understand JavaScript. You can find the ECMA specification at http://www
.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf.

❑ The W3C DOM Specification — This reference document explains the design and workings of
the Document Object Model Level 1. The DOM is described in detail and the bindings specific
to ECMA (and therefore, JavaScript) are covered in Appendix D. You can find the W3C DOM
Specification at http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/Overview.html.

❑ The MSDN Web Development Library — The Web Development section of the MSDN Library
(click on the Web Development link in the left pane) has a lot of useful information on the
implementation of JavaScript, CSS, and DHTML within Microsoft Internet Explorer. If you need
to find out how IE will handle something in particular, this is the source to consult. Find it at
http://msdn.microsoft.com/library/default.asp.

324

Chapter 23

26_588206 ch23.qxd 6/30/05 12:40 AM Page 324

❑ The Gecko (Mozilla Firebird) DOM Reference — This document describes the Gecko DOM
implementation. If you need to write code specific to the Gecko browsers, this is the document
to consult. Note that many new browsers (many in the mobile arena) are adopting the Gecko
browser standard. You can find this reference at http://www.mozilla.org/docs/dom/
domref/.

❑ The DevGuru JavaScript Language Index — DevGuru does an excellent job of providing quick
references for various online technologies. Their comprehensive JavaScript Quick Reference
is indispensable for quick lookups of JavaScript events, functions, methods, objects, and more.
Find this index at http://www.devguru.com/Technologies/ecmascript/quickref/
javascript_index.html.

❑ Quirksmode.org— The reference for browser quirks. This site contains information about
almost every user agent quirk known to man. Helpful examples and tutorials abound to help
even the most inexperienced JavaScript programmer adapt code for cross-platform capability.
Find it at http://www.quirksmode.org/.

❑ The getElementById.com Web site — This site contains many useful DHTML scripts,
techniques, and tutorials. Find it at http://getelementbyid.com/news/index.aspx.

JavaScript Examples
The following sections provide example documents that include scripts to perform various tasks. Each
example is presented with source code, output, an explanation of how the script works, and ways that
the script can be extended or improved.

The scripts in this section have been written and verified to run on the two most popular browsers:
Mozilla Firefox 1.0 and Microsoft Internet Explorer 6.0+. To keep the examples straightforward and
simple, no additional cross-platform coding has been added. However, the scripts should run on any
user agent compatible with these two “standards.”

Writing Text to a Document
One basic and often used JavaScript function is outputting text to the user agent window. Because
JavaScript cannot access external resources, you are limited to the data objects built into JavaScript or
otherwise present in the document.

325

Using JavaScript

Example 1: Writing the Current Date to the Current Document

This example shows how to output the current date into a document.

Source
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>
<head>
<title>Display Date (Text)</title>

26_588206 ch23.qxd 6/30/05 12:40 AM Page 325

326

Chapter 23

<script type=”text/JavaScript”>
// Set up arrays
var months = new Array(“January”,”February”,”March”,”April”,

“May”,”June”,”July”,”August”,”September”,”October”,
“November”,”December”);

var days = new Array(“Sunday”,”Monday”,”Tuesday”,”Wednesday”,
“Thursday”,”Friday”,”Saturday”);

function writedate() {
// Get current values, build output, and display
var today = new Date;
var thisMonth = today.getMonth();
var thisDay = today.getDate();
var thisYear = today.getFullYear();
var thisWeekday = today.getDay();
var datetext = days[thisWeekday] + “, “ + months[thisMonth] +

thisDay + “, “ + thisYear;
document.write(datetext);

}
</script>
</head>
<body>

<script type=”text/JavaScript”>writedate();</script>
</body>
</html>

Output
This script simply writes the current date to the user agent window, as shown in Figure 23-1.

Figure 23-1

26_588206 ch23.qxd 6/30/05 12:40 AM Page 326

327

Using JavaScript

How It Works
Using the built-in JavaScript date methods, the writedate() function assembles the date
into a string that is written to the browser via the document.write method. Wherever the
date is needed in the document, the code to call the writedate() function is inserted in lieu
of the date:

<script type=”text/JavaScript”>writedate();</script>

Improving the Script
Note that this script does not include any error checking. At minimum, it should probably check
for the presence of the document object if not specifically checking for the document.write
method. The writedate() function could also be extended to support multiple date formats,
governed by a format argument.

Example 2: Obscuring an E-mail Address

The current Web environment is a breeding ground for spam of all types. Many e-mail spam-
mers rely on data mining Web pages for e-mail addresses. The spammers use robots that auto-
matically surf the Web and copy anything that resembles an e-mail address to their database.
One way to thwart their attempts is by using JavaScript to obscure e-mail addresses in your
documents. The following example uses two different means to accomplish this.

Source
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>
<head>
<title>Obscure Email</title>
<script type=”text/JavaScript”>

// Given domain, address, and text to show as link
// put email link into document
function eaddr(domain, addr, linktext) {

if ((linktext.length == 0)) {
linktext = addr + “@” + domain; }

document.write(“<a href=” + “‘mai” + “lto:” + addr + “@” +
domain + “‘>” + linktext + “”);

}
</script>
</head>

<body>

<!-- Use an array to break up the address and a for loop to reassemble -->
<p><script type=”text/JavaScript”>
var a = new Array (“<a h”,”ref=”,’”’,”ma”,”il”,”to:”,

“ss”,”ch”,”afer”,”@ex”,”ampl”,”e.c”,”om”,’”>’);

26_588206 ch23.qxd 6/30/05 12:40 AM Page 327

328

Chapter 23

for (i in a) {
document.write(a[i]);

}
</script>Email me</p>

<!-- Use a function to reassemble domain, address, and link text -->
<p><script type=”text/JavaScript”>eaddr(“example.com”,”sschafer”,
“Email me”);</script></p>

</body>
</html>

Output
Both methods result in an Email me link being displayed in the user agent window, as shown
in Figure 23-2.

Figure 23-2

How It Works
The first method builds the script into the body of the document. This script uses an array to
break up the e-mail address into chunks that are unrecognizable as an e-mail address, so the
spam robots won’t recognize it as such:

<a h ref= ‘ ma il to: ss ch afer @ex ampl e.c om ‘>

The script reassembles and writes the address link to the document window.

26_588206 ch23.qxd 6/30/05 12:40 AM Page 328

Using Other Windows
One often-used JavaScript trick is to open and optionally display text in another window. The examples
in this section show you how to spawn other user agent windows and how to write to them using
JavaScript.

329

Using JavaScript

The second means of obscuring e-mail addresses uses a similar method but encapsulates the
code into a reusable function. The function takes the address, domain name, and link text as
separate arguments to reassemble and output accordingly.

Improving the Script
The number of ways to obscure an e-mail address using code is unlimited. I’ve seen examples
using fancy encryption, but they yield the same results. One way to improve upon these meth-
ods is to avoid them altogether — that is, avoid using JavaScript for all the reasons outlined at
the beginning of this chapter. Instead, construct a feedback form to do the contacting, ensuring
that your address remains obscured and nonaccessible by bots.

Using forms and CGI or PHP presents other unique challenges. See the chapters in the next two
parts of this book for more details on form handling with CGI and PHP.

Example 3: Opening Another Window

Using JavaScript, it is trivial to open another user agent window, as shown in the following
code.

Opening another user agent window is akin to pop-up windows, which have a very bad reputation
in the Web world due to the amount of advertising spam associated with their use. However, pop-up
windows can be used for very legitimate reasons; they are used all the time in OS graphical user
interfaces (dialog boxes). The key is to use them efficiently, with ample warning so that the user
expects them and finds the content (and their use) useful.

Source
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>
<head>
<title>Open New Window</title>

<script type=”text/JavaScript”>

function newwindow(title,url,options) {
// options syntax:
// width=x,height=y,scrollbars=yes|no,resizable=yes|no
if (!options) {

options = “width=650,height=550,scrollbars=yes,resizable=yes”;
}
return window.open(url,title,options);

}

26_588206 ch23.qxd 6/30/05 12:40 AM Page 329

330

Chapter 23

</script>
</head>

<body>
<p>
<input type=”button” value=”Default window”

onclick=”newwindow(‘NewWindow’,’’,’’);” />

<input type=”button” value=”Yahoo small”

onclick=”newwindow(‘YahooWindow’,’http://www.yahoo.com’,
‘width=200,height=200,scrollbars=no,resizable=no’);” />

</p>
</body>
</html>

Output
The preceding code opens a default, empty window 650 pixels wide by 550 pixels high or a win-
dow 200 pixels square displaying the contents of the Yahoo main page, as shown in Figure 23-3.

Figure 23-3

Default window Yahoo window

26_588206 ch23.qxd 6/30/05 12:40 AM Page 330

331

Using JavaScript

How It Works
The script uses input buttons with onclick() events to run the newwindow() script. The
script takes three arguments, specifying the title of the new window, the URL to display in the
new window, and options for the new window. If no options are given, the function opens a
blank, 650x550, resizable window with scroll bars.

Improving the Script
The newwindow() function is fairly complete, allowing arguments to drive the resulting win-
dow. It also returns a reference to the new window so that other scripts (like the one in the
next example) can write to the window. However, there is no error checking built into the
script (the script should probably verify the existence of the document.open method before
using it) and not all window options are represented in the default operation.

It should be noted (as an exception) that the code in the preceding example is not XHTML compliant,
as the input element is not properly contained in a block element. This is done intentionally throughout
this section to eliminate XHTML coding overhead, improving the legibility of the examples.

Example 4: Writing Text to Another Window

In addition to opening other windows, JavaScript can also output text to another window if it
has a reference to access that window. The following example uses the previous script to open
a new window and the resulting reference to the new window to output text to it.

Source
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>
<head>
<title>Write to New Window</title>

<script type=”text/JavaScript”>

function newwindow(title,url,options) {
// options syntax:
// width=x,height=y,scrollbars=yes|no,resizable=yes|no
if (!options) {

options = “width=650,height=550,scrollbars=yes,resizable=yes”;
}
return window.open(url,title,options);

}

// Create new window and output text to it
function doNewWin() {

var win = newwindow(‘NewWin’,’’,’’);
win.document.write(“<h1>Text to New Window</h1>”);
win.document.close();

}

26_588206 ch23.qxd 6/30/05 12:40 AM Page 331

Figure 23-4

332

Chapter 23

</script>
</head>

<body>
<p>
<input type=”button” value=”New window”

onclick=”doNewWin();” />
</p>
</body>
</html>

Output
The preceding code opens a default, empty window 650 pixels wide by 550 pixels high and
then writes a heading “Text to New Window” in the window, as shown in Figure 23-4.

26_588206 ch23.qxd 6/30/05 12:40 AM Page 332

How It Works
This script uses methods similar to the previous script (a button with an onclick() handler)
to execute a function. That function (doNewWin()) uses the newwindow() function to open a
default window and then uses the reference it returns to access the new window with the
document.write method:

win.document.write(“<h1>Text to New Window</h1>”);

Note the use of the document.close method necessary to let the user agent know that the
document is complete and no more content is forthcoming.

Improving the Script
As with other simplistic scripts in this chapter, this example lacks sufficient error checking to
be truly cross-platform. Another useful change would be to include arguments in the
doNewWin() function that can be passed to the newwindow() function.

Images
JavaScript is also routinely used to manipulate images within a document. The scripts in this section
show you several ways to access images using JavaScript.

333

Using JavaScript

Example 5: Preloading Images

Occasionally, it is useful to preload images for your documents. This is particularly so in the
following cases:

❑ When a site contains a lot of graphics and the user will usually navigate to many of the
documents on the site. If a majority of the images can be preloaded, subsequent pages
will load more quickly.

❑ When creating animations in a document. Without preloading the images, there will be
a delay between image transitions as the new image loads.

❑ When manipulating images using JavaScript. Preloading the images allows your scripts
more control over the image data; you know where the image will be stored without
needing to navigate the DOM and can perform operations (size the window, change
descriptive text, and so on) before displaying the image.

Preloading images does not cause the images to display; it only causes the user agent to load them
into its cache for easy retrieval if and when they are needed for display. Your code can use the images
either directly (using tags) or indirectly (by changing the src attribute of other
tags).

26_588206 ch23.qxd 6/30/05 12:40 AM Page 333

334

Chapter 23

Source
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>
<head>
<title>Image Preload</title>
<script type=”text/JavaScript”>

// If browser supports it, create array
// and preload images into it
// Array is global so other routines can
// later use preloaded array
if (document.images) {

img = new Array();
img[0] = new Image;
img[0].src = “./AboutUs.jpg”
img[1] = new Image;
img[1].src = “./AboutUsRO.jpg”

}

</script>
</head>

<body>
</body>
</html>

Output
This script produces no visible output.

How It Works
The script works by creating new image objects and loading the specified image files into the
objects. This results in a request to the server for the image, which is then cached on the user’s
system, available to display from local cache instead of across the slower Internet.

To gain the maximum benefit from cached images, it is important to ensure that the URL used in the
preload script is identical to the URL used in the document’s image () elements. A URL that
is even slightly different may result in the image being requested from the server again, instead of
being served from cache.

Note that the image is not displayed using this code, but methods and functions (size, and so
on) are available to be used on the image. The image src property can be used to move an
image from the cached object to an object in the document using code similar to the following:

// Change image src in image tag with id = imgID
document.images[imgID].src = img[1].src;

The script has some basic error checking included (it looks for the presence of the
document.images collection before preloading).

26_588206 ch23.qxd 6/30/05 12:40 AM Page 334

335

Using JavaScript

Improving the Script
One way to improve the script is to incorporate the preload routine into a function that can be
called with a URL and returns a reference to the preloaded image. Such a function could then
be used globally whenever an image needs preloading. However, this would necessitate
explicitly calling the function for each image needing preloading; you couldn’t incorporate the
script into the head of the document to run at load time.

Additionally, the script container that holds the preload logic should include the defer
attribute so that the user agent will continue to load the page (because it expects no output
from the script within).

Example 6: Image Rollovers

Another graphics trick using JavaScript incorporates the onmouseover() and onmouseout()
events to change an image when the mouse passes over it, and again when the mouse leaves
the image. The following script changes the appearance of an “About Us” image using this
method.

Source
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>
<head>
<title>Image Rollover</title>
<script type=”text/JavaScript”>

// Preload the images
if (document.images) {

img = new Array();
img[0] = new Image;
img[0].src = “./AboutUs.jpg”
img[1] = new Image;
img[1].src = “./AboutUsRO.jpg”

}

// When rolled over, load the rollover image
function rollover(imgID) {

if (document.images) {
document.images[imgID].src = “./” + imgID + “RO.jpg”;

}
}

// When mouse leaves image, revert to normal
function rollout(imgID) {

if (document.images) {
document.images[imgID].src = “./” + imgID + “.jpg”;

}
}

26_588206 ch23.qxd 6/30/05 12:40 AM Page 335

336

Chapter 23

</script>
</head>

<body>
<p>
<img src=”./AboutUs.jpg” width=”200” height=”50” alt=”About Us”

id=”AboutUs” onmouseover=”rollover(‘AboutUs’);”
onmouseout=”rollout(‘AboutUs’);”
onclick=”window.location=’./aboutus.htm’;” />

</p>
</body>
</html>

Output
Figures 23-5 and 23-6 show this script in action. Figure 23-5 shows the image without the
mouse over it, while Figure 23-6 shows the image when the mouse is over it. Note that when
the mouse leaves the image, it reverts to the image shown in Figure 23-5.

Figure 23-5

How It Works
As previously stated, this script works by tying into the onmouseover() and onmouseout()
events of the tag. When the mouse is placed over the image in the document, the
onmouseover() event calls the rollover() function, which changes the image element’s src
property to that of the white-filled text. When the mouse leaves the image, the onmouseout()
event calls the rollout() function, which changes the image src back to the original image.

26_588206 ch23.qxd 6/30/05 12:40 AM Page 336

337

Using JavaScript

Figure 23-6

The script preloads the images so that they are ready for the rollover. As a result, there should not be
a delay when the user rolls over the image the first time.

The result is animated text that responds to the presence of the mouse pointer. The onclick()
event changes the window.location property, making the image act like a hyperlink.

Improving the Script
The preceding script relies on the onclick() event for the hyperlink functionality. However,
this means that the functionality doesn’t work if the user agent isn’t JavaScript enabled. Also, the
typical visual cues (underline) aren’t present to tell the user that the element is a link. A better
technique might be to encapsulate the image element within an anchor element, similar to the
following:

<img src=”./AboutUs.jpg” width=”200” height=”50”
alt=”About Us” id=”AboutUs” onmouseover=”rollover(‘AboutUs’);”
onmouseout=”rollout(‘AboutUs’);” style=”border: none;” />

Notice the addition of the border style to the image tag. This removes the pesky border
resulting from the encapsulation in the anchor element, giving you a cleaner display.

26_588206 ch23.qxd 6/30/05 12:40 AM Page 337

338

Chapter 23

Example 7: Graphical Date Display

Example 1 showed how to write basic text to the document window. Occasionally, it can be
useful to output text in graphic form (graphics prerendered in a particular font) for stylistic
consistency. The following example displays the current date built from images instead of text.

Source
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>
<head>
<title>Graphical Date Display</title>
<script type=”text/JavaScript”>
function ShowDate() {

// Check for required browser functionality
if (document.all || document.getElementById) {

// Set up our variables
var img = new Array(“”);
var today = new Date();
var date = String(today.getDate());
var month = String(today.getMonth()+1);
var year = String(today.getFullYear());
var date1 = date.charAt(0);
var date2 = date.charAt(1);
// Prime the img array
for (x = 1; x <= 7; x++) {

img[x] = document.getElementById(“img”+String(x));
}
// Set src of appropriate images
// 1&2 = day, 3 = month, 4-7 = year
if (date2 == “”) {

img[2].src = “./images/dateimgs/” + date1 + “.gif”
img[1].src = “./images/dateimgs/space.gif”

} else {
img[1].src = “./images/dateimgs/” + date1 + “.gif”
img[2].src = “./images/dateimgs/” + date2 + “.gif”

}
img[3].src = “./images/dateimgs/month” + month + “.gif”;
img[4].src = “./images/dateimgs/” + year.charAt(0) + “.gif”;
img[5].src = “./images/dateimgs/” + year.charAt(1) + “.gif”;
img[6].src = “./images/dateimgs/” + year.charAt(2) + “.gif”;
img[7].src = “./images/dateimgs/” + year.charAt(3) + “.gif”;

}
}
</script>
</head>

<body onload=”ShowDate()”>
<p>
<!-- Simple line table to hold date -->

26_588206 ch23.qxd 6/30/05 12:40 AM Page 338

339

Using JavaScript

<table border=”0” cellpadding=”0” cellspacing=”0”>
<tr>

<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>

</tr>
</table>
</p>
</body>
</html>

Output
This script results in the one-line date display shown in Figure 23-7. The graphics used to
display the various elements (numbers, months) are shown within Windows Explorer in
Figure 23-8.

Figure 23-7

26_588206 ch23.qxd 6/30/05 12:40 AM Page 339

Figure 23-8

340

Chapter 23

How It Works
This script is similar to the script from Example 1; it uses built-in JavaScript functions to ascer-
tain the current date. It then uses premade images for the digits and text of the month —
images named to be easy to access (1.gif for the number 1, month1.gif for the month
January, and so on). The appropriate image URL(s) are then swapped into the appropriate
image elements in the document. In this case, the image elements are encased in a table for for-
matting purposes.

Improving the Script
This script could be improved in the following ways:

❑ Incorporating a fallback, text-only display if the document.images collection is unavailable
for manipulation.

❑ The images could be preloaded to ensure that the pieces of the date appear at the same time.
Not doing so can mean that one or more elements load more slowly, causing a broken image
link to appear for a second or so.

26_588206 ch23.qxd 6/30/05 12:40 AM Page 340

341

Using JavaScript

❑ The script could be modified to display more date formats. The format displayed would
be driven by an argument passed to the script. Note that this would mean changing the
month images (removing the comma), adding an image or two (comma, dash, slashes,
and so on), and perhaps employing a larger table whose elements are used dynamically
(not all formats would use all the cells in the table; unused cells would have to be filled by
blank images).

Working with Forms
The availability of both the W3C DOM and the standard JavaScript collections allow JavaScript a lot
of control over form elements. The examples in this section give you an idea of some of what you can
do with forms and JavaScript.

Although it is possible to change default behavior of form elements using JavaScript, resist the temp-
tation. Users are generally used to their platforms’ GUI behavior, and unannounced changes (such
as automatically moving between fields of a phone number) aren’t always welcome.

Example 8: Adding Form Features

Although XHTML’s form support is robust enough for most applications, there are times
when an additional control or more functionality is welcome. For example, there is no easy,
XHTML-only way to limit the number of characters entered into an XHTML text box
(<textarea> element). This example shows how to create a simple counter so that the user
can keep track of the characters entered into a specific text box.

Source
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>
<head>
<title>Form Enhancement</title>

<script type=”text/JavaScript”>
// Check size (length) of text box and report
// in another box
function checksize() {

if (document.all || document.getElementById) {
var counter = document.getElementById(“size”);
var text = document.getElementById(“msg”);
counter.value = text.value.length;

}
}
</script>
</head>

<body onload=”checksize()”>
<p>
Edit the message below (limited to 120 characters!).<p>

<form name=”form1” id=”form1” method=”post”

26_588206 ch23.qxd 6/30/05 12:40 AM Page 341

342

Chapter 23

action=”bogus.htm” onkeyup=”checksize()”>
<input type=”text” name=”size” id=”size”

disabled=”disabled” size=”6”> Characters
</p>
<p>
<textarea cols=”40” rows=”3” name=”msg” id=”msg”

wrap=”virtual”></textarea>
</p>
<p>
<input type=”submit” name=”submit” value=”Submit” />

<input type=”reset” name=”reset” value=”Clear” />

<input type=”button” name=”close” value=”Close”

onclick=”self.close()” />
</p>

</form>
</p>
</body>
</html>

Output
This example results in a document with two form fields, a text box for text entry and
a smaller text box for tallying the number of characters in the other field, as shown in
Figure 23-9.

Figure 23-9

26_588206 ch23.qxd 6/30/05 12:40 AM Page 342

343

Using JavaScript

How It Works
The script works by accessing the length property of the text area and assigning it to the
value of the counter box. The script is encapsulated in a function that is called by the onkeyup()
event handler of the text area element. Every time a keystroke is entered into the text box, the
counter is updated. The counter text box is disabled so that it cannot be edited by the user.

Improving the Script
As is, the script is a bit obtrusive. The counter could be moved beside the text area in a less
conspicuous place. Additionally, the counter could be contained in a label or other textual
XHTML label (where the innerHTML property could be used to change its value). The script
could also actively constrain the content of the text area; as is, it simply displays how many
characters are entered even if the total is over the desired maximum. Active constraint of con-
tent would require much more programming to achieve.

Example 9: Form Validation

A popular use of JavaScript is basic form validation. Using simple scripts, you can perform
basic validation (data exists, is in a particular format, and so on) before the data is passed to
your form handler for processing. The following example shows a basic form validation
engine using JavaScript.

Source
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>
<head>
<title>Basic Form Validation</title>
<script type=”text/JavaScript”>

// Validate email against regex
function FRMcheckEmail(el,name) {

var err = new String();
var filter = /^([a-zA-Z0-9_\.\-])+\@(([a-zA-Z0-9\-])+\.)+

([a-zA-Z0-9]{2,4})+$/;

if (document.all || document.getElementById) {
elid = document.getElementById(el);
if (!filter.test(elid.value)) {

err = “The ‘“ + name + “‘ field must be a valid email address
”;
}

}
return err;

}

// Validate that two fields match
function FRMmustMatch(el1,name1,el2,name2) {

26_588206 ch23.qxd 6/30/05 12:40 AM Page 343

344

Chapter 23

var err = new String();

if (document.all || document.getElementById) {
el1id = document.getElementById(el1);
el2id = document.getElementById(el2);
if (el1id.value != el2id.value) {

err = “The values of ‘“ + name1 + “‘ and ‘“ + name2 + “‘ “;
err += “do not match
”;

}
}
return err;

}

// Validate length of field
function FRMcheckLength(el,name,minlength,maxlength) {

var err = new String();

if (document.all || document.getElementById) {
elid = document.getElementById(el);
if ((elid.value.length < minlength) &&

(minlength != 0)) {
err = “The ‘“ + name + “‘ field must be at least “;
err += minlength + “ characters long
”

}
if ((elid.value.length > maxlength) &&

(maxlength != 0)) {
err += “The ‘“ + name + “‘ field must be less than “;
err += maxlength + “ characters long
”

}
}
return err;

}

// Validate field is not blank
function FRMnonBlank(el,name) {

var err = new String();

if (document.all || document.getElementById) {
elid = document.getElementById(el);
if (elid.value == “”) {

err = “The ‘“ + name + “‘ field cannot be blank
”;
}

}
return err;

}

// Validation engine
function FRMvalidate() {

// Init error string
var err = new String();

26_588206 ch23.qxd 6/30/05 12:40 AM Page 344

345

Using JavaScript

// Do validation, building error string as we go
// No error = blank string
err += FRMnonBlank(“firstname”,”First Name”);
err += FRMnonBlank(“lastname”,”Last Name”);
err += FRMcheckEmail(“email”,”Email”);
err += FRMmustMatch(“password”,”Password”,”confpass”,”Confirm Password”);
err += FRMcheckLength(“password”,”Password”,4,8);

if (document.all || document.getElementById) {
if (err.length != 0) {

errid = document.getElementById(“errtext”);
errid.innerHTML = err;
return(false);

} else {
validateid = document.getElementById(“validated”);
validateid.value = “true”;

}
}
return(true);

}

</script>

<style type=”text/css”>
.errtext { color: red; }
td { padding: 5px; }

</style>

<body>
<p>
<form action=”http://www.example.com/handler.cgi” method=”GET”

onsubmit=”return FRMvalidate();”>

<div id=”errtext” name=”errtext” class=”errtext”></div>

<table border=”0”>
<tr>
<td>First name:</td>
<td><input type=”text” id=”firstname” name=”firstname” size=”20”

maxlength=”20” /></td>
</tr><tr>
<td>Last name:</td>
<td><input type=”text” id=”lastname” name=”lastname” size=”20”

maxlength=”20” /></td>
</tr><tr>
<td>Email:</td>
<td><input type=”text” id=”email” name=”email” size=”20”

maxlength=”40” /></td>
</tr><tr>
<td>Password:</td>
<td><input type=”password” id=”password” name=”password” size=”20”

maxlength=”20” /></td>
</tr><tr>

26_588206 ch23.qxd 6/30/05 12:40 AM Page 345

346

Chapter 23

<td>Confirm Password:</td>
<td><input type=”password” id=”confpass” name=”confpass” size=”20”

maxlength=”20” /></td>
</tr><tr>
<td><input type=”submit” id=”submit” name=”submit” value=”Submit” /></td>
<td><input type=”reset” id=”reset” name=”reset”></td>
</tr>

</table>

<input type=”hidden” id=”validated” name=”validated” value=”false” />
</form>
</p>
</body>
</html>

Output
This example generates a form with an error section above it, as shown in Figure 23-10. If the
user has an error in a field and clicks Submit, the error text appears to help the user identify
and fix the problem.

Figure 23-10

26_588206 ch23.qxd 6/30/05 12:40 AM Page 346

347

Using JavaScript

How It Works
The example works by tying into the onsubmit() event handler of the form element. This
handler runs the specified code — in this case calling the FRMvalidate() function — when the
user tries to submit the form. If the expression of the onsubmit() handler (the result of the
function) returns true, the form is submitted to the appropriate form handler as defined in the
form tag. If the expression evaluates to false, the form is not submitted; it is as if the user never
clicked the Submit button.

The FRMvalidate() function calls smaller functions to check for specified conditions. For
example, the FRMnonBlank() function tests to see if the specified field is not blank. Each vali-
dation function takes the ID and name of an element to check and returns a string containing
the error(s) found, if any. The error text helpfully includes the supplied form element’s name.
The FRMvalidate() function appends each error to a combined error log, which is displayed
to the user if necessary. If the error string remains blank after all validation routines have been
run, the FRMvalidate() function returns true, allowing the form to be submitted. The func-
tion also sets the hidden validated field to true so that the form handler knows the data has
passed the basic validation.

JavaScript validation should never be relied on. Because it is run on the client, it is possible for an
unscrupulous user to modify the code to circumvent the validation. It is important that your form
handler do its own in-depth validation before doing anything useful with the data. See the chapters
in the next two parts of this book for help on writing form handlers in CGI and PHP.

Improving the Script
The form includes basic error handling to ensure that it runs on our two target platforms
(Firefox and IE), but additional error handling could be incorporated to include legacy
(Netscape, and so on) user agents.

If the script is run on a nonsupported browser, it will still enable the form data to be passed to the
handler, but the validated field will remain false.

Additional validation functions can be added to perform additional validation tasks.
Additionally, extra logic can be added to determine the field’s name so that less data needs
to be passed to each function. Doing so would necessitate using human-readable text for
each element’s name.

Dynamic HTML Tricks
A hallmark of JavaScript use in the ‘90s, Dynamic HTML (DHTML) is simply manipulating a docu-
ment’s elements with JavaScript to achieve dynamic content and/or special effects. The examples in
this section show you how to accomplish base-level DHTML.

26_588206 ch23.qxd 6/30/05 12:40 AM Page 347

348

Chapter 23

Example 10: Swap Styles

One of the easiest ways to achieve DHTML results is by wholesale swapping of the styles an
element uses. This is typically done by manipulating the className property of an element,
as shown in the following example.

Source
<html>
<head>
<title>Swapping Styles</title>

<style type=”text/css”>
.initialbox { width: 20; height: 20;

position: absolute;
top: 200; left: 200;
visibility: visible;
border: thick solid black;
background-color: red;
overflow: hidden;
z-index: 3;
}

.finalbox { width: 200; height: 200;
top: 200; left: 200;
position: absolute;
visibility: visible;
border: none;
background-image: url(A45.jpg);
background-position: center center;
background-repeat: no-repeat;
overflow: hidden;
z-index: 3;
}

</style>

<script type=”text/JavaScript”>
// Determine box by id = hiddenbox
// if browser supports it
function gethiddenbox() {

if (document.all || document.getElementById) {
return document.getElementById(“hiddenbox”);

} else {
return false;

}
}

// Swap style class
function swapStyles() {

box = gethiddenbox();
if (box) {

if (box.className == “initialbox”) {
box.className = “finalbox”;

} else {

26_588206 ch23.qxd 6/30/05 12:40 AM Page 348

349

Using JavaScript

box.className = “initialbox”;
}

}
}
</script>

</head>
<body>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.</p>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.</p>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.</p>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.</p>
<p>
<input type=”button” id=”swapstyles” value=”Swap Styles”

onclick=”swapStyles();”>
</p>

<!-- Hidden box -->
<p class=”initialbox” name=”hiddenbox” id=”hiddenbox” onclick=”hidebox();”></p>
</body>
</html>

You may have noticed that this example’s code does not include a DOCTYPE declaration. This,
unfortunately, is by design. For some reason unknown to this author, inclusion of the DOCTYPE
declaration causes this example not to work in Mozilla Firefox or Microsoft Internet Explorer. The
DOCTYPE declaration is not supposed to affect the operation of code; it is only to inform agents and
validation tools of the standard the document is following. However, in this case, the DOCTYPE
declaration must trigger some unknown (again, to this author) quirk in both user agents.

26_588206 ch23.qxd 6/30/05 12:40 AM Page 349

350

Chapter 23

Output
This example toggles a paragraph element’s attributes each time the button is clicked. The two
different styles of the element are shown in Figures 23-11 and 23-12.

Figure 23-11

How It Works
This example works by examining the current style class assigned to the element and chang-
ing it to another, toggling between the two sets of styles. The button’s onclick() event
handler calls the swapStyle() function to swap the styles via the className property,
significantly changing the appearance of the element.

Note that each class needs to include every style necessary for the appropriate state of the
paragraph element. This example does not take advantage of style inheritance.

Improving the Script
This technique can be used for any element in a document — changing images, headings,
tables, and so on. Additional properties can be added as needed to emphasize the change.

26_588206 ch23.qxd 6/30/05 12:40 AM Page 350

351

Using JavaScript

Figure 23-12

Example 11: Animated Menus

Another mainstay of DHTML is animated menus. This example uses the style display prop-
erty to hide and reveal a menu to accomplish a drop-down effect.

Source
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>
<head>
<title>Drop Down Menu</title>

<style type=”text/css”>

/* The drop menu container */
.dropmenu { position: absolute;

left: 100px; top: 0px;
background-color: white; }

/* Table settings for menu */
table { border-collapse: collapse;

padding: 0px; }

26_588206 ch23.qxd 6/30/05 12:40 AM Page 351

352

Chapter 23

table.menu * { border: thin solid black;
margin: 0px;
padding: 0px; }

table td { width: 100px;
text-align: center;
padding: 5px; }

table tr { height: 25px; }

</style>

<script type=”text/JavaScript”>

// Current state of menu
var menushown = true;

// Determine element by id using
// appropriate DOM
function getbyID(eID) {

// Netscape layers
if(document.layers) {

return document.layers[eID];
}
// DOM; IE5, NS6, Mozilla, Opera
if(document.getElementById) {

return document.getElementById(eID);
}
// Proprietary DOM; IE4
if(document.all) {

return document.all[eID];
}
// Netscape alternative
if(document[eID]) {

return document[eID];
}
return false;

}

// Set display to none (hide menu items)
function hideitems() {

if (!menushown) { return; }
var div = getbyID(“menuitems”);
if (div) {

if (div.style) { div = div.style; }
div.display = “none”;
menushown = false;

}
}

// Set display to inline (show menu items)
function revealitems() {

if (menushown) { return; }
var div = getbyID(“menuitems”);
if (div) {

26_588206 ch23.qxd 6/30/05 12:40 AM Page 352

353

Using JavaScript

if (div.style) { div = div.style; }
div.display = “inline”;
menushown = true;

}
}

// Initialize menu (hide it)
function initmenu() {

hideitems();
}

</script>
</head>

<body onload=”initmenu();”>
<div class=”main”>

<!-- Div for menu -->
<div class=”dropmenu” id=”dropmenu” onmouseover=”revealitems();”

onmouseout=”hideitems();” >
<p>
<table border=”0” class=”menu” id=”menuitems”>

<tr><td>Item 1</td></tr>
<tr><td>Item 2</td></tr>
<tr><td>Item 3</td></tr>

</table>
<!-- Menu tab must override display setting -->
<table border=”0” class=”menu” style=”display:block;”>

<tr><td>MENU</td></tr>
</table>
</p>
</div>

<p style=”height: 50px;”></p>
<!-- Main page content below -->
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.</p>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.</p>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat.

26_588206 ch23.qxd 6/30/05 12:40 AM Page 353

354

Chapter 23

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.</p>

</div>
</body>
</html>

Output
This document displays a MENU tab at the top of the screen that, when moused over, drops
down a menu of links. The tab is shown in Figure 23-13 and the full menu is shown in
Figure 23-14.

Figure 23-13

How It Works
The script works by placing the tab and menu tables within a division (<div>) that incor-
porates onmouseover() and onmouseout() event handlers. When the mouse moves appro-
priately, the corresponding function is called to drop down or roll up the menu. The menu
animation is accomplished by toggling the display property of the menu table. The current
state of the menu is kept in the menushown variable to keep the functions from performing
unnecessary work (showing the menu when it is already shown, and vice versa).

26_588206 ch23.qxd 6/30/05 12:40 AM Page 354

355

Using JavaScript

Figure 23-14

Improving the Script
This example uses the display property to achieve the desired effect. However, there are
many other ways to achieve this effect, including the following:

❑ Actually moving the menu using positioning properties (top, left, and so on).

❑ Resizing the menu’s containing block using size properties (width, height).

❑ Using the hidden property instead of the display property (hiding the menu by mak-
ing it invisible instead of moving it off-screen). Note that using the display property
would require a change in the position properties, as well — positioning the menu
permanently in the visible position.

The mechanism for dropping down or rolling up the menu can be changed, as well. Although
the current mechanism is quite fluid in Microsoft Internet Explorer, it is a bit erratic in Mozilla
Firefox. An alternative would be to use an onclick() event handler on the MENU tab table that
toggles the state of the menu.

26_588206 ch23.qxd 6/30/05 12:40 AM Page 355

356

Chapter 23

Example 12: Moving Elements

Another popular DHTML technique is animating entire blocks of code. Visit a popular site
such as MSN and you are sure to see such an animation, usually in the form of an ad that
opens on top of the window content or slides in from off-screen. This example shows you how
to animate a division of a document.

Source
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>
<head>
<title>Div Movement</title>

<style type=”text/css”>
/* Set initial styles for div */
.hiddendiv { width: 0px; height: 0px;

position: absolute;
top: 0px; left: 1px;
color: white;
visibility: hidden;
border: thin dotted black;
background-image: url(A45.jpg);
background-position: center center;
background-repeat: no-repeat;
overflow: hidden;
z-index: 3;
}

</style>

<script type=”text/JavaScript”>

// Determine div by divID using
// appropriate DOM
function getdivID(divID) {

// Netscape layers
if(document.layers) {

return document.layers[divID];
}
// DOM; IE5, NS6, Mozilla, Opera
if(document.getElementById) {

return document.getElementById(divID);
}
// Proprietary DOM; IE4
if(document.all) {

return document.all[divID];
}
// Netscape alternative

26_588206 ch23.qxd 6/30/05 12:40 AM Page 356

357

Using JavaScript

if(document[divID]) {
return document[divID];

}
return false;

}

// Make div visible
function showdiv() {

var div = getdivID(“hiddendiv”);

//DOM & proprietary DOM
if(div.style) {

div.style.visibility = ‘visible’;
} else {

//Netscape
if(div.visibility) {

div.visibility = ‘show’;
}

}
}

// Make div invisible
function hidediv() {

var div = getdivID(“hiddendiv”);

// DOM & proprietary DOM
if(div.style) {

div.style.visibility = ‘hidden’;
} else {

// Netscape
if(div.visibility) {

div.visibility = ‘hide’;
}

}
}

function movediv() {

// Set up measurements
var noPx = document.childNodes ? ‘px’ : 0;
var div = getdivID(“hiddendiv”);

if (div.style) { div = div.style; }

// Move div until it reaches 200px from left edge
if (parseInt(div.left) < 200) {

div.width = (parseInt(div.width) + 25) + noPx;
if (parseInt(div.width) > 400) { div.width = 400 + noPx; }

26_588206 ch23.qxd 6/30/05 12:40 AM Page 357

div.height = (parseInt(div.height) + 20) + noPx;
if (parseInt(div.height) > 300) { div.height = 300 + noPx; }

div.left = (parseInt(div.left) + 10) + noPx;
div.top = (parseInt(div.top) + 10) + noPx;

// Movement is every 20ms
movetimeID = setTimeout(‘movediv()’,20);

}
}

// Reveal and move the div
function revealdiv() {

var div = getdivID(“hiddendiv”);
// Reveal the div
showdiv();
// Set initial values for browsers that don’t
// support reading from style set values
if(div.style) { div = div.style; }
div.left = “0px”;
div.top = “0px”;
div.width = “0px”;
div.height = “0px”;
// Do movement
movediv();

}
</script>

</head>
<body>
<div>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.</p>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.</p>
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.</p>

358

Chapter 23

26_588206 ch23.qxd 6/30/05 12:40 AM Page 358

359

Using JavaScript

<p><form>
<input type=”button” id=”reveal” value=”Reveal Div”

onclick=”revealdiv();”>
</form></p>
</div>

<!-- Hidden box -->
<div class=”hiddendiv” name=”hiddendiv” id=”hiddendiv”

onclick=”hidediv();”></div>
</body>
</html>

Output
This example animates a division (<div>), moving it from the upper-left corner of the screen
to a position in the middle of the document while it grows from a small size to its normal size.
Figures 23-15, 23-16, and 23-17 illustrate the animation in progress.

How It Works
This example incorporates more error checking and cross-platform code than any other exam-
ple in this chapter. The initial state of the division is set via the hiddendiv style class; the
element is hidden, set to a size of 10 pixels square, and placed in the upper-left corner of the
document’s display.

Figure 23-15

26_588206 ch23.qxd 6/30/05 12:40 AM Page 359

360

Chapter 23

Figure 23-16

Figure 23-17

26_588206 ch23.qxd 6/30/05 12:40 AM Page 360

361

Using JavaScript

The button’s onclick() event handler calls the revealdiv() function that prepares the divi-
sion for movement (makes the element visible, sets initial size and position values) and then
calls the movement function, movediv().

The movediv() function increases the size of the element and moves it 10 pixels right and
down each time it is called. A timer is used to call the movediv() function every 20 millisec-
onds until the element reaches the specified location on-screen (200 pixels from the left mar-
gin). Once the element arrives at its destination, the function stops calling itself and the
operation is done.

Most of the error checking built into the script centers around the getdivID() function that
returns an element’s ID despite the DOM that the user agent might be using. Note that this
function supports far more diverse user agents than previous examples and can be retrofitted
into other scripts needing more than Firefox and IE compatibility.

Additional error checking is built into checking for appropriate use of the style property (for
example, using div.width or div.style.width) and appropriate values for the visibility
style. Also, because of a quirk in Firefox you must set the initial values of the division element
using JavaScript; Firefox seems incapable of reading the size and position values from the style
class set by XHTML.

Lastly, the appropriate measures (pixels or more specifically px) must be used and worked
around when present. The initial assignment of the noPx variable is done according to the user
agent capabilities. Just in case px appears in the values, parseInt is used to parse the integer
values out of the appropriate properties before calculations are performed.

Improving the Script
This script can be adapted in a variety of ways for other uses. The content of the division in
the example is simple (a static image), but it doesn’t have to be. You can place text or any other
valid XHTML element within the division. The initial and final destinations can be tweaked,
as well as the movement frequency or amplitude.

This example can also be combined with other examples in this chapter. The division can have
content appear after being moved and/or the error checking routines present in this example
can be used for effect in other examples.

Summary
This chapter wraps up the book’s coverage of JavaScript. Using the examples and resources within
this chapter, you should be able to utilize JavaScript to the best of its potential.

26_588206 ch23.qxd 6/30/05 12:40 AM Page 361

26_588206 ch23.qxd 6/30/05 12:40 AM Page 362

CGI Basics
The Common Gateway Interface (CGI) is an important tool in a Web programmer’s bag of tricks.
When HTTP was created, it was introduced as a simple way to receive and respond to queries for
documents. As the Web grew, it became important that the protocol be able to interface with addi-
tional resources beyond those of simple textual documents. This chapter introduces CGI as a con-
cept along with the techniques and technology involved in its operation.

CGI History and Operation
CGI has been around almost as long as the Web. It was developed as a means to extend early
HTTP servers, allowing users to submit data to the server and receive appropriate content based
on that submission.

Perl was perhaps the earliest means of accomplishing CGI, although any programming language
capable of reading from standard input (STDIN) and writing to standard output (STDOUT) can be
used for CGI purposes.

Understanding HTTP Request and Response
At its simplest, the HTTP protocol works by the server taking a request from a client and returning
a response to that request. In most cases, the request is for a document whose content is sent in the
server’s response. A variety of other operations are possible between client and server, but we will
concentrate on this simple “I want a document” request and “here it is” response. This operation is
diagrammed in Figure 24-1.

The client request typically resembles the following:

GET somepath/somedocument HTTP/1.1

Note that this section provides the bare essentials regarding HTTP requests and responses. More
detail on this subject is covered in Chapter 1 in the section “The Web Protocol.”

27_588206 ch24.qxd 6/30/05 12:43 AM Page 363

Figure 24-1

This request asks for a document in a particular directory (governed by somepath) and tells the server
that the client speaks HTTP version 1.1. For example, to request the top-level page from a server, a client
might use the following:

GET /index.html HTTP/1.1

This request asks for the index.html file from the server’s root directory.

The server then responds with a header indicating the success or failure of the request. When the request
can be fulfilled, the server usually responds with the following header:

HTTP/1.1 200 OK

This header indicates it is in HTTP 1.1 format and includes the status code in both numeric (200) and
textual (OK) form. If appropriate, the header is followed by the content requested. If the request cannot
be fulfilled, the server instead sends an error code in the status reply, such as the familiar “404 document
not found” error:

HTTP/1.1 404 Not Found

In some cases, such as the preceding 404 error, the server is configured to perform other actions besides
simply returning an error. For example, most Web servers are configured to send a special page to a
client along with the 404 error, as shown in Figure 24-2.

HTTP Data Encapsulation
There are two ways CGI scripts can receive data: via information embedded in the requested URL (GET)
or via data embedded in the HTTP headers (POST).

Using the first method (GET), data is embedded in the URL by separating the request info and the data
with a question mark (?). The data is then contained in name/value pairs, separated by ampersands (&).
For example, to pass my first and last name in a URL, I could use the following:

http://www.example.com/index.html?firstname=Steve&lastname=Schafer

Web Server

Web
Client

HTTP Request

HTTP Response

364

Chapter 24

27_588206 ch24.qxd 6/30/05 12:43 AM Page 364

Figure 24-2

This URL breaks down as follows:

❑ http://www.example.com/index.html— The document being requested

❑ ?— The document/data separator

❑ firstname— The first of the two data fields

❑ =— The assignment operator for the first data field

❑ Steve— The value for the first data field

❑ &— The separator for data fields

❑ lastname=Schafer— The second data field (lastname) and its data (Schafer)

Using the second method (POST), the data is sent back to the server embedded in HTTP headers. For
example, the following headers encapsulate the same data as in the preceding GET example:

POST /URL-TO-SCRIPT-OR-DOCUMENT HTTP/1.1
Host: www.example.com
Content-Length: 32
Content-Type: application/x-www-form-urlencoded

firstname=Steve&lastname=Schafer

The minimal headers tell the destination (script or page) that the incoming data is encoded; the actual
data is passed as name/value pairs after the headers (and the end-header blank line).

365

CGI Basics

27_588206 ch24.qxd 6/30/05 12:43 AM Page 365

In either case, the data is available to the CGI script. In most cases, dedicated libraries or variables exist
to address the data. For example, Perl has a CGI library for addressing GET and POST data while PHP
has _SERVER variables that contain GET or POST data.

The individual means of handling GET and POST data are covered in the respective script language
chapters in this part of the book.

How CGI Works
CGI works by mimicking the standard request/response operation of HTTP. CGI scripts cause the server
to bypass its internal request and response handling. Instead, the task is performed directly by the
appropriate (usually the requested) script — that is, of course, if the request for the script can be fulfilled
to begin with.

This is best seen with an example. Suppose that a client submits the following request:

GET /cgi-bin/somescript.cgi HTTP/1.1

If the server can find the script /cgi-bin/somescript.cgi, the script is executed according to local
system policies — usually allowing the script to communicate directly with the client. This process
resembles that shown in Figure 24-3.

Figure 24-3

The best thing about CGI is that most of the communication sent back to the client can be handled
directly through the standard output (STOUT) device. For example, this simple Perl script sends a short,
concise document to any client requesting it:

#!/usr/bin/perl -w

print “Content-type: text/html\n\n”;
print “<html><body><p>Hello world!</p></body></html>”;

Note, however, that the burden of HTTP protocol adherence is now the script’s responsibility. It has to
send the appropriate header(s), as necessary, so that the client can appropriately understand the data.

The following script shows how easy it can be to handle data passed to a script:

Web Server

Web
Client

CGI RequestCGI
Program

Client Data

Data from CGI Program (Response)

366

Chapter 24

27_588206 ch24.qxd 6/30/05 12:43 AM Page 366

example.pl

#!/usr/bin/perl -w

use CGI qw(:standard);
my $firstname = param(‘firstname’) || “unknown”;
my $lastname = param(‘lastname’) || “unknown”;

print “Content-type: text/html\n\n”;
print “<html><body>”;
print “<p>Hello $firstname $lastname!</p>”;
print “</body></html>”;

As previously mentioned, Perl has several libraries that make dealing with CGI tasks easier. In the pre-
ceding example, the CGI library is used to access the data passed via GET.

Figure 24-4 shows the result when this script is accessed using the URL test.pl?firstname=
Steve&lastname=Schafer.

Figure 24-4

Serving CGI
Not all Web servers are capable of serving CGI scripts. To do so requires that the server be configured
accordingly. This includes fulfilling the following requirements:

367

CGI Basics

27_588206 ch24.qxd 6/30/05 12:43 AM Page 367

❑ Having the required scripting language installed

❑ Being configured to allow CGI scripts to run (usually restricted to certain directories on the server)

❑ Having appropriate permissions to execute the script(s)

The real power of CGI comes from the capabilities of the scripting language, which is usually capable of
the following:

❑ Reading and writing to the file system on the server

❑ Accessing data via the network or Internet

❑ Accessing server hardware or hardware otherwise connected to the server

❑ Accessing other resources such as databases

Due to the power inherent in such actions, many system administrators do not have CGI enabled on
their servers or choose to restrict its usage.

Another risk of CGI scripting is the load such scripts can put on the server. Improperly written scripts
can use too many resources, bringing a server to its knees.

It is also imperative that script authors take all necessary actions to ensure that their scripts are well
written, well behaved, and pose no serious security risks to the server on which they are run.

The separate scripting chapters in this part of the book contain tips and techniques that can be employed
to help write safe and secure scripts.

A Simple CGI Example
It’s important to wrap up this discussion by showing a simple, but working, CGI script. Don’t be too
concerned about understanding how the script works at this point. Subsequent chapters will explain
more about accomplishing CGI using particular languages. Right now, just be conscious of the various
sections of the script (outlined by comments) and what those sections contain.

368

Chapter 24

Example: A Perl CGI Script

This script outputs a simple XHTML document containing one paragraph that includes a
parameter passed via GET.

Source
#!/usr/bin/perl

Use CGI methods to get parameters
use CGI;
my $cgi = CGI->new();
my %params = $cgi->Vars;

Print document header

27_588206 ch24.qxd 6/30/05 12:43 AM Page 368

369

CGI Basics

print “Content-type: text/html\n\n”;
print <<HTML;
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>
<head>

<title>CGI Example</title>
</head>
<body>

HTML

Print “Hello name” where name is from GET data
print “Hello “, $cgi->{‘name’}[0], “</p>\n”;

Close document
print “</body>\n</html>”;

Output
The output of this script is shown in Figure 24-5. Note that the parameter (name), passed via
GET, appears on the address line (appended to the URL).

Figure 24-5

GET parameter

27_588206 ch24.qxd 6/30/05 12:43 AM Page 369

Summary
This chapter introduced CGI and showed the basics of how the technology works. Subsequent chapters
in this part of the book cover the specifics of particular scripting languages. Useful examples are covered
in each chapter and compiled in Chapter 28, “Using CGI.”

370

Chapter 24

27_588206 ch24.qxd 6/30/05 12:43 AM Page 370

Perl Language
Perl is one of the mainstays of CGI scripting. Originally conceived as a simple reporting language,
it has grown to be one of the most popular Web and system scripting languages. Although some-
what quirky in nature, the community around Perl has created many additional resources and
code to help even the neophyte programmer tap its capabilities.

The History of Perl
The Practical Extraction and Report Language (Perl) was created in 1987 by Larry Wall. Perl was
originally created as a means to access and report on file contents. Perl has grown considerably
from its humble beginnings and is used extensively on the Web and as a system scripting lan-
guage. One of the reasons Perl is so popular is circular in nature — its popularity spawns more
(community) development, which increases its popularity, and so forth.

The Perl community has created hundreds of modules, constructs that can easily be added to your
scripts to increase their capabilities without having to code the capabilities yourself. There are
modules to access other application data (databases, and so on), emulate protocol stacks, commu-
nicate with hardware, and more.

However, rapid growth from humble beginnings brings with it some growing pains. Perl is quirky
and somewhat dated; although powerful, a lot of Perl’s power comes in the form of patches and
hacks. Still, Perl is one of the most powerful and versatile scripting solutions available.

Additional Perl Resources
This chapter provides an overview of Perl, but due to the scope of this book, it is simply an
overview. For more information on Perl, consult the following resources.

❑ The Perl.org Web site (http://www.perl.org) — The main site for information and
documentation on Perl. Download Perl, read online documentation, and follow Perl’s
development here.

28_588206 ch25.qxd 6/30/05 12:52 AM Page 371

❑ The Perl.com O’Reilly Web site (http://www.perl.com) — A great resource for Perl docu-
mentation, code examples, and so on.

❑ The Comprehensive Perl Archive Network (CPAN) (http://www.cpan.org) — The one and
only comprehensive resource for Perl modules. Search the module archive based on keywords,
capabilities, or module names. The archive includes entries for almost all previous versions of
modules as well as the most current.

Basic Perl Syntax
Perl follows a syntax similar to that of the C programming language. Perl syntax can be summed up
with a few simple rules:

❑ With few exceptions, code lines should end with a semicolon (;). Notable exceptions to the
semicolon rule are lines that end in a block delimiter ({ or }).

❑ Blocks of code (usually under control structures such as functions, if statements, and so on)
are enclosed in braces ({ and }).

❑ Explicit declaration of all variables is a good idea, and necessary if using strict data
declarations.

❑ The use of functions to delimit code fragments is recommended and increases the ability to
execute those fragments independently from one another. (Functions are discussed in the
“User-Defined Functions” section, later in this chapter.)

❑ Comments can be inserted in Perl code by prefixing the comment with a pound sign (#) or sur-
rounding the comment with /* and */ pairs. In the former case (#), the comment ends at the
next line break. Use the latter case for multiline comments.

Data Types and Variables
Perl supports the usual range of data types — numeric and string. The next two sections detail the data
types available in Perl and how variables are handled.

Data Types
Perl supports three types of data:

❑ Scalars

❑ Arrays

❑ Associative arrays

Perl also supports objects — an unordered container of various data types. Objects are covered in the
“Objects” section later in this chapter.

Scalar values are individual numeric, string, or Boolean values. Example scalar values include 3, 3.14159,
TRUE, and “character data.”

372

Chapter 25

28_588206 ch25.qxd 6/30/05 12:52 AM Page 372

Arrays are collections of scalars. Individual elements in an array are referenced by an index relating to
their position in the array with a zero index. For example, in the following string array, “Steve” is ele-
ment number 3:

“Terri”,”Ian”,”Branden”,”Steve”,”Tammy”

Associative arrays are arrays that use string identifiers instead of numeric identifiers for elements of
the array. Associative arrays are generally used to store data associated with a particular identifier. For
example, you could define an associative array to store anniversary dates of employees so that accessing
the array with an index of “Steve” would return the date associated with Steve.

Variables
Perl variables are largely untyped; you can use the same variable to contain different scalar values at dif-
ferent times in your scripts. Of course, doing so is generally frowned upon — the point is that variable
typing in Perl is left up to the programmer.

Perl variable names are prefixed with a specific character depending on the use of the variable, as shown
in the following table:

Character Use

$ Individual scalar value, individual value in an array or associative array

@ Entire array or slice of an array

% Entire associative array or slice of an associative array

The index delimiter of normal arrays is the square bracket ([and]) while the index delimiter of
associative arrays is the curly bracket ({ and }). For example, the first following print statement
prints the third value of array name while the second prints the “Steve” value of the associative array
birthdate:

print $name[3];
print $birthdate{‘Steve’};

Variables in Perl are declared using standard programming nomenclature (that is, variable name and
equal sign and then the desired value). It is recommended that each variable declaration include the
generic variable constructor (my), as shown in the following examples:

use strict; # See note below
my $name=”Steve”; # Scalar string
my %birthdates; # Empty associative array, followed by two element declarations

$birthdates{‘Steve’} = “5/10”;
$birthdates{‘Angela’} = “8/2”;

my %cars = (“Steve” => “S2000”,
“Angela” => “MiniCooper”); # Associative array with two elements

my pi = 3.1415926; # Scalar numeric

The use of strict pragma (use strict) causes Perl to require explicit variable declarations (before
use), enforces local variable scope, and requires explicit references. All three aspects of the strict
pragma help enforce good programming practices and should be enabled in all of your Perl scripts.

373

Perl Language

28_588206 ch25.qxd 6/30/05 12:52 AM Page 373

Special Variables
Perl has many special variables to contain internal data, specific to the script being run. Special variables
can be used to hold results of searches, values of environment variables, debugging flags, and more. The
following table details most of these variables.

More information on these variables can be found in the perlvar documentation that comes with Perl
distributions. The format and the location of this documentation depend on your platform and the Perl
distribution you are using. Generally speaking, Linux users can access the perlvar docs by using
man perlvar.

Variable Use

$_ The default parameter for a lot of functions.

$. Holds the current record or line number of the file handle that was last read. It is
read-only and will be reset to 0 when the file handle is closed.

$/ Holds the input record separator. The record separator is usually the newline
character. However, if $/ is set to an empty string, two or more newlines in the
input file will be treated as one.

$, The output separator for the print() function. Normally, this variable is an
empty string. However, setting $, to a newline might be useful if you need to
print each element in the parameter list on a separate line.

$\ Added as an invisible last element to the parameters passed to the print()
function. Normally, an empty string, but if you want to add a newline or some
other suffix to everything that is printed, you can assign the suffix to $.

$# The default format for printed numbers. Normally, it’s set to %.20g, but you can
use the format specifiers covered in the section “Example: Printing Revisited” in
Chapter 9 to specify your own default format.

$% Holds the current page number for the default file handle. If you use select()
to change the default file handle, $% will change to reflect the page number of
the newly selected file handle.

$= Holds the current page length for the default file handle. Changing the default
file handle will change $= to reflect the page length of the new file handle.

$- Holds the number of lines left to print for the default file handle. Changing the
default file handle will change $- to reflect the number of lines left to print for
the new file handle.

$~ Holds the name of the default line format for the default file handle. Normally,
it is equal to the file handle’s name.

$^ Holds the name of the default heading format for the default file handle.
Normally, it is equal to the file handle’s name with _TOP appended to it.

$| If nonzero, will flush the output buffer after every write() or print()
function. Normally, it is set to 0.

374

Chapter 25

28_588206 ch25.qxd 6/30/05 12:52 AM Page 374

Variable Use

$$ This UNIX-based variable holds the process number of the process running the
Perl interpreter.

$? Holds the status of the last pipe close, back-quote string, or system() function.

$& Holds the string that was matched by the last successful pattern match.

$` Holds the string that preceded whatever was matched by the last successful
pattern match.

$’ Holds the string that followed whatever was matched by the last successful
pattern match.

$+ Holds the string matched by the last bracket in the last successful pattern
match. For example, the statement /Fieldname: (.*)|Fldname: (.*)/ &&
($fName = $+); will find the name of a field even if you don’t know which of
the two possible spellings will be used.

$* Changes the interpretation of the ^ and $ pattern anchors. Setting $* to 1 is
the same as using the /m option with the regular expression matching and
substitution operators. Normally, $* is equal to 0.

$0 Holds the name of the file containing the Perl script being executed.

$<number> This group of variables ($1, $2, $3, and so on) holds the regular expression
pattern memory. Each set of parentheses in a pattern stores the string that
matches the components surrounded by the parentheses into one of the
$<number> variables.

$[Holds the base array index. Normally, it’s set to 0. Most Perl authors
recommend against changing it without a very good reason.

$] Holds a string that identifies which version of Perl you are using. When used
in a numeric context, it will be equal to the version number plus the patch level
divided by 1000.

$” This is the separator used between list elements when an array variable is
interpolated into a double-quoted string. Normally, its value is a space
character.

$; Holds the subscript separator for multidimensional array emulation. Its use
is beyond the scope of this book.

$! When used in a numeric context, holds the current value of errno. If used in
a string context, will hold the error string associated with errno.

$@ Holds the syntax error message, if any, from the last eval() function call.

$< This UNIX-based variable holds the read uid of the current process.

$> This UNIX-based variable holds the effective uid of the current process.

$) This UNIX-based variable holds the read gid of the current process. If the
process belongs to multiple groups, $) will hold a string consisting of the group
names separated by spaces.

Table continued on following page

375

Perl Language

28_588206 ch25.qxd 6/30/05 12:52 AM Page 375

Variable Use

$: Holds a string that consists of the characters that can be used to end a word
when word wrapping is performed by the ^ report formatting character.
Normally, the string consists of the space, newline, and dash characters.

$^D Holds the current value of the debugging flags.

$^F Holds the value of the maximum system file description. Normally, it’s set to 2.
The use of this variable is beyond the scope of this book.

$^I Holds the file extension used to create a backup file for the in-place editing
specified by the -i command line option. For example, it could be equal to
“.bak.”

$^L Holds the string used to eject a page for report printing.

$^P This variable is an internal flag that the debugger clears so that it will not debug
itself.

$^T Holds the time, in seconds, at which the script begins running.

$^W Holds the current value of the -w command line option.

$^X Holds the full pathname of the Perl interpreter being used to run the current
script.

$ARGV Holds the name of the current file being read when using the diamond
operator (<>).

@ARGV This array variable holds a list of the command line arguments. You can use
$#ARGV to determine the number of arguments minus one.

@F This array variable holds the list returned from autosplit mode. Autosplit mode
is associated with the -a command line option.

@Inc This array variable holds a list of directories where Perl can look for scripts to
execute. The list is mainly used by the require statement.

%Inc This hash variable has entries for each filename included by do or require
statements. The keys of the hash entries are the filenames, and the values are the
paths where the files were found.

%ENV This hash variable contains entries for your current environment variables.
Changing or adding an entry affects only the current process or a child process,
never the parent process. See the section “Example: Using the %ENV Variable”
later in this chapter.

%SIG This hash variable contains entries for signal handlers.

_ This file handle (the underscore) can be used when testing files. If used, the
information about the last file tested will be used to evaluate the new test.

DATA This file handle refers to any data following __END__.

STDERR This file handle is used to send output to the standard error file. Normally, this
is connected to the display, but it can be redirected if needed.

376

Chapter 25

28_588206 ch25.qxd 6/30/05 12:52 AM Page 376

Variable Use

STDIN This file handle is used to read input from the standard input file. Normally, this
is connected to the keyboard, but it can be changed.

STDOUT This file handle is used to send output to the standard output file. Normally, this
is the display, but it can be changed.

Calculations and Operators
Perl supports the standard operators for its various data types. The following tables outline the basic
operators available in Perl.

Perl Arithmetic Operators

Operator Use

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

** Exponent

++ Increment

-- Decrement

Perl Assignment Operators

Operator Use

= Assignment

+= Increment assignment

-= Decrement assignment

*= Multiplication assignment

/= Division assignment

%= Modulus assignment

**= Exponential assignment

.= String concatenation assignment

377

Perl Language

28_588206 ch25.qxd 6/30/05 12:52 AM Page 377

Perl Comparison Operators

Operator Use

== Numeric is equal to

!= Numeric is not equal to

> Numeric is greater than

< Numeric is less than

>= Numeric is greater than or equal to

<= Numeric is less than or equal to

eq String equality

ne String nonequality

gt String greater than

lt String less than

ge String greater than or equal to

le String less than or equal to

Perl Logical Operators

Operator Use

&& And

|| Or

! Not

Perl Bitwise Operators

Operator Use

& And

| Or

^ Xor

~ Not

<< Left shift

>> Right shift

378

Chapter 25

28_588206 ch25.qxd 6/30/05 12:52 AM Page 378

Perl Miscellaneous Operators

Operator Use

. Object/property/method separator

? Condition operator

delete Delete specified object

new Create new object

this Reference current object

ref Type of object (number, string, and so on)

void Evaluate expression without return value

String Operators

Operator Use

. Concatenation

x Repetition

String Tokens

Token Character

\b Backspace

\e Escape

\t Horizontal Tab

\n Line feed

\v Vertical Tab

\f Form feed

\r Carriage return

\” Double quote

\’ Single quote

\$ Dollar sign

\@ At sign

\\ Backslash

379

Perl Language

28_588206 ch25.qxd 6/30/05 12:52 AM Page 379

Control Structures
Like other languages, Perl supports many different control structures that can be used to execute partic-
ular blocks of code based on decisions or repeat blocks of code while a particular condition is true. The
following sections cover the various control structures available in Perl.

While and Until
The while loop executes one or more lines of code while a specified expression remains true. The while
loop has the following syntax:

while (<expression>) {
statement(s) to execute

}

Because the <expression> is evaluated at the beginning of the loop, the statement(s) will not be exe-
cuted if the <expression> is false at the beginning of the loop. For example, the following loop will
execute 20 times, each iteration of the loop incrementing x until it reaches 20:

my $x = 0;
while ($x <= 20) { # do until $x = 20 (will not execute when x = 21)

$x++; # increment x
}

The until loop is similar to the while loop except that the loop is executed until the expression is false:

until (<expression>) {
statement(s) to execute while expression is true

}

For
The for loop executes statement(s) a specific number of times and is governed by two expressions and a
condition:

for (<initial_value>; <condition>; <loop_expression>) {
statement(s) to execute

}

The <initial_value> expression is evaluated at the beginning of the loop; this event occurs only
before the first iteration of the loop. The <condition> is evaluated at the beginning of each loop itera-
tion. If the condition returns false, the current iteration is executed; if the condition returns true, the loop
exits and the script execution continues after the loop’s block. At the end of each loop iteration, the
<loop_expression> is evaluated.

Although their usage can vary, for loops are generally used to step through a range of values via a spec-
ified increment. For example, the following example begins with the variable x equal to 1 and exits when
x equals 20 — each loop iteration increments x by 1:

for ($x = 1; $x <= 20; $x++) { # for $x = 1 to 20
statement(s) to execute

}

380

Chapter 25

28_588206 ch25.qxd 6/30/05 12:52 AM Page 380

Note that the <loop_expression> is not limited to an increment expression; the expression should
advance the appropriate values toward the exit condition but can be any valid expression. For example,
consider the two following snippets of code:

for ($x = 20; $x >= 1; $x--) { # for $x = 20 to 1
statement(s) to execute

}

for ($x = 2; $x <= 40; $x+=2) { # for $x = 2 to 40, by 2 (even numbers only)
statement(s) to execute

}

Foreach
The foreach loop is similar to that of a normal for, but it assigns values to the controlling variable from
a list, one after another, until all values have been assigned. This loop is handy for finding the largest
element, printing all the elements (or performing a particular task on all elements), or simply seeing if a
given value is a member of a list. The foreach structure has the following syntax:

foreach $<variable> (@<array/list>) {
statement(s) to execute with $<variable>

}

For example, the following code would print all the values in the $names array, each followed by a new-
line (\n):

my @names = (“Steve”,”Terri”,”Ian”,”Angie”,”Branden”);
foreach $name (@names) {

print $name.”\n”; # Will print all values from the names array
}

You can also use foreach with a static list:

foreach $name (“Steve”,”Terri”,”Ian”,”Angie”,”Branden”) {
print $name.”\n”; # Will print all values from the list

}

If Else
The if and if else constructs execute a block of code depending on the evaluation (true or false) of an
expression. The if construct has the following syntax:

if (<expression>) {
statement(s) to execute if expression is true

} [else {
statement(s) to execute if expression is false

}]

For example, the following code tests if the value stored in i is the number 2:

if (i == 2) {
statement(s) to execute if the value in i is 2

}

381

Perl Language

28_588206 ch25.qxd 6/30/05 12:52 AM Page 381

The following code will execute one block of code if the value of i is an odd number, another block of
code if the value of i is an even number:

if ((i % 2) != 0) {
statement(s) to execute if i is odd

} else {
statement(s) to execute if i is even

}

You can also use complex expressions in an if loop, as in the following example:

if ((i = 2) && (t = 31) && (name = “Panama”)) {
statement(s) to execute if all three conditions are true

}

You can also create else if constructs in JavaScript by nesting if statements within one another, as
shown in the following code:

if ((i % 2) != 0) {
statement(s) to execute if i is odd

} else
if (i == 12) {
statement(s) to execute if i is 12
}

}

However, Perl provides the elsif directive for just this purpose:

if ((i % 2) != 0) {
statement(s) to execute if i is odd

} elsif (i == 12) {
statement(s) to execute if i is 12
}

}

More Loop Control — Continue, Next, Last, Redo
Perl offers more loop control mechanisms than standard languages. The following table summarizes the
control words and their effect on a loop:

Control Use

continue Performs additional statements at the end of each loop iteration (see notes after
this table).

next Skip immediately to the conditional statement, bypassing any other statements.

last Exit the current loop as though the condition had been met.

redo Repeat the current iteration of the loop. (Note that neither the increment/
decrement expression nor the conditional expression is evaluated before
restarting the block.)

382

Chapter 25

28_588206 ch25.qxd 6/30/05 12:52 AM Page 382

The continue statement creates a special block of code that is executed at the end of each loop iteration,
immediately before the loop condition expression is evaluated. A continue block is executed even in
the event that the loop does a next or redo but not a last (last skips the continue block). A while
loop with a continue block would resemble the following:

while (<expression>) {
redo jumps to here
statements;

} continue {
next jumps to here
statements;
standard loop jumps back to <expression>

}
last jumps to here

A loop without a continue block is assumed to have an empty continue block.

Regular Expressions
One technology that Perl is renowned for is regular expressions (commonly abbreviated regex). Regular
expressions are special strings used as a template to match content, a kind of search expression in a way.
Regular expressions are used in one of three ways: to match, to substitute, and to translate. Using regu-
lar expressions, you can construct advanced pattern-matching algorithms. The following sections cover
the basics of Perl regular expressions.

Coverage of regular expressions can fill a book in itself. This section serves only as an introduction to
the subject.

Regular Expression Operations
Regular expressions have three main operations in Perl: matching, substitution, and translation. In Perl
you delimit regular expressions with forward slashes, prefixing the expression with the operator. An
example of each operator’s syntax is shown in the following code:

m/<expression>/ # match expression
s/<expression1>/<expression2>/ # substitute expression2 for expression1
tr/<expression>/ # translate expression

By default, Perl uses the built-in variable $_ as the space to be searched/matched by a regular expres-
sion and the variables $n ($1, $2, and so on) as variables to store data returned from regular expression
operations. You can also use the regex assignment operator (=~) to perform a regex operation on any
variable’s content. For example, to perform a regex operation on the text stored in the string variable
$content, you could use the following code:

$content =~ /<regex_pattern>/;

If the pattern matches content in the searched variable, the expression will return TRUE. Therefore, you
can also use regular expressions within control structures, as in the following code example:

383

Perl Language

28_588206 ch25.qxd 6/30/05 12:52 AM Page 383

if ($content =~ /^Yabba(.*)Doo!$/) {
do something if regex found in $content

}

Regex Special Characters
The following table describes some of the more popular special characters used in regular expressions.

Character Use

^ Match beginning of line

$ Match end of line

. Match any character (except newline)

| Specify alternatives to match

[] Specify group or range to match

\ Escape the next character

Other character Match literal character

You can modify each matching character or expression with a matching quantifier, specifying how many
matches should be found. The valid quantifiers are described in the following table.

Quantifier Meaning

* Match 0 or more times

+ Match 1 or more times

? Match 0 or 1 times

{n} Match exactly n times

{n,} Match at least n times

{n,m} Match between n and m times (inclusive)

Perl regular expressions also have meta and control characters that can be used in expressions. The meta
and control characters are described in the next table.

Character Meaning

\t Tab

\n Newline

\r Carriage return

\f Form feed

384

Chapter 25

28_588206 ch25.qxd 6/30/05 12:52 AM Page 384

Character Meaning

\d and \D Digit and nondigit

\s and \S Space and nonspace (white space and non–white space)

\w and \W Word and nonword

\b and \B Word and nonword boundary

Example Expressions
Before moving on to how regular expressions can be used in Perl, it is important to understand how the
pattern-matching strings are constructed and what they match.

As mentioned in the previous section, an asterisk quantifier (*) is used to match 0 or more of a particular
character. Consider the following expression:

ba*h

This expression would match bah, baah, baaah, and so on, as well as bh. The * quantifies that the a
should be matched 0 (bh) or more (baaaaah) times.

If the + quantifier were used instead of * (for example, ba+h), bh would not be matched because the a
would have to be matched at least once.

Using the group/range construct ([and]), you can specify a group of characters or a contiguous range
of characters to match. To specify a group of characters, you simply list them in between the brackets.
For example, consider the following expression:

b[uo]t

This expression would match but and bot (either a u or an o between the b and t). To specify a range,
you list the beginning and ending character separated by a dash (-). Ranges can be included in groups
simply by listing them next to other elements. For example, consider the following expressions and com-
ments indicating what they would match:

[a-z] # any single lowercase letter
[a-zA-Z] # any single letter
[0123456789] or [0-9] # any single number
[0-9A-CZ] # any single number, a capital letter A-C, or a capital letter Z

A caret (^) can be used within a group/range construct to negate it. For example, the following expres-
sion would match anything except a single number:

[^0-9]

Modifying Expressions
There are a few characters that can be appended after the regular expression (after the closing /), modi-
fying how the regular expression is applied. The modifiers are listed in the following table:

385

Perl Language

28_588206 ch25.qxd 6/30/05 12:52 AM Page 385

Modifier Meaning

i Case-insensitive match

g Global match (useful mainly with substitutions)

m Match across multiple lines

s Treat string as one line (.will then match newlines)

For example, the global switch (g) can be used so that a match will replace all substrings matched, not
just the first substring (as is the default):

$_ = “Yabba Dabba Doo!”;
s/abba/xxxx/; # Yields “Yxxxx Dabba Doo!”
$_ = “Yabba Dabba Doo!”;
s/abba/xxxx/g; # Yields “Yxxxx Dxxxx Doo!”

Memorizing Substrings
If you enclose parts of an expression in parenthesis, whatever is matched by the parenthetical pattern
will be returned in the appropriate $n variable (first parenthetical in $1, second parenthetical in $2, and
so forth). For example, the following code would print “abba” and “Doo!”:

#!/usr/bin/perl

$_ = “Yabba Dabba Doo!”;
match everything between “Y” and “<space>Dabba”
and everything after “Dabba”
/^Y(.*)\sDabba(.*)$/;

print $1.”\n”.$2.”\n”;

The parentheticals can also be used in the expression as shorthand match expressions by prefixing the
appropriate number with a backslash (\1 for the first parenthetical, and so on). Of course, the shorthand
must come after the parenthetical for which it is a match. For example, the following expression matches
the earlier “Yabba Dabba Doo!” example:

/^Y(.*)\sD\1.*/ # match first Y”abba” and use shorthand (\1) for second D”abba”

Built-in Functions
Perl has a host of built-in functions for manipulating data. The functions are accessed in typical fashion
for programming languages:

function_name(<argument(s)>)

Most functions return values; therefore, you can use functions to make assignments, use them as/in
expressions in loop statements, and so on.

386

Chapter 25

28_588206 ch25.qxd 6/30/05 12:52 AM Page 386

Strictly speaking, all functions return values. However, not all functions can be relied on to return mean-
ingful values.

A fairly comprehensive list of the more popular built-in Perl functions can be found in Appendix D,
“Perl Language Reference.”

User-Defined Functions
You can create your own functions by using the sub directive. User-defined functions have the following
syntax:

sub <function_name> {
function statements
return <value>;

}

Note that Perl does not include function arguments in the function definition as in most other languages.
That is because the arguments sent to the function are automatically stored in the $_ variable array. The
first argument is stored in $_[0], the second argument is stored in $_[1], and so forth. Within the func-
tion, it is the programmer’s duty to distill the array into useful variables. For example, to create a func-
tion to find the area of a circle, you could use code similar to the following:

sub areaofcircle {
my $radius = $_[0];
area = pi * (r squared)
my $area = 3.1415 * ($radius ** 2);
return $area;

}

A popular and efficient way of distilling function parameters is to use code similar to the following:

my(
$firstparam,
$secondparam,
$thirdparam,
$fourthparam,

) = @_;

This code transfers the contents of the $_ array (referenced in its entirety by @_) to the variables speci-
fied. (Of course, you would want to use variable names that are more meaningful to your function.)

It is worth noting that use of the return function is not necessary if the last expression evaluated con-
tains the desired return value (as is the case in the areaofcircle() function example). However, it is
usually best to be explicit with your code and always use the return function.

File Operations
One of the advantages of using CGI programs is that they can read and write to the filesystem, and Perl is
no exception. Perl includes quite a few functions for dealing with file IO, covered in the following sections.

387

Perl Language

28_588206 ch25.qxd 6/30/05 12:52 AM Page 387

Standard Operating Procedure
To access files, there are three operations that you need to perform:

❑ Open the file and assign a file handle.

❑ Perform file operations (read/write).

❑ Close file handle, thereby closing the open file.

In an effort to make programs more uniform, there are three connections that always exist when your pro-
gram starts. These are STDIN, STDOUT, and SDTERR (these variable names are open file handles).

Opening a File
To open a file, Perl uses (strangely enough) the open function. The open function has the following syntax:

open(FILEHANDLE, “<filename>”)

For example, to open the file test.txt you would use code similar to the following:

open(FILEHANDLE,”test.txt”) || die “cannot open file”;

The preceding syntax will result in the script exiting and displaying “cannot open file” if the open
function does not succeed.

The FILEHANDLE can be any valid variable name but should be descriptive to be easily identified as a
file handle. One standard practice is to capitalize the file handle variables.

The default operation of the open function is to open a file for reading. To open a file for writing, you
need to preface the filename with a >; to append to a file, you would preface the name with >>. Both of
these conventions are standard input redirectors.

open(FILETOWRITE,”>test.txt”)

open(FILETOAPPEND,”>>test.txt”)

Reading from a Text File
To read from a text file, Perl uses the diamond operator, angle brackets (< >) enclosing the file handle.
Each call by the diamond operator reads a line from the linked file, which is stored in the default vari-
able ($_).

For example, the following snippet of code will read all lines from the file test.txt:

...
open (FILE,”test.txt) || die “cannot open file”;
while (<FILE>) {

do something useful with input
}
...

388

Chapter 25

28_588206 ch25.qxd 6/30/05 12:52 AM Page 388

Writing to a Text File
To write to a text file, Perl uses the standard print functions, simply redirected to the appropriate file
handle. To redirect the print output, the file handle is specified after the print command but before the
output:

print FILEHANDLE <output>;

For example, the following code snippet will write the value of the $contents variable to the file
test.txt:

...
my $contents = “This is a line to write to a file”;
open (FILE,”>test.txt”) || die “cannot open file”;
print FILE $contents;
...

The select function can be used to change the standard output handle from STDOUT to the specified
file handle. For example, both of the following code snippets accomplish the same thing, directing the
print function’s output to the file handled by the file handle FILE:

print FILE “output string”;

select(FILE);
print “output string”;

Note that the select function also returns the current file handle so you can reset it later if you would
like.

Closing a File
To close a file, you simply use the close function with the appropriate file handle. For example, to close
a file opened with the FILE file handle, you would use the following code:

close(FILE);

Once a file has been closed, it cannot be read from or written to. However, until a written file is closed,
its contents cannot be relied on — the operating system may not write its buffers until the file is closed.

Working with Binary Files
Binary files are handled by a similar method as text files, but the content is handled differently. Each char-
acter in a binary file is handled separately. In text files, for example, the end of a line is handled as one char-
acter even if (in DOS/Windows format) it is indeed two characters (line feed and carriage return).

One important difference in using the read function with binary files is the addition of a buffer and length
parameters within the function. When used with binary files, the read function has the following syntax:

read(FILEHANDLE, $<buffer_var>, byte_length)

389

Perl Language

28_588206 ch25.qxd 6/30/05 12:52 AM Page 389

The buffer variable can be any scalar variable, but it must be declared before being used.

For example, the following code snippet will read a binary file in 4K chunks:

...
my $buffer = “”;
open(FILE,”test.bin”) || die “cannot open file”;
while (read(FILE, $buffer, 4096)) {

do something useful with contents ($buffer)
}
...

This code reads 4K chunks until the read fails, at which time the while statement exists.

Writing to binary files in Perl is no different from writing to text files.

Getting File Information
There are many functions in Perl to get extra information about files on the filesystem. The following
table lists the tests available to be performed on files and the data they return.

Operator Meaning

-A Returns time of last access

-b Is a block device

-B Is a binary file

-c Is a character device

-C Returns the time of last change

-d Is a directory

-e Exists

-f Is a regular file

-g Is setgid bit set

-k Is sticky bit set

-l Is a symbolic link

-M Returns age of file

-o Is owned by current user

-O Is owned by the read user

-p Is a named pipe

-r Can be read from

-R Can be read by the current user

390

Chapter 25

28_588206 ch25.qxd 6/30/05 12:52 AM Page 390

Operator Meaning

-s Returns size of file

-S Is a socket

-t Is open to a tty

-T Is a text file

-u Is setuid bit set

-w Can be written to

-W Can be written to by the current user

-x Can be executed

-X Can be executed by the current user

-z Is size zero

For example, the following code tests if a file exists and can be written to:

$_ = “test.txt”;
if ((-f) && (-w)) {

print “File exists and can be written to”;
}

Other File Functions
Many other functions are available in Perl to deal with files. There are functions to create and remove
directories, read directory contents, change file permissions, and more. A comprehensive list appears in
Appendix D, “Perl Language Reference.”

Objects
Perl has robust support for object data types. Although a full description of object-oriented program-
ming is beyond the scope of this book, the following sections provide a primer on Perl’s handling of
objects.

Perl’s Object Nomenclature
As with all things Perl, there are several ways (and related syntax) to achieve a desired goal. In this case,
there are several ways to work with objects. We will stick with the standard -> separator syntax familiar
to most object-oriented programmers.

This syntax uses -> to separate objects and methods. For example, when creating a new object of class
dog, you use the new() method similarly to the following:

doberman = dog_object->new();

391

Perl Language

28_588206 ch25.qxd 6/30/05 12:52 AM Page 391

Object properties are assigned using the associative assignment operator, =>. This creates the properties
as hashes (associative arrays) and has the benefit of providing a ready-made method for accessing prop-
erty values using simple statements such as the following:

print %{doberman}->{‘color’};

Perl Constructors
One easy way to create constructors is to use a separate namespace in Perl to create a new() function
and associated initialization routines. For example, to create a constructor for the dog class, you could
use code similar to the following:

package dog_object;
sub new {

my $class = shift;
my %params = @_;

bless {
“color” => $params{“color”},
“size” => $params{“size”}

}, $class;

}

This code defines a new namespace (dog_object) where the new() function can be initialized and dis-
tinguished from other new() functions in the script. The new() function itself shifts the class name off
the parameter stack and assigns the rest of the parameters to the params associative array. This array is
then used to initialize the object’s properties, and the object is reassigned as a data type of $class.

Accessing Property Values
As previously mentioned, using the methods outlined in this chapter, you can access an object’s proper-
ties using associative array methods. For example, let’s expand upon the dog object example and create
a full script that creates an object and outputs its properties:

#!/usr/bin/perl

dog object constructor
package dog_object;

sub new {

my $class = shift;
my %params = @_;

bless {
“color” => $params{“color”},
“size” => $params{“size”}

}, $class;
}

392

Chapter 25

28_588206 ch25.qxd 6/30/05 12:52 AM Page 392

back to normal namespace
package main;

create a new dog object (doberman: color brown, size large)
$doberman = dog_object->new(“color” => “brown”, “size” => “large”);

print the new object’s properties
print “A doberman is a “ . %{$doberman}->{‘size’} . “, “;
print %{$doberman}->{‘color’} . “ dog.\n”;

Modules
As mentioned early in this chapter, a lot of Perl’s power comes from the abundance of prefab modules
available for use with your scripts. Many of these scripts are available in CPAN (www.cpan.org).

To use a module, you must install it into your Perl modules directory and then declare the module
within your script. You can employ the use directive to import a module, its classes, variables, and
methods for use in your script. The syntax for the use directive is as follows:

use <module_name> qw (<list of exports>);

For example, to use the popular CGI module in your scripts, you could use the following at the begin-
ning of your script:

use CGI qw/:standard/;

The qw function (quote words) is used to quickly expand a list into single-quoted words. Most Perl
modules have functions bundled into lists such as :standard; specifying qw(:standard) in a use
statement will expand the list into the individual single-quoted functions to include. Alternatively,
you could specify the individual functions (comma-separated as single words if using qw or comma-
separated single-quoted names if not using qw). Note that you shouldn’t use commas inside a qw with
slashes as delimiters (qw//). Doing so will cause an error.

Using Perl for CGI
Perl is very popular for CGI use due to its simple structure, speed, stability, unrivaled text handling, and
number of available modules. Using various modules, you can tie Perl, and therefore your Web content,
into almost any data or technology.

Perl has the same requirements for CGI as any other scripting language:

❑ Your script must be able to output to standard output.

❑ Your script must supply HTTP headers.

❑ Your script must supply compliant HTML (or whatever content dictated by the headers it
supplies).

393

Perl Language

28_588206 ch25.qxd 6/30/05 12:52 AM Page 393

By itself, Perl can accomplish a lot of system integration with Web documents — directory listings, read-
ing/writing files, and so on. However, to truly utilize the CGI power of Perl, it is highly suggested that
you use the CGI.pm module.

This module, available via CPAN (www.cpan.org) or packaged specifically for most Linux distributions,
provides the interface for receiving POST and GET data, as well as outputting most XHTML tags and
related data. The latest version of CGI.pm operates using the Perl object model — a new CGI object is
created and acted upon to output the appropriate XHTML.

A quick example of how easy CGI.pm can make your CGI work is shown in the following code:

#!/usr/bin/perl -w

Use CGI routines
use CGI;
Create CGI object
$q = new CGI;
Output HTTP header
print $q->header;
Start the document, specifying the document title
print $q->start_html(‘Document Title’);
Output a H1 Tag (containing “Header Text”
print $q->h1(‘Header Text’);
End the document
$q->end_html;

Retrieving data sent via POST or GET is equally simple by accessing the passed data via the Vars parame-
ter of the CGI object ($cgi->Vars). The type of data (GET/POST) can be ascertained by examining the
Request Method environment variable ($ENV{REQUEST_METHOD}, which will contain GET or POST).

Example 2 in Chapter 28 shows how to parse GET and POST data using the CGI module.

Perl Errors and Troubleshooting
You are bound to encounter problems when programming CGI applications in Perl. This section gives
you a few examples of how to troubleshoot and fix problems you encounter.

Maximum Error Reporting
The first thing you should do to help troubleshoot errors is maximize the information Perl reports when
it encounters an error. There are two methods to help increase the error text reported by Perl.

The first way is to use the w flag when running Perl. In your scripts, you simply add the flag to the inter-
preter line at the top of the script:

#!/usr/bin/perl -w

394

Chapter 25

28_588206 ch25.qxd 6/30/05 12:52 AM Page 394

The second way to increase data reporting is to use the CGI::Carp fatalsToBrowser routine. Including
this function causes Perl to attempt to output any errors to the browser window. This directive can be spec-
ified using the following line in your scripts:

use CGI::Carp qw(fatalsToBrowser);

For example, the following script will output the error in the die function, in this case ---An error
occurred here---, as shown in Figure 25-1:

#!/usr/bin/perl –w
use CGI::Carp qw(fatalsToBrowser);
die “---An error occurred here---”;

Figure 25-1

The fatalsToBrowser directive helps avoid the problem described in the next section — the dreaded
Apache Internal Server Error message.

If you want to, change the default message supplied by the fatalsToBrowser routine by also import-
ing the CGI::Carp set_message function and use it to define a more appropriate message, as in the fol-
lowing sample:

#!/usr/bin/perl –w
use CGI::Carp qw(fatalsToBrowser);
set_message(“This is a custom error message.”);

The Apache Internal Server Error Message
The most prevalent message you will encounter with Perl CGI scripts is shown in Figure 25-2:

395

Perl Language

28_588206 ch25.qxd 6/30/05 12:52 AM Page 395

Figure 25-2

This error doesn’t include a lot of useful information, but it does throw up a flag that should cause you
to check the Apache error log. The following error typically accompanies the Internal Server browser
message:

[Sun Apr 17 15:26:23 2005] [error] [client 192.168.1.13] Premature end of
script headers: /var/www/errortobrowser.pl

The root of the actual problem is that Perl script spit out an error message before it sent appropriate HTTP
headers allowing the Web server and browser to communicate properly. One way to troubleshoot the
actual error is to run the script from the command line and see what error the interpreter is reporting.

Summary
This chapter provided a primer to the Perl scripting language. Chapter 26 covers the basics of Python,
another popular scripting language used on the Web. Insight into using other executable code for CGI
purposes is covered in Chapter 27, and practical examples using all forms of CGI are presented in
Chapter 28.

396

Chapter 25

28_588206 ch25.qxd 6/30/05 12:52 AM Page 396

The Python Language
Python is a rising star in CGI scripting. Touted for its uncomplicated nature, readability, and
robustness, it has grown to be one of the most widely used Web and system scripting languages.
Python is interpreted and object oriented. Python has more features than Perl or Tcl and is easier to
learn and use. The documentation and tutorials available to aid in the learning process are much
clearer than those available for PHP. Python also edges out PHP in the elegant way it handles
namespaces. Python has a wide variety of uses, including the following:

❑ Command-line tools development

❑ Web development

❑ Component integration

❑ Database access and manipulation

❑ Distributed programming

❑ Parsing

❑ Image processing

❑ Scientific programming

The History of Python
Python was invented by Guido van Rossum; development began in the late 1980s. Van Rossum
began work on Python in the Netherlands at the National Research Institute for Mathematics and
Computer Science or Centrum voor Wiskunde en Informatica (CWI), as it is known in Dutch. He
got assigned to a project called the Amoeba Project, which needed a scripting language that he was
assigned to develop. That scripting language was the beginning of Python, which van Rossum
originally intended to be a second language for C and C++ developers to use when a powerful
shell-scripting language was needed to script something written for a single, particular use. Since
then, Python, now owned by the Python Software Foundation, has developed a reputation for
clean syntax and productivity. Guido van Rossum describes Python as sharing some characteris-
tics with scripting languages, but also sharing some characteristics with more traditional program-
ming languages.

29_588206 ch26.qxd 6/30/05 12:45 AM Page 397

Additional Python Resources
This chapter provides an overview of Python, but due to the scope of this book, it is simply an overview.
For more information on Python, consult the following resources:

❑ The Python.org Web site (http://www.python.org) — The main site for information and doc-
umentation on Python, downloading Python, reading online documentation to include a
detailed Module index, and following Python’s development.

❑ The Starship Python Web site (http://starship.python.net/) — A pretty good resource
for Python documentation, code examples, and so on, especially the search engine at http://
starship.python.net/crew/theller/pyhelp.cgi.

❑ Pythonware.com Web site (http://www.pythonware.com/) — A good source for Python
news, including a daily updated news log.

❑ The Zope Project (http://www.zope.org) — Zope is an Open Source Web applications server
primarily written in Python.

❑ The Graphical User Interface sites — There is not one single library for creating graphical user
interfaces with Python. Tkinter has the edge time-wise, although Python users often question
why wxPython is not the recommended library. If you are considering doing graphical user
interfaces with Python, consider both these sites:

❑ Tkinter (http://www.pythonware.com/library/) — The Tkinter library is based on
Tcl/Tk. It is the de facto standard for GUIs.

❑ WxPython (http://www.wxpython.org/) — An up-and-coming library, WxPython is
a cross between the wxWindows class library for C++ and Python.

Modules
A lot of Python’s functionality comes from the availability of prefab modules available for use with your
scripts. Many of these modules are listed in Appendix E, “Python Language Reference.” A more complete
list of modules for the current python version is available at http://docs.python.org/modindex.html.
Many modules are available, but if you don’t find one you need, you can write it yourself. The distutils
package provides support for building and installing your own modules. The new modules may be written
purely in Python or may be written as extension modules in C. You can also build them from a combination
of Python and C.

Python Interpreter
On a UNIX system, the Python interpreter is called an Integrated DeveLopment Environment (IDLE) but
is usually thought to be named after a character in the Monty Python comedy troop for which Python
itself was named. IDLE is usually installed as /usr/local/bin/python or /usr/bin/python. If its
location is in your PATH, you can start it by typing the following command: python.

On a Windows system, the Python IDE is GUI-based and is called PythonWin. PythonWin is usually
installed in the same directory as Python. The executable is called pythonwin.exe.

398

Chapter 26

29_588206 ch26.qxd 6/30/05 12:45 AM Page 398

Python is available for Mac, too. That project is called MacPython, and it contains the Mac version of
IDLE.

Whichever operating system you choose, you will find that, in interactive mode, the interpreter will
display a prompt of >>>. This prompt allows you to type in your Python commands. If any of these
commands are not built in, you must first import the module that contains that command, like this:

>>> import re

To exit the Python interpreter, type an end-of-file character (Control+D on UNIX, Control+Z on
Windows) at the primary prompt. The interpreter will exit with a zero exit status.

You can also invoke a Python script directly by making the first line of the script look like this,

#!/usr/local/bin/python

with the path representing the path to the Python interpreter. Although the preceding hard-coded method
works, on UNIX systems the preferred method is to use the env command, which will look for the Python
interpreter in your PATH. The env command is usually found in /bin or /usr/bin. In this case, the first line
of your script would look like this:

#! /usr/bin/env python

The names of Python scripts usually end with the extension .py. The script must have the executable
attribute set and may be called like this:

python file2execute

Or if it has the executable attribute set, it may simply be executed like this:

/path2script/file2execute

If you are planning to use Tkinter, you might need to set some environmental variables if Tcl/Tk is not
in a standard location. Set TK_LIBRARY and TCL_LIBRARY variables to point to the local Tcl and Tk
library file destinations. In some instances, the PYTHONPATH environment variable is used to specify
possible module locations. In Windows, the PYTHONPATH variable is stored in the Registry.

The os module’s environ function is used to turn the shell environment into a simple Python object.
The os.environ function will list the environment variables as follows:

>>> import os
>>> os.environ.keys()
[‘LESS’, ‘MINICOM’, ‘LESSOPEN’, ‘SSH_CLIENT’, ‘LOGNAME’, ‘USER’, ‘INPUTRC’,
‘QTDIR’, ‘PS2’, ‘PATH’, ‘PS1’, ‘LANG’, ‘KDEDIR’, ‘TERM’, ‘SHELL’, ‘XAUTHORITY’,
‘SHLVL’, ‘EDITOR’, ‘MANPATH’, ‘JAVA_HOME’, ‘HOME’, ‘PYTHONPATH’, ‘T1LIB_CONFIG’,
‘LS_OPTIONS’, ‘_’, ‘SSH_CONNECTION’, ‘WINDOW_MANAGER’, ‘GDK_USE_XFT’, ‘SSH_TTY’,
‘LC_COLLATE’, ‘HOSTNAME’, ‘CPLUS_INCLUDE_PATH’, ‘PWD’, ‘MAIL’, ‘LS_COLORS’]

Because the PYTHONPATH previously looked at is listed, let’s look to see what it is set to with the
environ function, as follows:

399

The Python Language

29_588206 ch26.qxd 6/30/05 12:45 AM Page 399

>>> import os
>>> os.environ[‘PYTHONPATH’]
‘/usr/lib/python2.4/;/usr/local/lib/mylib’

If the PYTHONPATH variable is not set, the sys.path is searched. Typically, developers will add their own
modules to the site-packages of the Python installation.

In recent Python versions, you can also use this functionality to set or change the PYTHONPATH like this:

>>> os.environ[‘PYTHONPATH’]=”/usr/lib/python2.4”
>>> os.environ[‘PYTHONPATH’]
‘/usr/lib/python2.4’

Basic Python Syntax
Python follows a syntax that can be summed up with a few simple rules:

❑ Comments are preceded by hash marks (#) and can begin anywhere in a line, although no active
code may follow it on the same line. Multiline comments should also be indented, with each
line preceded by a hash mark.

❑ Blocks of code, called suites, are delimited with indentation, typically four spaces. Spaces and
tabs should not be intermixed. Each time the level of indentation is increased, a new code block
begins. The end of that code block is marked by the reduction of indentation to match the previ-
ous level.

❑ A colon (:) separates the header of a code block from the rest of the suite.

❑ Newline (\n) is the standard line separator.

❑ Python statements are delimited by newlines, but single statements can be broken into multiple
lines by using backslashes (\) to continue a line.

❑ Functions are organized as importable modules. Each module is a separate Python file.

Data Types and Variables
Python uses dynamic data typing. This means that the Python compiler doesn’t assign a type to the
objects that it uses. The virtual machine instead does the assignment at run-time. This adds a great deal
of flexibility to Python, but it can also create errors that are difficult to find. For example, if a typographi-
cal error is made when typing the variable name, it will be recognized as a new variable, which may not
be immediately obvious to the person executing the code.

Data Types
Python supports the following five types of data:

❑ Numbers

❑ Strings

400

Chapter 26

29_588206 ch26.qxd 6/30/05 12:45 AM Page 400

❑ Lists

❑ Dictionaries

❑ Tuples

Numbers
Python supports four numerical types:

❑ int (signed integers) — Most 32-bit computers will offer an integer range from –231 to 231–1
(–2,147,483,648 to 2,147,483,647).

❑ long (long integers) — The range of Python longs are limited only by the amount of virtual
memory a system has. Longs may be represented in decimal, octal, or hexadecimal notation.
As in most other languages, long integers in decimal form are denoted by an uppercase L or a
lowercase l. Some examples follow:

❑ 99999999999L

❑ –23456l

❑ 0xD34F867CA0

❑ float (floating-point real values) — Floating-point numbers in Python are denoted by a decimal
point and either a lowercase e or an uppercase E and a positive (+) or negative (–) sign.
Examples follow:

❑ 0.99

❑ –953.234

❑ 96.7e3

❑ –1.609E-19

❑ complex (complex numbers) — Complex numbers have real and imaginary components.
Complex number attributes are accessible like this:

>>>myComplex = -7.345-1.53j
>>>myComplex
(-7.345-1.53j)

❑ If you want to see only the real portion of the number, it may be returned this way:

>>>myComplex.real
-7.345

❑ Likewise, to see only the imaginary portion, use the imag functionality, as follows:

>>>myComplex.imag
-1.53

❑ The conjugate function shows both:

>>>myComplex.conjugate()
(-7.345+1.53j)

401

The Python Language

29_588206 ch26.qxd 6/30/05 12:45 AM Page 401

Strings
Strings are immutable sequences of alphanumeric characters. The elements of a Python string may be
contained either within single quotes (tic marks) or double quotes. A single-quoted string may contain
double quotes and vice versa. Strings can also be contained in triple quotes. Because strings are immutable,
string functions do not change the string passed to it but instead return a new string. Due to Python’s
memory management capabilities, you might not notice when this happens. Consider the following
example where two strings are added together:

>>> string = “abcdef”
>>> id(string)
1077882912
>>> string = string + “ghi”
>>> string
‘abcdefghi’
>>> id(string)
1077879296

You can see from this example that the resulting string is not the same string that we started with.
Because strings are immutable, a new string with a new identity is created. Still, you’ll most likely refer
to it primarily by its variable name of string, so the fact that it is not the original string might be trans-
parent to you.

String Operators

Operator Use

+ Concatenation

% Format

* Repetition

r or R Raw string

u or U Unicode string

A string can be preceded by the character r, which means to take escape characters literally. They can
also be preceded by u to indicate that the string is of type Unicode. Here are some examples:

“Python is the bomb!”
‘I said, “Do it in Python!”’
‘Here is a string with a \n newline in it.’
r’Here is another string where the \n just means a slash and the letter n.’
u’Here is a unicode string.’

‘’’triple quotes’’’

Strings can be added together like this:

>>> string1 = “pre”
>>> string2 = “post”
>>> string1+string2
‘prepost’

402

Chapter 26

29_588206 ch26.qxd 6/30/05 12:45 AM Page 402

The repetition operator can be used to create a new string with multiple instances of the specified string.
Here is an example using string1, which we set in the preceding code to “pre”:

>>> string1*3
‘preprepre’

Strings can also be compared by numeric value.

>>> “hello” < “mellow”
True

String Methods

Operator Use

string.capitalize() Returns string with first character capitalized. For
example, ‘string’.capitalize returns “String”.

string.center(width[,fillchar]) Returns string centered in a new string padded with
fillchar on each side to length width. For example,
‘string’.center(10) returns “ string “.

string.count(sub[,start][,end]) Returns the number of times that sub appears in
string. Arguments start and end, if specified, and
are interpreted as slice notation. For example,
‘feroferofero’.count(fer) returns 3.

string.decode([encoding[,errors]]) Decodes the string using the codec registered for
encoding and using the error-handling scheme
specified by errors. For example,
‘string’.decode() returns u’string’.

string.encode([encoding[,errors]]) Returns the encoded string using the codec registered
by encoding and the error-handling scheme specified
by errors. For example, ‘string’.encode()
returns ‘string’.

string.endswith(suffix[,start[,end]]) Returns True if the string ends with the specified
suffix, otherwise returns False. The start and end
parameters limit where to search for string. For
example ‘string’.endswith(‘ing’) returns True.
‘string’.endswith(‘foo’) returns False.

string.expandtabs([tabsize)] Returns string with each tab replaced by a number of
spaces, as specified by tabsize.

string.find(sub[start[,end]]) Returns lowest index where sub can be found in
string. If start and end are specified, they limit
where to search for the substring. For example:
‘stringstringstring’.find(‘ing’,8,12)
returns 9.

string.lower() Returns string in lowercase letters. For example,
‘STRING’.lower() returns ‘string’.

Table continued on following page

403

The Python Language

29_588206 ch26.qxd 6/30/05 12:45 AM Page 403

Operator Use

string.join(words) Concatenates specified words with separator of
string. For example,
‘foo’.join([‘str’,’ing’,’str’,’ing’])
returns ‘strfooingfoostrfooing’.

string.split(sep) Returns string as separated at the specified separator.
For example, ‘string’.split(‘i’) returns ‘str’ and
‘ng’.

Python provides a powerful tool that is similar to the printf function in C. Strings may be formatted
using these format operators as in the following example:

>>> “Hello %s. You are number %i.” % (“Jake”, 77)
‘Hello Jake. You are number 77.’

The preceding is only one example. The following table illustrates some other options:

String Format Operators

Symbol Conversion

%c Character

%s String

%i Signed decimal integer

%d Signed decimal integer

%u Unsigned decimal integer

%o Octal integer

%x Hexadecimal integer

%X Hexadecimal integer

%e Exponential notation

%E Exponential notation

%f Float point real number

%g The shorter of %f and %e

%G The shorter of %f and %E

Lists
Python lists are zero-based, mutable sequences of elements, which might be numeric, strings, or some-
thing else.

404

Chapter 26

29_588206 ch26.qxd 6/30/05 12:45 AM Page 404

Lists are denoted by square brackets, and their elements are comma delimited. They look something
like this:

[1,2,3,4]
[`first`,`second`,`third`]

A number of methods are associated with a list instance: new, append, extend, insert, remove, sort,
reverse, and so on.

>>>mylist = [] #Create an empty list
>>>mylist
[]
>>>myotherlist = [1, `two` ,3] #Creates a list with initial values.
>>>mylist
[1, `two`, 3]
>>>mylist.append(`four`) #Add a new value to the end of the list.
>>>mylist
[1,` two`, 3, `four`]
>>>mylist.extend(`another`) #Adds each element of the list “another” as a separate
member of mylist.
>>>mylist
[1, `two`, 3, `four`, `a`, `n`, `o`, `t`, `h`, `e`, `r`]

Passing a list as a parameter to the append function causes the list to be seen as one member.

Another way to add items to a list is to add two lists, as follows:

>>>mylist+myotherlist
[1, `two`, 3, `four`, `a`, `n`, `o`, `t`, `h`, `e`, `r`, 1, `two`, 3]

Lists may be accessed by index, as well.

>>>mylist[0]
1

A negative index indicates that the count is to begin with the last element in the list.

>>>mylist[-2]
‘e’

A list can even be treated as a stack with the pop method, which would return the last member of the list.

>>>mylist.pop()
`r`

Dictionaries
Dictionaries are arrays of key-value pairs, each having a one-to-one relationship. The keys and values
may be nearly any type of Python object. Dictionaries are declared like this:

myDictionary={‘name’:’Jacob’,’hobby’:’Pokemon’,’sport’:’basketball’}

405

The Python Language

29_588206 ch26.qxd 6/30/05 12:45 AM Page 405

There are several ways to access the information in a dictionary. Among the most common are the
following:

hisHobby = myDictionary[‘hobby’] #Retrieves the value associated with hobby from
myDictionary and associates it with the variable hisHobby.
myDictionary[‘newfield’] = ‘value’ #Creates new dictionary key-value pair
(‘newfield’:’value’)

Tuples
Tuples are sequences of values similar to lists, except that tuples are immutable. A tuple is declared like so:

>>>vegetables = (‘carrot’,’potato’,’broccoli’,’celery’,’cauliflower’)

To get the third value of this (zero-indexed) tuple, use the following:

>>>vegetables[2]
‘broccoli’

However, because tuples are immutable, overwriting the third value with another value cannot be done
directly with the following:

>>>vegetables[2] = ‘newvalue’

This generates an error:

TypeError: object does not support item assignment

Instead, you can use slicing and concatenation to simulate the same thing. You make a new tuple by slic-
ing and concatenation, but it does not have the same identifier as the original tuple, because the original
tuple isn’t changed; simply bind the result to the same name as the old tuple.

>>> v = t = (1,2,3,4)
>>> t
(1, 2, 3, 4)
id(t)
1077685140
>>> v
(1, 2, 3, 4)
id(v)
1077685140

At this point, the two tuples are still the same. Now let’s do some slicing and concatenating of t, leaving
v alone. To do this, we rebind the return value to t in each step.

>>> t = t[:3]
>>> t
(1, 2, 3)
id(t)
1077858988
>>> t = t[:2]

406

Chapter 26

29_588206 ch26.qxd 6/30/05 12:45 AM Page 406

>>> t
(1, 2)
id(t)
1077883052
>>> t = t + (3,4)
>>> t
(1, 2, 3, 4)
id(t)
1077879348

In rechecking the value of tuple v and its identifier, you see that they haven’t changed.

>>> v
(1, 2, 3, 4)
id(v)

1077685140Variables
Python variables are untyped. You can use the same variable to contain different Python data types at
different times in your scripts. Of course, doing so can be quite confusing and is generally not consid-
ered good programming practice. Python takes care of typing issues behind the scenes, so no errors will
be generated by such a practice.

Another difference between Python variables and those of some other programming languages is that
Python variables don’t have to be declared. Just start using the variable and it exists. The type will be
assigned at run-time.

Variable Scope
The scope of a variable may be defined as the area of a program in which a variable is visible and the
length of time that variable is accessible for. There are three scopes in Python, shown here in the order
resolved by Python:

1. Local scope — Defined within a function or a class method

2. Module scope — Defined within a file

3. Built-in scope — Always available; defined within Python itself

Accessing objects not in the local scope
To access an object (a variable or a function) not in the local scope, it must be imported. You can import
the entire module and then use the variable name prefaced with the module name and a period, as in the
following example:

import sys
sys.exit()

The privilege of not having to declare variables is not without some cost. With Python, if you acciden-
tally reuse a variable name within the same scope, the first will be overwritten by the second. This can
lead to program bugs that are difficult to find and fix.

407

The Python Language

29_588206 ch26.qxd 6/30/05 12:45 AM Page 407

Another common mistake is to accidentally misspell a variable name in one place and spell it correctly in
another, again within the same scope. This causes the misspelled variable to be seen as a new variable
name and does not generate an error as it would if Python were more strongly typed.

Calculations and Operators
Python supports the standard mathematical operators for its various data types, and they work pretty
much the same as in other languages. The following tables outline the arithmetic operators available in
Python.

Python Arithmetic Operators

Operator Use

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

** Exponent

++??? Legal in Python but doesn’t act as in other languages. Instead because + is a
unary prefix, ++x parses to +(+(x)), which for numbers results in x.

Although Python’s primary assignment operator is the equal sign, Python supports a number of others,
as shown in the following table. It is worth noting that Python supports multiple assignment, whereby
all objects are assigned the same value, as in this example:

a = b = c = 11

Python Assignment Operators

Operator Use

= Assignment

+= Increment assignment

-= Decrement assignment

*= Multiplication assignment

/= Division assignment

408

Chapter 26

29_588206 ch26.qxd 6/30/05 12:45 AM Page 408

Operator Use

%= Modulus assignment

**= Exponential assignment

<<= Left shift assignment

>>= Right shift assignment

&= And assignment

^= Xor assignment

|= Or assignment

Python supports a pretty standard set of comparison operators. They behave much as expected, except
in the case of the < or >, which may be used in combination. The following sequence

>>> 3 > 2 > 1

is invalid in many languages, and actually means (3 > 2) and (2 > 1).

Python Comparison Operators

Operator Use

== Numeric is equal to

!= Numeric is not equal to

<> Alternate numeric is not equal to

> Numeric is greater than

< Numeric is less than

>= Numeric is greater than or equal to

<= Numeric is less than or equal to

Python Logical Operators

Operator Use

and And

or Or

not Not

409

The Python Language

29_588206 ch26.qxd 6/30/05 12:45 AM Page 409

Python Bitwise Operators

Operator Use

& And

| Or

^ Xor

>> Right Shift

<< Left Shift

Python Miscellaneous Operators

Operator Use

. Object/property/method separator

* Width or precision specifier

- Left justifier

+ Display the sign

<sp> Leave blank space before positive number

Add the octal leading zero ‘0’ or hexadecimal leading ‘0x’ or ‘0X’

0 Pad from left with zeroes instead of spaces

% ‘%%’ yields single literal ‘%’

Control Structures
Like many other languages, Python supports many different control structures that can be used to exe-
cute particular blocks of code based on decisions or repeat blocks of code while a particular condition is
true. The following sections cover the various control structures available in Python.

While Loop
The while loop executes one or more lines of code while a specified expression remains true. The
expression is tested prior to execution of the code stanza and again when the flow returns to the top of
the stanza. This loop has the following syntax:

while expression;
executeMe #executes if the while expression evaluates to True.

Because the expression is evaluated at the beginning of the loop, the statement(s) will not be executed at
all if the expression evaluates to false at the beginning of the loop. For example, the following loop will
execute 20 times, each iteration of the loop incrementing x = 20:

410

Chapter 26

29_588206 ch26.qxd 6/30/05 12:45 AM Page 410

x = 0;
while x <= 20

x += 1; # increment x if the while expression evaluates to True.

For Loop
The Python for loop is a bit different than the same loop in C or Perl. Whereas these languages execute
their loop based on the specified step and halting condition, in Python the for loop iterates its loop over
a sequence such as a list or a string. The statement(s) are executed a specific number of times depending
on the number of members in the sequence or the range of values passed to it:

>>> for each in [`first.txt`,`second.txt`,`third.txt`,`fourth.txt`]:
... print each, len(each)
...
one 3
two 3
three 5
four 4

Or using the range function:

>>> for each in range(4):
... print each
...
0
1
2
3

The loop iterates for each member in the specified range. In the first case, the range is determined by
the quantity of elements in the array. In the second case, the range() built-in function passes the array
of [0,1,2,3] with exactly four elements, causing the loop to execute exactly four times.

If Statement
The if and elif constructs execute a block of code depending on the evaluation (true or false) of the
specified expression. The if construct has the following syntax:

if expression:
executeMeifTrue

else:
executeMeifFalse

The else clause is optional.

Also available is the elif clause, of which there may be zero or more. An elif is used to mean execute
the code block following it only if the primary expression evaluates to False and the expression follow-
ing the elif evaluates to True.

if x==0:
print `zero’

elif x==1:
print ‘one’

411

The Python Language

29_588206 ch26.qxd 6/30/05 12:45 AM Page 411

The elif and else clauses may be used in the same if clause as long as the else is last:

if x==0:
print `zero’

elif x==1:
print ‘one’

else:
print ‘neither’

In the preceding code, if x is 0, the string ‘zero’ would be printed; if x is 1, the string ‘one’ would be
printed; and if x is something else, the string ‘neither’ would be printed.

Try Statement
Python provides a rather unique statement to allow for the specification of error handlers for a group of
statements. The try statement with an except clause is commonly used when a file is being opened so
that an error that prevents the file from being accessed allows you to gracefully break out of the block of
code intended to process that file’s contents.

try:
file = open(`/tmp/filename.txt’, `r’)
line = file.readfile()

except IOError:
print `Error opening the file.’

Multiple except clauses are allowed to test for different conditions, as follows:

try:
file = open(`/tmp/filename.txt’, `r’)
line = file.readfile()

except IOError:
print `Error opening the file.’

except SystemError:
print `System error while opening the file.’

Another form of the try statement allows some functionality to be specified as a way out. The try clause
is executed, and when no exception occurs, the finally clause is executed. If an exception occurs in the
try clause, the exception is temporarily saved while the finally clause is executed and then reraised. If
the finally clause raises another exception or executes a return or break statement, the saved excep-
tion is lost.

try:
file = open(`/tmp/filename.txt’, `r’)
line = file.readfile()

finally:
line = ‘’

More Loop Control — Continue, Break
Python has two additional loop control mechanisms: continue and break. The following table summa-
rized these control mechanisms and their effect on a loop:

412

Chapter 26

29_588206 ch26.qxd 6/30/05 12:45 AM Page 412

Control Use

continue Continues with next iteration of the loop

break Breaks out of the closest for or while loop

pass Indicates “do nothing”

The continue statement must be nested in a for or while loop but not in a function or class definition
or try statement within that loop. It continues with the next cycle of the nearest enclosing loop.

A break is used to terminate the current loop and continue execution at the next statement. It may be
found in either while or for loops.

A while loop with a continue block and a break statement would look like this:

while count > 0:
input = raw_input(“Type your password:”)

for each in passwdList:
if input == thisPasswd:

accepted = 1
break

if not accepted:
print “Password not accepted.”
count = count – 1
continue

else:
break

The pass statement is necessary in Python when a statement expects a block of code and one is not pre-
sent, as follows:

if user != “Jacob”:
print “That’s not him.”

else:
pass

Regular Expressions
For text analysis, Python provides the regex and the re modules. The regex module is old and some-
what deprecated, although still available. The regex module uses an emacs-style format, which some
users find difficult to read. Using regular expressions from the re module, you can construct advanced
pattern-matching algorithms in a less arcane syntax. Regular expressions are handled via a small, highly
specialized programming language embedded in Python and are made available through the re mod-
ule. Using the re module, you specify the rules for the set of possible strings that you want to match.
You can use it to determine whether the string matches the pattern or whether there is a match for the
pattern anywhere in the string. You can also use the re module to modify a string or to split it apart in
various ways. The following sections cover basic Python regular expressions.

413

The Python Language

29_588206 ch26.qxd 6/30/05 12:45 AM Page 413

Regular Expression Operations
In Python, string methods are typically used for searching, replacing, and parsing. Regular expressions
are used for matching and are delimited with forward slashes. Regular expressions are compiled into
RegexObject instances, which have methods for various operations such as searching for pattern
matches or performing string substitutions.

>>> import re
>>> reobj = re.compile(‘foo*’)
>>> print reobj
<_sre.SRE_Pattern object at 0x403c38c0>

Regex Special Characters
The following table describes some of the more popular special characters used in regular expressions.

Character Use

^ Match beginning of line.

$ Match end of line.

. Match any character. Match newline only if DOTALL flag is specified.

\ Escape the next character.

\\ Match a literal \.

[] Specify group of characters to match.

[^] Match character not in set.

Other character Match literal character.

The following regular expressions are commonly used to represent the indicated classes of characters or
numbers:

[a-z] # any single lowercase letter
[a-zA-Z] # any single letter
[0123456789] or [0-9] # any single number
[0-9A-CZ] # any single number, a capital letter A-C, or a capital letter Z

A caret (^) can be used within a group/range construct to negate it. For example, the following expres-
sion would match anything except a single digit:

[^0-9]

Each matching character or expression can be modified by a matching quantifier, specifying how many
matches should be found. The valid quantifiers are described in the following table:

414

Chapter 26

29_588206 ch26.qxd 6/30/05 12:45 AM Page 414

Quantifier Meaning

* Match 0 or more times

+ Match 1 or more times

? Match 0 or 1 times

{n} Match exactly n times

{m,n} Match between m and n times (inclusive)

The * quantifier works like it does in most languages. For example, foo* will match fo, foo, or fooooooo.
(In fact, it would match fo followed by any number of the letter o.)

The + quantifier is very similar to the * except that it doesn’t match if the character preceding the star
doesn’t exist. In contrast to the preceding example, which matches fo even though it has zero instances
of the second o, foo+ will match only foo or foo followed by any number of the letter o.

The ? quantifier acts just as the * quantifier previously shown.

The {n} quantifier matches the preceding character 0 or 1 times. So bar? will match either ba or bar.

The most complicated quantifier is {m,n}, where m and n are decimal integers. This quantifier means
there must be at least m repetitions, and at most n. For example, a/{1,3}b will match a/b, a//b, and
a///b. It won’t match ab, which has no slashes, or a////b, which has four.

Python regular expressions also have meta and control characters that can be used in expressions. The
meta and control characters are described in the next table.

Character Meaning

\A Matches only at start of string

\d and \D Digit and nondigit

\s and \S Space and nonspace

\w and \W Alphanumeric character and nonalphanumeric character

\b and \B Word and nonword boundary

Built-in Functions
Python has many built-in functions that are accessible from any namespace. Two of the most common
are explained here:

The __init__ function is one of the most widely used functions in Python. Its purpose is to define what
should be done when the class is instantiated.

__init__(self)

415

The Python Language

29_588206 ch26.qxd 6/30/05 12:45 AM Page 415

The built-in function dir() returns a list of strings representing the functions and attributes that the
module defines. It is called like this:

>>> import sys
>>> dir(sys)
[‘__displayhook__’, ‘__doc__’, ‘__excepthook__’, ‘__name__’, ‘__stderr__’,
‘__stdin__’, ‘__stdout__’, ‘_getframe’, ‘api_version’, ‘argv’,
‘builtin_module_names’, ‘byteorder’, ‘call_tracing’, ‘callstats’, ‘copyright’,
‘displayhook’, ‘exc_clear’, ‘exc_info’, ‘exc_type’, ‘excepthook’, ‘exec_prefix’,
‘executable’, ‘exit’, ‘getcheckinterval’, ‘getdefaultencoding’, ‘getdlopenflags’,
‘getfilesystemencoding’, ‘getrecursionlimit’, ‘getrefcount’, ‘hexversion’,
‘maxint’, ‘maxunicode’, ‘meta_path’, ‘modules’, ‘path’, ‘path_hooks’,
‘path_importer_cache’, ‘platform’, ‘prefix’, ‘ps1’, ‘ps2’, ‘setcheckinterval’,
‘setdlopenflags’, ‘setprofile’, ‘setrecursionlimit’, ‘settrace’, ‘stderr’, ‘stdin’,
‘stdout’, ‘version’, ‘version_info’, ‘warnoptions’]

After importing the sys module, any of these items may be called by the item name prefaced with sys
and a period.

A more comprehensive list of the more popular built-in Python functions can be found in Appendix E,
“Python Language Reference.”

User-Defined Functions
You can create your own functions by using the def directive. User-defined functions have the following
syntax:

def function_name(parameters):
function statements

For example, to create a function to find the area of a circle you could use code similar to the following:

def areaofcircle()
radius = input(“Please enter the radius: “)
area = 3.14+(radius**2)
print “The area of the circle is”, area

User-defined functions have the following attributes:

Attribute Description

__doc__ documentation string

__name__ string version of function name

func_code byte-compiled code object

func_defaults default argument tuple

func_globals global namespace dictionary

416

Chapter 26

29_588206 ch26.qxd 6/30/05 12:45 AM Page 416

>>> areaofcircle.__doc__
>>> areaofcircle.__name__
‘areaofcircle’
>>> areaofcircle.func_code
<code object areaofcircle at 0x403eab60, file “<stdin>”, line 1>
>>> areaofcircle.func_defaults
>>> areaofcircle.func_globals
{‘lambdaFunc’: <function <lambda> at 0x403ebbfc>, ‘__builtins__’: <module
‘__builtin__’ (built-in)>, ‘areaofcircle’: <function areaofcircle at 0x403ebd4c>,
‘datetime’: <module ‘datetime’ from ‘/usr/lib/python2.4/lib-dynload/datetime.so’>,
‘sys’: <module ‘sys’ (built-in)>, ‘time’: <module ‘time’ from ‘/usr/lib/python2.4/
lib-dynload/time.so’>, ‘__name__’: ‘__main__’, ‘os’: <module ‘os’ from ‘/usr/lib/
python2.4/os.pyc’>, ‘__doc__’: None}

Lamda Functions
Python allows for the creation of anonymous functions using the lamda keyword. Lamda expressions
are similar to user-defined functions without the __name__ (actually the __name__ when invoked from
a lambda function returns the string ‘<lambda>’). An example of a lambda function follows:

>>> lambdaFunc = lambda x: x/3
>>> lambdaFunc(3)
1

File Operations
One of the advantages of using CGI programs is that they can read and write to the filesystem, and
Python is no exception. Python includes quite a few functions for dealing with file IO, which are covered
in the following sections.

Standard Operating Procedure
To access files, there are three operations that you need to perform:

1. Open the file and assign a file handle.

2. Perform file operations (read/write/append).

3. Close the file handle, thereby closing the open file.

Opening a File
To open a file, Python uses the open function. The open function has the following syntax:

FILEHANDLE=open(“filename”,mode)

For example, to open the file test.txt, you would use code similar to the following:

417

The Python Language

29_588206 ch26.qxd 6/30/05 12:45 AM Page 417

try:
FILEHANDLE = open(`/tmp/filename.txt’, `r’)

except IOError:
print `cannot open file.’

The preceding syntax will result in the script exiting and displaying “cannot open file” if the open func-
tion does not succeed.

The preceding syntax will result in the script exiting and displaying “cannot open file” if the open function
does not succeed. The FILEHANDLE can be any valid variable name but should be descriptive enough to be
easily identified as a file handle. One standard practice is to capitalize the file handle variables.

The default operation of the open function is to open a file for reading. To open a file for writing you
need to specify a mode of ‘w’; to append to a file you would specify a mode of ‘a’; to open the file read-
only you would specify a mode of ‘r’.

Reading From a Text File
To read from a text file, Python uses the built-in file class. This class currently has an alias class called
open, although Guido van Rossum states, “In the future, I could see open() become a factory function
again that could return an instance of a different class depending on the mode argument, the default
encoding for files, or who knows what; but file will always remain a class.” Currently, you can use
open and file interchangeably, but who knows what the future holds? For this reason, you might
choose to use the file class exclusively.

For example, the following snippet of code will read all lines from the file filename.txt into a buffer
where it can be acted upon:

...
try:

FILEHANDLE = file(`/tmp/filename.txt’, `r’)
data = FILEHANDLE.readlines()
#Do something useful with data.

except IOError:
print `cannot open file.’

...

After a file is opened, the file object maintains state information about the file it has opened: <open file
‘/tmp/filename.txt’, mode ‘r’ at 0x403e73c8>. The file object supports the following methods:

Methods Meaning

close() Closes the file, preventing reading and writing. Can be called more
than once.

flush() Flushes the internal buffer.

fileno() Returns the integer “file descriptor” that is used by the underlying
implementation to request I/O operations from the operating system.

418

Chapter 26

29_588206 ch26.qxd 6/30/05 12:45 AM Page 418

Methods Meaning

isatty() Returns True if the file is connected to a tty-like device; otherwise
returns False.

next() Returns the next line of the file.

read([size]) Returns size characters from file at current position.

readline([size]) Returns one line from file or size characters, which might be a partial
line. Returns empty string if first character read is EOF.

readlines([sizehint]) Returns a list of all the lines in the file.

seek(offset[,whence]) Sets the file’s current position.

tell() Tells the file’s current position.

truncate([size]) Truncates the file as represented in the buffer to the current position or
to the location represented by size.

write(str) Writes str to the fileptr to be flushed.

writelines(sequence) Writes lines represented by sequence to the fileptr to be flushed.

The file class also includes the following attributes.

Attributes Usage

closed Returns True if the file is closed; otherwise returns False.

encoding Returns the encoding method for the file.

mode Returns the mode that the file was opened in.

name Returns the file name.

newlines If Python was configured with the --with-universal-newlines
option, it returns the number of newlines in the file.

softspace Returns a Boolean that indicates whether a space character needs to be
printed before another value when using the print statement.

Writing to a Text File
To write to a text file, Python uses the write method of the file class. For example, the following code
snippet will set up a list and then write it to a file:

>>> myList=[“one”,”two”,”three”]
>>> OutputFile=file(“/tmp/outputfile.txt”,”w”)
>>> for item in myList:
>>> OutputFile.write(item)

419

The Python Language

29_588206 ch26.qxd 6/30/05 12:45 AM Page 419

Closing a File
To close the file, you use the close method from the instance of the file class representing the file to be
closed.

>>> OutputFile.close()
>>> OutputFile=file(“/tmp/outputfile.txt”,”r”)
>>> OutputFile.readlines()
[‘onetwothree’]

Once a file has been closed, it cannot be read from or written to. However, until a written file is closed, its
contents cannot be relied upon — the operating system may not write its buffers until the file is closed.

Working with Binary Files
Binary files are handled in a similar method as text files, but the content is handled differently. Each
character in a binary file is handled separately; in text files, for example, the end of line is handled as one
character even if (in DOS/Windows format) it is indeed two characters (line feed and carriage return).

One important difference in instantiating a file class for a binary file is the addition of a b in the mode for
that file. When used with binary files, the file function has the following syntax:

OutputFile=file(“/tmp/outputfile.txt”,”rb”)

Writing to binary files in Python is no different from writing to text files.

Objects
Python has robust support for object data types. Although a full description of object-oriented program-
ming is beyond the scope of this book, the following sections provide an introduction to Python’s han-
dling of objects.

Python is classified as an object-oriented programming language, although you can write useful Python
code without using classes and instances. Many Python programmers make good use of Python without
taking advantage of its object-oriented features. In Python, everything is an object: list, tuple, string,
class, or instance of class.

Python classes are instantiated in the following way. First, define the class like this:

class MyClass:
def __init__(self):

#code to execute
def function1(self,args):

#code to execute

Then instantiate it like this:

if __name__ == ‘__main__’:
results = MyClass()

420

Chapter 26

29_588206 ch26.qxd 6/30/05 12:45 AM Page 420

Python Errors and Exception Handling
Python signals errors by throwing exceptions. Unless redirected, all error messages are written to the
standard error stream; normal output from the executed commands is written to standard output. Some
types of errors are unconditionally fatal and cause the Python program to exit with a nonzero exit status;
these errors typically are due to internal system inconsistencies or are sometimes the result of running
out of memory. Python error handling includes two phases: exception detection and exception handling.
Python developers are allowed a great deal of control in error handling. To add error detection, simply
wrap the code in a try-except statement. The code that follows the except statement will execute
upon exception. Anticipating which errors your code might encounter is important because any excep-
tion not handled directly in your code will be fatal. You can find a hierarchy of standard exceptions at
http://docs.python.org/lib/module-exceptions.html.

In the following code, Python attempts to execute the statements between the try and the first except
statement. If an error is encountered, execution of the try statements stops and the error is checked
against the except statements. Execution progresses through each except statement until it finds one
that matches the generated exception. If a matching except statement is found, the code block for that
exception is executed. If there is no matching except statement in the try block, the final else block is
executed. In practice, the else statement is not often used.

try:
program statements

except ExceptionType:
exception processing for named exception

except AnotherType:
exception processing for a different exception

else:
clean up if no exceptions are raised

Troubleshooting in Python
There are several methods to diagnose problematic Python code. The methods most commonly used for
diagnosing CGI code are listed in order from least to most robust in the following section.

Run the Code in the Interpreter
Any Python code can be run from the interpreter if you import the modules you need. If you try to run
CGI code in the interpreter, it will simply print the HTML code to the screen. This is sometimes useful,
however, in finding the problem with your code. Running your code in the interpreter allows you to
readily see if you are missing any module imports or have syntax errors.

Using the cgitb Module
Python’s cgitb module provides an exception handler for Python CGI scripts. If an uncaught exception
occurs after the cgitb module has been enabled, extensive traceback information is displayed as HTML
sent to your browser to help you troubleshoot the problem. This is an invaluable tool in CGI script
development. To use this feature, import the module and enable cgitb, as follows:

421

The Python Language

29_588206 ch26.qxd 6/30/05 12:45 AM Page 421

import cgitb
cgitb.enable()

Redirecting the Error Stream
A more robust approach to examining traceback information uses only built-in modules and sets the
content type of the output to plain text, which disables all HTML processing. As previously mentioned,
if your script works, the HTML code will be displayed by your client. If an exception is raised, a trace-
back will be displayed to help you track down the problem. Employ the following to use this method:

import sys
sys.stderr = sys.stdout
print “Content-Type: text/plain”
print
...your code here...

Because no HTML interpretation is going on, the traceback will be more readable, not requiring you to
wade through HTML code to get to the important stack trace.

These are not the only troubleshooting techniques available to you, but these are the most commonly
used with regard to CGI code.

Summary
This chapter provided a primer to the Python scripting language. It discussed the basics of Python syn-
tax, how to implement Python on your system, Python’s object-oriented nature, and how to troubleshoot
CGI code written in Python. That, put together with previous chapters, gives you an idea how to create
CGI code in Perl and Python. Chapter 27 covers using other languages for CGI, and Chapter 28 gives
you several examples of Perl and Python CGI scripts.

422

Chapter 26

29_588206 ch26.qxd 6/30/05 12:45 AM Page 422

Scripting with Other
Executable Code

This book concentrates on the programming/scripting languages that are most used for CGI on
the Web. However, you can effectively use any program, interpreted script, or other executable
supported by the platform that is running the Web server. This chapter demonstrates some tech-
niques that can be used with other programming and scripting languages to accomplish CGI.

Requirements for CGI
There are some basic requirements for any program or script used for CGI:

❑ The OS must be able to execute the program or script.

❑ The program or script must be accessible by the Web server. This means it must exist in
a directory the server can access and must be a file type that the Web server recognizes
as deliverable.

❑ The program or script must have sufficient rights or privileges to perform the tasks
required of it (permission to access files it depends on, and so on).

❑ The program or script must adhere to HTTP standards for any output it produces, includ-
ing passing any appropriate headers as required (for example, a Content-type header before
the content, and so on). To that end, the program or script should be in a language that
provides robust output options, allowing for the output of special characters (line breaks,
and so on).

❑ The program or script must adhere to the guidelines governing the type of content it
delivers. For example, if delivering HTML content, the program or script should endeavor
to provide standards-compliant markup.

❑ The program or script should also adhere to any standards dictated by the Web server
delivering the script to end users.

30_588206 ch27.qxd 6/30/05 12:55 AM Page 423

There is a method of CGI known as Non-parsed Headers (NPH) scripting that allows a program or
script to bypass the Web server entirely, taking on the entire burden of the headers itself. To accomplish
NPH, you will need a Web server with NPH enabled, and you should name your NPH scripts starting
with nph- (nph and a dash, for example, nph-myscript.cgi). This naming convention identifies the
script as an NPH script, causing the server to forgo supplying any headers itself. NPH provides a use-
ful technique for processing data in real time. However, using NPH techniques is not without unique
hazards — such as assuring that NPH scripts do not run endlessly; without the intervention of a Web
server, runaway scripts can quickly consume resources.

Of course, just because a program or script can fulfill the requirements for CGI doesn’t mean that it should
be used for CGI purposes. Due to the fact that CGI scripts can access privileged areas of the operating
and file systems, CGI scripts pose security risks usually not inherent in the Web server itself.

Scripting languages such as Perl and Python have been tailored for CGI use and, as such, have dealt
with several of the security issues relating to CGI. Therefore, using more standard languages for CGI
should be encouraged.

Sample CGI Using Bash Shell Scripting
This section demonstrates how to perform CGI tasks using standard Linux Bash shell scripts. The same
methods outlined in this section can be applied to most other programming and scripting languages.

The examples in this section were created on a GNU/Debian Linux system and may need to be modified
to run on other versions of Linux.

Configuring Apache to Deliver Bash Scripts
Configuring Apache to deliver other scripts is fairly straightforward, involving making it aware that a
particular file type should be handled like a script.

It is possible to cheat and simply name your scripts using filenames representative of other scripting
languages. For example, if the Web server is already configured to deliver .cgi files as scripts, you can
simply name your Bash scripts using the .cgi extension. However, it is usually advisable to appropri-
ately name your scripts following conventions for the language being used and to configure Apache
appropriately for that language. For example, use .sh extensions for shell scripts, .py extensions for
Python scripts, and so on.

The essential steps to configure Apache to deliver shell scripts are as follows:

1. Ensure that the Apache CGI module is installed and active. The module should be compiled
into Apache or appear in a LoadModule line within the Apache configuration file similar to the
following:

LoadModule cgi_module /usr/lib/apache/1.3/mod_cgi.so

2. Enable CGI scripting in the directory(ies) where you will place your scripts. This is typically
accomplished by adding the ExecCGI option to the appropriate directory configuration sections
of the Apache configuration file. Such configuration sections resemble the following:

424

Chapter 27

30_588206 ch27.qxd 6/30/05 12:55 AM Page 424

<Directory /usr/lib/cgi-bin/>
AllowOverride None
Options ExecCGI
Order allow,deny
Allow from all

</Directory>

3. Add an appropriate handler for an .sh file type. If you have a handler defined for CGI scripts,
simply add the .sh extension to the existing list of extensions:

AddHandler cgi-script .cgi .pl .sh

After making changes to the Apache configuration file, don’t forget to restart Apache for the changes to
take effect.

It is highly recommended to restrict shell script CGI as much as possible. If you wish to try out the
examples in this section, you would do well to allow shell scripting only in the directory containing the
examples and perhaps should protect that directly with an .htaccess or other protection scheme to
ensure the scripts cannot be accessed by unscrupulous users of your Web server.

Getting Data into the Script
Unless the program or scripting language provides CGI libraries capable of dealing with GET or POST
data, you will be limited to using command line arguments with your program or script.

To pass data to a script, you would use the standard URL GET encoding; that is, following the URL to
the script with a question mark and then the arguments to pass to the script:

<url-to-script>?<command-line-argument(s)>

The script would then use its standard methods for dealing with command line arguments. In the case of
the Bash shell, the methods are in the form of the variables listed in the following table:

Variable Use

$@ The full list of arguments passed to the script.

$1 - $9 The first nine arguments passed to the script. The first argument is
stored in $1, the second in $2, and so on.

$_ The full path to the root program being run (in this case, the Bash shell
because it is interpreting the script).

$0 The full path to the script.

$# The number of arguments passed to the script.

To illustrate how these variables work with the command line, consider the following script:

425

Scripting with Other Executable Code

30_588206 ch27.qxd 6/30/05 12:55 AM Page 425

cmdline.sh

#!/bin/bash

Echo the command being run
echo -e “Command: $0”

Echo parameter heading
echo -e “Parameters: “

While parameters exist
while [“$1” != “”]
do

Echo it to console
echo -e “$1”
Shift to next parameter
shift

done

When executed with the following command line, the script provides the output shown here:

$./cmdline.sh this is a series of parameters passed on the command line
Command: ./cmdline.sh
Parameters:
this
is
a
series
of
parameters
passed
on
the
command
line

Scripts that are not enabled with specific CGI libraries and methods will be bound to the limits of their
respective command lines. For example, Bash command line arguments cannot contain certain charac-
ters unless they are quoted because those characters mean special things to the Bash shell. Still, the Web
server may censor other characters prior to their arriving at the script. As such, it’s important to keep
your parameter-passing simple when working with non–CGI-enabled scripts.

Getting Data Out of the Script
The following is an example of a Bash script that simply echoes the command line it was given:

echocmdline.sh

#!/bin/bash

Echo the command line
echo -e “$0 $@ \n\n”

426

Chapter 27

30_588206 ch27.qxd 6/30/05 12:55 AM Page 426

This script will run from a command line just fine:

$./echocmdline.sh these are arguments

./echocmdline.sh these are arguments

However, if accessed via a Web server, it will generate the error shown in Figure 27-1.

Figure 27-1

This error is a typical response if the Web server doesn’t detect that the script has provided adequate
header information. If you examine the Apache error log, you can immediately see the root cause of the
problem; the script didn’t provide adequate headers:

[Wed Mar 9 03:43:16 2005] [error] [client 192.168.3.141] malformed header from
script. Bad header=/var/www/test/echocmdline.sh : /var/www/test/echocmdline.sh

To correct this error, you must include appropriate headers in the output from your script. In the case of
this simple example script, the output can be plain text, so adding a Content-type header is all that is
required:

echocmdline.sh

#!/bin/bash

Provide the content-type header
echo –e “Content-type: text/plain \n”

427

Scripting with Other Executable Code

30_588206 ch27.qxd 6/30/05 12:55 AM Page 427

Echo the command line
echo -e “$0 $@ \n\n”

Notice the newline (\n) at the end of the content-type echo statement. This provides a blank line after
the Content-type header, which is required to let the user agent know that the end of the headers has
been reached.

The script now operates correctly, as shown in Figure 27-2.

Figure 27-2

Keep in mind that a script doesn’t always have to provide output.

Doing Useful Things
Because the Bash shell has access to various OS features, other programs, and the file system, it can be a
powerful tool when used with CGI. The following sections provide some simple tasks possible with
Bash CGI.

Shell scripting is quite powerful. This chapter covers only the basic input/output CGI functionality.
Using the full power of a shell scripting, however, you can accomplish some truly amazing things.

Listing a File
The following script will list the file passed to it via GET by using the Linux cat command.

428

Chapter 27

30_588206 ch27.qxd 6/30/05 12:55 AM Page 428

#!/bin/bash

Echo content-type header
echo -e “Content-type: text/plain\n”

If parameter exists (was given), try to cat the file
if [“$1” != “”]; then

If file exists
if [-f “$@”]; then

cat $@
else

echo -e “Cannot CAT file: $@\n”
fi

else
echo -e “Nothing to do!\n”

fi

Toggling a State
The following script will simply toggle a state, in this case alternately creating or deleting a lock file on
the file system. This simplistic example can be extended to allow a server to be started and stopped, a
process to be paused, and so on, using Web access.

#!/bin/bash

File to toggle
FILE=”/var/www/file.lock”

Echo content-type header
echo -e “Content-type: text/plain\n”

If file exists remove it
If file doesn’t exist, create it
if [-f $FILE]; then

rm -rf $FILE
echo -e “Lock file removed.\n”

else
touch $FILE
echo -e “Lock file created.\n”

fi

Running a User-Specified Command
The following script will execute the command line passed to it via GET by using the Linux eval com-
mand to evaluate the arguments. The output of the command is displayed in the user agent.

#!/bin/bash

Echo content-type header
echo -e “Content-type: text/plain\n”

If parameter exists, try to cat the file
if [“$1” != “”]; then

echo -e “Executing command: $@”

429

Scripting with Other Executable Code

30_588206 ch27.qxd 6/30/05 12:55 AM Page 429

echo -e “--------------------------------\n”
eval $@

else
echo -e “Nothing to do!\n”

fi

This example is shown only to illustrate the extreme danger that scripts can pose to a system. In most
cases, the script will be run as the same user the Web server is running as, which can limit the damage
that can be done by such scripts. However, never underestimate the power of allowing command line
access to a system.

Summary
As you can see by the examples in this chapter, providing basic CGI functionality via any executable
code is trivial. However, it is difficult to pass complex data to scripts that do not have CGI libraries or
modules to handle HTTP GET or POST operations. Also, scripting using native OS tools (such as shell
scripts) can pose hazards that are typically mitigated with the CGI functions of more robust program-
ming and scripting languages.

430

Chapter 27

30_588206 ch27.qxd 6/30/05 12:55 AM Page 430

Using CGI
The previous chapters in this part demonstrated how CGI works behind the scenes — the syntax
and functionality of Perl, Python, and other CGI-enabled technologies. This chapter rounds out
the CGI coverage by showing some basic but useful examples of CGI in action.

How and When to Use CGI
CGI is a powerful tool for any Web developer. Unfortunately, it can also be a powerful tool for a
hacker looking to exploit your site. CGI can also be a source of server load; using CGI to deliver all
of a site’s content increases the load on its server considerably.

Here are some reasons to consider using CGI:

❑ You need documents to provide dynamic content or interactive functions to your static
documents.

❑ You need content from other resources, databases, hardware, and so on.

❑ You need more interactivity between your documents and their audience than straight
XHTML technologies can provide.

That said, you should also consider the following before deploying a CGI solution:

❑ Can client-side technologies (such as JavaScript) provide what you need?

❑ Weigh the overall load on the server versus the need for the script. (Keep in mind that
because most scripts are accessed via HTTP URLs, you can host the scripts on a server
separate from the server delivering the XHTML documents.)

❑ Using CGI presents an inherent security risk — even well-written scripts can contain
vulnerabilities that leave your server exposed to hackers.

All that said, CGI provides a great resource to infuse your documents with interactivity and
dynamic content.

31_588206 ch28.qxd 6/30/05 12:43 AM Page 431

One popular CGI technique to decrease server load is the use of Server Side Includes (SSI). SSI lets you
to embed scripts in static documents, allowing the script to deliver the dynamic portion of the document
but relying upon the standard HTTP server to deliver the static content. SSI coverage is beyond the
scope of this book, but for more information on SSI, I’d suggest visiting the Apache Web site, specifi-
cally the SSI tutorial at http://httpd.apache.org/docs-2.0/howto/ssi.html.

Sample Data
This section details the sample data used in this chapter and in Chapter 31, “Using PHP.” Note that the
code listed in this section is available on the book’s companion Web site, but it is also listed here for
immediate reference.

Sample Form
The following form is used in the form examples — data from this form is sent to the form handler.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html>
<head>

<title>Sample Form</title>
</head>
<body>

<form action=”FORM_HANDLER” method=”post”>
<table cellspacing=”20”>
<tr><td>

<!-- Text boxes -->
<p>
First Name: <input type=”text” name=”fname” id=”fname” size=”20” />

Last Name: <input type=”text” name=”lname” id=”lname” size=”20” />
</p>

<!-- Text area -->
<p>
Address:

<textarea name=”addr” id=”addr” cols=”20” rows=”4”></textarea>
</p>

<!-- Password -->
<p>
Password: <input type=”password” name=”pwd” id=”pwd” size=”20” />
</p>
</td><td>

<!-- Select list -->
<p>
What product(s) are you

432

Chapter 28

31_588206 ch28.qxd 6/30/05 12:43 AM Page 432

interested in?

<select name=”prod” id=”prod” multiple=”multiple” size=”4”>

<option id=”MB”>Motherboards</option>
<option id=”CPU”>Processors</option>
<option id=”Case”>Cases</option>
<option id=”Power”>Power Supplies</option>
<option id=”Mem”>Memory</option>
<option id=”HD”>Hard Drives</option>
<option id=”Periph”>Peripherals</option>

</select>
</p>

<!-- Check boxes -->
<p>
How should we contact you?

<input type=”checkbox” name=”email” id=”email”
checked=”checked” /> Email

<input type=”checkbox” name=”postal” id=”postal” /> Postal Mail

</p>

</td></tr>
<tr><td>

<!-- Radio buttons -->
<p>
How soon will you be buying hardware?

<input type=”radio” name=”buy” id=”buyASAP” value=”ASAP” />ASAP

<input type=”radio” name=”buy” id=”buyDays”

value=”10” />Within 10 business days

<input type=”radio” name=”buy” id=”buyMonth”

value=”30” />Within the month

<input type=”radio” name=”buy” id=”buyNever” value=”Never” />Never!
</p>
</td><td>

<!-- Submit and Reset buttons -->
<p>
<input type=”submit” name=”submit” id=”submit”

value=”Submit” /> <input type=”reset”
name=”reset” id=”reset” />

<!-- Hidden field -->
<input type=”hidden” name=”referredby” id=”referredby” value=”Google” />
</p>

</td></tr>
</table>
</form>

</body>
</html>

This form will be filled out as shown in Figure 28-1, and the resulting data will be passed to the example
script.

433

Using CGI

31_588206 ch28.qxd 6/30/05 12:43 AM Page 433

Figure 28-1

Sample MySQL Data
The following listings detail the data contained in the MySQL database used in the MySQL example
scripts. The first listing shows the statements used to create the database and tables and to populate the
tables with data.

MySQL Database, Tables, and Data

CREATE DATABASE mysqlsamp;

USE mysqlsamp;

--
-- Table structure for table ‘computers’
--

CREATE TABLE computers (
comp_id int(5) unsigned zerofill NOT NULL default ‘00000’,
comp_make varchar(25) default NULL,
comp_model varchar(10) default NULL,
comp_cpu char(2) NOT NULL default ‘’,
comp_speed int(4) NOT NULL default ‘0’,
comp_mem int(4) NOT NULL default ‘0’,
comp_HD int(4) NOT NULL default ‘0’,

434

Chapter 28

31_588206 ch28.qxd 6/30/05 12:43 AM Page 434

comp_CD enum(‘CD’,’DVD’,’CDRW’,’CDR’,’CDRW/DVD’) default NULL,
comp_location varchar(10) default NULL,
comp_ts timestamp(10) NOT NULL,
PRIMARY KEY (comp_id)

) TYPE=MyISAM;

--
-- Dumping data for table ‘computers’
--

INSERT INTO computers VALUES
(02210,’Compumate’,’A’,’P3’,1600,512,40,’DVD’,’C124’,’0000000000’);

INSERT INTO computers VALUES
(01347,’Compumate’,’A’,’P3’,1600,512,40,’DVD’,’C033’,’0000000000’);

INSERT INTO computers VALUES
(06073,’Compumate’,’A’,’P3’,1600,512,40,’DVD’,’C224’,’0000000000’);

INSERT INTO computers VALUES
(09307,’Compumate’,’A’,’P3’,1600,512,40,’DVD’,’C224’,’0000000000’);

INSERT INTO computers VALUES
(01523,’Compumate’,’A’,’P3’,1600,512,40,’DVD’,’A125’,’0000000000’);

INSERT INTO computers VALUES
(07065,’Compumate’,’B’,’P3’,1000,256,30,’CD’,’A003’,’0000000000’);

INSERT INTO computers VALUES
(07185,’Compumate’,’B’,’P3’,1400,256,30,’CD’,’A122’,’0000000000’);

INSERT INTO computers VALUES
(09894,’Compumate’,’C’,’P3’,1000,128,30,’CD’,’B022’,’0000000000’);

INSERT INTO computers VALUES
(09569,’Compumate’,’C’,’P3’,1000,128,30,’CD’,’B022’,’0000000000’);

INSERT INTO computers VALUES
(08036,’Compumate’,’A’,’P3’,1600,512,40,’DVD’,’C250’,’0000000000’);

INSERT INTO computers VALUES
(08057,’Compumate’,’B’,’P3’,1400,256,30,’DVD’,’A021’,’0000000000’);

INSERT INTO computers VALUES
(05654,’Custom’,’3’,’C’,500,128,30,’CD’,’A122’,’0000000000’);

INSERT INTO computers VALUES
(09834,’Custom’,’1’,’P3’,900,512,60,’CD’,’C200’,’0000000000’);

INSERT INTO computers VALUES
(07743,’Custom’,’1’,’P3’,866,384,60,’CDRW’,’C200’,’0000000000’);

INSERT INTO computers VALUES
(02559,’Custom’,’3’,’P3’,733,256,60,’CDRW’,’A010’,’0000000000’);

INSERT INTO computers VALUES
(08316,’Custom’,’3’,’P3’,733,256,60,’CDRW’,’B125’,’0000000000’);

INSERT INTO computers VALUES
(09499,’Custom’,’1’,’P3’,866,512,60,’CDR’,’B126’,’0000000000’);

INSERT INTO computers VALUES
(00946,’Super-puter’,’XL’,’P4’,2400,1000,180,’CDRW/DVD’,’LAB05’,’0000000000’);

INSERT INTO computers VALUES
(04070,’Super-puter’,’XL’,’P4’,2400,1000,180,’CDRW/DVD’,’LAB06’,’0000000000’);

INSERT INTO computers VALUES
(09144,’Super-puter’,’XL’,’P4’,2400,1000,180,’CDRW/DVD’,’LAB07’,’0000000000’);

INSERT INTO computers VALUES
(05212,’Super-puter’,’SE’,’P4’,2000,512,80,’CDRW/DVD’,’A300’,’0000000000’);

INSERT INTO computers VALUES
(03663,’Super-puter’,’SE’,’P4’,2000,512,80,’CDRW’,’A310’,’0000000000’);

435

Using CGI

31_588206 ch28.qxd 6/30/05 12:43 AM Page 435

INSERT INTO computers VALUES
(05295,’Super-puter’,’XL’,’P4’,2400,1000,180,’CDRW/DVD’,’ITLAB’,’0000000000’);

INSERT INTO computers VALUES
(04780,’Super-puter’,’XS’,’P4’,2400,1000,180,’CDRW’,’LAB01’,’0000000000’);

INSERT INTO computers VALUES
(05021,’Custom’,’3’,’P3’,1000,512,0,’CD’,’ITLAB’,’0000000000’);

--
-- Table structure for table ‘keyboards’
--

CREATE TABLE keyboards (
kbd_id int(5) unsigned zerofill NOT NULL default ‘00000’,
kbd_type char(3) NOT NULL default ‘PS2’,
kbd_model varchar(5) NOT NULL default ‘104’,
kbd_comp int(5) unsigned zerofill NOT NULL default ‘00000’,
kbd_ts timestamp(10) NOT NULL,
PRIMARY KEY (kbd_id)

) TYPE=MyISAM;

--
-- Dumping data for table ‘keyboards’
--

INSERT INTO keyboards VALUES (00684,’USB’,’102’,02210,’0000000000’);
INSERT INTO keyboards VALUES (00245,’PS2’,’102’,01347,’0000000000’);
INSERT INTO keyboards VALUES (00149,’PS2’,’104’,06073,’0000000000’);
INSERT INTO keyboards VALUES (00278,’PS2’,’102’,09307,’0000000000’);
INSERT INTO keyboards VALUES (00011,’PS2’,’102’,01523,’0000000000’);
INSERT INTO keyboards VALUES (00527,’PS2’,’102’,07065,’0000000000’);
INSERT INTO keyboards VALUES (00660,’PS2’,’102’,07185,’0000000000’);
INSERT INTO keyboards VALUES (00143,’PS2’,’102’,09894,’0000000000’);
INSERT INTO keyboards VALUES (00656,’USB’,’104MM’,09569,’0000000000’);
INSERT INTO keyboards VALUES (00854,’PS2’,’102’,08036,’0000000000’);
INSERT INTO keyboards VALUES (00007,’PS2’,’102’,08057,’0000000000’);
INSERT INTO keyboards VALUES (00643,’PS2’,’102’,05654,’0000000000’);
INSERT INTO keyboards VALUES (00129,’USB’,’102’,09834,’0000000000’);
INSERT INTO keyboards VALUES (00250,’PS2’,’102’,07743,’0000000000’);
INSERT INTO keyboards VALUES (00232,’PS2’,’102’,02559,’0000000000’);
INSERT INTO keyboards VALUES (00920,’PS2’,’104MM’,08316,’0000000000’);
INSERT INTO keyboards VALUES (00469,’PS2’,’102’,09499,’0000000000’);
INSERT INTO keyboards VALUES (00103,’PS2’,’102’,00946,’0000000000’);
INSERT INTO keyboards VALUES (00859,’USB’,’102’,04070,’0000000000’);
INSERT INTO keyboards VALUES (00976,’PS2’,’102’,09144,’0000000000’);
INSERT INTO keyboards VALUES (00500,’PS2’,’102’,05212,’0000000000’);
INSERT INTO keyboards VALUES (00598,’PS2’,’104’,03663,’0000000000’);
INSERT INTO keyboards VALUES (00967,’USB’,’104’,05295,’0000000000’);
INSERT INTO keyboards VALUES (00466,’USB’,’104’,04780,’0000000000’);
INSERT INTO keyboards VALUES (00089,’USB’,’104MM’,00000,’0000000000’);
INSERT INTO keyboards VALUES (00377,’PS2’,’102’,00000,’0000000000’);
INSERT INTO keyboards VALUES (00444,’USB’,’102’,00000,’0000000000’);

--
-- Table structure for table ‘mice’
--

436

Chapter 28

31_588206 ch28.qxd 6/30/05 12:43 AM Page 436

CREATE TABLE mice (
mouse_id int(5) unsigned zerofill NOT NULL default ‘00000’,
mouse_type char(3) NOT NULL default ‘PS2’,
mouse_model varchar(5) NOT NULL default ‘2BS’,
mouse_comp int(5) unsigned zerofill NOT NULL default ‘00000’,
mouse_ts timestamp(10) NOT NULL,
PRIMARY KEY (mouse_id)

) TYPE=MyISAM;

--
-- Dumping data for table ‘mice’
--

INSERT INTO mice VALUES (00400,’USB’,’2B’,02210,’0000000000’);
INSERT INTO mice VALUES (00543,’PS2’,’2BS’,01347,’0000000000’);
INSERT INTO mice VALUES (00345,’PS2’,’3B’,06073,’0000000000’);
INSERT INTO mice VALUES (00961,’USB’,’2BS’,09307,’0000000000’);
INSERT INTO mice VALUES (00693,’PS2’,’2BS’,01523,’0000000000’);
INSERT INTO mice VALUES (00579,’PS2’,’2BS’,07065,’0000000000’);
INSERT INTO mice VALUES (00702,’PS2’,’2BS’,07185,’0000000000’);
INSERT INTO mice VALUES (00710,’USB’,’2B’,09894,’0000000000’);
INSERT INTO mice VALUES (00558,’PS2’,’2BS’,09569,’0000000000’);
INSERT INTO mice VALUES (00769,’PS2’,’2BS’,08036,’0000000000’);
INSERT INTO mice VALUES (00303,’PS2’,’3B’,08057,’0000000000’);
INSERT INTO mice VALUES (00142,’USB’,’2BS’,05654,’0000000000’);
INSERT INTO mice VALUES (00536,’PS2’,’2BS’,09834,’0000000000’);
INSERT INTO mice VALUES (00411,’PS2’,’2BS’,07743,’0000000000’);
INSERT INTO mice VALUES (00984,’PS2’,’2BS’,02559,’0000000000’);
INSERT INTO mice VALUES (00356,’USB’,’3B’,08316,’0000000000’);
INSERT INTO mice VALUES (00807,’PS2’,’2BS’,09499,’0000000000’);
INSERT INTO mice VALUES (00562,’PS2’,’2BS’,00946,’0000000000’);
INSERT INTO mice VALUES (00432,’PS2’,’2BS’,04070,’0000000000’);
INSERT INTO mice VALUES (00553,’USB’,’L2BS’,09144,’0000000000’);
INSERT INTO mice VALUES (00648,’USB’,’2BS’,05212,’0000000000’);
INSERT INTO mice VALUES (00067,’USB’,’2BS’,03663,’0000000000’);
INSERT INTO mice VALUES (00944,’USB’,’3B’,05295,’0000000000’);
INSERT INTO mice VALUES (00670,’PS2’,’3B’,04780,’0000000000’);
INSERT INTO mice VALUES (00444,’PS2’,’2BS’,00000,’0000000000’);
INSERT INTO mice VALUES (00324,’USB’,’3B’,00000,’0000000000’);

--
-- Table structure for table ‘mice_type’
--

CREATE TABLE mice_type (
mouse_type_id int(5) unsigned zerofill NOT NULL auto_increment,
mouse_interface enum(‘USB’,’PS2’) default ‘PS2’,
mouse_buttons tinyint(2) NOT NULL default ‘2’,
mouse_scroll enum(‘Y’,’N’) default ‘Y’,
mouse_manufacture varchar(20) NOT NULL default ‘’,
PRIMARY KEY (mouse_type_id)

) TYPE=MyISAM;

437

Using CGI

31_588206 ch28.qxd 6/30/05 12:43 AM Page 437

--
-- Dumping data for table ‘mice_type’
--

--
-- Table structure for table ‘monitors’
--

CREATE TABLE monitors (
mon_id int(5) unsigned zerofill NOT NULL default ‘00000’,
mon_size tinyint(2) NOT NULL default ‘0’,
mon_features varchar(40) default NULL,
mon_comp int(5) unsigned zerofill NOT NULL default ‘00000’,
mon_ts timestamp(10) NOT NULL,
PRIMARY KEY (mon_id)

) TYPE=MyISAM;

--
-- Dumping data for table ‘monitors’
--

INSERT INTO monitors VALUES (00461,17,’’,02210,’0000000000’);
INSERT INTO monitors VALUES (00436,17,’’,01347,’0000000000’);
INSERT INTO monitors VALUES (00499,15,’’,06073,’0000000000’);
INSERT INTO monitors VALUES (00656,17,’LCD’,09307,’0000000000’);
INSERT INTO monitors VALUES (00236,20,’DUAL’,01523,’0000000000’);
INSERT INTO monitors VALUES (00428,17,’’,07065,’0000000000’);
INSERT INTO monitors VALUES (00007,20,’’,07185,’0000000000’);
INSERT INTO monitors VALUES (00603,15,’’,09894,’0000000000’);
INSERT INTO monitors VALUES (00184,20,’’,09569,’0000000000’);
INSERT INTO monitors VALUES (00239,21,’’,08036,’0000000000’);
INSERT INTO monitors VALUES (00255,17,’’,08057,’0000000000’);
INSERT INTO monitors VALUES (00851,15,’LCD’,05654,’0000000000’);
INSERT INTO monitors VALUES (00417,20,’DUAL’,09834,’0000000000’);
INSERT INTO monitors VALUES (00887,17,’’,07743,’0000000000’);
INSERT INTO monitors VALUES (00578,17,’’,02559,’0000000000’);
INSERT INTO monitors VALUES (00355,15,’’,08316,’0000000000’);
INSERT INTO monitors VALUES (00214,17,’’,09499,’0000000000’);
INSERT INTO monitors VALUES (00795,20,’’,00946,’0000000000’);
INSERT INTO monitors VALUES (00448,21,’’,04070,’0000000000’);
INSERT INTO monitors VALUES (00058,20,’DUAL’,09144,’0000000000’);
INSERT INTO monitors VALUES (00167,22,’’,05212,’0000000000’);
INSERT INTO monitors VALUES (00741,21,’’,03663,’0000000000’);
INSERT INTO monitors VALUES (00605,22,’’,05295,’0000000000’);
INSERT INTO monitors VALUES (00300,19,’LCD’,04780,’0000000000’);
INSERT INTO monitors VALUES (00450,19,’LCD’,00000,’0000000000’);

The following listing shows the permission statement used to create the sample user in the MySQL
examples:

User and Permission Setup

grant all on mysqlsamp.* to webuser@localhost identified by “password99”;
flush privileges;

438

Chapter 28

31_588206 ch28.qxd 6/30/05 12:43 AM Page 438

Perl Examples
This section demonstrates a few examples of how Perl can be used for CGI. The examples show how you
can leverage Perl’s capabilities and add-on modules to deliver dynamic document content.

Date and Time Handling
When using Perl you have a ton of modules and libraries available to extend the language to interact
with a variety of technologies and to perform a variety of calculations. One important and often-used
segment of the libraries is time and date handling. This example shows a simple use of the extensive
Time::Piece library.

For a more dynamic calendar example, see Example 3 in this chapter.

439

Using CGI

Example 1: A Simple Calendar

Source — Perl-Example01.cgi
#!/usr/bin/perl

Use the Time::Piece library for our date/time needs
use Time::Piece;

Set up the variables (today, month, year)
today = m/d/y
sub setvars() {

Default is today
my $day = localtime->mday();
my $month = localtime->mon();
my $year = localtime->year();
my $today = $month.”/”.$day.”/”.$year;

Return vars in a hash
my %t = (“today” => $today,

“month” => $month,
“year” => $year);

return %t;
} # End setvars()

Do the document header
sub docheader($$) {

my $month = shift;
my $year = shift;

my $t = Time::Piece->strptime($month,”%m”);
$month_text = $t->strftime(“%B”);

31_588206 ch28.qxd 6/30/05 12:43 AM Page 439

440

Chapter 28

Print the document header (up to first date row)
print <<HTML;
Content-type: text/html

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml1.dtd”>

<html>
<head>

<title>Calendar - $month_text $year</title>
<style type=”text/css”>

tr.weekdays td { width: 100px;
text-align: center;

}
tr.week td { width: 100px;

height: 100px;
color: black; }

</style>
</head>
<body>
<table border=”1”>

<!-- Controls and calendar title (month) -->
<tr>

<td colspan=”7” align=”center”>

$month_text $year

</td>
</tr>

<!-- Day of week header row -->
<tr class=”weekdays”>

<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>

</tr>

<!-- Calendar (days) start here -->

HTML

} # End docheader()

Do the document footer (close tags, end doc)
sub docfooter() {

print <<HTML;
<!-- Close all open tags, end document -->

31_588206 ch28.qxd 6/30/05 12:43 AM Page 440

441

Using CGI

</table>
</body>
</html>

HTML

} # End docfooter()

Print an empty day (cell)
sub emptyday() {

print <<HTML;
<td align=”right” valign=”top”> </td>

HTML

} # End emptyday()

Print a day cell
sub day($$$$) {

my $today = shift;
my $month = shift;
my $day = shift;
my $year = shift;
my $font = “”;

my $curday = $month.”/”.$day.”/”.$year;
if ($curday eq $today) {

$font = “ style=\”color: red;\””;
}

print <<HTML;
<td align=”right” valign=”top” $font>$day</td>

HTML

} # End day()

Open or close a row
sub weekrow($) {

my $cmd = shift;

if ($cmd eq “open”) {
print “<tr class=\”week\”>\n”;

}
if ($cmd eq “close”) {

print “</tr>\n”;
}

31_588206 ch28.qxd 6/30/05 12:43 AM Page 441

442

Chapter 28

} # End weekrow()

Main program body
sub main() {

Set the date vars
my %vars = setvars();
my $today = $vars{‘today’};
my $month = $vars{‘month’};
my $year = $vars{‘year’};

Do the header and open first row
docheader($month,$year);
weekrow(“open”);

Set up first weekday and 1st day (m/1/y)
my $t = Time::Piece->strptime($month.”/1/”.$year,

“%m/%d/%Y”);

my $first_weekday = $t->strftime(“%w”) + 1;
my $day = 1;

Print empty days up to the first weekday of month
for ($weekday = 1; $weekday < $first_weekday; $weekday++) {

emptyday();
}

my $last_day = $t->month_last_day;

Do rest of month while we have a valid date
while ($day <= $last_day) {

If SUN, open the row
if ($weekday == 1) {

weekrow(“open”);
}
Print day and increment
day($today,$month,$day,$year);
$weekday++;
$day++;
If SAT, close row reset weekday
if ($weekday > 7) {

weekrow(“close”);
$weekday = 1;

}

}

Close current week
while ($weekday != 1 && $weekday <= 7) {

emptyday();
$weekday++;

}

31_588206 ch28.qxd 6/30/05 12:43 AM Page 442

443

Using CGI

Close document
docfooter();

} # End main();

Kick it all off
main();

Output
This script outputs an XHTML table similar to that shown in Figure 28-2.

Figure 28-2

How It Works
This script uses the date and time functions in the Time::Piece library (found on CPAN) to
determine these parameters about the current month:

31_588206 ch28.qxd 6/30/05 12:43 AM Page 443

Handling Form Data
The most popular use for CGI is probably XHTML form handling (that is, taking data from an
XHTML form and doing something useful with the submitted data). This example shows how to
decipher data passed to a Perl script. This script simply lists the GET and POST data passed to it.

444

Chapter 28

❑ First weekday of the month

❑ Current day (for highlighting purposes)

❑ Number of days in the month

Using those parameters, the script can create a calendar for any month — past, present, or
future. The rest of the script is fairly straightforward:

1. Output the document header (Content-type, doctype, head tags, and so on).

2. Determine the first weekday of the month.

3. Output blank cells for weekdays up to the first day of the month.

4. Output cells for each day of the month.

5. Close the month by outputting blank cells to fill the last week.

Improving the Script
This script simply shows how Perl can be extended with libraries to perform complex calcula-
tions such as functions on dates and times. Besides changing the format of the output (for
example, a smaller table for a smaller calendar), the script could do many other time/date
functions, as reflected in the following list:

❑ Thumbnail calendars for the months on either side of the current month could be dis-
played in the calendar header, much like paper calendars.

❑ Multiple months could be assembled into a longer calendar.

❑ The calendar functions could be applied to other Web-enabled features.

❑ The calendar could be extended to be dynamic, able to output any month. An example
of a more dynamic calendar appears in Example 3 in this chapter.

Example 2: Deciphering and Dealing with Form-Submitted Data

Source — Perl-Example02.cgi
#!/usr/bin/perl

Use CGI methods to get parameters
use CGI;
my $cgi = CGI->new();

31_588206 ch28.qxd 6/30/05 12:43 AM Page 444

445

Using CGI

my %params = $cgi->Vars;

Print document header
print “Content-type: text/html\n\n”;
print <<HTML;
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>
<head>

<title>POST/GET Variable Dump</title>
</head>
<body>

HTML

If there is POST data, dump it
else display “No Data”
if ($ENV{REQUEST_METHOD} eq “POST”) {

Header for data
print “<h2>POST Data</h2>\n”;
print “<pre>\n<p>\n”;

Walk through data
foreach my $key (sort keys %params) {

If multiple values, display as such
my $size = @{$cgi->{$key}};
if ($size > 1) {

my $count = 0;
for (@{$cgi->{$key}}) {

print “ $key\[$count\] => “, $cgi->{$key}[$count], “\n”;
$count++;

}
} else {

Display single value
print “ $key => $cgi->{$key}[0]”, “\n”;

}
print “\n”;

}
print “</pre>\n</p>\n”;

} else {
print “<h2>No POST Data</h2>\n”;

}

If there is GET data, dump it
else display “No Data”
if ($ENV{REQUEST_METHOD} eq “GET”) {

Header for data

31_588206 ch28.qxd 6/30/05 12:43 AM Page 445

446

Chapter 28

print “<h2>GET Data</h2>\n”;
print “<pre>\n<p>\n”;

Walk through data
foreach my $key (sort keys %params) {

If multiple values, display as such
my $size = @{$cgi->{$key}};
if ($size > 1) {

my $count = 0;
for (@{$cgi->{$key}}) {

print “ $key\[$count\] => “, $cgi->{$key}[$count], “\n”;
$count++;

}
} else {

Display single value
print “ $key => $cgi->{$key}[0]”, “\n”;

}
print “\n”;

}
print “</pre>\n</p>\n”;

} else {
print “<h2>No GET Data</h2>\n”;

}

Close document
print “</body>\n</html>”;

Output
This script, when passed the example data outlined in the “Sample Data” section earlier in this
chapter, displays the document shown in Figure 28-3.

How It Works
This script uses the CGI.pm module to access the HTTP information passed to the script. The
Request-Method header (accessed by the $ENV{REQUEST_METHOD} variable) contains the
method used to send the data to the script (GET or POST), while the param() method is used
to return the data itself. If the data contains multiple values (such as from a select form ele-
ment), each value is displayed.

Improving the Script
This script simply outputs the form data it is given; it doesn’t do anything useful with the
data. However, you can combine these methods to access form data with other CGI functional-
ity (accessing databases, for example).

This script can be used to troubleshoot XHTML form data. Simply specify it as the form handler
(in the action property of the form tag).

31_588206 ch28.qxd 6/30/05 12:43 AM Page 446

Using Form Data
The preceding example showed how to parse the data passed to the script via HTTP. This example
builds on that concept and Example 1 to create a dynamic calendar — a calendar with controls to move
the month displayed forward and backward.

447

Using CGI

Figure 28-3

Example 3: Creating a Dynamic Calendar

Source — Perl-Example03.cgi
#!/usr/bin/perl

use Time::Piece;
use CGI;

Set up the variables (today, month, year)
today = m/d/y
sub setvars() {

31_588206 ch28.qxd 6/30/05 12:43 AM Page 447

448

Chapter 28

Default is today
my $day = localtime->mday();
my $month = localtime->mon();
my $year = localtime->year();
my $today = $month.”/”.$day.”/”.$year;

my $cgi = CGI->new();
my %params = $cgi->Vars;
my $cmd = 0;

if (exists($params{month})) {
$month = $params{month};

}
if (exists($params{year})) {

$year = $params{year};
}
if (exists($params{next})) {

$cmd = 1;
}
if (exists($params{prev})) {

$cmd = -1;
}

if ($cmd != 0) {
$month += $cmd;
Adjust month over or underrun
if ($month >= 13) {

$month = 1;
$year += 1;

} else {
if ($month <= 0) {

$month = 12;
$year -= 1;

}
}

}

Return vars in a hash
my %t = (“today” => $today,

“month” => $month,
“year” => $year);

return %t;
} # End setvars()

Do the document header
sub docheader($$) {

my $month = shift;
my $year = shift;

my $t = Time::Piece->strptime($month,”%m”);
$month_text = $t->strftime(“%B”);

31_588206 ch28.qxd 6/30/05 12:43 AM Page 448

449

Using CGI

Print the document header (up to first date row)
print <<HTML;
Content-type: text/html

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml1.dtd”>

<html>
<head>

<title>Calendar - $month_text $year</title>
<style type=”text/css”>

tr.weekdays td { width: 100px;
text-align: center;

}
tr.week td { width: 100px;

height: 100px;
color: black; }

</style>
</head>
<body>
<form action=”$this_script” method=”post”>
<table border=”1”>

<!-- Controls and calendar title (month) -->
<tr>

<td colspan=”1” align=”left”>
<input type=”submit” name=”prev” value=”<<” />

</td>
<td colspan=”5” align=”center”>

$month_text $year

<input type=”hidden” name=”month” value=”$month” />
<input type=”hidden” name=”year” value=”$year” />

</td>
<td colspan=”1” align=”right”>

<input type=”submit” name=”next” value=”>>” />
</td>

</tr>

<!-- Day of week header row -->
<tr class=”weekdays”>

<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>

</tr>

<!-- Calendar (days) start here -->

HTML

31_588206 ch28.qxd 6/30/05 12:43 AM Page 449

450

Chapter 28

} # End docheader()

Do the document footer (close tags, end doc)
sub docfooter() {

print <<HTML;
<!-- Close all open tags, end document -->
</table>
</form>
</body>
</html>

HTML

} # End docfooter()

Print an empty day (cell)
sub emptyday() {

print <<HTML;
<td align=”right” valign=”top”> </td>

HTML

} # End emptyday()

Print a day cell
sub day($$$$) {

my $today = shift;
my $month = shift;
my $day = shift;
my $year = shift;
my $font = “”;

my $curday = $month.”/”.$day.”/”.$year;
if ($curday eq $today) {

$font = “ style=\”color: red;\””;
}

print <<HTML;
<td align=”right” valign=”top” $font>$day</td>

HTML

} # End day()

Open or close a row
sub weekrow($) {

31_588206 ch28.qxd 6/30/05 12:43 AM Page 450

451

Using CGI

my $cmd = shift;

if ($cmd eq “open”) {
print “<tr class=\”week\”>\n”;

}
if ($cmd eq “close”) {

print “</tr>\n”;
}

} # End weekrow()

Main program body
sub main() {

Set the date vars
my %vars = setvars();
my $today = $vars{‘today’};
my $month = $vars{‘month’};
my $year = $vars{‘year’};

Do the header and open first row
docheader($month,$year);
weekrow(“open”);

Set up first weekday and 1st day (m/1/y)
my $t = Time::Piece->strptime($month.”/1/”.$year,

“%m/%d/%Y”);

my $first_weekday = $t->strftime(“%w”) + 1;
my $day = 1;

Print empty days up to the first weekday of month
for ($weekday = 1; $weekday < $first_weekday; $weekday++) {

emptyday();
}

my $last_day = $t->month_last_day;

Do rest of month while we have a valid date
while ($day <= $last_day) {

If SUN, open the row
if ($weekday == 1) {

weekrow(“open”);
}
Print day and increment
day($today,$month,$day,$year);
$weekday++;
$day++;
If SAT, close row reset weekday
if ($weekday > 7) {

weekrow(“close”);
$weekday = 1;

}

31_588206 ch28.qxd 6/30/05 12:43 AM Page 451

452

Chapter 28

}

Close current week
while ($weekday != 1 && $weekday <= 7) {

emptyday();
$weekday++;

}

Close document
docfooter();

} # End main();

Kick it all off
main();

Output
This script results in a document that displays a monthly calendar, as shown in Figure 28-4.

Figure 28-4

Form submit buttons

31_588206 ch28.qxd 6/30/05 12:43 AM Page 452

Accessing Databases
Another popular Web technique is to extend standard XHTML documents using data from other tech-
nologies, such as databases. This example shows how Perl can be used to access a MySQL database.

453

Using CGI

How It Works
This script utilizes the same concepts as in Example 2, earlier in this chapter, to parse the data
provided via HTTP. The hidden fields month and year tell the script which month was dis-
played in the last run. The user clicking the prev or next submit button tells the script to sub-
tract or add a month to display the month currently called for.

Once the month and year are determined, the script uses the same logic as shown in Example
1 to display the month, embedding the new month and year in the appropriate hidden fields.

This script can also be used to display an arbitrary month by passing the month and year values via
GET (embedded in the URL). For example, calling this script with the following URL will result in
it displaying the month March 2006: calendar.cgi?month=3&year=2006.

Improving the Script
This script shows a basic example of displaying a dynamic calendar. This capability can be
used with a variety of other Perl extensions to interact with other technologies, using the form
data to control software and hardware.

Example 4: Performing a Query and Reporting Data

Source — Perl-Example04.cgi
#!/usr/bin/perl

Use the DBI library with the MySQL DBD
use DBI;
use Mysql;

Document header (doctype -> body tag)
sub docheader() {

print <<HTML;
Content-type: text/html

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml1.dtd”>

<html>
<head>

<title>MySQL Query Result</title>
</head>
<body>

31_588206 ch28.qxd 6/30/05 12:43 AM Page 453

454

Chapter 28

HTML

} # End docheader()

Connect the DB with the given creds
sub connectDB($$$$) {

my $host = shift;
my $user = shift;
my $password = shift;
my $database = shift;

$dblink = Mysql->connect($host, $database, $user, $password);

return $dblink;

} # End connectDB()

Do the query, return the result
sub doquery($$) {

my $dblink = shift;
my $sql_statement = shift;

$result = $dblink->query($sql_statement);

return $result;

} # End doquery()

Output the results of the query in a table
sub dotable($) {

my $result = shift;

print <<HTML;
<table border=”1” cellpadding=”5”>
<tr>

HTML

my $ttl_rows = $result->affectedrows;
my @col_names = $result->name;

for ($i=0; $i <= $ttl_rows - 1; $i++) {
print “ <th>”.$col_names[$i].”</th>\n”;

}

print “</tr>\n”;

31_588206 ch28.qxd 6/30/05 12:43 AM Page 454

455

Using CGI

for ($rows = 1; $rows <= $ttl_rows; $rows++) {
print “<tr>\n”;
@rowdata = $result->fetchrow;
foreach $data (@rowdata) {

print “ <td>”.$data.”</td>\n”;
}
print “</tr>\n”;

}

print “</table>\n”;

} # End dotable()

Document footer (close tags and end document)
sub docfooter() {

print <<HTML;
</body>
</html>

HTML

} # End docfooter()

sub main() {

Set up DB access vars
my $host = “localhost”;
my $database = “mysqlsamp”;
my $user = “webuser”;
my $password = “password99”;

Connect the DB
$link = connectDB(“localhost”,”webuser”,”password99”,”mysqlsamp”);

Set up and perform query
$query = <<HTML;
SELECT computers.comp_id as computer_id,

mice.mouse_model as mouse_model,
computers.comp_location as location

FROM computers, mice
WHERE mice.mouse_type = “USB”
AND computers.comp_location like “A%”
AND mice.mouse_comp = computers.comp_id

HTML

$result = doquery($link,$query);

Do document header
docheader();

31_588206 ch28.qxd 6/30/05 12:43 AM Page 455

456

Chapter 28

Do results in table
dotable($result);

Do document footer
docfooter();

} # End main()

Kick it all off
main();

Output
This script produces the document shown in Figure 28-5.

Figure 28-5

How It Works
This script uses the Perl DBI module for basic database access and the MySQL DBD module
for specific MySQL connectivity. Using methods built into the modules, the script connects to
the database (using Mysql->connect()), performs the query (using $dblink->query()),
and accesses the returned data set (using $result->affectedrows(), $result->name(),
and $result->fetchrow()) for output in a document.

Improving the Script
This script shows the most basic use of MySQL connectivity — querying a database and
returning the dataset. Similar methods can be used to create more advanced documents,
returning the entire content for a document, individual articles for use in a larger document,
or other pieces of content for use in documents.

This script is generalized and will work with any database and any query. The resulting table will
have a column for each column in the dataset returned by the query and a row for each row returned.

31_588206 ch28.qxd 6/30/05 12:43 AM Page 456

Python Examples
This section demonstrates a few examples of how Python can be used for CGI. The examples show how
you can leverage Python’s capabilities and add-on modules to deliver dynamic document content.

Date and Time Handling
Data and time handling functions are useful in everyday system administration scripts all the way up to
an actual calendar application. Python offers the time module, the datetime module, and the calendar
module. The time module provides functionality for accessing and formatting time/date strings by
calling platform C functions that perform the desired task. The datetime module, new in Python 2.3,
supplies classes for manipulating dates and times either simply or in a more complex way. Typically,
datetime functions are considered to be improvements over the older time module functionality. The
calendar module completes the date and time handling functions, giving Python everything it needs
for simple and complex date and time operations.

457

Using CGI

Example 5: A Simple Calendar

Source — Python-Example05.py
#!/usr/bin/python

import os, sys
import cgi
import time
import calendar

from datetime import datetime

#Set up date variables
date = datetime.now().date()
today= date.strftime(“%m %Y”)
thisyear = date.strftime(“%Y”)
thismonth = date.strftime(“%m”)
thisday = date.strftime(“%d”)

#Write out the document header
def docheader(month, year):

‘’’ month is a string with the month number
year is a string with the year ‘’’

t = time.strptime(month, ‘%m’)
month_text = time.strftime(‘%B’, t)

data = ‘’’Content-type: text/html

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml1.dtd”>

<html>
<head>

<title>Calendar - %(month)s %(year)s</title>

31_588206 ch28.qxd 6/30/05 12:43 AM Page 457

458

Chapter 28

<style type=”text/css”>
tr.weekdays td { width: 100px;

text-align: center;
}

tr.week td { width: 100px;
height: 100px;
color: black; }

</style>
</head>
<body>
<table border=”1”>

<!-- Calendar title (month) -->
<tr>

<td colspan=”7” align=”center”>

%(month)s %(year)s

</td>
</tr>

<!-- Day of week header row -->
<tr class=”weekdays”>

<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>

</tr>

<!-- Calendar (days) start here -->
‘’’ % { ‘month’:month_text, ‘year’:year }
return data

def do_calendar(thismonth, thisyear):

calendar.setfirstweekday(6) #Set first day of week to Sunday
month = calendar.monthcalendar(int(thisyear),int(thismonth))
print docheader(thismonth, thisyear)
for week in month:

i=0
print ‘<tr class=”week”>’
for day in week:

if int(day) == int(thisday):
print ‘ <td align=”right” valign=”top” style=”color: red”>’
print ‘ ’,day,’’

elif int(day):
print ‘ <td align=”right” valign=”top”>’
print ‘ ’,day,’’

else:
print ‘ <td align=”right” valign=”top”>’
print ‘ </td>’

31_588206 ch28.qxd 6/30/05 12:43 AM Page 458

459

Using CGI

print ‘</tr>’
print ‘</table>’
print ‘</body></html>’

do_calendar(thismonth, thisyear)

Output
This script outputs an XHTML table similar to that shown in Figure 28-6.

Figure 28-6

How it Works
This script uses the date and time functions in the datetime and calendar modules to deter-
mine these parameters about the current month:

❑ First weekday of the month

❑ Current year, month, and day (for highlighting purposes)

❑ Number of days in the month

31_588206 ch28.qxd 6/30/05 12:43 AM Page 459

Handling Form Data
The ability to create a form in HTML and gather data from it via a Python script is very commonly used.
The Python portion can gather the data and manipulate it in a number of useful ways. Here is a simple
example that takes data from an HTML form and outputs it to your screen. The example is written to use
both POST and GET data.

460

Chapter 28

Using those parameters, the script can create a calendar for any month — past, present, or
future. The rest of the script is fairly straightforward:

1. Output the document header (Content-type, doctype, head tags, and so on).

2. Determine the first weekday of the month.

3. Output calendar data, adding a blank when the date cell should be empty.

Improving the Script
This script simply shows how Python can be extended with modules to perform complex
calculations, such as functions on dates and times. Besides changing the format of the output
(for example, a smaller table for a smaller calendar), the script could do many other time/date
functions, as reflected in the following list:

❑ Thumbnail calendars for the months on either side of the current month could be dis-
played in the calendar header, much like paper calendars.

❑ Multiple months could be assembled into a longer calendar.

❑ The calendar functions could be applied to other Web-enabled features.

❑ The calendar could be extended to be dynamic, able to output any month. An example
of a more dynamic calendar appears in Example 7.

❑ Appointment-keeping capability could be built into the calendar.

❑ Certain days could be different colors to enhance them (such as weekends).

Example 6: Deciphering and Dealing with Form-Submitted Data

Source — Python-Example06.py
#! /usr/bin/python
import os, sys
import cgi

print ‘’’Content-type: text/html

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml1.dtd”>
<html> <head> <title>MySQL Query Result</title> </head>

31_588206 ch28.qxd 6/30/05 12:43 AM Page 460

461

Using CGI

<body>
<table border=”1” cellpadding=”5”><form>’’’

#Initialize found_post_data variable
found_post_data = False
#Check whether there is POST data
if (os.environ[‘REQUEST_METHOD’] == ‘POST’):

form = cgi.FieldStorage()
#If the form filled in by cgi.FieldStorage isn’t empty
if form.list != []:

found_post_data = True
print “POST DATA

”
#Iterate over all the keys printing the key and it’s value
for key in form:

datalist = form.getlist(key)
if len(datalist) == 1:

print “%s => %s
” % (key,datalist[0])
else:

for i, item in enumerate(datalist):
print “%s[][%d]=> %s
” % (key, i, item)

#If there is no post data, say so.
if not found_post_data:

print “No POST data.
”

print ‘
’

Get a dict with all the query parameters
query_params = os.environ.has_key(‘QUERY_STRING’) \

and cgi.parse_qs(os.environ[‘QUERY_STRING’], keep_blank_values=True)

if query_params:
print “GET DATA

”
for key, value in query_params.iteritems():

if len(value) == 1:
print “%s => %s
” % (key,value[0])

else:
for i, item in enumerate(value):

print “%s[][%d]=> %s
” % (key, i, item)

else:
#If there is no GET data,say so.
print “No GET data.
”

print “</form></table></body></html>”

Output
This script, when passed the example data outlined in the “Sample Data” section earlier in this
chapter, displays the document shown in Figure 28-7.

31_588206 ch28.qxd 6/30/05 12:43 AM Page 461

462

Chapter 28

Figure 28-7

How It Works
This script uses the CGI module’s FieldStorage class to access the HTTP POST data informa-
tion passed to the script. The Request-Method header (accessed by the os module’s environ
method) contains the method used to send the POST data to the script, while the FieldStorage
class is used to return the data itself. If the data contains multiple values (such as from a select
form element), each value is displayed. After obtaining the POST data, we parse the parameters
to see if there is any GET data. If we find some, we print it out; otherwise we print that there is
none.

Improving the Script
This script simply outputs the form data it is given; it doesn’t do anything useful with the
data. However, you can combine these methods to access form data with other CGI functional-
ity (accessing databases, for example).

31_588206 ch28.qxd 6/30/05 12:43 AM Page 462

Using Form Data
The static calendar created in Example 5 is only minimally useful due to its static nature. You can also
use Python to make it a bit more dynamic, allowing you to specify which month to create the calendar
for and to change from one to another.

463

Using CGI

Example 7: Creating a Dynamic Calendar

Source — Python-Example07.py
#!/usr/bin/python

import cgitb, os, sys
cgitb.enable()
sys.stderr = sys.stdout

import cgi
import time
import calendar

from datetime import date

def decrement_month(month, year):
prev_month = month - 1
if prev_month <= 0:

prev_month = 12
prev_year = year -1

else:
prev_year = year

return prev_month, prev_year

def increment_month(month, year):
next_month = month + 1
if next_month > 12:

next_month = 1
next_year = year +1

else:
next_year = year

return next_month, next_year

print ‘’’Content-Type: text/html\n\n

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml1.dtd”>’’’

form = cgi.FieldStorage()

today = date.today()

if form.has_key(‘month’) and form.has_key(‘year’):
Use month and year from form submission

31_588206 ch28.qxd 6/30/05 12:43 AM Page 463

464

Chapter 28

thisyear = int(form.getvalue(‘year’))
thismonth = int(form.getvalue(‘month’))

if form.has_key(‘next’):
thismonth, thisyear = increment_month(thismonth, thisyear)

elif form.has_key(‘prev’):
thismonth, thisyear = decrement_month(thismonth, thisyear)

if thisyear == today.year and thismonth == today.month:
thisday = today.day

else:
thisday = -1

else:
Use today
thisyear = today.year
thismonth = today.month
thisday = today.day

def docheader(month, year):
‘’’ month is an integer month number

year is an integer year ‘’’

t = time.strptime(str(month), ‘%m’)
month_text = time.strftime(‘%B’, t)

my_name = os.environ[‘SCRIPT_NAME’]

data = ‘’’<html>
<head>

<title>Calendar - %(month_text)s %(year)s</title>
<style type=”text/css”>

tr.weekdays td { width: 100px;
text-align: center;

}
tr.week td { width: 100px;

height: 100px;
color: black; }

</style>
</head>

<body>
<form method=”POST” action=”%(my_name)s”>
<table border=”1”>

<!-- Controls and calendar title (month) -->
<tr>
<td colspan=”1” align=”left”>
<input type=”submit” name=”prev” value=”<<” />
<input type=”hidden” name=”month” value=”%(month)d” />
<input type=”hidden” name=”year” value=”%(year)d” />
</td>
<td colspan=”5” align=”center”>

31_588206 ch28.qxd 6/30/05 12:43 AM Page 464

465

Using CGI

%(month_text)s %(year)s

</td>
<td colspan=”1” align=”right”>
<input type=”submit” name=”next” value=”>>” />
</td>
</tr>
</form>

<!-- Day of week header row -->
<tr class=”weekdays”>

<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>

</tr>

<!-- Calendar (days) start here -->
‘’’ % locals()

return data

def do_calendar(thismonth, thisyear, thisday):

calendar.setfirstweekday(6) #Set first day of week to Sunday
month = calendar.monthcalendar(thisyear, thismonth)
print docheader(thismonth, thisyear)
for week in month:

i=0
print ‘<tr class=”week”>’
for day in week:

if int(day) == int(thisday):
print ‘ <td align=”right” valign=”top” style=”color: red”>’
print ‘ ’,day,’’

elif int(day):
print ‘ <td align=”right” valign=”top”>’
print ‘ ’,day,’’

else:
print ‘ <td align=”right” valign=”top”>’
print ‘ </td>’

print ‘</tr>’
print ‘</table>’
print ‘</body></html>’

do_calendar(thismonth, thisyear, thisday)

Output
This script results in a document that displays a monthly calendar, as shown in Figure 28-8.

31_588206 ch28.qxd 6/30/05 12:43 AM Page 465

466

Chapter 28

Figure 28-8

How It Works
This script utilizes the same concepts as the previous static example in this section to parse the
data provided via HTTP. The hidden fields month and year tell the script which month was
displayed in the last run. The user clicking the prev or next submit button tells the script to
subtract or add a month to display the month currently called for.

Once the month and year are determined, the script uses the same logic as shown in Example
5 to display the month, embedding the new month and year in the appropriate hidden fields.

This script can also be used to display an arbitrary month by passing the month and year values via
GET (embedded in the URL). For example, calling this script with the following URL will result in
it displaying the month March 2006: calendar.cgi?month=3&year=2006.

Improving the Script
This script shows a basic example of acting on form data and using it recursively to display
a dynamic calendar. This capability can be used with a variety of other Python extensions to
interact with other technologies, using the form data to control software and hardware.

31_588206 ch28.qxd 6/30/05 12:43 AM Page 466

Accessing Databases
The ability to access a database in Python is widely used. Think how much more powerful a script that
gathers data from a database would be. The next example does just that.

467

Using CGI

Example 8: Performing a Query and Reporting Data

Source — Python-Example08.py
#!/usr/bin/python

import MySQLdb
import MySQLdb.cursors
import cgi

def printheader():
print “””Content-Type: text/html

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>
<title>MySQL Query Result</title>

</head>
<body>\n\n”””

def getdata():
conn = MySQLdb.Connect(

host=’localhost’, user=’webuser’,
passwd=’password99’, db=’mysqlsamp’,compress=1)

cursor = conn.cursor()
cursor.execute(“””SELECT computers.comp_id as computer_id,

mice.mouse_model as mouse_model,
computers.comp_location as location
FROM computers, mice
WHERE mice.mouse_type = “USB”
AND computers.comp_location like “A%”
AND mice.mouse_comp = computers.comp_id;”””)

print ‘’’
<table border=”1” cellpadding=”5”>
‘’’
rows = cursor.fetchall()

print “<tr>”
for col in cursor.description:

print ‘<td>%s</td>’ % col[0]
print “</tr>”

for row in rows:
print “<tr>”
for cell in row:

print “<td> %s </td>” % cell
print “</tr>”

31_588206 ch28.qxd 6/30/05 12:43 AM Page 467

468

Chapter 28

cursor.close()
conn.close()

Document footer (close tags and end document)
def docfooter():

print ‘’’
</body>
</html>

‘’’

End docfooter()

printheader()
getdata()
docfooter()

Output
This script produces the document shown in Figure 28-9.

Figure 28-9

How It Works
This script uses the Python MySQLdb module for MySQL database access. Using methods
built into the modules, the script connects to the database (using MySQLdb.Connect ()),
performs the query (using MySQLdb.cursors), and accesses the returned data set (using
cursor.fetchall(), cursor.description, and standard for statements) for output
in a document.

31_588206 ch28.qxd 6/30/05 12:43 AM Page 468

Summary
This chapter demonstrated many popular techniques used with Perl and Python scripts to deliver
dynamic content. Although the examples presented here are fairly simplistic by necessity, they provide
a solid foundation for utilizing common techniques in CGI and provide building blocks you can use to
create more robust applications.

469

Using CGI

Improving the Script
This script is written to adapt its output to whatever data is returned from the MySQL query.
It is commonly thought safer to know the database schema and hard code the headers rather
than use the ones returned from the cursor. Additionally, this allows you to label the output
something less cryptic than the description returned from the cursor. This script can be
adapted to use some database other than a MySQL database, if desired (for example,
Postgres).

31_588206 ch28.qxd 6/30/05 12:43 AM Page 469

31_588206 ch28.qxd 6/30/05 12:43 AM Page 470

PHP Basics
PHP is a relative newcomer to the Web-scripting scene, but it is a revolutionary step for online
scripting. PHP was built to deliver markup content (HTML, XHTML, and so on) over the Web.
As such, it contains many native features that make that task easier. With a syntax that is easy to
understand and use, PHP provides an excellent tool for delivering dynamic content. This chapter
introduces PHP.

The History of PHP
PHP was originally conceived and created by Rasmus Lerdorf in 1995. Dubbed Personal Home
Page/Forms Interpreter (or PHP/FI), the original scripting language was created to track how many
times a particular page was accessed. As the needs for the scripting system grew, so did the lan-
guage. By 1997, the small, personal scripting project was used by thousands of people worldwide.

In 1997 Andi Gutmans and Zeev Suraski did a complete rewrite of PHP/FI when they found it
underpowered for a particular task. This new version included powerful extensibility features that
allowed it to interface with many other programs, applications, data structures, and APIs. Version
3.0 was officially released in June 1998. It is estimated that PHP 3.0 was installed on 10 percent of
Internet servers at its peak.

Version 4.0 with the Zend engine — a notable performance enhancement named for its creators,
Zeev Suraski and Andi Gutmans — was released in May 2000.

PHP is now in version 5 (released in July 2004) and is a much more powerful language, but it pro-
vides the same extensibility features.

Upon the release of version 3.0 the decision was made to keep the PHP part of the name but drop the
FI. The meaning of PHP was also changed to a recursive acronym: PHP: Hypertext Preprocessor.

32_588206 ch29.qxd 6/30/05 12:40 AM Page 471

PHP provides the following advantages as a scripting language:

❑ A familiar Perl-like structure and syntax

❑ Robust HTTP-handling capabilities

❑ The capability to coexist with raw HTML in the same file

❑ Modules for interacting with other technologies, such as MySQL

However, being a relative newcomer to the Internet, PHP has a few disadvantages as well, the most
prevalent being security. Earlier versions of PHP were plagued by several security vulnerabilities. Other
scripting languages, such as Perl, have been around longer and have had most of their security bugs
ironed out over time. That said, the current version of PHP provides a stable, secure language suitable
for almost any Web task. The main purpose for PHP on the Web is delivering dynamic content, utilizing
its rich function set and interoperability with other resources.

Like the Apache HTTP server, PHP is a project of the Apache Software Foundation.

Requirements for PHP
PHP can run in two modes: as a module on the server or in CGI mode as an external script (similar to
Perl and Python scripts). Running PHP as a CGI script requires the appropriate interpreter line at the
beginning of the script on Linux (usually #!/usr/bin/php) or associating the php extension with the
PHP interpreter on Windows.

Running PHP as a module is a better choice for performance and security reasons but requires the
appropriate module being compiled into or loaded on the Web server.

In the case of Apache, you can usually add a line to the Apache configuration file similar to the follow-
ing to load the PHP module:

LoadModule php5_module modules/libphp5.so

You must also add an appropriate type to Apache so it knows how to handle PHP files. This can be done
with a line in the Apache configuration file similar to the following:

AddType application/x-httpd-php .php

To test whether PHP is correctly installed on your server, place the following script in your Web server’s
root directory and access it with a browser:

<?php
phpinfo();

?>

The browser should display something similar to that shown in Figure 29-1.

472

Chapter 29

32_588206 ch29.qxd 6/30/05 12:40 AM Page 472

Figure 29-1

PHP Fundamentals
PHP scripts are stored in plaintext format and follow a specific syntax. The following sections introduce
you to PHP’s scripting structure and syntax.

PHP Beginning and Ending Tags
All PHP code needs to be enclosed within beginning and ending tags. The PHP beginning tag is <?php
and the ending tag is ?>. For example, examine the following basic PHP script:

<?php
print “Hello world. \n”;

?>

Notice how the first line contains the beginning tag and the last line contains the ending tag. Because of
PHP’s interpretation of white space (generally ignored), you could just as easily use the following:

<?php echo “Hello world. \n”; ?>

473

PHP Basics

32_588206 ch29.qxd 6/30/05 12:40 AM Page 473

You can turn PHP processing on and off within a script by closing and reopening the PHP tags. For
example, if you wanted to embed some complex HTML within a script (or embed simple scripts within
XHTML), you could do something like the following:

<?php
[php code here]

?>
[XHTML code here]

<?php
[more php code here]

?>...

Likewise, you can use PHP only where absolutely necessary in a document:

[XHTML code here]
<?php [minimal php code here] ?>
[XHTML code here]

Command Termination Character and Blocks of Code
PHP uses the semicolon character as the end marker for commands. The language also recognizes braces
as the delimiter for blocks of code. For example, consider the following if construct:

if (condition) {
[lines to execute if condition is true]

} else {
[lines to execute if condition is false]

}

The braces in the preceding example delimit the code blocks for the if and else constructs.

PHP’s Use of White Space
As with most scripting languages, PHP ignores white space, treating all manner of white space as the
equivalent of a single space. As such, you can use white space liberally to improve the legibility of your
PHP scripts.

Commenting Code
PHP supports several methods of adding comments to your scripts, including the following:

❑ Any text following a pound sign (#) or a double-slash (//) is treated as a comment and ignored
up to the next line break.

❑ Multiline comments can be inserted between /* and */ tags. This is useful when using large
blocks of text in comments.

474

Chapter 29

32_588206 ch29.qxd 6/30/05 12:40 AM Page 474

PHP Variables
Unlike Perl, in PHP you need to prefix variables with a dollar sign. Variable names can be any length
and contain numbers, letters, or underscores. However, variable names must start with a letter or an
underscore — they cannot start with a number. Examples of valid variables include the following:

$name
$_code_ptr
$first_and_last_name
$SubTotal
$log99

You can use variables to store text, integers, floating-point values, objects, resources, or arrays of other
variables. Because PHP variables are untyped, you can store any type of data in any variable. You can
even store multiple types of data in the variable arrays. For example, any of the following values can be
stored in a variable:

“Amy Libler” (text)
123 (integer)
49.95 (floating point)
“$99.95” (text, due to non-number character “$”)

PHP includes a multitude of built-in functions to determine the type of a particular variable and to
transfer a variable’s value from one type to another.

PHP supports the following data types:

❑ Booleans — True or False (case insensitive).

❑ Integers — Such as 0, 1, 2, -5, and so on.

❑ Floating-point numbers — The maximum size of a floating-point type in PHP is platform-
dependent (a maximum of ~1.8e308 with a precision of roughly 14 decimal digits is common).

❑ Strings — PHP supports single-quoted, double-quoted, and heredoc strings (long strings delim-
ited by special characters, as shown in the example in the next section).

❑ Arrays — PHP supports arrays of all and multiple data types. All arrays in PHP are ordered
maps and can be used as traditional (numerical index) arrays, lists, or hashes.

❑ Objects — Up until version 5.0, PHP object support was relatively weak. PHP version 5
included more robust object handling.

❑ Resource — PHP uses resource variables to reference external resources (files, and so on).

A Sample PHP Script
It usually helps to see a practical example to get a grip on a new language. Therefore, this section
demonstrates outputting a document with the current date embedded in the document.

475

PHP Basics

32_588206 ch29.qxd 6/30/05 12:40 AM Page 475

476

Chapter 29

Example: A Simple PHP Script

This example creates a simple document with the current date and time embedded in a header.

Source
<?php

// Print document header (using heredoc syntax)
print <<<HTML
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>

<head>
<title>Sample PHP Script</title>

</head>
<body>

<p>

HTML;

// Assemble the date in format:
// Weekday, Month DD, YYYY
$curdate = date(“l, F j, Y”);
print “ <h1>$curdate</h1>\n”;

// Close the html document
print <<<HTML

</p>
</body>
</html>

HTML;

?>

Output
This script renders a simple document in the user agent, as shown in Figure 29-2.

This example used PHP to output the entire document for example purposes. It could easily have
been entirely XHTML except for the section that determines the date and embeds it in the header:

32_588206 ch29.qxd 6/30/05 12:40 AM Page 476

477

PHP Basics

Figure 29-2

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>
<head>

<title>Sample PHP Script</title>
</head>

<body>
<p>

<?php
$curdate = date(“l, F j, Y”);
print “ <h1>$curdate</h1>\n”;

?>
</p>

</body>
</html>

Summary
This chapter introduced PHP, its history, advantages, basic syntax, and methods for delivering content.
PHP coverage continues in the next two chapters: Chapter 30 provides in-depth coverage of PHP’s fea-
tures, and Chapter 31 contains several useful examples.

32_588206 ch29.qxd 6/30/05 12:40 AM Page 477

32_588206 ch29.qxd 6/30/05 12:40 AM Page 478

The PHP Language
Chapter 29 introduced you to the PHP scripting language and gave you a preview of its complex-
ity and power. This chapter delves deeper into PHP and gives you specifics on the various lan-
guage constructs at your disposal when using PHP.

Calculations and Operators
PHP supports the usual collection of standard operators, as shown in the following table:

PHP Arithmetic Operators

Operator Use

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

++ Increment

-- Decrement

PHP supports C-style pre and post types of increment and decrement operators. The pre opera-
tors (designated by placing the operators prior to the variable, for example, --$a) perform the
operation and then return the value of the variable. The post operators (designated by placing the
operators after the variable, for example, $a--) return the value of the variable and then perform
the operation.

33_588206 ch30.qxd 6/30/05 12:38 AM Page 479

PHP Assignment Operators

Operator Use

= Assignment

+= Increment assignment

-= Decrement assignment

*= Multiplication assignment

/= Division assignment

%= Modulus assignment

PHP Comparison Operators

Operator Use

== Is equal to

=== Exactly identical, in value and type

!= Is not equal to

!== Is not identical

> Is greater than

< Is less than

>= Is greater than or equal to

<= Is less than or equal to

PHP Logical Operators

Operator Use

&& or and And

|| or or Or

! Not

xor Xor

PHP Bitwise Operators

Operator Use

& And

| Or

480

Chapter 30

33_588206 ch30.qxd 6/30/05 12:38 AM Page 480

Operator Use

^ Xor

~ Not

<< Left shift

>> Right shift

PHP Miscellaneous Operators

Operator Use

?: Condition operator

PHP String Operators

Operator Use

. Concatenation

.= Concatenation assignment

PHP Array Operators

Operator Use

+ Union

PHP String Tokens

Token Character

\b Backspace

\t Horizontal tab

\n Line feed

\v Vertical tab

\f Form teed

\r Carriage return

\” Double-quote

\’ Single-quote

\\ Backslash

481

The PHP Language

33_588206 ch30.qxd 6/30/05 12:38 AM Page 481

Control Structures
Like many other languages, PHP supports many different control structures that can be used to execute
particular blocks of code based on decisions or repeat blocks of code while a particular condition is true.
The following sections cover the various control structures available in PHP.

Do-while
The do-while loop executes one or more lines of code as long as a specified condition remains true. This
structure has the following format:

do {
// statement(s) to execute

} while (<expression>);

Due to the expression being evaluated at the end of the structure, statement(s) in a do-while loop are
executed at least once. The following example will loop a total of 20 times — incrementing the variable
$x each time until $x reaches the value 20:

$x = 0;
do {

$x++; // increment x
} while ($x < 20);

While
The while loop executes one or more lines of code while a specified expression remains true. The while
loop has the following syntax:

while (<expression>) {
// statement(s) to execute

}

Because the <expression> is evaluated at the beginning of the loop, the statement(s) will not be exe-
cuted if the <expression> is false at the beginning of the loop. For example, the following loop will
execute 20 times, each iteration of the loop incrementing $x until it reaches 20:

$x = 1;
while ($x <= 20) { // do until $x = 20 (will not execute when x = 21)

$x++; // increment $x
}

For
The for loop executes statement(s) a specific number of times, governed by two expressions and a
condition:

for (<initial_value>; <condition>; <loop_expression>) {
// statement(s) to execute

}

482

Chapter 30

33_588206 ch30.qxd 6/30/05 12:38 AM Page 482

The <initial_value> expression is evaluated at the beginning of the loop; this event occurs only
before the first iteration of the loop. The <condition> is evaluated at the beginning of each loop itera-
tion: If the condition returns false, the current iteration is executed, and if the condition returns true, the
loop exits and the script execution continues after the loop’s block. At the end of each loop iteration, the
<loop_expression> is evaluated.

Although their usage can vary, for loops are generally used to step through a range of values via a spec-
ified increment. For example, the following example begins with the variable $x equal to 1 and exits
when $x equals 20; each loop iteration increments $x by 1:

for ($x = 1; $x <= 20; $x++) { // for $x = 1 to 20
//statement(s) to execute

}

Note that the <loop_expression> is not limited to an increment expression; the expression should
advance the appropriate values toward the exit condition but can be any valid expression. For example,
consider the two following snippets of code:

for ($x = 20; $x >= 1; $x--) { // for $x = 20 to 1
// statement(s) to execute

}

for ($x = 2; $x <= 40; $x+=2) { // for $x = 2 to 40, by 2 (even numbers only)
// statement(s) to execute

}

Foreach
The PHP foreach construct is much like the Perl foreach, allowing an easy way to iterate over arrays.
The foreach construct has the following two forms of syntax:

// For non-associative arrays
foreach (<array_expression> as $value) {

// statement(s) to execute
}

// For associative arrays
foreach (<array_expression> as $key => $value) {

// statement(s) to execute
}

The first form of the foreach construct allows you to move through a nonassociative array. For example,
the following code will print all the elements in the $names array:

$names = array (“Terri”,”Amy”,”Steve”,”Jeff”,”Rose”,”Ben”);
foreach ($names as $value) {

print $value . “\n”;
}

483

The PHP Language

33_588206 ch30.qxd 6/30/05 12:38 AM Page 483

The second form of the foreach construct allows you to move through associative arrays, accessing the
keys and values of that array. For example, consider the following code, which accesses and prints the
keys and values of the associative array $parts:

$parts = array (
“X37-22” => “cogwheel”,
“T33-99” => “capacitor”,
“L45-09” => “large lever”,
“Y66-7B” => “updated LED”);

foreach ($names as $key => $value) {
print “Key: “ . $key . “ Value: “. $value . “\n”;

}

If Else
Predictably, PHP has a robust if/else construct. The if and if/else constructs execute a block of
code depending on the evaluation (true or false) of an expression. The if construct has the following
syntax:

if (<expression>) {
// statement(s) to execute if expression is true

} [else {
// statement(s) to execute if expression is false

}]

For example, the following code tests whether the value stored in $i is the number 2:

if ($i == 2) {
// statement(s) to execute if the value in $i is 2

}

The following code will execute one block of code if the value of $i is an odd number, another block of
code if the value of $i is an even number:

if (($i % 2) != 0) {
// statement(s) to execute if $i is odd

} else {
// statement(s) to execute if $i is even

}

You can also use more complicated expressions in an if construct, as in the following example:

if (($i = 2) && ($t = 31) && ($name = “Panama”)) {
// statement(s) to execute if all three conditions are true

}

In addition, you can create constructs in PHP by nesting if statements within one another, as shown in
the following code:

if (($i % 2) != 0) {
// statement(s) to execute if $i is odd

484

Chapter 30

33_588206 ch30.qxd 6/30/05 12:38 AM Page 484

} else
if ($i == 12) {
// statement(s) to execute if $i is 12
}

}

However, in many cases, using switch (covered in the next section) to handle multiple possible values
is a better choice.

PHP also supports the elseif construct, which can be used instead of nested if statements:

if (($i % 2) != 0) {
// statement(s) to execute if $i is odd

} elseif ($i == 12) {
// statement(s) to execute if $i is 12
}

}

Switch
The switch construct executes specific block(s) of code based on the value of a particular expression.
This structure has the following syntax:

switch (<expression>) {
case <value_1>:

// statement(s) to be executed if <expression> = <value_1>
break;
case <value_2>:

// statement(s) to be executed if <expression> = <value_2>
break;

...
[default:

// statement(s) to be executed if <expression> does not match any other case
]

}

For example, the following structure will perform the appropriate code based on the value of
$firstname:

switch ($firstname) {
case “Steve”:

// statement(s) to execute if $firstname = “Steve”
break;

case “Terri”:
// statement(s) to execute if $firstname = “Terri”
break;

default:
/* statement(s) to execute if $firstname does not

equal “Steve” or “Terri” */

}

485

The PHP Language

33_588206 ch30.qxd 6/30/05 12:38 AM Page 485

Note that the break statements and the default section are optional. If you omit the break statements,
each case section after the matching case will be executed. For example, in the preceding code section,
if the breaks were removed and firstname were equal to “Steve”, the code in all sections (“Steve”,
“Terri”, and default) would execute.

The break statement is covered in the next section.

Break and Continue
Occasionally, you need to break out of a loop, either the current iteration or the entire loop structure.
The break statement causes execution to break out of the current structure; the next code executed is the
code following that structure. The continue statement breaks out of the current loop iteration to the
condition expression of the loop.

For example, the following code will skip processing the number 7, but all other numbers between 1 and
20 will be processed:

$x = 1;
while ($x <= 20) {

if ($x == 7) continue; // skip the number 7
// statement(s) to execute if $x does not equal 7

}

In the following code, the loop will be exited if the variable $x ever equals 100 during the loop’s execution:

$y = 1;
while ($y <= 20) {

if ($x == 100) break; // if $x = 100, leave the loop
// statement(s) to execute

}
// execution continues here when $y > 20 or if $x = 100

Note that both break and continue can be used with an optional numeric argument to break or con-
tinue more than one loop. For example, the following code shows how to break out of multiple loops:

for ($i = 1; $i <= 100; $i++) {
for ($j = 1; $j <= 10; $j++) {

// statement(s) to perform
if ($x == 20) { break 2; } // if $x = 20, break out of both for loops

}
}

Built-in PHP Functions
One of the many features that make PHP so popular is its multitude of available functions — over 140
categories. Many of the functions are available within the PHP core, but others require support for those
features to be compiled into the version of PHP you are using.

486

Chapter 30

33_588206 ch30.qxd 6/30/05 12:38 AM Page 486

The following list shows the categories of built-in functions according to the PHP documentation avail-
able at: http://www.php.net/manual/en/funcref.php.

Advanced PHP debugger Apache-specific Functions

Array Functions Aspell functions [deprecated]

BCMath Arbitrary Precision PHP bytecode Compiler
Mathematics Functions

Bzip2 Compression Functions Calendar Functions

CCVS API Functions [deprecated] Classkit Functions

Class/Object Functions COM and .Net (Windows)

ClibPDF Functions Crack Functions

Character Type Functions CURL, Client URL Library Functions

Cybercash Payment Functions Cyrus IMAP administration Functions

Date and Time Functions Database (dbm-style) Abstraction Layer
Functions

dBase Functions DBM Functions [deprecated]

DB++ Functions dbx Functions

Direct IO Functions Directory Functions

DOM Functions DOM XML Functions

.NET Functions Error Handling and Logging Functions

Program Execution Functions Exif Functions

File Alteration Monitor Functions FrontBase Functions

Forms Data Format Functions filePro Functions

Filesystem Functions FriBiDi Functions

FTP Functions Function Handling Functions

Gettext GMP Functions

HTTP Functions Hyperwave Functions

Hyperwave API Functions Firebird/InterBase Functions

ICAP Functions [deprecated] iconv Functions

ID3 Functions Informix Functions

IIS Administration Functions Image Functions

IMAP, POP3, and NNTP Functions PHP Options & Information

Ingres II Functions IRC Gateway Functions

PHP / Java Integration LDAP Functions

487

The PHP Language

33_588206 ch30.qxd 6/30/05 12:38 AM Page 487

LZF Functions Mail Functions

mailparse Functions Mathematical Functions

MaxDB PHP Extension Multibyte String Functions

MCAL Functions Mcrypt Encryption Functions

MCVE Payment Functions Memcache Functions

Mhash Functions Mimetype Functions

Ming functions for Flash Miscellaneous Functions

mnoGoSearch Functions Mohawk Software Session Handler Functions

mSQL Functions Microsoft SQL Server Functions

muscat Functions MySQL Functions

Improved MySQL Extension Ncurses Terminal Screen Control Functions

Network Functions YP/NIS Functions

Lotus Notes Functions NSAPI-specific Functions

Object Aggregation/Composition Oracle 8 functions
Functions

OpenAL Audio Bindings OpenSSL Functions

Oracle Functions Output Control Functions

Object property and method call Ovrimos SQL Functions
overloading

Parsekit Functions Process Control Functions

Regular Expression Functions PDF functions
(Perl-Compatible)

PDO Functions Verisign Payflow Pro Functions

PostgreSQL Functions POSIX Functions

Printer Functions Pspell Functions

qtdom Functions Rar Functions

GNU Readline GNU Recode Functions

Regular Expression Functions Semaphore, Shared Memory and IPC Functions
(POSIX Extended)

SESAM Database Functions Session Handling Functions

Shared Memory Functions SimpleXML functions

SNMP Functions SOAP Functions

Socket Functions Standard PHP Library (SPL) Functions

488

Chapter 30

33_588206 ch30.qxd 6/30/05 12:38 AM Page 488

SQLite Functions Secure Shell2 Functions

Stream Functions String Functions

Shockwave Flash Functions Sybase Functions

TCP Wrappers Functions Tidy Functions

Tokenizer Functions Unified ODBC Functions

URL Functions Variable Handling Functions

vpopmail Functions W32api Functions

WDDX Functions xattr Functions

xdiff Functions XML Parser Functions

XML-RPC Functions XSL functions

XSLT Functions YAZ Functions

Zip File Functions (Read Only Access) Zlib Compression Functions

A comprehensive list of functions and their usage appears in Appendix F.

As you can see from the list, PHP can interface with many technologies. For example, the following
script will show details about the contents of the zip file test.zip:

<?php

print <<<HTML
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html>
<head>
<title>Zip Contents</title>
</head>
<body>
<p>

HTML;

$zip = zip_open(“test.zip”);

if ($zip) {
print “<h2>Zip File Contents</h2> \n”;
print “<pre> \n”;
while ($zip_entry = zip_read($zip)) {

print “ Name: “ . zip_entry_name($zip_entry) . “\n”;
print “ Actual Filesize: “ . zip_entry_filesize($zip_entry) . “\n”;
print “ Compressed Size: “ . zip_entry_compressedsize($zip_entry) . “\n”;
print “ Compression Method: “ . zip_entry_compressionmethod($zip_entry);
print “\n”;

}
zip_close($zip);

489

The PHP Language

33_588206 ch30.qxd 6/30/05 12:38 AM Page 489

print “</pre> \n”;
}

print <<<HTML
</p>
</body>
</html>

HTML;

?>

Some of the features are available only on certain platforms. For example, the printer functions are avail-
able only on Windows platforms (as opposed to the language construct print, which is available on all
platforms).

User-Defined Functions
PHP has standard support for user-defined functions. The syntax for defining a function in PHP is as
follows:

function <function_name>([<argument1>, <argument2>...]) {
// code of the function;
return(<value>);

}

The code for the function is delimited by the braces.

Return Values
The function’s return value is determined by the value supplied to the return construct within the user-
defined function. Multiple return constructs can be used within the same function; when the function
encounters a return construct, the function terminates and returns the appropriate value. A function
can return any type of value. The same function can even return several types of values via several
return constructs in the same function (although that is generally a bad programming technique).

Arguments
PHP functions support one or more arguments passed to the function. Typically, the number of articles
supplied to the function must match the number of arguments defined in the function itself. Supplying
more arguments causes the function to simply ignore the extra arguments, but supplying fewer causes
an error.

However, sometimes it is useful to define optional arguments — arguments that are replaced by defaults
if they are not given when a function is called. For example, suppose you had a function to print a date
and need to occasionally specify a particular format for the date but usually want the same format. You
could define the function as follows:

490

Chapter 30

33_588206 ch30.qxd 6/30/05 12:38 AM Page 490

function printdate ($date, $format=”m d, y”) {
// code of function

}

The function would always need to be called with one argument, date. However, the format argument
is optional. If not supplied in the function call, the default value (“m d, y”) is used. Because PHP assigns
parameters in the order they appear in the function definition, optional functions should appear at the
end of the argument list, where their omission won’t cause other problems.

Variable Scope
As with most languages, variables in PHP retain local scope — that is, they are recognized only in the
scope where they are defined. For example, a variable declared in a function is valid only within that
function. If you wish a variable to be recognized outside of its defined scope, you will need to define
the variable using the global keyword:

global $a, $b, $c; // Global variables

Objects
Versions of PHP prior to version 5.0 had lackluster object support. PHP version 5.0 added more object-
oriented support, placing PHP more in line with other modern programming languages. This section
gives an overview of PHP’s object features.

Class Definitions
Class definitions in PHP begin with the class keyword and enclose the class definition within curly
braces (as with most other structures in PHP). A typical class definition would resemble the following:

class <class_name> {
// Class definition

}

The class name can be any nonreserved word in PHP. Class naming rules are similar to PHP variable
naming rules.

Constructors and Destructors
PHP version 5.0 uses a new type of constructor that previous versions don’t have. The new format recog-
nizes a function named __construct() in the class definition as the object’s constructor. For example,
consider the following example object:

class myClass {
function __construct() {

// Construction of object
}

}

491

The PHP Language

33_588206 ch30.qxd 6/30/05 12:38 AM Page 491

For backward-compatibility, PHP version 5.0 will check for the prior versions’ constructor format — a
function within the class definition named the same as the class. If such a function is not found, PHP
version 5.0 will then look for the __construct() function.

An object’s constructor is typically used to initialize the object’s properties. See the “Methods and
Properties” section later in this chapter for more information on object properties. To create a new object
(and hence run the class’ constructor), you declare the new object with the new function:

newObject = new myClass();

PHP version 5.0 also adds a destructor that you can use to perform tasks when discarding an object.
Following the new constructor format, the destructor is contained in a function named __destruct().
A code example of a class definition with both a constructor and destructor follows:

class myClass {
function __construct() {

// Tasks to perform on construction of object
}
function __destruct() {

// Tasks to perform on destruction of object
}

}

The destructor is typically used to save changes to objects, related data, or states pertaining to an object
before it is destroyed and the data is lost. For example, you could load data into an object from a database
or other source, manipulate it within the object, and then destroy the object, letting the object’s destructor
take care of saving the object’s data back into the database.

Methods and Properties
Object methods are defined as functions within the class definition. For example, consider the following
code, which defines an object with a method:

class myClass {
function __construct() {

// Tasks to perform on construction of object
}

function myMethod () {
// Tasks to perform when method is called

}
}

To call an object’s method you use the object name and the method, separated by the -> connector. For
example, to call the method described in the preceding code, you could use code similar to the following,
which creates a new object of the myClass class and calls the myMethod method:

newObject = new myClass();
newObject->myMethod();

492

Chapter 30

33_588206 ch30.qxd 6/30/05 12:38 AM Page 492

In PHP, properties are simply variables declared within the class definition. For example, the following
declares a property within the familiar class definition:

class myClass {

public $myProperty;

function __construct() {
// Tasks to perform on construction of object

}
}

As you might have noticed in the preceding code, you can define variables and other structures in the
class definition as public or private by prefacing the definition with the appropriate keyword (public
or private). Resources defined as private are accessible only to the class itself.

Accessing public properties outside the definition is accomplished similarly to accessing an object’s
methods: you specify the object name and the property name separated by ->:

newObject = new myClass();
newObject->myProperty = 152;

Working with Objects
This section shows a practical example of PHP objects.

493

The PHP Language

Creating Objects for Storing Movie Data

This example creates two classes to store movie data:

❑ A director class for storing the name and age of a director

❑ A movie class for storing the name, genre, director, and release date of a movie

The example also creates a simple method for the director class, a method to return the formal
name (last name, comma, first name) of a director.

Source
<?php

class director {

public $name;
public $age;

function __construct($name, $age) {
$this->name = $name;
$this->age = $age;

}

33_588206 ch30.qxd 6/30/05 12:38 AM Page 493

Additional Object Conventions
PHP version 5.0 supports many other traditional conventions for dealing with objects. For example, you
can add the suffix extends <classname> to a class definition to designate that definition as an exten-
sion to another class.

494

Chapter 30

// Given name (John Doe), return last name-comma-first name
// (Doe, John)
function getFormalName() {

$name = array();
$name = explode(“ “,$this->name);
$fname = $name[0];
array_shift($name);
$name[count($name)-1] .= “,”;
array_push($name,$fname);

return implode(“ “,$name);
}

}

class movie {

public $title;
public $genre;
public $director;
public $releasedate;

function __construct($title, $genre, $director, $releasedate) {
$this->title = $title;
$this->genre = $genre;
$this->director = $director;
$this->releasedate = $releasedate;

}
}

$myDirector = new director(“James Cameron”,51);
$myMovie = new movie(“Aliens”,”Scifi”,$myDirector,”1986-07-18”);

if ($myMovie->director->name == “James Cameron”) {
print “King of the world!”;

}

?>

Output
This code would output King of the world! because the name of the movie’s director is James
Cameron.

33_588206 ch30.qxd 6/30/05 12:38 AM Page 494

A full discussion of PHP’s object handling is outside the scope of this chapter, but a good overview can
be found in the PHP documentation at http://www.php.net/manual/en/language.oop5.php.

Basic syntax for many of the object-related functions can be found in Appendix F.

File Operations
As with other areas of functionality, PHP includes many functions for dealing with files. This section
covers the basics of file operations and functions in PHP.

Opening a File
PHP uses the fopen() function for opening files. The syntax of this function is as follows:

fopen(<filename>,<mode>)

The fopen() function returns a resource pointer to the file or the value false if the file could not be
opened.

The various values that can be used for <mode> are shown in the following table:

Mode Meaning

r Open the file for reading only and place the file pointer at the beginning of the file.

r+ Open the file for reading and writing and place the file pointer at the beginning of
the file.

w Open the file for writing only, zero (erase) the file if it exists, or attempt to create the
file if it does not exist.

w+ Open the file for reading and writing, zero (erase) the file if it exists, or attempt to
create the file if it does not exist.

a Open the file for writing only and place the file pointer at the end of the file. If the file
does not exist, attempt to create it.

a+ Open the file for reading and writing and place the file pointer at the end of the file.
If the file does not exist, attempt to create it.

x Create and open the file for writing only, placing the file pointer at the beginning of
the file. If the file already exists, return false.

x+ Create and open the file for reading and writing, placing the file pointer at the begin-
ning of the file. If the file already exists, return false.

A common syntax for using the fopen() function follows:

// Open a text file for reading and writing
$file = fopen(“somefile.txt”,”r+”)

or die(“Could not open file!”);

495

The PHP Language

33_588206 ch30.qxd 6/30/05 12:38 AM Page 495

If the file open was successful, the variable $file would then contain a reference to the file
somefile.txt and could be used by other file functions (as described in the following sections).

The fopen() function supports two additional mode switches: b (binary) and t (translate). The binary
switch ensures that the file will be opened in binary mode and is designed to be used with the binary
safe read and write functions. The translate switch is available only on Windows and causes line breaks
(/n) written to files to be transparently translated to line break-return pairs (/n/r).

Both of these switches must be used at the end of the mode string. For example, to open an existing
binary file for read-write access, you could use the following code:

// Open a text file for binary safe reading and writing
$file = fopen(“somefile.bin”,”r+b”)

or die(“Could not open file!”);

Reading Text from a File
PHP has several functions available for reading data from a file. The two most popular functions are
fgets() (file get string) and fgetc() (file get character). The functions read their respective amount
of data — string/line or character — from the file resource specified. The syntax for both functions
appears here:

fgets(<resource>[,<length>])

fgetc(<resource>)

Note that the fgets() function reads up to the <length> (byte wise) specified, up to the next line
break, or to the end of the file, whichever comes first. If the <length> is not specified, the function will
read up to 1024 bytes (1K). The fgetc() function returns false if the end of the file is encountered; the
fgets() function returns false only on an error.

A common PHP construct for reading and printing the entire contents of a file, line by line, follows:

$file = fopen(“somefile.txt”,”r”)
or die (“Could not open file!”);

// Read the file, line by line (in max 4K chunks)
while (!feof($file)) {

$line = fgets($file,4096);
print $line;

}

The feof() function tests for the end of the file and is covered in the “Other File Functions” section of
this chapter.

The following table lists several other functions that can be used for reading data from a file:

496

Chapter 30

33_588206 ch30.qxd 6/30/05 12:38 AM Page 496

Function Returns Use

fgetcsv (resource handle array Reads values from a comma-
[, int length [, separated value file into an array
string delimiter
[, string enclosure]]])

fgetss (resource handle string Reads a string from a file,
[, int length [, string stripping HTML tags before returning
allowable_tags]]) the string

fread (resource handle, string Binary-safe file reading function
int length)

fscanf (resource handle, mixed Parses input from a file according to
string format [, mixed &...]) the format given in the function call

(similar to the PHP sscanf() function)

Writing Text to a File
Unlike the many functions to read from a file, PHP has only one main function to write to a file —
fwrite(). The syntax for fwrite() is as follows:

fwrite(<resource>,<string>[,<length>])

The fwrite() function will return the number of bytes written to the file or false if an error occurs. If
the <length> parameter is specified, the function will write the number of bytes specified or to the end
of the string, whichever comes first.

On systems that differentiate between text and binary files (such as Windows), it is important to use the
b mode flag when opening the file. For more information, see the “Opening a File” section earlier in this
chapter.

Closing a File
To close a file, PHP uses the fclose() function. This function is straightforward, taking the file resource
variable as its only parameter:

fclose($file)

This function returns true or false depending on the results of the operation.

Working with Binary Files
The fseek() function is the missing piece of working with binary files. Using fread() and fwrite(),
you can read and write data to binary files, but you need fseek() to accurately position the file pointer
before you perform either operation. The fseek() function has the following syntax:

fseek(<resource>,<offset>[,<whence_key>])

497

The PHP Language

33_588206 ch30.qxd 6/30/05 12:38 AM Page 497

This function returns 0 on success and -1 on failure. Note that seeking past the end of the file is not con-
sidered an error.

The ftell() function can be used to determine the current position of the file pointer. Using the
ftell() function with the filesize() function (which returns the size of a file) gives you the abil-
ity to discern where the file pointer currently is in regards to the end of a file.

The <offset> parameter is in bytes and the <whence_key> parameter is one of the constants shown in
the following table:

Constant Meaning

SEEK_SET Set the file pointer to the offset given in bytes. This is the default option and
is assumed if no other option is specified.

SEEK_CUR Set the file pointer to the current position plus the offset given in bytes.

SEEK_END Set the file pointer to the end of the file plus the offset given in bytes. Note
that giving a negative offset with this option will seek to the offset before the
end of the file.

The following code snippet shows an example of writing a 1K string of spaces in alternating 1K chunks
throughout an existing file:

// Set up the file info and our 1K string
$filename = “somefile.bin”;
$filesize = filesize($filename);
$oneK = str_pad($oneK,1024);

// Open the file
$file = fopen($filename,”r+b”)

or die(“Cannot open file!”);

// Do until loop is broken
while (true) {

// Write the 1K stripe
if (fwrite($file, $oneK) === FALSE) {

die (“Cannot write to file!”);
}

// Determine if we have room for another stripe
// (skip 1K and write 1K)
// If not, break loop
if ((ftell($file) + 2048) < $filesize)) {

break;
}

// Skip 1K in preparation for another stripe
if (fseek($file,1024,SEEK_CUR) === FALSE) {

die (“Could not seek on file!”);
}

}

498

Chapter 30

33_588206 ch30.qxd 6/30/05 12:38 AM Page 498

Locking Files
The flock() is a function that can be used to lock a file for access. The function has the following syntax:

flock(<resource>, <operation>)

The <operation> parameter is one of the constants shown in the following table:

Constant Use

LOCK_SH Lock the file using a shared lock (usually for read only access).

LOCK_EX Lock the file using an exclusive lock (usually for writing access).

LOCK_UN Release a lock on a file.

LOCK_NB Lock the file without blocking.

The flock() function returns true on success or false on failure. Note that file locking with the flock()
function is mandatory on the Windows platform.

Other File Functions
PHP has several additional file functions, some of which are listed in the following table:

Function Use

feof(<resource>) Test for the end of the file (file pointer at or exceeding the end of
the file). Returns true or false depending on the end of the file
being reached.

file_exists(<filename>) Test whether a file exists. Returns true if the file exists or false if
the file does not exist.

fileatime(<filename>) Returns a timestamp of the last time a file was accessed or false
on an error.

filectime(<filename>) Returns a timestamp of the last time a file was changed or false
on an error.

fileinode(<filename>) Returns the inode number of the file or false on an error.

filemtime (<filename>) Returns a timestamp of the last time a file was modified or false
on an error.

fileowner(<filename>) Returns the user ID of the owner of the file or false on an error.

fileperms(<filename>) Returns the permission on the file or false on an error.

filesize(<filename>) Returns the size (in bytes) of the file or false on an error.

filetype(<filename>) Returns the type of a file (for example: fifo, char, dir, block,
link, file, and unknown) or false on an error.

Table continued on following page

499

The PHP Language

33_588206 ch30.qxd 6/30/05 12:38 AM Page 499

Function Use

fputcsv(<resource>, Writes an array to a file in CSV format. Returns the length of
<data_array>[, the data written or false on an error.
<char_delimiter>,
<char_separator>])

fstat(<resource>) Returns an array of statistical information on the file specified.

is_dir(<filename>) Returns true if the file is a directory or false if the file is not.

is_executable(<filename>) Returns true if the file is executable or false if the file is not.

is_file(<filename>) Returns true if the file is a regular file or false if the file is not.

is_link(<filename>) Returns true if the file is a link or false if the file is not.

is_readable(<filename>) Returns true if the file is readable or false if the file is not.

is_writeable(<filename>) Returns true if the file is writeable or false if the file is not.

tmpfile() Creates a file with a unique name in read-write (w+) mode and
returns a resource handle to the created file.

unlink(<filename>) Deletes the specified file, returning true on success or false
on failure.

There are many other file functions in PHP; the list is too exhaustive to cover in this format. See
Appendix F for more information on PHP functions.

PHP Errors and Troubleshooting
You are sure to encounter problems while coding your PHP scripts. This section provides some guidance
on how to best avoid and troubleshoot errors encountered in your scripts.

Use the Right Tools
It’s important to use the right tools while coding PHP. First and foremost, use a code-friendly editor.
Although any text editor can be used to construct PHP scripts, code-friendly editors offer features such
as auto-indenting, syntax highlighting, and regular expression search and replace functions.

Some of the tools in the following lists are Open Source and others are commercial. Most of the commer-
cial applications offer free trial versions. Capabilities between the various editors vary; pick an editor
that offers the capabilities you need in the price range that works for you.

Windows users should explore tools such as the following:

❑ TextPad —http://www.textpad.com

❑ PSPad —http://www.pspad.com/

❑ Homesite —http://www.macromedia.com/software/homesite/

500

Chapter 30

33_588206 ch30.qxd 6/30/05 12:38 AM Page 500

Linux users should explore tools such as the following:

❑ vim —http://www.vim.org/

❑ Emacs —http://www.gnu.org/software/emacs/emacs.html

❑ Bluefish —http://bluefish.openoffice.nl/

Macintosh users should explore tools such as the following:

❑ Many of the editors available for Linux (see preceding list)

❑ BBEdit —http://www.barebones.com/index.shtml

❑ Dreamweaver —http://www.macromedia.com/software/dreamweaver/

If you want to use a fully integrated development environment (IDE) or dedicated PHP editor rather
than a universal code editor, check out the listings, reviews, and links at the PHP-Editors Web site:
http://www.php-editors.com/.

For a truly professional IDE product, check out Zend Studio, available at http://www.zend.com/
store/products/zend-studio/index.php.

Avoiding Common Syntactical Mistakes
There are several mistakes often made when coding PHP. Keep the following in mind when you
encounter problems in your scripts:

❑ Matching braces — Often you might find that a block section of code is missing its beginning or
ending brace ({ or }). Adhering to strict syntax formatting will help; it’s easier to notice a miss-
ing brace if it doesn’t appear where it should.

❑ Missing semicolons — When writing quick and dirty code, it’s easy to forget the little things,
such as the semicolons on the end of statements. That is one reason why I never treat semicolons
as optional; I use them at the end of every statement even when they are technically optional.

❑ Variable type conflicts — Because PHP allows for loose variable typing, it is easy to make mis-
takes by assuming a variable contains data of one type when it actually contains data of another
type. For example, if you access a numeric variable with a string function, PHP will interpret the
numeric value as a string, resulting in the original number being rounded, truncated, or other-
wise modified.

❑ Working with noncompliant HTML — Sometimes the problem is not in the PHP but in the
XHTML that is output by PHP. It is important to work within the XHTML standards to ensure
that your documents render the way you intend in the most user agents possible.

❑ Your own idiosyncrasies — After writing several scripts, you will find personal coding idiosyn-
crasies that end up constantly biting you. Try to remember those issues and check your code for
your consistent problems as you go.

501

The PHP Language

33_588206 ch30.qxd 6/30/05 12:38 AM Page 501

Identifying Problems
One of the things that PHP is fairly good at is reporting errors. Generally, when an error is encountered
in a script, the interpreter reports a useful message that can be used to quickly identify and fix the prob-
lem. For example, a missing semicolon in the following code results in a message similar to that shown
in Figure 30-1.

function doquery($link,$query) {

$result = mysql_query($query,$link)
or die(“Could not perform query!”)

return $result;

} // End doquery()

Figure 30-1

The error reports an unexpected return statement, which isn’t the actual error. However, the line num-
ber leads you directly to the problem area and the missing semicolon is readily identified as the actual
problem.

However, some PHP errors are too cryptic to be useful. For example, Figure 30-2 shows an error from a
script that has 308 lines.

In such cases, additional troubleshooting and error handling can help. The next section provides some
guidance in that area.

502

Chapter 30

33_588206 ch30.qxd 6/30/05 12:38 AM Page 502

Figure 30-2

Error Control and Processing
PHP has a host of functions and other constructs to help control how errors are handled in your code. By
using these functions, you can control the level of errors reported, intercept errors, and more.

Controlling the Error Level
The PHP error_reporting() function controls the level of errors reported at run time. This function
takes one argument, either a bitmapped value or named constant, corresponding to the error levels you
want returned. The following table lists the bitmapped values and their named constant counterparts.

Value Constant

1 E_ERROR

2 E_WARNING

4 E_PARSE

8 E_NOTICE

16 E_CORE_ERROR

32 E_CORE_WARNING

64 E_COMPILE_ERROR

128 E_COMPILE_WARNING

256 E_USER_ERROR

512 E_USER_WARNING

1024 E_USER_NOTICE

2047 E_ALL

503

The PHP Language

33_588206 ch30.qxd 6/30/05 12:38 AM Page 503

See the PHP documentation on error code constants (www.php.net/manual/en/ref.errorfunc.php#errorfunc
.constants) for more information on what kinds of errors fall into each category.

For example, if you wanted to report runtime errors and warnings, you could use either of the following
two formats:

// Bitmapped number
// Note that level 3 = level 2 + level 1
error_reporting(3);

// Note each error level constant should be listed,
// separated by a vertical bar (|)
error_reporting(E_ERROR | E_WARNING);

If you do not want any errors reported, use a zero with the error_reporting() function call:

// No error reporting
error_reporting(0);

Robust error reporting through the user agent can be a liability for production scripts; the error text
often contains filenames, user names, database names, and more. Instead of disabling errors to protect
such information, redirect the errors to another source, as covered in the next section.

Sending Errors to a File or E-mail Address
The error_log() function can be used to send specific information regarding an error to a file or e-mail
address. This function is most useful for production scripts where the end-user, not the programmer,
experiences the error messages. Using the error_log() function, you can ensure that your scripts pass
their errors on to you to troubleshoot. The error_log() function has the following syntax:

error_log(error_message[, message_type[, message_destination[, extra_headers]]]);

The first argument, error_message, is a string containing the type and description of the error. For
example, you could send the text, Unable to open file filename, replacing filename with the name of
the file that could not be opened.

The second argument, message_type, tells the error_log() function where to send the error (file or
e-mail). This argument supports the values contained in the following table:

Value Meaning

0 Sends the error text to the system’s logger or the filename in the error_log direc-
tive (contained in the php.ini file).

1 Sends the error text via e-mail to the address specified in the message_destination
argument. This function uses the same routines as the mail() function to send the
e-mail.

2 Sends the text through the remote debugging interface. This operation requires that
remote debugging be enabled. The message_destination argument should spec-
ify the IP address (and, optionally, the port) where the information should be sent.

504

Chapter 30

33_588206 ch30.qxd 6/30/05 12:38 AM Page 504

Value Meaning

3 Appends the error text to the filename specified in the message_destination
argument.

Note that the error-reporting functions are influenced by the log_errors and error_reporting
directives. Remember that you can use the ini_set() function or specific error functions (for example,
error_reporting()) to change these directives at run time.

Custom Error Handling
The real power of PHP’s error functions comes from the set_error_handler() function. This function
enables you to define your own error-handling function, giving you ultimate control over how errors
are reported and handled. Custom error handlers are critical for creating recovery code for otherwise
catastrophic errors.

The set_error_handler() function has the following syntax:

set_error_handler(function_name);

For example, the following code defines the function err_handler() as the de facto error-handling
function:

set_error_handler(“err_handler”);

The set_error_handler() function returns the previous error handler. Your scripts can use that value
when reporting errors; knowing what error handler didn’t report errors can be as valuable as knowing
those that do. The complementary restore_error_handler() function reinstates the previous error
handler, whether it is the internal PHP handler or a user-defined handler. Note that the restore_error_
handler() function takes no arguments: PHP remembers and reinstates the previous handler automatically.

Any error-handling function should accept at least the first two of the following arguments, preferably
all five:

❑ The code of the error that was generated

❑ The text of the error that was generated

❑ The filename of the script in which the error occurred

❑ The line number on which the error occurred

❑ An array that points to the active symbol table at the time the error occurred

User-defined error handlers cannot be used to handle the following types of errors: E_ERROR, E_PARSE,
E_CORE_ERROR, E_CORE_WARNING, E_COMPILE_ERROR, and E_COMPILE_WARNING. See the PHP
documentation for more information on these errors.

What you do inside the error-handling function is completely arbitrary. You can perform different
actions based on the type of error, do additional checking of values, and more. However, your function
is now solely responsible for handling the error — at minimum, you should be sure to capture as much
useful information about the error as possible and attempt to gracefully exit the script.

505

The PHP Language

33_588206 ch30.qxd 6/30/05 12:38 AM Page 505

Summary
This chapter covered the details of various PHP operations and the functions and conventions behind
their use. This chapter, combined with the listings in Appendix F, should give you the information neces-
sary to become proficient in writing useful PHP scripts.

Chapter 31 provides a handful of complete scripts that you can use to build your own scripts.

506

Chapter 30

33_588206 ch30.qxd 6/30/05 12:38 AM Page 506

Using PHP
The previous chapters in this section demonstrated how PHP works behind the scenes, describing
the syntax and functionality of the language and its ability to interface with other technologies. This
chapter rounds out the PHP coverage by showing some basic but useful examples of PHP in action.

How and When to Use PHP
PHP is a great choice for any online document needing dynamic content. The rich language com-
bined with the interoperability with other technologies allows your documents to incorporate data
from many sources — data that can be manipulated in various ways prior to being displayed.

However, PHP isn’t a magic bullet for XHTML content and shouldn’t be used indiscriminately to
deliver content. Consider using PHP for the following purposes:

❑ When interfacing with other technologies accessible from the Web server (databases,
specific hardware, and so on)

❑ When the content on a Web page needs to be dynamic, taking into account input from
other resources

❑ When complex documents need to interact with the user via XHTML forms or other
means

However, consider using other technologies when the following conditions apply:

❑ The capabilities you need in a document can be found in client technologies such as
JavaScript.

❑ The documents delivered will be accessed by many clients simultaneously every day.

❑ The machines performing the delivery contain very sensitive data and need to remain
highly secure.

34_588206 ch31.qxd 6/30/05 12:51 AM Page 507

The first two conditions take into account the implicit load running constant PHP scripting can put on a
server. If you can distribute the load to the clients (using JavaScript or other client-centric technology),
you usually should. And the third condition listed is not meant as a slap in the face of PHP in particular;
adding any additional technology to Web-delivered content increases the risk of introducing security
vulnerabilities into the mix. Consider that tradeoff against what PHP can add to your documents when
deciding whether to employ PHP.

You may want to investigate the use of the expose_php setting in the php.ini file (or via scripting
commands). This setting determines whether PHP should expose itself as running via document headers
and the like. It’s advisable to set expose_php to 0 if you are concerned about security. Neither setting
poses an inherent security risk, but if hackers can determine the version of PHP in use, they could con-
ceivably target particular exploits contained in that version.

One popular technique often employed when using PHP is to build the documents statically, running
PHP scripts in the background, usually on separate machines from the Web server(s). The documents are
built using dynamic techniques and then made accessible to the servers doing the actual document
delivery. This, of course, does not work for documents that must reflect up-to-the-minute data but can
work for newsletters or other documents that change only on a regular schedule.

PHP Resources
Several online resources can help you with your PHP tasks. Some of the most popular resources are
listed here:

❑ The Official PHP Web Site (http://www.php.net) — The home of PHP provides a wealth of
information on the language including comprehensive documentation, information on specific
language features, and security updates. The search function at the top of the main page is
invaluable for quickly looking up information in the function list or main documentation.

❑ PHP Extension and Application Repository (PEAR) (http://pear.php.net) — PEAR pro-
vides a “framework and distribution system for reusable PHP components.” The repository con-
tains many prefab components that you can use to build your PHP applications. In a way, PEAR
is the CPAN of PHP. (See Chapter 28 for more information about CPAN.) You can find compo-
nents to perform just about any task.

Note that current versions of PHP (5+) from the PHP site include PEAR in the installation of the
base PHP system. However, you should consult the documentation in your platform’s implemen-
tation for details on how to install and utilize PEAR.

❑ <?PHPBuilder?> (http://www.phpbuilder.com/) — The PHPBuilder site is a third-party
repository of PHP news, articles, tips, and code. It is an invaluable resource for communicating
with the rest of the PHP community and for finding interesting code implementations (snippets)
to help in programming your own applications.

508

Chapter 31

34_588206 ch31.qxd 6/30/05 12:51 AM Page 508

PHP Examples
This section provides four examples of how PHP can be used with XHTML to provide dynamic content.
Using the examples in this section, you should be able to construct a solid foundation of PHP skills to
interact with other technologies and create rich content for delivery over the Web.

This section uses the same sample data outlined in Chapter 28, “Using CGI.” See the “Sample Data”
section in that chapter for more details on the sample data used for the examples here.

Date and Time Handling
This example shows how the PHP date and time routines can be used to create a simple XHTML calendar.
This example displays the current month, with the current day in red.

For a more dynamic calendar example, see the third example in this section.

509

Using PHP

Example 1: A Simple Calendar

Source
<?php

// Set up the variables (today, month, year, cmd)
// today = m/d/y
function setvars() {

// Default is today
$today = getdate();
$month = $today[‘mon’];
$year = $today[‘year’];
$today = $month.”/”.$today[‘mday’].”/”.$year;

// Return vars in an array
return array(“today” => $today,

“month” => $month,
“year” => $year);

} // End setvars()

// Do the document header
function docheader($month,$year) {

$month_text = date(“F”,strtotime($month.”/1/”.$year));

// If content header has not been sent,
// send it
if (!headers_sent()) {

header(‘Content-type: text/html’);
}

// Print the document header (up to first date row)

34_588206 ch31.qxd 6/30/05 12:51 AM Page 509

510

Chapter 31

print <<<HTML
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0//EN”

“http://www.w3.org/TR/xhtml11/DTD/xhtml1.dtd”>
<html>
<head>

<title>Calendar - $Month $Year</title>
<style type=”text/css”>

tr.weekdays td { width: 100px;
text-align: center;

}
tr.week td { width: 100px;

height: 100px;
color: black; }

</style>
</head>
<body>
<table border=”1”>

<!-- Controls and calendar title (month) -->
<tr>

<td colspan=”7” align=”center”>

$month_text $year

</td>
</tr>

<!-- Day of week header row -->
<tr class=”weekdays”>

<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>

</tr>

<!-- Calendar (days) start here -->

HTML;

} // End docheader()

// Do the document footer (close tags, end doc)
function docfooter() {

print <<<HTML
<!-- Close all open tags, end document -->
</table>
</body>

34_588206 ch31.qxd 6/30/05 12:51 AM Page 510

511

Using PHP

</html>

HTML;

} // End docfooter()

// Print an empty day (cell)
function emptyday() {

print <<<HTML
<td align=”right” valign=”top”> </td>

HTML;

} // End emptyday()

// Print a day cell
function day($today,$month,$day,$year) {

$curday = $month.”/”.$day.”/”.$year;
if ($curday == $today) {

$font = “ style=\”color: red;\””;
} else {

$font = “”;
}

print <<< HTML
<td align=”right” valign=”top” $font>$day</td>

HTML;

} // End day()

// Open or close a row
function weekrow($cmd) {

switch ($cmd) {
case “open”:

print “<tr class=\”week\”>\n”;
break;

case “close”:
print “</tr>\n”;
break;

}

} // End weekrow()

// Main program body
function main() {

// Set the date vars

34_588206 ch31.qxd 6/30/05 12:51 AM Page 511

512

Chapter 31

$vars = setvars();
$today = $vars[‘today’];
$month = $vars[‘month’];
$year = $vars[‘year’];

// Do the header and open first row
docheader($month,$year);
weekrow(“open”);

// Set up first weekday and 1st day (m/1/y)
$first_weekday = date(“w”,strtotime($month.”/1/”.$year)) + 1;
$day = 1;

// Print empty days up to the first weekday of month
for ($weekday = 1; $weekday < $first_weekday; $weekday++) {

emptyday();
}

// Do rest of month while we have a valid date
while (checkdate($month,$day,$year)) {

// If SUN, open the row
if ($weekday == 1) {

weekrow(“open”);
}
// Print day and increment
day($today,$month,$day,$year);
$weekday++;
$day++;
// If SAT, close row reset weekday
if ($weekday > 7) {

weekrow(“close”);
$weekday = 1;

}

}

// Close current week
while ($weekday != 1 && $weekday <= 7) {

emptyday();
$weekday++;

}

// Close document
docfooter();

} // End main();

// Kick it all off
main();

?>

34_588206 ch31.qxd 6/30/05 12:51 AM Page 512

513

Using PHP

Output
This script outputs an XHTML table similar to that shown in Figure 31-1.

Figure 31-1

How It Works
This script uses the basic PHP date- and time-handling functions to determine the following:

❑ First weekday of the month

❑ Current day (for highlighting purposes)

❑ Number of days in the month

Using those parameters, the script can create a calendar for any month, past, present, or future.
The rest of the script is fairly straightforward:

1. Output the document header (Content-type, doctype, head tags, and so on).

2. Determine the first weekday of the month.

34_588206 ch31.qxd 6/30/05 12:51 AM Page 513

514

Chapter 31

3. Output blank cells for weekdays up to the first day of the month.

4. Output cells for each day of the month.

5. Close the month by outputting blank cells to fill the last week.

Improving the Script
This script simply shows how PHP can handle complex calculations such as functions on dates
and times. Besides changing the format of the output (for example, a smaller table for a smaller
calendar), the script could perform many other time/date functions:

❑ Thumbnail calendars for the months on either side of the current month could be displayed
in the calendar header, much like paper calendars.

❑ Multiple months could be assembled into a longer calendar.

❑ The calendar functions could be applied to other Web-enabled features.

❑ The calendar could be extended to be dynamic, able to output any month. (An example of a
more dynamic calendar appears in the third example in this section.)

Handling Form Data
This example shows how to decipher data passed to a PHP script. This script simply lists the GET
and POST data passed to it.

Example 2: Deciphering and Dealing with Form-Submitted Data

Source
<?php

// Print document header

// If content header has not been sent,
// send it
if (!headers_sent()) {

header(‘Content-type: text/html’);
}

print <<<HTML
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml11-strict.dtd”>
<html>
<head>

34_588206 ch31.qxd 6/30/05 12:51 AM Page 514

515

Using PHP

<title>POST/GET Variable Dump</title>
</head>
<body>

HTML;

// If there is POST data, dump it
// else display “No Data”
if (isset($_POST) && count($_POST) != 0) {

print “<h2>POST Data</h2>\n”;
print “<pre>\n<p>\n”;

var_dump($_POST);

print “</pre>\n</p>\n”;
} else {

print “<h2>No POST Data</h2>\n”;
}

// If there is GET data, dump it
// else display “No Data”
if (isset($_GET) && count($_GET) != 0) {

print “<h2>GET Data</h2>\n”;
print “<pre>\n<p>\n”;

var_dump($_GET);

print “</pre>\n</p>\n”;
} else {

print “<h2>No GET Data</h2>\n”;
}

// Close document
print <<<HTML
</body>
</html>

HTML;

?>

Output
This script, when passed the data specified in the “Sample Data” section of Chapter 28, results
in the document shown in Figure 31-2.

34_588206 ch31.qxd 6/30/05 12:51 AM Page 515

516

Chapter 31

Figure 31-2

How It Works
This script makes use of the built-in $_POST and $_GET variables to parse the appropriate HTTP-
passed data. Both variables return an associative array containing the variable names (as keys in the
array) and the variable values (as values in the array). You can test for the existence of GET or POST
data by accessing the size of the appropriate array and then accessing each value individually.

The handy PHP (print human readable) function, print_r(), is used to output the arrays in
human-readable format within a <pre> block to preserve the formatting.

Improving the Script
This script handles HTTP-passed data at its simplest level, merely displaying what it was passed.
The methods for making use of said data are endless, driven only by your needs. You could simply
store the data as-is in a database, perform calculations and make decisions based on the data, or
discard it as needed. The next example shows how a script can make decisions based on form data.

PHP offers many functions for aiding in dealing with HTTP-passed data. For example, see Chapter
38 in the PHP Manual, “Handling file uploads,” at http://www.php.net/manual/en/features
.file-upload.php.

34_588206 ch31.qxd 6/30/05 12:51 AM Page 516

Using Form Data
This example shows how a script can act upon the HTTP-supplied data. In this case, the calendar script
from earlier in this chapter is extended to allow the user to move the calendar forward or backward by a
month at a time using simple XHTML form submit buttons.

517

Using PHP

Example 3: Creating a Dynamic Calendar

Source
<?php

// Set up the variables (today, month, year, cmd)
// today = m/d/y
// cmd = 1 (add month) or -1 (sub month)
function setvars() {

// Default is today
$today = getdate();
$month = $today[‘mon’];
$year = $today[‘year’];
$today = $month.”/”.$today[‘mday’].”/”.$year;

// Get POST data
if (isset($_POST) && count($_POST) != 0) {

if (isset($_POST[‘month’])) {
$month = $_POST[‘month’]; }

if (isset($_POST[‘year’])) {
$year = $_POST[‘year’]; }

if (isset($_POST[‘next’])) {
$cmd = 1; }

if (isset($_POST[‘prev’])) {
$cmd = -1; }

}

// Get GET data
if (isset($_GET) && count($_GET) != 0) {

if (isset($_GET[‘month’])) {
$month = $_GET[‘month’]; }

if (isset($_GET[‘year’])) {
$year = $_GET[‘year’]; }

if (isset($_GET[‘next’])) {
$cmd = 1; }

if (isset($_GET[‘prev’])) {
$cmd = -1; }

}

// If given a command (move month)
// act on it
if (isset($cmd)) {

$month += $cmd;
// Adjust month over or underrun
if ($month >= 13) {

34_588206 ch31.qxd 6/30/05 12:51 AM Page 517

518

Chapter 31

$month = 1;
$year += 1;

} elseif ($month <= 0) {
$month = 12;
$year -= 1;

}
}

// Return vars in an array
return array(“today” => $today,

“month” => $month,
“year” => $year,
“cmd” => $cmd);

} // End setvars()

// Do the document header
function docheader($month,$year) {

// Set script to return to (form action)
$this_script = $_SERVER[‘PHP_SELF’];
$month_text = date(“F”,strtotime($month.”/1/”.$year));

// If content header has not been sent,
// send it
if (!headers_sent()) {

header(‘Content-type: text/html’);
}

// Print the document header (up to first date row)
print <<<HTML
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”

“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html>
<head>

<title>Calendar - $Month $Year</title>
<style type=”text/css”>

tr.weekdays td { width: 100px;
text-align: center;

}
tr.week td { width: 100px;

height: 100px;
color: black; }

</style>
</head>
<body>
<form action=”$this_script” method=”post”>
<table border=”1”>

<!-- Controls and calendar title (month) -->
<tr>

<td colspan=”1” align=”left”>
<input type=”submit” name=”prev” value=”<<” />

34_588206 ch31.qxd 6/30/05 12:51 AM Page 518

519

Using PHP

</td>
<td colspan=”5” align=”center”>

$month_text $year

<input type=”hidden” name=”month” value=”$month” />
<input type=”hidden” name=”year” value=”$year” />

</td>
<td colspan=”1” align=”right”>

<input type=”submit” name=”next” value=”>>” />
</td>

</tr>

<!-- Day of week header row -->
<tr class=”weekdays”>

<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>

</tr>

<!-- Calendar (days) start here -->

HTML;

} // End docheader()

// Do the document footer (close tags, end doc)
function docfooter() {

print <<<HTML
<!-- Close all open tags, end document -->
</table>
</form>
</body>
</html>

HTML;

} // End docfooter()

// Print an empty day (cell)
function emptyday() {

print <<<HTML

34_588206 ch31.qxd 6/30/05 12:51 AM Page 519

520

Chapter 31

<td align=”right” valign=”top”> </td>

HTML;

} // End emptyday()

// Print a day cell
function day($today,$month,$day,$year) {

$curday = $month.”/”.$day.”/”.$year;
if ($curday == $today) {

$font = “ style=\”color: red;\””;
} else {

$font = “”;
}

print <<< HTML
<td align=”right” valign=”top” $font>$day</td>

HTML;

} // End day()

// Open or close a row
function weekrow($cmd) {

switch ($cmd) {
case “open”:

print “<tr class=\”week\”>\n”;
break;

case “close”:
print “</tr>\n”;
break;

}

} // End weekrow()

// Main program body
function main() {

// Set the date vars by default, POST, or GET
$vars = setvars();
$today = $vars[‘today’];
$month = $vars[‘month’];
$year = $vars[‘year’];
$cmd = $vars[‘cmd’];

// Do the header and open first row
docheader($month,$year);

34_588206 ch31.qxd 6/30/05 12:51 AM Page 520

521

Using PHP

weekrow(“open”);

// Set up first weekday and 1st day (m/1/y)
$first_weekday = date(“w”,strtotime($month.”/1/”.$year)) + 1;
$day = 1;

// Print empty days up to the first weekday of month
for ($weekday = 1; $weekday < $first_weekday; $weekday++) {

emptyday();
}

// Do rest of month while we have a valid date
while (checkdate($month,$day,$year)) {

// If SUN, open the row
if ($weekday == 1) {

weekrow(“open”);
}
// Print day and increment
day($today,$month,$day,$year);
$weekday++;
$day++;
// If SAT, close row reset weekday
if ($weekday > 7) {

weekrow(“close”);
$weekday = 1;

}

}

// Close current week
while ($weekday != 1 && $weekday <= 7) {

emptyday();
$weekday++;

}

// Close document
docfooter();

} // End main();

// Kick it all off
main();

?>

Output
This script displays a calendar similar to that shown in Figure 31-3, complete with buttons to
move forward and backward month by month.

34_588206 ch31.qxd 6/30/05 12:51 AM Page 521

522

Chapter 31

Figure 31-3

How It Works
This script combines the concepts shown in the previous two examples in this chapter, parsing
HTTP-supplied data and displaying a calendar. The hidden fields month and year tell the script
which month was displayed in the last run; the user clicking the prev or next submit button tells
the script to subtract or add a month to display the month currently called for.

Once the month and year are determined, the script uses the same logic as shown in Example 1 to
display the month, embedding the new month and year in the appropriate hidden fields.

This script can also be used to display an arbitrary month by passing the month and year values via
GET (embedded in the URL). For example, calling this script with the following URL will result in
it displaying the month March 2006:

calendar.php?month=3&year=2006

Form submit buttons

34_588206 ch31.qxd 6/30/05 12:51 AM Page 522

523

Using PHP

Improving the Script
This script shows a basic example of acting on form data and using it recursively to display a
dynamic calendar. This capability can be used with a variety of other PHP functions to interact with
other technologies, using the form data to control software and/or hardware.

This script is subject to the vulnerabilities with respect to the year 2038, as values outside the range of
the UNIX calendar may not work on Linux and UNIX systems.

Accessing Databases
One important feature of dynamically generated content is the ability to interface with storage solutions,
such as relational databases. Using relational database interoperability, scripts can perform complex
queries against datasets and return the resulting data to the end user. This script performs a query
against the sample database (detailed in the “Sample Data” section of Chapter 28) and returns the results
in an XHTML table.

Example 4: Performing a Query and Reporting Data

Source
<?php

// Document header (doctype -> body tag)
function docheader() {

// If content header has not been sent,
// send it
if (!headers_sent()) {

header(‘Content-type: text/html’);
}

print <<<HTML
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”

“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html>
<head>

<title>MySQL Query Result</title>
</head>
<body>

HTML;

} // End docheader()

// Connect the DB with the given creds
function connectDB($server,$user,$password,$dbname) {

$link = mysql_connect($server, $user, $password)
or die(“Could not connect to server!”);

34_588206 ch31.qxd 6/30/05 12:51 AM Page 523

524

Chapter 31

mysql_select_db($dbname)
or die(“Could not select database!”);

return $link;

} // End connectDB()

// Do the query, return the result
function doquery($link,$query) {

$result = mysql_query($query,$link)
or die(“Could not perform query!”);

return $result;

} // End doquery()

// Output the results of the query in a table
function dotable($result) {

print <<<HTML
<table border=”1” cellpadding=”5”>
<tr>

HTML;

$line = mysql_fetch_array($result, MYSQL_ASSOC);
$headers = array_keys($line);

for ($i=0; $i <= count($headers) - 1; $i++) {
print “ <th>”.$headers[$i].”</th>\n”;

}

print “</tr>\n”;

mysql_data_seek($result,0);
while ($line = mysql_fetch_array($result, MYSQL_ASSOC)) {

print “<tr>\n”;
foreach ($line as $key => $value) {

print “ <td>”.$value.”</td>\n”;
}
print “</tr>\n”;

}

print “</table>\n”;

} // End dotable()

// Document footer (close tags and end document)

34_588206 ch31.qxd 6/30/05 12:51 AM Page 524

525

Using PHP

function docfooter() {

print <<<HTML
</body>
</html>

HTML;

} // End docfooter()

// Main function
function main() {

// Connect the DB
$link = connectDB(“localhost”,”webuser”,”password99”,”mysqlsamp”);

// Set up and perform query
$query = <<<HTML
SELECT computers.comp_id as computer_id,

mice.mouse_model as mouse_model,
computers.comp_location as location

FROM computers, mice
WHERE mice.mouse_type = “USB”
AND computers.comp_location like “A%”
AND mice.mouse_comp = computers.comp_id

HTML;

$result = doquery($link,$query);

// Do document header
docheader();

// Do results in table
dotable($result);

// Do document footer
docfooter();

} // End main()

// Kick it all off
main();

?>

34_588206 ch31.qxd 6/30/05 12:51 AM Page 525

526

Chapter 31

Output
This script results in a document with a table containing the results of the SQL query specified in
the script, as shown in Figure 31-4.

Figure 31-4

How It Works
This script uses the built-in PHP MySQL modules for the basic MySQL database. Using standard
methods, the script connects to the database (using mysql_connect()), performs the query
(using mysql_query()), and accesses the returned dataset (using mysql_fetch_array(),
mysql_data_seek(), and mysql_fetch_array()) for output in a document.

PHP must be compiled with MySQL support and must have the MySQL library included in the
php.ini file to access the MySQL functions.

Improving the Script
This script shows the most basic use of PHP’s MySQL connectivity, querying a database and return-
ing the dataset. Similar methods can be used to create more advanced documents — returning the
entire content of a document, individual articles for use in a larger document, or other pieces of
content for use in documents.

This script is generalized and will work with any database and any query. The resulting table will
have a column for each column in the dataset returned by the query and a row for each row returned.

Summary
This chapter demonstrated a number of popular techniques used with PHP scripts to deliver dynamic
content. Although the examples presented here are fairly simplistic by necessity, they provide a solid
foundation for utilizing common techniques in PHP and provide building blocks you can use to create
more robust applications.

34_588206 ch31.qxd 6/30/05 12:51 AM Page 526

XHTML Reference
Due to its XML heritage, XHTML is much less forgiving than HTML has historically been (or per-
haps more accurately, than HTML browsers have been). You cannot leave out closing tags or place
<i> inside <a>. Attribute values must be quoted, and minimized attributes are disallowed, leading
to odd constructs such as <select multiple=”multiple”>.

Here are some tips to keep in mind when working with XHTML:

❑ XHTML documents must be well formed (closing tags required; no overlapping tags
allowed).

❑ Empty elements can be both opened and closed with one tag: .

❑ All elements and tags must be in lowercase.

❑ Attribute values must be quoted (either with single or double quotes).

❑ Attributes cannot be minimized. As an illustration, <textarea> supports a readonly
attribute; in HTML 4, it would look like <textarea readonly>, but because XML does
not support this syntax, with XHTML it would be <textarea readonly=”readonly”>.

In the element listings that follow, the location within a document in which each element may
reside is indicated through one of two mechanisms. If the element has a very limited number of
valid parent elements, those will be listed. Otherwise, the placement will be described as either
“inline” or “block.”

In turn, unless there are a limited number of valid children for a nonempty element, the content
will be documented as some combination of block, inline, or text.

If an element is listed as having a block placement, it may reside directly within any other element
that is listed as having block contents (and nowhere else). Most block elements will render as such,
and most inline elements will render inline, but that is not always true.

For a list of the core, internationalization, and standard-event attributes, see the end of this
appendix.

35_588206 appa.qxd 6/30/05 12:48 AM Page 527

Element Listings
This section lists all of the elements defined in the strict DTD of XHTML 1.0.

<a>
Specify either the inclusion or terminating point of a hyperlink.

Context

Placement Inline

Content Inline and text

Attributes

Optional

accesskey=”<character>”
charset=”<character encoding>”
coords=”<length (pixels or percentage),...>”
href=”<URL>”
hreflang=”<language code>”
name=”<anchor>”
onblur=”<script>”
onfocus=”<script>”
rel=”<linktype ...>”
rev=”<linktype ...>”
shape=”rect|circle|poly|default”
tabindex=”<number>”
type=”<MIME type>”
Core
Internationalization
Standard events

Usage Example
<p>Lincoln’s
Gettysburg
Address has both been widely noted and long remembered.</p>

Using <a> as an anchor point with the name attribute is frequently seen with machine-generated
HTML that includes a table of contents or an index.

<abbr>
Demarcate the enclosed text as an abbreviation.

528

Appendix A

35_588206 appa.qxd 6/30/05 12:48 AM Page 528

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
<p>If you’re old enough to remember using <abbr>Fla</abbr> to send mail to
Florida, you’re getting up there. Of course, if you’re old enough to remember
sending letters at all…</p>

The W3C refers to acronyms such as HTTP as abbreviations, so the distinction between <abbr> and
<acronym> seems to be pretty fuzzy.

<acronym>
Demarcate the enclosed text as an acronym.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
<p>The <acronym title=”World Wide Web Consortium”>W3C</acronym> is the organization
responsible for guiding <acronym title=”HyperText Markup Language”>HTML</acronym>
and many related standards.</p>

When combined with the title attribute and CSS, this tag can be used to edify the reader. For example, if
the preceding paragraph is combined with a stylesheet that indicates that the browser should render
acronyms as underlined or boxed, the browser will render the acronyms in a way that indicates that the
user can interact with them, and placing the mouse over one of them will display a tooltip (assuming a
graphical Web browser).

529

XHTML Reference

35_588206 appa.qxd 6/30/05 12:48 AM Page 529

<address>
Demarcate the enclosed content as the address of an individual or organization.

Context

Placement Block

Content <p>, inline, and text

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
<p>Sincerely, John Doe.</p>
<address>

<p>1234 Main St.</p>
<p>Springfield, U.S. 101010</p>

</address>

Infrequently used.

<area>
Describe the physical layout of an image map.

Context

Parent <map>

Attributes

Required Optional

alt=”<text>” accesskey=”<character>”
coords=”<length (pixels or percentage),...>”
href=”<URL>”
nohref=”nohref”
onblur=”<script>”
onfocus=”<script>”
shape=”rect|circle|poly|default”
tabindex=”<number>”
Core
Internationalization
Standard events

530

Appendix A

35_588206 appa.qxd 6/30/05 12:48 AM Page 530

Usage Example
See <map>.

Indicate that the enclosed text should be rendered in a bold typeface.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
<p>Do not press the red button!</p>

Whenever feasible, try describing the semantic meaning of the text instead of the rendering properties;
for example, use instead of . CSS is the most flexible mechanism for specifying the appropriate
rendering for semantic content.

See and .

<base>
Define the original/desired location for the document.

Context

Parent <head>

Attributes

Required

href=”<URL>”

Usage Example
<head>

<base href=”http://www.w3.org/TR/html401/index/elements.html”/>
<title>Index of the HTML 4 Elements</title>

</head>

531

XHTML Reference

35_588206 appa.qxd 6/30/05 12:48 AM Page 531

Used so that relative links within the document are evaluated with respect to the base location rather
than wherever it may currently reside.

<bdo>
Indicate that the enclosed text should be rendered in a specific direction (left to right or right to left) that
may be different from its environment.

Context

Placement Inline

Content Inline and text

Attributes

Required Optional

dir=”ltr|rtl” lang=”<language code>”
xml:lang=”<language code>”
Core
Standard events

Usage Example
<p><bdo dir=”rtl”>Quite a dramatic cultural difference to read text right to
left.</bdo></p>

Internationalization is a complex issue; the directionality in which a language is rendered is just one of
many issues to consider. Most Web content ignores the issue, assuming that most readers will under-
stand English, but it is unclear how long that assumption will hold true.

<big>
Indicate that the enclosed text should be rendered in a larger font.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core
Internationalization
Standard events

532

Appendix A

35_588206 appa.qxd 6/30/05 12:48 AM Page 532

Usage Example
<p>Last week I nearly caught a <big>really big</big> fish, but it got
away.</p>

CSS provides more flexible font resizing.

See also <small>.

<blockquote>
Enclose a long quotation.

Context

Placement Block

Content Block, <form>, <noscript>, <ins>,

Attributes

Optional

cite=”<URL>”
Core
Internationalization
Standard events

Usage Example
<blockquote cite=”http://wikisource.org/wiki/Gettysburg_Address”>Four score
and seven years ago our fathers brought forth on this continent, a new nation,
conceived in Liberty, and dedicated to the proposition that all men are
created equal.</blockquote>

This should not be used as a mechanism for indenting arbitrary text. Instead, use a <p> or <div> tag
with CSS.

See <q> for the inline equivalent to this tag.

<body>
All content visible on a Web page is contained within this tag.

Context

Parent <html>

Content Block, inline, and text

533

XHTML Reference

35_588206 appa.qxd 6/30/05 12:48 AM Page 533

Attributes

Optional

onload=”<script>”
onunload=”<script>”
Core
Internationalization
Standard events

Usage Example
<html>

<head><title>Just another web page</title></head>
<body><h1>Just another web page</h1>

...
</body>

</html>

Once upon a time, the body tag was optional. This is no longer true.

Force a newline between text or inline elements.

Context

Placement Inline

Attributes

Optional

Core

Usage Example
<p>Down by the salley gardens my love and I did meet;

She passed the salley gardens with little snow-white feet.

She bid me take love easy, as the leaves grow on the tree;

But I, being young and foolish, with her would not agree.</p>

Use this tag sparingly. It should not be used as a substitute for paragraph tags.

See also <pre>.

<button>
Define a button in a form. Any content will be superimposed on the button.

534

Appendix A

35_588206 appa.qxd 6/30/05 12:48 AM Page 534

Context

Placement Inline

Content Block, inline, and text

Attributes

Optional

accesskey=”<character>”
disabled=”disabled”
name=”<button name>”
onblur=”<script>”
onfocus=”<script>”
tabindex=”<number>”
type=”button|submit|reset”
value=”<application value>”
Core
Internationalization
Standard events

Usage Example
<form action=”/cgi-bin/post” method=”post”>
<p>...
<button value=”submit”></button>
</p></form>

This is similar to the <input type=’button’> element but allows content.

<caption>
Define a caption for a table.

Context

Parent <table>

Content Inline and text

Attributes

Optional

Core
Internationalization
Standard events

535

XHTML Reference

35_588206 appa.qxd 6/30/05 12:48 AM Page 535

Usage Example
See <table>.

Contrary to what one might expect, by default a table caption is not rendered with any particular
emphasis. Use CSS to highlight the caption, such as through use of a larger font or bold typeface.

<cite>
Demarcate a source citation.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
<p>The population of Freedonia in 1803 was larger than that of Malta.
(<cite>Williams 1953, p. 42</cite>)</p>

<code>
Demarcate inline code snippets.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core
Internationalization
Standard events

536

Appendix A

35_588206 appa.qxd 6/30/05 12:48 AM Page 536

Usage Example
<p>In Perl, iterating over a list can easily be achieved with
<code>foreach</code>: <code>foreach my $value (sort @keys) { ... }</code>.</p>

For longer blocks of code, use the <pre> element.

<col>
Specify attributes for a full column in a table.

Context

Parents <colgroup>
<table>

Attributes

Optional

align=”left|center|right|justify|char”
char=”<character>”
charoff=”<length (pixels or percentage)>”
span=”<number>”
valign=”top|middle|bottom|baseline”
width=”<length (pixels, percentage, relative)>”
Core
Internationalization
Standard events

Usage Example
See <table>.

Support for this element is limited in many browsers.

<colgroup>
Group columns in a table for assigning attributes.

Context

Parent <table>

Content <col>

537

XHTML Reference

35_588206 appa.qxd 6/30/05 12:48 AM Page 537

Attributes

Optional

align=”left|center|right|justify|char”
char=”<character>”
charoff=”<length (pixels or percentage)>”
span=”<number>”
valign=”top|middle|bottom|baseline”
width=”<length (pixels, percentage, relative)>”
Core
Internationalization
Standard events

Usage Example
See <table>.

As with <col>, full support for this element is not widespread.

<dd>
Wrap the definition of a term in a definition list.

Context

Parent <dl>

Content Inline and text

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
See <dl>.

Demarcate content that has been deleted from a document.

Context

Placement Anywhere inside <body> or its children

Content Inline and textBlock permissible when not
functioning as an inline

538

Appendix A

35_588206 appa.qxd 6/30/05 12:48 AM Page 538

Attributes

Optional

cite=”<URL>”
datetime=”<ISO Date/Time>”
Core
Internationalization
Standard events

Usage Example
<p>Four score and seven years ago when the British held sway over these
lands our fathers brought forth, on this continent...

The inverse of this tag is <ins>.

<dfn>
Indicate that a term is defined in this location.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
<p><dfn>UNIX</dfn> is a widespread operating system that originated at Bell
Labs.</p>

This element is useful for machine-generated indices.

<div>
Enclose a block of content for structural or style purposes.

Context

Placement Block

Content Block, inline, and text

539

XHTML Reference

35_588206 appa.qxd 6/30/05 12:48 AM Page 539

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
<div class=”blockquote”>With CSS, this block of text can be rendered like a
<blockquote>.</div>

The inline equivalent is .

<dl>
Enclose a list of terms and definitions.

Context

Placement Block

Content <dt>
<dd>

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
<dl><dt>molecule</dt>
<dd><cite>Webster’s Revised Unabridged Dictionary (1913)</cite>: One of the
very small invisible particles of which all matter is supposed to consist.</dd>
</dl>

<dt>
Wrap a term defined in a definition list.

Context

Parent <dl>

Content Inline and text

540

Appendix A

35_588206 appa.qxd 6/30/05 12:48 AM Page 540

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
See <dl>.

Demarcate text that should be emphasized.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
<p>There is no substitute for catsup.</p>

See also , <i> and .

<fieldset>
Wrap a group of related labels and controls in a form.

Context

Placement Block

Content First child: <legend>
Remainder: Block, inline, and text

541

XHTML Reference

35_588206 appa.qxd 6/30/05 12:48 AM Page 541

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
See <form>.

This element is useful for accessibility purposes. See <label> for another form element that is courte-
ous to include to assist those who are using a nonvisual mechanism for “viewing” a form.

<form>
Define a collection of controls used to gather and submit information to a Web application.

Context

Placement Block

Content Block (except nested <form> elements)
Can also contain <script>

Attributes

Required Optional

action=”<URL>” accept-charset=”<character encoding ...>”
accept=”<MIME type, ...>”
enctype=”<MIME type>”
method=”get|post”
onreset=”<script>”
onsubmit=”<script>”
Core
Internationalization
Standard events

Usage Example
<form action=”https://www.example.com/cgi-bin/do-something.cgi”
onsubmit=”validate()”>

<fieldset><legend>Shipping address</legend>
<label>Name: <input type=”text” name=”name”/></label>
<label>Street address: <input type=”text” name=”street”/></label>

</fieldset>
<p>

542

Appendix A

35_588206 appa.qxd 6/30/05 12:48 AM Page 542

<input type=”submit” value=”Ship it!”/>
<input type=”reset” value=”Oops, start over”/>

</p>
</form>

Many HTML documents use inline elements such as <input> directly underneath a <form> tag, so
the failure to use only block elements (not counting <script>) inside <form> is a common validation
error when writing XHTML Strict DTD documents.

See also: <input>, <button>, <textarea>, <select>, <label>, and <fieldset>.

<h1>, <h2>, <h3>, <h4>, <h5>, <h6>
Header tags provide some structure to a document.

Context

Placement Block

Content Inline and text

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
<body>
<h1>Analysis of the price of wheat in 17th century Freedonia</h1>
...

<h2>Inflation between 1620 and 1640</h2>
...

<h3>The great price spike of 1623</h3>
...

<h4>Maltese shipping embargo: fact or political fiction?</h4>
...

<h2>Price controls in the latter half of the century</h2>

If you are unhappy with the way different header tags are rendered, you can use CSS to correct the prob-
lem without changing the tags.

<head>
Wrap the important metadata for a document.

543

XHTML Reference

35_588206 appa.qxd 6/30/05 12:48 AM Page 543

Context

Parent <html>

Content <base> <script>
<link> <style>
<meta> <title>
<object>

Attributes

Optional

id=”<ID>”
profile=”<URL>”
Internationalization

Usage Example
<html>

<head>
<title>Freedonia through the ages</title>
<meta name=”author” content=”John Q. Publique”/>
<meta name=”keywords” content=”freedonia history europe”/>
<style type=”text/css”> ... </style>

</head>

<hr>
Define the location for a horizontal rule in the document.

Context

Placement Block

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
<p>...</p>
<hr/>
<h3>Constitutional crisis of 1901: Freedonia’s last stand</h3>

Styling horizontal rules with CSS is challenging due to inconsistencies between browsers.

544

Appendix A

35_588206 appa.qxd 6/30/05 12:48 AM Page 544

<html>
This is the master element for most XHTML documents.

Context

Content <head>
<body>

Attributes

Optional

id=”<ID>”
xmlns=”<URI>”
Internationalization

Usage Example
<html>

<head>
<!-- Metadata here -->

</head>
<body>

<!-- Content here -->
</body>

</html>

The namespace URI for the xmlns attribute for XHTML 1.0 is http://www.w3.org/1999/xhtml.

<i>
Indicate that the contained text should be rendered with italics.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
<p><i>I thought they were finished,</i> she thought to herself.</p>

545

XHTML Reference

35_588206 appa.qxd 6/30/05 12:48 AM Page 545

In many instances, the semantics behind the italics can be conveyed through tags such as <cite> or
 instead of using <i>.

Denote via a hyperlink an image to incorporate into the document.

Context

Placement Inline

Attributes

Required Optional

alt=”<text>” height=”<length (pixels or percentage)>”
src=”<URL>” ismap=”ismap”

longdesc=”<URL>”
usemap=”<URL>”
width=”<length (pixels or percentage)>”
Core
Internationalization
Standard events

Usage Example
<img alt=”Sleeping polar bear”

src=”http://www.example.com/images/polarbear.jpg”/>

Notes
See also <object>. This tag is now redundant.

<input>
Define a mechanism for form input.

Context

Placement Inline

Attributes

Optional

accept=”<MIME type, ...>”
accesskey=”<character>”
alt=”<short description>”
checked=”checked”
disabled=”disabled”
maxlength=”<number>”
name=”<input name>”

546

Appendix A

35_588206 appa.qxd 6/30/05 12:48 AM Page 546

onblur=”<script>”
onchange=”<script>”
onfocus=”<script>”
onselect=”<script>”
readonly=”readonly”
size=”<length (characters or pixels)>”
src=”<URL>”
tabindex=”<number>”
type=”<input type>” (see Notes below)
usemap=”<URL>”
value=”<application value>”
Core
Internationalization
Standard events

Usage Example
See <form>.

The valid type attributes: text, password, checkbox, radio, submit, reset, file, hidden, image, button.

See also: <button>, <textarea>, <select>, <label>, and <fieldset>.

<ins>
Demarcate text or content that has been inserted into a document.

Context

Placement Anywhere inside <body>

Content Inline and text
Block permissible when not functioning as an inline

Attributes

Optional

cite=”<URL>”
datetime=”<ISO Date/Time>”
Core
Internationalization
Standard events

Usage Example
<h2>Freedonia’s Volcanoes</h2>
<ins><p>A new volcano erupted in 2003 along the northern coast...</p></ins>

See also .

547

XHTML Reference

35_588206 appa.qxd 6/30/05 12:48 AM Page 547

<kbd>
Indicate keyboard input.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
At the username prompt, type <kbd>einstein</kbd>.

<label>
Associate explanatory text with a form input control.

Context

Placement Inline

Content Inline and text

Attributes

Optional

accesskey=”<character>”
for=”<IDREF>”
onblur=”<script>”
onfocus=”<script>”
Core
Internationalization
Standard events

Usage Example
See <form>.

548

Appendix A

35_588206 appa.qxd 6/30/05 12:48 AM Page 548

This element can significantly add to the user-friendliness of a form, especially for accessibility pur-
poses. A browser should treat the label as an extension of the control — for example, clicking on a label
next to a checkbox will toggle the checkbox.

<legend>
Provide a caption for a set of form input controls.

Context

Parent <fieldset>

Content Inline and text

Attributes

Optional

accesskey=”<character>”
Core
Internationalization
Standard events

Usage Example
See <form>.

If used, this must be the first child of a <fieldset> element, with nothing but whitespace preceding it.

Wrap a list item for an ordered or unordered list.

Context

Parent

Content Block, inline, and text

Attributes

Optional

Core
Internationalization
Standard events

549

XHTML Reference

35_588206 appa.qxd 6/30/05 12:48 AM Page 549

Usage Example
See .

Vertical whitespace between list items will expand when including nested <p> elements. If <p> ele-
ments are necessary to separate paragraphs within a single list item, CSS can be used to shrink the ver-
tical whitespace if desired.

<link>
Semantically associate related documents.

Context

Parent <head>

Attributes

Optional

charset=”<character encoding>”
href=”<URL>”
hreflang=”<language code>”
media=”<media descriptor, ...>”
rel=”<linktype ...>”
rev=”<linktype ...>”
type=”<MIME type>”
Core
Internationalization
Standard events

Usage Example
<head>

<link rel=”start” href=”introduction.html”/>
<link rel=”prev” href=”chapter-21.html”/>
<link rel=”next” href=”chapter-23.html”/>
<title>Freedonia History: Chapter 22</title>

</head>

See http://www.w3.org/TR/html401/struct/links.html for a good overview of the use of
this element. The DTD does not constrain the link types that can be used.

<map>
Define an image map for navigation.

550

Appendix A

35_588206 appa.qxd 6/30/05 12:48 AM Page 550

Context

Placement Block

Content <area>
<script>
<noscript>
Block

Attributes

Required Optional

id=”<ID>” class=”<text>”
name=”<map name>”
style=”<CSS>”
title=”<text>”
Internationalization
Standard events

Usage Example
<h3>Freedonia Regions</h3>
<div>

<map id=”map-links” name=”map-links”>

<area alt=”Northern provinces” shape=”rectangle” coords=”0,0,100,50”
href=”/regions/north.html”/>

<area alt=”Eastern provinces” shape=”rectangle” coords=”50,50,100,100”
href=”/regions/east.html”/>

</map>
</div>

To maximize compatibility across browsers, specify both the id and name attributes with the same value.

<meta>
Describe metadata for the document.

Context

Parent <head>

Attributes

Required Optional

content=”<TEXT>” http-equiv=”<HTTP header>”
id=”<ID>”
name=”<metadata key>”
scheme=”<metadata scheme identifier>”
Internationalization

551

XHTML Reference

35_588206 appa.qxd 6/30/05 12:48 AM Page 551

Usage Example
See <head>.

The XHTML DTD does not constrain the values for the name attribute, and there are many possible
uses, including supplementary HTTP information and search engine hints regarding the content of the
document.

<noscript>
Offer alternative content for browsers that do not understand (or do not have enabled) the scripting lan-
guage in use for the document.

Context

Placement Block

Content Block, inline, and text

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
See <script>.

Contrary to the example provided under <script>, <noscript> elements should not be used to nag
the user about script support. They should be used only to convey information when the missing func-
tionality is important.

<object>
Embed external content into the document.

Context

Placement Inline

Content First children (if used): <param>
Block, inline, and text

552

Appendix A

35_588206 appa.qxd 6/30/05 12:48 AM Page 552

Attributes

Optional

archive=”<URL,...>”
classid=”<URL>”
codebase=”<URL>”
codetype=”<MIME type>”
data=”<URL>”
declare=”declare”
height=”<length (pixels or percentage)>”
name=”<object name>”
standby=”<text>”
tabindex=”<number>”
type=”<MIME type>”
usemap=”<URL>”
width=”<length (pixels or percentage)>”
Core
Internationalization
Standard events

Usage Example
<object classid=”clsid:8AD9C840-044E-11D1-B3E9-00805F499D93”

height=”400” width=”600”>
<param name=”code” value=”Lifter”/>
<param name=”archive” value=”Lifter.jar”/>

</object>

This element can be used to incorporate applications, images, and even other (X)HTML documents into
the presentation of the current document.

Define an ordered list (that is, one that uses numbers or characters as sequence indicators).

Context

Placement Block

Content

Attributes

Optional

Core
Internationalization
Standard events

553

XHTML Reference

35_588206 appa.qxd 6/30/05 12:48 AM Page 553

Usage Example
<ol style=”list-style-type: lower-roman”>

Register to vote
Research candidates
Vote on election day
Complain about election results
Rinse, repeat

There is no equivalent to the <caption> tag in a table available for lists, but you can associate a
header directly with the list by placing both inside a dedicated <div>.

See also: .

<optgroup>
Group form selection options into a hierarchical structure.

Context

Parent <select>

Content <option>

Attributes

Required Optional

label=”<text>” disabled=”disabled”
Core
Internationalization
Standard events

Usage Example
See <select>.

<option>
Define a form value to be selected from a list.

Context

Parents <select>
<optgroup>

Content Text

554

Appendix A

35_588206 appa.qxd 6/30/05 12:48 AM Page 554

Attributes

Optional

disabled=”disabled”
label=”<text>”
selected=”selected”
value=”<text sent to application>”
Core
Internationalization
Standard events

Usage Example
See <select>.

<p>
Demarcate the enclosed contents as a semantic paragraph.

Context

Placement Block

Content Inline and text

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
<p>It was a dark and stormy night.</p>
<p><i>No, that’s a lousy way to start a book</i>, she thought to herself,
forcefully erasing the first sentence.</p>

If a block is desired but the contents are not a paragraph, consider <div> instead, or <pre> for prefor-
matted text.

<param>
Define values to be passed to a software object loaded into the document.

Context

Parent <object>

555

XHTML Reference

35_588206 appa.qxd 6/30/05 12:48 AM Page 555

Attributes

Optional

id=”<ID>”
name=”<parameter name>”
type=”<MIME type>”
value=”<parameter value>”
valuetype=”data|ref|object”
Core
Internationalization
Standard events

Usage Example
See <object>.

<pre>
Specify that the contents of this block should preserve the whitespace as written, instead of compressing
multiple spaces into one and breaking lines as dictated by the width of the container.

Context

Placement Block

Content Inline and text
Disallowed: , <object>, <big>, <small>

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
<pre style=”font-family: serif”>
Down by the salley gardens my love and I did meet;
She passed the salley gardens with little snow-white feet.
She bid me take love easy, as the leaves grow on the tree;
But I, being young and foolish, with her would not agree.</pre>

If preformatted text is desired but a monospaced font is not, CSS can be used to correct the presentation,
as in the preceding example.

556

Appendix A

35_588206 appa.qxd 6/30/05 12:48 AM Page 556

<q>
Demarcate text that should be quoted appropriately for the language encoding.

Context

Placement Inline

Content Inline and text

Attributes

Optional

cite=”<URL>”
Core
Internationalization
Standard events

Usage Example
<p>She said <q>Bite me,</q>, and Vlad took her literally.</p>

Internet Explorer is the only major browser that does not place quotes around the text as required by
HTML 4 and XHTML 1.0.

<samp>
Indicate that the contents reflects sample output, as from software.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
<p>While working in the MacOS X Terminal, if you see <samp>command not
found</samp>, that means that you mistyped the command name.</p>

See also <kbd> and <tt>.

557

XHTML Reference

35_588206 appa.qxd 6/30/05 12:48 AM Page 557

<script>
Define a script to be used within the document.

Context

Placement Inline or inside <head>

Content Text

Attributes

Required Optional

type=”<MIME type>” charset=”<character encoding>”
defer=”defer”
id=”<ID>”
src=”<URL>”

Usage Example
<body onload=”place_cursor(document.getElementById(‘searchbar’))”>

<script type=”text/javascript”>
function place_cursor(o) {

o.focus();
}

</script>
<noscript>

<p>This page best viewed with JavaScript enabled.</p>
</noscript>
<div>

<form action=”/actions/do-search”>
<input type=”text” id=”searchbar”/>

</form>
</div>

The script can be written into the document or defined outside the document and linked in via the src
attribute.

<select>
Wrap a list of options in a form.

Context

Placement Inline

Content <optgroup>
<option>

558

Appendix A

35_588206 appa.qxd 6/30/05 12:48 AM Page 558

Attributes

Optional

disabled=”disabled”
multiple=”multiple”
name=”<select name>”
onblur=”<script>”
onchange=”<script>”
onfocus=”<script>”
size=”<number>”
tabindex=”<number>”
Core
Internationalization
Standard events

Usage Example
<select name=”operating systems”>

<optgroup label=”UNIX”>
<option label=”HP-UX” value=”HPUX”>HP-UX</option>
<option label=”Solaris” value=”Solaris”>Solaris</option>
<option label=”MacOS X” value=”Darwin” selected=’selected’>

MacOS X
</option>
<option label=”Linux” value=”Linux”>Linux</option>

</optgroup>
<optgroup label=”Macintosh”>

<option label=”MacOS Classic (through v9)” value=”MacOS”>
MacOS Classic (through v9)

</option>
<option label=”MacOS X” value=”Darwin”>MacOS X</option>

</optgroup>
<optgroup label=”Other”>

<option label=”Windows” value=”Windows”>Windows</option>
<option label=”Amiga” value=”Amiga”>Amiga</option>
<option label=”Mainframe” value=”mainframe”>Mainframe</option>

</optgroup>
</select>

In the absence of a value attribute, the contents of the <option> tag will be passed to the Web appli-
cation. It is better to use value so that the appearance of the option can be changed without breaking
the application.

<small>
Request that the enclosed contents be rendered with a smaller font.

Context

Placement Inline

Content Inline and text

559

XHTML Reference

35_588206 appa.qxd 6/30/05 12:48 AM Page 559

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
<p>The oxonium ion is represented as
[H<small>₃</small>O<small>]⁺</small>.</p>

See also <big> for the converse.

Demarcate inline text and elements for assigning attributes.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
<p>You can use CSS to achieve all sorts
of interesting effects.</p>

See also <div> for assigning attributes to a block.

Demarcate text that should be rendered with strong emphasis.

Context

Placement Inline

Content Inline and text

560

Appendix A

35_588206 appa.qxd 6/30/05 12:48 AM Page 560

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
<p>”There is no one better qualified to be dog catcher than
me,” he reiterated.</p>

See also and .

<style>
Define style rules for the document.

Context

Parent <head>

Content Text

Attributes

Required Optional

type=”<MIME type>” id=”<ID>”
media=”<media descriptor, ...>”
title=”<text>”
Internationalization

Usage Example
<head>

<style type=”text/css”>
.booktitle { font-style: italic }

</style>
</head>
<body>

<p>The first book I read in college was Pride and
Prejudice.</p>

Linking an external stylesheet into the document is often preferable to achieve greater consistency across
a site and limit the amount of spurious bandwidth usage. To do so, use <link>.

<sub>
Indicate text that should be rendered as a subscript.

561

XHTML Reference

35_588206 appa.qxd 6/30/05 12:49 AM Page 561

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
See <small>.

<sup>
Indicate text that should be rendered as a superscript.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
See <small>.

<table>
Define content to be presented in a tabular format.

Context

Placement Block

Content <caption> <thead>
<col> <tfoot>
<colgroup> <tbody>

<tr>

562

Appendix A

35_588206 appa.qxd 6/30/05 12:49 AM Page 562

Attributes

Optional

border=”<pixel length>”
cellpadding=”<length (pixels or percentage)>”
cellspacing=”<length (pixels or percentage)>”
frame=”void|above|below|hsides|lhs|rhs|vsides|box|border”
rules=”none|groups|rows|cols|all”
summary=”<text>”
width=”<length (pixels or percentage)>”
Core
Internationalization
Standard events

Usage Example
<table>

<caption>Freedonia National Debt: 1400-1800</caption>
<col width=”30%”>
<colgroup style=”text-align: right”>

<col width=”30%”>
<col width=”30%”>

</colgroup>
<thead>

<tr><th>Decade</th><th>Debt (in Freds)</th><th>Percentage of GDP</th></tr>
</thead>
<tfoot>

<tr><th>Decade</th><th>Debt (in Freds)</th><th>Percentage of GDP</th></tr>
</tfoot>
<tbody>

<tr><th>1400-1410</th><td>3000</td><td>7%</td></tr>
<tr><th>1410-1420</th><td>5000</td><td>8%</td></tr>

...
<tr><th>1780-1790</th><td>425,000,000</td><td>10%</td></tr>
<tr><th>1790-1800</th><td>500,000,000</td><td>10%</td></tr>

</tbody>
</table>

CSS provides for very granular control over the presence and rendering of table borders, both internal
and external.

<tbody>
Define the main body of a table.

Context

Parent <table>

Content <tr>

563

XHTML Reference

35_588206 appa.qxd 6/30/05 12:49 AM Page 563

Attributes

Optional

align=”left|center|right|justify|char”
char=”<character>”
charoff=”<length (pixels or percentage)>”
valign=”top|middle|bottom|baseline”
Core
Internationalization
Standard events

Usage Example
See <table>.

<td>
Demarcate a data cell in a table.

Context

Parent <tr>

Content Block, inline, and text

Attributes

Optional

abbr=”<text>”
align=”left|center|right|justify|char”
axis=”<category,...>”
char=”<character>”
charoff=”<length (pixels or percentage)>”
colspan=”<number>”
headers=”<IDREFS>”
rowspan=”<number>”
scope=”row|col|rowgroup|colgroup”
valign=”top|middle|bottom|baseline”
Core
Internationalization
Standard events

Usage Example
See <table>.

564

Appendix A

35_588206 appa.qxd 6/30/05 12:49 AM Page 564

<textarea>
Define a block for text input in a form.

Context

Placement Inline

Content Text

Attributes

Required Optional

cols=”<number>” accesskey=”<character>”
rows=”<number>” disabled=”disabled”

name=”<textarea name>”
onblur=”<script>”
onchange=”<script>”
onfocus=”<script>”
onselect=”<script>”
readonly=”readonly”
tabindex=”<number>”
Core
Internationalization
Standard events

Usage Example
<textarea name=”address” cols=’50’ rows=’5’>Please replace this text with your
billing address.</textarea>

For a single line of text input, use <input type=”text”> instead.

<tfoot>
Define the footer for a table.

Context

Parent <table>

Content <tr>

565

XHTML Reference

35_588206 appa.qxd 6/30/05 12:49 AM Page 565

Attributes

Optional

align=”left|center|right|justify|char”
char=”<character>”
charoff=”<length (pixels or percentage)>”
valign=”top|middle|bottom|baseline”
Core
Internationalization
Standard events

Usage Example
See <table>.

Defining footers and headers separately from the body for a table allows the browser to render them
repeatedly, as appropriate, when the table spans multiple pages (for example, in printed output).

<th>
Demarcate a data cell in a table that serves as a heading.

Context

Parent <tr>

Content Block, inline, and text

Attributes

Optional

abbr=”<text>”
align=”left|center|right|justify|char”
axis=”<category,...>”
char=”<character>”
charoff=”<length (pixels or percentage)>”
colspan=”<number>”
headers=”<IDREFS>”
rowspan=”<number>”
scope=”row|col|rowgroup|colgroup”
valign=”top|middle|bottom|baseline”
Core
Internationalization
Standard events

Usage Example
See <table>.

566

Appendix A

35_588206 appa.qxd 6/30/05 12:49 AM Page 566

<thead>
Define the header for a table.

Context

Parent <table>

Content <tr>

Attributes

Optional

align=”left|center|right|justify|char”
char=”<character>”
charoff=”<length (pixels or percentage)>”
valign=”top|middle|bottom|baseline”
Core
Internationalization
Standard events

Usage Example
See <table>.

<title>
Define the title for a document.

Context

Parent <head>

Content Text

Attributes

Optional

id=”<ID>”
Internationalization

Usage Example
<head>

<title>Flora and Fauna of Freedonia</title>
</head>

A meaningful title is very useful when browsing search engine results.

567

XHTML Reference

35_588206 appa.qxd 6/30/05 12:49 AM Page 567

<tr>
Define a row of data in a table.

Context

Parents <table>
<thead>
<tfoot>

Content <th>
<td>

Attributes

Optional

align=”left|center|right|justify|char”
char=”<character>”
charoff=”<length (pixels or percentage)>”
valign=”top|middle|bottom|baseline”
Core
Internationalization
Standard events

Usage Example
See <table>.

<tt>
Demarcate text that should be rendered in a monospace typeface.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core
Internationalization
Standard events

568

Appendix A

35_588206 appa.qxd 6/30/05 12:49 AM Page 568

Usage Example
<p>If you want to IM me, my username is <tt>frd42</tt>.</p>

Consider instead a semantic element such as <samp>, <var>, or <kbd> when appropriate.

Define an unordered list.

Context

Placement Block

Content

Attributes

Optional

Core
Internationalization
Standard events

Usage Example
<div>

<h3>Grocery list</h3>
<ul style=”list-style-type: square”>

Milk
Paper towels
Salt

</div>

<var>
Demarcate text as a variable name.

Context

Placement Inline

Content Inline and text

Attributes

Optional

Core
Internationalization
Standard events

569

XHTML Reference

35_588206 appa.qxd 6/30/05 12:49 AM Page 569

Usage Example
<p>Changing the environment variable <var>HOME</var> can have unexpected
consequences.</p>

See also <kbd>, <samp>, and <tt>.

Event Attributes
The following section lists those attributes relevant to providing script hooks for responding to events
such as page loading and mouse movement.

Standard Events
The standard event attributes that are supported by most elements:

Attribute Triggered By

onclick Pointer button was clicked.

ondblclick Pointer button was double clicked.

onmousedown Pointer button was pressed down.

onmouseup Pointer button was released.

onmouseover Pointer was moved into.

onmousemove Pointer was moved within.

onmouseout Pointer was moved away.

onkeypress Key was pressed and released.

onkeydown Key was pressed.

onkeyup Key was released.

Other Events
Less-common event attributes:

Attribute Triggered By

onload Document has been loaded.

onunload Document has been removed.

onblur Element lost focus.

onfocus Element gained focus.

570

Appendix A

35_588206 appa.qxd 6/30/05 12:49 AM Page 570

Attribute Triggered By

onreset Form was reset.

onsubmit Form was submitted.

onchange Form element value changed.

onselect Text in a form field has been selected.

Other Common Attributes
This section lists the other attributes that are supported by most elements.

Core Attributes
Attribute Description

id ID value unique to this document

class Space-separated list of classes useful for selecting
this element for style and other purposes

style Local style information

title Advisory title, typically rendered by a graphical
browser when the pointer is over the element

Internationalization Attributes
Attribute Description

lang Language code for this element’s contents

dir Direction (ltr or rtl) for the text

Common Color Codes
This table lists the available color codes in both text and their name format.

The palette and color depth used on the user agent’s platform may affect how colors are rendered on
individual platforms.

571

XHTML Reference

35_588206 appa.qxd 6/30/05 12:49 AM Page 571

Color Name Color Code

Aliceblue F0F8FF

Antiquewhite FAEBD7

Aqua 00FFFF

Aquamarine 7FFFD4

Azure F0FFF

Beige F5F5DC

Bisque FFE4C4

Black 000000

Blanchedalmond FFEBCD

Blue 0000FF

Blueviolet 8A2BE2

Brown A52A2A

Burlywood DEB887

Cadetblue 5F9EA0

Chartreuse 7FFF00

Chocolate D2691E

Coral FF7F50

Cornflowerblue 6495ED

Cornsilk FFF8DC

Crimson DC143C

Cyan 00FFFF

Darkblue 00008B

Darkcyan 008B8B

Darkgoldenrod B8860B

Darkgray A9A9A9

Darkgreen 006400

Darkkhaki BDB76B

Darkmagenta 8B008B

Darkolivegreen 556B2F

Darkorange FF8C00

Darkorchid 9932CC

572

Appendix A

35_588206 appa.qxd 6/30/05 12:49 AM Page 572

Color Name Color Code

Darkred 8B0000

Darksalmon E9967A

Darkseagreen 8FBC8F

Darkslateblue 483D8B

Darkslategray 2F4F4F

Darkturquoise 00CED1

Darkviolet 9400D3

Deeppink FF1493

Deepskyblue 00BFFF

Dimgray 696969

Dodgerblue 1E90FF

Firebrick B22222

Floralwhite FFFAF0

Forestgreen 228B22

Fuchsia FF00FF

Gainsboro DCDCDC

Ghostwhite F8F8FF

Gold FFD700

Goldenrod DAA520

Gray 808080

Green 008000

Greenyellow ADFF2F

Honeydew F0FFF0

Hotpink FF69B4

Indianred CD5C5C

Indigo 4B0082

Ivory FFFFF0

Khaki F0E68C

Lavender E6E6FA

Lavenderblush FFF0F5

Table continued on following page

573

XHTML Reference

35_588206 appa.qxd 6/30/05 12:49 AM Page 573

Color Name Color Code

Lawngreen 7CFC00

Lemonchiffon FFFACD

Lightblue ADD8E6

Lightcoral F08080

Lightcyan E0FFFF

Lightgoldenrodyellow FAFAD2

Lightgreen 90EE90

Lightgrey D3D3D3

Lightpink FFB6C1

Lightsalmon FFA07A

Lightseagreen 20B2AA

Lightskyblue 87CEFA

Lightslategray 778899

Lightsteelblue B0C4DE

Lightyellow FFFFE0

Lime 00FF00

Limegreen 32CD32

Linen FAF0E6

Magenta FF00FF

Maroon 800000

Mediumauqamarine 66CDAA

Mediumblue 0000CD

Mediumorchid BA55D3

Mediumpurple 9370D8

Mediumseagreen 3CB371

Mediumslateblue 7B68EE

Mediumspringgreen 00FA9A

Mediumturquoise 48D1CC

Mediumvioletred C71585

Midnightblue 191970

Mintcream F5FFFA

574

Appendix A

35_588206 appa.qxd 6/30/05 12:49 AM Page 574

Color Name Color Code

Mistyrose FFE4E1

Moccasin FFE4B5

Navajowhite FFDEAD

Navy 000080

Oldlace FDF5E6

Olive 808000

Olivedrab 688E23

Orange FFA500

Orangered FF4500

Orchid DA70D6

Palegoldenrod EEE8AA

Palegreen 98FB98

Paleturquoise AFEEEE

Palevioletred D87093

Papayawhip FFEFD5

Peachpuff FFDAB9

Peru CD853F

Pink FFC0CB

Plum DDA0DD

Powderblue B0E0E6

Purple 800080

Red FF0000

Rosybrown BC8F8F

Royalblue 4169E1

Saddlebrown 8B4513

Salmon FA8072

Sandybrown F4A460

Seagreen 2E8B57

Seashell FFF5EE

Sienna A0522D

Silver C0C0C0

Table continued on following page

575

XHTML Reference

35_588206 appa.qxd 6/30/05 12:49 AM Page 575

Color Name Color Code

Skyblue 87CEEB

Slateblue 6A5ACD

Slategray 708090

Snow FFFAFA

Springgreen 00FF7F

Steelblue 4682B4

Tan D2B48C

Teal 008080

Thistle D8BFD8

Tomato FF6347

Turquoise 40E0D0

Violet EE82EE

Wheat F5DEB3

White FFFFFF

Whitesmoke F5F5F5

Yellow FFFF00

YellowGreen 9ACD32

576

Appendix A

35_588206 appa.qxd 6/30/05 12:49 AM Page 576

CSS Properties
This appendix follows CSS 2.1, which is a specification intended to represent the most commonly
supported properties in modern browsers.

Aural stylesheet properties are not covered in this appendix because adequate coverage of their
use and capabilities goes well beyond a quick reference. For information on aural properties and
their use, visit The Alliance for Technology Access Web site: http://www.ataccess.org/.

Selector Examples
The following table should be used as a quick reference of CSS selector syntax. For more on selec-
tors, see Chapter 13 and the end of this appendix.

Sample Match (matched tag
Type of Selector Example in bold for reference)

By name h1, h2, h3 <h2>

By class .booktitle

By id div#logo <div id=”logo”>

By any attribute acronym[title] <acronym title=”Ta Ta For
Now”>

As child div > p <div><p>

As grandchild or deeper div * p <div><form><p>

As child, grandchild, or deeper div p <div><p>

As sibling th + td <tr><th scope=”row”>...
</th><td>

Pseudo-class :visited <a> (after being visited)

36_588206 appb.qxd 6/30/05 12:50 AM Page 577

Proper ty Listings
In each table that follows, words under Supported Values that are capitalized are placeholders for either
a set of possible values or values drawn from a related property. Examples of placeholders include the
following:

Length Number followed by a unit of measurement, such as “px” for pixel

Percentage Number followed by a percent sign

Integer Whole number

Inherited refers to whether a given property will be drawn from the element’s parents if it is not explicitly
provided.

The set of elements to which a property applies may well be smaller than the set under which it may be
defined. For example, the list styles apply to elements, but are commonly defined at the list level
when the XHTML style attribute is used.

Support for many of these properties is spotty. Testing on a wide variety of Web browsers is recom-
mended, and there are Web sites that provide extensive information on CSS support across the popular
browsers. Among the most comprehensive sites is http://www.blooberry.com.

Background
The properties listed in this section control the color or image displayed behind an element.

background-image
Place an image behind an element (typically the body of a document).

table { background-image: url(“/images/draft.gif”); }

Supported values: url(), none, inherit

Default value: none

Inherited: No

Applies to: All

background-repeat
Define the background image behavior if it fails to fill its element.

table { background-repeat: none; }

578

Appendix B

36_588206 appb.qxd 6/30/05 12:50 AM Page 578

Supported values: repeat, repeat-x, repeat-y, no-repeat, inherit

Default value: repeat

Inherited: No

Applies to: All

background-attachment
Specify whether the background image scrolls with its enclosing element.

table { background-attachment: fixed; }

Supported values: scroll, fixed, inherit

Default value: scroll

Inherited: No

Applies to: All

Note(s): Browsers not required to support “fixed”

background-position
Declare the initial position of a background image.

table { background-position: 25% 25%; }

Supported values: Percentage, Length, top, center, bottom, left, right, inherit

Default value: 0 0

Inherited: No

Applies to: All

Note(s): If two values are supplied, the first is a horizontal position and the
second vertical. If one numeric value is supplied, it is treated as a
horizontal position, and vertical will be 50%.

background-color
Define the background color for an element.

body { background-color: black; }

Supported values: Color, transparent, inherit

Default value: transparent

Inherited: No

Applies to: All

579

CSS Properties

36_588206 appb.qxd 6/30/05 12:50 AM Page 579

background
Consolidate background properties.

table { background: url(“/images/draft.gif”) none fixed 25% 25%; }

Supported values: Color Image Repeat Attachment Position, inherit

Default value: transparent none repeat scroll 0 0

Inherited: No

Applies to: All

List
These properties apply to the rendering of lists.

See also counter-increment and counter-reset under the “Generated Content” section later in this
appendix.

list-style-type
Bullet markers for a list.

ul.nobullet { list-style-type: none; }

Supported values: disc, circle, square, decimal, decimal-leading-zero, lower-
roman, upper-roman, lower-greek, lower-latin, upper-latin,
armenian, georgian, none, inherit

Default value: disc

Inherited: Yes

Applies to:

list-style-position
Indicate whether the list markers should be treated as internal to the box enclosing each list item.

ol.paragraphs { list-style-position: inside; }

Supported values: inside, outside, inherit

Default value: outside

Inherited: Yes

Applies to:

580

Appendix B

36_588206 appb.qxd 6/30/05 12:50 AM Page 580

list-style-image
Refer to an image to be used for bullet markers.

ul { list-style-image: url(“/images/daggers.gif”); }

Supported values: url(), none, inherit

Default value: none

Inherited: Yes

Applies to:

Note(s):

list-style
Consolidate list style properties.

ul { list-style: circle outside url(“/images/daggers.gif”); }

Supported values: Type Position Image, inherit

Default value: disc outside none

Inherited: Yes

Applies to:

Note(s): If both a type and image are supplied, the list style type will be used
if the image cannot be retrieved.

Generated Content
CSS provides for the insertion of new text in certain locations via the content property.

The other properties in this section affect the text inserted by content by modifying the open/close
quotes or by impacting a named counter value. Counters are not widely supported.

content
Text to be displayed before or after an element.

.quote:before { content: open-quote; }

.quote:after { content: close-quote; }

Supported values: normal, String, url(), counter(), counters(), attr(), open-
quote, close-quote, no-open-quote, no-close-quote, inherit

Default value: normal

Inherited: No

Applies to: :before, :after pseudo-elements

581

CSS Properties

36_588206 appb.qxd 6/30/05 12:50 AM Page 581

quotes
Define quotation marks for use with <q> and content properties.

body { quotes: “\00AB” “\00BB”; }

Supported values: String String, none, inherit

Default value: Browser-defined

Inherited: Yes

Applies to: All

counter-increment
Indicate that the named counter should be incremented by one or the numeric value provided. The
value stored in that counter may be retrieved via a counter() or counters() invocation from a
content property.

div.section { counter-increment: sectionheading; }
div.section h2:before { “Section “ counter(sectionheading); }

Supported values: Identifier Integer, none, inherit

Default value: none

Inherited: No

Applies to: All

counter-reset
Indicate that the named counter should be set back to zero or the numeric value provided.

div.section { counter-reset: sectionsubheading; }

Supported values: Identifier Integer, none, inherit

Default value: none

Inherited: No

Applies to: All

Font and Text
These properties are used to specify the way text is rendered.

text-align
Specify the text alignment within the block.

582

Appendix B

36_588206 appb.qxd 6/30/05 12:50 AM Page 582

pre.poem { text-align: center; }

Supported values: center, left, right, justify, inherit

Default value: left (but see Note line of this table)

Inherited: Yes

Applies to: Block elements, <td>, <th>, and form input fields

Note(s): The default value is ‘right’ if ‘direction: rtl’ is set.

text-decoration
Augment the text with underlining or similar properties.

p.annoying { text-decoration: line-through blink; }

Supported values: none, underline, overline, line-through, blink, inherit

Default value: none

Inherited: No

Applies to: All

Note(s): Several decorations may be listed with whitespace separation.

text-indent
Specify the indentation for the first line in a block.

p { text-indent: 1em; }

Supported values: Length, Percentage, inherit

Default value: 0

Inherited: Yes

Applies to: Block elements, <td>, <th>, and form input fields.

text-transform
Convert text to uppercase or lowercase.

span.customername { text-transform: uppercase; }

Supported values: capitalize, uppercase, lowercase, none, inherit

Default value: none

Inherited: Yes

Applies to: All

583

CSS Properties

36_588206 appb.qxd 6/30/05 12:50 AM Page 583

color
Define text color.

div.hardtoread { color: yellow; }

Supported values: Color, inherit

Default value: Browser-defined

Inherited: Yes

Applies to: All

Note(s): Any borders in this scope will default to this color.

font-family
Define the desired typeface.

body { font-family: Garamond, serif; }

Supported values: Family (1 or more comma-separated values), inherit

Default value: Browser-defined

Inherited: Yes

Applies to: All

Note(s): Use quotes around font family names that include spaces. Be sure to
provide generic families as alternatives should the browser not be
able to locate the font you prefer.

font-size
Specify the type size.

caption { font-size: x-large; }

Supported values: Length, Percentage, xx-large, x-large, large, medium, small,
x-small, xx-small, larger, smaller, inherit

Default value: medium

Inherited: Yes

Applies to: All

584

Appendix B

36_588206 appb.qxd 6/30/05 12:50 AM Page 584

font-style
Render the enclosed text as italic, oblique, or normal.

.booktitle { font-style: italic; }

Supported values: normal, italic, oblique, inherit

Default value: normal

Inherited: Yes

Applies to: All

font-variant
Render the enclosed text as small capitals or normal.

span.manufacturername { font-variant: small-caps; }

Supported values: normal, small-caps, inherit

Default value: normal

Inherited: Yes

Applies to: All

font-weight
Specify the “boldness” of text.

caption { font-weight: 900; }

Supported values: normal, bolder, bold, lighter, 100, 200, 300, 400, 500, 600, 700,
800, 900

Default value: normal

Inherited: Yes

Applies to: All

Note(s): ‘normal’ is equivalent to 400; ‘bold’ to 700

585

CSS Properties

36_588206 appb.qxd 6/30/05 12:50 AM Page 585

font
Consolidate font properties or specify system fonts.

h6 { font: menu; }

Supported values: caption, icon, menu, message-box, small-caption, status-bar,
inherit (and see Note(s) section in this table)

Default value: See font-style, font-variant, font-weight, font-size

Inherited: Yes

Applies to: All

Note(s): The value can be one of the preceding or a combination of the other
font properties with line-height thrown in to confuse things.

letter-spacing
Add to the spacing between letters.

blockquote { letter-spacing: 0.1em; }

Supported values: Length, normal, inherit

Default value: normal

Inherited: Yes

Applies to: All

Note(s): The value may be negative.

word-spacing
Add to the spacing between words.

h2 { word-spacing: 1em; }

Supported values: Length, normal, inherit

Default value: normal

Inherited: Yes

Applies to: All

586

Appendix B

36_588206 appb.qxd 6/30/05 12:50 AM Page 586

white-space
Specify the handling of whitespace, including line wrapping. The normal value is reasonably self-
explanatory; pre is effectively the same as the <pre> XHTML element; nowrap allows text to exceed the
width of the page; pre-wrap preserves whitepace like pre, but will wrap as necessary; pre-line is as
normal, but it will honor line breaks in the XHTML.

blockquote.poem { white-space: pre; }

Supported values: normal, pre, nowrap, pre-wrap, pre-line, inherit

Default value: normal

Inherited: Yes

Applies to: All

Text Direction
These properties are required to deal with the problems arising from the fact that some languages read
right to left, and others left to right.

unicode-bidi
This, combined with the direction property, handles the directionality of text for a document. This
property is useful only when two languages of different directionality are present.

span.arabic { unicode-bidi: embed; direction: rtl; }
span.english { unicode-bidi: embed; direction: ltr; }

Supported values: normal, embed, bidi-override, inherit

Default value: normal

Inherited: No

Applies to: All

direction
Define the direction for the enclosed text.

p.english { direction: ltr; }

Supported values: ltr, rtl, inherit

Default value: ltr

Inherited: Yes

Applies to: All except for inline elements with unicode-bidi: normal

587

CSS Properties

36_588206 appb.qxd 6/30/05 12:50 AM Page 587

Block
Graphical browsers lay out a page as a sequence of boxes. These properties specify the way the box sizes
and other internal properties should be handled.

The key differentiator between padding and margin: the padding is inside any border around a block,
and the margin is outside that border.

margin-left, margin-right, margin-top, margin-bottom
Define the size of the margin on a given side of a block.

blockquote { margin-left: 10%; }

Supported values: Length, Percentage, auto

Default value: 0

Inherited: No

Applies to: All except for table components (e.g. <td>, <tfoot>, <tr>)

margin
Consolidate margin widths.

p { margin: 1em 0 1em 0; }

Supported values: Length, Percentage, auto (up to 4 values)

Default value: 0 0 0 0

Inherited: No

Applies to: All except for table components (e.g. <td>, <tfoot>, <tr>)

Note(s): Order of values: top, right, bottom, left

padding-left, padding-right, padding-top, padding-bottom
Define the size of the padding on a given side of a block.

div.withborder { padding-top: 2%; }

Supported values: Length, Percentage, inherit

Default value: 0

Inherited: No

Applies to: All excluding table components (but including <td>, <th>)

588

Appendix B

36_588206 appb.qxd 6/30/05 12:50 AM Page 588

padding
Consolidate padding widths.

div.withborder { padding: 2% 0 0 0; }

Supported values: Length, Percentage, inherit (up to 4 values)

Default value: 0 0 0 0

Inherited: No

Applies to: All excluding table components (but including <td>, <th>)

Note(s): Order of values: top, right, bottom, left

clip
Define a boundary for an element outside of which any presentation (text, border) should be clipped.

blockquote { clip: rect(5px, 20px, 20px, 5px); overflow: scroll; }

Supported values: Shape, auto, inherit

Default value: auto

Inherited: No

Applies to: Absolutely positioned elements

Note(s): If overflow is visible, this has no effect. The only recognized shape
is rect().
The arguments to rect() are offsets from the border edge of the con-
taining box: top (offset from top), right (offset from left), bottom
(offset from top), left (offset from left). If the text direction is right
to left, the right and left arguments are offsets from the right border.

overflow
Specify what happens when a block’s content is larger than the clipping area.

blockquote { clip: rect(5px, 20px, 20px, 5px); overflow: scroll; }

Supported values: visible, hidden, scroll, auto, inherit

Default value: visible

Inherited: No

Applies to: Block elements, , <object>, <td>, <th>

589

CSS Properties

36_588206 appb.qxd 6/30/05 12:50 AM Page 589

height, width
Specify the height or width of an element.

img.logo { height: 5cm; width: 5cm; }

Supported values: Length, Percentage, auto, inherit

Default value: auto

Inherited: No

Applies to: Block elements, , <object>, and form input fields

max-height, max-width
Constrain element size.

table { max-width: 50%; }

Supported values: Length, Percentage, none, inherit

Default value: none

Inherited: No

Applies to: Block elements, , <object>, and form input fields

min-height, min-width
Define a minimum element size.

textarea { min-width: 25%; }

Supported values: Length, Percentage, inherit

Default value: 0

Inherited: No

Applies to: Block elements, , <object>, and form input fields

line-height
Define line height. For block elements, this is the minimal line height; for inline, it is the specific height.

p { line-height: 150%; }

590

Appendix B

36_588206 appb.qxd 6/30/05 12:50 AM Page 590

Supported values: Number, Length, Percentage, normal, inherit

Default value: normal

Inherited: Yes

Applies to: All

Note(s): Unless an absolute measurement such as cm is used, this will be rela-
tive to the font size.

vertical-align
Define the vertical alignment characteristics of this element relative to its line box (when ‘top’ or ‘bot-
tom’ are specified) or its parent.

span.superscript { vertical-align: super; }

Supported values: Length, Percentage, baseline, sub, super, top, text-top,
middle, bottom, text-bottom, inherit

Default value: baseline

Inherited: No

Applies to: Inline, <td>, <th>

Positioning
The preceding Block properties specify the internal characteristics of the boxes that are used to lay out a
page; the properties in this section can be used to describe the desired positions of those boxes.

visibility
Specify whether an element should be visible.

li.answer { visibility: hidden; }

Supported values: visible, hidden, collapse, inherit

Default value: visible

Inherited: Yes

Applies to: All

Note(s): Unless display: none is set, the element will still occupy space,
even if hidden.

591

CSS Properties

36_588206 appb.qxd 6/30/05 12:50 AM Page 591

display
Specify how an element should be presented.

.invisible { display: none; }

Supported values: none, inline, block, list-item, run-in, inline-block, table,
inline-table, table-row-group, table-header-group, table-
footer-group, table-row, table-column-group, table-column,
table-cell, table-caption, inherit

Default value: inline

Inherited: No

Applies to: All

Note(s): Other than removing objects from the document flow by setting dis-
play to “none”, this property is most valuable for defining the pre-
sentation of XML documents with no inherent style.

position
Specify the algorithm to be used for placing this element’s containing box on the page.

div#menu { position: absolute; top: 3.8cm; left: 0;}

Supported values: static, relative, absolute, fixed, inherit

Default value: static

Inherited: No

Applies to: All

float
For elements that are not absolutely positioned, define their relationship with elements surrounding
them.

div#logo { float: left; }

Supported values: left, right, none, inherit

Default value: none

Inherited: No

Applies to: All elements without display: none

592

Appendix B

36_588206 appb.qxd 6/30/05 12:50 AM Page 592

top, bottom, left, right
For absolutely positioned elements, define the distance to the enclosing box’s edges.

div#menu { position: absolute; top: 3.8cm; left: 0;}

Supported values: Length, Percentage, auto, inherit

Default value: auto

Inherited: No

Applies to: Positioned elements

z-index
Define stacking order for overlapping elements.

div#logo { z-index: 99; }

Supported values: Integer, auto, inherit

Default value: auto

Inherited: No

Applies to: Positioned elements

Note(s): The higher the number, the higher on the stack.

clear
Specify which sides of an element’s box may not be adjacent to a floating element.

h1 { clear: both; }

Supported values: none, left, right, both, inherit

Default value: none

Inherited: No

Applies to: Block elements

Note(s): This element will be shifted to be below any floater.

593

CSS Properties

36_588206 appb.qxd 6/30/05 12:50 AM Page 593

Borders
Specify borders and outlines for the boxes used to lay out the page. Outlines are not widely supported.

border-color, border-top-color, border-bottom-color,
border-left-color, border-right-color

Specify border colors.

div#logo { border-color: green; }

Supported values: Color, transparent, inherit

Default value: color property value

Inherited: No

Applies to: All

border-style, border-top-style, border-bottom-style,
border-left-style, border-right-style

Specify the border design.

div#logo { border-style: groove; }

Supported values: none, hidden, dotted, dashed, solid, double, groove, ridge,
inset, outset, inherit

Default value: none

Inherited: No

Applies to: All

border-width, border-top-width, border-bottom-width,
border-left-width, border-right-width

Specify the border size.

div#logo { border-width: thin; }

Supported values: Length, thin, medium, thick, inherit

Default value: medium

Inherited: No

Applies to: All

594

Appendix B

36_588206 appb.qxd 6/30/05 12:50 AM Page 594

border
Consolidate border properties.

div#logo { border: green groove thin; }

Supported values: Color Style Width, inherit

Default value: color none medium

Inherited: No

Applies to: All

outline-color
Specify outline color.

span.acronym { outline-color: blue; }

Supported values: Color, inherit, invert

Default value: invert

Inherited: No

Applies to: All

outline-style
Specify outline style.

span.acronym { outline-style: dotted; }

Supported values: none, dotted, dashed, solid, double, groove, ridge, inset,
outset, inherit

Default value: none

Inherited: No

Applies to: All

595

CSS Properties

36_588206 appb.qxd 6/30/05 12:50 AM Page 595

outline-width
Specify outline width.

span.acronym { outline-width: thin; }

Supported values: Length, thin, medium, thick, inherit

Default value: medium

Inherited: No

Applies to: All

outline
Consolidate outline properties.

span.acronym { outline: blue dotted thin; }

Supported values: Color Style Width, inherit

Default value: invert none medium

Inherited: No

Applies to: All

Table
Specify how tables are rendered, primarily pertaining to table cell borders.

table-layout
Specify a table layout algorithm. If “auto”, the table’s contents will be scanned before generation to cal-
culate the proper width of each column; otherwise the table will be rendered as it is read, which may
result in a suboptimal rendering if the cell width (or quantity) varies significantly across different rows.

table.huge { table-layout: fixed; }

Supported values: auto, fixed, inherit

Default value: auto

Inherited: No

Applies to: <table>

596

Appendix B

36_588206 appb.qxd 6/30/05 12:50 AM Page 596

border-collapse
Specify whether adjacent table cell borders should be consolidated.

table { border-collapse: collapse; }

Supported values: collapse, separate, inherit

Default value: separate

Inherited: Yes

Applies to: <table>

border-spacing
Define the space between internal table borders.

table { border-spacing: 2pt 4pt; }

Supported values: Length (1 or 2 values), inherit

Default value: 0

Inherited: Yes

Applies to: <table>

Note(s): If two values, the first is horizontal, and the second vertical; other-
wise, the value is applied to both dimensions.

empty-cells
Specify whether empty cells should be rendered with background and border.

table { empty-cells: hide; }

Supported values: show, hide, inherit

Default value: show

Inherited: Yes

Applies to: <td>, <th>

597

CSS Properties

36_588206 appb.qxd 6/30/05 12:50 AM Page 597

caption-side
Specify whether a caption goes above or below its table.

table.figure { caption-side: bottom; }

Supported values: top, bottom, inherit

Default value: top

Inherited: Yes

Applies to: <caption>

Printing
Provide instructions to the browser on how the page should be handled when printed. These can be
used to help prevent page breaks in the middle of important content (although there are inherent limita-
tions to how strictly the browser can follow these guidelines: page breaks must occur somewhere).

page-break-after, page-break-before
Specify whether a printed page break should occur before or after this block element.

h1 { page-break-after: avoid; }

Supported values: auto, always, avoid, left, right, inherit

Default value: auto

Inherited: No

Applies to: Block elements

page-break-inside
Specify a preference regarding page breaks internal to a block element.

table { page-break-inside: avoid; }

Supported values: avoid, auto, inherit

Default value: auto

Inherited: Yes

Applies to: Block elements

orphans
Define the number of lines in a paragraph that must be left at the bottom of a page. Any fewer and the
entire paragraph will wrap to the following page.

598

Appendix B

36_588206 appb.qxd 6/30/05 12:50 AM Page 598

body { orphans: 3; }

Supported values: Integer, inherit

Default value: 2

Inherited: Yes

Applies to: Block elements

widows
Define the number of lines in a paragraph that must be available for the top of a page. Any fewer and
the entire paragraph will wrap to that page.

body { widows: 4; }

Supported values: Integer, inherit

Default value: 2

Inherited: Yes

Applies to: Block elements

Miscellaneous
The cursor property is a bit unusual, and it is rarely desirable. The Web browser will generally provide a
mouse cursor that the user has been trained through experience to recognize and understand.

cursor
Define the type of cursor to be used when the mouse is over this element.

body.annoyuser { cursor: wait; }

Supported values: auto, crosshair, default, pointer, move, nw-resize, n-resize,
ne-resize, e-resize, se-resize, s-resize, sw-resize,
w-resize, text, wait, help, progress, inherit, url()

Default value: auto

Inherited: Yes (but see Note)

Applies to: All

Note(s): The specification states that this is inherited, but browsers do not
consistently do so. Use the inherit value if you wish for the parent’s
cursor to carry over to elements such as hyperlinks that would ordi-
narily have their own cursor type.

599

CSS Properties

36_588206 appb.qxd 6/30/05 12:50 AM Page 599

Selector Review
Preceding any block of CSS property assignments is a description of the HTML elements to which the
properties apply. There are four basic mechanisms for matching properties to tags:

❑ By tag name

❑ By attribute presence or value

❑ By position within the document

❑ By pseudo-class

There is also a mechanism for assigning properties to portions of the document that are not elements as
such: by pseudo-element.

These methods are frequently combined to minimize collateral damage. Conversely, selectors may be
grouped with commas to allow the same property assignments to apply in different contexts.

Selectors are covered in-depth in Chapter 13.

Name Matching
This is fairly straightforward, and many selectors include at least one element name. There are two
issues involving name matches that may surprise the unwary:

❑ With XHTML (or any XML grammar), the element names are case sensitive.

❑ The asterisk (*) serves as a wildcard that matches any tag, although it cannot be used to match a
substring. For example, t* may not be used to represent table-related element names.

Attribute Matching
The most general syntax, which can be used to match any attribute, involves square brackets:
[colspan] will match any element (presumably td or th) with the colspan attribute set, and
[colspan=”3”] will match any element with colspan defined with a value of 3.

There exist variations on the preceding syntax for matching a part of an attribute value; see Chapter 13
for more details.

Two attributes have a shorthand notation for use when matching values: class (.) and id (#).

Thus, .suspicious matches any element with a class value of “suspicious;” #logo matches any ele-
ment with an id value of “logo.”

Position Matching
Elements may be selected by matching another element that is an ancestor or immediately preceding sib-
ling. Unlike attribute matching, position matching requires the use of element names (or, less often, the
name wildcard).

600

Appendix B

36_588206 appb.qxd 6/30/05 12:50 AM Page 600

❑ Whitespace between names indicates that the second name must be a descendent of an element
with the preceding name for the match to occur.

❑ A greater-than sign (>) indicates that the second name must be a direct child of the first.

❑ A plus sign (+) indicates that the second name must immediately follow the first name as its
sibling.

See also the information on pseudo-classes for the :first-child selector.

Pseudo-classes
These are specific strings prefaced with a colon (:) that refer to elements in certain states.

❑ :first-child— Matches elements that have no preceding siblings.

❑ :link— Matches elements that refer to a hypertext link that has not (recently) been visited.

❑ :visited— Matches elements that refer to a hypertext link that has recently been visited.

❑ :hover— Matches elements over which the mouse is hovering (or are otherwise designated by
the user without being activated).

❑ :active— Matches clicked-on elements during the duration of the mouse button press.

❑ :focus— Matches input elements in which the cursor is active.

❑ :lang— Matches elements that are designated as containing text in the specified (natural)
language.

Pseudo-elements
These syntactically look like pseudo-classes, but are used to designate a portion of the document inside
of, preceding, or following an element.

❑ :first-line— Selects the text that the browser displays as the first line of a block of text.

❑ :first-letter— Selects the first character within an element.

❑ :before— Allows content to be inserted before an element.

❑ :after— Allows content to be inserted after an element.

601

CSS Properties

36_588206 appb.qxd 6/30/05 12:50 AM Page 601

36_588206 appb.qxd 6/30/05 12:50 AM Page 602

JavaScript Language
Reference

This section provides a comprehensive reference to the JavaScript language. Within this appendix,
you will find listings for JavaScript’s many language conventions, including its objects, methods,
and properties. For more information on using the language, see Part III of this book.

To appropriately cover standard JavaScript, browser-specific objects, properties, and methods
have been omitted from this reference. This appendix covers the ECMA-262 standard
(http://www.ecma-international.org/publications/standards/
Ecma-262.htm).

Constants
Constant Description

Infinity Represents positive infinity. This constant is used in place of a num-
ber that exceeds the upper limit of the floating-point type.

NaN Not a number. This constant is used in place of a number when a
legal number cannot be returned when expected. You can use the
function isNaN() to test for NaN.

Undefined This constant is used to indicate a value that has not been defined —
whether a variable that has not been declared or a variable that has
been declared but not assigned a value. Not all platforms support
undefined the same way in the same instances.

37_588206 appc.qxd 6/30/05 12:38 AM Page 603

Operators
JavaScript Arithmetic Operators

Operator Use

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

++ Increment

-- Decrement

JavaScript Assignment Operators

Operator Use

= Assignment

+= Increment assignment

-= Decrement assignment

*= Multiplication assignment

/= Division assignment

%= Modulus assignment

JavaScript Comparison Operators

Operator Use

== Is equal to

=== Exactly equal to, in value and type

!= Is not equal to

!== Is not exactly equal to

> Is greater than

< Is less than

>= Is greater than or equal to

<= Is less than or equal to

604

Appendix C

37_588206 appc.qxd 6/30/05 12:38 AM Page 604

JavaScript Logical Operators

Operator Use

&& And

|| Or

! Not

JavaScript Bitwise Operators

Operator Use

& And

| Or

^ Xor

~ Not

<< Left shift

>> Right shift

>>> Zero fill right shift

JavaScript Miscellaneous Operators

Operator Use

. Object/property/method separator

? Condition operator

, Specify multiple expressions in place of one expression. For example,
you can use this operator to specify two variables to initialize at the
beginning of a for loop:

for (x=0, y=0; x<=20; x++) {
// loop code

}

delete Delete specified object

new Create new object

this Reference current object

typeof Type of object (number, string, and so on)

void Evaluate expression without return value

605

JavaScript Language Reference

37_588206 appc.qxd 6/30/05 12:38 AM Page 605

String Operators

Operator Use

+ Concatenation

Escape Characters

Characters Description

\’ Single quote

\” Double quote

\\ Backslash

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Tab

The backslash can also be used to escape any character simply by prefixing the character with a backslash.

Statements
Statement Description

break [label] Breaks out of the current loop, or the loop designated by the
optional label. Program execution continues on the first line out-
side the corresponding loop.

comment (// and /* */) Use either construct (double-slash or slash-asterisk) to create a
comment in the code. The double-slash method can be used for a
one-line or end-of-line comment:

// this is a comment
i++; // increment I

The slash-asterisk method can be used for multiline comments:

/* function circle_area
arguments: radius
returns: area of circle */

606

Appendix C

37_588206 appc.qxd 6/30/05 12:38 AM Page 606

Statement Description

continue [label] Causes the current loop, or the loop designated by the optional
label, to end the current iteration and begin the next. Program exe-
cution resumes at the beginning of the appropriate loop, perform-
ing any increment or other action as appropriate at the start of
another iteration.

do { Perform the loop code while expr evaluates to true. Note that
// loop code since the conditional statement is at the end of the loop, the loop
} while (expr); code will execute at least once.

export mixed1 [, Exports the functions, objects, properties, or methods specified
mixed2..., mixedN] (mixed), making them available for other scripts to import.

for (init_expr; The for loop is a complex loop structure typically used to iterate
cond_expr; loop_expr){ over a sequence of numbers (for example, 1–10). At the start of the
// loop code loop the init_expr is evaluated and the cond_expr is also evaluated.
} The loop executes as long as cond_expr remains true, evaluating

the loop_expr on the second and subsequent iterations. For exam-
ple, the following loop executes 10 times, assigning the variable x
values of 1 through 10:

for (x = 1; x <= 10; x++) {
// loop code
}

for (var_name in mixed) { Performs the loop code once for every property in mixed, assign-
// loop code ing the variable var_name to each property in turn. For example,
} the following code will output every available property name and

value of the window object:

for (p in window) {
document.write(“Property: “+p+” / “);
document.writeln(“Value: “+window[p]);
}

function func_name (Declares and defines a user-defined function. The optional
[arg1, arg2...,argN]) arguments become variables local to the function, and the
{ optional return statement provides the function’s return value. If
// function code the return statement is omitted, the value of the last statement
[return (expr);] executed is returned. For example, the following function returns
} the area of a circle, given the circle’s radius:

function circle_area (radius) {
// area = pi * radius-squared
with (Math) {
var area = PI * pow(radius,2);
}
return area;
}

Table continued on following page

607

JavaScript Language Reference

37_588206 appc.qxd 6/30/05 12:38 AM Page 607

Statement Description

if (expr) { Performs code based on the evaluation of the expression, expr. If
// code to do if expr evaluates to true, the block of code in the if section is
expr = true executed. If expr evaluates to false, the code in the if section is
} [else { not executed, but the code in the optional else section is.
// code to do if
expr = false
}]

import mixed1[, Imports the functions, objects, properties, or methods specified
mixed2..., mixedN] (mixed), available via another script’s export.

label: Declares a label in the code that can be referenced via a break or
continue statement. The label text (label) can be any valid nonre-
served name and must end in a colon. For example, the following
code utilizes a label named loop1:

loop1:
for (i = 1; i <= 20; i++) {
for (j = i+1; j <= 20; j++) {
// loop code
// if k ever exceeds 20, break out of loops
if (k > 20) { break loop1; }
}
}

return [expr] Causes current execution of a function to end and returns the
optional value of the expression expr.

switch (expr) { Performs segments of code based on the value of expression expr.
case value1: At the beginning of the switch construct, expr is evaluated and
// code to do if matched against each case value. If a match is found, the matching

expr = value1 code (in the appropriate case section) is executed. If a match is
break; not found, the code in the optional default section is executed.
case value2: For example, the following switch construct outputs appropriate
// code to do if text based on the value of the variable x:

expr = value2
break; switch (x) {
. . . case 1:
case valueN: document.write(“x = 1”);
// code to do if break;

expr = valueN case 2:
break; document.write(“x = 2”);
[default: break;
// code to do if default:

expr != any values] document.write(“x != 1 or 2”);
} }

608

Appendix C

37_588206 appc.qxd 6/30/05 12:38 AM Page 608

Statement Description

throw string Creates an exception that breaks out of the current try construct
and can be caught by a corresponding catch construct. (See the
next entry for information about try and catch.)

try { Creates a testing structure for code. Using throw statements in the
// code to try try section can create specific exceptions (errors) that can then be
[throw value; // caught by the catch construct.
throw an error] For example, the following code throws an exception if k = 12 or
} 24, informing the catch construct of the value of k:
catch (value) {
// code to diagnose/ try: {
report error // code to try
} if (k = 12 || k = 24) { throw k; }

}
catch (err) {
// now err = value of k when exception
// was thrown, handle and/or report
// appropriately
}

var var_name [= value] | Declares a variable and optionally assigns it an initial value, type,
[= new object_type] or type with initial values. For example, the following var state-

ments are all valid:

var x;
var x = 3;
var myImage = new Image();
var myArray = new Array(“dog”,”cat”,”ferret”);

while (expr) { Perform the loop code while expr evaluates to true. Note that since
// loop code while the conditional statement is at the beginning of the loop, the loop
expr = true code may not execute (if expr is initially false).
}

with (object) { Perform multiple actions using a particular object. If code within
// code using object the with construct calls for an object, an attempt is made to match
} the object specified in the with statement. For example, the follow-

ing code eliminates the need for having to repeatedly specify the
Math object for each method and property (PI and pow()):

with (Math) {
var area = PI * pow(radius,2);
}

609

JavaScript Language Reference

37_588206 appc.qxd 6/30/05 12:38 AM Page 609

Standard Elements
This section details the methods, properties, and events that are common to many objects. The listings
within this section only explain the meaning of the items; see the listing for specific objects to determine
whether a specific object supports the item listed here.

Standard Methods
Methods Description

blur Removes focus from an object

select Highlights all or a portion of text in a textarea element

click Triggers the object’s onclick handler

focus Applies focus to an object

handleEvent(event) Calls the handler for a specified event

Standard Properties
Properties Description

constructor A reference to the function that created the object

prototype A reference to the object’s prototype, which can be used to assign
additional properties to an object

Standard Event Handlers
Event Handlers Description

onAbort Is triggered whenever an abort event occurs, such as a user navi-
gating away from a page before it completes loading or clicking
the Stop button

onBlur Is triggered when an object loses focus

onClick Is triggered when an object is clicked

onDblClick Is triggered when an object is double-clicked

onError Is triggered when a JavaScript syntax or runtime error occurs

onFocus Is triggered when an object obtains focus

onKeyDown Is triggered when a key is pressed

onKeyPress Is triggered when a key is pressed and held down

onKeyUp Is triggered when a key is released

610

Appendix C

37_588206 appc.qxd 6/30/05 12:38 AM Page 610

Event Handlers Description

onMouseDown Is triggered when a mouse button is depressed

onMouseOut Is triggered when the mouse pointer is moved away from an
object (after being over the object)

onMouseOver Is triggered when the mouse pointer is placed over an object

onMouseUp Is triggered when a mouse button is released

onReset Is triggered when the user clicks the Reset button on the corre-
sponding form

onSelect Is triggered when text is selected

onSubmit Is triggered when the user clicks the Submit button on the corre-
sponding form

Top-Level Functions
Function Returns Description

escape(string) string This function encodes the supplied string to make
it portable — that is, able to be used in conditions
where extended characters are not allowed. To
make a string portable, characters other than the
following must be encoded:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
1234567890
@*-_+./

All other characters are converted to their two- or
four-digit hexadecimal equivalent (%xx or %uxxxx).
For example, a space is converted to hexadecimal
%20. Escaped strings are commonly used to embed
plain text in URLs and other restricted constructs.

Use the unescape() function to translate an
encoded string back to its ASCII equivalent.

eval(string) Value of last This function evaluates the given string and parses
statement it for valid JavaScript code. If valid code is found in

the string, the function executes the code and
returns the value of the last statement encountered.
This function is useful for dynamic scripting —
where code is built on the fly by the script.

611

JavaScript Language Reference

37_588206 appc.qxd 6/30/05 12:38 AM Page 611

Function Returns Description

isFinite(object) Boolean This function evaluates the given object and
returns true if the object is finite (non-infinity) or
false if the object is infinite.

isNaN(object) Boolean This function evaluates the given object and
returns true if the object cannot be evaluated as a
number or false if the object can be evaluated as
a number.

number(object) number or NaN This function evaluates the given object and parses
it to obtain a number. If the object can be evaluated
as a number, the evaluated number is returned. If
the object cannot be evaluated as a number, the
function returns NaN. (Note that the number()
function can be used to translate Boolean objects
into their numeric equivalents —0 or 1.)

parseFloat(object) float or NaN This function evaluates the given object and parses
it to obtain a floating-point number. If the object
can be evaluated as a floating-point number, the
evaluated number is returned. If the object cannot
be evaluated as a number, the function returns NaN.

parseInt(object) integer or NaN This function evaluates the given object and parses
it to obtain an integer number. If the object can be
evaluated as an integer, the evaluated number is
returned. If the object cannot be evaluated as an
integer, the function returns NaN.

string(object) string This function translates the given object into a
valid string object.

unescape(string) string This function decodes the given string into its
ASCII equivalent. It detects two- and four-digit
hexadecimal sequences (%xx and %uxxxx) and
translates them back into their appropriate char-
acters. This function is the opposite of the
escape() function.

Objects
This section provides details on the multitude of objects available in JavaScript.

Anchor Object
The Anchor object corresponds to the XHTML anchor tag (<a>). You can use this object to create an
anchor with the document.write() method in addition to writing specific code for the anchor. The fol-
lowing examples are identical:

612

Appendix C

37_588206 appc.qxd 6/30/05 12:38 AM Page 612

var myheader = “Chapter 1”;
document.write(myheader.anchor(“Chapter_1”));

document.write(‘Chapter 1’);

Properties
There are no properties specific to the Anchor object.

Methods
There are no methods specific to the Anchor object.

Area Object
An Area object is a type of Link object and has the same attributes. This object corresponds to the
XHTML <area> tag. For more information on the Area object, see the Link object.

Properties
There are no properties specific to the Area object.

Methods
There are no methods specific to the Area object.

Array Object
The JavaScript Array object is similar to other languages’ array objects, holding an ordered set of val-
ues. The following example creates an array of four string elements:

fruits = new Array(“banana”, “pear”, “apple”, “strawberry”);

Elements of an array can be accessed by their numeric index, corresponding to their position in the
array, starting with 0. For example, you could access the second element in the preceding array (“pear”)
as fruit[1].

Properties

Properties Description

index The index property created by a regular expression match, containing
the zero-based index of that match. Read-only.

input The input property created by a regular expression match, containing
the original string against which the match was made. Read-only.

length The length of the array (number of assigned elements).

613

JavaScript Language Reference

37_588206 appc.qxd 6/30/05 12:38 AM Page 613

Methods

Methods Description

concat(array1, Joins multiple Array objects to create a new array.
array2, ... arrayN)

join(separator) Joins the elements of an array into a single string separated by
the given separator (the default is a comma).

reverse Reverses the order of the elements in an array.

sort(function) Sorts the elements of an array via the function specified. If no
function is specified, the sort method sorts the array lexico-
graphically. To sort an array numerically, you can define and
specify one of the following functions in your code:

function numAcending(a, b) { return (a-b); }
function numDecending(a, b) { return (b-a); }

toString Inherited from the Object object. For more details see the
Object.toString method.

valueOf Inherited from the Object object. For more details see the
Object.valueOf method.

Boolean Object
The Boolean object is an object wrapper for a Boolean value. The following constructors will all create a
Boolean object with a value of false:

new Boolean()
new Boolean(0)
new Boolean(-0)
new Boolean(null)
new Boolean(false)
new Boolean(“”)

A constructor with any other value will create a Boolean object with a value of true, even if the argu-
ment is the string false.

A Boolean object, unlike a Boolean primitive, will always evaluate to true when used in a conditional
statement:

b = new Boolean(false);
if (b) {

// Always true
}

b = false;
if (b) {

// Not always true
}

614

Appendix C

37_588206 appc.qxd 6/30/05 12:38 AM Page 614

Properties
Standard object properties.

Methods

Methods Description

toString Converts the Boolean object to a string (for example, true or
false). This method is called automatically whenever a Boolean
object is used in a situation requiring a string.

valueOf Returns a primitive value (true or false) of the Boolean object.

Button Object
A Button object is created with every instance of an XHTML <input type=”button”> tag within the
document. The objects are stored in the array of the parent form and accessed using the name defined
within the XHTML tag or an integer representing the order in which the element appears in the form
(with 0 being the first element).

Properties

Properties Description

form Returns a reference to the object’s parent form.

name Sets or returns the value of the object’s name attribute.

type The value of this property is always button.

value Sets or returns the object’s value attribute.

Methods

Methods Description

blur Removes the focus from the object.

click Simulates a mouse-click on the object.

focus Gives focus to the object.

handleEvent(event) Calls the handler for the given event.

615

JavaScript Language Reference

37_588206 appc.qxd 6/30/05 12:38 AM Page 615

Event Handlers

Even Handlers

onBlur

onClick

onFocus

onMouseDown

onMouseUp

Checkbox Object
A Checkbox object is created with every instance of an XHTML <input type=”checkbox”> tag within
the document. The objects are stored in the array of the parent form and accessed using the name
defined within the XHTML tag or an integer representing the order in which the element appears in the
form (with 0 being the first element).

Properties

Properties Description

checked A Boolean value that sets or returns the current state of the object —
true if the box is checked and false if it is not checked.

defaultChecked Sets or returns the default value of the checked property — that is,
what the attribute was originally set to in the XHTML code.

form Returns a reference to the object’s parent form.

name Sets or returns the value of the object’s name attribute.

type The value of this property is always checkbox.

value Sets or returns the value of the object’s value attribute.

Methods

Methods

blur

click

focus

handleEvent(event)

616

Appendix C

37_588206 appc.qxd 6/30/05 12:38 AM Page 616

Event Handlers

Event Handlers

onBlur

onClick

onFocus

Date Object
The Date object allows you to work with dates and times. You create a Date object using the Date
constructor:

today = new Date(parameters);

The available parameters are shown in the following table.

Parameter

milliseconds An integer specifying the number of milliseconds
since 01/01/1970 00:00:00

dateString A string representing the date in a format that can be
recognized by the Date.parse method

year_num, month_num, day_num Integers representing the year, month, and day

hour_num, min_num, sec_num, ms_num Integers representing the hours, minutes, seconds,
and milliseconds

If you don’t supply any parameters, JavaScript creates an object using the current time on the local
machine.

Properties

Properties

constructor

prototype

617

JavaScript Language Reference

37_588206 appc.qxd 6/30/05 12:38 AM Page 617

Methods

Methods Description

getDate() Returns an integer (between 1 and 31) representing the day of the
month for the specified Date object.

getDay() Returns an integer (between 0 and 6) representing the day of the
week for the specified Date object.

getFullYear() Returns an integer representing the 4-digit year for the specified
Date object.

getHours() Returns an integer (between 0 and 23) that represents the hour for
the specified Date object.

getMilliseconds() Returns an integer (between 0 and 999) that represents the millisec-
onds for the specified Date object.

getMinutes() Returns an integer (between 0 and 59) that represents the minutes
for the specified Date object.

getMonth() Returns an integer (between 0 and 11) that represents the month for
the specified Date object.

getSeconds() Returns an integer (between 0 and 59) that represents the seconds
for the specified Date object.

getTime() Returns an integer representing the number of milliseconds since
midnight 01/01/1970 for the specified Date object.

getTimezoneOffset() Returns an integer representing the difference in minutes between
local time and Greenwich Mean Time.

getUTCDate() Returns an integer (between 1 and 31) that represents the day of the
month, according to universal time, for the specified Date object.

getUTCDay() Returns an integer (between 0 and 6) that represents the day of the
week, according to universal time, for the specified Date object.

getUTCFullYear() Returns an integer representing the 4-digit year, according to uni-
versal time, for the specified Date object.

getUTCHours() Returns an integer (between 0 and 23) representing the hours,
according to universal time, for the specified Date object.

getUTCMilliseconds() Returns an integer (between 0 and 999) representing the millisec-
onds, according to universal time, for the specified Date object.

getUTCMinutes() Returns an integer (between 0 and 59) representing the minutes, in
universal time, for the specified Date object.

getUTCMonth() Returns an integer (between 0 and 11) representing the month,
according to universal time, for the specified Date object.

618

Appendix C

37_588206 appc.qxd 6/30/05 12:38 AM Page 618

Methods Description

getUTCSeconds() Returns an integer (between 0 and 59) representing the seconds,
according to universal time, for the specified Date object.

parse(date_string) Parses a string representing a date and returns the number of mil-
liseconds since January 1, 1970 00:00:00.

setDate(integer) Sets the day of the month for the specified Date object.

setFullYear(integer) Sets the full year for the specified Date object.

setHours(integer) Sets the hour for the specified Date object.

setMilliseconds Sets the milliseconds for the specified Date object.
(integer)

setMinutes(integer) Sets the minutes for the specified Date object.

setMonth(integer) Sets the month for the specified Date object.

setSeconds(integer) Sets the seconds for the specified Date object.

setTime(integer) Sets the time for the specified Date object as the number of millisec-
onds since January 1, 1970 00:00:00.

setUTCDate(integer) Sets the day of the month for the specified Date object according to
universal time.

setUTCFullYear Sets the full year for the specified Date object according to
(integer) universal time.

setUTCHours(integer) Sets the hours for the specified Date object according to universal
time.

setUTCMilliseconds Sets the milliseconds for the specified Date object, according to
(integer) universal time.

setUTCMinutes(integer) Sets the minutes for the specified Date object, according to univer-
sal time.

setUTCMonth(integer) Sets the month for the specified Date object, according to universal
time.

setUTCSeconds(integer) Sets the seconds for the specified Date object, according to univer-
sal time.

toGMTString() Converts a local date to Greenwich Mean Time.

toLocaleString() Converts the specified Date object to a string using the relevant
locale’s date conventions.

toSource() Returns the source code that created the specified Date object.

toString() Converts the specified Date object to a string. This method is auto-
matically called whenever a Date object is needed as text.

Table continued on following page

619

JavaScript Language Reference

37_588206 appc.qxd 6/30/05 12:38 AM Page 619

Methods Description

toUTCString() Converts the specified Date object to a string using the universal
time convention.

UTC() Returns the number of milliseconds since January 1, 1970 00:00:00,
according to universal time.

valueOf() Returns a primitive value representing the number of milliseconds
since January 1, 1970 00:00:00, of the specified Date object.

The non-UTC Date functions use local date and time conventions when converting or constructing
date values.

Document Object
The Document object provides access to the XHTML elements in a document. This includes properties of
forms, links, and anchors, as well as general Document properties.

Properties

Properties Description

alinkColor [= “color”] Returns or sets the color of active links within the specified docu-
ment. The color value is either the hexadecimal definition of the
color (for example, #FF0000) or its textual description (for exam-
ple, red).

anchors[] An array containing all the named Anchor objects in the specified
document.

bgColor [= “color”] Returns or sets the background color of the specified document.
The color value is either the hexadecimal definition of the color
(for example, #FF0000) or its textual description (for example,
red).

cookie [= “expression”] Returns or sets cookies that are associated with the specified docu-
ment. Note that this property only returns visible and unexpired
cookies.

domain [= “domain”] Returns or sets the domain name from which the specified docu-
ment originated.

embeds[] An array containing all the embedded objects in the specified
document.

fgColor [= “color”] Returns or sets the specified document’s foreground color. The
color value is either the hexadecimal definition of the color (for
example, #FF0000) or its textual description (for example, red).

formname.”formname” Returns a reference to the form that has formname as the value of
its name attribute.

620

Appendix C

37_588206 appc.qxd 6/30/05 12:38 AM Page 620

Properties Description

forms[] An array containing all the Form objects in the specified document.

images[] An array containing all the Image objects in the specified document.

lastModified Returns the date that the specified document was last modified.

layers[] An array containing all the Layer objects in the specified document.

linkColor [= “color”] Returns or sets the specified document’s hyperlink color. The
color value is either the hexadecimal definition of the color (for
example, #FF0000) or its textual description (for example, red).

links[] An array containing all the Area and Link objects in the specified
document.

referrer Returns the referring URL of the specified document.

title Returns the specified document’s title — that is, the text between
the <title> tags.

URL Returns the specified document’s full URL.

vlinkColor Returns or sets the specified document’s visited links color. The
color value is either the hexadecimal definition of the color (for
example, #FF0000) or its textual description (for example, red).

Methods

Methods Description

captureEvents(event_type) Causes the specified document to capture and handle all
events of a particular type. See the Event object for a list of
valid event types.

close() Closes the output stream previously opened with the docu-
ment.open method and forces data from any document
.write or document.writeln methods to be displayed.

handleEvent(event) Calls the handler for the specified event.

open([mimetype[, replace]]) Used to open an output stream in the specified document for
write or writeln methods.

releaseEvents(event_type) Releases any events of the specified type to be passed along
to objects further down the event hierarchy.

routeEvent(event) Used to send the specified event through the normal event
hierarchy.

write(“expression(s)”) Used to write text (which may or may not include XHTML
or other code) to the specified document.

writeln(“expression(s)”) Identical to the write method, except that writeln ends the
write with a newline.

621

JavaScript Language Reference

37_588206 appc.qxd 6/30/05 12:38 AM Page 621

Event Handlers

Event Handlers

onClick

onDblClick

onKeyDown

onKeyPress

onKeyUp

onMouseDown

onMouseUp

Event Object
JavaScript creates an Event object automatically on the occurrence of an event. The object’s various
properties can provide information about the event, such as event type, the position of the cursor at the
time the event occurred, and so on.

Properties

Properties Description

screenX / screenY Returns the position of the cursor relative to the screen, in pixels,
when the event occurred

type Returns a string that represents the type of the event (click, key
down, and so on)

The Event object supports the following types:

❑ ABORT

❑ BLUR

❑ CHANGE

❑ CLICK

❑ DBLCLICK

❑ DRAGDROP

❑ ERROR

❑ FOCUS

❑ KEYDOWN

622

Appendix C

37_588206 appc.qxd 6/30/05 12:38 AM Page 622

❑ KEYPRESS

❑ KEYUP

❑ LOAD

❑ MOUSEDOWN

❑ MOUSEOUT

❑ MOUSEOVER

❑ MOUSEUP

❑ MOVE

❑ RESET

❑ RESIZE

❑ SELECT

❑ SUBMIT

❑ UNLOAD

For example, to capture all click events, you could use code similar to the following:

window.captureEvents(Event.CLICK)

Methods
There are no methods specific to the Event object.

FileUpload Object
The FileUpload object is created with every instance of an XHTML <input type=”file”> tag within
the document. The objects are stored in the array of the parent form and accessed using the name
defined within the XHTML tag or an integer representing the order in which the element appears in the
form (with 0 being the first element).

Properties

Properties Description

form Returns a reference to the object’s parent form

name Sets or returns the value of the object’s name attribute

type The value of this property is always file

value Sets or returns the value of the object’s value attribute

623

JavaScript Language Reference

37_588206 appc.qxd 6/30/05 12:38 AM Page 623

Methods

Methods

blur

click

focus

handleEvent(event)

Event Handlers

Event Handlers

onBlur

onChange

onFocus

Form Object
A Form object is created with every instance of an XHTML <form> tag within the document. The objects
are stored in the Document object and can be accessed using the name defined within the XHTML tag or
an integer representing the order in which the element appears in the document (with 0 being the first
element).

Properties

Properties Description

action [= “string”] Returns or sets the action attribute for the specified form

elements[] An array containing objects corresponding to elements within the
specified form

encoding [= “string”] Returns or sets the enctype attribute of the specified form

Length Returns the number of elements in the specified form

method [= “GET|POST”] Returns or sets the method attribute for the specified form

name [= “string”] Returns or sets the name attribute for the specified form

target [= “string”] Returns or sets the target attribute for the specified form

624

Appendix C

37_588206 appc.qxd 6/30/05 12:38 AM Page 624

Methods

Methods Description

handleEvent(event) Invokes the event handler for the specified event

Reset Emulates the clicking of a Reset button

Submit Emulates the clicking of a Submit button

Event Handlers

Event Handlers

onReset

onSubmit

Function Object
The Function object corresponds to functions defined in your JavaScript code. Function definitions
using the standard function statement have the following, basic syntax:

function function_name (function_argument(s)) {
// function code
return return_value;

}

For example, to define a function to add two values, you could use the following code:

function add_values (value1, value2) {
var total = value1 + value2;
return total;

}

alert(“The sum of 2 and 4 is: “+add_values(2,4));

The function can also be defined using the function constructor in standard object form:

var function_name = new Function(“argument1”, “argument2”...,
“argumentN”, “expression(s)”);

Converting our example function to this format yields the following:

var add_values = new Function(“value1”,”value2”,
“var total=value1+value2; return total;”);

alert(“The sum of 2 and 4 is: “+add_values(2,4));

625

JavaScript Language Reference

37_588206 appc.qxd 6/30/05 12:38 AM Page 625

Properties

Properties Description

arguments[] An array containing all the arguments passed to the specified function.

arguments.callee Used within the body of a function this property returns a string
specifying the function.

arguments.length Returns the number of arguments passed to the specified function.

arity Returns the number of arguments expected by the specified function.

constructor Returns a direct reference to the function that created the specified
object. See the constructor property of the Object object for more
details.

length Similar to the arity property in this table.

prototype Allows the addition of other properties and methods to an object. See
also the prototype property of the Object object for more details.

Methods

Methods Description

toString Returns a string containing the source code of a function.

valueOf Like toString, this returns a string containing the source code of a
function.

Hidden Object
A Hidden object is created with every instance of an XHTML <input type=”hidden”> tag within the
document. The objects are stored in the array of the parent form and accessed using the name defined
within the XHTML tag or an integer representing the order in which the element appears in the form
(with 0 being the first element).

Properties

Properties Description

form Returns a reference to the object’s parent form.

name Sets or returns the value of the object’s name attribute.

type The value of this property is always hidden.

value Sets or returns the button’s value attribute.

626

Appendix C

37_588206 appc.qxd 6/30/05 12:38 AM Page 626

Methods
There are no methods specific to the Hidden object.

History Object
The History object is a predefined JavaScript object accessible through the history property of a win-
dow object. The window.history property returns an array of URLs as strings, reflecting entries in the
History object; these entries correspond to the URLs accessible through the browser’s history function.

Properties

Properties Description

length Returns the number of entries in the history list

Methods

Methods Description

back Causes the browser to move one entry backward in the history list
(similar to pressing the browser’s Back button).

forward Causes the browser to move one entry forward in the history list
(similar to pressing the browser’s Forward button).

go(delta|location) Causes the browser to load a specific entry in the history list. The
entry can be specified using a positive or negative delta (negative
numbers move back the specified number of entries, positive num-
bers move forward) or a string containing text to match to the closest
URL in the history list (for example, specifying “example.com” will
move to the closest entry containing example.com).

Image Object
An Image object is created with every instance of an XHTML tag. The objects are stored in the
array of the document.images property and accessed using the name defined within the XHTML tag or
an integer representing the order in which the element appears in the document (with 0 being the first
element).

You can also use the Image constructor and the new operator to create an Image object, which can then
be displayed within an existing displayed element. For example, the following code creates a new Image
object called myImage containing the image cat.gif:

var myImage = new Image()
myImage.src = “cat.gif”

You could then have this image replace an existing image when a button is pressed, creating an event
linked to code that swaps the source.

627

JavaScript Language Reference

37_588206 appc.qxd 6/30/05 12:38 AM Page 627

Properties

Properties Description

border Returns a string containing the border width of the specified image (in pix-
els). Read-only.

complete Returns a Boolean value indicating whether the browser has finished load-
ing the specified image. Read-only.

height Returns a string containing the height attribute of the specified image (in
pixels). Read-only.

hspace Returns a string containing the hspace attribute of the specified image (in
pixels). Read-only.

lowsrc Sets or returns the value of the object’s lowsrc attribute.

name Sets or returns the value of the object’s name attribute.

src Sets or returns the value of the object’s src attribute.

vspace Returns a string containing the vspace attribute of the specified image (in
pixels). Read-only.

width Returns a string containing the width attribute of the specified image (in
pixels). Read-only.

Methods

Methods

handleEvent(event)

Event Handlers
All of the Image object’s event handlers have an equivalent property (in lowercase) that can be used
with the Image constructor.

Event Handlers

onAbort

onError

onKeyDown

onKeyPress

onKeyUp

onload

628

Appendix C

37_588206 appc.qxd 6/30/05 12:38 AM Page 628

Link Object
A Link object is created with every instance of an XHTML <a> or <area> tag within the document. The
objects are stored in the array of the document.links property and accessed using the name defined
within the XHTML tag or an integer representing the order in which the element appears in the docu-
ment (with 0 being the first element).

A Link object is also a Location object and therefore shares the same properties.

Properties

Properties Description

hash Returns the anchor portion (#anchor) of the specified object.

host Returns the host and port portions (for example, www.example.com:80) of
the specified object.

hostname Returns the server name and domain name (for example, www.example.com)
or IP address of the specified object.

href Returns the entire URL (protocol, hostname, port, and so on) of the speci-
fied object.

pathname Returns the path and name (for example, /samples/index.html) of the
specified object.

port Returns the port number (for example, 80) of the specified object.

protocol Returns the protocol (for example, http:) of the specified object.

search Returns any query information (also known as GET information, for example,
?name=Steve&id=245) of the specified object.

target Sets or returns the value of the object’s target attribute.

text Returns the text embedded in the specified object (text that comprises the
visible hyperlink).

Methods

Methods

handleEvent(event)

629

JavaScript Language Reference

37_588206 appc.qxd 6/30/05 12:38 AM Page 629

Event Handlers

Event Handlers

onClick

onDblClick

onKeyDown

onKeyPress

onKeyUp

onMouseDown

onMouseOut

onMouseUp

onMouseOver

Location Object
The Location object is part of a Window object, accessed through the window.location property. This
object contains the complete URL of a specified Window object.

Properties

Properties Description

hash Returns the anchor portion (#anchor) of the specified object.

host Returns the host and port portions (for example, www.example.com:80)
of the specified object.

hostname Returns the server name and domain name (for example, www.example
.com) or IP address of the specified object.

href Returns the entire URL (protocol, hostname, port, and so on) of the speci-
fied object.

pathname Returns the path and name (for example, /samples/index.html) of the
specified object.

port Returns the port number (for example, 80) of the specified object.

protocol Returns the protocol (for example, http:) of the specified object.

search Returns any query information (also known as GET information, for
example, ?name=Steve&id=245) of the specified object.

630

Appendix C

37_588206 appc.qxd 6/30/05 12:38 AM Page 630

Methods

Methods Description

reload Causes the browser to reload the window’s current document

replace(URL) Replaces the object’s history entry with the specified URL

Math Object
The Math object is a top-level, built-in JavaScript object used to perform advanced calculations.

Properties

Properties Description

E Provides Euler’s constant and the base of natural logarithms (approxi-
mately 2.7183)

LN10 Provides the natural logarithm of 10 (approximately 2.3026)

LN2 Provides the natural logarithm of 2 (approximately 0.6931)

LOG10E Provides the base 10 logarithm of E (approximately 0.4343)

LOG2E Provides the base 2 logarithm of E (approximately 1.4427)

PI Provides the value of pi, (approximately 3.1416)

SQRT1_2 Provides the value of 1 divided by the square root of 2 (approximately 0.7071)

SQRT2 Provides the square root of 2 (approximately 1.4142)

Methods

Methods Description

abs(number) Returns the absolute value of number

acos(number) Returns the arccosine of number

asin(number) Returns the arcsine of number

atan(number) Returns the arctangent of number

atan2(number1, number2) Returns the arctangent of the quotient of its arguments

ceil(number) Returns an integer equal to or the next integer greater than number

cos(number) Returns the cosine of number

exp(number) Returns the value of Enumber where E is Euler’s constant

floor(number) Returns an integer equal to or the next integer less than number

Table continued on following page

631

JavaScript Language Reference

37_588206 appc.qxd 6/30/05 12:38 AM Page 631

Methods Description

log(number) Returns the natural logarithm (base E) of number

max(number1,number2) Returns the greater of the two supplied numbers

min(number1,number2) Returns the lesser of the two supplied numbers

pow(number1,number2) Returns the value of number1 to the power of number2
(number1number2), where number1 is the base and number2
is the exponent

random() Returns a pseudo-random number between 0 and 1

round(number) Returns number rounded to the nearest integer

sin(number) Returns the sine of number

sqrt(number) Returns the square root of number

tan(number) Returns the tangent of number

Navigator Object
The Navigator object contains information about the user agent. Designed originally for Netscape
Navigator, it can also be used with Internet Explorer.

Properties

Properties Description

appCodeName Contains the code name of the browser

appName Contains the name of the browser

appVersion Contains information about the browser version

platform Contains a string containing the machine type for which the browser was
compiled

userAgent Contains a string containing the value of the User-agent header sent by
the client to the server

Methods

Methods Description

javaEnabled Tests whether Java is enabled, returning true if it is and false if not.

taintEnabled Determines whether data tainting is enabled, returning true if it is and
false if not. Note that tainting has been deprecated in the latest versions of
JavaScript.

632

Appendix C

37_588206 appc.qxd 6/30/05 12:38 AM Page 632

Number Object
The Number object is an object wrapper for primitive numeric values.

Properties

Properties Description

constructor Specifies the function that created the object. See also the Object
.constructor property.

MAX_VALUE Contains the largest number possible in JavaScript (approximately
1.79769e+308).

MIN_VALUE Contains the number closest to 0 in JavaScript (approximately 5e-324).

NaN Represents the special value Not a Number (NaN).

POSITIVE_INFINITY Contains a special value representing infinity, which is returned on
overflow.

prototype Represents the prototype for this object, allowing you to add methods
and properties to the object.

Methods

Methods Description

valueOf Returns the primitive value of a Number object as a number data type.

Object Object
Object is the primitive JavaScript object from which all other objects are derived.

Properties

Properties

constructor

prototype

Methods

Methods Description

toString Returns a string representing a specified object

valueOf Returns a primitive value for a specified object

633

JavaScript Language Reference

37_588206 appc.qxd 6/30/05 12:38 AM Page 633

Option Object
An Option object is created with every instance of an XHTML <option> tag within the document.
The objects are stored in the array of the parent form and accessed using the name defined within the
XHTML tag or an integer representing the order in which the element appears in the form (with 0 being
the first element).

Properties

Properties Description

defaultSelected Sets or returns the value of the object’s selected attribute

selected Sets or returns the current state of the object (selected returns true, not
selected returns false)

text Sets or returns the value of the text of the object (text that composes the
visible portion of the option)

value Sets or returns the value of the object’s value attribute

Methods
There are no methods specific to the Option object.

Password Object
A Password object is created with every instance of an XHTML <input type=”password”> tag within
the document. The objects are stored in the array of the parent form and accessed using the name
defined within the XHTML tag or an integer representing the order in which the element appears in the
form (with 0 being the first element).

Properties

Properties Description

defaultValue Sets or returns the value of the object’s value attribute.

form Returns a reference to the object’s parent form.

name Sets or returns the value of the object’s name attribute.

type The value of this property is always password.

value Returns the value entered by the user.

634

Appendix C

37_588206 appc.qxd 6/30/05 12:38 AM Page 634

Methods

Methods

blur

focus

handleEvent(event)

select

Event Handlers

Event Handlers

onBlur

onFocus

Radio Object
A Radio object is created with every instance of an XHTML <input type=”radio”> tag within the doc-
ument. The objects are stored in the array of the parent form and accessed using the name defined
within the XHTML tag or an integer representing the order in which the element appears in the form
(with 0 being the first element). Because radio buttons share the same name, they are stored in an array
using the name of the group of buttons.

Properties

Properties Description

checked Contains a Boolean value corresponding to whether the item is selected.

defaultChecked Contains a Boolean value corresponding to the original value of the
checked attribute of the object (the value specified in the XHTML code).

form Returns a reference to the object’s parent form.

name Sets or returns the value of the object’s name attribute.

type The value of this property is always radio.

value Sets or returns the object’s value attribute.

635

JavaScript Language Reference

37_588206 appc.qxd 6/30/05 12:38 AM Page 635

Methods

Methods

blur

click

focus

handleEvent(event)

Event Handlers

Event Handlers

onBlur

onClick

onFocus

RegExp Object
The RegExp object contains a regular expression and is used to match strings using its methods and
properties.

Properties

Properties Description

$1, ..., $9 Properties containing substrings (if any) from a regular expression

constructor Specifies the function that creates an object

prototype Represents the prototype for this class, allowing you to add your own
properties and methods

Methods

Methods Description

compile(pattern[, Compiles the specified regular expression
flags])

exec([string]) Executes a search using the specified regular expression within the
string and returns a result array

toString Returns a string representing the RegExp object

valueOf Returns a primitive value for the RegExp object as a string data type

636

Appendix C

37_588206 appc.qxd 6/30/05 12:38 AM Page 636

Reset Object
A Reset object is created with every instance of an XHTML <input type=”reset”> tag within the
document. The objects are stored in the array of the parent form and accessed using the name defined
within the XHTML tag or an integer representing the order in which the element appears in the form
(with 0 being the first element).

Properties

Properties Description

form Returns a reference to the object’s parent form.

name Sets or returns the value of the object’s name attribute.

type The value of this property is always reset.

value Sets or returns the object’s value attribute.

Methods

Methods

blur

click

focus

handleEvent(event)

Event Handlers

Event Handlers

onBlur

onClick

onFocus

Screen Object
The Screen object contains and returns information about the user agent’s display screen.

637

JavaScript Language Reference

37_588206 appc.qxd 6/30/05 12:38 AM Page 637

Properties

Properties Description

availHeight() Returns the usable height of the screen (in pixels), minus OS interface
features (such as the Windows taskbar)

availWidth() Returns the usable width of the screen (in pixels), minus OS interface
features (such as the Windows taskbar)

colorDepth() Returns the color bit depth of the palette in use or the bit depth of the
screen if no palette is in use

height() Returns the full height of the screen (in pixels)

pixelDepth() Returns the color bit depth of the screen

width() Returns the full width of the screen (in pixels)

Methods
There are no methods specific to the Screen object.

Select Object
A Select object is created with every instance of an XHTML <select> tag within the document. The
objects are stored in the array of the parent form and accessed using the name defined within the
XHTML tag or an integer representing the order in which the element appears in the form (with 0 being
the first element).

Properties

Properties Description

form Returns a reference to the object’s parent form.

length Contains the number of items (options) in the select list.

name Sets or returns the value of the object’s name attribute.

options[] An array containing all of the options in the specified object.

selectedIndex Returns the index of the currently selected item (option). If the list
allows for multiple selections, this property will only return the index of
the first item selected.

type Returns the value of the select object’s type — returns select-one if the
list only allows a single selection or select-multiple if the list allows
multiple selections.

638

Appendix C

37_588206 appc.qxd 6/30/05 12:38 AM Page 638

Methods

Methods

blur

focus

handleEvent(event)

Event Handlers

Event Handlers

onBlur

onChange

onFocus

String Object
A String object represents a series of characters in a string.

Properties

Properties Description

constructor Returns a reference to the function that created the object

length Returns the length of the string

prototype Can be used to assign additional properties to an object

639

JavaScript Language Reference

37_588206 appc.qxd 6/30/05 12:38 AM Page 639

Methods

Methods Description

anchor(“name”) Embeds the string in anchor tags (<a>) using name for the name of
the anchor (for example, string).

big Embeds the string in big tags (<big>).

blink Embeds the string in blink tags (<blink>).

bold Embeds the string in bold tags ().

charAt(integer) Returns the character at position integer in the string. (Note that
the first character in a string has an index of 0.)

charCodeAt(integer) Returns the Unicode value of the character at position integer in
the string.

concat(string1, Concatenates the given strings with the specified object and
string2..., stringN) returns the resulting string.

fixed Embeds the string in teletype tags (<tt>).

fontcolor(“colorvalue”) Embeds the string in font tags using colorvalue as the value for
the color attribute (for example, <font color=
”colorvalue”>string).

fontsize(“sizevalue”) Embeds the string in font tags using sizevalue as the value for
the size attribute (for example, <font size=
”sizevalue”>string).

fromCharCode(code1, Returns a string comprised of the supplied Unicode values.
code2...,codeN) (Static method does not return an object.)

indexOf(searchstring, Returns the index of the first occurrence of searchstring in the
[index]) specified string, starting at the optional index position in the string.

italics Embeds the string in italic tags (<i>).

lastIndexOf(search Returns the index of the last occurrence of searchstring in the
string,[index]) specified string, starting backwards at the optional index position

in the string.

link(url) Embeds the string in anchor tags (<a>) using url as the URL in
the href attribute (for example, string).

match(regexp) Matches the regular expression regexp against the specified
string. Returns the matched portion of the string or null if no
match can be made.

replace(regexp, Matches the regular expression regexp against the specified
newstring) string, replacing any matches with the specified newstring.

Returns the string with the replacements.

search(regexp) Searches the specified string for text matching the regular expres-
sion regexp. Returns 1 if a match was found or 0 if a match was
not found.

640

Appendix C

37_588206 appc.qxd 6/30/05 12:38 AM Page 640

Methods Description

slice(start,end) Returns a slice of the specified string from index start to index
end, inclusive.

small Embeds the specified string in small tags (<small>).

split(separator) Splits the specified string at each occurrence of separator, creat-
ing an array containing the resulting substrings. (Note: The sepa-
rator is discarded and does not appear in the resulting
substrings.)

strike Embeds the specified string in strikeout tags (<strike>).

sub Embeds the specified string in subscript tags (<sub>).

substr(start[,length]); Returns a substring from the specified string starting at the start
index for a total of length characters. If length is not specified,
the substring contains the characters from the start index
through the end of the string.

substring(start,end) Returns a substring of the specified string between the start and
end indexes, inclusive.

sup Embeds the specified string in superscript tags (<sup>).

toLowerCase Returns the specified string converted to lowercase.

toSource Returns a string representing the source code of the object.

toString Returns the string representation of the specified object.

toUpperCase Returns the specified string converted to uppercase.

valueOf Returns the primitive value of a String object as a string datatype.

Submit Object
A Submit object is created with every instance of an XHTML <input type=”submit”> tag within the
document. The objects are stored in the array of the parent form and accessed using the name defined
within the XHTML tag or an integer representing the order in which the element appears in the form
(with 0 being the first element).

Properties

Properties Description

form Returns a reference to the object’s parent form.

name Sets or returns the value of the object’s name attribute.

type The value of this property is always submit.

value Sets or returns the object’s value attribute.

641

JavaScript Language Reference

37_588206 appc.qxd 6/30/05 12:38 AM Page 641

Methods

Methods

blur

click

focus

handleEvent(event)

Event Handlers

Event Handlers

onBlur

onClick

onFocus

Text Object
A Text object is created with every instance of an XHTML <input type=”text”> tag within the docu-
ment. The objects are stored in the array of the parent form and accessed using the name defined within
the XHTML tag or an integer representing the order in which the element appears in the form (with 0
being the first element).

Properties

Properties Description

defaultValue Sets or returns the object’s initial value attribute.

form Returns a reference to the object’s parent form.

name Sets or returns the value of the object’s name attribute.

type The value of this property is always text.

value Sets or returns the object’s value attribute.

Methods

Methods

blur

focus

handleEvent(event)

select

642

Appendix C

37_588206 appc.qxd 6/30/05 12:38 AM Page 642

Event Handlers

Event Handlers

onBlur

onChange

onFocus

onSelect

Textarea Object
A Textarea object is created with every instance of an XHTML <textarea> tag within the document.
The objects are stored in the array of the parent form and accessed using the name defined within the
XHTML tag or an integer representing the order in which the element appears in the form (with 0 being
the first element).

Properties

Properties Description

defaultValue Sets or returns the object’s initial value attribute.

form Returns a reference to the object’s parent form.

name Sets or returns the value of the object’s name attribute.

type The value of this property is always textarea.

value Sets or returns the object’s value attribute.

Methods

Methods

blur

focus

handleEvent(event)

select

Event Handlers

Event Handlers

onBlur

onChange

Table continued on following page

643

JavaScript Language Reference

37_588206 appc.qxd 6/30/05 12:38 AM Page 643

Event Handlers

onFocus

onKeyDown

onKeyPress

onKeyUp

onSelect

Window Object
As the top-level object in the JavaScript client hierarchy, a Window object is created for every user agent
window and frame (every instance of an XHTML <body> or <frameset> tag).

Properties

Properties Description

closed Returns a Boolean value corresponding to whether a window has
been closed. If the window has been closed, this property is true.

defaultStatus Returns or sets the message displayed in a window’s status bar.
[= “message”]

document Returns a reference to the document currently displayed in the win-
dow. See Document object.

frames[] An array containing all the child frames in the current window.

history A reference to the window’s History object. See the History object.

length Returns the number of child frames contained within a window.

location A reference to the window’s Location object. See the Location
object.

name[=”name”] Returns or sets a window’s name.

opener Returns a reference to the object (usually window) that opened the
specified window.

outerheight / Determines the dimensions (in pixels) of the outside boundary of a
outerwidth window (including all interface elements).

pageXOffset / Returns the X and Y positions (in pixels) of the current document’s
pageYOffset upper left corner in relation to the upper left corner of a window’s

display area.

parent Returns a reference to the window or frame that contains the calling
frame.

personalbar[.visible = Sets the visibility of the window’s personal bar (or directories bar).
true|false]

644

Appendix C

37_588206 appc.qxd 6/30/05 12:38 AM Page 644

Properties Description

scrollbars[.visible = Sets the visibility of the window’s scroll bars.
true|false]

self Returns a reference to the current active window or frame.

status[= “message”] Returns or sets the message displayed in a window’s status bar.

statusbar[.visible = Sets the visibility of the window’s status bar.
true|false]

toolbar[.visible = Sets the visibility of the window’s toolbar. Note that this property
true|false] can be set only prior to the window being opened and requires the

UniversalBrowserWrite privilege.

top Returns a reference to the topmost browser window.

window Returns a reference to the current window or frame.

Methods

Methods Description

alert(“message”) Displays an alert box containing message and an OK button (to
clear the box).

blur Removes the focus from the specified window.

captureEvents Instructs the window to capture all events of a particular type. See
(event_types) the Event object for a list of event types.

clearInterval Used to cancel a timeout previously set with the setInterval
(intervalID) method.

clearTimeout Used to cancel a timeout previously set with the setTimeout
(timeoutID) method.

close Causes the specified window to close.

confirm(“message”) Displays a dialog box containing message along with OK and Can-
cel buttons. If the user clicks the OK button, this method returns
true; if the user clicks the Cancel button (or otherwise closes the
dialog box), the method returns false.

disableExternal Disables the capturing of events previously enabled using the
Capture enableExternalCapture method.

enableExternalCapture Allows a window that contains frames to capture events in docu-
ments that are loaded from other servers.

focus Assigns focus to the specified window.

forward Causes the window to move one entry forward in the history list
(similar to pressing the browser’s Forward button).

Table continued on following page

645

JavaScript Language Reference

37_588206 appc.qxd 6/30/05 12:38 AM Page 645

Methods Description

handleEvent(event) Used to call the handler for the specified event.

home Mimics the user pressing the Home button, causing the window to
display the document designated as the user’s home page.

moveBy(horizPixels, Moves the window horizontally by horizPixels and vertically by
vertPixels) vertPixels in relation to its current position.

moveTo(Xposition, Moves the window upper left corner to the position Xposition
Yposition) (horizontal) and Yposition (vertically).

open(URL, windowname [, Opens a new window named windowname, displaying the
features]) document referred to by URL, with the optional specified features.

The specified features are contained in a string, with the features
separated by commas. Features can include the following:

toolbar=yes|no— Controls the visibility of the window’s toolbar
location=yes|no— Controls the visibility of the window’s location
bar
directories=yes|no— Controls the visibility of the window’s
directory buttons
status=yes|no— Controls the visibility of the window’s status bar
menubar=yes|no— Controls the visibility of the window’s menu bar
resizable=yes|no— Controls whether the window can be resized
scrollbars=yes|no— Controls the visibility of the window’s
scroll bars
width=pixels— Sets the width of the new window
height=pixels— Sets the height of the new window

For example, to create a new window that is 400 pixels square, is not
resizable, and has no scroll bars, you could use the following string
for features:

“height=400,width=400,resizeable=no,scrollbars=no”

print Calls the print routine for the user agent to print the current
document.

prompt(message[, Displays a dialog box containing message and a text box with the
input]) default input (if specified). The content of the text box is returned

if the user clicks OK. If the user clicks Cancel or otherwise closes
the dialog box, the method returns null.

releaseEvents Used to release any captured events of the specified type and to
(event_type) send them on to objects further down the event hierarchy.

resizeBy(horizPixels, Resizes the specified window by the specified horizontal and
vertPixels) vertical pixels. The window retains its upper left position; the resize

moves the lower right corner appropriately.

646

Appendix C

37_588206 appc.qxd 6/30/05 12:38 AM Page 646

Methods Description

resizeTo(horizPixels, Resizes the specified window to the specified dimensions.
vertPixels)

routeEvent(event_type) Used to send an event further down the normal event hierarchy.

scrollBy(horizPixels, Scrolls the specified window by the amount (horizontal and
vertPixels) vertically) specified. The visible property of the window’s scrollbar

must be set to true for this method to work. Note that this method
has been largely deprecated in favor of scrollTo.

scrollTo(Xposition, Scrolls the specified window to the specified coordinates, with the
Yposition) specified coordinate becoming the top left corner of the viewable

area.

setInterval Causes the expression to be evaluated or the function called every
(expression/function, milliseconds. Returns the ID of the interval. Use the
milliseconds) clearInterval method to stop the iterations.

setTimeout Causes the expression to be evaluated or the function called after
(expression/function, the specified milliseconds elapse. Returns the ID of the interval.
milliseconds) Use the clearTimeout method to stop the iteration.

stop Mimics the user clicking the Stop button on their user agent.

Event Handlers

Event Handlers

onBlur

onDragDrop

onError

onFocus

onLoad

onMove

onResize

onUnload

647

JavaScript Language Reference

37_588206 appc.qxd 6/30/05 12:38 AM Page 647

37_588206 appc.qxd 6/30/05 12:38 AM Page 648

Perl Language Reference
This appendix provides a comprehensive reference to the Perl language. Within this appendix you
will find listings for Perl’s many language conventions, including its variables, statements, and
functions. For more information on using the language, see Chapters 25 and 28 of this book.

Command Line Arguments
The following table lists the various command line arguments that you can use with Perl. Note that
you can also specify arguments on the #! line within individual scripts similar to the following code:

#!/usr/bin/perl -U

Argument Use

-a Turns on autosplit mode. Used with the -n or -p options. (Splits
to @F.)

-c Checks syntax. (Does not execute program.)

-d Starts the Perl symbolic debugger.

-D number Sets debugging flags.

-e command Enters a single line of script. Multiple -e arguments can be used
to create a multiline script.

-F regexp Specifies a regular expression to split on if -a is used.

-i[extension] Edits < > files in place.

-I[directory] Used with -P, specifies where to look for include files. The direc-
tory is prepended to @INC.

-l [octnum] Enables line-end processing on octnum.

Table continued on following page

38_588206 appd.qxd 6/30/05 12:47 AM Page 649

Argument Use

-n Assumes a while (<>) loop around the script. Does not print lines.

-p Similar to –n, but lines are printed.

-P Executes the C preprocessor on the script before Perl.

-s Enables switch parsing after program name.

-S Enables PATH environment variable searching for program.

-T Forces taint checking.

-u Compiles program and dumps core.

-U Enables Perl to perform unsafe operations.

-v Outputs the version of the Perl executable.

-w Enables checks and warning output for spelling errors and other error-
prone constructs in the script.

-x [directory] Extracts a Perl program from input stream. Specifying directory changes
to that directory before running the program.

-X Disables all warnings.

-0[octal] Designates an initial value for the record separator, $/. See also –l.

Perl Symbolic Debugger Commands
Start the debugger with the Perl -d command line argument. Specifying a script on the command line
will start the debugger with that script. The debugger supports the commands in the following table.

Command Use

h Prints out a help message.

T Prints a stack trace.

s Single-steps forward.

n Single-steps forward around a subroutine call.

RETURN (key) Repeats the last s or n debugger command.

r Returns from the current subroutine.

c [line] Continues until line, breakpoint, or exit.

p expr Prints expr.

650

Appendix D

38_588206 appd.qxd 6/30/05 12:47 AM Page 650

Command Use

l [range] Lists a range of lines. range may be a number, a subroutine name, or one
of the following formats: start-end, start+amount. (Omitting range
lists the next window.)

w Lists window around current line.

- Lists previous window.

f file Switches to file.

l sub Lists the subroutine sub.

S List the names of all subroutines.

/pattern/ Searches forward for pattern.

?pattern? Searches backward for pattern.

b [line [Sets breakpoint at line for the specified condition. If line is omitted, the
condition]] current line is used.

b sub [condition] Sets breakpoint at the subroutine sub for the specified condition.

d [line] Deletes breakpoint at line.

D Deletes all breakpoints.

L Lists lines that currently have breakpoints or actions.

a line command Sets an action for line.

A Deletes all line actions.

< command Sets command to be executed before every debugger prompt.

> command Sets command to be executed before every s, c, or n command.

V [package [vars]] Lists all variables or specified vars in package. If package is omitted, lists
main.

X [vars] Similar to V, but lists the current package.

! [[-]number] Re-executes a command. If number is not specified, the previous com-
mand is used.

H [-number] Displays the last -number commands of more than one letter.

t Toggles trace mode.

= [alias value] Sets alias to value, or lists current aliases.

q Quits the debugger.

command Executes command as a Perl statement.

651

Perl Language Reference

38_588206 appd.qxd 6/30/05 12:47 AM Page 651

Operators
The following tables detail the various operators present in the Perl language.

Perl Arithmetic Operators
Operator Use

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

** Exponent

++ Increment

-- Decrement

Perl Assignment Operators
Operator Use

= Assignment

+= Increment assignment

-= Decrement assignment

*= Multiplication assignment

/= Division assignment

%= Modulus assignment

**= Exponential assignment

.= String concatenation assignment

Perl Comparison Operators
Operator Use

== Numeric is equal to

!= Numeric is not equal to

> Numeric is greater than

652

Appendix D

38_588206 appd.qxd 6/30/05 12:47 AM Page 652

Operator Use

< Numeric is less than

>= Numeric is greater than or equal to

<= Numeric is less than or equal to

eq String equality

ne String nonequality

gt String greater than

lt String less than

ge String greater than or equal to

le String less than or equal to

Perl Logical Operators
Operator Use

&& And

|| Or

! Not

Perl Bitwise Operators
Operator Use

& And

| Or

^ Xor

~ Not

<< Left shift

>> Right shift

653

Perl Language Reference

38_588206 appd.qxd 6/30/05 12:47 AM Page 653

Perl Miscellaneous Operators
Operator Use

. Object/property/method separator

? Condition operator

delete Delete specified object

new Create new object

this Reference current object

ref Type of object (number, string, and so on)

void Evaluate expression without return value

String Operators
Operator Use

. Concatenation

x Repetition

String Tokens
Token Character

\b Backspace

\e Escape

\t Horizontal tab

\n Line feed

\v Vertical tab

\f Form feed

\r Carriage return

\” Double quote

\’ Single quote

\$ Dollar sign

\@ At sign

\\ Backslash

654

Appendix D

38_588206 appd.qxd 6/30/05 12:47 AM Page 654

Standard Variables
The following tables detail the various standard variables in the Perl language.

Global Variables
Variable Use

$_ The default input and pattern-searching space.

$. The current input line number of the last filehandle read.

$/ The input record separator (newline is the default).

$, The output field separator for the print operator.

$” The separator joining elements of arrays interpolated in strings.

$\ The output record separator for the print operator.

$? The status returned by the last `...` command, pipe close, or system operator.

$] The Perl version number.

$; The subscript separator for multidimensional array emulation (default is \034).

$! In a numeric context, is the current value of errno. In a string context, is the
corresponding error string.

$@ The Perl error message from the last eval or do command.

$: The set of characters after which a string may be broken to fill continuation
fields in a format.

$0 The name of the file containing the Perl script being executed.

$$ The process ID of the currently executing Perl program.

$< The real user ID of the current process.

$> The effective user ID of the current process.

$(The real group ID of the current process.

$) The effective group ID of the current process.

$^A The accumulator for formline and write operations.

$^D The debug flags; passed to Perl using the -D command line argument.

$^F The highest system file descriptor.

$^I In-place edit extension, passed to Perl using the -i command line argument.

$^L Formfeed character used in formats.

$^P Internal debugging flag.

Table continued on following page

655

Perl Language Reference

38_588206 appd.qxd 6/30/05 12:47 AM Page 655

Variable Use

$^T The time (as delivered by time) when the program started. Value is used by the
file test operators -M, -A, and -C.

$^W The value of the -w command line argument.

$^X The name used to invoke the current program.

Context-Dependent Variables
Variable Use

$% The current page number of the current output channel.

$= The page length of the current output channel. (Default is 60.)

$- The number of lines remaining on the page.

$~ The name of the current report format.

$^ The name of the current top-of-page format.

$| Used to force a flush after every write or flush on the current output channel.
Set to nonzero to force flush.

$ARGV The name of the file when reading from < >.

Localized Variables
Variable Use

$& The string matched by the last successful pattern match.

$` The string preceding what was matched by the last successful pattern match.

$’ The string following what was matched by the last successful pattern match.

$+ The last bracket matched by the last search pattern.

$1...$9 Contains the subpatterns from the corresponding parentheses in the last suc-
cessful pattern match. (Subpatterns greater than $9 are available if the match
contained more than 9 matched subpatterns.)

Special Arrays
Array Use

@ARGV Contains the command-line arguments for the program. Does not include
the command name.

@EXPORT Names of methods a package exports by default.

656

Appendix D

38_588206 appd.qxd 6/30/05 12:47 AM Page 656

Array Use

@EXPORT_OK Names of methods a package can export upon explicit request.

@INC Contains a list of places to look for Perl scripts for require or do.

@ISA Contains a list of the base classes of a package.

@_ Contains the parameter array for subroutines. Also used by split (not in
array context).

%ENV Contains the current environment.

%INC Contains a list of files that have been included with require or do. The
key to each entry is the filename of the inclusion, and the value is the loca-
tion of the actual file used. (The require command uses this array to
determine if a particular file has already been included or not.)

%OVERLOAD Overload operators in a package.

%SIG Sets signal handlers for various signals.

Statements
The following tables detail the various statements present in the Perl language.

Subroutines, Packages, and Modules
Function/Statement Use

&subroutine list Executes subroutine. Note: The & may be omitted if the subroutine
has been declared before being used.

bless ref [, package] Turns the object ref into an object in package. Returns ref.

caller [expr] Returns an array containing the context for a specific subroutine
call ($package,$file,$line). Using expr specifies how many call
frames to go back from the current frame. When expr is used, the
routine returns extra information in the array ($package,
$filename, $line, $subroutine, $hasargs, $wantarray,
$evaltext, $is_require, $hints, $bitmask). Returns false if
there is no caller. (If expr is used, this function returns additional
debugging info.)

goto &subroutine Substitutes a call to subroutine for the currently running subroutine.

import module [[Imports the named subroutines from module into the current
version] list] program.

no module [list] Cancels imported semantics.

Table continued on following page

657

Perl Language Reference

38_588206 appd.qxd 6/30/05 12:47 AM Page 657

Function/Statement Use

package name Designates the remainder of the current block as a package.

require expr Can be used in multiple contexts: If expr is numeric, statement
requires Perl to be at least the version in expr. If expr is nonnumeric,
it indicates a name of a file to be included from the Perl library.
(The .pm extension is assumed if none is given.)

return expr Returns from a subroutine with the value specified.

sub name { expr ; ... } Designates name as a subroutine. Parameters are passed by refer-
ence as array @_. Returns the value of the last expression evalu-
ated in the subroutine or the value indicated with the return
statement.

[sub] BEGIN { expr ; ... } Defines a setup block to be called before execution of the rest of
the script.

[sub] END { expr ; ... } Defines a cleanup block to be called upon termination of the script.

tie var, package, [list] Ties a variable to a package that will handle it.

untie var Breaks the binding between var and its package.

use module [[Imports semantics from module into the current package.
version] list]

Loops and Conditions
Statement Use

do { Perform the loop code while expr evaluates to true
} while|until expr (while) or until expr evaluates to true (until). Note

that because the conditional statement is at the end of the
loop, the loop code will execute at least once.

elsif (expr) { An optional construct that can be used instead of else in
code to do if expr = true an if construct. The elsif (else if) construct evaluates

} [else { expr and performs actions accordingly. An example of an
code to do if expr = false extended if construct with an elsif block follows:
}]

if (expr1) {
code to do if expr1 = true
} elsif (expr2) {
code to do if expr1 = false and expr2 = true
}

Note: The elsif construct can also employ an else
block.

658

Appendix D

38_588206 appd.qxd 6/30/05 12:47 AM Page 658

Statement Use

for (init_expr; cond_expr; The for loop is a complex loop structure typically used
loop_expr){ to iterate over a sequence of numbers (for example,
// loop code 1–10). At the start of the loop the init_expr is evaluated
} and the cond_expr is also evaluated. The loop executes as

long as cond_expr remains true, evaluating the loop_expr
on the second and subsequent iterations. For example,
the following loop executes 10 times, assigning the vari-
able x values of 1 through 10:

for (x = 1; x <= 10; x++) {
// loop code
}

foreach [var] (mixed) { Performs the loop code once for every item in mixed,
// loop code assigning the variable var to each item in turn. For
} example, the following code will output all the values in

array @arr:

foreach $value (@arr) {
print $value;
}

If var is omitted, the iteration variable ($_) is used
instead.

if (expr) { Performs code based on the evaluation of the expression,
code to do if expr = true expr. If expr evaluates to true, the block of code in the if
} [else { section is executed. If expr evaluates to false, the code
code to do if expr = false in the if section is not executed, but the code in the
}] optional else section is. See also elsif.

label: Declares a label in the code that can be referenced via
statements such as next, last, or redo. The label text
(label) can be any valid nonreserved name and must end
in a colon.

last [label] Causes the loop to advance to the end condition (condi-
tion statement = true) ending the loop. This statement
skips the continue section of the loop if it exists. If label
is specified, it performs the action on the appropriately
labeled loop instead of the current one.

next [label] Causes the loop to end the current iteration and start the
next iteration (evaluating the conditional statement in
the process). If label is specified, it performs the action on
the appropriately labeled loop instead of the current one.

Table continued on following page

659

Perl Language Reference

38_588206 appd.qxd 6/30/05 12:47 AM Page 659

Statement Use

redo [label] Causes the loop to redo the current iteration of the loop
(not evaluating the conditional statement in the process).
If label is specified, it performs the action on the appro-
priately labeled loop instead of the current one.

until (expr) { Perform the loop code until expr evaluates to true. Note
statement(s) to execute that because the conditional statement is at the beginning
while expression is true of the loop, the loop code may not execute (if expr is
} [continue { initially true).
statements to do at end
of loop or explicit continue
}]

while (expr) { Perform the loop code while expr evaluates to true. Note
statement(s) to execute that because the conditional statement is at the beginning
} [continue { of the loop, the loop code may not execute (if expr is
statements to do at end initially false).
of loop or explicit continue
}]

Functions
The following tables detail the various default functions available in the Perl language.

Arithmetic Functions
Function Use

abs expr Returns the absolute value of expr.

atan2 x,y Returns the arctangent of x/y.

cos expr Returns the cosine of expr.

exp expr Returns e (the natural logarithm base) to the power of expr.

int expr Returns the integer portion of expr.

log expr† Returns the natural logarithm of expr.

rand [expr] Returns a random number between 0 and the value of expr. If expr is
omitted, returns a value between 0 and 1.

sin expr Returns the sine of expr.

sqrt expr Returns the square root of expr.

srand [expr] Sets the random number seed for the rand operator.

time Returns the number of seconds since January 1, 1970.

660

Appendix D

38_588206 appd.qxd 6/30/05 12:47 AM Page 660

Conversion Functions
Function Use

chr expr Returns the character represented by the decimal value expr.

gmtime expr Returns a 9-element array (0 = $sec, 1 = $min, 2 = $hour, 3 = $mday, 4 =
$mon, 5 = $year, 6 = $wday, 7 = $yday, 8 = $isdst) with the time for-
matted for the Greenwich time zone. Note that expr should be in a form
returned from a time function.

hex expr Returns the decimal value of expr, with expr interpreted as a hex string.

localtime expr Returns a 9-element array (0 = $sec, 1 = $min, 2 = $hour, 3 = $mday, 4 =
$mon, 5 = $year, 6 = $wday, 7 = $yday, 8 = $isdst) with the time for-
matted for the local time zone. Note that expr should be in a form
returned from a time function.

oct expr Returns the decimal value of expr, with expr interpreted as an octal
string. If expr begins with 0x, expr is interpreted as a hex string instead
of an octal string.

ord expr Returns the ASCII value of the first character of expr.

vec expr, offset, Using expr as a vector of unsigned integers, returns the bit at offset. Note
bits that bits must be between 1 and 32.

Structure Conversion
Function Use

pack template, list Returns a binary structure, packing the list of values using tem-
plate. See the template listing in the next table.

unpack template, expr Returns an array unpacking the structure expr, using template.
See the template listing in the next table.

For the pack and unpack functions, template is a sequence of characters containing the characters in
the following table.

Pack and Unpack Template Characters

Character Use

a A string with binary data (null padded).

A A text (ASCII) string (space padded).

Z A null-terminated (ASCIZ) string (null padded).

b A bit string (ascending bit order inside each byte).

Table continued on following page

661

Perl Language Reference

38_588206 appd.qxd 6/30/05 12:47 AM Page 661

Character Use

B A bit string (descending bit order inside each byte).

h A hex string (low nybble first).

H A hex string (high nybble first).

c A signed char value.

C An unsigned char value. (See U for Unicode chars.)

s A signed short value.

S An unsigned short value.

i A signed integer value.

I An unsigned integer value.

l A signed long value.

L An unsigned long value.

n An unsigned short in “network” (big-endian) order.

N An unsigned long in “network” (big-endian) order.

v An unsigned short in “VAX” (little-endian) order.

V An unsigned long in “VAX” (little-endian) order.

q A signed quad (64-bit) value.

Q An unsigned quad value.

j A signed integer value.

J An unsigned integer value.

f A single-precision float (native format).

d A double-precision float (native format).

F A floating-point value (native format).

D A long double-precision float (native format).

p A pointer to a null-terminated string.

P A pointer to a structure (fixed-length string).

u A uuencoded string.

U A Unicode character number.

w A BER compressed integer.

x A null byte.

X Back up a byte.

662

Appendix D

38_588206 appd.qxd 6/30/05 12:47 AM Page 662

Character Use

@ Null fill to absolute position, counted from the start of the innermost
group.

(Start of a group.

) End of a group.

Each character can be followed by a decimal number that is used as a repeat count. An asterisk specifies all
remaining arguments. If the format begins with %N, the unpack function will return an N-bit checksum.
Spaces can be included in the template for legibility — they are ignored when the template is processed.

String Functions
Function Use

chomp string|list Removes the trailing record separator (as set in $/) from string
or all elements of list. Returns the total number of characters
removed.

chop list Removes the last character from all elements of list. Returns the
last character removed.

crypt string, salt Encrypts string.

eval expr Parses expr and executes it as if it contained Perl code. Returns
the value of the last expression evaluated.

index string, substr [, Returns the position of substr in string at or after offset. If substr
offset] is not found, index returns -1.

length expr Returns the length of expr in characters.

lc expr Returns a lowercase version of expr.

lcfirst expr Returns expr with the first character in lowercase.

quotemeta expr Returns expr with all regular expression metacharacters
quoted.

rindex string, substr [, Returns the position of the last substr in string at or before offset.
offset]

substr expr, offset [, Extracts a substring of length len out of expr and returns it. If
len] offset is negative, substr counts from the end of the string.

uc expr Returns an uppercase version of expr.

ucfirst expr Returns expr with the first character in uppercase.

663

Perl Language Reference

38_588206 appd.qxd 6/30/05 12:47 AM Page 663

Array and List Functions
Function Use

delete $hash{key} Deletes the specified value from hash. Returns the deleted value.

each %hash Returns an array consisting of the key and value for the next pair
in hash. Entries are returned in a random order. After all values
have been returned, each returns a null array. Subsequent calls
will iterate through hash again.

exists expr Checks if the specified expr key exists in its hash.

grep expr|block, list Evaluates expr or block for each element of list, setting $_ to refer
to the element. (Note that modifying $_ will also modify the cor-
responding element from list.) Returns an array of list elements
for which expr returned true.

join expr, list Joins the strings in list into a single string with each field sepa-
rated by the value of expr. Returns the new, combined string.

keys %hash Returns an array containing the keys of hash.

map expr|block, list Evaluates expr or block for each element of list, setting $_ to refer
to the element. (Note that modifying $_ will also modify the cor-
responding element from list.) Returns the list of results.

pop @array Pops off (removes) and returns the last value array.

push @array, list Pushes (adds) the values in list onto the end of array.

reverse list In array context, reverse returns the list in reverse order. In
scalar context, reverse returns the first element of list with its
bytes reversed.

scalar @array Returns the number of elements in array.

scalar %hash Returns a true value if hash has elements defined.

shift [@array] Shifts the first value of array off and returns it. If @array is omit-
ted, shift will operate on @argv in main and @_ in subroutines.

sort [subroutine] list Sorts list and returns the sorted array value. If subroutine is speci-
fied, determines how the list is sorted. The subroutine must
return less than zero, zero, or greater than zero — the elements of
the array are available subroutine as $a and $b are to be ordered.
(Note that subroutine may refer to the name of a user-defined
routine, or a block.)

664

Appendix D

38_588206 appd.qxd 6/30/05 12:47 AM Page 664

Function Use

splice @array, offset [, Removes the elements of @array designated by offset and length
length [, list]] and replaces them with list (if specified). Returns the elements

removed from @array.

split [pattern [, Splits a string into an array and returns the array. If limit is
expr [, limit]]] specified, split creates at most the number of fields specified. If

pattern is omitted, the string is split at white space. If split is
not in array context, it returns number of fields and splits to @_.

unshift @array, list Prepends list to the front of @array, and returns the number
of elements in the new array.

values %hash Returns an array containing all the values of hash.

Search and Replace Functions
Function Use

[expr =~] [m] /pattern/ Searches expr (or the default $_) for pattern. If used in array
[g] [i] [m] [o] context, an array is returned consisting of the expressions
[s] [x] matched by the parentheses in pattern, that is, ($1,$2,$3,...).

(Note: If pattern is empty, the last pattern from a previous search
or replace function is used.)

See the next table for descriptions of options.

[$var =~] s/pattern/ Searches a string for a pattern, and if pattern is found, it is
replacement/ replaced by the replacement text. Returns the number of sub-
[e] [g] [i] [m] [o] stitutions made, or returns false if no substitutions were made.
[s] [x]

See the next table for descriptions of options.

[$var =~] tr/searchlist/ Translates all occurrences of the characters found in searchlist
replacelist/ with the corresponding character in the replacelist. It returns the
[c] [d] [s] number of characters replaced.

See the next table for descriptions of options.

pos scalar Returns the position where the last m//g search left off for scalar.

study [$var] Study $var in anticipation of performing many pattern matches
on it.

665

Perl Language Reference

38_588206 appd.qxd 6/30/05 12:47 AM Page 665

The following table explains the options mentioned in the preceding “Search and Replace Functions” table.

Search and Replace Options

Option Use

c Complements searchlist.

d Deletes all characters in searchlist that do not appear in replacelist.

e Evaluates replacement string as a Perl expression.

g Matches as many times as possible (global).

i Case-insensitive search manner.

m (prepend option) (Prepend) Uses alternate delimiters instead of slashes.

m (suffixed option) Treats the string as multiple lines.

o Interpolates variables only once.

s Treats the string as a single line.

x Allows regular expression extensions.

File and File Handle Test Functions
Test Use

-r File is readable by effective uid/gid.

-w File is writable by effective uid/gid.

-x File is executable by effective uid/gid.

-o File is owned by effective uid.

-R File is readable by real uid/gid.

-W File is writable by real uid/gid.

-X File is executable by real uid/gid.

-O File is owned by real uid.

-e File exists.

-z File has zero size (empty).

-s File has nonzero size (returns file size, in bytes).

-f File is a plain file.

-d File is a directory.

-l File is a symbolic link.

666

Appendix D

38_588206 appd.qxd 6/30/05 12:47 AM Page 666

Test Use

-p File is a named pipe (FIFO), or filehandle is a pipe.

-S File is a socket.

-b File is a block special file.

-c File is a character special file.

-t Filehandle is opened to a tty.

-u File has a setuid bit set.

-g File has a setgid bit set.

-k File has a sticky bit set.

-T File is an ASCII text file.

-B File is a binary file (opposite of -T).

-M Script start time minus file modification time (in days).

-A Script start time minus access time (in days).

-C Script start time minus inode change time (in days).

File Operations
Function Use

chmod list Changes the permissions of the files in list. The first element of list is
the mode to use.

chown list Changes the owner and group of the files in list. The first two elements
of the list are the numerical userid and groupid to set.

truncate file, size Truncates file to size. The file can be a filename or a filehandle.

link oldfile, Creates newfile as a link to oldfile.
newfile

lstat file Identical to the stat function, but lstat does not traverse symbolic
links.

mkdir directory, Creates directory with permissions in mode. Sets $! if operation fails.
mode

readlink expr Returns the value of a symbolic link. Sets $! on system error, uses $_ if
expr is omitted.

rename oldname, Changes the name oldname to newname.
newname

rmdir directory Deletes directory if it is empty. Sets $! if operation fails.

Table continued on following page

667

Perl Language Reference

38_588206 appd.qxd 6/30/05 12:47 AM Page 667

Function Use

stat file Returns a 13-element array where 0 = $dev, 1 = $ino, 2 = $mode, 3 =
$nlink, 4 = $uid, 5 = $gid, 6 = $rdev, 7 = $size, 8 = $atime, 9 =
$mtime, 10 = $ctime, 11 = $blksize, 12 = $blocks. Note that file
can be a filehandle, an expression evaluating to a filename, or _
(underline filehandle), which will use the file referred to in the last file
test operation or stat call. Returns a null list on failure.

symlink oldfile, Creates newfile symbolically linked oldfile.
newfile

unlink list Deletes the list of files.

utime list Changes the access and modification times of files in list. The first two
elements of list are the access and modification times to use.

Input and Output Functions
Function Use

<filehandle> Reads a line from filehandle (in scalar context) or reads the whole
file (in array context).

< > Reads from the input stream formed by entries in @argv, or reads
from STDIN if no arguments are supplied.

binmode filehandle Prepares filehandle to be read or written in binary mode (as
opposed to text mode). Not valid under UNIX.

close filehandle Closes the file or pipe associated with filehandle.

eof filehandle Returns true if the end of file (EOF) on filehandle has been
reached.

fcntl filehandle, Implements a fcntl(2) function, using the parameters specified,
function, $var with nonstandard return values.

fileno filehandle Returns the file descriptor for filehandle.

flock filehandle, Calls flock(2) on filehandle. Note that operation is formed by
operation adding the following values for the following operations: 1 =

shared, 2 = exclusive, 4 = nonblocking, or 8 = unlock. Note that
such a lock is only advisory and that systems or programs not
supporting flock will be able to write through the lock. Returns
true on success or false on failure.

getc [filehandle] Returns the next character from filehandle, or an empty string if
EOF. Reads from STDIN if filehandle is not specified.

668

Appendix D

38_588206 appd.qxd 6/30/05 12:47 AM Page 668

Function Use

ioctl filehandle, Performs ioctl(2) on filehandle, using the supplied parameters,
function, $var with nonstandard return values.

open filehandle [, Opens a file and associates it with filehandle. If filename is not ,
filename] specified the scalar variable filehandle must contain the filename.

Returns true on success or undef on failure.

The following conventions apply to the filename specification
when opening a file:

file or <file : open file for reading
>file : open file for writing, creating file first if necessary.
>>file : open file for writing in append mode.
+<file : open file with read/write access (file must exist).
+>file : open file with read/write access (file is truncated).
|cmd : open a pipe to command cmd; creates a fork if cmd is -.
cmd| : open a pipe from command cmd; creates a fork if cmd is -.

Note that file may be specified as &filehandle, in which case the
new filehandle is connected to the previously used filehandle.

pipe readhandle, Returns a pair of connected pipes.
writehandle

print [filehandle] Equivalent to print filehandle sprintf list.
[list]

printf[([filehandle] Equivalent to print filehandle sprintf(list).
list)]

read filehandle, $var, Reads length binary bytes from filehandle into $var at offset. Returns
length [, offset] the number of bytes read.

seek filehandle, Arbitrarily positions the file pointer. Returns true if the operation
position, whence was successful.

select [filehandle] Returns the current default filehandle. If filehandle is specified, it
becomes the current default filehandle.

select rbits, wbits, Performs a select(2) system call with the parameters specified.
nbits, timeout

sprintf format, list Returns a string formatted by printf(3) conventions.

sysread filehandle, Reads length bytes from filehandle into $var at offset.
$var, length [, offset]

syswrite filehandle, Writes length bytes from scalar at offset to filehandle.
scalar, length [,
offset]

Table continued on following page

669

Perl Language Reference

38_588206 appd.qxd 6/30/05 12:47 AM Page 669

Function Use

tell [filehandle] Returns the current file pointer position for filehandle. Assumes the
last file accessed if filehandle is omitted.

write [filehandle] Writes a formatted record to filehandle, using the data format asso-
ciated with that filehandle.

Directory Functions
Function Use

closedir dirhandle Closes a directory opened by opendir.

opendir dirhandle, Opens dirname on the dirhandle specified.
dirname

readdir dirhandle Returns the next entry or an array of entries from dirhandle.

rewinddir dirhandle Positions the directory pointer at the beginning of the dirhandle list.

seekdir dirhandle, pos Sets the directory pointer on dirhandle to pos.

telldir dirhandle Returns the directory pointer position in the dirhandle list.

System Functions
Function Use

alarm expr Schedules a SIGALRM after expr seconds.

chdir [expr] Changes the working directory to expr. If expr is omitted, alarm
uses $ENV{“HOME”} or $ENV{“LOGNAME”}.

chroot dirname Changes the root directory to dirname for the process and its
children.

die [list] Prints list to STDERR and exits with the current value of $!.

exec list Executes the system command(s) list. Does not return.

exit [expr] Exits the program immediately with the value of expr. Calls
appropriate end routines and object destructors before exiting.

fork Performs a fork(2) system call. Returns the process ID of the
child to the parent process and 0 to the child process.

getlogin Returns the effective login name.

getpgrp [pid] Returns the process group for process pid. If pid is 0 or omitted,
getgrp returns the current process.

getppid Returns the process ID of the parent process.

670

Appendix D

38_588206 appd.qxd 6/30/05 12:47 AM Page 670

Function Use

getpriority which, who Returns the current priority for a process, a process group, or a
user.

glob pattern Returns a list of filenames that match the pattern pattern.

kill list Sends a signal to the processes in list. The first element of the list
is the signal to send in numeric or name form.

setpgrp pid, pgrp Sets the process group to pgrp for the process specified by pid. If
pid is omitted or 0, setpgrp uses the current process.

setpriority which, Sets the current priority for a process, a process group, or a user.
who, priority

sleep [expr] Causes the program to sleep for expr seconds. If expr is omitted,
the program sleeps forever. Returns the number of seconds slept.

syscall list Calls a system call. The first element in list is the system call; the
rest of list is used as arguments.

system list Similar to exec except that a fork is performed first, and the par-
ent process waits for the child process to complete.

times Returns a four-element array giving the user and system times, in
seconds, for this process and the children of this process (0=
$user, 1= $system, 2= $cuser, 3= $csystem).

umask [expr] Sets the umask for the process. Returns the old umask. Omitting
expr causes the current umask to be returned.

wait Behaves like a wait(2) system process — waits for a child process
to terminate. Returns the process ID of the terminated process (-1
if none). The status is returned in $?.

waitpid pid, flags Performs the same function as the waitpid(2) system call.

warn [list] Similar to die, warn prints list on STDERR but doesn’t exit.

Networking Functions
Function Use

accept newsocket, genericsocket Accepts a new socket similar to the accept(2) system
call.

bind socket, name Binds name to socket. The name should be a packed
address of an appropriate type for socket.

connect socket, name Attempts to connect name to socket, similar to the system
call.

getpeername socket Returns the socket address of the other end of socket.

Table continued on following page

671

Perl Language Reference

38_588206 appd.qxd 6/30/05 12:47 AM Page 671

Function Use

getsockname socket Returns the name of socket.

getsockopt socket, level, Returns the socket option identified by optionname,
optionname queried at level.

listen socket, queuesize Similar to the listen system call, starts listening on
socket. Returns true or false depending on success.

recv socket, scalar, Attempts to receive length characters of data into scalar
length, flags from the specified socket. Specified flags are the same as

the recv system call.

send socket, msg, flags [, to] Attempts to send msg to socket. Takes the same flags as
the send system call. Use to when necessary to specify
an unconnected socket.

setsockopt socket, level, Sets the socket option optionname to optionvalue using the
optionname, optionvalue level specified.

shutdown socket, method Shuts down a socket using the specified method. The
method can be any valid method for the shutdown sys-
tem call.

socket socket, domain, Similar to the socket system call, creates a socket in
type, protocol domain with the type and protocol specified.

socketpair socket1, socket2, Similar to socket but creates a pair of bidirectional
domain, type, protocol sockets.

Miscellaneous Functions
Function Use

defined expr Tests whether expr has an actual value.

do filename Executes filename as a Perl script.

dump [label] Performs an immediate core dump to a new binary executable. When
new binary runs, execution starts at optional label or at the beginning
of the executable if label is not specified.

eval { expr1 ; Evaluates and executes any code between the braces ({ and }).
expr2; ... exprN}

local variable Creates locally scoped variable or list.
local (list)
my variable
my (list)

ref expr Tests expr and returns true if expr is a reference. Returns a package
name if expr has been blessed into a package. (See the “Subroutines,
Packages, and Modules” table in the “Statements” section.)

672

Appendix D

38_588206 appd.qxd 6/30/05 12:47 AM Page 672

Function Use

reset [list] Resets all variables and arrays that begin with a letter in list.

scalar expr Evaluates expr in scalar context.

undef [value] Undefines value. Returns undefined.

wantarray Tests the current context to see if an array is expected. Returns true if
array is expected or false if array is not expected.

Regular Expressions
The following tables provide information used with Perl’s regular expressions and regex handling
functions.

Matching Expressions and Characters
Expression/Character Use

. Matches an arbitrary character but not a newline.

(...) Groups a series of elements into a single element; that single ele-
ment can be used as subexpressions (later referenced with $1 to
$9 or \1 to \9, if matched).

^ Matches the beginning of a line or the beginning of the pattern.

$ Matches the end of a line.

[...] Matches a class of characters. Use ^ to negate the class ([^ ...]).

(... | ... | ...) Matches one of the alternatives.

\character Escape character.

(?# text) Use text as a comment.

(?: regexp) Similar to (regexp) but does not make back-references.

(?= regexp) Zero width, positive look-ahead assertion.

(?! regexp) Zero width, negative look-ahead assertion.

(? modifier) Embedded pattern-match modifier. The modifier can be one or
more of the following: i, m, s, or x.

673

Perl Language Reference

38_588206 appd.qxd 6/30/05 12:47 AM Page 673

Match Count Modifiers
Modifier Use

+ Matches the preceding character or pattern element one or more times.

? Matches the preceding character or pattern element zero or one times.

* Matches the preceding character or pattern element zero or more times.

{N,M} Matches the preceding character or pattern element a minimum of N and max-
imum of M match count. Use {N} for exactly N matches; use {N,} for at least N
matches.

Escape Characters
Escaped Character Use

\w Matches alphanumeric (including underscore).

\W Matches nonalphanumeric.

\s Matches white space.

\S Matches non–white space.

\d Matches numeric.

\D Matches nonnumeric.

\A Matches the beginning of the string.

\Z Matches the end of the string.

\b Matches word boundaries.

\B Matches nonword boundaries.

\G Matches where a previous m//g search left off.

\1 ... \9 Are used to refer to previously matched subexpressions (grouped with
parenthesis inside the match pattern).

Note: \10 and up can be used if the pattern matches more than nine
subexpressions.

674

Appendix D

38_588206 appd.qxd 6/30/05 12:47 AM Page 674

Python Language Reference
This appendix lists various functions and variables available for CGI programming in Python.
Their syntax and general use are shown, and short examples are included, where necessary, for
clarity. Although care has been taken to include those functions most likely to be used in CGI pro-
gramming, Python is evolving, so older code might include deprecated functions that aren’t listed
here. Because Python is highly modularized, the functions and variables are grouped by the mod-
ule to which they belong. In most cases, the module must be imported before the functions listed
become available.

Built-in Functions
The following sections cover the functions built into Python. These functions are always available
and do not require that a specific module be imported for their use.

Syntax Description

__import__(mod) Imports the module represented by the string mod,
especially useful for dynamically importing a list
of modules:

myModules = [‘sys’,’os’,’cgi’,’cgitb’]
modules = map(__import__,myModules)

abs(n) Returns the absolute value of n.

basestring() Constructor for the built-in type that can be used to
test whether an object is an instance of str or
Unicode. This function can’t be called or instantiated
but is used like this:

if isinstance(obj, basestring):

Table continued on following page

39_588206 appe.qxd 6/30/05 12:41 AM Page 675

Syntax Description

bool([x]) Returns True or False depending on the value of x. If x
is a false statement or empty, returns False; otherwise,
returns True.

callable(obj) Returns 1 if obj can be called; otherwise, returns 0.

chr(i) Returns a string of one character whose ASCII code is the
integer i.

classmethod(func) Returns a class method for func in the following format:

class C:
@classmethod

def func(cls, arg1, arg2...):

cmp(a,b) Compares values a and b, returning a negative value if a
< b, 0 if a == b, and a positive value if a > b.

compile(string, filename, Compiles string into a code object. Filename is the file
kind[,flags[, don’t inherit]]) containing the code. Kind denotes what kind of code to

compile.

complex([real[,imag]]) Returns a complex number with value real+imag*j.

delattr(obj,string) Removes the attribute of obj whose name is string.

dict([mapping or sequence]) Returns a dictionary whose initial value is set to mapping
or sequence. Returns empty dictionary if no mapping or
sequence is provided.

dir(obj) Returns attributes and methods of obj. Works on nearly
any data type.

divmod(a,b) Returns quotient and remainder of two noncomplex
numbers, a and b.

enumerate(iterable) Returns an enumerate object based on the specified iter-
able object.

eval(expression[,globals[,locals]]) Returns evaluation of expression by Python rules using
globals (which must be a dictionary) as global namespace
and locals (which can be any mapping object) as local
namespace.

execfile(filename[,globals[,locals]]) Parses filename, evaluating as series of Python expres-
sions, using globals and locals as global and local names-
paces. globals and locals are dictionaries. If no locals are
given, locals are set to provided globals.

file(filename[,mode[,bufsize]]) Returns new file object of specified mode. Modes are r for
reading, w for writing, and a for appending: + appended
to mode indicates that file is changeable, and b appended
to mode indicates that file is to be binary. bufsize may be 0
for unbuffered, 1 for line buffered, or any other positive
value for a specific buffer size.

676

Appendix E

39_588206 appe.qxd 6/30/05 12:41 AM Page 676

Syntax Description

filter(function, list) Returns a list of items from list where function is True.

float([x]) Returns string or number x as converted to a floating-point
value. If no argument x is given, returns 0.0.

frozenset([iterable]) Returns set (with elements taken from iterable) that has no
update methods but can be hashed and used as the mem-
ber of other sets or as dictionary keys (called a frozen set).

getattr(obj,name[,default]) Returns the value of the named attribute of obj or default if
it does not exist.

globals() Returns a dictionary containing the current global symbol
table.

hasattr(obj, name) Returns True if name is the name of one of obj’s attributes;
otherwise, returns False.

hash(obj) Returns the hash value of obj.

help([obj]) Invokes the built-in help system.

hex(x) Converts x to a hexadecimal value.

id(obj) Returns the unique integer representing obj.

input([prompt]) Returns the equivalent of eval(raw_input(prompt)).

int[x[,radix]] Returns the integer version of x to the base specified
by radix.

isinstance(obj, classinfo) Returns True if obj is an instance of classinfo; otherwise,
False. For example, if issubclass(A,B), then
isinstance(x,A) => isinstance(x,B).

iter(o[,sentinel]) Returns an iterator object. If sentinel is not specified, o must
be a collection object that supports the iteration protocol or
must support the sequence protocol. If it does not support
either of those protocols, TypeError is raised. If sentinel is
given, then o must be a callable object. The iterator created
in this case will call o with no arguments for each call to its
next() method; if the value returned is equal to sentinel,
StopIteration will be raised; otherwise, the value will be
returned.

len(obj) Returns the length of obj. Works with string, tuple, list, or
dictionary.

list([sequence]) Returns a list whose items are the same and in the same
order as the objects in sequence. If no sequence is specified,
returns an empty list.

locals() Returns a dictionary representing the local symbol table.

Table continued on following page

677

Python Language Reference

39_588206 appe.qxd 6/30/05 12:41 AM Page 677

Syntax Description

long([x[,radix]]) Returns a long integer converted from x to base radix. x
may be a string or a regular or long integer or a floating-
point number. A floating-point number is truncated
toward zero.

map(func, list) Returns list of results from applying func to every mem-
ber of list.

max(s[, args]) Returns the largest member of sequence s. If additional
args are specified, returns the largest of args.

min(s[, args]) Returns the smallest member of sequence s. If additional
args are specified, returns the smallest of args.

object() Returns a new featureless object.

oct(x) Returns octal form of integer x.

open(filename[mode[,bufsize]]) Alias for the file function.

ord(c) Returns the ASCII character represented by the one-
character string or Unicode character c. ord(‘c’) returns
the integer 99.

pow(x,y[,z]) Returns x to the power y; if z is present, returns x to the
power y, modulo z.

property[fget[,fset[,fdel][,doc]]]) Returns a property attribute for a new-style class with
functions to get, set, and delete an attribute.

class C(object):
def getx(self): return self.__x

def setx(self, val): return self.__x = val
def delx(self): del self.__x
x=property(getx,setx,delx,”doc of the ‘x’
property.”)

range([start,]stop[,step]]) Creates a progression list of plain integers often used for
loops. If all arguments are specified, the list looks like
[start,start+step,start+step+step,...].

raw_input(prompt) Prints prompt to standard output with no newline. Then
reads the next line from standard input and returns it
(without a newline).

s=raw_input(‘prompt>’)
prompt> Phrase I typed in.
>>>s
“Phrase I typed in.”

678

Appendix E

39_588206 appe.qxd 6/30/05 12:41 AM Page 678

Syntax Description

reduce(function, sequence[,initializer]) Applies function of two arguments cumulatively to
items of sequence, from left to right, for the purpose of
reducing sequence to a single value.

Example: reduce(lambda x,y:x+y, [1,2,3,4,5]) means
((((1+2)+3)+4)+5). Argument x is the accumulated value
created by adding each of the values in the array as
argument y. If the initializer value is present, it is placed
before the items of the sequence in the calculation and
serves as a default when the sequence is empty.

reload(module) Returns the module object of a previously loaded
module. The reload function causes the module code
to be recompiled and executed (with the exception of
the init function), updating the name and dataspace
with any changed values and reclaiming any old
objects with a reference count of zero. The dictionary
is retained from the first loading but redefined names
override old definitions.

Example: If a module is syntactically correct but its
initialization fails, the first import statement for it does
not bind its name locally but does store a (partially
initialized) module object in sys.modules. To reload
the module, you must first import it again (this will
bind the name to the partially initialized module
object) before you can reload() it.

repr(obj) Returns a printable representation of obj.

reversed(seq) Returns the reverse of any object that supports the
sequence protocol.

round(x[,n]) Returns floating point x rounded to n digits after the
decimal point.

set([iterable]) Returns a set whose immutable elements are taken
from iterable.

setattr(obj,string,val) Assigns the value val to string, which is an element of
obj, provided obj allows it.

slice([start,]stop[,step]) Returns a slice object representing the set of indices
specified by range(start, stop, step).

sorted(iterable[,cmp[,key[,reverse]]]) Returns a new sorted list of the elements in iterable.
Mostly replaced by the list.sort() function, which
acts the same way.

staticmethod(func) Returns a static method for function. Static methods in
Python are similar to those in Java and C++.

Table continued on following page

679

Python Language Reference

39_588206 appe.qxd 6/30/05 12:41 AM Page 679

Syntax Description

str(x) Converts x into string form. Works on any available
data type.

sum(sequence[, start]) Returns the sum of start and the items of sequence that
are not allowed to be strings.

super(type[,obj or type]) Returns the superobject of type. If the second argument is
an object, isinstance(obj, type) must be true. If the second
argument is a type, issubclass(type2,type) must be true.

tuple([sequence]) Returns a tuple whose items are the same and in the
same order as those in sequence.

type(obj) Returns datatype of obj. Works on any available data type.

unichr(i) Return the Unicode string of one character whose Uni-
code code is the integer i. For example, unichr(99)
returns the string u’c’.

Unicode([obj[,encoding[,errors]]]) Returns the Unicode version of obj. If no optional param-
eters are specified, this function will behave like the
str() function except that it returns Unicode strings
instead of eight-bit strings. If encoding and/or errors are
given, Unicode() will decode the object, which can
either be an eight-bit string or a character buffer using
the codec for encoding.

vars([obj]) Without arguments, this function returns dictionary
corresponding to the current local symbol table. If a
module is specified, this function returns a dictionary
corresponding to the specified object’s symbol table.

xrange([start,]stop[,step]) This function is very similar to range(), but returns an
“xrange object’’ instead of a list.

array Module
These functions define functionality in support of the array object type, which can represent an array of
characters, integers, and floating-point numbers. Arrays are sequence types, behave very much like lists,
and are supported by the following functions:

Syntax Description

array(typecode[,initializer]) Returns a new array whose items are restricted by typecode and
initialized from the optional initializer value, which must be a list
or string in versions prior to 2.4 but may also contain an iterable
over elements of the appropriate type. The typecode is a character
that defines the item type.

append(x) Appends a new item of value x to the end of the array.

680

Appendix E

39_588206 appe.qxd 6/30/05 12:41 AM Page 680

Syntax Description

buffer_info() Return a tuple (address, length) giving the current memory
address and the length in elements of the buffer used to hold the
array’s contents.

byteswap() Switches byte order of arguments that are 1, 2, 4, or 8 bytes in size
(endianness).

count(x) Returns the number of times x occurs in the array.

extend(iterable) Appends items from iterable (which prior to version 2.4 had to be
another array but has been changed to include any iterable con-
taining elements of the same type as those in array) to end of
array.

fromfile(file,num) Appends num items from file to array or returns EOFError if less
than num are available.

fromlist(list) Appends items from list to array; equivalent to “for x in list:
array.append(x)”.

fromstring(string) Appends items from string to array, interpreting string as an array
of machine values.

fromUnicode(string) Extends any type ‘u’ array with data from the given Unicode
string.

index(x) Returns the index of the first occurrence of x in the array.

insert(a,x) Inserts a new item with value x in the array before position a.

pop([i]) Pops the item with index i off the array and returns it.

remove(x) Removes the first occurrence of item x from the array.

reverse() Returns the items in the array in reverse order.

tofile(file) Writes all items (machine values) to file.

tolist() Converts the array to a normal list.

tostring() Converts the array to an array of machine values and returns the
string representation.

toUnicode() Converts a type ‘u’ array to a Unicode string.

asyncore Module
This module provides the basic functionality in support of writing asynchronous socket service clients
and servers.

681

Python Language Reference

39_588206 appe.qxd 6/30/05 12:41 AM Page 681

Syntax Description

loop([timeout[,use_poll[,map[,count]]]]) Enters a polling loop that terminates after count
passes or after all open channels have been closed.
The use_poll parameter, which defaults to False,
can be set to True to indicate that the poll()
should be used in preference to select(). timeout
specifies the number of seconds before the
select() or poll() function should timeout. map
is a dictionary of channels to watch. If the map
parameter is omitted, a global map is used. This
map is updated by the default class __init__()—
make sure you extend, rather than override,
__init__() if you want to retain this behavior.

CLASS dispatcher() Class is a wrapper around a low-level socket object
with some methods for event handling called from
the asynchronous loop.

handle_read() Called when the asynchronous loop detects that a
read() call on the socket will succeed.

handle_write() Called when the asynchronous loop detects that a
writable socket can be written. Performance may
be enhanced if this method implements buffering.

handle_expt() Called when there is out-of-band data for a socket
connection.

handle_connect() Performs some function such as sending a welcome
banner or initiating protocol negotiation when the
active opener’s socket makes a connection.

handle_close() Called when the socket is closed.

handle_error() Called when an exception is raised and not other-
wise handled.

handle_accept() Called on listening channels when a connection
can be established to a new remote system that has
issued a connect() for the local system.

readable() Called when the asynchronous loop determines
that the socket should be added to the list on
which read events can occur.

writable() Called when the asynchronous loop determines
that the socket should be added to the list on
which write events can occur.

create_socket(family,type) Creates a socket just like the normal socket object.

connect(address) Connects to the socket object indicated by address,
which is a tuple of the host and the port number.

send(data) Sends data to the remote end-point of the socket.

682

Appendix E

39_588206 appe.qxd 6/30/05 12:41 AM Page 682

Syntax Description

recv(buffer_size) Reads at most buffer_size bytes from the socket’s remote
end-point. If buffer_size is an empty string, the connec-
tion has been closed from the remote end.

listen(backlog) Listens for backlog connections made to the socket. back-
log should be at least one and not more than the number
allowed by the operating system.

bind(address) Binds the socket to address as long as it is not already
bound.

accept() Accepts a connection for a socket that is bound to an
address and is listening for connection.

close() Closes the socket.

asynchat Module
This module builds on the basic functionality of the asyncore module for the purpose of simplifying
asynchronous communication between clients and servers. It especially helps with protocols whose ele-
ments are terminated by arbitrary strings or are of variable length.

Syntax Description

CLASS ASYNC_CHAT() Abstract class of asyncore.dispatcher. To make practical use of
it, you should subclass async_chat, providing meaningful meth-
ods of collect_incoming_data() and found_terminator().

close_when_done() Pushes a None on the producer fifo, which, when popped off,
causes the channel to be closed.

collect_incoming_ Called with data holding some amount of received data. The
data(data) default method, which must be overridden, raises a

NotImplementedError exception.

discard_buffers() Discards any data held in the input or output buffers and the pro-
ducer fifo.

found_terminator() Called when the incoming data stream matches the termination
condition set by the set_terminator() method.

get_terminator() Returns the current terminator for the channel.

handle_close() Called when the channel is closed.

handle_read() Called when a read event fires on the channel’s socket in the asyn-
chronous loop. By default, it checks the termination condition set by
set_terminator(), which can be the appearance of a particular
string as input or the receipt of a particular number of characters,
and upon finding it, calls found_terminator().

Table continued on following page

683

Python Language Reference

39_588206 appe.qxd 6/30/05 12:41 AM Page 683

Syntax Description

handle_write() Called when the application may write to the channel.
handle_write() calls the initiate_send() method.

push(data) Creates a simple producer object containing data and pushes it
onto the channel’s producer_fifo.

push_with_ Takes a producer object as input and adds it to the producer_fifo
producer(producer) associated with the channel.

readable() Should return True for the channel to be included in the set of
channels to be tested by the select() loop for readability.

refill_buffer() Refills the output buffer by calling the more() method of the pro-
ducer object at the head of the fifo.

set_terminator(term) Sets the terminating condition to be recognized on the channel to
string (looks for a certain string in the input stream), integer
(counts a number of characters received), and None (no terminat-
ing condition is set).

writable() Should return True if the item remains on the producer_fifo or
if the channel is connected and the channel’s output buffer is not
empty.

CLASS simple_producer A simple_producer instance takes a chunk of data and an
(data[,buffer_size=512]) optional buffer size. Calls to the more() method may only receive

chunks of data no larger than buffer_size.

more() Retrieves the next chunk of data from the producer and returns it.
Returns empty string if no data is available.

CLASS fifo([list=None]) Each channel maintains a fifo, which holds data pushed on by an
application but not yet popped for writing to a channel.

is_empty() Returns True if the fifo is empty.

first() Returns the oldest item from the fifo.

push(data) Adds the given data to the producer fifo. data should be a string or
a producer object.

pop() Deletes the item returned by first() from the fifo and returns
True. If the fifo is empty, returns False.

binascii Module
The following section covers the functions in Python’s binascii module. The binascii module pro-
vides functionality for conversion between binary and various ASCII-encoded representations.

684

Appendix E

39_588206 appe.qxd 6/30/05 12:41 AM Page 684

Syntax Description

ab2_uu(string) Returns the binary data converted from the single line of uuen-
coded data string.

b2a_uu(data) Returns a line of ASCII characters ending in a newline, as con-
verted from binary data.

a2b_base64(string) Returns binary data as converted from the block of base64 data
specified by string.

b2a_base64(string) Returns a line of ASCII characters in base64 coding ending in a
newline, as converted from a 57-character or shorter binary string.

a2b_qp(string[, header]) Returns binary data as converted from a block of quoted-printable
data. If the optional argument header is present and true, under-
scores will be decoded as spaces.

b2a_qp(data[,quotetabs, Returns a line or lines of ASCII characters in quoted-printable
istext, header]) format as converted from a line or lines of binary data. If the

optional argument header is present and true, spaces will be
encoded as underscores.

a2b_hqx(string) Converts binhex4-formatted ASCII data string to binary, without
doing RLE-decompression.

rledecode_hqx(data) Performs RLE-decompression on the data and returns the decom-
pressed data. The decompression algorithm uses 0x90 after a byte
as a repeat indicator, followed by a count. A count of 0 specifies a
byte value of 0x90. The routine returns the decompressed data,
unless data input data ends in an orphaned repeat indicator, in
which case the Incomplete exception is raised.

cgi Module
The following section covers the functions in Python’s Common Gateway Interface module. This mod-
ule defines a number of utilities for use by CGI scripts written in Python.

Syntax Description

parse(file[,keep_blanks Parses a query from the specified file or from sys.stdin if none
[,strict_parsing]]) is specified. For details on the keep_blanks and strict_parsing

parameters, see the parse_qs function.

parse_qs(querystr[,keep_ Returns a dictionary containing data from the parsed query string
blanks[,strict_parsing]]) querystr. The keep_blanks parameter is a flag indicating whether

blank values in URL encoded queries should be treated as blank
strings. The strict_parsing parameter indicates whether or not to
raise an exception when parsing errors are found.

Table continued on following page

685

Python Language Reference

39_588206 appe.qxd 6/30/05 12:41 AM Page 685

Syntax Description

parse_qsl(querystr[,keep_ Returns a list of name,value pairs from the parsed query string
blanks[,strict_parsing]]) querystr. The keep_blanks parameter is a flag indicating whether

blank values in URL encoded queries should be treated as blank
strings. The strict_parsing parameter indicates whether or not to
raise an exception when parsing errors are found.

parse_multipart(file,pdict) Parses multipart/form-data for file uploads. Arguments include file
file and a dictionary containing other parameters in the Content-
Type Header. Returns a dictionary just like the parse_qs() func-
tion: keys are the field names, each value is a list of values for that
field.

parse_header(string) Parses MIME Header string into a main value and a dictionary of
parameters.

test() Writes minimal HTTP headers and formats all information pro-
vided to the script in HTML form for use in testing.

print_environ() Formats the shell environment in HTML format.

print_form() Formats a form in HTML.

print_directory() Formats the current directory in HTML.

print_environ_usage() Prints a list of cgi environment variables in HTML.

escape(s[,quote]) Convert the characters &, <, and > in string s to HTML-safe
sequences. If quote is True, double-quotes are translated as well.

cgitb Module
The following section covers the functions in Python’s CGI Traceback module. Although this module
was originally developed to provide extensive traceback information in HTML for troubleshooting
Python CGI scripts, it has more recently been generalized to also provide information in plain text.
Output includes a traceback showing excerpts of the source code for each level, as well as the values of
the arguments and local variables to currently running functions to assist in debugging. To use this mod-
ule, add the following to the top of the script to be debugged:

import cgitb; cgitb.enable()

686

Appendix E

39_588206 appe.qxd 6/30/05 12:41 AM Page 686

Syntax Description

enable([display[,logdir This function causes the cgitb module to take over the
[,context[,format]]]]) interpreter’s default handling for exceptions by setting the value

of sys.excepthook. The display argument may be 1, which
enables sending the traceback to the browser, or 0 to disable it.
The logdir argument specifies to write tracebacks to files in the
directory named by logdir. The context value is the number of lines
of context to display around the current line of source code in the
traceback. The format option may be either “html” to format the
output to HTML or any other value that formats it as plain text.

handler([info]) This function handles an exception using the default settings
(show a report in the browser, but don’t log to a file). The optional
info argument should be a 3-tuple containing an exception type,
exception value, and traceback object.

Cookie Module
The Cookie Module provides a mechanism for state management in HTML primarily on the server side.
It supports both simple string-only cookies, and provides an abstraction for having any serializable data-
type as cookie value. The Cookie Module originally strictly applied the parsing rules described in RFC
2109 and RFC 2068 specifications, but modifications have made its parsing less strict. Due to security
concerns, two classes have been deprecated from this module: CLASS SerialCookier([input]) and
CLASS SmartCookier([input]). For backwards compatibility, the Cookie Module exports a class
named Cookie, which is just an alias for SmartCookie. This is probably a mistake and will likely be
removed in a future version. You should not use the Cookie class in your applications, for the same rea-
son you should not use the SerialCookie class.

Syntax Description

exception Exception raised when the cookie in question is invalid according
CookieError to RFC 2109.

CLASS BaseCookie This class is a dictionary-like object with keys that are strings and
([input]) values that are Morse1 instances. Upon setting a key to a value,

the value is converted to a Morse1 containing the key and the
value. If input is given, this class passes it to the load() method.

CLASS SimpleCookie This class derives from BaseCookie and overrides
([input]) value_decode() and value_encode() to be the identity and

str(), respectively.

cookielib Module
The cookielib module defines classes in support of the automatic handling of HTTP cookies, for
accessing Web sites that require cookies to be set on the client machine by an HTTP response from a Web
server and then to be returned to the server in later HTTP requests.

687

Python Language Reference

39_588206 appe.qxd 6/30/05 12:41 AM Page 687

Syntax Description

exception LoadError Error returned if the cookies fail to load from the spec-
ified file.

CLASS CookieJar(policy=None) The CookieJar class stores HTTP cookies, extracts
HTTP requests, and returns them in HTTP responses.
Instances of the CookieJar class automatically expire
contained cookies when necessary.

CLASS FileCookieJar(filename, A CookieJar that can load cookies from and save
delayload=None,policy=None) cookies to a file. Cookies are NOT loaded from the

named file until either the load() or revert()
method is called.

CLASS CookiePolicy() This class is responsible for deciding whether each
cookie should be accepted from or returned to the
server.

CLASS DefaultCookiePolicy Constructor class should be passed as keyword
(blocked_domains=None, allowed_ arguments only. blocked_domains is a sequence of
domains=None, netscape=True, domain names that we never accept cookies from or
rfc2965=False, hide_cookie2=False, return cookies to. allowed_domains is a sequence of the
strict_domain=False, strict_rfc2965_ only domains for which we accept and return cookies
unverifiable=True, strict_ns_ or None.
unverifiable=False, strict_ns_domain=
DefaultCookiePolicy.
DomainLiberal, strict_ns_set_initial_
dollar=False, strict_ns_set_path=False)

CLASS Cookie() This class represents Netscape, RFC 2109, and RFC
2965 cookies.

email Module
The following functions are available from the email module for use in setting and querying header
fields and for accessing message bodies. This module replaces the functionality of the mimetools mod-
ule from before Python version 2.3.

Syntax Description

CLASS Message() The basic message constructor. Message objects provide a
mapping style interface for accessing the message headers and
an explicit interface for accessing both the headers and the pay-
load, which can be either a string or a list of Message objects
for MIME container documents (for example, multipart/*
and message/rfc822).

as_string([unixfrom]) Return the entire message flattened as a string. When optional
unixfrom is True, the envelope header is included in the
returned string. unixfrom defaults to False.

688

Appendix E

39_588206 appe.qxd 6/30/05 12:41 AM Page 688

Syntax Description

__str__() Equivalent to as_string with unixfrom set to True.

is_multipart() Returns True if the message’s payload is a list of sub-Mes-
sage objects; otherwise (if it is a string) returns False.

set_unixfrom(unixfrom) Sets the message’s envelope header to unixfrom, which should
be a string.

get_unixfrom() Returns the message’s envelope header.

attach(payload) Adds payload to the current payload, which must be None or a
list of Message objects prior to the call of attach(). After the
call, the payload will always be a list of Message objects.

get_payload([i[,decode]]) Returns a reference to the current payload, which can be
either a string or a list of Message objects. With optional
argument i, get_payload() will return the i-th element of
the payload, counting from zero, if payload is a list of Mes-
sage objects. Optional decode is a flag indicating whether or
not the payload should be decoded, according to the Con-
tent-Transfer-Encoding: header.

set_payload(payload[,charset]) Set the entire message object’s payload to payload. If charset is
specified, it sets the message’s default character set.

set_charset(charset) Sets the character set to charset.

get_charset(charset) Retrieves the character set being used in the message’s
payload.

__len__() Returns the total number of headers including duplicates.

__contains__(name) Returns true if the message object has a field named name.

__getitem__(name) Returns the value of the named header field, name.

__setitem__(name,val) Appends a header to the end of the message’s existing fields
with field name name and value val.

__delitem__(name) Removes all occurrences of the field with name name in the
message’s headers.

has_key(name) Returns True if the message contains a header field named
name; otherwise, returns False.

keys() Returns a list of all the message’s header field names.

values() Returns a list of all the message’s field values.

items() Returns a list of 2-tuples containing all the message’s field
headers and values.

get_all(name[,failobj]) Returns a list of all the values for the field named name. If
there is no such named header in the message, failobj is
returned.

Table continued on following page

689

Python Language Reference

39_588206 appe.qxd 6/30/05 12:41 AM Page 689

Syntax Description

add_header(_name,_value, The add_header() method is similar to __setitem__()
**_params) except that additional header parameters can be provided as

keyword arguments. _name is the header field to add and
_value is the primary value for the header.

msg.add_header(‘Content-Disposition’,
‘attachment’,filename=’example.gif’)

adds a header which looks like:
Content-Disposition: attachment;

filename=”example.gif”

replace_header(_name,_value) Replaces the first header found in the message that matches
_name, retaining header order and field name case.

get_content_type() Returns the message’s content type in lowercase of the form
maintype/subtype or the default content type if there is no
Content-Type Header in the message.

get_content_maintype() Returns the message’s main content type. This is the maintype
part of the string returned by get_content_type().

get_content_subtype() Returns the message’s sub-content type. This is the subtype
part of the string returned by get_content_type().

get_default_type() Returns the default content type. Most messages have a default
content type of text/plain, except those that are subparts of
multipart/digest containers and have a default content type of
message/rfc822.

set_default_type(ctype) Sets the default content type. ctype should either be
text/plain or message/rfc822, although this is not enforced.

get_params([failobj[,header Returns the message’s Content-Type: parameters, as a list of
[,unquote]]]) 2-tuples of key/value pairs, as split on the = sign. The left-hand

side of the = is the key, and the right-hand side is the value.

get_param(param[,failobj[,header Returns the value of the Content-Type: header’s parameter
[,unqote]]]) param as a string. If the message has no Content-Type: header

or if there is no such parameter, then failobj is returned (defaults
to None). The header parameter specifies an alternative header to
Content-Type:. If optional unquote is True, all parameters will
be quoted as necessary. unquote defaults to False.

set_param(param,value[,header Replaces the value of param in the header if it exists or sets
[,requote[,charset[,language]]]]) the Context-Type to text/plain. If optional requote is provided

and set to True, all parameters will be quoted as necessary.
requote defaults to False.

del_param(param[,header Removes the given parameter completely from the
[,requote]]) Content-Type: header. header specifies an alternative to

Content-Type:. All values will be quoted as necessary
unless requote is False (the default is True).

690

Appendix E

39_588206 appe.qxd 6/30/05 12:41 AM Page 690

Syntax Description

set_type(type[,header[,requote]]) Set the main type and subtype for the Content-Type:
header where type is a string in the form maintype/subtype.
If requote is False, this leaves the existing header’s quoting
as is; otherwise, the parameters will be quoted.

get_filename([failobj]) Returns the value of the filename parameter of the Con-
tent-Disposition: header of the message, or failobj if
either the header is missing or has no filename parameter.

get_boundary([failobj]) Returns the value of the boundary parameter of the Con-
tent-Type: header of the message, or failobj if the header is
missing or has no boundary parameter.

set_boundary(boundary) Sets the boundary parameter of the Content-Type: header
to boundary. set_boundary().

get_content_charset([failobj]) Returns the charset parameter of the Content-Type:
header in lowercase if it exists; otherwise returns failobj.

get_charsets([failobj]) Returns a list containing the character set names in the mes-
sage, one element for each subpart of the payload or failobj if
no content header exists.

walk() This method is an all-purpose generator used to iterate over
all parts and subparts of the message object tree.

preamble MIME document format allows some text between the
blank line following the headers and the first multipart
boundary string. The preamble attribute contains this lead-
ing extra-armor text.

epilogue Text that appears between the last boundary and the end of
the message is stored in the epilogue attribute.

defects The defects attribute contains a list of all problems occurring
during message parsing.

file Object
The following section covers the functions available when the built-in function file() is called. The
file object returned has the inherent functionality described in the following table. These functions are
called like this:

filename.function()

Syntax Description

close() Closes the file.

flush() Flushes the internal file buffer.

Table continued on following page

691

Python Language Reference

39_588206 appe.qxd 6/30/05 12:41 AM Page 691

Syntax Description

fileno() Returns the integer “file descriptor” that is used by the underlying
implementation to request I/O operations from the operating system.

isatty() Returns True if the filename describes a TTY device; otherwise,
returns False.

read([size]) Returns, in the form of a string object, size bytes from the file or fewer
if the read hits EOF before obtaining that many bytes. If the size argu-
ment is negative or omitted, returns all data until EOF is reached.

readline([size]) Reads and returns a line from the file, including the trailing newline
character.

readlines([size]) Reads and returns all lines from file as a list, including the trailing
newline characters.

seek(offset[,pos]) Sets the file’s current position, for example, stdio’s fseek(). The pos
argument defaults to 0, which turns on absolute file positioning. Other
values are 1, seek relative to the current position and 2, seek relative to
the end of the file.

tell() Returns the file’s current position.

truncate([size]) Truncates the file to length size bytes or 0 if size is not specified.

write(string) Writes string to the file.

writelines(sequence) Writes a sequence of strings to the file. The sequence can be any iter-
able object producing strings, typically a list of strings.

gc Module Functions and Variables (Garbage Collection)
This module provides an interface to the optional garbage collector, which is available only if the inter-
preter was built with the optional cyclic garbage detector (enabled by default).

Syntax Description

enable() Enables the garbage collector.

disable() Disables the garbage collector.

isenabled() Returns True if the garbage collector is enabled.

collect() Runs a full garbage collection, examining all generations and returning
the number of unreachable objects found.

692

Appendix E

39_588206 appe.qxd 6/30/05 12:41 AM Page 692

Syntax Description

set_debug() Sets debugging flags for garbage collection and writing the resulting
debugging information out to stderr. The flags may be any of the
following:

DEBUG_STATS (print statistics during collection), DEBUG_COLLECTABLE
(print information on collectable objects), DEBUG_UNCOLLECTABLE
(print information on uncollectible objects), DEBUG_INSTANCES (print
information about instance objects found when DEBUG_COLLECTABLE
or DEBUG_UNCOLLECTABLE is set), DEBUG_OBJECTS (print information
about objects other than instances found when DEBUG_COLLECTABLE
or DEBUG_UNCOLLECTABLE is set), DEBUG_SAVEALL (append all
unreachable objects found to garbage instead of freeing), and
DEBUG_LEAK (DEBUG_COLLECTABLE | DEBUG_UNCOLLECTABLE |
DEBUG_INSTANCES | DEBUG_OBJECTS | DEBUG_SAVEALL)

get_debug() Returns the debugging flags currently set.

get_objects() Returns a list of all objects tracked by the collector.

set_threshold Sets the garbage collection frequency. Setting threshold0 to zero disables
(threshold0[,threshold1 collection. The GC classifies objects into three generations (threshold0,
[,threshold2]]) threshold1, threshold2) depending on how many collection sweeps they

have survived.

get_threshold() Returns the current collection thresholds as a tuple of (threshold0,
threshold1, threshold2).

get_referrers(*objs) Returns the list of objects that directly refer to any of objs for the pur-
pose of debugging.

get_referents(*objs) Returns a list of objects directly referred to by any of the arguments
specified as objs.

garbage Variable that contains a list of objects that the collector found to be
unreachable but could not be freed (uncollectible objects).

httplib Module Functions and Variables
This module defines classes that implement the client side of the HTTP and HTTPS protocols. It is nor-
mally not used directly — the module urllib uses it to handle URLs that use HTTP and HTTPS.

693

Python Language Reference

39_588206 appe.qxd 6/30/05 12:41 AM Page 693

Syntax Description

CLASS HTTPConnection(host[,port]) An instance of this class represents one transaction to
the HTTP server. If port is not provided and host is of
the form host::port, the port to connect to is taken from
this string. If host does not contain this port section
and the port parameter is not provided, the connection
is made to the default HTTP port, usually 80.

request(method,url[,body[,headers]]) This will send a request to the server using the HTTP
request method method and the selector url. If the body
argument is present, it should be a string of data to
send after the headers are finished. The headers argu-
ment should be a mapping of extra HTTP headers to
send with the request.

get_response() Should be called after a request is sent to get the
response from the server. Returns an HTTPResponse
instance.

set_debuglevel(level) Sets the default debugging level; defaults to no debug-
ging data printing out.

connect() Connects to the server specified when the object was
created.

close() Closes the connection to the server.

send(data) Sends specified data to the server. This method should
be called directly only after the endheaders() method
and before the getreply() method.

putrequest(request,selector[,skip_host First call made to server after a connection has been
[,skip_accept_encoding]]) made. It sends a line to the server consisting of the

request string, the selector string, and the HTTP ver-
sion. skip_host and skip_accept_encoding are Boolean
variables.

putheader(header,arguments) Sends an RFC 822-style header to the server. It sends a
line to the server consisting of the header, a colon and
a space, and the first argument. If more arguments are
given, continuation lines are sent, each consisting of a
tab and an argument.

endheaders() Sends a blank line to the server, signaling the end of
the headers.

694

Appendix E

39_588206 appe.qxd 6/30/05 12:41 AM Page 694

Syntax Description

CLASS HTTPSConnection(host[,port, An instance of this class represents one transaction to
key_file,cert_file]) the secure HTTP server. If port is not provided and host

is of the form host::port, the port to connect to is taken
from this string. If host does not contain this port sec-
tion and the port parameter is not provided, the con-
nection is made to the default HTTPS port, usually
443. key_file is the name of a Privacy Enhanced Mail
(PEM) Security Certificate formatted file that contains
your private key. cert_file is a PEM formatted certificate
chain file.

CLASS HTTPResponse(sock Class whose instance is returned upon successful
[,debuglevel=0][,strict=0] connection. Not instantiated directly.

read([byte]) Reads the byte bytes of the response body.

getheader(name[,default]) Gets the content of the header name or default if no
header name is specified.

getheaders() Returns a list of (header, value) tuples.

msg Instance of mimetools.message (deprecated) or
email.message, which contains the response headers.

version HTTP protocol version used by server. 10 for
HTTP/1.0, 11 for HTTP/1.1.

status Status code returned by the server.

reason Reason code returned by the server.

exception HTTPException Base class for the other exceptions in this module.

exception NotConnected Subclass of HTTPException raised when no connec-
tion can be established.

exception InvalidURL Subclass of HTTPException raised when a port is
given and is either nonnumeric or empty.

exception UnknownProtocol Subclass of HTTPException raised when the specified
protocol isn’t recognized.

exception UnknownTransferEncoding Subclass of HTTPException raised when the transfer
encoding mechanism is not recognized.

exception UnimplementedFileMode Subclass of HTTPException raised when the expected
file mode is not supported.

exception IncompleteRead Subclass of HTTPException.

exception ImproperConnectionState Subclass of HTTPException.

exception CannotSendRequest Subclass of ImproperConnectionState.

Table continued on following page

695

Python Language Reference

39_588206 appe.qxd 6/30/05 12:41 AM Page 695

Syntax Description

exception CannotSendHeader Subclass of ImproperConnectionState.

exception ResponseNotReady Subclass of ImproperConnectionState.

exception BadStatusLine Subclass of HTTPException raised when the server
responds with an unknown HTTP status code.

HTTP_PORT Variable holding default value for HTTP Port, 80.

HTTPS_PORT Variable holding default value for HTTPS Port, 443.

imaplib Module
The imaplib module defines three classes, IMAP4, IMAP4_SSL, and IMAP4_stream, which encapsulate
a connection to an IMAP4 server and implement a large subset of the IMAP4rev1 client protocol, as
defined in RFC 2060.

Syntax Description

CLASS IMAP4([host[,port]]) Initializes the instance thereby creating the connection and deter-
mining the protocol (IMAP4 or IMAP4rev1). If host is not specified,
localhost is used. If port is omitted, the standard IMAP4 port (143)
is used.

exception IMAP4.error Exception raised on any error.

exception IMAP4.abort Subclass of IMAP4.error, which is raised upon IMAP4 server
errors.

exception IMAP4.readonly Subclass of IMAP4.error, which is raised when a writable mail-
box has its status changed by the server.

CLASS IMAP4_SSL([host This is a subclass derived from IMAP4 that connects over an
[,port[,keyfile[,certfile]]]]) SSL-encrypted socket (to use this class, you need a socket module

that was compiled with SSL support).

CLASS IMAP4_stream This is a subclass derived from IMAP4 that connects to the
(command) stdin/stdout file descriptors created by passing command to

os.popen2().

Internaldate2tuple Converts an IMAP4 INERNALDATE string to Coordinated Universal
(datestr) Time and returns that time in a time module tuple.

Int2AP(num) Converts an integer into a string representation using characters
from the set [A...P].

ParseFlags(flagstr) Converts an IMAP4 “FLAGS” response to a tuple of individual flags.

Time2Internaldate Converts a time module tuple to an IMAP4 “INTERNALDATE”
(date_time) representation. Returns a string in the form “DD-Mmm-YYYY

HH:MM:SS +HHMM”.

696

Appendix E

39_588206 appe.qxd 6/30/05 12:41 AM Page 696

mimetools Module
Deprecated. Use the email module now.

os Module
The following table covers the functions in Python’s os module. This module provides more portable
access to the underlying operating system functionality than the posix module. Extensions to particular
operating systems exist but make the use of the os module much less portable. These functions perform
such functions as file processing, directory traversing, and access/permissions assignment.

Syntax Description

remove() Deletes the file.

unlink() Same as remove().

rename() Renames the file.

stat() Returns file statistics for the file.

lstat() Returns file statistics for a symbolic link.

symlink() Creates a symbolic link.

utime() Updates the timestamp for the file.

chdir() Changes the working directory.

listdir() Lists files in the current directory.

getcwd() Returns the current working directory.

mkdir(dir) Creates directory as specified by dir.

makedirs() Same as mkdir() except with multiple directories being created.

rmdir(dir) Removes directory as specified by dir.

removedirs() Same as rmdir() except with multiple directories being removed.

access() Verifies permission modes for the file.

chmod() Changes permission modes for the file.

umask() Sets default permission modes for the file.

basename() Removes the directory path and returns the leaf name.

dirname() Removes leaf name and returns directory path.

join() Joins separate components into a single pathname.

split() Returns a tuple containing a dirname() and a basename().

splitdrive() Returns tuple containing drivename and pathname.

splitext() Returns tuple containing filename and extension.

Table continued on following page

697

Python Language Reference

39_588206 appe.qxd 6/30/05 12:41 AM Page 697

Syntax Description

getatime() Returns last access time for file. This varies a bit with different operating
systems.

getmtime() Returns last file modification time for file.

getsize() Returns file size in bytes.

exists() Returns True if pathname, file, or directory exists.

isdir() Returns True if pathname exists and is a directory.

isfile() Returns True if pathname exists and is a file.

islink() Returns True if pathname exists and is a symbolic link.

samefile() Returns True if both pathnames refer to the same file.

os.path Module
The following table covers the functions in Python’s os.path module. This module provides support
for manipulation of command paths.

Syntax Description

abspath(path) Returns a normalized absolute version of the pathname path.

basename(path) Returns the base name of pathname path, the second half of the
pair returned by split(path).

commonprefix(list) Returns the longest path prefix that is a prefix of all paths in list. If
there is none, an empty string is returned.

dirname(path) Return the directory name of pathname path, the first half of the
pair returned by split(path).

exists(path) Returns True if path exists and False if path is a broken symbolic
link.

lexists(path) Same as exists() for use on platforms lacking os.lstat().

expanduser(path) Returns path with an initial component of “~” or “~user”
replaced by that user’s home directory.

expandvars(path) Returns path with environment variables expanded.

getatime(path) Returns the time since the last time path was accessed in seconds
since the last epoch.

getmtime(path) Returns the time since the last time path was modified in seconds
since the last epoch.

getctime(path) Returns the system’s ctime, which, on some systems (such as
Unix), is the time of the last change, and on others (such as Win-
dows) is the creation time for path in seconds since the last epoch.

698

Appendix E

39_588206 appe.qxd 6/30/05 12:41 AM Page 698

Syntax Description

getsize(path) Returns the size in bytes of path.

isabs(path) Returns True if path is an absolute path (starting with /).

isfile(path) Return True if path is an existing regular file. This function fol-
lows symbolic links, so both islink() and isfile() can be
True for the same path.

isdir(path) Returns True if path is an existing directory. This function follows
symbolic links, so both islink() and isdir() can be true for the
same path.

islink(path) Returns True if path refers to a directory entry that is a symbolic
link. Always False if symbolic links are not supported.

ismount(path) Returns True if pathname path is a mount point.

join(path[,path2[,...]]) Joins path and path2 and subsequent path components intelligently.
If any component is an absolute path, all previous components are
thrown away and joining continues. The return value is the con-
catenation of path and any other provided path components with
exactly one directory separator inserted.

normcase(path) Returns the normalized case of a pathname. On UNIX, this
returns the path unchanged; on case-insensitive filesystems, it
converts the path to lowercase. On Windows, it also converts for-
ward slashes to backward slashes.

normpath(path) Returns a normalized pathname. This function collapses redun-
dant separators and up-level references, for example, a//b,
a/./b, and a/foo/../b all become a/b. It does not normalize the
case (use normcase() for that). On Windows, it converts forward
slashes to backward slashes.

realpath(path) Returns the canonical path of the specified filename, eliminating
any symbolic links encountered in the path.

samefile(path1,path2) Returns True if both pathname arguments refer to the same file or
directory.

sameopenfile(fileptr1, Returns True if fileptr1 and fileptr2 refer to the same file.
fileptr2)

samestat(stat1,stat2) Returns True if the stat tuples stat1 and stat2 refer to the same file.
Stat tuples are returned from stat, lstat, and fstat functions.

split(path) Splits the pathname path into a pair, where tail is the last path-
name component and head is everything leading up to that. The
tail part will never contain a slash; if path ends in a slash, tail will
be empty.

Table continued on following page

699

Python Language Reference

39_588206 appe.qxd 6/30/05 12:41 AM Page 699

Syntax Description

splitdrive(path) Splits the pathname path into a pair (drive, tail), where drive
is either a drive specification or an empty string. On systems that
do not use drive specifications, drive will always be an empty
string.

splittext(path) Strips the rightmost file extension, which can include only one
period and returns the remainder.

path(“etc/myfile.txt”).stripext() ==
path(“etc/myfile”)

walk(path, visit, arg) Calls the function visit with arguments (arg, dirname, names) for
each directory in the directory tree rooted at path (including path
itself, if it is a directory). The argument dirname specifies the vis-
ited directory; the argument names lists the files in the directory.
The visit function may modify names to influence the set of direc-
tories visited below dirname.

poplib Module
The following table covers the functions in Python’s poplib module, which defines a class, POP3, that
supports connecting to a POP3 server and implements the protocol as defined in RFC 1725, and a class
POP3_SSL, which supports connecting to a POP3 server that uses SSL as an underlying protocol layer as
defined in RFC 2595. Instances of the POP3 class include all of the methods listed. Instances of POP3_SSL
have no additional methods. The interface of this subclass is identical to its parent.

Syntax Description

CLASS POP3(host[,port]) This class is for implementing a connection to the mail server host
using the POP3 protocol. The connection is created when an
instance of the class is initialized. If port is omitted, the standard
POP3 port (110) is used.

CLASS POP3_SSL(host[,port This class is for implementing a connection to the mail server host
[,keyfile[,certfile]]]) using the POP3 protocol over an SSL-encrypted port. The connec-

tion is created when an instance of the class is initialized. If port is
omitted, the standard POP3 over SSL port (995) is used. A PEM
formatted private key and certificate chain file for the SSL connec-
tion may be provided.

set_debuglevel(level) Sets the instances debugging level to 0, which produces no debug-
ging output, 1, which produces a moderate amount of debugging
output, or 2, which produces the maximum amount of debugging
output. Any number higher than 2 produces the same amount as
specifying 2.

getwelcome() Returns the welcome screen for the POP3 server to which the con-
nection is made.

700

Appendix E

39_588206 appe.qxd 6/30/05 12:41 AM Page 700

Syntax Description

user(username) Sends the user command for the specified username to the POP3
server.

pass_(password) Sends the password command with the specified password to the
POP3 server. The mailbox will be locked until quit is sent.

apop(user,secret) Uses the more secure APOP authentication to log into the POP3
server.

rpop(user) Uses RPOP commands to log into POP3 server.

stat() Returns tuple representing mailbox status (message count, mail-
box size)

list([msg]) Requests message list of message msg. If no parameters are sent,
response is in the form (response,[‘mesg_num octets’]).

retr(msg) Retrieves the whole message msg and marks it as seen. Response
is in format (response, [‘line’,...], octets).

dele(msg) Flags message number msg for deletion, which, on most servers,
occurs when the quit command is issued.

rset() Resets the deletion marks on any messages in the mailbox.

noop() Does nothing. Is sometimes used to keep the connection alive.

quit() Commits changes, unlocks mailbox, and drops the connection.

top(msg,amount) Retrieves the message header plus amount lines of the message
after the header of message number msg.

uidl([msg]) Returns message digest list for message identified by msg or for all
if msg is not specified.

smtpd Module
These functions define functionality in support of the creation and usage of sockets in Python.

Syntax Description

CLASS SMTPServer Creates a new SMTPServer object that binds to localaddr, treating
(localaddr,remoteaddr) remoteaddr as an upstream SMTP relayer. SMTPServer inherits

form asyncore.dispatcher and is thus inserted into
asyncore’s event loop when instantiated.

process_message Raises NotImplementedError exception but may be overridden
(peer,mailfrom,rcpttos,data) in subclasses to do something useful with this message. The

value of the class’s remoteaddr parameter is available as the
_remoteaddr attribute. peer is the remote host address, mailfrom is
the envelope originator, rcpttos are the envelope recipients, and
data is the string that contains the e-mail’s contents.

701

Python Language Reference

39_588206 appe.qxd 6/30/05 12:41 AM Page 701

smtplib Module
These functions supply Simple Mail Transport Protocol (SMTP) functionality for use in Python scripts.

Syntax Description

CLASS SMTP([host[,port Encapsulates an SMTP connection. Has methods that support
[,local_hostname]]]) SMTP and ESMTP operations. If the optional host and port

parameters are included, they are passed to the connect()
method when it is called.

set_debuglevel(level) Sets the level of debug output. If level is set to True, debug log-
ging is enabled for the connection and all messages sent to and
received from the server.

connect([host[,port]]) Connects to host on port port. If host contains a colon followed by
a number, the number will be interpreted as the port number.

docmd(cmd[,argstring]) Sends the command cmd and optional arguments argstring to
the server and returns a 2-tuple containing the numeric
response code and the actual response line.

helo([hostname]) Identifies user to SMTP server using “HELO”. This is usually
called by sendmail and not directly.

ehlo([hostname]) Identifies user to ESMTP server using “EHLO”. This is usually
called by sendmail and not directly.

has_extn(name) Returns True if name is in the set of SMTP service extensions
returned by the server; otherwise, returns False.

verify(address) Verifies address on the server using SMTP “VRFY”, which
returns a tuple of code 250 and a full address if the user
address is valid.

login(user,password) Logs onto an SMTP server, which requires authentication using
user and password. Automatically tries either “EHLO” or “HELO”
if this login attempt was not preceded by it.

SMTPHeloError Error returned if the server doesn’t reply correctly to the
“HELO” greeting.

SMTPAuthenticationError Error most likely returned if the server doesn’t accept the user-
name/password combination.

SMTPError Error returned if no suitable authentication method was found.

starttls([keyfile[,certfile]]) Puts the SMTP connections into Transport Layer Security
mode. Requires that ehlo() be called again afterwards. If key-
file and certfile are provided, they are passed to the socket mod-
ule’s ssl() function.

sendmail(from_addr,to_ Sends mail to to_addr from from_addr consisting of msg.
addr,msg[,mail_opts,rcpt_opts]) Automatically tries either “EHLO” or “HELO” if this sendmail

attempt was not preceded by it.

SMTPRecipientsRefused Error returned if all recipient addresses are refused.

702

Appendix E

39_588206 appe.qxd 6/30/05 12:41 AM Page 702

Syntax Description

SMTPHeloError Error returned if the server doesn’t reply correctly to the “HELO”
greeting.

SMTPSenderRefused Error returned if the server doesn’t accept from_addr.

SMTPDataError Error returned if the server replies with an unexpected error code.

quit() Terminates the SMTP session and closes the connection.

socket Module
These functions define functionality in support of the creation and usage of sockets in Python.

Syntax Description

socket(socket_family, Creates a socket of socket_family AF_UNIX or AF_INET, as
socket_type, protocol) specified. The socket_type is either SOCK_STREAM or

SOCK_DGRAM. The protocol is usually left to default to 0.

bind() Binds specified hostname, port number pair to socket.

listen() Sets up and starts a TCP listener on the socket.

accept() Passively accepts TCP client connections.

connect() Actively initiates TCP server connection.

recv() Receives TCP message.

send() Transmits TCP message.

recvfrom() Receives UDP message.

sendto() Transmits UDP message.

close() Closes socket.

fromfd() Creates a socket object from an open file descriptor.

gethostname() Returns the current hostname.

gethostbyname() Maps a hostname to a numeric IP.

gethostbyaddr() Maps a numeric IP or a hostname to DNS information.

getservbyname() Maps a service name and a protocol name to a port number.

getprotobyname() Maps a protocol name to a number.

ssl() Invokes Secure Socket Layer support.

703

Python Language Reference

39_588206 appe.qxd 6/30/05 12:41 AM Page 703

string Module
The following table covers the functions in Python’s string module. The term string is used to repre-
sent the string variable to be acted upon by the function. For example, the function to capitalize a string
variable named myString would be called as follows:

myString.capitalize()

Syntax Description

string.capitalize() Returns a copy of string with only its first character capitalized.

string.center(width) Returns a copy of string centered in a string of length width.

string.count(sub[,start Returns number of occurrences of substring sub in string.
[,end]])

string.encode([encoding Returns an encoded version of string. Default encoding is the
[,errors]]) current default string encoding.

string.endswith(suffix Returns True if string ends with the specified suffix; otherwise,
[,start[,end]]) returns False. If start is supplied, search for string begins at that

position. If end is supplied, search ends at that position.

string.expandtabs Returns string with tabs replaced by spaces.
([tabsize])

string.find(sub Returns the lowest index in string where substring sub is found.
[,start[,end]]) Return -1 if sub is not found.

string.index(sub Behaves like string.find() but raises ValueError if sub is not
[,start[,end]]) found within string.

string.isalnum() Returns True if all characters in string are alphanumeric, other-
wise, returns False.

string.isalpha() Returns True if all characters in string are alphabetic; otherwise,
returns False.

string.isdigit() Returns True if all characters in string are digits; otherwise,
returns False.

string.islower() Returns True if all characters in string are lowercase; otherwise,
returns False.

string.isspace() Returns True if all characters in string are space characters; other-
wise, returns False.

string.istitle() Returns True if all characters in string are title case; otherwise,
returns False.

string.isupper() Returns True if all characters in string are uppercase; otherwise,
returns False.

separator.join(seq) Returns a concatenation of strings in seq, separated by separator
(for example, “+”.join([‘H’, ‘I’, ‘!’]) -> “H+I+!”)

704

Appendix E

39_588206 appe.qxd 6/30/05 12:41 AM Page 704

Syntax Description

string.ljust(width) Returns string left justified in a string of length width.

string.lower() Returns string with each character converted to lowercase.

string.lstrip([chars]) Returns a copy of string with leading chars removed. Default chars
is set to whitespace.

string.replace(old, new Returns a copy of string with all occurrences of substring old
[, maxsplit]) replaced by new.

string.rfind(sub Returns the highest index in string where substring sub is found.
[, start[, end]]) Returns -1 if sub is not found.

string.rindex(sub Behaves like rfind(), but raises ValueError when the substring
[, start[, end]]) sub is not found.

string.rjust(width) Returns string right justified in a string of length width.

sys Module
This module provides access to some variables used or maintained by the interpreter and to functions
that interact strongly with the interpreter. It is always available.

Syntax Description

argv This variable represents the list of command line arguments
passed to a Python script. argv[0] is the script name or has zero
length if none was passed. If other arguments were passed, they
are assigned argv[i] where i is 1 — the number of arguments.

byteorder This variable is set to big or little depending on the endian-ness of
the system.

builtin_module_name This variable is a tuple of strings giving the names of all modules
that are compiled into this Python interpreter.

copyright This variable is a string containing the copyright information for
the Python interpreter.

dllhandler This variable is an integer representing the handle of the Python
DLL (only in Windows).

displayhook(value) This function writes the value of displayhook to stdout and
saves it in __builtin__._.

excepthook(type,value, When an exception is raised and uncaught, the interpreter calls
traceback) sys.excepthook with three arguments, the exception class,

exception instance, and a traceback object. In a Python pro-
gram, this happens just before the program exits.

__displayhook__ The original value of displayhook is stored in this variable.

Table continued on following page

705

Python Language Reference

39_588206 appe.qxd 6/30/05 12:41 AM Page 705

Syntax Description

__excepthook__ The original value of excepthook is stored in this variable.

exc_info() This function returns a tuple of three values that give information
about the exception that is currently being handled. The informa-
tion returned is specific both to the current thread and to the cur-
rent stack frame. If the current stack frame is not handling an
exception, the information is taken from the calling stack frame, or
its caller, and so on until a stack frame is found that is handling an
exception.

exc_clear() This function clears all information relating to the current or last
exception that occurred in the current thread.

exec_prefix A variable giving the site-specific directory prefix where the plat-
form-dependent Python files are installed; by default, this is
‘/usr/local’.

executable A variable containing the path to the Python binary.

exit([arg]) Exits from Python.

getcheckinterval() Returns the interpreter’s “check interval”; see
setcheckinterval().

getdefaultencoding() Returns the name of the current default string encoding used by
the Unicode implementation.

getdlopenflags() Returns the current value of the flags that are used for
dlopen() calls.

getfilesystemencoding() Returns the name of the encoding used to convert Unicode file-
names into system filenames. Returns None if the system default
encoding is used. The return value is dependent on the filesystem.

getrefcount(obj) Returns the reference count of the object obj.

getrecursionlimit() Returns the current value of the recursion limit, the maximum
depth of the Python interpreter stack. This limit serves to prevent
the crashing of Python inherent to infinite recursion.

getwindowsversion() Returns one of the following strings, which represent the various
Windows versions:

VER_PLATFORM_WIN32s Win32s on Win3.1
VER_PLATFORM_WIN32_WINDOWS Win95/98/ME
VER_PLATFORM_WIN32_NT WinNT/2000/XP
VER_PLATFORM_WIN32_CE WinCE

hexversion This variable contains the version number converted to
hexadecimal.

maxint This variable represents the maximum size of an integer in the
current environment. This is at least 2**31-1.

706

Appendix E

39_588206 appe.qxd 6/30/05 12:41 AM Page 706

Syntax Description

maxUnicode This variable is an integer giving the largest supported code point
for a Unicode character.

modules This variable is a dictionary of all the loaded modules.

path This variable is a list of strings that specifies the search path for
modules as initialized from the environment variable PYTHON-
PATH plus an installation-dependent default.

platform This variable contains a string containing a platform identifier.

prefix This variable is a string containing the directory prefix for location
of the Python files.

ps1 This variable contains a string representing the primary prompt
for the Python interpreter.

setcheckinterval(interval) Sets the interval for how often the interpreter checks for periodic
things, such as thread switches and signal handlers.

setdefaultencoding(name) Sets the current default string encoding used by the Unicode
implementation to name.

setdlopenflags(name) Sets the flags used by the interpreter for dlopen() calls, such as
when the interpreter loads extension modules.

setprofile(profilefunc) Sets the system’s profile function, which allows you to implement
a Python source code profiler in Python.

setrecursionlimit(limit) Sets the maximum depth of the Python interpreter’s stack to limit.

settrace(function) Sets the system’s trace function, allowing the implementation of a
Python source code debugger in Python.

stdin, stdout, stderr File objects corresponding to the interpreter’s standard input, out-
put, and error streams.

__stdin__,__stdout__, Variables that store the original values of the interpreter’s
__stderr__ standard input, output, and error streams.

tracebacklimit() A variable that determines the maximum number of levels of
traceback information printed when an unhandled exception
occurs. The default is 1000. When set to 0 or less, all traceback
information is suppressed and only the exception type and value
are printed.

version A string variable containing the version number of the Python
interpreter as well as the build number and compiler used.

api_version A variable containing the C API version for this interpreter.

version_info A tuple containing the five components of the Python interpreter
version number: major, minor, micro, releaselevel, and
serial.

Table continued on following page

707

Python Language Reference

39_588206 appe.qxd 6/30/05 12:41 AM Page 707

Syntax Description

warnoptions An implementation detail of the warnings framework; this value
is not to be modified.

winver A variable containing the version number used to form registry
keys on Windows platforms, stored as string resource 1000 in the
Python DLL. winver is normally the first three characters of ver-
sion. It is provided in the sys module for informational purposes
only and has no effect on Windows registry keys.

random Module
This module provides functionality in support of obtaining pseudo-random numbers. Different operat-
ing systems handle this differently — some using randomness sources as hash sources and others instead
using system time.

Syntax Description

seed(x) Initializes the basic random number generator using hash object
x if it is provided.

getstate() Returns the current internal state of the random number
generator.

setstate(state) Resets the internal state of the random number generator to the
supplied state.

jumpahead(n) Changes the internal state to one different from the current
state. n is a nonnegative integer that is used to scramble the
current state vector. This is commonly used in multithreaded
programs, in conjunction with multiple instances of the Random
class: setstate() or seed() can be used to force all instances
into the same internal state, and then jumpahead() can be used
to force the instances’ states far apart.

getrandbits(x) Returns a python long int with x random bits.

randrange([start,]stop[,step]) Returns a randomly selected element from range(start, stop, step).

randint(a,b) Returns a random integer int such that a <= int <= b.

choice(seq) Returns a random element from seq.

shuffle(x[,random]) Shuffles the sequence x, using the random function random if
specified.

sample(sequence,length) Returns a list of num unique elements from sequence.

random() Returns a random floating-point number between 0.0 and 1.0.

uniform(a,b) Returns a random real number N where a <= N > b.

708

Appendix E

39_588206 appe.qxd 6/30/05 12:41 AM Page 708

urllib Module
This module provides high-level functionality for fetching data across the World Wide Web. The func-
tionality is similar to the built-in function open() except that it accepts Universal Resource Locators
(URLs) instead of filenames.

Syntax Description

CLASS URLopener([proxies Base class for opening and reading URLs. In most cases, you
[, **509]]) will want to use the CLASS FancyURLopener instead. An

empty proxies variable turns off proxies completely.

CLASS FancyURLopener Class for opening and reading URLs providing default
([proxies[,**509]]) handling for the following HTTP response codes: 301, 302,

303, 307, and 401. An empty proxies variable turns off proxies
completely.

>>>import urllib
>>>proxies =
{‘http’:’http://proxy.server.com:8080/’}
>>>opener = urllib.FancyURLopener(proxies)

urlopen(url[,data[,proxies]]) Opens a connection to the specified url and returns a file-like
object. If no protocol or download scheme is specified or if the
scheme is file, url is assumed to be a local file. The object
returned by the urlopen function may then be acted upon by
file object methods.

urlretrieve(url[,filename Copies a network object denoted by the provided url to a local
[,reporthook[,data]]]) file, returning a tuple containing the filename of the local file

and headers information as returned from the info() method
of the object.

urlcleanup() Clears the cache that may have been populated by previous
calls to urlretrieve().

pathname2url(path) Converts the pathname path from the syntax for a local path to
a URL. Returned URL requires further processing before being
a complete URL.

url2pathname(path) Converts the path component URL to a pathname. Returned
path requires further decoding to be a true path.

urllib2 Module
This module defines functions and classes needed to facilitate opening URLs — basic and digest authen-
tication, redirections, cookies, and such. If a class is listed, functions belonging to that class are grouped
with it.

709

Python Language Reference

39_588206 appe.qxd 6/30/05 12:41 AM Page 709

Syntax Description

urlopen(url[,data]) Opens the specified url, which can be a string or a REQUEST
object. The data parameter is for use in passing extra infor-
mation as needed for http and should be a buffer in the for-
mat of application/x-www-form-urlencoded. The
urlopen function returns a file-like object with a geturl()
method to retrieve the URL of the resource received and an
info() method to return the meta-information of the page.

install_opener(opener) Installs an OpenerDirector instance as the default global
opener.

build_opener(handlers) Returns an OpenerDirector instance, which chains the han-
dlers in the order given. These handlers can be instances of
BaseHandler or subclasses of it. The following exceptions
may be raised: URLError (on handler errors), HTTPError (a
subclass of URLError that handles exotic HTTP errors), and
GopherError (another subclass of URLError that handles
errors from the Gopher handler).

CLASS Request(url[,data[,headers This class is an abstraction of a URL Request. url should be
[,origin_req_host[,unverifiable]]]]) a valid URL in string format. For a description of data, see

the add_data() description. headers should be in dictionary
format. origin_req_host should be the request-host of the ori-
gin transaction. unverifiable should indicate whether or not
the request is verifiable, as specified in RFC 2965.

add_data(data) Sets the Request data to data.

get_method() Posts a string indicating the HTTP request method, which
may be either GET or POST.

has_data() Returns True when the instance has data and False when
instance is None.

get_data() Returns the instance’s data.

add_header(key, val) Adds another header to the request. Later calls will over-
write earlier ones with the same key value.

add_undirected_header Adds a header that will not be added in the case of a
(key,header) redirected request.

has_header(header) Returns whether the instance (either regular or redirected)
has a header.

get_full_url() Returns the URL given in the constructor.

get_type() Returns the type (or scheme) of the URL.

get_host() Returns the host to which the connection will be made.

get_selector() Returns the selector, the part of the URL that is sent to
the server.

710

Appendix E

39_588206 appe.qxd 6/30/05 12:41 AM Page 710

Syntax Description

set_proxy(host,type) Prepares the request by connecting to a
proxy server. host and type will replace the
ones for the instance.

get_origin_req_host() Returns the request-host of the origin
transaction.

is_unverifiable() Returns whether the request is unverifi-
able as defined in RFC 2965.

CLASS OpenerDirector() The OpenerDirector class opens URLs
via BaseHandlers chained together and
is responsible for managing their
resources and error recovery.

add_handler(handler) Searches and adds to the possible chains
any of the following handlers:

protocol_open()— Signals that the
handler knows how to handle open
protocol URLs

http_error_type()— Signals that the
handler knows how to handle HTTP
errors

protocol_error()— Signals that the
handler knows how to handle non-HTTP
errors.

protocol_request()— Signals that the
handler knows how to preprocess proto-
col requests.

protocol_response()— Signals that
the handler knows how to post-process
protocol requests.

open(url[,data]) Opens the given URL and passes data if
provided.

error(proto[,args]) Handles an error of the given protocol by
calling the given protocol with the speci-
fied args.

CLASS BaseHandler() This is the base class for all registered
handlers and handles the basics of
registration.

add_parent(director) Adds a director as a parent.

Table continued on following page

711

Python Language Reference

39_588206 appe.qxd 6/30/05 12:41 AM Page 711

Syntax Description

close() Removes any parents.

parent A valid OpenerDirector to be used to open
a URL using a different protocol.

default_open(req) This method is not defined in BaseHandler,
but should be defined to catch all URLs.

protocol_open(req) This method is not defined in BaseHandler,
but should be defined to handle URLs of the
given protocol.

unknown_open(req) This method is not defined in BaseHandler,
but should be defined to handle catching
URLs with no specific registered handler to
open them.

http_error_default(req,fp,code,msg,hdrs) This method is not defined in BaseHandler
but should be overridden by the subclass to
provide a catchall for otherwise unhandled
HTTP errors. req is a Request object, fp is a
file-like object with the HTTP error body,
code is the three-digit error code, msg is a
user-visible explanation of the error code,
and hdrs is the mapping object with the
header of the error.

http_error_nnn(req,fp,code,msg,hdrs) This method is not defined in BaseHandler
but is called on an instance of subclass when
an HTTP error with code nnn is encountered.

protocol_request(req) This method is not defined in BaseHandler
but should be called by the subclass to pre-
process requests of the specified protocol.

protocol_response(req,response) This method is not defined in BaseHandler
but should be called by the subclass to post-
process requests of the specified protocol.

CLASS HTTPDefaultErrorHandler() A class that defines a default handler for
HTTP error responses; all responses are
turned into HTTPError exceptions.

CLASS HTTPRedirectHandler() A class to handle redirection.

redirect_request(req,fp,code,msg,hdrs) Returns a request or none in response to a
redirect request.

712

Appendix E

39_588206 appe.qxd 6/30/05 12:41 AM Page 712

Syntax Description

http_error_301(req,fp,code,msg,hdrs) Redirects to the URL.

http_error_302(req,fp,code,msg,hdrs) Redirects for a “found” response.

http_error_303(req,fp,code,msg,hdrs) Redirects for “see other” response.

http_error_307(req,fp,code,msg,hdrs) Redirects for “temporary redirect”
response.

CLASS HTTPCookieProcessor(cookies) A class to handle HTTP cookies.

cookiejar The cookielib.CookieJar in which
cookies are stored.

CLASS ProxyHandler(proxies) A class to handle routing requests
through a proxy. If proxies is specified, it
must be in the form of a dictionary that
maps protocol names to URLs of proxies.

protocol_open(req) ProxyHandler will assign a method pro-
tocol_open() for every protocol that has
a proxy in the proxies dictionary given in
the constructor.

CLASS HTTPPasswordMgr() A class that supports a database of
(realm, url) -> (user, password)
mappings.

add_password(realm,uri, Sets user authentication token for given
user,password) user, realm, and uri.

find_user_password(realm,authuri) Gets username and password for the
given realm.

CLASS HTTPPasswordMgrWithDefaultRealm() A class that performs the same function as
HTTPPasswordMgr() except that a realm
of None is considered a catchall and is
searched if no other real fits.

CLASS AbstractBasicAuthHandler A class that supports HTTP authentication
([password_mgr]) to the remote host and to the proxy server.

The password_mgr variable must be com-
patible with HTTPPasswordMgr.

handle_authentication_request Reattempts authentication using the given
(authreq,host,req,headers) user information. authreq is a header in

which information about the realm exists.
host is the host to which to authenticate,
req is the failed request object, and headers
are the error headers.

Table continued on following page

713

Python Language Reference

39_588206 appe.qxd 6/30/05 12:41 AM Page 713

Syntax Description

CLASS HTTPBasicAuthHandler([password_mgr]) A class that supports HTTP authentication
with the remote host. The password_mgr
variable must be compatible with HTTP-
PasswordMgr.

http_error_401(req,fp,code,msg,headers) Retries the HTTP request with user-pro-
vided authentication information, if
included.

CLASS ProxyBasicAuthHandler([password_mgr]) A class that supports plaintext password
HTTP authentication with the proxy. The
password_mgr variable must be compatible
with HTTPPasswordMgr.

http_error_407(req,fp,code,msg,headers) Retries the proxy request with user-pro-
vided authentication information, if
included.

CLASS AbstractDigestAuthHandler A class that helps with hashed password
([password_mgr]) HTTP authentication to the remote

host and to a proxy. The password_mgr
variable must be compatible with
HTTPPasswordMgr.

handle_authentication_request Performs the same function as in
(authreq host req headers) AbstractBasicAuthHandler class

except with hashed passwords.

CLASS HTTPDigestAuthHandler([password_mgr]) A class that handles authentication with
the remote host. The password_mgr
variable must be compatible with
HTTPPasswordMgr.

http_error_401(req,fp,code,msg,headers) Performs the same function as in
AbstractBasicAuthHandler class.

CLASS ProxyDigestAuthHandler([password_mgr]) A class that handles authentication with
the proxy. password_mgr variable must be
compatible with HTTPPasswordMgr.

http_error_407(req,fp,code,msg,headers) Performs the same function as in
ProxyBasicAuthHandler class.

CLASS HTTPHandler() A class that handles HTTP URLs.

http_open(req) Sends an HTTP request, either GET or
POST, depending on the value of
req.has_data().

CLASS HTTPSHandler() A class that handles secure HTTP URLs.

https_open(req) Sends an HTTPS request, either GET or
POST, depending on the value of
req.has_data().

714

Appendix E

39_588206 appe.qxd 6/30/05 12:41 AM Page 714

Syntax Description

CLASS FileHandler() A class that handles opening local files.

file_open(req) Opens the local file if localhost or no host
is specified, and otherwise initiates an ftp
connection and reattempts opening the
file.

CLASS FTPHandler() A class that handles FTP URLs.

ftp_open(req) Opens the file indicated by req using an
empty username and password.

CLASS CacheFTPHandler() A class that handles FTP URLs and caches
FTP connections to minimize delay.

setTimeout(t) Sets timeout of connections to t seconds.

setMaxConns(n) Sets the maximum number of cached con-
nections to n.

CLASS GopherFTPHandler() A class that handles gopher URLs.

gopher_open(req) Opens the gopher resource denoted
by req.

CLASS UnknownHandler() A catchall class to handle unknown URLs.

unknown_open() Raises a URLError exception on URLs
with no specific register handler.

715

Python Language Reference

39_588206 appe.qxd 6/30/05 12:41 AM Page 715

39_588206 appe.qxd 6/30/05 12:41 AM Page 716

PHP Language Reference
This appendix cannot provide an exhaustive list of all of the PHP functions (or it would be hun-
dreds of pages long), but it presents a subset of functions that the authors think you will encounter
in your everyday use of PHP along with brief descriptions of what those functions do. The core lan-
guage functions are included, as well as the functions for PHP extensions that are in popular use.

This appendix is meant as a quick reference for you to check the input and return types of
parameters — more of a reminder of how the function works than a verbose description of how
to use the function in your scripts. If you need to see how a particular function should be used,
or to read up on a function that isn’t covered here, check out the PHP documentation online at
www.php.net/docs.php.

This appendix originally appeared in Beginning PHP 5 written by Dave W. Mercer, Allan Kent,
Steven D. Nowicki, David Mercer, Dan Squier, and Wankyu Choi and published by Wrox,
ISBN: 0-7645-5783-1, copyright 2004, Wiley Publishing, Inc. The author is grateful to those
authors and the publisher for allowing it to be reused here.

Apache
Function Returns Description

apache_child_terminate(void) bool Terminates apache process after
this request.

apache_note(string note string Gets and sets Apache request
_name [, string note_value]) notes.

virtual(string filename) bool Performs an Apache subrequest.

getallheaders(void) array Alias for apache_request_
headers().

apache_request_headers(void) array Fetches all HTTP request headers.

apache_response_headers(void) array Fetches all HTTP response headers.

Table continued on following page

40_588206 appf.qxd 6/30/05 12:54 AM Page 717

Function Returns Description

apache_setenv(string bool Sets an Apache subprocess_env
variable, string value variable.
[, bool walk_to_top])

apache_lookup_uri(string URI) object Performs a partial request of the given
URI to obtain information about it.

apache_get_version(void) string Fetches Apache version.

apache_get_modules(void) array Gets a list of loaded Apache modules.

Arrays
Function Returns Description

krsort(array array_arg [, int bool Sorts an array by key value in reverse
sort_flags]) order.

ksort(array array_arg [, int bool Sorts an array by key.
sort_flags])

count(mixed var [, int mode]) int Counts the number of elements in a vari-
able (usually an array).

natsort(array array_arg) void Sorts an array using natural sort.

natcasesort(array array_arg) void Sorts an array using case-insensitive
natural sort.

asort(array array_arg [, int bool Sorts an array and maintains index
sort_flags]) association.

arsort(array array_arg [, int bool Sorts an array in reverse order and
sort_flags]) maintains index association.

sort(array array_arg [, int bool Sorts an array.
sort_flags])

rsort(array array_arg [, int bool Sorts an array in reverse order.
sort_flags])

usort(array array_arg, string bool Sorts an array by values using a user-
cmp_function) defined comparison function.

uasort(array array_arg, bool Sorts an array with a user-defined
string cmp_function) comparison function and maintains

index association.

uksort(array array_arg, bool Sorts an array by keys using a user-
string cmp_function) defined comparison function.

718

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 718

Function Returns Description

end(array array_arg) mixed Advances array argument’s internal
pointer to the last element and returns it.

prev(array array_arg) mixed Moves array argument’s internal pointer
to the previous element and returns it.

next(array array_arg) mixed Moves array argument’s internal pointer
to the next element and returns it.

reset(array array_arg) mixed Sets array argument’s internal pointer to
the first element and returns it.

current(array array_arg) mixed Returns the element currently pointed to
by the internal array pointer.

key(array array_arg) mixed Returns the key of the element currently
pointed to by the internal array pointer.

min(mixed arg1 [, mixed arg2 mixed Returns the lowest value in an array or a
[, mixed ...]]) series of arguments.

max(mixed arg1 [, mixed arg2 mixed Returns the highest value in an array or a
[, mixed ...]]) series of arguments.

array_walk(array input, string bool Applies a user function to every member
funcname [, mixed userdata]) of an array.

array_walk_recursive(array bool Applies a user function recursively to
input, string funcname [, mixed every member of an array.
userdata])

in_array(mixed needle, array bool Checks if the given value exists in the
haystack [, bool strict]) array.

array_search(mixed needle, mixed Searches the array for a given value and
array haystack [, bool strict]) returns the corresponding key if

successful.

extract(array var_array [, int int Imports variables into symbol table from
extract_type [, string prefix]]) an array.

compact(mixed var_names [, array Creates a hash containing variables and
mixed ...]) their values.

array_fill(int start_key, array Creates an array containing num ele
int num, mixed val) ments starting with index start_key

each initialized to val.

range(mixed low, mixed high array Creates an array containing the range of
[, int step]) integers or characters from low to high

(inclusive).

shuffle(array array_arg) bool Randomly shuffles the contents of an
array.

Table continued on following page

719

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 719

Function Returns Description

array_push(array stack, int Pushes elements onto the end of the
mixed var [, mixed ...]) array.

array_pop(array stack) mixed Pops an element off the end of the array.

array_shift(array stack) mixed Pops an element off the beginning of the
array.

array_unshift(array stack, int Pushes elements onto the beginning of
mixed var [, mixed ...]) the array.

array_splice(array input, int array Removes the elements designated by off
offset [, int length [, array set and length and replaces them with a
replacement]]) supplied array.

array_slice(array input, int array Returns elements specified by offset and
offset [, int length]) length.

array_merge(array arr1, array Merges elements from passed arrays into
array arr2 [, array ...]) one array.

array_merge_recursive(array array Recursively merges elements from
arr1, array arr2 [, array ...]) passed arrays into one array.

array_keys(array input [, mixed array Returns just the keys from the input
search_value]) array, optionally only for the specified

search_value.

array_values(array input) array Returns just the values from the input
array.

array_count_values(array input) array Returns the value as key and the fre-
quency of that value in input as value.

array_reverse(array input array Returns input as a new array with the
[, bool preserve keys]) order of the entries reversed.

array_pad(array input, int array Returns a copy of input array padded
pad_size, mixed pad_value) with pad_value to size pad_size.

array_flip(array input) array Returns array with key <-> value
flipped.

array_change_key_case(array array Returns an array with all string keys
input [, int case=CASE_LOWER]) lower-cased (or uppercased).

array_unique(array input) array Removes duplicate values from array.

array_intersect(array arr1, array Returns the entries of arr1 that have
array arr2 [, array ...]) values that are present in all the other

arguments.

array_uintersect(array arr1, array Returns the entries of arr1 that have
array arr2 [, array ...], values that are present in all the other
callback data_compare_func) arguments. Data is compared by using a

user-supplied callback.

720

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 720

Function Returns Description

array_intersect_assoc(array array Returns the entries of arr1 that have
arr1, array arr2 [, array ...]) values that are present in all the other

arguments. Keys are used to do more
restrictive check.

array_uintersect_assoc(array array Returns the entries of arr1 that have
arr1, array arr2 [, array ...], values that are present in all the other
callback data_compare_func) arguments. Keys are used to do more

restrictive check. Data is compared by
using a user-supplied callback.

array_intersect_uassoc(array array Returns the entries of arr1 that have
arr1, array arr2 [, array ...], values that are present in all the other
callback key_compare_func) arguments. Keys are used to do more

restrictive check and they are compared
by using a user-supplied callback.

array_uintersect_uassoc array Returns the entries of arr1 that have
(array arr1, array arr2 [, values that are present in all the other
array ...], callback data_ arguments. Keys are used to do more
compare_func, callback key_ restrictive check. Both data and keys are
compare_func) compared by using user-supplied

callbacks.

array_diff(array arr1, array array Returns the entries of arr1 that have
arr2 [, array ...]) values that are not present in any of the

others arguments.

array_udiff(array arr1, array array Returns the entries of arr1 that have
arr2 [, array ...], callback values that are not present in any of the
data_comp_func) other arguments. Elements are compared

by a user-supplied function.

array_diff_assoc(array arr1, array Returns the entries of arr1 that have key
array arr2 [, array ...]) value pairs that are not present in any of

the other arguments.

array_diff_uassoc(array arr1, array Returns the entries of arr1 that have key
array arr2 [, array ...], value pairs that are not present in any of
callback data_comp_func) the other arguments. Elements are com-

pared by a user-supplied function.

array_udiff_assoc(array arr1, array Returns the entries of arr1 that have key
array arr2 [, array ...], value pairs that are not present in any of
callback key_comp_func) the other arguments. Keys are compared

by a user-supplied function.

array_udiff_uassoc(array array Returns the entries of arr1 that have key
arr1, array arr2 [, array ...], value pairs that are not present in any of
callback data_comp_func, the others arguments. Keys and elements
callback key_comp_func) are compared by user-supplied functions.

Table continued on following page

721

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 721

Function Returns Description

array_multisort(array ar1 bool Sorts multiple arrays at once (similar to
[, SORT_ASC|SORT_DESC [, SORT_ how ORDER BY clause works in SQL).
REGULAR|SORT_NUMERIC|SORT_
STRING]] [, array ar2 [, SORT_
ASC|SORT_DESC [, SORT_REGULAR|
SORT_NUMERIC|SORT_STRING]]
, ...])

array_rand(array input [, mixed Returns key/keys for random entry/
int num_req]) entries in the array.

array_sum(array input) mixed Returns the sum of the array entries.

array_reduce(array input, mixed Iteratively reduces the array to a single
mixed callback [, int initial]) value via the callback.

array_filter(array input [, array Filters elements from the array via the
mixed callback]) callback.

array_map(mixed callback, array Applies the callback to the elements in
array input1 [, array given arrays.
input2 ,...])

array_key_exists(mixed key, bool Checks if the given key or index exists in
array search) the array.

array_chunk(array input, int array Splits array into chunks.
size [, bool preserve_keys])

array_combine(array keys, array Creates an array by using the elements of
array values) the first parameter as keys and the

elements of the second as corresponding
keys.

each(array arr) array Returns the currently pointed key value
pair in the passed array, and advances
the pointer to the next element.

error_reporting(int new_ int Returns the current error_reporting
error_level=null) level and, if an argument was passed,

changes to the new level.

BCMath
Function Returns Description

bcadd(string left_operand, string Returns the sum of two arbitrary
string right_operand precision numbers.
[, int scale])

722

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 722

Function Returns Description

bcsub(string left_operand, string Returns the difference between two
string right_operand arbitrary precision numbers.
[, int scale])

bcmul(string left_operand, string Returns the multiplication of two
string right_operand arbitrary precision numbers.
[, int scale])

bcdiv(string left_operand, string Returns the quotient of two arbitrary
string right_operand precision numbers (division).
[, int scale])

bcmod(string left_operand, string Returns the modulus of the two arbitrary
string right_operand) precision operands (remainder).

bcpowmod(string x, string y, string Returns the value of an arbitrary
string mod [, int scale]) precision number raised to the power of

another reduced by a modulus.

bcpow(string x, string y string Returns the value of an arbitrary
[, int scale]) precision number raised to the power of

another.

bcsqrt(string operand string Returns the square root of an arbitrary
[, int scale]) precision number.

bccomp(string left_operand, int Compares two arbitrary precision
string right_operand numbers.
[, int scale])

bcscale(int scale) bool Sets default scale parameter for all bc
math functions.

BZip2
Function Returns Description

bzopen(string|int file| resource Opens a new BZip2 stream.
fp, string mode)

bzread(int bz[, int length]) string Reads up to length bytes from a BZip2
stream, or 1024 bytes if length is not
specified.

bzwrite(int bz, string data int Writes the contents of the string data to
[, int length]) the BZip2 stream.

bzerrno(resource bz) int Returns the error number.

bzerrstr(resource bz) string Returns the error string.

Table continued on following page

723

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 723

Function Returns Description

bzerror(resource bz) array Returns the error number and error
string in an associative array.

bzcompress(string source string Compresses a string into BZip2 encoded
[, int blocksize100k data.
[, int workfactor]])

bzdecompress(string source string Decompresses BZip2 compressed data.
[, int small])

bzclose((resource bz) int Closes a BZip2 file pointer.

bzflush(resource bz) int Forces a write of all buffered BZip2 data.

Calendar
Function Returns Description

unixtojd([int timestamp]) int Converts UNIX timestamp to Julian Day.

jdtounix(int jday) int Converts Julian Day to UNIX timestamp.

cal_info(int calendar) array Returns information about a particular
calendar.

cal_days_in_month int Returns the number of days in a month
(int calendar, int month, for a given year and calendar.
int year)

cal_to_jd(int calendar, int Converts from a supported calendar to
int month, int day, int year) Julian Day Count.

cal_from_jd(int jd, int array Converts from Julian Day Count to a
calendar) supported calendar and returns extended

information.

jdtogregorian string Converts a Julian Day Count to a
(int juliandaycount) Gregorian calendar date.

gregoriantojd(int month, int Converts a Gregorian calendar date to
int day, int year) Julian Day Count.

jdtojulian string Converts a Julian Day Count to a Julian
(int juliandaycount) calendar date.

juliantojd int Converts a Julian calendar date to Julian
(int month, int day, Day Count.
int year)

724

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 724

Function Returns Description

jdtojewish(int juliandaycount string Converts a Julian Day Count to a Jewish
[, bool hebrew [, int fl]]) calendar date.

jewishtojd(int month, int day, int Converts a Jewish calendar date to a
int year) Julian Day Count.

jdtofrench(int juliandaycount) string Converts a Julian Day Count to a French
Republic calendar date.

frenchtojd(int month, int day, int Converts a French Republic calendar
int year) date to Julian Day Count.

jddayofweek(int juliandaycount mixed Returns name or number of day of week
[, int mode]) from Julian Day Count.

jdmonthname(int juliandaycount, string Returns name of month for Julian Day
int mode) Count.

easter_date([int year]) int Returns the timestamp of midnight on
Easter of a given year (defaults to current
year).

easter_days([int year, int Returns the number of days after March
[int method]]) 21 that Easter falls on for a given year

(defaults to current year).

Class/Object
Function Returns Description

class_exists bool Checks if the class exists.
(string classname)

get_class(object object) string Retrieves the class name.

get_parent_class string Retrieves the parent class name for object
(mixed object) or class.

is_subclass_of bool Returns true if the object has this class
(object object, as one of its parents.
string class_name)

is_a(object object, bool Returns true if the object is of this class
string class_name) or has this class as one of its parents.

get_class_vars array Returns an array of default properties of
(string class_name) the class.

get_object_vars(object obj) array Returns an array of object properties.

Table continued on following page

725

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 725

Function Returns Description

get_class_methods array Returns an array of method names for
(mixed class) class or class instance.

method_exists bool Checks if the class method exists.
(object object, string method)

Get_class_vars array Returns an array of default properties of
(string class_name) the class.

get_declared_classes array Returns an array with the names of the
(string class_name) declared classes in the current script.

Character Type
Function Returns Description

ctype_alnum(string text) bool Checks for alphanumeric character(s).

ctype_alpha(string text) bool Checks for alphabetic character(s).

ctype_cntrl(string text) bool Checks for control character(s).

ctype_digit(string text) bool Checks for numeric character(s).

ctype_graph(string text) bool Checks for any printable character(s)
except space.

ctype_lower(string text) bool Checks for lowercase character(s).

ctype_print(string text) bool Checks for printable character(s).

ctype_punct(string text) bool Checks for any printable character that is
not whitespace or an alphanumeric
character.

ctype_space(string text) bool Checks for whitespace character(s).

ctype_upper(string text) bool Checks for uppercase character(s).

ctype_xdigit(string text) bool Checks for character(s) representing a
hexadecimal digit.

Curl
Function Returns Description

curl_version([int version]) array Returns CURL version information.

curl_init([string url]) resource Initializes a CURL session.

726

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 726

Function Returns Description

curl_setopt(resource ch, bool Sets an option for a CURL transfer.
string option, mixed value)

curl_exec(resource ch) bool Performs a CURL session.

curl_getinfo mixed Gets information regarding a specific
(resource ch, int opt) transfer.

curl_error(resource ch) string Returns a string containing the last error
for the current session.

curl_errno(resource ch) int Returns an integer containing the last
error number.

curl_close(resource ch) void Closes a CURL session.

curl_multi_init(void) resource Returns a new CURL multi handle.

curl_multi_add_handle int Adds a normal CURL handle to a CURL
(resource multi, resource ch) multi handle.

curl_multi_remove_handle int Removes a multi handle from a set of
(resource mh, resource ch) CURL handles.

curl_multi_select int Gets all the sockets associated with the
(resource mh[, double timeout]) CURL extension, which can then be

selected.

curl_multi_exec(resource mh) int Runs the subconnections of the current
CURL handle.

curl_multi_getcontent string Returns the content of a CURL handle if
(resource ch) CURLOPT_RETURNTRANSFER is set.

curl_multi_info_read array Gets information about the current
(resource mh) transfers.

curl_multi_close(resource mh) void Closes a set of CURL handles.

Date and Time
Function Returns Description

time(void) int Returns current UNIX timestamp.

mktime(int hour, int min, int Gets UNIX timestamp for a date.
int sec, int mon, int day,
int year)

Table continued on following page

727

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 727

Function Returns Description

gmmktime(int hour, int min, int Gets UNIX timestamp for a GMT date.
int sec, int mon, int day,
int year)

date(string format string Formats a local time/date.
[, int timestamp])

gmdate(string format string Formats a GMT/UTC date/time.
[, int timestamp])

idate(string format int Formats a local time/date as integer.
[, int timestamp])

localtime([int timestamp array Returns the results of the C system call
[, bool associative_array]]) local time as an associative array if the

associative_array argument is set to
1 (otherwise it’s a regular array).

getdate([int timestamp]) array Gets date/time information.

checkdate(int month, bool Returns true(1) if it is a valid date in
int day, int year) Gregorian calendar.

strftime(string format string Formats a local time/date according to
[, int timestamp]) locale settings.

gmstrftime(string format string Formats a GMT/UTC time/date
[, int timestamp]) according to locale settings.

strtotime int Converts string representation of date
(string time, int now) and time to a timestamp.

microtime(void) string Returns a string containing the current
time in seconds and microseconds.

gettimeofday(void) array Returns the current time as array.

getrusage([int who]) array Returns an array of usage statistics.

date_sunrise(mixed time mixed Returns time of sunrise for a given day
[, int format and location.
[, float latitude
[, float longitude
[, float zenith [, float gmt_
offset]]]]])

date_sunset(mixed time mixed Returns time of sunset for a given day
[, int format [, float latitude and location.
[, float longitude
[, float zenith [, float gmt_
offset]]]]])

728

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 728

Directory
Function Returns Description

opendir(string path) mixed Opens a directory and returns a
dir_handle.

dir(string directory) object Directory class with properties handle
and path, and methods read, rewind,
and close.

closedir([resource dir_ void Closes directory connection identified by
handle]) the dir_handle.

chroot(string directory) bool Changes root directory.

chdir(string directory) bool Changes the current directory.

getcwd(void) mixed Gets the current directory.

rewinddir([resource dir_ void Rewinds dir_handle back to the start.
handle])

readdir([resource dir_ string Reads directory entry from dir_handle.
handle])

glob(string pattern array Finds pathnames matching a pattern.
[, int flags])

scandir(string dir array Lists files and directories inside the
[, int sorting_order]) specified path.

dl(string extension_filename) int Loads a PHP extension at runtime.

Error Handling
Function Returns Description

error_log(string message bool Sends an error message somewhere.
[, int message_type
[, string destination
[, string extra_headers]]])

debug_print_backtrace(void) */ void Prints a backtrace.

debug_backtrace(void) array Returns backtrace as array.

restore_error_handler(void) void Restores the previously defined error
handler function.

Table continued on following page

729

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 729

Function Returns Description

set_exception_handler string Sets a user-defined exception handler
(string exception_handler) function. Returns the previously defined

exception handler, or false on error.

restore_exception_ void Restores the previously defined
handler(void) exception handler function.

trigger_error(string messsage void Generates a user-level error/warning/
[, int error_type]) notice message.

set_error_handler string Sets a user-defined error handler
(string error_handler) function. Returns the previously defined

error handler, or false on error.

leak(int num_bytes=3) void Causes an intentional memory leak, for
testing/debugging purposes.

Filesystem
Function Returns Description

flock(resource fp, bool Portable file locking.
int operation
[, int &wouldblock])

file_get_contents string Reads the entire file into a string.
(string filename
[, bool use_include_path
[, resource context]])

file_put_contents int Writes/creates a file with contents data
(string file, mixed data and returns the number of bytes written.
[, int flags
[, resource context]])

file(string filename array Reads entire file into an array
[, int flags
[, resource context]])

tempnam(string dir, string Creates a unique filename in a directory.
string prefix)

tmpfile(void) resource Creates a temporary file that will be
deleted automatically after use.

fopen(string filename, resource Opens a file or a URL and returns a file
string mode [, bool use_ pointer.
include_path
[, resource context]])

730

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 730

Function Returns Description

fclose(resource fp) bool Closes an open file pointer.

popen(string command, resource Executes a command and opens either a
string mode) read or a write pipe to it.

pclose(resource fp) int Closes a file pointer opened by popen().

feof(resource fp) bool Tests for end-of-file on a file pointer.

fgets(resource fp string Gets a line from file pointer.
[, int length])

fgetc(resource fp) string Gets a character from file pointer.

fgetss(resource fp string Gets a line from file pointer and strips
[, int length, string HTML tags.
allowable_tags])

fscanf(resource stream, mixed Implements a mostly ANSI-compatible
string format [, string ...]) fscanf().

fwrite(resource fp, int Binary-safe file write.
string str [, int length])

fflush(resource fp) bool Flushes output.

rewind(resource fp) bool Rewinds the position of a file pointer.

ftell(resource fp) int Gets file pointer’s read/write position.

fseek(resource fp, int int Seeks on a file pointer.
offset [, int whence])

mkdir(string pathname bool Creates a directory.
[, int mode [, bool recursive
[, resource context]]])

rmdir(string dirname bool Removes a directory.
[, resource context])

readfile(string filename int Outputs a file or a URL.
[, bool use_include_path
[, resource context]])

umask([int mask]) int Returns or changes the umask.

fpassthru(resource fp) int Outputs all remaining data from a file
pointer.

rename(string old_name, bool Renames a file.
string new_name
[, resource context])

unlink(string filename bool Deletes a file.
[, context context])

Table continued on following page

731

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 731

Function Returns Description

ftruncate bool Truncates file to size length.
(resource fp, int size)

fstat(resource fp) int Performs stat() on a file handle.

copy(string source_file, bool Copies a file.
string destination_file)

fread string Binary-safe file read.
(resource fp, int length)

fgetcsv(resource fp array Gets line from file pointer and parses for
[,int length CSV fields.
[, string delimiter
[, string enclosure]]])

realpath(string path) string Returns the resolved path.

fnmatch(string pattern, bool Matches filename against pattern.
string filename [, int flags])

disk_total_space(string path) float Gets total disk space for filesystem that
path is on.

disk_free_space(string path) float Gets free disk space for filesystem that
path is on.

chgrp(string filename, bool Changes file group.
mixed group)

chown (string filename, bool Changes file owner.
mixed user)

chmod(string filename, bool Changes file mode.
int mode)

touch(string filename bool Sets modification time of file.
[, int time [, int atime]])

clearstatcache(void) void Clears file stat cache.

fileperms(string filename) int Gets file permissions.

fileinode(string filename) int Gets file inode.

filesize(string filename) int Gets file size.

fileowner(string filename) int Gets file owner.

filegroup(string filename) int Gets file group.

fileatime(string filename) int Gets last access time of file.

filemtime(string filename) int Gets last modification time of file.

filectime(string filename) int Gets inode modification time of file.

732

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 732

Function Returns Description

filetype(string filename) string Gets file type.

is_writable(string filename) bool Returns true if file can be written.

is_readable(string filename) bool Returns true if file can be read.

is_executable(string filename) bool Returns true if file is executable.

is_file(string filename) bool Returns true if file is a regular file.

is_dir(string filename) bool Returns true if file is a directory.

is_link(string filename) bool Returns true if file is a symbolic link.

file_exists(string filename) bool Returns true if filename exists.

lstat(string filename) array Gives information about a file or sym-
bolic link.

stat(string filename) array Gives information about a file.

readlink(string filename) string Returns the target of a symbolic link.

linkinfo(string filename) int Returns the st_dev field of the UNIX C
stat structure describing the link.

symlink(string target, int Creates a symbolic link.
string link)

link(string target, int Creates a hard link.
string link)

is_uploaded_file bool Checks if file was created by RFC1867
(string path) upload.

move_uploaded_file bool Moves a file if and only if it was created
(string path, string new_path) by an upload.

parse_ini_file array Parses configuration file.
(string filename
[, bool process_sections])

FTP
Function Returns Description

ftp_connect(string host resource Opens an FTP stream.
[, int port [, int timeout]])

ftp_ssl_connect(string host resource Opens an FTP-SSL stream.
[, int port [, int timeout]])

Table continued on following page

733

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 733

Function Returns Description

ftp_login(resource stream, bool Logs into the FTP server.
string username,
string password)

ftp_pwd(resource stream) string Returns the present working directory.

ftp_cdup(resource stream) bool Changes to the parent directory.

ftp_chdir(resource stream, bool Changes directories.
string directory)

ftp_exec(resource stream, bool Requests execution of a program on the
string command) FTP server.

ftp_raw(resource stream, array Sends a literal command to the FTP
string command) server.

ftp_mkdir(resource stream, string Creates a directory and returns the
string directory) absolute path for the new directory or

false on error.

ftp_rmdir(resource stream, bool Removes a directory.
string directory)

ftp_chmod(resource stream, int Sets permissions on a file.
int mode, string filename)

ftp_alloc(resource stream, bool Attempts to allocate space on the remote
int size[, &response]) FTP server.

ftp_nlist(resource stream, array Returns an array of filenames in the
string directory) given directory.

ftp_rawlist(resource stream, array Returns a detailed listing of a directory
string directory as an array of output lines.
[, bool recursive])

ftp_systype(resource stream) string Returns the system type identifier.

ftp_fget(resource stream, bool Retrieves a file from the FTP server and
resource fp, string remote_ writes it to an open file.
file, int mode
[, int resumepos])

ftp_nb_fget(resource stream, int Retrieves a file from the FTP server
resource fp, string remote_ asynchronly and writes it to an open file.
file, int mode[, int resumepos])

ftp_pasv(resource stream, bool Turns passive mode on or off.
bool pasv)

ftp_get(resource stream, bool Retrieves a file from the FTP server and
string local_file, writes it to a local file.
string remote_file, int mode
[, int resume_pos])

734

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 734

Function Returns Description

ftp_nb_get(resource stream, int Retrieves a file from the FTP server
string local_file, nbhronly and writes it to a local file.
string remote_file,
int mode[, int resume_pos])

ftp_nb_continue int Continues retrieving/sending a file
(resource stream) nbronously.

ftp_fput(resource stream, bool Stores a file from an open file to the FTP
string remote_file, server.
resource fp, int mode
[, int startpos])

ftp_nb_fput(resource stream, int Stores a file from an open file to the FTP
string remote_file, server nbronly.
resource fp, int mode[,
int startpos])

ftp_put(resource stream, bool Stores a file on the FTP server.
string remote_file,
string local_file, int mode
[, int startpos])

ftp_nb_put(resource stream, int Stores a file on the FTP server.
string remote_file,
string local_file, int mode
[, int startpos])

ftp_size(resource stream, int Returns the size of the file, or -1 on error.
string filename)

ftp_mdtm(resource stream, int Returns the last modification time of the
string filename) file, or -1 on error.

ftp_rename(resource stream, bool Renames the given file to a new path.
string src, string dest)

ftp_delete(resource stream, bool Deletes a file.
string file)

ftp_site(resource stream, bool Sends a SITE command to the server.
string cmd)

ftp_close(resource stream) bool Closes the FTP stream.

ftp_set_option bool Sets an FTP option.
(resource stream, int option,
mixed value)

ftp_get_option(resource mixed Gets an FTP option.
stream, int option)

735

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 735

Function Handling
Function Returns Description

call_user_func mixed Calls a user function that is the first
(string function_name parameter.
[, mixed parmeter]
[, mixed ...])

call_user_func_array mixed Calls a user function that is the first
(string function_name, parameter with the arguments contained
array parameters) in array.

call_user_method mixed Calls a user method on a specific object
(string method_name, or class.
mixed object
[, mixed parameter]
[, mixed ...])

call_user_method_array mixed Calls a user method on a specific object
(string method_name, or class using a parameter array.
mixed object, array params)

register_shutdown_ void Registers a user-level function to be
function called on request termination.
(string function_name)

register_tick_function bool Registers a tick callback function.
(string function_name
[, mixed arg [, mixed ...]])

unregister_tick_function void Unregisters a tick callback function.
(string function_name)

create_function(string args, string Creates an anonymous function, and
string code) returns its name.

function_exists bool Checks if the function exists.
(string function_name)

func_num_args(void) int Gets the number of arguments that were
passed to the function.

func_get_arg(int arg_num) mixed Gets the $arg_num’th argument that
was passed to the function.

func_get_args() array Gets an array of the arguments that were
passed to the function.

736

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 736

HTTP
Function Returns Description

header(string header void Sends a raw HTTP header.
[, bool replace,
[int http_response_code]])

setcookie(string name bool Sends a cookie.
[, string value [, int expires
[, string path [, string domain
[, bool secure]]]]])

setrawcookie(string name bool Sends a cookie with no URL encoding of
[, string value [, int expires the value.
[, string path [, string domain
[, bool secure]]]]])

headers_sent([string &$file bool Returns true if headers have already
[, int &$line]]) been sent, false otherwise.

headers_list(void) string Returns a list of headers to be
sent/already sent.

Iconv Library
Function Returns Description

iconv(tring in_charset, string Returns str converted to the out_
string out_charset, string str) charset character set.

ob_iconv_handler Returns str in output buffer converted to
(string contents, int status) the iconv.output_encoding character

set.

iconv_get_encoding mixed Gets internal encoding and output
([string type]) encoding for ob_iconv_handler().

iconv_set_encoding bool Sets internal encoding and output
(string type, string charset) encoding for ob_iconv_handler().

737

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 737

Image
Function Returns Description

exif_tagname(index) string Gets headername for index or false if
not defined.

exif_read_data(string array Reads header data from the JPEG/TIFF
filename [, sections_needed image filename and optionally reads the
[, sub_arrays internal thumbnails.
[, read_thumbnail]]])

exif_thumbnail string Reads the embedded thumbnail.
(string filename
[, &width, &height
[, &imagetype]])

exif_imagetype int Gets the type of an image.
(string imagefile)

gd_info() array Retrieves information about the
currently installed GD library.

imageloadfont(string filename) int Loads a new font.

imagesetstyle bool Sets the line drawing styles for use with
(resource im, array styles) imageline and IMG_COLOR_STYLED.

imagecreatetruecolor resource Creates a new true color image.
(int x_size, int y_size)

imageistruecolor(resource im) bool Returns true if the image uses true
color.

imagetruecolortopalette void Converts a true color image to a
(resource im, bool ditherFlag, palette-based image with a number of
int colorsWanted) colors, optionally using dithering.

imagecolormatch bool Makes the colors of the palette version of
(resource im1, resource im2) an image more closely match the true

color version.

imagesetthickness bool Sets line thickness for drawing lines,
(resource im, int thickness) ellipses, rectangles, polygons, and so on.

imagefilledellipse bool Draws an ellipse.
(resource im, int cx, int cy,
int w, int h, int color)

imagefilledarc(resource im, bool Draws a filled partial ellipse.
int cx, int cy, int w, int h,
int s, int e, int col, int style)

imagealphablending bool Turns alpha blending mode on or off for
(resource im, bool on) the given image.

738

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 738

Function Returns Description

imagesavealpha bool Includes alpha channel to a saved image.
(resource im, bool on)

imagelayereffect bool Sets the alpha blending flag to use the
(resource im, int effect) bundled libgd layering effects.

imagecolorallocatealpha int Allocates a color with an alpha level.
(resource im, int red, int Works for true color and palette-based
green, int blue, int alpha) images.

imagecolorresolvealpha int Resolves/allocates a color with an alpha
(resource im, int red, level. Works for true color and palette-
int green, int blue, int alpha) based images.

imagecolorclosestalpha int Finds the closest matching color with
(resource im, int red, alpha transparency.
int green, int blue, int alpha)

imagecolorexactalpha int Finds exact match for color with
(resource im, int red, transparency.
int green, int blue, int alpha)

imagecopyresampled bool Copies and resizes part of an image
(resource dst_im, using resampling to help ensure clarity.
resource src_im, int dst_x,
int dst_y, int src_x,
int src_y, int dst_w,
int dst_h, int src_w,
int src_h)

imagerotate resource Rotates an image using a custom angle.
(resource src_im,
float angle, int bgdcolor)

imagesettile bool Sets the tile image to $tile when filling
(resource image, $image with the IMG_COLOR_TILED
resource tile) color.

imagesetbrush bool Sets the brush image to $brush when
(resource image, filling $image with the
resource brush) IMG_COLOR_BRUSHED color.

imagecreate resource Creates a new image.
(int x_size, int y_size)

imagetypes(void) int Returns the types of images supported
in a bitfield — 1=GIF, 2=JPEG, 4=PNG,
8=WBMP, 16=XPM.

imagecreatefromstring resource Creates a new image from the image
(string image) stream in the string.

Table continued on following page

739

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 739

Function Returns Description

imagecreatefromgif resource Creates a new image from GIF file or
(string filename) URL.

imagecreatefromjpeg resource Creates a new image from JPEG file or
(string filename) URL.

imagecreatefrompng resource Creates a new image from PNG file or
(string filename) URL.

imagecreatefromxbm resource Creates a new image from XBM file or
(string filename) URL.

imagecreatefromxpm resource Creates a new image from XPM file or
(string filename) URL.

imagecreatefromwbmp resource Creates a new image from WBMP file or
(string filename) URL.

imagecreatefromgd resource Creates a new image from GD file or
(string filename) URL.

imagecreatefromgd2 resource Creates a new image from GD2 file or
(string filename) URL.

imagecreatefromgd2part resource Creates a new image from a given part
(string filename, int srcX, of GD2 file or URL.
int srcY, int width, int height)

imagexbm(int im, int Outputs XBM image to browser or file.
string filename
[, int foreground])

imagegif(resource im bool Outputs GIF image to browser or file.
[, string filename])

imagepng(resource im bool Outputs PNG image to browser or file.
[, string filename])

imagejpeg(resource im bool Outputs JPEG image to browser or file.
[, string filename
[, int quality]])

imagewbmp(resource im bool Outputs WBMP image to browser or file.
[, string filename,
[, int foreground]])

imagegd(resource im bool Outputs GD image to browser or file.
[, string filename])

imagegd2(resource im bool Outputs GD2 image to browser or file.
[, string filename,
[, int chunk_size,
[, int type]]])

740

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 740

Function Returns Description

imagedestroy(resource im) bool Destroys an image.

imagecolorallocate int Allocates a color for an image.
(resource im, int red,
int green, int blue)

imagepalettecopy void Copies the palette from the src image
(resource dst, resource src) onto the dst image.

imagecolorat(resource im, int Gets the index of the color of a pixel.
int x, int y)

imagecolorclosest int Gets the index of the closest color to the
(resource im, int red, specified color.
int green, int blue)

imagecolorclosesthwb int Gets the index of the color that has the
(resource im, int red, hue, white, and blackness nearest to the
int green, int blue) given color.

imagecolordeallocate bool De-allocates a color for an image.
(resource im, int index)

imagecolorresolve int Gets the index of the specified color or
(resource im, int red, its closest possible alternative.
int green, int blue)

imagecolorexact int Gets the index of the specified color.
(resource im, int red,
int green, int blue)

imagecolorset void Sets the color for the specified palette
(resource im, int col, index.
int red, int green, int blue)

imagecolorsforindex array Gets the colors for an index.
(resource im, int col)

imagegammacorrect bool Apply a gamma correction to a GD
(resource im, float image.
inputgamma, float
outputgamma)

imagesetpixel bool Sets a single pixel.
(resource im, int x, int y,
int col)

imageline bool Draws a line.
(resource im, int x1,
int y1, int x2, int y2,
int col)

Table continued on following page

741

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 741

Function Returns Description

imagedashedline bool Draws a dashed line.
(resource im, int x1,
int y1, int x2, int y2,
int col)

imagerectangle bool Draws a rectangle.
(resource im, int x1,
int y1, int x2, int y2,
int col)

imagefilledrectangle bool Draws a filled rectangle.
(resource im, int x1,
int y1, int x2, int y2,
int col)

imagearc(resource im, bool Draws a partial ellipse.
int cx, int cy, int w,
int h, int s, int e, int col)

imageellipse bool Draws an ellipse.
(resource im, int cx,
int cy, int w, int h,
int color)

imagefilltoborder bool Flood fills to specific color.
(resource im, int x,
int y, int border, int col)

imagefill(resource im, bool Flood fills with given color col.
int x, int y, int col)

imagecolorstotal(resource im) int Finds out the number of colors in an
image’s palette.

imagecolortransparent int Defines a color as transparent.
(resource im [, int col])

imageinterlace int Enables or disables interlace.
(resource im [, int interlace])

imagepolygon(resource im, bool Draws a polygon.
array point, int num_points,
int col)

imagefilledpolygon bool Draws a filled polygon.
(resource im, array point,
int num_points, int col)

imagefontwidth(int font) int Gets font width.

imagefontheight(int font) int Gets font height.

742

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 742

Function Returns Description

imagechar(resource im, bool Draws a character.
int font, int x, int y,
string c, int col)

imagecharup(resource im, bool Draws a character rotated 90 degrees
int font, int x, int y, counterclockwise.
string c, int col)

imagestring(resource im, bool Draws a string horizontally.
int font, int x, int y,
string str, int col)

imagestringup bool Draws a string vertically rotated 90
(resource im, int font, degrees counterclockwise.
int x, int y, string str,
int col)

imagecopy bool Copies part of an image.
(resource dst_im,
resource src_im, int dst_x,
int dst_y, int src_x,
int src_y, int src_w,
int src_h)

imagecopymerge bool Merges one part of an image with
(resource src_im, another.
resource dst_im, int dst_x,
int dst_y, int src_x,
int src_y, int src_w,
int src_h, int pct)

imagecopymergegray bool Merges one part of an image with
(resource src_im, another while preserving hue of source.
resource dst_im,
int dst_x, int dst_y,
int src_x, int src_y,
int src_w, int src_h, int pct)

imagecopyresized bool Copies and resizes part of an image.
(resource dst_im,
resource src_im,
int dst_x, int dst_y,
int src_x, int src_y,
int dst_w, int dst_h,
int src_w, int src_h)

imagesx(resource im) int Gets image width.

imagesy(resource im) int Gets image height.

Table continued on following page

743

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 743

Function Returns Description

imageftbbox(int size, array Gives the bounding box of a text block
int angle, string font_file, using fonts via freetype2.
string text[, array extrainfo])

imagefttext(resource im, array Writes text to the image using fonts via
int size, int angle, int x, freetype2.
int y, int col,
string font_file,
string text, [array extrainfo])

imagettfbbox array Gives the bounding box of a text block
(int size, int angle, using TrueType fonts.
string font_file, string text)

imagettftext array Writes text to the image using a
(resource im, int size, TrueType font.
int angle, int x, int y,
int col, string font_file,
string text)

imagepsloadfont resource Loads a new font from specified file.
(string pathname)

imagepscopyfont int Makes a copy of a font for purposes such
(int font_index) as extending or re-encoding.

imagepsfreefont bool Frees memory used by a font.
(resource font_index)

imagepsencodefont bool Changes the character-encoding vector
(resource font_index, of a font.
string filename)

imagepsextendfont bool Extends or condenses (if extend < 1) a
(resource font_index, font.
float extend)

imagepsslantfont bool Slants a font.
(resource font_index,
float slant)

imagepstext array Rasterizes a string over an image.
(resource image, string text,
resource font, int size,
int xcoord, int ycoord
[, int space, int tightness,
float angle, int antialias])

imagepsbbox(string text, array Returns the bounding box needed by a
resource font, int size string if rasterized.
[, int space, int tightness,
int angle])

744

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 744

Function Returns Description

image2wbmp(resource im bool Outputs WBMP image to browser or file.
[, string filename
[, int threshold]])

jpeg2wbmp (string f_org, bool Converts JPEG image to WBMP image.
string f_dest, int d_height,
int d_width, int threshold)

png2wbmp (string f_org, bool Converts PNG image to WBMP image.
string f_dest, int d_height,
int d_width, int threshold)

imagefilter bool Applies Filter an image using a custom
(resource src_im, angle.
int filtertype, [args])

imageantialias bool Determines if antialiased functions
(resource im, bool on) should be used or not.

image_type_to_mime_type string Gets Mime-Type for image-type
(int imagetype) returned by getimagesize,

exif_read_data, exif_thumbnail,
exif_imagetype.

image_type_to_extension string Gets file extension for image-type
(int imagetype returned by getimagesize,
[, bool include_dot]) exif_read_data, exif_thumbnail,

exif_imagetype.

getimagesize array Gets the size of an image as four-element
(string imagefile array.
[, array info])

iptcembed array Embeds binary IPTC data into a JPEG
(string iptcdata, image.
string jpeg_file_name
[, int spool])

iptcparse(string iptcdata) array Parses binary IPTC-data into associative
array.

IMAP
Function Returns Description

imap_open(string mailbox, resource Opens an IMAP stream to a mailbox.
string user, string password
[, int options])

Table continued on following page

745

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 745

Function Returns Description

imap_reopen(resource bool Reopens an IMAP stream to a new
stream_id, string mailbox mailbox.
[, int options])

imap_append bool Appends a new message to a specified
(resource stream_id, mailbox.
string folder,
string message
[, string options])

imap_num_msg int Gives the number of messages in the
(resource stream_id) current mailbox.

imap_ping bool Checks if the IMAP stream is still active.
(resource stream_id)

imap_num_recent int Gives the number of recent messages in
(resource stream_id) current mailbox.

imap_get_quota array Returns the quota set to the mailbox
(resource stream_id, account qroot.
string qroot)

imap_get_quotaroot array Returns the quota set to the mailbox
(resource stream_id, account mbox.
string mbox)

imap_set_quota bool Sets the quota for qroot mailbox.
(resource stream_id,
string qroot,
int mailbox_size)

imap_setacl bool Sets the ACL for a given mailbox.
(resource stream_id,
string mailbox, string id,
string rights)

imap_getacl array Gets the ACL for a given mailbox.
(resource stream_id,
string mailbox)

imap_expunge bool Permanently deletes all messages
(resource stream_id) marked for deletion.

imap_close bool Closes an IMAP stream.
(resource stream_id
[, int options])

imap_headers array Returns headers for all messages in a
(resource stream_id) mailbox.

imap_body(resource stream_id, string Reads the message body.
int msg_no [, int options])

746

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 746

Function Returns Description

imap_mail_copy bool Copies the specified message to a
(resource stream_id, mailbox.
int msg_no, string mailbox
[, int options])

imap_mail_move bool Moves the specified message to a
(resource stream_id, mailbox.
int msg_no, string mailbox
[, int options])

imap_createmailbox bool Creates a new mailbox.
(resource stream_id,
string mailbox)

imap_renamemailbox bool Renames a mailbox.
(resource stream_id,
string old_name,
string new_name)

imap_deletemailbox bool Deletes a mailbox.
(resource stream_id,
string mailbox)

imap_list array Reads the list of mailboxes.
(resource stream_id,
string ref, string pattern)

imap_getmailboxes array Reads the list of mailboxes and returns a
(resource stream_id, full array of objects containing name,
string ref, string pattern) attributes, and delimiter.

imap_scan array Reads a list of mailboxes containing a
(resource stream_id, certain string.
string ref, string pattern,
string content)

imap_check object Gets mailbox properties.
(resource stream_id)

imap_delete bool Marks a message for deletion.
(resource stream_id,
int msg_no [, int options])

imap_undelete bool Removes the delete flag from a message.
(resource stream_id,
int msg_no)

imap_headerinfo object Reads the headers of the message.
(resource stream_id,
int msg_no [, int from_length
[, int subject_length
[, string default_host]]])

Table continued on following page

747

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 747

Function Returns Description

imap_rfc822_parse_headers object Parses a set of mail headers contained in
(string headers a string, and returns an object similar to
[, string default_host]) imap_headerinfo().

imap_lsub array Returns a list of subscribed mailboxes.
(resource stream_id,
string ref, string pattern)

imap_getsubscribed array Returns a list of subscribed mailboxes,
(resource stream_id, in the same format as imap_
string ref, string pattern) getmailboxes().

imap_subscribe bool Subscribes to a mailbox.
(resource stream_id,
string mailbox)

imap_unsubscribe bool Unsubscribes from a mailbox.
(resource stream_id,
string mailbox)

imap_fetchstructure object Reads the full structure of a message.
(resource stream_id,
int msg_no [, int options])

imap_fetchbody string Gets a specific body section.
(resource stream_id,
int msg_no, int section
[, int options])

imap_base64(string text) string Decodes BASE64 encoded text.

imap_qprint(string text) string Converts a quoted-printable string to an
8-bit string.

imap_8bit(string text) string Converts an 8-bit string to a quoted-
printable string.

imap_binary(string text) string Converts an 8-bit string to a base64
string.

imap_mailboxmsginfo object Returns info about the current mailbox.
(resource stream_id)

imap_rfc822_write_address string Returns a properly formatted e-mail
(string mailbox, string host, address given the mailbox, host, and
string personal) personal info.

imap_rfc822_parse_adrlist array Parses an address string.
(string address_string,
string default_host)

imap_utf8 string Converts mime-encoded text to UTF-8.
(string mime_encoded_text)

748

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 748

Function Returns Description

imap_utf7_decode(string buf) string Decodes a modified UTF-7 string.

imap_utf7_encode(string buf) string Encodes a string in modified UTF-7.

imap_setflag_full bool Sets flags on messages.
(resource stream_id,
string sequence, string flag
[, int options])

imap_clearflag_full bool Clears flags on messages.
(resource stream_id,
string sequence, string flag
[, int options])

imap_sort array Sorts an array of message headers,
(resource stream_id, optionally including only messages that
int criteria, int reverse meet specified criteria.
[, int options
[, string search_criteria
[, string charset]]])

imap_fetchheader string Gets the full unfiltered header for a
(resource stream_id, message.
int msg_no [, int options])

imap_uid(resource stream_id, int Gets the unique message id associated
int msg_no) with a standard sequential message

number.

imap_msgno int Gets the sequence number associated
(resource stream_id, with a UID.
int unique_msg_id)

imap_status object Gets status info from a mailbox.
(resource stream_id,
string mailbox, int options)

imap_bodystruct object Reads the structure of a specified body
(resource stream_id, section of a specific message.
int msg_no, int section)

imap_fetch_overview array Reads an overview of the information in
(resource stream_id, the headers of the given message
int msg_no [, int options]) sequence.

imap_mail_compose string Creates a MIME message based on given
(array envelope, array body) envelope and body sections.

imap_mail(string to, bool Sends an e-mail message.
string subject, string message
[, string additional_headers
[, string cc [, string bcc
[, string rpath]]]])

Table continued on following page

749

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 749

Function Returns Description

imap_search array Returns a list of messages matching the
(resource stream_id, given criteria.
string criteria
[, int options
[, string charset]])

imap_alerts(void) array Returns an array of all IMAP alerts that
have been generated since the last page
load or since the last imap_alerts()
call, whichever came last. The alert stack
is cleared after imap_alerts() is called.

imap_errors(void) array Returns an array of all IMAP errors gen-
erated since the last page load, or since
the last imap_errors() call,
whichever came last. The error stack is
cleared after imap_errors() is called.

imap_last_error(void) string Returns the last error that was generated
by an IMAP function. The error stack is
not cleared after this call.

imap_mime_header_ array Decodes mime header element in
decode(string str) accordance with RFC 2047and returns an

array of objects containing charset
encoding and decoded text.

imap_thread array Returns are threaded by REFERENCES
(resource stream_id tree.
[, int options])

imap_timeout mixed Sets or fetches IMAP timeout.
(int timeout_type
[, int timeout])

Mail
Function Returns Description

ezmlm_hash(string addr) int Calculates EZMLM list hash value.

mail(string to, string subject, int Sends an e-mail message.
string message
[, string additional_headers
[, string additional_
parameters]])

750

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 750

Math
Function Returns Description

abs(int number) int Returns the absolute value of the number.

ceil(float number) float Returns the next highest integer value of
the number.

floor(float number) float Returns the next lowest integer value
from the number.

round(float number float Returns the number rounded to
[, int precision]) specified precision.

sin(float number) float Returns the sine of the number in radians.

cos(float number) float Returns the cosine of the number in
radians.

tan(float number) float Returns the tangent of the number in
radians.

asin(float number) float Returns the arc sine of the number in
radians.

acos(float number) float Returns the arc cosine of the number in
radians.

atan(float number) float Returns the arc tangent of the number in
radians.

atan2(float y, float x) float Returns the arc tangent of y/x, with the
resulting quadrant determined by the
signs of y and x.

sinh(float number) float Returns the hyperbolic sine of the num-
ber, defined as (exp(number) - exp(-
number))/2.

cosh(float number) float Returns the hyperbolic cosine of the
number, defined as (exp(number) +
exp(-number))/2.

tanh(float number) float Returns the hyperbolic tangent of the
number, defined as
sinh(number)/cosh(number).

asinh(float number) float Returns the inverse hyperbolic sine of
the number, that is, the value whose
hyperbolic sine is number.

acosh(float number) float Returns the inverse hyperbolic cosine of
the number, that is, the value whose
hyperbolic cosine is number.

Table continued on following page

751

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 751

Function Returns Description

atanh(float number) float Returns the inverse hyperbolic tangent
of the number, that is, the value whose
hyperbolic tangent is number.

pi(void) float Returns an approximation of pi.

is_finite(float val) bool Returns whether argument is finite.

is_infinite(float val) bool Returns whether argument is infinite.

is_nan(float val) bool Returns whether argument is not a
number.

pow(number base, number Returns base raised to the power of
number exponent) exponent. Returns integer result when

possible.

exp(float number) float Returns e raised to the power of the
number.

expm1(float number) float Returns exp(number) - 1, computed in
a way that’s accurate even when the
value of number is close to zero.

log1p(float number) float Returns log(1 + number), computed in
a way that’s accurate even when the
value of number is close to zero.

log(float number, float Returns the natural logarithm of the
[float base]) number, or the base log if the base is

specified.

log10(float number) float Returns the base-10 logarithm of the
number.

sqrt(float number) float Returns the square root of the number.

hypot(float num1, float num2) float Returns sqrt(num1*num1 +
num2*num2).

deg2rad(float number) float Converts the number in degrees to the
radian equivalent.

rad2deg(float number) float Converts the radian number to the
equivalent number in degrees.

bindec(string binary_number) int Returns the decimal equivalent of the
binary number.

hexdec(string hexadecimal_ int Returns the decimal equivalent of the
number) hexadecimal number.

octdec(string octal_number) int Returns the decimal equivalent of an
octal string.

752

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 752

Function Returns Description

decbin(int decimal_number) string Returns a string containing a binary
representation of the number.

decoct(int decimal_number) string Returns a string containing an octal
representation of the given number.

dechex(int decimal_number) string Returns a string containing a hexadecimal
representation of the given number.

base_convert(string number, string Converts a number in a string from any
int frombase, int tobase) base <= 36 to any base <= 36.

number_format(float number string Formats a number with grouped
[, int num_decimal_places thousands.
[, string dec_seperator,
string thousands_seperator]])

fmod(float x, float y) float Returns the remainder of dividing x by y
as a float.

srand([int seed]) void Seeds random number generator.

mt_srand([int seed]) void Seeds Mersenne Twister random number
generator.

rand([int min, int max]) int Returns a random number.

mt_rand([int min, int max]) int Returns a random number from
Mersenne Twister.

getrandmax(void) int Returns the maximum value a random
number can have.

mt_getrandmax(void) int Returns the maximum value a random
number from Mersenne Twister can
have.

MIME
Function Returns Description

mime_content_type string Returns content-type for file.
(string filename
|resource stream)

753

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 753

Miscellaneous
Function Returns Description

get_browser([string browser_ mixed Gets information about the capabilities
name [, bool return_array]]) of a browser.

constant(string const_name) mixed Given the name of a constant this
function returns the constant’s
associated value.

getenv(string varname) string Gets the value of an environment
variable.

putenv(string setting) bool Sets the value of an environment
variable.

getopt(string options array Gets options from the command line
[, array longopts]) argument list.

flush(void) void Flushes the output buffer.

sleep(int seconds) void Delays for a given number of seconds.

usleep(int micro_seconds) void Delays for a given number of micro
seconds.

time_nanosleep mixed Delays for a number of seconds and
(long seconds, nanoseconds.
long nanoseconds)

highlight_file(string file_ bool Syntax highlights a source file.
name [, bool return])

php_strip_whitespace string Returns source with stripped comments
(string file_name) and whitespace.

php_check_syntax bool Checks the syntax of the specified file.
(string file_name
[, &$error_message])

highlight_string bool Syntax highlights a string or optionally
(string string [, bool return]) returns it.

uniqid([string prefix , string Generates a unique ID.
bool more_entropy])

version_compare(string ver1, int Compares two PHP-standardized
string ver2 [, string oper]) version number strings.

connection_aborted(void) int Returns true if client disconnected.

connection_status(void) int Returns the connection status bitfield.

ignore_user_abort(bool value) int Sets whether you want to ignore a user
abort event or not.

754

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 754

Function Returns Description

define(string constant_ bool Defines a new constant.
name, mixed value, case_
sensitive=true)

defined(string constant_name) bool Checks whether a constant exists.

MS SQL
Function Returns Description

mssql_connect int Establishes a connection to an MS-SQL
([string servername server.
[, string username
[, string password]]])

mssql_pconnect int Establishes a persistent connection to an
([string servername MS-SQL server.
[, string username
[, string password]]])

mssql_close bool Closes a connection to an MS-SQL
([resource conn_id]) server.

mssql_select_db bool Select an MS-SQL database.
(string database_name
[, resource conn_id])

mssql_fetch_batch int Returns the next batch of records.
(resource result_index)

mssql_query(string query resource Performs an SQL query on an MS-SQL
[, resource conn_id server database.
[, int batch_size]])

mssql_rows_affected int Returns the number of records affected
(resource conn_id) by the query.

mssql_free_result bool Frees an MS-SQL result index.
(resource result_index)

mssql_get_last_message(void) string Gets the last message from the MS-SQL
server.

mssql_num_rows int Returns the number of rows fetched in
(resource mssql_result_index) from the result_id specified.

mssql_num_fields int Returns the number of fields fetched in
(resource mssql_result_index) from the result_id specified.

Table continued on following page

755

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 755

Function Returns Description

mssql_fetch_row array Returns an array of the current row in
(resource result_id) the result set specified by result_id.

mssql_fetch_object object Returns a psuedo-object of the current
(resource result_id row in the result set specified by
[, int result_type]) result_id.

mssql_fetch_array array Returns an associative array of the
(resource result_id current row in the result set specified by
[, int result_type]) result_id.

mssql_fetch_assoc array Returns an associative array of the
(resource result_id) current row in the result set specified by

result_id.

mssql_data_seek bool Moves the internal row pointer of the
(resource result_id, MS-SQL result associated with the
int offset) specified result identifier to point to the

specified row number.

mssql_fetch_field object Gets information about certain fields in a
(resource result_id query result.
[, int offset])

mssql_field_length int Gets the length of an MS-SQL field.
(resource result_id
[, int offset])

mssql_field_name string Returns the name of the field given by
(resource result_id offset in the result set given by
[, int offset]) result_id.

mssql_field_type string Returns the type of a field.
(resource result_id
[, int offset])

mssql_field_seek bool Seeks to the specified field offset.
(int result_id, int offset)

mssql_result string Returns the contents of one cell from an
(resource result_id, MS-SQL result set.
int row, mixed field)

mssql_next_result bool Moves the internal result pointer to the
(resource result_id) next result.

mssql_min_error_severity void Sets the lower error severity.
(int severity)

mssql_min_message_severity void Sets the lower message severity.
(int severity)

756

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 756

Function Returns Description

mssql_init(string sp_name int Initializes a stored procedure or a remote
[, resource conn_id]) stored procedure.

mssql_bind(resource stmt, bool Adds a parameter to a stored procedure
string param_name, mixed var, or a remote stored procedure.
int type [, int is_output
[, int is_null[, int maxlen]])

mssql_execute(resource stmt mixed Executes a stored procedure on an
[, bool skip_results = false]) MS-SQL server database.

mssql_free_statement bool Frees an MS-SQL statement index.
(resource result_index)

mssql_guid_string string Converts a 16-byte binary GUID to a
(string binary string.
[,int short_format])

MySQL
Function Returns Description

mysql_connect resource Opens a connection to a MySQL Server.
([string hostname[:port]
[:/path/to/socket]
[, string username
[, string password [, bool new
[, int flags]]]]])

mysql_pconnect resource Opens a persistent connection to a
([string hostname[:port] MySQL Server.
[:/path/to/socket]
[, string username
[, string password
[, int flags]]]])

mysql_close bool Closes a MySQL connection.
([int link_identifier])

mysql_select_db bool Selects a MySQL database.
(string database_name
[, int link_identifier])

mysql_get_client_info(void) string Returns a string that represents the client
library version.

mysql_get_host_info string Returns a string describing the type of
([int link_identifier]) connection in use, including the server

host name.

Table continued on following page

757

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 757

Function Returns Description

mysql_get_proto_info int Returns the protocol version used by
([int link_identifier]) current connection.

mysql_get_server_info string Returns a string that represents the
([int link_identifier]) server version number.

mysql_info string Returns a string containing information
([int link_identifier]) about the most recent query.

mysql_thread_id int Returns the thread id of current
([int link_identifier]) connection.

mysql_stat string Returns a string containing status
([int link_identifier]) information.

mysql_client_encoding string Returns the default character set for the
([int link_identifier]) current connection.

mysql_create_db bool Creates a MySQL database.
(string database_name
[, int link_identifier])

mysql_drop_db bool Drops (deletes) a MySQL database.
(string database_name
[, int link_identifier])

mysql_query(string query resource Sends an SQL query to MySQL.
[, int link_identifier])

mysql_unbuffered_query resource Sends an SQL query to MySQL, without
(string query fetching and buffering the result rows.
[, int link_identifier])

mysql_db_query resource Sends an SQL query to MySQL.
(string database_name,
string query
[, int link_identifier])

mysql_list_dbs resource Lists databases available on a MySQL
([int link_identifier]) server.

mysql_list_tables resource Lists tables in a MySQL database.
(string database_name
[, int link_identifier])

mysql_list_fields(string resource Lists MySQL result fields.
database_name, string table_
name [, int link_identifier])

mysql_list_processes resource Returns a result set describing the
([int link_identifier]) current server threads.

mysql_error string Returns the text of the error message
([int link_identifier]) from the previous MySQL operation.

758

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 758

Function Returns Description

mysql_errno int Returns the number of the error message
([int link_identifier]) from the previous MySQL operation.

mysql_affected_rows int Gets number of affected rows in the
([int link_identifier]) previous MySQL operation.

mysql_escape_string string Escapes string for mysql query.
(string to_be_escaped)

mysql_real_escape_string string Escapes special characters in a string for
(string to_be_escaped use in a SQL statement, taking into
[, int link_identifier]) account the current charset of the

connection.

mysql_insert_id int Gets the ID generated from the previous
([int link_identifier]) INSERT operation.

mysql_result mixed Gets result data.
(resource result, int row
[, mixed field])

mysql_num_rows int Gets number of rows in a result.
(resource result)

mysql_num_fields int Gets number of fields in a result.
(resource result)

mysql_fetch_row array Gets a result row as an enumerated
(resource result) array.

mysql_fetch_object object Fetches a result row as an object.
(resource result
[, int result_type])

mysql_fetch_array array Fetches a result row as an array
(resource result (associative, numeric or both).
[, int result_type])

mysql_fetch_assoc array Fetches a result row as an associative
(resource result) array.

mysql_data_seek bool Moves internal result pointer.
(resource result,
int row_number)

mysql_fetch_lengths array Gets max data size of each column in a
(resource result) result.

mysql_fetch_field object Gets column information from a result
(resource result and returns as an object.
[, int field_offset])

Table continued on following page

759

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 759

Function Returns Description

mysql_field_seek bool Sets result pointer to a specific field
(resource result, offset.
int field_offset)

mysql_field_name string Gets the name of the specified field in a
(resource result, result.
int field_index)

mysql_field_table string Gets name of the table the specified field
(resource result, is in.
int field_offset)

mysql_field_len int Returns the length of the specified field.
(resource result,
int field_offset)

mysql_field_type string Gets the type of the specified field in a
(resource result, result.
int field_offset)

mysql_field_flags string Gets the flags associated with the
(resource result, specified field in a result.
int field_offset)

mysql_free_result bool Frees result memory.
(resource result)

mysql_ping bool Pings a server connection. If no
([int link_identifier]) connection exists, it reconnects.

Network Functions
Function Returns Description

define_syslog_variables(void) void Initializes all syslog-related variables.

openlog(string ident, bool Opens connection to system logger.
int option, int facility)

closelog(void) bool Closes connection to system logger.

syslog(int priority, bool Generates a system log message.
string message)

ip2long(string ip_address) int Converts a string containing an (IPv4)
Internet Protocol dotted address into a
proper address.

long2ip(int proper_address) string Converts an (IPv4) Internet network
address into a string in Internet standard
dotted format.

760

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 760

Function Returns Description

getservbyname int Returns port number associated with
(string service, service. Protocol must be tcp or udp.
string protocol)

getservbyport string Returns service name associated with
(int port, string protocol) port. Protocol must be tcp or udp.

getprotobyname(string name) int Returns protocol number associated
with name as per /etc/protocols.

getprotobynumber(int proto) string Returns protocol name associated with
protocol number.

ODBC
Function Returns Description

odbc_close_all(void) void Closes all ODBC connections.

odbc_binmode bool Handles binary column data.
(int result_id, int mode)

odbc_longreadlen bool Handles LONG columns.
(int result_id, int length)

odbc_prepare resource Prepares a statement for execution.
(resource connection_id,
string query)

odbc_execute bool Executes a prepared statement.
(resource result_id
[, array parameters_array])

odbc_cursor string Gets cursor name.
(resource result_id)

odbc_data_source array Returns information about the currently
(resource connection_id, connected data source.
int fetch_type)

odbc_exec resource Prepares and executes an SQL statement.
(resource connection_id,
string query [, int flags])

odbc_fetch_object object Fetches a result row as an object.
(int result [, int rownumber])

odbc_fetch_array array Fetches a result row as an associative
(int result [, int rownumber]) array.

Table continued on following page

761

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 761

Function Returns Description

odbc_fetch_into int Fetches one result row into an array.
(resource result_id,
array result_array,
[, int rownumber])

odbc_fetch_row bool Fetches a row.
(resource result_id
[, int row_number])

odbc_result mixed Gets result data.
(resource result_id,
mixed field)

odbc_result_all int Prints result as HTML table.
(resource result_id
[, string format])

odbc_free_result bool Frees resources associated with a result.
(resource result_id)

odbc_connect resource Connects to a datasource.
(string DSN, string user,
string password
[, int cursor_option])

odbc_pconnect resource Establishes a persistent connection to a
(string DSN, string user, datasource.
string password [,
int cursor_option])

odbc_close void Closes an ODBC connection.
(resource connection_id)

odbc_num_rows int Gets number of rows in a result.
(resource result_id)

odbc_next_result bool Checks if multiple results are available.
(resource result_id)

odbc_num_fields int Gets number of columns in a result.
(resource result_id)

odbc_field_name string Gets a column name.
(resource result_id,
int field_number)

odbc_field_type string Gets the datatype of a column.
(resource result_id,
int field_number)

odbc_field_len int Gets the length (precision) of a column.
(resource result_id,
int field_number)

762

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 762

Function Returns Description

odbc_field_scale int Gets the scale of a column.
(resource result_id,
int field_number)

odbc_field_num int Returns column number.
(resource result_id,
string field_name)

odbc_autocommit mixed Toggles autocommit mode or gets
(resource connection_id autocommit status.
[, int OnOff])

odbc_commit bool Commits an ODBC transaction.
(resource connection_id)

odbc_rollback bool Rolls back a transaction.
(resource connection_id)

odbc_error string Gets the last error code.
([resource connection_id])

odbc_errormsg string Gets the last error message.
([resource connection_id])

odbc_setoption bool Sets connection or statement options.
(resource conn_id|
result_id, int which,
int option, int value)

odbc_tables resource Calls the SQLTables function.
(resource connection_id
[, string qualifier,
string owner, string name,
string table_types])

odbc_columns resource Returns a result identifier that can be
(resource connection_id, used to fetch a list of column names in
string qualifier, specified tables.
string owner,
string table_name,
string column_name)

odbc_columnprivileges resource Returns a result identifier that can be
(resource connection_id, used to fetch a list of columns and
string catalog, associated privileges for the specified
string schema, string table, table.
string column)

Table continued on following page

763

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 763

Function Returns Description

odbc_foreignkeys resource Returns a result identifier to either a list
(resource connection_id, of foreign keys in the specified table or a
string pk_qualifier, list of foreign keys in other tables that
string pk_owner, refer to the primary key in the specified
string pk_table, table.
string fk_qualifier,
string fk_owner,
string fk_table)

odbc_gettypeinfo resource Returns a result identifier containing
(resource connection_id information about data types supported
[, int data_type]) by the data source.

odbc_primarykeys resource Returns a result identifier listing the
(resource connection_id, column names that comprise the
string qualifier, primary key for a table.
string owner, string table)

odbc_procedurecolumns resource Returns a result identifier containing the
(resource connection_id list of input and output parameters, as
[, string qualifier, well as the columns that make up the
string owner, string proc, result set for the specified procedures.
string column])

odbc_procedures resource Returns a result identifier containing the
(resource connection_id list of procedure names in a datasource.
[, string qualifier,
string owner, string name])

odbc_specialcolumns resource Returns a result identifier containing
(resource connection_id, either the optimal set of columns that
int type, string qualifier, uniquely identifies a row in the table or
string owner, string table, columns that are automatically updated
int scope, int nullable) when any value in the row is updated by

a transaction.

odbc_statistics resource Returns a result identifier that contains
(resource connection_id, statistics about a single table and the
string qualifier, string owner, indexes associated with the table.
string name, int unique,
int accuracy)

odbc_tableprivileges resource Returns a result identifier containing a
(resource connection_id, list of tables and the privileges
string qualifier, string owner, associated with each table.
string name)

764

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 764

Output Buffering
Function Returns Description

ob_list_handlers() false| Lists all output_buffers in an
array array.

ob_start([string|array user_ bool Turns on Output Buffering
function [, int chunk_size (specifying an optional output
[, bool erase]]]) handler).

ob_flush(void) bool Flushes (sends) contents of the
output buffer. The last buffer
content is sent to next buffer.

ob_clean(void) bool Cleans (deletes) the current output
buffer.

ob_end_flush(void) bool Flushes (sends) the output buffer,
and deletes current output buffer.

ob_end_clean(void) bool Cleans the output buffer, and
deletes current output buffer.

ob_get_flush(void) bool Gets current buffer contents,
flushes (sends) the output buffer,
and deletes current output buffer.

ob_get_clean(void) bool Gets current buffer contents and
deletes current output buffer.

ob_get_contents(void) string Returns the contents of the output
buffer.

ob_get_level(void) int Returns the nesting level of the
output buffer.

ob_get_length(void) int Returns the length of the output
buffer.

ob_get_status([bool full_status]) false| Returns the status of the active or
array all output buffers.

ob_implicit_flush([int flag]) void Turns implicit flush on/off and is
equivalent to calling flush() after
every output call.

output_reset_rewrite_vars(void) bool Resets (clears) URL rewriter values.

output_add_rewrite_ bool Adds URL rewriter values.
var(string name, string value)

765

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 765

PCRE
Function Returns Description

preg_match(string pattern, int Performs a Perl-style regular expression
string subject [, array match.
subpatterns [, int flags
[, int offset]]])

preg_match_all(string int Performs a Perl-style global regular
pattern, string subject, expression match.
array subpatterns [, int
flags [, int offset]])

preg_replace(mixed regex, string Performs Perl-style regular expression
mixed replace, mixed replacement.
subject [, int limit])

preg_replace_callback string Performs Perl-style regular expression
(mixed regex, mixed replacement using replacement callback.
callback, mixed subject
[, int limit])

preg_split(string pattern, array Splits string into an array using a Perl-style
string subject [, int limit regular expression as a delimiter.
[, int flags]])

preg_quote(string str, string Quotes regular expression characters plus an
string delim_char) optional character.

preg_grep(string regex, array Searches an array and returns entries that
array input) match regex.

PHP Options and Info
Function Returns Description

assert(string|bool assertion) int Checks if assertion is false.

assert_options(int what mixed Sets/gets the various assert flags.
[, mixed value])

phpinfo([int what]) void Outputs a page of useful information
about PHP and the current request.

phpversion([string extension]) string Returns the current PHP version.

phpcredits([int flag]) void Prints the list of people who’ve
contributed to the PHP project.

766

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 766

Function Returns Description

php_logo_guid(void) string Returns the special ID used to request
the PHP logo in phpinfo screens.

php_real_logo_guid(void) string Returns the special ID used to request
the PHP logo in phpinfo screens.

php_egg_logo_guid(void) string Returns the special ID used to request
the PHP logo in phpinfo screens.

zend_logo_guid(void) string Returns the special ID used to request
the Zend logo in phpinfo screens.

php_sapi_name(void) string Returns the current SAPI module name.

php_uname(void) string Returns information about the system
PHP was built on.

php_ini_scanned_files(void) string Returns comma-separated string of .ini
files parsed from the additional ini dir.

getmyuid(void) int Gets PHP script owners UID.

getmygid(void) int Gets PHP script owners GID.

getmypid(void) int Gets current process ID.

getmyinode(void) int Gets the inode of the current script
being parsed.

getlastmod(void) int Gets time of last page modification.

set_time_limit(int seconds) bool Sets the maximum time a script
can run.

ini_get(string varname) string Gets a configuration option.

ini_get_all([string extension]) array Gets all configuration options.

ini_set(string varname, string Sets a configuration option; returns
string newvalue) false on error and the old value of

the configuration option on success.

ini_restore(string varname) void Restores the value of a configuration
option specified by varname.

set_include_path(string string Sets the include_path configuration
varname, string newvalue) option.

get_include_path() string Gets the current include_path
configuration option.

restore_include_path() void Restores the value of the include_
path configuration option.

Table continued on following page

767

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 767

Function Returns Description

get_current_user(void) string Gets the name of the owner of the
current PHP script.

get_cfg_var(string option_name) string Gets the value of a PHP configuration
option.

set_magic_quotes_runtime(int bool Sets the current active configuration
new_setting) setting of magic_quotes_runtime

and returns previous setting.

get_magic_quotes_runtime(void) int Gets the current active configuration
setting of magic_quotes_runtime.

get_magic_quotes_gpc(void) int Gets the current active configuration
setting of magic_quotes_gpc.

get_declared_classes() array Returns an array of all declared
classes.

get_declared_interfaces() array Returns an array of all declared
interfaces.

get_defined_functions(void) array Returns an array of all defined
functions.

get_defined_vars(void) array Returns an associative array of names
and values of all currently defined
variable names (variables in the
current scope).

get_resource_type(resource res) string Gets the resource type name for a
given resource.

get_loaded_extensions(void) array Returns an array containing names of
loaded extensions.

get_defined_constants(void) array Returns an array containing the names
and values of all defined constants.

extension_loaded(string bool Returns true if the named extension
extension_name) is loaded.

get_extension_funcs(string array Returns an array with the names of
extension_name) functions belonging to the named

extension.

get_included_files(void) array Returns an array with the names of
included or required files.

zend_version(void) string Gets the version of the Zend Engine.

768

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 768

Program Execution
Function Returns Description

exec(string command [, array string Executes an external program.
&output [, int &return_value]])

system(string command [, int int Executes an external program and
&return_value]) displays output.

passthru(string command [, int void Executes an external program and
&return_value]) displays raw output.

escapeshellcmd(string command) string Escapes shell metacharacters.

escapeshellarg(string arg) string Quotes and escapes an argument
for use in a shell command.

shell_exec(string cmd) string Executes command via shell and
returns complete output as string.

proc_nice(int priority) bool Changes the priority of the current
process.

proc_terminate(resource process int Kills a process opened by proc_open.
[, long signal])

proc_close(resource process) int Closes a process opened by proc_open.

proc_get_status(resource process) array Gets information about a process
opened by proc_open.

proc_open(string command, array resource Runs a process with more control
descriptorspec, array &pipes over its file descriptors.
[, string cwd [, array env
[, array other_options]]])

Regular Expressions
Function Returns Description

ereg(string pattern, int Matches a regular expression.
string string [, array
registers])

eregi(string pattern, string int Matches a case-insensitive regular
string [, array registers]) expression.

ereg_replace(string pattern, string Replaces a regular expression.
string replacement, string
string)

Table continued on following page

769

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 769

Function Returns Description

eregi_replace(string string Replaces a case-insensitive regular
pattern, string replacement, expression.
string string)

split(string pattern, string array Splits a string into an array by regular
string [, int limit]) expression.

spliti(string pattern, array Splits a string into an array by regular
string string [, int limit]) case-insensitive expression.

sql_regcase(string string) string Creates a regular expression for a
case-insensitive match on a string.

Sessions
Function Returns Description

session_set_cookie_params(int void Sets session cookie parameters.
lifetime [, string path [, string
domain [, bool secure]]])

session_get_cookie_params(void) array Returns the session cookie parameters.

session_name([string newname]) string Returns the current session name. If
newname is given, the session name is
replaced with newname.

session_module_name([string string Returns the current module name
newname]) used for accessing session data. If

newname is given, the module name
is replaced with newname.

session_set_save_handler(string void Sets user-level functions.
open, string close, string read,
string write, string destroy,
string gc)

session_save_path([string string Returns the current save path passed
newname]) to module_name. If newname is given,

the save path is replaced with
newname.

session_id([string newid]) string Returns the current session_id. If
newid is given, the session_id is
replaced with newid.

session_regenerate_id() bool Updates the current session_id with
a newly generated one.

770

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 770

Function Returns Description

session_cache_limiter([string string Returns the current cache limiter. If
new_cache_limiter]) new_cache_limiter is given, the

current cache_limiter is replaced
with new_cache_limiter.

session_cache_expire([int int Returns the current cache expire. If
new_cache_expire]) new_cache_expire is given, the

current cache_expire is replaced
with new_cache_expire.

session_register(mixed var_ bool Adds varname(s) to the list of variables
names [, mixed ...]) that are frozen at the session end.

session_unregister(string bool Removes varname from the list of
varname) variables that are frozen at the

session end.

session_is_registered(string bool Checks if a variable is registered in
varname) session.

session_encode(void) string Serializes the current setup and
returns the serialized representation.

session_decode(string data) bool Deserializes data and reinitializes the
variables.

session_start(void) bool Begins session — reinitializes frozen
variables, registers browsers, and so on.

session_destroy(void) bool Destroys the current session and all
data associated with it.

session_unset(void) void Unsets all registered variables.

session_write_close(void) void Writes session data and ends session.

Simple XML
Function Returns Description

simplexml_load_file simplemxml_element Loads a filename and returns a
(string filename) simplexml_element object to allow

for processing.

simplexml_load_string simplemxml_element Loads a string and returns a
(string data) simplexml_element object to allow

for processing.

simplexml_import_dom simplemxml_element Gets a simplexml_element object
(domNode node) from dom to allow for processing.

771

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 771

Sockets
Function Returns Description

socket_select(array int Runs the select() system call on the
&read_fds, array &write_fds, sets mentioned with a timeout specified
&array except_fds, int by tv_sec and tv_usec.
tv_sec[, int tv_usec])

socket_create_listen(int resource Opens a socket on port to accept
port[, int backlog]) connections.

socket_accept(resource resource Accepts a connection on the listening
socket) socket fd.

socket_set_nonblock bool Sets nonblocking mode on a socket
(resource socket) resource.

socket_set_block(resource bool Sets blocking mode on a socket
socket) resource.

socket_listen(resource bool Sets the maximum number of
socket[, int backlog]) connections allowed to be waited for on

the socket specified by fd.

socket_close(resource socket) void Closes a file descriptor.

socket_write(resource socket, int Writes the buffer to the socket resource;
string buf[, int length]) length is optional.

socket_read(resource socket, string Reads a maximum of length bytes from
int length [, int type]) socket.

socket_getsockname(resource bool Queries the remote side of the given
socket, string &addr[, int socket, which may either result in host/
&port]) port or in a UNIX filesystem path,

dependent on its type.

socket_getpeername(resource bool Queries the remote side of the given
socket, string &addr[, int socket, which may either result in host/
&port]) port or in a UNIX filesystem path,

dependent on its type.

socket_create(int domain, int resource Creates an endpoint for communication
type, int protocol) in the domain specified by domain, of

type specified by type.

socket_connect(resource bool Opens a connection to addr:port on the
socket, string addr [, int socket specified by socket.
port])

772

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 772

Function Returns Description

socket_strerror(int errno) string Returns a string describing an error.

socket_bind(resource socket, bool Binds an open socket to a listening port.
string addr [, int port]) Port is only specified in AF_INET family.

socket_recv(resource socket, int Receives data from a connected socket.
string &buf, int len, int flags)

socket_send(resource socket, int Sends data to a connected socket.
string buf, int len, int flags)

socket_recvfrom(resource int Receives data from a socket, connected
socket, string &buf, int len, or not.
int flags, string &name [, int
&port])

socket_sendto(resource socket, int Sends a message to a socket, whether it
string buf, int len, int flags, is connected or not.
string addr [, int port])

socket_get_option(resource mixed Gets socket options for the socket.
socket, int level, int optname)

socket_set_option(resource bool Sets socket options for the socket.
socket, int level, int optname,
int|array optval)

socket_create_pair(int bool Creates a pair of indistinguishable
domain, int type, int protocol, sockets and stores them in an array.
array &fd)

socket_shutdown(resource bool Shuts down a socket for receiving,
socket[, int how]) sending, or both.

socket_last_error([resource int Returns the last socket error (either
socket]) the last used or the provided socket

resource).

socket_clear_error([resource void Clears the error on the socket or the last
socket]) error code.

fsockopen(string hostname, int Opens Internet or UNIX domain socket
int port [, int errno [, string connection.
errstr [, float timeout]]])

pfsockopen(string hostname, int Opens persistent Internet or UNIX
int port [, int errno [, string domain socket connection.
errstr [, float timeout]]])

773

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 773

SQLite
Function Returns Description

sqlite_popen(string filename resource Opens a persistent handle to a SQLite
[, int mode [, string &error_ database. Will create the database if it
message]]) does not exist.

sqlite_open(string filename resource Opens a SQLite database. Will create
[, int mode [, string &error_ the database if it does not exist.
message]])

sqlite_factory(string filename object Opens a SQLite database and creates
[, int mode [, string an object for it. Will create the database
&error_message]]) if it does not exist.

sqlite_busy_timeout(resource void Sets busy timeout duration. If ms <= 0,
db, int ms) all busy handlers are disabled.

sqlite_close(resource db) void Closes an open sqlite database.

sqlite_unbuffered_query(string resource Executes a query that does not
query, resource db [, int prefetch and buffer all data.
result_type])

sqlite_query(string query, resource Executes a query against a given
resource db [, int result_type]) database and returns a result handle.

sqlite_fetch_all(resource array Fetches all rows from a result set as an
result [, int result_type [, bool array of arrays.
decode_binary]])

sqlite_fetch_array(resource array Fetches the next row from a result set
result [, int result_type [, bool as an array.
decode_binary]])

sqlite_fetch_object(resource object Fetches the next row from a result set
result [, string class_name as an object.
[, NULL|array ctor_params
[, bool decode_binary]]])

sqlite_array_query(resource db, array Executes a query against a given
string query [, int result_type database and returns an array of
[, bool decode_binary]]) arrays.

sqlite_single_query(resource db, array Executes a query and returns either an
string query [, bool first_row_ array for one single column or the value
only [, bool decode_binary]]) of the first row.

sqlite_fetch_single(resource string Fetches the first column of a result set
result [, bool decode_binary]) as a string.

sqlite_current(resource result array Fetches the current row from a result
[, int result_type [, bool set as an array.
decode_binary]])

774

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 774

Function Returns Description

sqlite_column(resource result, mixed Fetches a column from the current row
mixed index_or_name [, bool of a result set.
decode_binary])

sqlite_libversion() string Returns the version of the linked
SQLite library.

sqlite_libencoding() string Returns the encoding (iso8859 or UTF-
8) of the linked SQLite library.

sqlite_changes(resource db) int Returns the number of rows that were
changed by the most recent SQL
statement.

sqlite_last_insert_rowid int Returns the rowid of the most recently
(resource db) inserted row.

sqlite_num_rows(resource int Returns the number of rows in a
result) buffered result set.

sqlite_has_more(resource bool Returns whether more rows are
result) available.

sqlite_has_prev(resource bool Returns whether a previous row is
result) available.

sqlite_num_fields(resource int Returns the number of fields in a
result) result set.

sqlite_field_name(resource string Returns the name of a particular field
result, int field_index) of a result set.

sqlite_seek(resource result, bool Seeks to a particular row number of a
int row) buffered result set.

sqlite_rewind(resource result) bool Seeks to the first row number of a
buffered result set.

sqlite_next(resource result) bool Seeks to the next row number of a
result set.

sqlite_prev(resource result) bool Seeks to the previous row number of a
result set.

sqlite_escape_string(string string Escapes a string for use as a query
item) parameter.

sqlite_last_error(resource db) int Returns the error code of the last error
for a database.

sqlite_error_string(int error_ string Returns the textual description of an
code) error code.

Table continued on following page

775

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 775

Function Returns Description

sqlite_create_aggregate bool Registers an aggregate function for
(resource db, string funcname, queries.
mixed step_func, mixed finalize_
func[, long num_args])

sqlite_create_function bool Registers a regular function for
(resource db, string funcname, queries.
mixed callback[, long num_args])

sqlite_udf_encode_binary string Applies binary encoding (if required)
(string data) to a string to return from a UDF.

sqlite_udf_decode_binary string Decodes binary encoding on a string
(string data) parameter passed to a UDF.

Streams
Function Returns Description

stream_socket_client(string resource Opens a client connection to a
remoteaddress [, long &errcode, remote address.
string &errstring, double timeout,
long flags, resource context])

stream_socket_server(string resource Creates a server socket bound to
localaddress [, long &errcode, localaddress.
string &errstring, long flags,
resource context])

stream_socket_accept(resource resource Accepts a client connection from
serverstream, [double timeout, a server socket.
string &peername])

stream_socket_get_name(resource string Returns either the locally bound or
stream, bool want_peer) remote name for a socket stream.

stream_socket_sendto(resouce long Sends data to a socket stream. If
stream, string data [, long flags target_addr is specified, it must be
[, string target_addr]]) in dotted quad (or [ipv6]) format.

stream_socket_recvfrom(resource string Receives data from a socket
stream, long amount [, long flags stream.
[, string &remote_addr]])

stream_get_contents(resource long Reads all remaining bytes (up to
source [, long maxlen]) maxlen bytes) from a stream and

returns them as a string.

776

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 776

Function Returns Description

stream_copy_to_stream(resource long Reads up to maxlen bytes from
source, resource dest [, long source stream and writes them to
maxlen]) destination stream.

stream_get_meta_data(resource fp) resource Retrieves header/meta data from
streams/file pointers.

stream_get_transports() array Retrieves list of registered socket
transports.

stream_get_wrappers() array Retrieves list of registered stream
wrappers.

stream_select(array &read_streams, int Runs the select() system call
array &write_streams, array &except_ on the sets of streams with a
streams, int tv_sec[, int tv_usec]) timeout specified by tv_sec and

tv_usec.

stream_context_get_options array Retrieves options for a stream/
(resource context|resource stream) wrapper/context.

stream_context_set_option(resource bool Sets an option for a wrapper.
context|resource stream, string
wrappername, string optionname,
mixed value)

stream_context_set_params(resource bool Sets parameters for a file context.
context|resource stream, array
options)

stream_context_create([array resource Creates a file context and
options]) optionally sets parameters.

stream_filter_prepend(resource bool Prepends a filter to a stream.
stream, string filtername[, int
read_write[, string filterparams]])

stream_filter_append(resource bool Appends a filter to a stream.
stream, string filtername[, int
read_write[, string filterparams]])

stream_get_line(resource stream, string Reads up to maxlen bytes from a
int maxlen, string ending) stream or until the ending string

is found.

stream_set_blocking(resource bool Sets blocking/nonblocking mode
socket, int mode) on a socket or stream.

set_socket_blocking(resource bool Sets blocking/nonblocking mode
socket, int mode) on a socket.

stream_set_timeout(resource stream, bool Sets timeout on stream read to
int seconds, int microseconds) seconds + microseconds.

Table continued on following page

777

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 777

Function Returns Description

stream_set_write_buffer(resource int Sets file write buffer.
fp, int buffer)

stream_wrapper_register(string bool Registers a custom URL protocol
protocol, string classname) handler class.

stream_bucket_make_writeable object Returns a bucket object from the
(resource brigade) brigade for operating on.

stream_bucket_prepend(resource void Prepends bucket to brigade.
brigade, resource bucket)

stream_bucket_append(resource void Appends bucket to brigade.
brigade, resource bucket)

stream_bucket_new(resource stream, resource Creates a new bucket for use on
string buffer) the current stream.

stream_get_filters(void) array Returns a list of registered filters.

stream_filter_register(string bool Registers a custom filter handler
filtername, string classname) class.

Strings
Function Returns Description

crc32(string str) string Calculates the crc32 polynomial
of a string.

crypt(string str [, string salt]) string Encrypts a string.

convert_cyr_string(string str, string Converts from one Cyrillic
string from, string to) character set to another.

lcg_value() float Returns a value from the combined
linear congruential generator.

levenshtein(string str1, string str2) int Calculates Levenshtein distance
between two strings.

md5(string str, [bool raw_output]) string Calculates the md5 hash of a string.

md5_file(string filename [, bool string Calculates the md5 hash of given
raw_output]) filename.

metaphone(string text, int phones) string Breaks English phrases down into
their phonemes.

778

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 778

Function Returns Description

pack(string format, mixed arg1 string Takes one or more arguments
[, mixed arg2 [, mixed ...]]) and packs them into a binary

string according to the format
argument.

unpack(string format, string input) array Unpacks binary string into
named array elements according
to format argument.

sha1(string str [, bool raw_output]) string Calculates the sha1 hash of a
string.

sha1_file(string filename [, bool string Calculates the sha1 hash of
raw_output]) given filename.

soundex(string str) string Calculates the soundex key of a
string.

bin2hex(string data) string Converts the binary
representation of data to hex.

strspn(string str, string mask int Finds length of initial segment
[, start [, len]]) consisting entirely of characters

found in mask. If start and/or
length is provided, works like
strspn(substr($s,$start,
$len),$good_chars).

strcspn(string str, string mask int Finds length of initial segment
[, start [, len]]) consisting entirely of characters

not found in mask. If start and/
or length is provided, works like
strcspn(substr($s,$start,
$len),$bad_chars).

nl_langinfo(int item) string Queries language and locale
information.

strcoll(string str1, string str2) int Compares two strings using the
current locale.

trim(string str [, string string Strips whitespace from the
character_mask]) beginning and end of a string.

rtrim(string str [, string string Removes trailing whitespace.
character_mask])

ltrim(string str [, string string Strips whitespace from the
character_mask]) beginning of a string.

wordwrap(string str [, int width string Wraps buffer to selected number of
[, string break [, boolean cut]]]) characters using string break char.

Table continued on following page

779

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 779

Function Returns Description

explode(string separator, string array Splits a string on string separator
str [, int limit]) and returns array of components.

join(array src, string glue) string An alias for implode function.

implode([string glue,] array pieces) string Joins array elements placing glue
string between items and returns
one string.

strtok([string str,] string token) string Tokenizes a string.

strtoupper(string str) string Makes a string uppercase.

strtolower(string str) string Makes a string lowercase.

basename(string path [, string string Returns the filename component
suffix]) of the path.

dirname(string path) string Returns the directory name
component of the path.

pathinfo(string path) array Returns information about a
certain string.

stristr(string haystack, string string Finds first occurrence of a string
needle) within another, case insensitive.

strstr(string haystack, string string Finds first occurrence of a string
needle) within another.

strchr(string haystack, string string An alias for strstr.
needle)

strpos(string haystack, string int Finds position of first occurrence
needle [, int offset]) of a string within another.

stripos(string haystack, string int Finds position of first occurrence
needle [, int offset]) of a string within another, case

insensitive.

strrpos(string haystack, string int Finds position of last occurrence
needle [, int offset]) of a string within another string.

strripos(string haystack, string int Finds position of last occurrence
needle [, int offset]) of a string within another string.

strrchr(string haystack, string string Finds the last occurrence of a
needle) character in a string within another.

chunk_split(string str [, int string Returns split line.
chunklen [, string ending]])

substr(string str, int start [, int string Returns part of a string.
length])

substr_replace(mixed str, mixed mixed Replaces part of a string with
repl, mixed start [, mixed length]) another string.

780

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 780

Function Returns Description

quoted_printable_decode(string str) string Converts a quoted-printable
string to an 8-bit string.

quotemeta(string str) string Quotes (escapes with \) meta
characters.

ord(string character) int Returns ASCII value of character.

chr(int ascii) string Converts ASCII code to a character.

ucfirst(string str) string Makes a string’s first character
uppercase.

ucwords(string str) string Uppercases the first character of
every word in a string.

strtr(string str, string from, string Translates characters in str using
string to) given translation tables.

strrev(string str) string Reverses a string.

similar_text(string str1, string int Calculates the similarity between
str2 [, float percent]) two strings.

addcslashes(string str, string string Escapes all chars mentioned in
charlist) charlist with backslash. It creates

octal representations if asked to
backslash characters with 8-bit
set or with ASCII<32 (except
‘\n’, ‘\r’, ‘\t’, and so on).

addslashes(string str) string Escapes single quote, double
quotes, and backslash characters
in a string with backslashes.

stripcslashes(string str) string Strips backslashes from a string.
Uses C-style conventions.

stripslashes(string str) string Strips backslashes from a string.

str_replace(mixed search, mixed mixed Replaces all occurrences of
replace, mixed subject [, int search in haystack with replace.
&replace_count])

str_ireplace(mixed search, mixed mixed Replaces all (case-insensitive)
replace, mixed subject [, int occurrences of search in haystack
&replace_count]) with replace.

hebrev(string str [, int max_chars_ string Converts logical Hebrew text to
per_line]) visual text.

hebrevc(string str [, int max_chars_ string Converts logical Hebrew text to
per_line]) visual text with newline

conversion.

Table continued on following page

781

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 781

Function Returns Description

nl2br(string str) string Converts newlines to HTML line
breaks.

strip_tags(string str [, string string Strips HTML and PHP tags from
allowable_tags]) a string.

setlocale(mixed category, string string Sets locale information.
locale [, string ...])

parse_str(string encoded_string void Parses GET/POST/COOKIE
[, array result]) data and sets global variables.

str_repeat(string input, int mult) string Returns the input string repeat
mult times.

count_chars(string input [, int mixed Returns info about what
mode]) characters are used in input.

strnatcmp(string s1, string s2) int Returns the result of string
comparison using “natural”
algorithm.

localeconv(void) array Returns numeric formatting
information based on the current
locale.

strnatcasecmp(string s1, string s2) int Returns the result of case-
insensitive string comparison
using “natural” algorithm.

substr_count(string haystack, int Returns the number of times a
string needle) substring occurs in the string.

str_pad(string input, int pad_length string Returns input string padded on
[, string pad_string [, int pad_ the left or right to specified
type]]) length with pad_string.

sscanf(string str, string format mixed Implements an ANSI
[, string ...]) C-compatible sscanf.

str_rot13(string str) string Performs the rot13 transform on
a string.

str_shuffle(string str) void Shuffles string. One permutation
of all possible is created.

str_word_count(string str, [int mixed Counts the number of words
format]) inside a string. If format of 1 is

specified, it returns an array
containing all the words found. A
format of 2 returns an associative
array where the key is the
numeric position of the word.

782

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 782

Function Returns Description

money_format(string format , float string Converts monetary value(s) to
value) string.

str_split(string str array Converts a string to an array. If
[, int split_length]) split_length is specified,

breaks the string down into
chunks each split_length
characters long.

strpbrk(string haystack, string array Searches a string for any of a set
char_list) of characters.

substr_compare(string main_str, int Binary safe optionally case-
string str, int offset [, int length insensitive comparison of two
[, bool case_sensitivity]]) strings from an offset, up to

length characters.

uuencode(string data) string Unencode a string.

uudecode(string data) string Decode a uuencoded string.

sprintf(string format [, mixed arg1 string Returns a formatted string.
[, mixed ...]])

vsprintf(string format, array args) string Returns a formatted string.

printf(string format [, mixed arg1 int Outputs a formatted string.
[, mixed ...]])

vprintf(string format, array args) int Outputs a formatted string.

fprintf(resource stream, string int Outputs a formatted string into a
format [, mixed arg1 [, mixed ...]]) stream.

vfprintf(resource stream, string int Outputs a formatted string into a
format, array args) stream.

htmlspecialchars(string string string Converts special characters to
[, int quote_style][, string charset]) HTML entities.

html_entity_decode(string string string Converts all HTML entities to
[, int quote_style][, string charset]) their applicable characters.

htmlentities(string string [, int string Converts all applicable
quote_style][, string charset]) characters to HTML entities.

get_html_translation_table([int array Returns the internal translation
table [, int quote_style]]) table used by htmlspecialchars

and htmlentities.

strlen(string str) int Gets string length.

strcmp(string str1, string str2) int Binary safe string comparison.

Table continued on following page

783

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 783

Function Returns Description

strncmp(string str1, string str2, int Binary safe string comparison.
int len)

strcasecmp(string str1, string str2) int Binary safe case-insensitive
string comparison.

strncasecmp(string str1, string int Binary safe string comparison.
str2, int len)

URL
Function Returns Description

http_build_query(mixed string Generates a form-encoded query string
formdata [, string prefix]) from an associative array or object.

parse_url(string url) array Parses a URLand returns its components.

get_headers(string url) array Fetches all the headers sent by the
server in response to an HTTP request.

urlencode(string str) string URL-encodes all non alphanumeric
characters except -_.

urldecode(string str) string Decodes URL-encoded string.

rawurlencode(string str) string URL-encodes all non alphanumeric
characters.

rawurldecode(string str) string Decodes URL-encoded string.

base64_encode(string str) string Encodes string using MIME base64
algorithm.

base64_decode(string str) string Decodes string using MIME base64
algorithm.

get_meta_tags(string filename array Extracts all meta tag content attributes
[, bool use_include_path]) from a file and returns an array.

Variable Functions
Function Returns Description

gettype(mixed var) string Returns the type of the variable.

settype(mixed var, string type) bool Sets the type of the variable.

784

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 784

Function Returns Description

intval(mixed var [, int base]) int Gets the integer value of a variable using
the optional base for the conversion.

floatval(mixed var) float Gets the float value of a variable.

strval(mixed var) string Gets the string value of a variable.

is_null(mixed var) bool Returns true if variable is null.

is_resource(mixed var) bool Returns true if variable is a resource.

is_bool(mixed var) bool Returns true if variable is a Boolean.

is_long(mixed var) bool Returns true if variable is a long (integer).

is_float(mixed var) bool Returns true if variable is a float point.

is_string(mixed var) bool Returns true if variable is a string.

is_array(mixed var) bool Returns true if variable is an array.

is_object(mixed var) bool Returns true if variable is an object.

is_numeric(mixed value) bool Returns true if value is a number or a
numeric string.

is_scalar(mixed value) bool Returns true if value is a scalar.

is_callable(mixed var [, bool bool Returns true if var is callable.
syntax_only [, string
callable_name]])

var_dump(mixed var) void Dumps a string representation of
variable to output.

debug_zval_dump(mixed var) void Dumps a string representation of an
internal zend value to output.

var_export(mixed var [, bool mixed Outputs or returns a string
return]) representation of a variable.

serialize(mixed variable) string Returns a string representation of variable
(which can later be unserialized).

unserialize(string variable_ mixed Takes a string representation of variable
representation) and recreates it.

memory_get_usage() int Returns the allocated by PHP memory.

print_r(mixed var [, bool mixed Prints out or returns information about
return]) the specified variable.

import_request_variables bool Imports GET/POST/Cookie variables
(string types [, string into the global scope.
prefix])

785

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 785

XML
Function Returns Description

xml_parser_create([string encoding]) resource Creates an XML parser.

xml_parser_create_ns([string resource Creates an XML parser.
encoding [, string sep]]).

xml_set_object(resource parser, int Sets up object which should be
object &obj) used for callbacks.

xml_set_element_handler(resource int Sets up start and end element
parser, string shdl, string ehdl) handlers.

xml_set_character_data_handler int Sets up character data handler.
(resource parser, string hdl)

xml_set_processing_instruction_ int Sets up processing instruction
handler(resource parser, string hdl) (PI) handler.

xml_set_default_handler(resource int Sets up default handler.
parser, string hdl)

xml_set_unparsed_entity_decl_ int Sets up unparsed entity
handler(resource parser, string hdl) declaration handler.

xml_set_notation_decl_handler int Sets up notation declaration
(resource parser, string hdl) handler.

xml_set_external_entity_ref_ int Sets up external entity reference
handler(resource parser, string hdl) handler.

xml_set_start_namespace_decl_ int Sets up character data handler.
handler(resource parser, string hdl)

xml_set_end_namespace_decl_handler int Sets up character data handler.
(resource parser, string hdl)

xml_parse(resource parser, string int Starts parsing an XML document.
data [, int isFinal])

xml_parse_into_struct(resource int Parses an XML document.
parser, string data, array &struct,
array &index)

xml_get_error_code(resource parser) int Gets XML parser error code.

xml_error_string(int code) string Gets XML parser error string.

xml_get_current_line_number int Gets current line number for an
(resource parser) XML parser.

xml_get_current_column_number int Gets current column number for
(resource parser) an XML parser.

786

Appendix F

40_588206 appf.qxd 6/30/05 12:54 AM Page 786

Function Returns Description

xml_get_current_byte_index int Gets current byte index for an
(resource parser) XML parser.

xml_parser_free(resource parser) int Frees an XML parser.

xml_parser_set_option(resource int Sets options in an XML parser.
parser, int option, mixed value)

xml_parser_get_option(resource int Gets options from an XML
parser, int option) parser.

utf8_encode(string data) string Encodes an ISO-8859-1 string to
UTF-8.

utf8_decode(string data) string Converts a UTF-8 encoded string
to ISO-8859-1.

ZLib
Function Returns Description

gzfile(string filename [, int use_ array Reads and uncompresses entire
include_path]) .gz-file into an array.

gzopen(string filename, string mode resource Opens a .gz-file and returns a
[, int use_include_path]) .gz-file pointer.

readgzfile(string filename [, int int Outputs a .gz-file.
use_include_path])

gzcompress(string data [, int level]) string Gzip-compresses a string.

gzuncompress(string data [, int string Unzips a gzip-compressed string.
length])

gzdeflate(string data [, int level]) string Gzip-compresses a string.

gzinflate(string data [, int length]) string Unzips a gzip-compressed string.

zlib_get_coding_type(void) string Returns the coding type used for
output compression.

gzencode(string data [, int level string GZ-encodes a string.
[, int encoding_mode]])

ob_gzhandler(string str, int mode) string Encodes str based on accept-
encoding setting; designed to be
called from ob_start() as a
callback function.

787

PHP Language Reference

40_588206 appf.qxd 6/30/05 12:54 AM Page 787

40_588206 appf.qxd 6/30/05 12:54 AM Page 788

In
de

x

Index

SYMBOLS
* (asterisk)

elements, matching styles by universal selector, 174
Perl expression, 385

*/ (asterisk, forward slash), 474
\ (backslash), 400
{} (braces)

JavaScript, 287
Perl, 372
PHP, 474, 501

^ (caret), 385
: (colon), 400
$ (dollar sign), 475
// (double forward slash), 474
/* (forward slash, asterisk), 474
() (parentheses), 386
+ (plus sign), 385
(pound sign)

identifiers, matching style elements by, 175
PHP commenting, 474

“ (quotation marks)
adding with styles, 184–185
autogenerating in text, 205
block, offsetting, 31–33

; (semicolon)
JavaScript, 287
Perl, 372
PHP, 474, 501, 502

[] (square brackets)
element attributes, matching styles, 175–176
Perl regular expression, 385

A
abbreviations

text, 87
XHTML element, 528–529

absolute paths, URL, 71
absolute positioning, CSS elements, 248–249, 593
accessing

databases
MySQL, 434–438
Perl, 453–456
PHP, 523–526
Python, 467–469

files, 387–388
property values, Perl object, 392–393

acronym, XHTML, 529
actions, mapping. See image maps
active link, coloring, 74
ActiveX, 214
address, URL

absolute versus relative paths, 71
components, 69–70
data, passing to CGI script, 425–426
described, 4
form data, passing, 128
HTTP data, encapsulating, 364–366
information, manipulating (location), 314–315
links, 69–71
PHP functions, 784
Python functions, 709–715

address, XHTML element, 530
Adobe Illustrator, 57
Adobe Photoshop, 57
alert function, 289
aligning

images, 62–63
text, 189–194, 582–583, 591
XHTML tables, 91–94

anchor
clickable regions, image map, 65
described (<a>), 71–72
DTD, 14

41_588206 bindex.qxd 6/30/05 12:56 AM Page 789

anchor (continued)
JavaScript object, 612–613
keyboard shortcuts and tab orders, 73–74
link titles, 72–73
pseudoclasses matching styles, 179–180

animation
document elements, 356–361
DOM, 265
GIF, 55–57
menus, 351–355
Shockwave Flash, adding, 149–150

Animation Shop (JASC Software), 54–57
anonymous functions, Python (lambda keyword), 417
Apache server

Internal Server error message, Perl and, 395–396
Linux Bash shell, configuring to deliver, 424–425
PHP functions, 472, 717–718

area
clickable regions, image map tags, 65–66
JavaScript object, 613

arithmetic functions, Perl, 660
arithmetic operators

JavaScript, 604
Perl, 377, 652
Python, 408

array
JavaScript objects

built-in, 270
listed, 613–614
user-created, 283

Perl
functions, 664–665
objects, 373, 656–657

PHP functions, 718–722
Python functions, 680–681

ASCII-binary code conversion, 684–685
assignment operators

JavaScript, 604
Perl, 377, 652
Python, 408–409

asterisk (*)
elements, matching styles by universal selector, 174
Perl expression, 385

asterisk, forward slash (*/), 474
asynchronous communication, Python functions,

681–684
attributes

CSS, matching elements, 175–176
XHTML

color codes, 571–576
core, 571
events, 570–571
internationalization, 571

XML, 157

autogenerating text, CSS
numbering elements, 205–209
quotation marks, 205

automatic numbering
chapter and section number example, 207–208
counter object, 206
counting, 582
described, 205
list, custom, 208–209
text, 205–209
value, changing counter’s, 206–207

automatic refresh and redirect meta tags, 18–19
automation, form, 314

B
background

colors, 228–230, 579
images

described, 231–232
positioning, 236, 578, 579
repeated and scrolling, 232–235, 578–579

properties, consolidating, 580
text, coloring by class, 174–175
XHTML table cells, 105–106

backslash (\), 400
Bash shell scripting

Apache, configuring, 424–425
exporting data, 426–428
file, listing, 428–429
passing data, 425–426
state, toggling, 429
user-specific command, running, 429–430

BCMath functions, PHP, 722–723
beginning elements

document (<html>), 15
PHP, 473–474
pseudoelements, 184–185

Berners-Lee, Tim (HTML and HTTP inventor), 7
big text, 86
binary files

converting to ASCII, 684–685
handling, 420
manipulating, 389–390
PHP, 497–498

bitwise operators
JavaScript, 604
Perl, 378, 653
Python, 410

blank form fields, checking for. See validating forms,
JavaScript

blinking text, 200
block, code

CSS, handling, 588–591
DHTML, animating, 356–361

790

anchor (continued)

41_588206 bindex.qxd 6/30/05 12:56 AM Page 790

HTML divisions, 31–33
PHP, 474
Python, delimiting, 400

blocking changes to form fields, 141–142
body section

HTML tags, 20–21
with two tables, 25
visible content, 533–534
XHTML tables, 103–105

bold text
CSS, 212–213, 585
HTML, 84–85
XHTML, 531

Boolean object, JavaScript, 614–615
borders

CSS
collapsing, 241–243
color, 220–221
defining, 238–239, 594–596
differing adjacent, 242
predefined styles, 220–222
shortcut, 222
space to neighboring elements (margins), 223–224
spacing, 223, 239–240
width, 219–220

images, 62–63
property shortcut, 222
XHTML tables

drop-shadow effect, 115–116
setting, 96–99

bottom, positioning elements, 252–254
box formatting model, CSS, 215–218
braces ({})

JavaScript, 287
Perl, 372
PHP, 474, 501

break statement
JavaScript, 278
PHP, 486
Python, 412–413

browser, Web
caching with meta tags, 18
default path, setting, 17
DOM support, listed, 264
formatting shortcuts, reasons to avoid, 10
JavaScript support lacking, 323
meta tags caching, 18
refreshing and reloading after specified time, 18–19
scripting language, unsupported, 552
Web servers, connecting, 1–2
window, another

opening, 329–331
outputting text, 331–333

XML, usefulness of, 154, 160

built-in functions
Perl, 386–387
PHP, listed, 486–490
Python, 415–416

built-in objects, JavaScript
current document, 312–313
form elements, 313–314
history list, navigating, 315
reference-making element, 315–316
URL information, manipulating, 314–315
XHTML document, 311–312

bulleted list
described, 35, 42–43, 569
item marker, changing, 43–46
ordered lists within, 47–48
ordinal, changing position of, 46

button, form
checkbox clicks, automating, 314
custom text, 135–136
JavaScript object, 615–616
radio, 131–132, 635–636
reset, 137–138
submit, 137–138
XHTML element, 534–535

BZip2, PHP functions, 723–724

C
calendar

dynamic, user-interactive
Perl, 447–453
PHP, 517–523
Python, 463–466

simple
Perl, 439–444
PHP, 509–514, 724–725
Python, 457–460

capitalization
changing, 583
denoting, 200, 585

captions
CSS tables, 598
XHTML tables, 102–103, 244, 535

caret (^), 385
Cascading Style Sheets. See CSS
cells

CSS tables, rendering, 597
spacing, 239–240
XHTML tables

defining, 564
delimiting, 100–101
rules, 98–99
spacing and padding, 94–95
width and alignment, 91–94

791

cells

In
de

x

41_588206 bindex.qxd 6/30/05 12:56 AM Page 791

CGI (Common Gateway Interface). See also Perl; Python
form, sample, 432–434
history, 363
HTTP

data encapsulation, 364–366
request and response, 363–364

mechanics, 366–367
MySQL data, sample, 434–438
Python functions, 685–687
scripting

basic requirements, 423–424
Linux Bash shell, 424–430

servers, 367–368
when to use, 431–432

cgitb troubleshooting tool, Python, 421–422
changes, text, incorporating in line (HTML) (), 82
changing nodes, DOM, 302–309
chapter and section, automatic numbering, 207–208
characters

matching with Perl, 673
type functions, PHP, 726

checkbox, form
JavaScript, 616–617
XHTML, 132

child sibling elements, matching by, 176–178
circular area, image map, 64
citation, source, 536
class

functions, PHP, 725–726
matching elements, CSS, 174–175
object definitions, PHP, 491

clickable regions, image map, 64–66
clients, Web, 1
clipping boundary, CSS blocks, 589
closing files

Perl, 389
PHP, 497
Python, 420

code
inline snippets, XHTML element, 536–537
running in interpreter, 421

code block
CSS, handling, 588–591
DHTML, animating, 356–361
HTML divisions, 31–33
PHP, 474
Python, delimiting, 400

collapsible lists, creating with DHTML, 317–319
collapsing borders, 241–243
colon (:), 400
colors

background, 228–230
changing following mouse movement, 285–286
foreground, 227–228
links, 74

style, defining, 171–172
text, 584
transparency, graphics, 53
XHTML codes, 571–576

columns
HTML table headers, 100–101
XHTML tables

attributes, specifying, 537
grouping, 109–111, 537–538
multiple, newspaper-like, 120–121
spanning, 106–109

command terminal character and blocks of code, 474
commenting code

Perl, 372
PHP, 474
Python, 400
style sheets, 167
XML, 157

commercial image applications, 57
Common Gateway Interface. See CGI
comparison operators

JavaScript, 604
Perl, 378, 652–653
Python, 409

compressing white space, 198
conditions

loop, breaking (continue), 278
Perl, 658–660

constructors
Perl objects, 392
PHP objects, 491–492

content
block, enclosing (<div>), 539–540
body section

HTML tags, 20–21
with two tables, 25
visible content, 533–534
XHTML tables, 103–105

CSS, 581–582
document, writing (write and writeln

methods), 313
overflow, controlling, 257–258
visible, tag containing (<body>), 533–534

continue statement
JavaScript, 278
Perl, 382–383
PHP, 486
Python, 412–413

control structures
JavaScript

breaking out (break), 278
do while loop, 274
expression, executing code based on value of

(switch), 277–278
for loop, 275

792

CGI (Common Gateway Interface)

41_588206 bindex.qxd 6/30/05 12:56 AM Page 792

for in loop, 276
if and if else loops, 276–277
while loop, 274–275

Perl
continue, 382–383
for loop, 380–381
foreach loop, 381
if and if else, 381–382
last, 382–383
next, 382–383
redo, 382–383
while and until loops, 380

Python
continue and break, 412–413
for loop, 411
if and elif statements, 411–412
try statement, 412
while loop, 410–411

conversion functions, 661
cookie functions, Python, 687–688
copyright, image, 58
core attributes, XHTML, 571
count modifiers, matching, 674
counter object, automatic numbering, 206
CSS (Cascading Style Sheets)

border settings, 219–223, 238–239
box formatting model, 215–218
cascading, 167–169
collapsing borders, 241–243
defining styles, 166–167
dynamic outlines, 224–225
HTML and, 164–165
inheritance, 179
inline text formatting, 81–82
levels, 165
margins, 223–224
matching elements, 173–178
padding elements, 218–219
positioning elements

absolute, 248–249
fixed, 249–252
floating, 255–256
layering, 258–261
relative, 246–248
specifying (top, right, bottom, and left proper-

ties), 252–254
static, 245–246
syntax, 245
visibility, 261–262

properties and table attributes, 237–238
property values, 172–173
pseudoclasses, 179–181
pseudoelements, 181–185
purpose, 163

selectors, 173, 577
shorthand expressions, 185–187
spacing borders and cells, 239–240
style definition format, 171–172
tables properties, 237–243
text, 189–214
versions 1.0 and 2.0, 8–9

curl function, PHP, 726–727
current date, writing to document in JavaScript,

325–327
current document object, JavaScript, 312–313
cursive fonts, 210
cursor, mouse, 599

D
data encapsulation, HTTP, 364–366
data entry. See form
data, extracting from Perl files, 390–391
data passing

HTTP (GET and POST), 364–366, 444–453
Linux Bash shell scripting, 425–426
to software, 555–556
XHTML forms, 128

data types
JavaScript, 270–271
Perl, 372–373
PHP, 475
Python

dictionaries, 405–406
lists, 404–405
numbers, 401
strings, 402–404
tuples, 406–407

database access, query, and report
MySQL, 434–438
Perl, 453–456
PHP, 523–526
Python, 467–469

date
current

in document header, 475–477
writing to document, 325–327

graphical display, 338–341
handling

JavaScript, 282, 617–620
Perl examples, 439–444
PHP, 509–514, 727–728
Python examples, 457–460

debugger, Perl symbolic, 651
decorations, text, 200–201
default meta tag path, 17–18
defining styles, CSS, 166–167
definition lists, 35, 538, 540–541

793

definition lists

In
de

x

41_588206 bindex.qxd 6/30/05 12:56 AM Page 793

deleting text, 86–87, 538–539
descendant elements, matching by, 176–178
design strategy, XML, 153–154
destructors, PHP objects, 491–492
DevGuru JavaScript Language Index, 325
DHTML (Dynamic HTML)

collapsible lists, 317–319
JavaScript

code blocks, animating, 356–361
menus, animating, 351–355
styles, swapping, 348–351

moving elements, 319–321
uses, 316–317

dictionary data, Python, 405–406
directory functions

Perl, 670
PHP, 729

directory, HTTP requests, 363–364
document

CSS
layering, 258–261
matching, 173–178
padding, 218–219
sizing, 256–258
visibility, 261–262

DOM, accessing by ID, 316
external content, embedding, 552–553
form, inserting, 129
header containing current date and time, 475–477
HTML tags

block divisions, 31–33
body section, 20–21
body with two tables, 25
described, 13
DOCTYPE, 10, 14–15
head section, 15–19
headings, 27–28
horizontal rules, 28–29
HTML, 10–11, 15
manual line breaks, 25–27
paragraphs, 23–24
preformatted text, 30–31
script section, 20
style section, 19

image map code sample, 66–67
intelligence, in JavaScript, 265
JavaScript object, 620–622
master element, 545
moving with JavaScript, 319–321
navigational pane, 119–120
original/desired location, defining in XHTML (<base>),

531–532
URL, 70
XML, 156–157

document type definitions. See DTDs
dollar sign ($), 475
DOM (Document Object Model)

changing nodes, 302–309
history, 291–292
JavaScript, 263, 264–265
node properties and methods, 295–296
sample, 292–294
traversing nodes, 296–302

double forward slash (//), 474
do-while loop, 274, 482
drop caps, adding to first letter, 183–184
drop shadow text, 201
drop-down menu effect, 351–355
DTDs (document type definitions)

document type tags, 14–15
XHTML Basic 1.0, 14
XHTML frame support, 122
XML support, 155

Dynamic HTML (DHTML)
collapsible lists, 317–319
JavaScript

code blocks, animating, 356–361
menus, animating, 351–355
styles, swapping, 348–351

moving elements, 319–321
uses, 316–317

dynamic outlines, CSS, 224–225

E
ECMA Specification, JavaScript, 324
editing

animated GIFs, 54–57
XML, 161

elements. See also tags
CSS

layering, 258–261
matching, 173–178
padding, 218–219
sizing, 256–258
visibility, 261–262

DOM, accessing by ID, 316
moving with JavaScript, 319–321
XML, 156–157

elif statement, 411–412
e-mail

address, obscuring, 327–329
errors and troubleshooting report, sending, 504–505
PHP functions, 750
Python functions, 688–691

<embed> tag
older browsers, supporting, 150–151
representing non-HTML data with, 144–145

794

deleting text

41_588206 bindex.qxd 6/30/05 12:56 AM Page 794

embedding
external content in document, 552–553
fonts, 213–214

emphasis, text, 560–561
enclosing scripts, 266–267
end of document, 15
ending elements

PHP, 473–474
pseudoelements, 184–185

entities, user-defined, 158–159
errors and troubleshooting

JavaScript
elements, animating, 360–361
form validating, 347
need, 286
syntax, 287–288
tools, 287

Perl
Apache Internal Server error message, 395–396
maximum reporting, 394–395

PHP
custom handling, 505
error level, controlling, 503–504
handling, 729–730
identifying, 502–503
level, controlling, 503–504
sending to file or e-mail address, 504–505
syntax, common, 501
tools, 500–501

Python
cgitb module, 421–422
code, running in interpreter, 421
error stream, redirecting, 422

escape characters
JavaScript, 606
Perl, 674

events
attributes, XHTML, 570–571
handlers, JavaScript, 284–286, 610–611
object, JavaScript, 622–623

exact size, element, 257
exception handling

JavaScript form validating, 347
Python, 421

executing scripts, 267–268
exporting data, Linux Bash shell, 426–428
expressions

executing code based on value of (switch), in
JavaScript, 277–278

matching, in Perl, 673
expressions, regular

Perl
examples, 385
modifying, 385–386

operators, 383–384
special characters, 384–385
substrings, memorizing, 386

PHP, 769–770
Python

described, 413
operations, 414
special characters, 414–415

Extensible Markup Language (XML)
attributes, 157
comments, 157
design strategy, 153–154
DTDs, 155
editing, 161
elements, 156–157
entities, user-defined, 158–159
namespaces, 159
nonparsed data, 158
non-Web applications, 154
parsing, 161–162
PHP functions, 771, 786–787
style sheets, 159–160
versions, 8
viewing documents, 160
XSLT, 161

Extensible Stylesheet Language (XSLT), 161

F
fantasy fonts, 210
field labels, 138
fieldsets, form, 138–140
file

accessing, 387–388
binary

Perl, 389–390
PHP, 497–498
Python, 420

closing
Perl, 389
PHP, 497
Python, 420

errors and troubleshooting report, 504–505
form fields, 137
functions

Perl, 667–668
PHP, 730-733
Python, 691–692

handle and handle test functions, 666–667
information, getting, 390–391
listing, 428–429
locking, 499
miscellaneous, listed, 499–500

795

file

In
de

x

41_588206 bindex.qxd 6/30/05 12:56 AM Page 795

file (continued)
opening

Perl, 388
PHP, 495–496
Python, 417–418

reading text
Perl, 388
PHP, 496–497
Python, 418–419

upload, 623–624
writing text

Perl, 389
PHP, 497
Python, 419

File Transfer Protocol (FTP), 733–736
filename, in URL, 70
filesystem functions, PHP, 730–733
first letter of elements, property values, 183–184
first line of elements

indenting, 194–195
property values, 181–183

first-child pseudoclasses, 180
fixed positioning elements, CSS, 249–252
Flash, Shockwave
<embed>and <object>tags, 150–151
plugins, 149–150

floating CSS elements, 255–256, 592, 593
floating page layout tables, 113–116
floating point values, 401
floating text objects, 195–197
fonts

described, 210
embedding, 213–214
formatting tag, 79
line spacing, 213
lists, formatting, 39
selection, 210–211
sizing

CSS, 211–212, 584
XHTML, 79, 532–533, 559–560

styling
CSS, 212–213, 582–587
XHTML, 582–587

footer, XHTML table, 103–105
for in loop, 276
for loop

JavaScript, 275
Perl, 380–381
PHP, 482–483
Python, 411

foreach loop
Perl, 381
PHP, 483–484

foreground colors, 227–228

form
blocking changes to fields, 141–142
button, custom text, 135–136
CGI, sample, 432–434
checkboxes, 132
deciphering and handling data

Perl, 444–447
PHP, 514–516
Python examples, 460–462

defining, 542–543
described, 123–126
dynamic calendar, creating

Perl, 447–453
PHP, 517–523
Python, 463–466

features, adding, 341–343
field labels, 138, 548–549
fieldsets and legends, 138–140
file fields, 137
footer, 565–566
header, 567
heading, 566–567
hidden fields, 135
id attribute, 130
images, 136
input mechanism, 129–130, 546–547
keyboard shortcuts, 140–141
label, 541–542
legends, 138–140
list boxes, 132–134
name attribute, 130
object, JavaScript, 313–314, 624–625
options list, 558–559
passing data, 128
password input boxes, 131
PHP handler, XHTML, 127–128
radio buttons, 131–132
reset button, 137–138
selection options, hierarchy of, 554
submit button, 137–138
tab order, 140–141
tags, XHTML, 129
text areas, large, 134–135
text input boxes, 130–131, 565
validating, 265, 343–347
values, setting options, 554–555

formatting. See also CSS
HTML documents, 10–11
strings, Python operators, 404
text

CSS inline control, 81–82
font tag, 79
inline attributes, 80–81
nonbreaking spaces, 82–83
soft hyphens, 83–84

XHTML table column groups, 110

796

file (continued)

41_588206 bindex.qxd 6/30/05 12:56 AM Page 796

forward slash, asterisk (/*), 474
frames, 121–122
free-form polygonal area, image map, 64
FTP (File Transfer Protocol), 733–736
functions

JavaScript
data manipulation, built-in, 279–280
object, 625–626
top-level, 611–612

Perl
arithmetic, 660
array and list, 664–665
conversion, 661
directory, 670
file and file handle test, 666–667
file operations, 667–668
input and output, 668–670
miscellaneous, 672–673
networking, 671–672
search and replace, 665–666
string, 663
structure, 661–663
system, 670–671

Python
array, 680–681
asynchronous communication, 681–684
binary and ASCII code conversion, 684–685
built-in listed, 675–680
CGI, 685–687
cookie, 687–688
email, 688–691
file, 691–692
garbage collection, 692–693
HTTP and HTTPS protocol, 693–696
IMAP, 696
interpreter, 705–708
operating system, 697–700
POP3 server, 700–701
pseudo-random numbers, obtaining, 708
SMTP, 701–703
sockets, 701, 703
strings, 704–705
URL, 709–715

G
garbage collection, Python, 692–693
Gecko (Mozilla Firebird) DOM Reference, 325
GIF (Graphics Interchange Format)

animation
assembling, 55–56
described, 54–55
output, 56–57
source, 55

Web images, 51–52

GIMP (GNU Image Manipulation Program), 58
graphical date display, 338–341
graying out form field controls, 141–142
grouping

columns, XHTML tables, 109–111, 537–538
in-line text elements, 87–88

Gutmans, Andi (PHP re-writer), 471

H
head section, document tags

meta tags, 16–19, 543–544
structure, 15–16
title, specifying, 16, 567

header
cells, table, 100
documents

current date and time, 475–477
XHTML, 543

HTTP data, encapsulating, 6, 364–366
tables

columns, spanning, 106–107
described, 103–105

headings
capitalizing, CSS, 200
HTML, 27–28
XHTML table, 566

height
elements, specifying, 257, 590
line spacing, controlling, 213, 590–591
XHTML images, 62

hidden form fields, 135
hidden object, JavaScript, 626–627
history

JavaScript object, 627
list, navigating, 315

horizontal rules
HTML, 28–29
XHTML, 544

horizontal table elements
columns spanning, 106–109
described, 99–100

horizontal text alignment, 189–191
hovering over link, coloring, 74
HTML (HyperText Markup Language)

block divisions, 31–33
creation, 7
CSS and, 164–165
document tags

block divisions, 31–33
body section, 20–21
body with two tables, 25
described, 13
DOCTYPE, 10, 14–15
head section, 15–19

797

HTML (HyperText Markup Language)

In
de

x

41_588206 bindex.qxd 6/30/05 12:56 AM Page 797

HTML (HyperText Markup Language), document tags
(continued)

headings, 27–28
horizontal rules, 28–29
HTML, 10–11, 15
manual line breaks, 25–27
paragraphs, 23–24
preformatted text, 30–31
script section, 20
style section, 19

headings, 27–28
horizontal rules, 28–29
manual line breaks, 25–27
non-HTML content, 144–147
output for simple Web page, 11–12
paragraphs, 23–25
preformatted text, 30–31
source for simple Web page, 11
standards, listed by number, 8–9
tables, 89
tag, 9–10, 15
text, 79
versions, listed, 8–9

HTTP (HyperText Transfer Protocol). See also plugins
data encapsulation, 364–366
described, 4–7
form data

creating dynamic calendar, 517–523
passing (GET and POST), 128, 364–366, 444–453

PHP functions, 737
port, standard, 70
Python functions, 693–696
request and response, 363–364

HTTPS protocol, Python function, 693–696
hyperlinks

anchor tag, 71–73
colors, 74
described, 3–4
JavaScript object, 629–630
keyboard shortcuts and tab orders, 73–74
style sheet to documents, 166–167
tag, 76–77, 550
target details, 75–76
titles, 72–73
URLs, 69–71
visited and unvisited, styles of, 180
XHTML elements, 528, 546

HyperText Markup Language. See HTML
HyperText Transfer Protocol. See HTTP

I
Iconv library, 737
ID

element, accessing by, 316
form attributes, 130

matching elements, CSS, 175
node, finding in DOM, 300–302

IDE (integrated development environment), PHP, 501
identifying problems

JavaScript
elements, animating, 360–361
form validating, 347
need, 286
syntax, 287–288
tools, 287

Perl
Apache Internal Server error message, 395–396
maximum reporting, 394–395

PHP
custom handling, 505
error level, controlling, 503–504
handling, 729–730
identifying, 502–503
level, controlling, 503–504
sending to file or e-mail address, 504–505
syntax, common, 501
tools, 500–501

Python
cgitb module, 421–422
code, running in interpreter, 421
error stream, redirecting, 422

IDLE (Integrated DeveLopment Environment), 398, 399
if else loop

JavaScript, 276–277
Perl, 381–382
PHP, 484–485

if loop
JavaScript, 276–277
Perl, 381–382
Python, 411–412

image maps
clickable regions, specifying, 64–66
document code sample, 66–67
navigation, defining, 550–551
physical area, describing, 530–531
specifying, 63

images
aligning, 62–63
animation, 54–57
background, 231–236
borders, 62–63
forms, 136
graphical date display, 338–341
inserting into Web documents, 58–60
interlaced and progressive storage and display, 54
irregularly shaped layouts, 116–118
list item markers, 44–46, 204
object, JavaScript, 627–628
PHP functions, 738–745
preloading, 333–335
rollovers, 335–337

798

HTML (HyperText Markup Language), document tags (continued)

41_588206 bindex.qxd 6/30/05 12:56 AM Page 798

size, 61–62
table backgrounds, 106
text, specifying for nongraphical browsers, 60–61
transparency, 53
Web formats, 51–53
XHTML documents, 57–58

IMAP
PHP functions, 745–750
Python functions, 696

indenting text
CSS, 583
XHTML, 194–195

inheritance
CSS, 179
list style, 39–40

in-line text
formatting, 80–81, 560
grouping, 87–88

input functions, Perl, 668–670
<input> tag, 129–130
input, user. See form
inserting

images, 58–60
text or content, 86–87, 547–548

inside value, list style, 39–40
integers, Python supported, 401
integrated development environment (IDE), PHP, 501
Integrated DeveLopment Environment (IDLE), 398, 399
interlaced image storage and display, 54
internationalization attributes, XHTML, 571
Internet Explorer (Microsoft)

DOM support, 264
TrueDoc fonts, using, 214

interpreter, Python, 398–400, 705–708
invisible data, 135
invisible elements

CSS, 261–262, 591
hidden form fields, 135
JavaScript object, 626–627

irregularly shaped graphic and text layouts, 116–118
italic text

CSS, 212–213, 585
HTML, 84–85
XHTML, 545–546

item, lists, 201–202
item marker

image, 204, 581
positioning, 203–204, 580
style, 43–46

J
JASC Software

Animation Shop, 54–57
Paint Show Pro, 57

Java language, 263
JavaScript

calculations and operators, 272–274
conditional expression, breaking loop to

(continue), 278
constants, 603
control structures

breaking out of, 278
do while loop, 274
expression, executing code based on value of

(switch), 277–278
for loop, 275
for in loop, 276
if and if else loops, 276–277
while loop, 274–275

data manipulation functions, 279–280
data types, 270–271
DHTML

code blocks, animating, 356–361
collapsible lists, 317–319
menus, animating, 351–355
moving elements, 319–321
styles, swapping, 348–351
uses, 316–317

document head section, 20
DOM, 264–265
drawbacks of using, 323–324
elements, accessing by ID, 316
enclosing scripts, 266–267
errors and troubleshooting

need, 286
syntax, 287–288
tools, 287

event handlers, 284–286, 610–611
executing scripts, 267–268
forms

features, adding, 341–343
validating, 343–347

functions, 611–612
guidelines for using, 324
history, 263
identifying problems, 288–290
images

graphical date display, 338–341
preloading, 333–335
rollovers, 335–337

implementations, different, 264
methods, 610
objects

anchor, 612–613
area, 613
array, 613–614
Boolean, 614–615
button, 615–616
checkbox, 616–617

799

JavaScript

In
de

x

41_588206 bindex.qxd 6/30/05 12:56 AM Page 799

JavaScript, objects (continued)
date, 617–620
described, 281
document, 620–622
event, 622–623
file upload, 623–624
form, 624–625
function, 625–626
hidden, 626–627
history, 627
image, 627–628
link, 629–630
location, 630–631
math, 631–632
navigator, 632
number, 633
object, 633
option, 634
password, 634–635
radio, 635–636
RegExp, 636
Reset, 637
Screen, 637–638
Select, 638–639
String, 639–641
Submit, 641–642
Text, 642–643
Textarea, 643–644
user-created, 283–284
Window, 644–647

objects, built-in
current document, 312–313
form elements, 313–314
history list, navigating, 315
math operations, 282
reference-making element (self), 315–316
URL information, manipulating, 314–315
XHTML document (window), 311–312

operators, 604–606
properties, 610
statements, marking for reference (label_name),

278–279
syntax, 269
text, writing to document

current date, 325–327
e-mail address, obscuring, 327–329

user-defined functions, 280–281
uses, 265
variables, 271
Web resources, 324–325
window

opening another, 329–331
text, writing, 331–333

JPEG (Joint Photographic Experts Group) format, 52
JSUnit troubleshooting tool, 290

K
keyboard shortcuts

forms, 140–141
input, indicating, 548
links, 73–74

L
label

document, 16
form, 541–542

lambda keyword, Python anonymous functions, 417
language

element style, 181
encoding, 557

large text areas, form, 134–135
last control structure, Perl, 382–383
layering elements, CSS, 258–261, 593
layout

irregularly shaped graphic and text, 116–118
multiple-column pages, 120–121

layout tables, page
described, 111–112, 244
floating page, 113–116
multiple columns, 120–121
navigational blocks, 119–120
odd graphic and text combinations, 116–118

left, positioning elements, 252–254
legends, form, 138–140
Lerdorf, Rasmus (PHP creator), 471
letter

first of elements, property values, 183–184
spacing style, 198–199, 586

levels, CSS, 165
line

breaks, manual, 25–27, 534
first of elements

indenting, 194–195
property values, 181–183

spacing, fonts, 213
links

anchor tag, 71–73
colors, 74
JavaScript object, 629–630
keyboard shortcuts and tab orders, 73–74
style sheet to documents, 166–167
tag, 76–77, 550
target details, 75–76
titles, 72–73
URLs, 69–71
visited and unvisited, styles of, 180

Linux
Bash shell scripting

Apache, configuring, 424–425
exporting data, 426–428

800

JavaScript, objects (continued)

41_588206 bindex.qxd 6/30/05 12:56 AM Page 800

file, listing, 428–429
passing data, 425–426
state, toggling, 429
user-specific command, running, 429–430

PHP
running, 472
troubleshooting tool, 501

list box, form, 132–134
lists

collapsible, creating with DHTML, 317–319
custom numbering, automatic, 208–209
definition, 46–47
described, 35–36
item, formatting, 201–202
markers

image, 204, 581
positioning, 203–204, 580
setting, 202–203, 580

nesting, 47–48
ordered, 37–42
Perl functions, 664–665
Python data types, 404–405
text, formatting, 201–204
unordered, 42–46, 569
XHTML element, 549–550

location object, JavaScript, 630–631
locking files, PHP, 499
logical operators

JavaScript, 604
Perl, 378, 653
Python, 409

logo, page layout, 116–118
loops

breaking out of (break), 278
continue statement

JavaScript, 278
Perl, 382–383
PHP, 486
Python, 412–413

do-while, 274, 482
for

JavaScript, 275
Perl, 380–381
PHP, 482–483
Python, 411

for in, 276
foreach

Perl, 381
PHP, 483–484

if
JavaScript, 276–277
Perl, 381–382
Python, 411–412

if else
JavaScript, 276–277
Perl, 381–382
PHP, 484–485

Perl, 658–660
lowercase text, changing to, 583

M
Macintosh

PHP troubleshooting tool, 501
Python interpreter, 399

MacPython, 399
Macromedia Freehand and Fireworks, 57
manual line breaks, 25–27, 534
maps, image

clickable regions, specifying, 64–66
document code sample, 66–67
navigation, defining, 550–551
physical area, describing, 530–531
specifying, 63

margins
CSS, 223–224, 588
floating objects, 195–197

marker, list
image, 204, 581
positioning, 203–204, 580
style, 43–46

master element, XHTML documents, 545
math operations

JavaScript object, 631–632
numbers, strings, and dates, 282
PHP functions, 751–753

menus
animating, 351–355
navigational blocks, 119–120

meta tags
automatic refresh and redirect, 18–19
default path, 17–18
search engine information, 17
server, overriding, 19
syntax, 16
user agent caching, 18

metadata, document, 551–552
methods

JavaScript, 610
objects, assigning, 284
PHP objects, 492–493
Python strings, 403–404

Microsoft Internet Explorer
DOM support, 264
TrueDoc fonts, using, 214

Microsoft Windows
PHP, 472, 500
Python interpreter, 398

801

Microsoft Windows

In
de

x

41_588206 bindex.qxd 6/30/05 12:56 AM Page 801

Microsoft Windows Picture Viewer, 58
MIDI sound file, adding, 147–148
MIME (Multipurpose Internet Mime Extensions)

PHP functions, 753
XHTML script tag support, 266

minimum or maximum size, element, 257, 590
modules

Perl, 393, 657–658
Python, 398

monospaced text, 85, 211, 568–569
mouse

cursor, CSS, 599
images, changing in JavaScript, 335–337
menus, animating with drop-down effect, 351–355

movie data, storing, 493–494
moving DHTML elements, 319–321
Mozilla Firebird, 264, 325
Mozilla Firefox, 288
MS SQL function, PHP, 755–757
MSDN Web Development Library, 324
multiple column page layout, 120–121
Multipurpose Internet Mime Extensions (MIME)

PHP functions, 753
XHTML script tag support, 266

music, background, 147–148
MySQL

CGI data managing, 434–438
data access with Perl, 453–456
PHP functions, 757–760

N
name

form attribute, 130
matching elements, CSS, 173–174

namespaces, XML, 159
navigating

history list, 315
JavaScript object, 632
nodes, DOM, 296–302

navigational blocks
image map, 550–551
page layout tables, 119–120

nesting lists, 47–48
networking functions

Perl, 671–672
PHP, 760–761

newspaper-like columns, documents, 120–121
next control structure, Perl, 382–383
node properties and methods, DOM, 295–296
nonbreaking spaces, 82–83
nonparsed data, XML, 158
numbered list

described, 35, 37, 553–554
number style, changing, 37–39

ordinal, changing position of, 39–41
starting number, changing, 41–42
within unordered list, 47–48

numbering, automatic
chapter and section number example, 207–208
counter object, 206
counting, 582
described, 205
list, custom, 208–209
text, 205–209
value, changing counter’s, 206–207

numbers. See also math operations
JavaScript object, 270, 633
ordered list style, changing, 37–39
Perl, 372–373
Python, 401

O
object

JavaScript
anchor, 612–613
area, 613
array, 613–614
Boolean, 614–615
built-in, 282
button, 615–616
checkbox, 616–617
date, 617–620
described, 281
document, 620–622
event, 622–623
file upload, 623–624
form, 624–625
function, 625–626
hidden, 626–627
history, 627
image, 627–628
link, 629–630
location, 630–631
math, 631–632
navigator, 632
number, 633
object, 633
option, 634
password, 634–635
radio, 635–636
references, incorrect, 288
RegExp, 636
Reset, 637
Screen, 637–638
Select, 638–639
String, 639–641
Submit, 641–642
Text, 642–643

802

Microsoft Windows Picture Viewer

41_588206 bindex.qxd 6/30/05 12:56 AM Page 802

Textarea, 643–644
user-created, 283–284
Window, 644–647

JavaScript built-in
current document, 312–313
form elements, 313–314
history list, navigating, 315
reference-making element, 315–316
URL information, manipulating, 314–315
XHTML document, 311–312

Perl
constructors, 392
nomenclature, 391–392
property values, accessing, 392–393

PHP
class definitions, 491
constructors and destructors, 491–492
functions, 725–726
methods and properties, 492–493
movie data, storing, 493–494

Python, 420
<object> tag

history of, 146–147
older browsers, supporting, 150–151

oblique text, 585
ODBC function, PHP, 761–764
Official PHP Web Site, 508
online resources, 325
open source image applications, 57–58
opening

another window, JavaScript, 329–331
files

Perl, 388
PHP, 495–496
Python, 417–418

OpenType fonts, 213, 214
operating systems

image applications, 58
keyboard shortcuts, differentiating, 73–74
Python functions, 697–700

operations, Python regular expressions, 414
operators

JavaScript, 604–606
Perl

arithmetic, 377, 652
assignment, 377, 652
bitwise, 378, 653
comparison, 378, 652–653
logical, 378, 653
miscellaneous, 379, 654
regular expressions, 383–384
string, 379, 654

PHP, 479–481
Python

arithmetic, 408
assignment, 408–409

bitwise, 410
comparison, 409
logical, 409
miscellaneous, 410
strings, 402–403

option
JavaScript object, 634
PHP functions, 766–768

ordered list
described, 35, 37, 553–554
number style, changing, 37–39
ordinal, changing position of, 39–41
starting number, changing, 41–42
within unordered list, 47–48

ordinal, changing position of
ordered lists, 39–41
unordered lists, 46

orphans, CSS printing, 598–599
output functions

Perl, 668–670
PHP buffering, 765

outside value, list style, 39–40
overflow, controlling, 257–258, 589

P
packages, Perl, 657–658
padding, CSS blocks, 588–589
page layout tables

described, 111–112, 244
floating page, 113–116
multiple columns, 120–121
navigational blocks, 119–120
odd graphic and text combinations, 116–118

pages, printing, 598–599
Paint Show Pro (JASC Software), 57
paragraphs

color, defining style, 228
HTML, 23–25
XHTML, 555

parentheses (()), 386
parsing XML, 161–162
passing data

HTTP (GET and POST), 364–366, 444–453
Linux Bash shell scripting, 425–426
to software, 555–556
XHTML forms, 128

password
form input boxes, 131
JavaScript object, 634–635

path
absolute versus relative, 71
default, 17–18

PCRE function, PHP, 766
PEAR (PHP Extension and Application Repository), 508

803

PEAR (PHP Extension and Application Repository)

In
de

x

41_588206 bindex.qxd 6/30/05 12:56 AM Page 803

Perl (Practical Extraction and Report Language)
built-in functions, 386–387
for CGI, 393–394
command line arguments, 649–650
control structures
continue, 382–383
for loop, 380–381
foreach loop, 381
if and if else, 381–382
last, 382–383
next, 382–383
redo, 382–383
while and until loops, 380

data types, 372–373
debugger, symbolic, 650–651
errors and troubleshooting

maximum reporting, 394–395
message, Apache Internal Server, 395–396

examples
database access, 453–456
date and time handling, simple calendar, 439–444
form data, creating dynamic calendar, 447–453
form data, deciphering and dealing with, 444–447
script, 368–369

file operations
binary, manipulating, 389–390
closing, 389
information, getting, 390–391
opening, 388
reading text, 388
writing text, 389

functions
arithmetic, 660
array and list, 664–665
conversion, 661
directory, 670
file and file handle test, 666–667
file operations, 667–668
input and output, 668–670
miscellaneous, 672–673
networking, 671–672
search and replace, 665–666
string, 663
structure, 661–663
system, 670–671

history, 371
modules, 393
objects

constructors, 392
nomenclature, 391–392
property values, accessing, 392–393

operators
arithmetic, 377, 652
assignment, 377, 652
bitwise, 378, 653
comparison, 378, 652–653

logical, 378, 653
miscellaneous, 379, 654
string, 379, 654

regular expressions
examples, 385
listed, 673–674
modifying, 385–386
operators, 383–384
special characters, 384–385
substrings, memorizing, 386

resources, 371–372
special variables, 374–377
string tokens, 379
syntax, 372
user-defined functions, 387
variables, 373, 655–657

PHP Extension and Application Repository (PEAR), 508
PHP (PHP: Hypertext Preprocessor)

beginning and ending tags, 473–474
break and continue statements, 486
built-in functions, listed, 486–490
command terminal character and blocks of code, 474
commenting code, 474
database, querying and reporting, 523–526
date and time handling (simple calendar), 509–514
do-while loop, 482
errors and troubleshooting

custom handling, 505
error level, controlling, 503–504
identifying, 502–503
sending to file or e-mail address, 504–505
syntax, common, 501
tools, 500–501

file operations
binary, 497–498
closing, 497
locking, 499
miscellaneous, listed, 499–500
opening, 495–496
reading text, 496–497
writing text, 497

for loop, 482–483
foreach loop, 483–484
form handler

creating dynamic calendar, 517–523
deciphering and handling, 514–516
logging data to file, 127
security, 128

functions
Apache, 717–718
array, 718–722
BCMath, 722–723
BZip2, 723–724
calendar, 724–725
character type, 726
class/object, 725–726

804

Perl (Practical Extraction and Report Language)

41_588206 bindex.qxd 6/30/05 12:56 AM Page 804

curl, 726–727
date and time, 727–728
directory, 729
email, 750
error handling, 729–730
filesystem, 730–733
FTP, 733–736
handling, 736
HTTP, 737
Iconv library, 737
image, 738–745
IMAP, 745–750
math, 751–753
MIME, 753
miscellaneous, 754–755
MS SQL, 755–757
MySQL, 757–760
network, 760–761
ODBC, 761–764
options and info, 766–768
output buffering, 765
PCRE, 766
programs, executing, 769
session, 770–771
simple XML, 771
socket, 772–773
SQLite, 774–776
streams, 776–778
strings, 778–784
URL, 784
variable, 784–785
XML, 786–787
ZLib, 787

history, 471–472
if/else construct, 484–485
objects

class definitions, 491
constructors and destructors, 491–492
methods and properties, 492–493
movie data, storing, 493–494

operators, 479–481
regular expressions, 769–770
requirements, 472–473
resources, 508
script, sample, 475–477
switch construct, 485–486
user-defined functions

arguments, 490–491
return value, 490
variable scope, 491

variables, 475
when to use, 507–508
while loop, 482
white space, use of, 474

PHPBuilder Web site, 508

plugins
described, 143–144
<embed>tag, representing non-HTML data with,

144–145
MIDI sound file, adding, 147–148
<object> tag, 146–147
older, Netscape-based browsers, supporting, 150–151
parameters, 147
Shockwave Flash, adding, 149–150

plus sign (+), 385
PNG (Portable Network Graphics) format, 52–53
polygonal area, image map, 64
POP3 server function, Python, 700–701
port number, URL, 70
positioning

background images, 236
blocks, 591–593
elements

absolute, 248–249
fixed, 249–252
floating, 255–256
layering, 258–261
relative, 246–248
specifying (top, right, bottom, and left proper-

ties), 252–254
static, 245–246
syntax, 245
visibility, 261–262

pound sign (#)
identifiers, matching style elements by, 175
PHP commenting, 474

Practical Extraction and Report Language. See Perl
preformatted text, HTML, 30–31
preloading images with JavaScript, 333–335
premade images, 58
printing

CSS, 598–599
to text file, in Perl, 389

programs, PHP functions executing, 769
progressive image storage and display, 54
property

borders shortcut, 222
CSS attributes, 237–238
JavaScript, 610
PHP objects, 492–493
values

CSS, 172–173
Perl objects accessing, 392–393

protocol, URL section, 69–70
pseudoclasses

anchor styles, 180
described, 179
first-child element, 180
language, changing by, 181

805

pseudoclasses

In
de

x

41_588206 bindex.qxd 6/30/05 12:56 AM Page 805

pseudoelements
beginning and ending elements, 184–185
CSS, 181–185
first letter, specifying, 183–184
first line, specifying, 181–183

pseudo-random numbers, Python functions
obtaining, 708

Python
anonymous functions (lambda keyword), 417
built-in functions, 415–416
control structures
continue and break, 412–413
for loop, 411
if and elif statements, 411–412
try statement, 412
while loop, 410–411

data types
dictionaries, 405–406
lists, 404–405
numbers, 401
strings, 402–404
tuples, 406–407

errors and exception handling, 421
examples

date and time handling, 457–460
form data, deciphering and dealing with, 460–462

file operations
binary, handling, 420
closing, 420
opening, 417–418
reading from text file, 418–419
writing to text file, 419

functions
array, 680–681
asynchronous communication, 681–684
binary and ASCII code conversion, 684–685
built-in listed, 675–680
CGI, 685–687
cookie, 687–688
email, 688–691
file, 691–692
garbage collection, 692–693
HTTP and HTTPS protocol, 693–696
IMAP, 696
interpreter, 705–708
operating system, 697–700
POP3 server, 700–701
pseudo-random numbers, obtaining, 708
SMTP, 701–703
sockets, 701, 703
strings, 704–705
URL, 709–715

history, 397
interpreter, 398–400
modules, 398
objects, 420

operators
arithmetic, 408
assignment, 408–409
bitwise, 410
comparison, 409
logical, 409
miscellaneous, 410

regular expressions
described, 413
operations, 414
special characters, 414–415

resources, 398
syntax, 400
troubleshooting
cgitb module, 421–422
code, running in interpreter, 421
error stream, redirecting, 422

user-defined functions, 416–417
variable scope, 407–408

PythonWin, 398

Q
query, database

MySQL, 434–438
Perl, 453–456
PHP, 523–526
Python, 467–469

quirks, browser reference, 325
quotation, enclosing, 533
quotation marks (“)

adding with styles, 184–185
autogenerating in text, 205
block, offsetting, 31–33

R
radio buttons

forms, 131–132
JavaScript object, 635–636

reading file text
Perl, 388
PHP, 496–497
Python, 418–419

read-only form fields, XHTML, 141–142
rectangular area, image map, 64
redirect meta tags, automatic, 18–19
redo control structure, Perl, 382–383
references

back to reference (self), 315–316
external, declaring as system entity, 158–159
labeling, 278–279
object, incorrect, 288

refresh meta tags, automatic, 18–19
RegExp object, JavaScript, 636

806

pseudoelements

41_588206 bindex.qxd 6/30/05 12:56 AM Page 806

regular expressions
Perl

examples, 385
modifying, 385–386
operators, 383–384
special characters, 384–385
substrings, memorizing, 386

PHP, 769–770
Python

described, 413
operations, 414
special characters, 414–415

relative paths, 17, 71
relative positioning, CSS elements, 246–248
repeated background images, 232–235
request and response, HTTP, 363–364
reset button, forms, 137–138
Reset object, JavaScript, 637
return value, PHP user-defined function, 490
right, positioning elements, 252–254
rollovers

images, changing in JavaScript, 335–337
menus, animating with drop-down effect, 351–355

rows, XHTML tables
columns spanning, 106–109
described, 99–100

RSS feed, 156–157
rules, XHTML

documents, 544
tables, 96–99

S
sans serif fonts, 210
scalar values, 372
Screen object, JavaScript, 637–638
script section, 20, 558
scripting, Bash shell

Apache, configuring, 424–425
exporting data, 426–428
file, listing, 428–429
passing data, 425–426
state, toggling, 429
user-specific command, running, 429–430

scrolling
background images, 232–235
viewers’, fixing document positions despite, 249–252

search and replace functions, Perl, 665–666
search engine meta tags, 17
Select object, JavaScript, 638–639
selection fonts, 210–211
selectors, CSS matching

attributes by specific, 175–176, 600
child, descendant, and adjacent sibling elements,

176–178, 600–601
class, 174–175

identifier, 175
name, 173–174, 600
universal selector (*), 174

semicolon (;)
JavaScript, 287
Perl, 372
PHP, 474, 501, 502

serif fonts, 210
server

Apache
Internal Server error message, Perl and, 395–396
Linux Bash shell, configuring to deliver, 424–425
PHP functions, 472, 717–718

CGI, 367–368
defined, 1
documents, delivering, 4
meta tags overriding, 19
name in URL, 69–70

session function, PHP, 770–771
SGML (Standard Generalized Markup Language), 7
Shockwave Flash
<embed> and <object>tags, 150–151
plugins, 149–150

shortcuts, keyboard
forms, 140–141
input, indicating, 548
links, 73–74

shorthand expressions, CSS, 185–187
sibling elements, matching by, 176–178
Simple Mail Transport Protocol (SMTP) functions,

701–703
simple XML function, PHP, 771
sizing

elements, 257–258
fonts

CSS, 211–212, 584
XHTML, 79, 532–533, 559–560

images, 61–62
small text (<small>), 86, 559–560
SMTP (Simple Mail Transport Protocol) functions,

701–703
socket functions

PHP, 772–773
Python, 701, 703

soft hyphens, text formatting, 83–84
software

output, sample, 557
values, passing, 555–556

software plugins
described, 143–144
<embed> tag, representing non-HTML data with, 144–145
MIDI sound file, adding, 147–148
<object> tag, 146–147
older, Netscape-based browsers, supporting, 150–151
parameters, 147
Shockwave Flash, adding, 149–150

807

software plugins

In
de

x

41_588206 bindex.qxd 6/30/05 12:56 AM Page 807

source citation, 536
source code, JavaScript, 265
spaced data, presenting, 30–31
spacing

borders, 223
letter and word styles, setting, 198–199,

239–240, 586
spam, 327–329
special characters

Perl, 384–385
Python regular expressions, 414–415

special variables, Perl, 374–377
spelling errors, Python variable name, 408
SQLite function, PHP, 774–776
square brackets ([])

element attributes, matching styles, 175–176
Perl regular expression, 385

stacking elements, CSS, 258–261, 593
Standard Generalized Markup Language (SGML), 7
starting list number, 41–42
state, Linux Bash shell scripting, 429
statements

JavaScript, 278–279, 606–609
Perl, 657–660

static positioning, CSS elements, 245–246
stream functions, PHP, 776–778
strings

JavaScript
math operations, 282
object, 639–641
operators, 606
support, 270

Perl
described, 373
functions, 663
operators, 379, 654

PHP functions, 778–784
Python

described, 402
format operators, 404
functions, 704–705
methods, 403–404
operators, 402–403

structure functions, Perl, 661–663
style

borders, 220–221
definition format, 171–172
DHTML, swapping, 348–351
differences from main sheet, enabling, 167–169
document tag section, 19
rules, defining in XHTML, 561

style sheets. See also CSS
external, referring to, 19
purpose, 163
XHTML formatting, 164–165
XML, 159–160

styling fonts, 212–213
submit button

forms, 137–138
JavaScript object, 641–642

subroutines, Perl, 657–658
subscript (<sub>), 85–86, 561–562
substrings, memorizing, 386
suites, code, 400
superscript (<sup>), 85–86, 562
Suraski, Zeev (PHP re-writer), 471
switch construct, PHP, 485–486
system functions, Perl, 670–671

T
tab order

forms, 140–141
input, indicating (kbd), 548
links, 73–74

tabbed data, presenting, 30–31
tabbed elements, accessing by keyboard, 73–74
tables

captions
aligning and positioning, 244
defining, 535–536

CSS properties, 237–243, 596–598
HTML, 89
layout, 244
MySQL, populating, 434–438
text, changing color following mouse movement, 285
XHTML

backgrounds, 105–106
body, main, 563–564
borders and rules, 96–99
captions, 102–103
cell spacing and padding, 94–95
cells, specifying, 100–101, 564
content, defining, 562–563
database, accessing and reporting data, 523–526
frames, 121–122
grouping columns, 109–111
header, footer, and body sections, 103–105, 567
page layout, using for, 111–121
parts, 89–91
rows, 99–100, 568
spanning columns and rows, 106–109
width and alignment, 91–94

tags
form, 129
HTML document

block divisions, 31–33
body section, 20–21
body with two tables, 25
described, 9–10, 13
DOCTYPE, 10, 14–15
head section, 15–19

808

source citation

41_588206 bindex.qxd 6/30/05 12:56 AM Page 808

headings, 27–28
horizontal rules, 28–29
HTML, 10–11, 15
manual line breaks, 25–27
paragraphs, 23–24
preformatted text, 30–31
script section, 20
style section, 19

link, 76–77
paragraph, 23–24

target details, 75–76
TCP/IP (Transmission Control Protocol/Internet

Protocol), 1
teletype tag (<tt>), 85
telnet client, 5–7
term, XHTML definition, 539, 540
test functions, Perl file and file handle, 666–667
text

abbreviations, 87
big, 85–86, 561–562
bold and italic, 84–85
emphasis, 541, 560
files, reading from and writing to

PHP, 496–497
Python, 418–419
writing to, 419

form input boxes, 130–131
formatting, XHTML, 79–84
grouping in-line elements, 87–88
insertions and deletions, 86–87
irregularly shaped layouts, 116–118
italic, 545–546
JavaScript

object, 642–643
writing in window, 331–333

monospaced, 85
rendering, specified (bdo), 532
small, 85–86, 561–562
specifying for nongraphical browsers, 60–61
styles, setting

aligning, 189–194
capitalization, 200
decorations, 200–201
direction, handling different languages, 587
displaying, 581
floating objects, 195–197
fonts, 210–214
indenting, 194–195
letter and word spacing, 198–199
lists, formatting, 201–204
numbering, automatic, 205–209, 582
quotation marks, 205, 582
white space, preserving, 198

subscript, 85–86, 561–562
superscript, 85–86, 561–562

writing to document, JavaScript
current date, 325–327
e-mail address, obscuring, 327–329

Textarea object, JavaScript, 643–644
tiling background images, 232–235
time

current, in document header, 475–477
handling

JavaScript, 282
Perl examples, 439–444
PHP, 509–514
Python examples, 457–460

PHP functions, 727–728
title, document, 16, 567
tools, errors and troubleshooting

JavaScript, 290
PHP, 500–501

top, positioning elements, 252–254
Transmission Control Protocol/Internet Protocol

(TCP/IP), 1
transparency, image, 53
trapping errors, 289
traversing nodes, DOM, 296–302
troubleshooting

JavaScript
elements, animating, 360–361
form validating, 347
need, 286
syntax, 287–288
tools, 287

Perl
Apache Internal Server error message, 395–396
maximum reporting, 394–395
symbolic debugger, 651

PHP
custom handling, 505
error level, controlling, 503–504
handling, 729–730
identifying, 502–503
level, controlling, 503–504
sending to file or e-mail address, 504–505
syntax, common, 501
tools, 500–501

Python
cgitb module, 421–422
code, running in interpreter, 421
error stream, redirecting, 422

XHTML tables, 96
TrueDoc fonts, 213, 214
true/false condition, executing code. See if else

loop; if loop
try statement, Python, 412
try/catch statement, 289
tuple data type, 406–407

809

tuple data type

In
de

x

41_588206 bindex.qxd 6/30/05 12:56 AM Page 809

typefaces
described, 210
embedding, 213–214
formatting tag, 79
line spacing, 213
lists, formatting, 39
selection, 210–211
sizing

CSS, 211–212, 584
XHTML, 79, 532–533, 559–560

styling
CSS, 212–213, 582–587
XHTML, 582–587

U
underlining text, 583
unicode text, 587
Uniform Resource Locator. See URL
universal selector (*), matching elements by, 174
UNIX, 398, 399
unordered list

described, 35, 42–43, 569
item marker, changing, 43–46
ordered lists within, 47–48
ordinal, changing position of, 46

until loop, Perl, 380
uppercase text, changing to, 583
URL (Uniform Resource Locator)

absolute versus relative paths, 71
components, 69–70
data, passing to CGI script, 425–426
described, 4
form data, passing, 128
HTTP data, encapsulating, 364–366
information, manipulating (location), 314–315
links, 69–71
PHP functions, 784
Python functions, 709–715

user agent
caching with meta tags, 18
default path, setting, 17
DOM support, listed, 264
formatting shortcuts, reasons to avoid, 10
JavaScript support lacking, 323
meta tags caching, 18
refreshing and reloading after specified time, 18–19
scripting language, unsupported, 552
Web servers, connecting, 1–2
window, another

opening, 329–331
outputting text, 331–333

XML, usefulness of, 154, 160
user input. See form
user-created objects, JavaScript, 283–284

user-defined entities, XML, 158–159
user-defined functions

JavaScript, 280–281
Perl, 387
PHP, 490–491
Python, 416–417

user-specific command, running in Linux Bash shell
script, 429–430

V
validating forms, JavaScript, 343–347
value

automatic numbering, changing, 206–207
stepping through range (for loop), 275
troubleshooting, basic, 289

van Rossum, Guido (Python language inventor),
397, 418

variable
JavaScript, 271, 288, 289
Perl, 373, 655–657
PHP, 475, 501, 784–785
Python, 407
XHTML, 569–570

variable scope
PHP, 491
Python, 407–408

vertical text alignment, 191–194, 591
viewers’ scrolling, fixing document positions despite,

249–252
viewing documents, 160
visibility, positioning elements, 261–262
visited link, coloring, 74

W
Wall, Larry (Perl language inventor), 371
W3C (World Wide Web Consortium)

DOM specification, 291, 324
Web specifications, overall, 7

Web
creating, 3–4
described, 1–2
HTTP, 4–7

Web browser
caching with meta tags, 18
default path, setting, 17
DOM support, listed, 264
formatting shortcuts, reasons to avoid, 10
JavaScript support lacking, 323
meta tags caching, 18
refreshing and reloading after specified time, 18–19
scripting language, unsupported, 552
Web servers, connecting, 1–2

810

typefaces

41_588206 bindex.qxd 6/30/05 12:56 AM Page 810

window, another
opening, 329–331
outputting text, 331–333

XML, usefulness of, 154, 160
Web document

CSS
layering, 258–261
matching, 173–178
padding, 218–219
sizing, 256–258
visibility, 261–262

DOM, accessing by ID, 316
external content, embedding, 552–553
form, inserting, 129
header containing current date and time, 475–477
HTML tags

block divisions, 31–33
body section, 20–21
body with two tables, 25
described, 13
DOCTYPE, 10, 14–15
head section, 15–19
headings, 27–28
horizontal rules, 28–29
HTML, 10–11, 15
manual line breaks, 25–27
paragraphs, 23–24
preformatted text, 30–31
script section, 20
style section, 19

image map code sample, 66–67
intelligence, in JavaScript, 265
JavaScript object, 620–622
master element, 545
moving with JavaScript, 319–321
navigational pane, 119–120
original/desired location, defining in XHTML (<base>),

531–532
URL, 70
XML, 156–157

Web image formats
GIF, 51–52
JPEG, 52
PNG, 52–53

Web resources
JavaScript, 324–325
Perl, 371–372
PHP, 508
Python, 398

while loop
JavaScript, 274–275
Perl, 380
PHP, 482
Python, 410–411

white space
compressing, 198
CSS, 587
explicitly including, 83
floating objects, 195–197
HTML documents, reasons to use, 10
PHP, 474
preserving, 198, 556
XHTML tables used for layout, 118

widows, CSS printing, 599
width

borders, 219–220
elements, specifying, 257
images, XHTML, 62
margins, CSS, 588
tables, XHTML, 91–94

wildcard, style matching, 174
window, browser

opening another, 329–331
text, writing, 331–333

Window object, JavaScript, 644–647
Windows (Microsoft)

PHP, 472, 500
Python interpreter, 398

Windows Picture Viewer (Microsoft), 58
word spacing, CSS, 198–199, 586
World Wide Web

creating, 3–4
described, 1–2
HTTP, 4–7

World Wide Web Consortium (W3C)
DOM specification, 291, 324
Web specifications, overall, 7

writing
to browser window in JavaScript, 331–333
to document in JavaScript

date, current, 325–327
e-mail address, obscuring, 327–329
text, writing to document

to text file
Perl, 389
PHP, 497
Python, 419

X
XHTML

attributes
core, 571
events, 570–571
internationalization, 571

document, built-in JavaScript object, 311–312
hyperlink (<a>), 528
PHP date and time routines, 509–514

811

XHTML

In
de

x

41_588206 bindex.qxd 6/30/05 12:56 AM Page 811

XHTML (continued)
tables

backgrounds, 105–106
body, main, 563–564
borders and rules, 96–99
captions, 102–103
cell spacing and padding, 94–95
cells, specifying, 100–101, 564
content, defining, 562–563
database, accessing and reporting data, 523–526
frames, 121–122
grouping columns, 109–111
header, footer, and body sections, 103–105, 567
page layout, using for, 111–121
parts, 89–91
rows, 99–100, 568
spanning columns and rows, 106–109
width and alignment, 91–94

tips for using, 527
versions, 9

XML (Extensible Markup Language)
attributes, 157
comments, 157

design strategy, 153–154
DTDs, 155
editing, 161
elements, 156–157
entities, user-defined, 158–159
namespaces, 159
nonparsed data, 158
non-Web applications, 154
parsing, 161–162
PHP functions, 771, 786–787
style sheets, 159–160
versions, 8
viewing documents, 160
XSLT, 161

XSLT (Extensible Stylesheet Language), 161

Z
z-axis, 258–261, 593
ZLib functions, PHP, 787

812

XHTML (continued)

41_588206 bindex.qxd 6/30/05 12:56 AM Page 812

	Web Standards Programmer’s Reference: HTML, CSS, JavaScript , Perl, Python , and PHP
	Chapter 1: The Basics of HTML
	What Is the World Wide Web?
	Hyper text Markup Language
	Your First Web Page
	Summary

	About the Author
	Contents
	Introduction
	Who Is This Book For?
	A Word about Standards
	How This Book Is Organized
	Conventions Used in this Book
	What You Need to Work with Examples in This Book

	Chapter 2: Document Tags
	Understanding Document-Level Tags
	Document Type Tag
	HTML Tag
	Head Tag Section
	Body Section
	Summary

	Chapter 3: Paragraphs and Lines
	Paragraphs — The Basic Block Element
	Manual Line Breaks
	Headings
	Horizontal Rules
	Preformatted Text
	Block Divisions
	Summary

	Chapter 4: Lists
	Understanding Lists
	Ordered (Numbered) Lists
	Unordered (Bulleted) Lists
	Definition Lists
	Nesting Lists
	Summary

	Chapter 5: Images
	Image Formats
	Creating Images
	Inserting Images into Web Documents
	Image Attributes
	Image Maps
	Summary

	Chapter 6: Links
	Understanding URLs
	Absolute versus Relative Paths
	Using the Anchor Tag
	Attributes of the Anchor Tag
	Document Relationships
	The Link Tag
	Summary

	Chapter 7: Text
	Methods of Formatting Text
	Special In-Line Text Elements
	Bold and Italic
	Monospaced Text
	Superscript, Subscript, Big, and Small Text
	Insertions and Deletions
	Abbreviations
	Grouping In-Line Elements
	Summary

	Chapter 8: Tables
	Par ts of a Table
	Formatting Tables
	Using Tables for Page Layout
	A Word About Frames
	Summary

	Chapter 9: Forms
	Understanding Forms
	Form Handling
	Passing Form Data
	The Form Tag
	The Input Tag
	The name and id Attributes
	Text Input Boxes
	Password Input Boxes
	Radio Buttons
	Checkboxes
	List Boxes
	Large Text Areas
	Hidden Fields
	Buttons
	Images
	File Fields
	Submit and Reset Buttons
	Field Labels
	Fieldsets and Legends
	Tab Order and Keyboard Shortcuts
	Preventing Changes to Fields
	Summary

	Chapter 10: Objects and Plugins
	Understanding Plugins
	The Old Way — The Embed Tag
	The Object Tag
	Parameters
	Object Examples
	Support for Older, Netscape Browsers
	Summary

	Chapter 11: XML
	XML Basics
	XML Syntax
	Using XML
	Summary

	Chapter 12: CSS Basics
	The Purpose of Styles
	Styles and HTML
	CSS Levels 1, 2, and 3
	Defining Styles
	Cascading Styles
	Summary

	Chapter 13: Style Definitions
	The Style Definition Format
	Property Values
	Understanding Selectors
	Understanding Style Inheritance
	Using Pseudoclasses
	Pseudoelements
	Shorthand Expressions
	Summary

	Chapter 14: Text
	Aligning Text
	Indenting Text
	Controlling White Space
	Letter and Word Spacing
	Capitalization
	Text Decorations
	Formatting Lists
	Autogenerating Text
	Fonts
	Summary

	Chapter 15: Padding, Margins, and Borders
	Understanding the CSS Box Formatting Model
	Element Padding
	Element Borders
	Element Margins
	Dynamic Outlines
	Summary

	Chapter 16: Colors and Backgrounds
	Element Colors
	Background Images
	Summary

	Chapter 17: Tables
	CSS Properties and Table Attributes
	Table Layout
	Caption Alignment and Positioning
	Summary

	Chapter 18: Element Positioning
	Understanding Positioning Methods
	Specifying an Element’s Position
	Floating Elements
	Controlling an Element’s Size
	Element Layers
	Controlling Visibility
	Summary

	Chapter 19: JavaScript Basics
	History of JavaScript
	Different Implementations
	Determining the Document Object Model
	Uses for JavaScript
	Incorporating JavaScript in Your Documents
	Summary

	Chapter 20: The JavaScript Language
	Basic JavaScript Syntax
	Data Types and Variables
	Calculations and Operators
	Control Structures
	Labels
	Built-in Functions
	User-Defined Functions
	Objects
	Event Handling
	JavaScript Errors and Troubleshooting
	Summary

	Chapter 21: The Document Object Model
	The History of the DOM
	Understanding the Document Object Model
	DOM Node Properties and Methods
	Traversing a Document’s Nodes
	Changing Nodes
	Summary

	Chapter 22: JavaScript Objects and Dynamic HTML
	Built-in JavaScript Objects
	Accessing an Element by Its ID
	Dynamic HTML
	Summary

	Chapter 23: Using JavaScript
	How and When to Use JavaScript
	JavaScript Resources
	JavaScript Examples
	Summary

	Chapter 24: CGI Basics
	CGI History and Operation
	Serving CGI
	A Simple CGI Example
	Summary

	Chapter 25: Perl Language
	The History of Perl
	Additional Perl Resources
	Basic Perl Syntax
	Data Types and Variables
	Calculations and Operators
	Control Structures
	Regular Expressions
	Built-in Functions
	User-Defined Functions
	File Operations
	Objects
	Modules
	Using Perl for CGI
	Perl Errors and Troubleshooting
	Summary

	Chapter 26: The Python Language
	The History of Python
	Additional Python Resources
	Modules
	Python Interpreter
	Basic Python Syntax
	Data Types and Variables
	Calculations and Operators
	Control Structures
	Regular Expressions
	Built-in Functions
	User-Defined Functions
	File Operations
	Objects
	Python Errors and Exception Handling
	Troubleshooting in Python
	Summary

	Chapter 27: Scripting with Other Executable Code
	Requirements for CGI
	Sample CGI Using Bash Shell Scripting
	Summary

	Chapter 28: Using CGI
	How and When to Use CGI
	Sample Data
	Perl Examples
	Python Examples
	Summary

	Chapter 29: PHP Basics
	The History of PHP
	Requirements for PHP
	PHP Fundamentals
	A Sample PHP Script
	Summary

	Chapter 30: The PHP Language
	Calculations and Operators
	Control Structures
	Built-in PHP Functions
	User-Defined Functions
	Objects
	File Operations
	PHP Errors and Troubleshooting
	Summary

	Chapter 31: Using PHP
	How and When to Use PHP
	PHP Resources
	PHP Examples
	Summary

	Appendix A: XHTML Reference
	Element Listings
	Event Attributes
	Other Common Attributes

	Appendix B: CSS Properties
	Selector Examples
	Property Listings
	Selector Review

	Appendix C: JavaScript Language Reference
	Constants
	Operators
	Statements
	Standard Elements
	Top-Level Functions
	Objects

	Appendix D: Perl Language Reference
	Command Line Arguments
	Perl Symbolic Debugger Commands
	Operators
	Standard Variables
	Statements
	Functions
	Regular Expressions

	Appendix E: Python Language Reference
	Built-in Functions

	Appendix F: PHP Language Reference
	Apache
	Arrays
	BCMath
	BZip2
	Calendar
	Class/Object
	Character Type
	Curl
	Date and Time
	Directory
	Error Handling
	Filesystem
	FTP
	Function Handling
	HTTP
	Iconv Library
	Image
	IMAP
	Mail
	Math
	MIME
	Miscellaneous
	MS SQL
	MySQL
	Network Functions
	ODBC
	Output Buffering
	PCRE
	PHP Options and Info
	Program Execution
	Regular Expressions
	Sessions
	Simple XML
	Sockets
	SQLite
	Streams
	Strings
	URL
	Variable Functions
	XML
	ZLib

	Index

