
only for RuBoard - do not distribute or recompile

Copyright
Table of Contents
Index
Full Description
Reviews
Reader reviews
Errata

Web Database Applications with PHP & MySQL

Hugh E. Williams
David Lane
Publisher: O'Reilly

First Edition March 2002
ISBN: 0-596-00041-3, 582 pages

Web Database Applications with PHP and MySQL offers web developers a mixture of theoretical and
practical information on creating web database applications. Using PHP and MySQL, two open source
technologies that are often combined to develop web applications, the book offers detailed information on
designing relational databases and on web application architecture, both of which will be useful to readers
who have never dealt with these issues before. The book also introduces Hugh and Dave's Online Wine
Store, a complete (but fictional) online retail site implemented using PHP and MySQL.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

Preface
 What This Book Is About
 What You Need to Know
 How This Book Is Organized
 How to Use This Book
 Conventions Used in This Book
 How to Contact Us
 Web Site and Code Examples
 Acknowledgments

1. Database Applications and the Web
 1.1 Three-Tier Architectures
 1.2 The Client Tier
 1.3 The Middle Tier
 1.4 The Database Tier
 1.5 Our Case Study

2. PHP
 2.1 Introducing PHP
 2.2 Conditions and Branches
 2.3 Loops
 2.4 A Working Example
 2.5 Arrays
 2.6 Strings
 2.7 Regular Expressions
 2.8 Date and Time Functions
 2.9 Integer and Float Functions
 2.10 User-Defined Functions
 2.11 Objects
 2.12 Common Mistakes

3. MySQL and SQL
 3.1 Database Basics
 3.2 Quick Start Guide
 3.3 MySQL Command Interpreter
 3.4 Managing Databases, Tables, and Indexes
 3.5 Inserting, Updating, and Deleting Data
 3.6 Querying with SQL SELECT
 3.7 Join Queries
 3.8 Modifying the Database
 3.9 Functions
 3.10 More on SQL and MySQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 3.10 More on SQL and MySQL

4. Querying Web Databases
 4.1 Connecting to a MySQL Database
 4.2 Formatting Results
 4.3 Case Study: The Front-Page Panel
 4.4 Interacting with Other DBMSs Using PHP

5. User-Driven Querying
 5.1 User Input
 5.2 Querying with User Input
 5.3 Case Study: Previous and Next Browsing
 5.4 Case Study: Producing a select List

6. Writing to Web Databases
 6.1 Database Inserts, Updates, and Deletes
 6.2 Issues in Writing Data to Databases

7. Validation on the Server and Client
 7.1 Validation and Error Reporting for Web Database Applications
 7.2 Server-Side Validation
 7.3 Client-Side Validation with JavaScript

8. Sessions
 8.1 Building Applications That Keep State
 8.2 Session Management Over the Web
 8.3 PHP Session Management
 8.4 Case Study: Adding Sessions to the Winestore
 8.5 When to Use Sessions

9. Authentication and Security
 9.1 HTTP Authentication
 9.2 HTTP Authentication with PHP
 9.3 Authentication Using a Database
 9.4 Web Database Applications and Authentication
 9.5 Protecting Data on the Web

10. Winestore Customer Management
 10.1 Overview of the Winestore Application
 10.2 Customer Management
 10.3 Authenticating Users
 10.4 The Winestore Include Files

11. The Winestore Shopping Cart
 11.1 The Winestore Home Page
 11.2 The Shopping Cart Architecture
 11.3 Managing Redirection

12. Ordering and Shipping at the Winestore
 12.1 Finalizing Orders
 12.2 HTML and Email Receipts

13. Related Topics
 13.1 Automated Housekeeping
 13.2 Templates
 13.3 Searching and Browsing

A. Installation Guide
 A.1 Installing MySQL, Apache, and PHP
 A.2 Installing the Winestore Examples

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 A.3 Installing Apache to Use SSL
 A.4 Installation Resources

B. Internet and Web Protocols
 B.1 The Internet
 B.2 Hypertext Transfer Protocol

C. Modeling and Designing Relational Databases
 C.1 The Relational Model
 C.2 Entity-Relationship Modeling

D. Managing Sessions in the Database Tier
 D.1 Using a Database to Keep State
 D.2 PHP Session Management
 D.3 MySQL Session Store

E. Resources
 E.1 Client Tier Resources
 E.2 Middle Tier Resources
 E.3 Database Tier Resources
 E.4 Security and Cryptography Resources

Colophon

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway
North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business,
or sales promotional use. Online editions are also available for most titles
(http://safari.oreilly.com). For more information contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

The O'Reilly logo is a registered trademark of O'Reilly & Associates, Inc.
Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations
appear in this book, and O'Reilly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial
caps. The association between the image of a platypus and the topic of
web database applications with PHP and MySQL is a trademark of
O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the
publisher and the author assume no responsibility for errors or omissions,
or for damages resulting from the use of the information contained herein.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Preface
Web database applications integrate databases and the Web. Well-known web
destinations such as online auction sites, retail stores, news sites, discussion forums,
and personalized home pages are all examples of web database applications. The
popularity of these applications stems from their accessibility and usability: thousands
of users can access the same data at the same time without the need to install
additional software on their machines.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

What This Book Is About

This book is for developers who want to build database applications that are
integrated with the Web. It presents the principles and techniques of developing
small- to medium-scale web database applications that store, manage, and retrieve
data, as well as the basic techniques for securing an application. The architecture we
describe is a successful framework for applications that can run on modest hardware
and process more than a million hits per day from users.

An important feature of this book is our ongoing case study, Hugh and Dave's Online
Wines. It's a complete but fictional online retail store that allows users to browse and
search a database of wines, add items to a shopping cart, manage their membership,
and purchase wines. Searching, browsing, storing user data, validating user input,
managing user transactions, and security are each the subject of a chapter, and each
topic is illustrated with examples from the case study. The completed winestore
scripts are presented and briefly discussed at the end of the book.

We use open source software. Our database management system (DBMS) is
MySQL, a system known for its suitability to applications that require speed but low
resource overheads. Our scripting language is PHP, which is best known for its
function libraries that interact with more than 15 relational database systems, the web
environment, and many other services. We use PHP to develop the application logic
that brings together the Web and the relational database management system
(RDBMS). Apache is our web server of choice.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

What You Need to Know

This book is about understanding and developing application logic that brings
databases and the Web together. We introduce database systems over the course of
the book, but our discussions don't replace a book or class dedicated to relational
database theory, or a book about a specific relational database system such as
MySQL. Likewise, we assume you are already familiar with the Web. We introduce
but don't delve deeply into the three key web protocols, HTML, HTTP, and TCP/IP.

We also assume you can program in a third-generation programming language such
as C, C++, Java, Perl, FORTRAN, or Visual Basic. Our introduction to the PHP web
scripting language doesn't assume you are familiar with web scripting or are an expert
programmer, but we do assume you understand the basic HTML constructs and are
familiar with the popular web browsers. If you can author an HTML document with a
text editor that contains a <form> and a <table> element, you have sufficient HTML
skills to use this book. It is the principles of structure in the markup process that are
important, not the attractiveness or usability of the presentation in the web browser.
We introduce advanced HTML concepts as required, but an HTML guide such as
O'Reilly's HTML and XHTML: The Definitive Guide, by Chuck Musciano and William
Kennedy, is a useful resource for understanding and building web database
applications. You may also find O'Reilly's Programming PHP, by Rasmus Lerdorf and
Kevin Tatroe useful as well.

You don't need a detailed understanding of relational databases to use this book, but
a working knowledge is helpful. We present the relational database theory needed for
developing simple applications, and we cover many other basic concepts, including
how to tell when a database is the method of choice to store data, the architecture of
a DBMS, the database query language SQL, and a case study that models system
requirements and converts the model to a database design. This book isn't a
substitute for the many good resources on database theory, however, it's enough to
begin developing the underlying databases for many web database applications.

We briefly introduce web servers and networking in Chapter 1 and provide additional
material in Appendix B. Both web servers and networking are important to a web
database application but aren't the focus of this book. We present enough information
to set up a web server and to understand how it fits in the architecture of a web
database application. For many applications, this is sufficient. Likewise, we present
sufficient detail so that you will understand what networking and network protocol
issues impact web database application design.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

How This Book Is Organized

There are 13 chapters and 5 appendixes in this book. Chapter 1 to Chapter 3
introduce web database applications, PHP, MySQL, and SQL:

Chapter 1

Discusses the three-tier architecture commonly used in web database
applications and in those that we discuss in this book. We introduce each of the
three tiers and the features of each, and we introduce the software tools that we
use. We also briefly introduce web protocols. The chapter concludes with an
introduction to our case study example, Hugh and Dave's Online Wines. We
discuss the components of the winestore, the system requirements, and where
in the book the techniques to develop each component are covered.

Chapter 2

Introduces the PHP scripting language. It covers programming in PHP and
discusses the basic programming constructs, variables, types, functions,
techniques, and common sources of bugs. We include many short code
examples to illustrate how to program with PHP.

Chapter 3

Introduces the MySQL DBMS and how to interact with it using the database
query language SQL. Using examples from the online winestore, we introduce
the SQL commands for creating, deleting, and updating data and databases.
We also present a longer, example-driven section on querying the online
winestore. The chapter concludes with discussion of advanced topics, including
MySQL database tuning and configuration.

Chapter 4 to Chapter 9 cover the principles and practice of developing web
database application logic.

Chapter 4

Introduces the basics of connecting to the MySQL DBMS with PHP. We explain
the querying process used in most interactions with the DBMS and present
examples that use most of the PHP MySQL library functions. We also show how
results from database queries can be formatted as HTML for delivery in a web
browser. The chapter is supported by the online winestore case study example,
which shows how to build a moderately complex querying module.

Chapter 5

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5

Continues the principles and practice of querying web databases. Here we
focus on user-driven querying, in which the user provides parameters to the
querying process. We show how data is encoded, sent in requests from a web
browser to a web server, and decoded for processing in PHP. We discuss the
security implications in processing user data and show steps to secure
interactive querying systems. Our discussion is supported by a user-driven
querying example with results that can be browsed page by page.

Chapter 6

Covers writing data to web databases. There are several reasons why writing
data is different from reading it. For example, reloading or printing a page from a
web browser can cause data to be written to a database more than once.
Multiple users accessing the same database introduces other problems, such
as data unexpectedly being changed by one user while it's being read by
another. We discuss how to solve problems related to the nature of the Web
and multiple users. We illustrate the principles with an example that adds and
edits customer details in the online winestore.

Chapter 7

This chapter is related to Chapter 6 and presents the principles and
techniques for user-input validation. We introduce validation models and
reporting methods that work in web database applications and show how these
are implemented using PHP and supported by client-side, browser-based
JavaScript.

Chapter 8

Covers the principles of adding session management to web database
applications. Session management allows the interactions between a user and
the application to be related so that, for example, a user can log in and log out
of an application and be guided through a series of steps in a process. We show
how PHP manages sessions and illustrate the techniques with a case study of
managing error feedback to users who are joining as customers of the
winestore.

Chapter 9

Presents topics in web security. We show how PHP can be used for basic
authentication, how databases can manage many users, and how
communications can be secured with the network-level secure sockets layer.
Our case study is the login and logout process for the online winestore. This
extends our discussion of session management in Chapter 8.

Chapter 10 to Chapter 13 present and outline the completed winestore case study.
The outlines aren't comprehensive: we assume you have completed Chapter 4 to
Chapter 9 and understand the principles of developing web database applications.
We recommend that you view, edit, and use the winestore PHP scripts while reading
Chapter 10 through Chapter 13.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10

Presents the code for customer management in the winestore, as well as the
general-purpose functions that are used throughout the application. The code
presented is based on the examples developed throughout Chapter 4 to
Chapter 8. We present the scripts for collecting, validating, and modifying
customer details. We also include the code for the user login and logout
processes based on the material presented in Chapter 9.

Chapter 11

Presents the code for the shopping cart at the winestore. The shopping cart is
stored in a database, and each user's cart is tracked using the session
techniques from Chapter 8. The cart module allows a user to view her cart,
add items to the cart, update item quantities, delete items, and empty the cart.

Chapter 12

Presents the code for the ordering and shipping modules of the winestore. The
ordering process shows how the complex database-processing techniques
discussed in Chapter 3 and Chapter 6 are used to convert a shopping cart
into a customer order. We also show how email confirmations of the order are
sent to the user, and an order confirmation is presented as an HTML page.

Chapter 13

Concludes the case study examples and presents related web database topics.
We present the complete searching and browsing winestore module based on
the techniques discussed in Chapter 5. We also discuss automating queries
and using templates to separate script code from HTML markup.

There are five appendixes in this book:

Appendix A

A concise guide to installing the Apache web server, PHP, and MySQL under
the Linux operating system; includes resource pointers to more detailed
installation guides for Linux and other operating systems.

Appendix B

Builds on Chapter 1 and describes the workings of the Web in greater detail.

Appendix C

Contains a case study that models the system requirements for the winestore
using entity-relationship database modeling. It shows how this model can be
converted to a design. It also details the SQL commands used to create the
winestore database.

Appendix D

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix D

An extension of Chapter 8, this appendix shows how the default PHP method
for session handling can be moved to the more scalable underlying database
tier.

Appendix E

Lists useful resources, including web sites and books containing more
information on the topics presented throughout this book.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

How to Use This Book

This book is designed as a tutorial-style introduction to web database applications.

If you haven't installed the Apache web server, the PHP scripting engine, or the
MySQL database management system, begin with Appendix A. Appendix A lists
possible methods for obtaining the software and includes instructions for those who
wish to install from source code. Appendix A also shows how the examples used in
this book can be downloaded and installed locally. We recommend obtaining the code
and databases used in this book, as they will help you understand the concepts as
they are presented. The database configuration steps are included at the beginning of
Chapter 3.

Each chapter covers a different topic. Chapter 1 through Chapter 3 can be read
independently. Chapter 1 introduces web database applications and the case study
application. We recommend reading Chapter 1 first. Chapter 2 and Chapter 3 are
designed as introductions to PHP and SQL, respectively; both can be used as
references when reading the later chapters.

Chapter 4 through Chapter 9 are a major section with a tutorial style that follows
through the principles and practice of web database applications. Chapter 4,
Chapter 5, and Chapter 6 begin with basic principles and components. Chapter 7,
Chapter 8, and Chapter 9 contain more sophisticated examples that rely on
concepts from the earlier chapters. These chapters are designed to be read
sequentially. By the conclusion of Chapter 9, you should have mastered the
principles of developing web database applications.

Chapter 10 to Chapter 13 present and briefly discuss the completed scripts
developed for the online winestore case study. The scripts show how the techniques
from Chapter 4 to Chapter 9 are applied in practice and, as such, are most useful
after mastering the content of the earlier chapters. The material in these later
chapters is also particularly useful when the example application has been
downloaded and installed on a local server, allowing the scripts to be modified and
tested as the chapters are read.

Appendix B and Appendix C are also in a tutorial style. We recommend Appendix
B if you are interested in or are unfamiliar with the web environment and its
underlying protocols. Appendix C is a brief introduction to entity-relationship
modeling for databases and shows the steps we took in designing the winestore
database. We recommend reading Appendix C after completing Chapter 3, and
only if a detailed understanding of the winestore database is desired.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Conventions Used in This Book

The following conventions are used in this book:

Italic

Used for program names, URLs, and database entities, and for new terms when
they are defined

Constant width

Used for code examples, functions, statements, and attributes, and to show the
output of commands

Constant width italic

Used to indicate variables within commands and functions

This icon designates a note, which is an important aside to the
nearby text.

This icon designates a warning relating to the nearby text.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/webdbapps/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly
Network, see the O'Reilly web site at:

http://www.oreilly.com

The authors can be reached at:

hugh@computer.org
dave@simdb.com

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Site and Code Examples

Code examples from this book, data used to create the online winestore database,
and the completed winestore application can be found at this book's web site,
http://www.oreilly.com/catalog/webdbapps/ or at the authors' web site,
http://www.webdatabasebook.com.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Acknowledgments

We thank our technical reviewers, Justin Zobel, Harry Williams, S.M.M. (Saied)
Tahaghoghi, and Rasmus Lerdorf, for their expertise and diligence in helping to
improve this book. We also thank our editor, Lorrie LeJeune, and her editorial
assistant, Sarmonica Jones. We acknowledge the support of our employer, RMIT
University; Hugh thanks the School of Computer Science and Information
Technology, and David thanks the Multimedia Database Systems group. We also
thank our colleagues, who throughout this project have provided ideas, suggestions,
and help. In particular, we thank Abhijit Chattaraj for his help with the MySQL
implementation of session support, and Derryn Grabowski and Jakub Korab for their
help with an initial prototype of the winestore application.

Last, but most importantly, we thank our wives, Selina Williams and Louise Excell.
Very little of this book would exist without Selina's support of Hugh's hectic schedule;
he's now looking forward to supporting her through the birth of their first child. Louise
has been especially patient with David throughout this project, and looks forward to
his support in bringing up their second child, William. David also thanks his daughter
Beth; the wisdom of her advice in dealing with a troublesome PC was far beyond her
three years: "now, just press one key at a time."

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Chapter 1. Database Applications and the Web
With the growth of the Web over the past decade, there has been a similar growth in
services that are accessible over the Web. Many new services are web sites that are
driven from data stored in databases. Examples of web database applications include
news services that provide access to large data repositories, e-commerce
applications such as online stores, and business-to-business (B2B) support products.

Database applications have been around for over 30 years, and many have been
deployed using network technology long before the Web existed. The point-of-service
systems used by bank tellers are obvious examples of early networked database
applications. Terminals are installed in bank branches, and access to the bank's
central database application is provided through a wide area network. These early
applications were limited to organizations that could afford the specialized terminal
equipment and, in some cases, to build and own the network infrastructure.

The Web provides cheap, ubiquitous networking. It has an existing user base with
standardized web browser software that runs on a variety of ordinary computers. For
developers, web server software is freely available that can respond to requests for
both documents and programs. Several scripting languages have been adapted or
designed to develop programs to use with web servers and web protocols.

This book is about bringing together the Web and databases. Most web database
applications do this through three layers of application logic. At the base is a
database management system (DBMS) and a database. At the top is the client web
browser used as an interface to the application. Between the two lies most of the
application logic, usually developed with a web server-side scripting language that
can interact with the DBMS, and can decode and produce HTML used for
presentation in the client web browser.

We begin by discussing the three-tier architecture model used in many web database
applications. We then introduce the nature of the Web and its underlying protocols
and then discuss each of the three tiers and their components in detail. Hugh and
Dave's Online Wines, our case study application, is introduced at the end of this
chapter. We refer to it frequently throughout the course of the book and use it as a
model to illustrate the construction of a web database application.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

1.1 Three-Tier Architectures

This book describes web database applications built around a three-tier architecture
model, shown in Figure 1-1. At the base of an application is the database tier,
consisting of the database management system that manages the database
containing the data users create, delete, modify, and query. Built on top of the
database tier is the complex middle tier, which contains most of the application logic
and communicates data between the other tiers. On top is the client tier, usually web
browser software that interacts with the application.

Figure 1-1. The three-tier architecture model of a web database application

The formality of describing most web database applications as three-tier architectures
hides the reality that the applications must bring together different protocols and
software. The majority of the material in this book discusses the middle tier and the
application logic that brings together the fundamentally different client and database
tiers.

When we use the term "the Web," we mean three major, distinct standards and the
tools based on these standards: the Hypertext Markup Language (HTML), the
Hypertext Transfer Protocol (HTTP), and the TCP/IP networking protocol suite. HTML
works well for structuring and presenting information using a web browser application.
TCP/IP is an effective networking protocol that transfers data between applications
over the Internet and has little impact on web database application developers. The
problem in building web database applications is interfacing traditional database
applications to the Web using HTTP. This is where the complex application logic is
needed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.1.1 Hypertext Transfer Protocol

The three-tier architecture provides a conceptual framework for web database
applications. The Web itself provides the protocols and network that connect the
client and middle tiers of the application; that is, it provides the connection between
the web browser and the web server. HTTP is one component that binds together the
three-tier architecture. A detailed knowledge of HTTP isn't necessary to understand
the material in this book, but it's important to understand the problems HTTP presents
for web database applications. The HTTP protocol is used by web browsers to
request resources from web servers, and for web servers to return responses. (A
longer introduction to the underlying web protocols—including more examples of
HTTP requests and responses—can be found in Appendix B.)

HTTP allows resources to be communicated and shared over the Web. From a
network perspective, HTTP is an applications-layer protocol that is built on top of the
TCP/IP networking protocol suite. Most web servers and web browsers communicate
using the current version, HTTP/1.1. Some browsers and servers use the previous
version, HTTP/1.0, but most HTTP/1.1 software is backward-compatible with
HTTP/1.0.

HTTP communications dominate Internet network traffic. In 1997, HTTP accounted
for about 75% of all traffic.[1] We speculate that this percentage is now even higher
due to the growth in the number and popularity of HTTP-based applications such as
free email services.

[1] From K. Thompson, G. J. Miller, and R. Wilder. "Wide-area internet traffic patterns and characteristics," IEEE
Network, 11(6):10-23, November/December 1997.

1.1.1.1 HTTP example

HTTP is conceptually simple: a client web browser sends a request for a resource to
a web server, and the web server sends back a response. The HTTP response
carries the resource—the HTML document, image, or output of a program—back to
the web browser as its payload. This simple request-response model is shown in
Figure 1-2.

Figure 1-2. A web browser makes a request and the web server responds with the resource

An HTTP request is a textual description of a resource and additional header
information. Consider the following example request:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GET /index.html HTTP/1.0
From: hugh@computer.org (Hugh Williams)
User-agent: Hugh-fake-browser/version-1.0
Accept: text/plain, text/html

This example uses a GET method to request an HTML page index.html with
HTTP/1.0. In this example, three additional header lines identify the user and the web
browser and define what data types can be accepted by the browser. A request is
normally made by a web browser and may include other headers; the previous
example was created manually by typing the request into Telnet software.

An HTTP response has a response code and message, additional headers, and
usually the resource that has been requested. An example response to the request
for index.html is as follows:

HTTP/1.0 200 OK
Date: Sat, 21 Jul 2002 03:44:25 GMT
Server: Apache/1.3.20
Content-type: text/html
Content-length: 88
Last-modified: Fri, 1 Feb 2002 03:40:03 GMT

<html><head>
<title>Test Page</title></head>
<body>
<h1>It Worked!</h1>
</body></html>

The first line of the response agrees to use HTTP/1.0 and confirms that the request
succeeded by reporting the response code 200 and the message OK; another
common response is 404 Not Found. In this example, five lines of additional headers
identify the current date and time, the web server software, the data type, the length
of the response, and when the resource was last modified. After a blank line, the
resource itself follows. In this example the resource is the requested HTML
document, index.html.

1.1.1.2 State

Traditional database applications are stateful. In traditional database applications,
users log in, run related transactions, and then log out when they are finished. For
example, in a bank application, a bank teller might log in, use the application through
a series of menus as he serves customer requests, and log out when he's finished for
the day. The bank application has state: once the teller is logged in, he can interact
with the application in a structured way using menus. When the teller has logged out,
he can no longer use the application.

HTTP is stateless. Statelessness means that any interaction between a web browser

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTTP is stateless. Statelessness means that any interaction between a web browser
and a web server is independent of any other interaction. Each HTTP request from a
web browser includes the same header information, such as the security credentials
of the user, the types of pages the browser can accept, and instructions on how to
format the response. Statelessness has benefits: the most significant are the
resource savings from not having to maintain information at the web server to track a
user, and the flexibility to allow users to move between unrelated pages or resources.

Because HTTP is stateless, it is difficult to develop stateful web database
applications. What is needed is a method to maintain state in HTTP so that
information flows and structure can be imposed. A common solution is to exchange a
token between a web browser and a web server that uniquely identifies the user and
her session. Each time a browser requests a resource, it presents the token, and
each time the web server responds, it returns the token to the web browser. The
token is used by the middle-tier software to restore information about a user from her
previous request, such as which menu in the application she last accessed.
Exchanging tokens allows stateful structure such as menus, steps, and workflow
processes to be added to the application.

1.1.2 Thin Clients

Given that a web database application built with a three-tier architecture doesn't fit
naturally with HTTP, why use that model at all? The answer mostly lies in the benefits
of the thin client. Web browsers are very thin clients: little application logic is included
in the client tier. The browser simply sends HTTP requests for resources and then
displays the responses, which contain mostly HTML documents.

A three-tier model means you don't have to build, install, or configure the client tier.
Any user who has a web browser can use the web database application, usually
without needing to install additional software, be using a specific operating system, or
own a particular hardware platform. This means an application can be delivered to
any number of diverse, geographically dispersed users. The advantage is so
significant that our focus in this book is entirely on three-tier solutions with this thin-
client web browser architecture.

But what are the alternatives to a thin client? A custom-built Java applet is an
example of a thicker client that can still fit the three-tier model: the user downloads an
applet and runs more of the overall application logic on her platform. The applet still
interacts with a middle tier that, in turn, provides an interface to the database tier. The
advantage is customization: rather than using the generic browser solution, a custom
solution can eliminate many problems inherent in the statelessness, security, and
inflexibility of the Web. The applet might not even use HTTP to communicate with the
middle-tier application logic.

A thick client is also part of a traditional two-tier solution, also known as a client/server
architecture. Most traditional database applications—such as those in the bank—
have only two tiers. The client tier has most of the overall application logic, and the
server tier is the DBMS itself. The advantage is that a customized solution can be
designed to meet the exact application requirements without any compromises.
Disadvantages are the lack of hardware and operating system flexibility and the
requirement to provide software to each user.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

1.2 The Client Tier

The client tier in the three-tier architecture model is usually a web browser. Web
browser software processes and displays HTML resources, issues HTTP requests for
resources, and processes HTTP responses. As discussed earlier, there are
significant advantages to using a web browser as the thin-client layer, including easy
deployment and support on a wide range of platforms.

There are many browser products available, and each browser product has different
features. The two most popular windowing-based browsers are Netscape and Internet
Explorer. While we won't describe all the features of web browsers, they have a
common basic set:

All web browsers are HTTP clients that send requests and display responses
from web servers (usually in a graphical environment).

All browsers interpret pages marked up with HTML when rendering a page; that
is, they present the headings, images, hypertext links, and so on to the user.

Some browsers display images, play movies and sounds, and render other
types of objects.

Many browsers can run JavaScript that is embedded in HTML pages.
JavaScript is used, for example, to validate a <form> or change how a page is
presented based on user actions.

Selected web browsers can run components developed in the Java or ActiveX
programming languages. These components often provide additional animation,
tools that can't be implemented in HTML, or other, more complex features.

Several browsers can apply Cascading Style Sheets (CSS) to HTML pages to
control the presentation of HTML elements.

There are subtle—and sometimes not so subtle—differences between the capabilities
different browsers have in rendering an HTML page. Lynx, for example, is a text-only
browser and doesn't display images or run JavaScript. MultiWeb is a browser that
renders the text on a page as sound—the spoken word—providing web access for the
vision-impaired. Many subtle but annoying differences are in the support for CSS and
the features of the latest HTML standard, HTML 4.

Web browsers are the most obvious example of a user agent, a software client that
requests resources from a web server. Other user agents include web spiders—
automated software that crawls the Web and retrieves web pages—and proxy
caches, software systems that retrieve and locally store web pages on behalf of many
other user agents.

While this book isn't a guide to writing HTML, we discuss HTML features as they are
used throughout the book. Pointers to resources that describe HTML, how to author
web pages, and the direction of web page standards are included in Appendix E. We

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

web pages, and the direction of web page standards are included in Appendix E. We
introduce JavaScript client-side scripting for validation of data entry and manipulating
the web browser in Chapter 7.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

1.3 The Middle Tier

In most three-tier web database systems, the majority of the application logic is in the
middle tier. The client tier presents data to and collects data from the user; the
database tier stores and retrieves the data. The middle tier serves most of the
remaining roles that bring together the other tiers: it drives the structure and content
of the data displayed to the user, and it processes input from the user as it is formed
into queries on the database to read or write data. It also adds state management to
the HTTP protocol. The middle-tier application logic integrates the Web with the
database management system.

In the application framework used in this book, the components of the middle tier are
a web server, a web scripting language, and the scripting language engine. A web
server processes HTTP requests and formulates responses. In the case of web
database applications, these requests are often for programs that interact with an
underlying database management system. The web server we use throughout this
book is the Apache Software Foundation's Apache HTTP server, the open source
web server used by more than 60% of Internet connected computers.[2]

[2] From The Netcraft Web Server Survey, http://www.netcraft.com/survey/ (April 2001).

We use the PHP scripting language as our middle-tier scripting language. PHP is an
open source project of the Apache Software Foundation and, not surprisingly, it is the
most popular Apache HTTP server add-on module, with around 40% of the Apache
HTTP servers having PHP capabilities.[3] PHP is particularly suited to web database
applications because of its integration tools for the Web and database environments.
In particular, the flexibility of embedding scripts in HTML pages permits easy
integration with the client tier. The database-tier integration support is also excellent,
with more than 15 libraries available to interact with almost all popular database
management systems.

[3] From the Security Space web server survey, Apache module report,
http://www.securityspace.com/s_survey/data/index.html (April 2001).

1.3.1 Web Servers

Web servers are often referred to as HTTP servers. The term "HTTP server" is a
good summary of their function: their basic task is to listen for HTTP requests on a
network, receive HTTP requests made by user agents (usually web browsers), serve
the requests, and return HTTP responses that contain the requested resources.

There are essentially two types of request made to a web server: the first asks for a
file—often a static HTML web page or an image—to be returned, and the second
asks for a program to be run and its output to be returned to the user agent. Simple
requests for files are further discussed in Appendix B.

Requests for web scripts that access a database are examples of HTTP requests that
require a server to run a program. With the software used in this book, the HTTP
requests are for PHP script resources, which require that the PHP Zend engine be
run, a script retrieved and processed, and the script output captured.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.3.1.1 The Apache HTTP server, Version 1.3

Like most users of the Apache HTTP server, we call it Apache. Apache is an open-
source web server. The current release at the time of writing is 1.3.20.

The installation and configuration of Apache for most web database applications is
straightforward. A concise installation guide for the Linux operating system is
presented in Appendix A. Apache can be downloaded from
http://www.apache.org; other Apache resources are listed in Appendix E.

Apache is fast and scalable. It can handle simultaneous requests from user agents
and is designed to run under multitasking operating systems, such as Linux and 32-
bit variants of Microsoft Windows. It's also lightweight, has low per-process
requirements, can effectively handle changes in request loads, and can run fast on
even modest hardware.

Apache—at least conceptually—isn't complicated. The web server is actually several
processes, where one process coordinates the others. The coordinating process
usually runs with the permissions of the superuser or root user on a Unix machine
and doesn't serve requests itself. The other processes, which usually run as more
secure, permissionless users, notify their availability to handle requests to the
coordinating server. If too few servers are available to handle incoming requests, the
coordinating server may start new servers; if too many are free, it may kill spare
servers to save resources.

How Apache listens on the network and serves requests is controlled by its
configuration file. The server administrator controls the behavior of Apache through
more than 150 directives that affect resource requirements, response time, flexibility
in dealing with request load variability, security, how HTTP requests are handled and
logged, and most other aspects of its operation. Careful adjustment of these
parameters is important for performance, and more details of Apache configuration
can be found in the resources listed in Appendix E.

1.3.1.2 The Apache HTTP server, Version 2.0

Version 1.3 of Apache has some limitations that will be addressed in Version 2.0.
Version 2.0 is available for download, but at the time of writing remains in the beta-
testing phase. Only around 20 sites are known to be using the beta version.

The significant enhancements in Apache 2.0 are:

Use of lighter-weight processes or threads in conjunction with the process
model on the older versions. This will most likely offer significant performance
improvement in starting new servers and reduce the overall memory
requirements of running servers.

Better support, performance, and stability on non-Unix machines.

Addition of filtering modules so that data can be modified as it is processed by
the web server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Support for IPv6, the new version of the IP protocol in the TCP/IP networking
suite.

1.3.2 Web Scripting with PHP

PHP has emerged as a component of many medium- and large-scale web database
applications. This isn't to say that other scripting languages don't have excellent
features. However, there are many reasons that make PHP a good choice, including:

PHP is open source, meaning it is entirely free. As such, community efforts to
maintain and improve it are unconstrained by commercial imperatives.

One or more PHP scripts can be embedded into static HTML files and this
makes client-tier integration easy. On the down side, this can blend the scripts
with the presentation; however the template techniques described in Chapter
13 can solve most of these problems.

There are over 15 libraries for native, fast access to the database tier.

Fast execution of scripts. With the new innovations in the Zend engine for script
processing, execution is fast, and all components run within the main memory
space of PHP (in contrast to other scripting frameworks, in which components
are in distinct modules). Empirical evidence suggests that for tasks of at least
moderate complexity, PHP is faster than other popular scripting tools.

Platform and operating-system flexibility. Apache runs on many different
platforms and under selected operating systems; PHP runs on all these and
more when integrated with other web servers.

PHP is suited to complex systems development. It is a fully featured
programming language, with more than 50 function libraries.

The current version of PHP is Version 4—we call this PHP throughout most of this
book—and the current release at the time of writing is PHP 4.0.6.

PHP4 represents a complete rewrite of the underlying scripting engine used in PHP3.
The significant difference is a change in the model used to run scripts with the
scripting engine. The PHP3 scripting engine was an interpreter. Each line of code in a
script was read, parsed, and executed. If a statement in the body of a loop is
executed 100 times, the line of code is reinterpreted 100 times using PHP3. This
model is slow for complex scripts, but fast for short scripts.

The PHP4 script-processing model is different and designed for larger applications. A
script is read, parsed, and compiled into an intermediate format, and then the
intermediate code is executed by the PHP4 Zend engine script executor. This means
that each line in the script is interpreted from its raw form only once, even if it is
executed hundreds of times. Moreover, compilation allows optimization of code
segments. The result is a performance improvement in PHP4 for all but very simple
scripts.

The architecture of the PHP4 scripting environment is shown in Figure 1-3 (image

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The architecture of the PHP4 scripting environment is shown in Figure 1-3 (image
from Zend Technologies Inc.). As shown, PHP4 is a module of the web server
software. The PHP software itself is divided into two components: the function
libraries or modules, and the Zend engine.

Figure 1-3. The architecture of the PHP4 scripting environment

When a user agent makes a request to the web server for a PHP script, six steps
occur:

1. The web server passes the request to the Zend engine's web server interface.

2. The web server interface calls the Zend engine and passes parameters to the
engine.

3. The PHP script is retrieved from disk by the engine.

4. The script is compiled by the runtime compiler.

5. The compiled code is run by the engine's executor and may include calls to
function modules. The output of the executor is returned to the web server
interface.

6. The web server interface returns output to the web server (which, in turn,
returns the output as an HTTP response to the user agent).

How the PHP scripting engine is managed and run depends on how the PHP module
is included in the Apache web server installation process. In the instructions provided
in Appendix A, the PHP module library is statically linked with the Apache httpd
binary executable. This means that the PHP scripting engine is loaded into main
memory when Apache runs, making the PHP engine run faster. The drawbacks are
that Apache with a static PHP library consumes more memory than if the module is
loaded dynamically, and that the module upgrade process is less flexible.

Pointers to web resources, books, and commercial products for PHP development
are listed in Appendix E.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

1.4 The Database Tier

The database tier is the base of a web database application. Understanding system
requirements, choosing database-tier software, designing databases, and building the
tier are the first steps in successful web database application development. We
discuss techniques for modeling system requirements, converting a model into a
database, and the principles of database technology in Appendix C. In this section,
we focus on the components of the database tier and introduce database software by
contrasting it with other techniques for storing data. Chapter 3 covers the standards
and software we use in more detail.

In a three-tier architecture application, the database tier manages the data. The data
management typically includes storage and retrieval of data, as well as managing
updates, allowing simultaneous, or concurrent, access by more than one middle-tier
process, providing security, ensuring the integrity of data, and providing support
services such as data backup. In many web database applications, these services are
provided by a RDBMS system, and the data stored in a relational database.

Managing relational data in the third tier requires complex RDBMS software.
Fortunately, most DBMSs are designed so that the software complexities are hidden.
To effectively use a DBMS, skills are required to design a database and formulate
commands and queries to the DBMS. For most DBMSs, the query language of choice
is SQL. An understanding of the underlying architecture of the DBMS is unimportant
to most users.

In this book, we use the MySQL RDBMS to manage data. Much like choosing a
middle-tier scripting language, there are often arguments about which DBMS is most
suited to an application. MySQL has a well-deserved reputation for speed, and it is
particularly well designed for applications where retrieval of data is more common
than updates and where small, simple updates are the general class of modifications.
These are characteristics typical of most web database applications. Also, like PHP
and Apache, MySQL is open source software. However, there are down sides to
MySQL we'll discuss later in this section.

There are other, nonrelational DBMS software choices for storing data in the
database tier. These include search engines, document management systems, and
simple gateway services such as email software. Our discussions in this book focus
on relational database technology in the database tier.

1.4.1 Database Management Systems

A database management system stores, searches, and manages data.

A database is a collection of related data. The data stored can be a few entries, or
rows, that make up a simple address book of names, addresses, and phone
numbers. In contrast, the database can also contain millions of records that describe
the catalog, purchases, orders, and payroll of a large company. The database behind
our case study, Hugh and Dave's Online Wines, is an example of a medium-sized
database that falls between these two extremes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A DBMS is a set of components for defining, constructing, and manipulating a
database. When we refer to a database management system, we generally mean a
relational DBMS or RDBMS. Relational databases store and manage relationships
between data—for example, customers placing orders, customer orders containing
line items, or wineries being part of a wine-growing region.

Figure 1-4 shows the simplified architecture of a typical DBMS.

Figure 1-4. The architecture of a typical DBMS

A DBMS consists of several components:

Applications interface

Libraries for communicating with the DBMS. Most DBMSs have a simple
command-line interpreter that often uses these libraries to relay requests typed
from the keyboard to the DBMS and to display responses. In a web database
application, the command-line interpreter is usually replaced by a function
library that is part of the middle-tier scripting language.

SQL interpreter

A parser that checks the syntax of incoming query statements and translates
these into an internal representation.

Query evaluator

Generates different plans for evaluating a query by considering database
statistics and properties, selects one of these plans, and translates the plan into
low-level actions that are executed.

Data access

The modules that manage access to the data stored on disk, including a
transaction manager, a recovery manager, the main-memory buffer manager,
data security manager, and the file and access method manager.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Database

The physical data itself stored in data files. The data also contains index files for
fast access to data, and database and system summary statistics primarily used
for query plan generation and optimization.

The important components for web database application developers are the database
and applications interface. For all but large-scale applications, understanding and
configuring the other components of a DBMS is usually unnecessary.

1.4.2 Why Use a DBMS?

A question that is often asked is: why use a complex DBMS to manage data? There
are several reasons that can be explained by contrasting a database with a
spreadsheet, a simple text file, or a custom-built method of storing data. A few
example situations where a DBMS should and should not be used are discussed later
in this section.

Take spreadsheets as an example. Spreadsheet worksheets are typically designed
for a specific application. If two users store names and addresses, they are likely to
organize data in a different way—depending on their needs—and develop custom
methods to move around and summarize the data. In this scheme, the program and
the data aren't independent: moving a column might mean rewriting a macro or
formula, while exchanging data between the two users' applications might be
complex. In contrast, a DBMS and a database provide data-program independence,
where the method for storing the data, the order of the stored information, and how
the data is managed on disk are independent of the software that accesses it.

Managing complex relationships is difficult in a spreadsheet or text file. For example,
consider our online winestore: if we want to store information about customers, we
might allocate a few spreadsheet columns to store each customer's residential
address. If we were to add business addresses and postal addresses, we'd need
more columns and complex processing to, for example, process a mail-out to
customers. If we want to store information about the purchases by our customers, the
spreadsheet becomes wider still, and problems start to emerge. For example, it is
difficult to determine the maximum number of columns needed to store orders and to
design a method to process these for reporting.

Spreadsheets or text files don't work well when there are associations or relationships
between stored data items. In contrast, DBMSs are designed to manage complex
relational data. DBMSs are also a complete solution: if you use a DBMS, you don't
need to design a custom spreadsheet or file solution. The methods that access the
data—most often the query language SQL—are independent of how the data is
physically stored and actually processed.

A DBMS usually permits multiuser transactions. Medium- and large-scale DBMSs
include features that control the writing of data by multiple users in a methodical way.
In contrast, a spreadsheet should be opened and written only by one user; if another
user opens the spreadsheet, she won't see any updates being made at the same time
by the first user. At best, a shared spreadsheet or text file permits very limited
concurrent access.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An additional benefit of a DBMS is its speed. It isn't totally true to say that a database
provides faster searching of data than a spreadsheet or a custom filesystem. In many
cases, searching a spreadsheet or a special-purpose file might be perfectly
acceptable, or even faster if it is designed carefully and the volume of data is small.
However, for managing large amounts of related information, the underlying search
structures in a DBMS can permit fast searching, and if information needs are
complex, a DBMS should optimize the method of retrieving the data.

There are also other advantages of DBMSs, including data-oriented and user-
oriented security, administration software, and data recovery support. A practical
benefit is reduced application development time: the system is already built, it needs
only data and queries to access the data.

1.4.2.1 Examples of when to use a DBMS

In any of these situations, a DBMS should probably be used to manage data:

There is more than one user who needs to access the data at the same time.

There is at least a moderate amount of data. For example, we may need to
maintain information about a few hundred customers.

There are relationships between the stored data items. For example, customers
may have any number of related purchase orders.

There is more than one kind of data record. For example, there might be
information about customers, orders, inventory, and other data in an online
store.

There are constraints that must be rigidly enforced on the data, such as field
lengths, field types, uniqueness of customer numbers, and so on.

New or consolidated information must be produced from basic, related
information; that is, the data must be queried to produce reports or results.

There is a large amount of data that must be searched quickly.

Security is important. There is a need to enforce rules as to who can access the
data.

Adding, deleting, or modifying data is a complex process.

1.4.2.2 Examples of when not to use a DBMS

There are some situations where a relational DBMS is probably unnecessary or
unsuitable. Here are some examples:

There is one type of data item, and the data isn't searched. For example, if a log
entry is written when a user logs in and logs out, appending the entry to the end
of a simple text file may be sufficient.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The data-management task is trivial. In this case, the data might be coded into a
web script in the middle tier, rather than adding the overhead of a database
access each time the data is needed.

The data requires complex analysis. For analysis, a spreadsheet package or
statistical software may be more appropriate.

1.4.3 The MySQL DBMS

MySQL is a medium-scale DBMS, with most of the features of a large-scale system
and the ability to manage very large quantities of data. Its design is ideally suited to
managing the databases that are typical of many web database applications.

The difference between MySQL and some other systems is that MySQL is missing
some querying support and has limited concurrency-handling abilities. In terms of
concurrency, tens of middle-tier processes can access a database at the same time
but not hundreds. Two querying techniques—specifically nested querying and
views—aren't supported, but support is planned for the near future in MySQL Version
4. There are other, more minor limitations that don't typically affect web development.

The limitations of MySQL usually have a very minor impact on web database
application development. However, for high-throughput systems, large numbers of
concurrent users, or applications that modify the database frequently, other DBMSs
may be considered. Our second choice would be PostgreSQL, which is known to be
slower but supports more concurrent users. More information on PostgreSQL can be
found at http://www.postgresql.org.

At the time of writing, the current version of MySQL is 3.23, and the current release is
3.23.38. MySQL resources are listed in Appendix E.

1.4.4 SQL

SQL is the standard relational database interaction language. Almost all relational
database systems, including MySQL, support SQL as the tool to create, manage,
secure, and query databases. Indeed, this is an important point about SQL: it is much
more than just a query language; it is a fully fledged tool for all aspects of database
management.

1.4.4.1 History

SQL has had a complicated life. It began at the IBM San Jose Research Laboratory in
the early 1970s, where it was known as Sequel; some users still call it Sequel, though
it's more correctly referred to by the three-letter acronym, SQL. After almost 16 years
of development and differing implementations, the standards organizations ANSI and
ISO published an SQL standard in 1986. IBM published a different standard one year
later!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Since the mid-1980s, three subsequent standards have been published by ANSI and
ISO. The first, SQL-89, is the most widely, completely implemented SQL in popular
database systems. Many systems implement only some features of the next release,
SQL-2 or SQL-92, and almost no systems have implemented the features of the most
recently approved standard, SQL-99 or SQL-3.

We focus on features found in the MySQL DBMS. MySQL supports the entry-level
SQL-92 standard.

1.4.4.2 SQL components

SQL has four major parts, and we discuss two of them—the Data Definition Language
(DDL) and the Data Manipulation Language (DML)—in detail in Chapter 3. The four
major components of SQL are:

Data Definition Language

DDL is the set of SQL commands that create and delete a database, add and
remove tables, create indexes, and modify each of these. DDL commands are
generally used only during the construction of the database. Indexes are
structures for fast access and updates of data.

Data Manipulation Language

DML is the set of commands that work with a DBMS and a database. DML
commands include those to search, insert, and delete data. These commands
are the tools that interact with a database during its normal use.

Transaction management

SQL includes commands for treating a set of commands as a unit, or
transaction. Using these tools, transactions can be undone, or rolled back.

Advanced features

DML and DDL include advanced features for embedding SQL into general-
purpose programming languages (in much the same way you can see SQL
commands embedded in PHP in Chapter 4) and defining special-purpose
views of the underlying data, and granting and removing access rights to the
DBMS and databases. They also include commands for ensuring the integrity of
the system; that is, ensuring the data is correct and that relational constraints
are maintained correctly.

Transaction management and advanced features of SQL are discussed briefly in
Chapter 3 and Chapter 6, and in Appendix C. Pointers to references on SQL can
be found in Appendix E.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

1.5 Our Case Study

The principles of web database applications are illustrated in practice throughout this
book with the running example of Hugh and Dave's Online Wines. We refer to it as
the winestore throughout the book.

The winestore application has many components of a typical web database
application, including:

Web pages populated with data from a database

User-driven querying and browsing, in which the user provides the parameters
that limit the searching or browsing of the database

Data entry and validation. HTML <form> widgets collect data, and JavaScript
client-side scripts and PHP server-side scripts perform validation.

User tracking; that is, session management techniques that add state to HTTP

User authentication and management

Reporting

Let's take a look at the scope of the winestore and the system functional
requirements. (The process of modeling these requirements with relational database
entity-relationship (ER) modeling and converting this model to SQL statements is the
subject of Appendix C. The completed winestore ER model and the SQL statements
to create the database can be found in Chapter 3. We use the winestore
components as examples beginning in Chapter 4. Completed components of the
winestore application are discussed in Chapter 10 to Chapter 13.)

1.5.1 What Is Hugh and Dave's Online Wines?

Hugh and Dave's Online Wines is a fictional online wine retailer. In this section, we
briefly detail the aims and scope of the winestore and then discuss the system
requirements derived from these. We also introduce the technical components of the
winestore and point to the chapters in the book where these components are
discussed in detail. We conclude with a discussion of the shortcomings of the
winestore and what isn't covered in this book. The completed winestore described in
this section can be accessed via this book's web site.

The winestore is open to the public: anonymous users have limited access to the
system, and users can make purchases if they become members. The site aims to be
attractive, simple, and usable; however, since it was designed by two computer
scientists, we failed to make it attractive! It succeeds better in its technical aims: the
winestore manages over 1,000 wines, stock information, and a database of around
1,000 customers and their orders.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Any user with a web browser can access the site, browse or search for wines that are
in stock, and view the details. The details of wines include the name, year of release,
wine type, grape varieties, and, in some cases, an expert review of the wine.
Anonymous users can add selected wines to a shopping cart. Users can also be
members, and the membership application process collects details about the
customer in the same way as at most online sites.

To purchase wines, users must log in using their membership details. If a user has
just joined as a member, he is logged in automatically. After selecting wines for
purchase, the user can place an order. An order is shipped immediately and a
confirmation sent by email.

Behind the scenes, the system also allows the stock managers of the winestore to
add new shipments of wines to the database. The web site manager can also add
new wines, wineries, winery regions, and other information to the winestore. Limited
reporting features are available.

1.5.1.1 System requirements

The following requirements can typically be gathered from a scope document,
customer interviews, and so on. But, of course, this book isn't about software
engineering processes, and we present here the general requirements that form a
basis for the examples in this book. Some aspects of our requirements are simplified,
some aspects of a commercial store are omitted, and some details are real-world and
comprehensive.

The requirements listed here are an overview; a real-world commercial application
would present these facts in detailed functional and system requirements. A
production application would also have an accompanying design document
discussing the database design, screen layouts, and information flows.

Here's a summary of the functional and systems requirements:

The online winestore is primarily aimed as an e-commerce site to sell wine.

The system doesn't manage accounting, stock control, payroll, ordering, and
other tasks.

Users may select wines and add them to a shopping basket. Users may
purchase the items in their shopping baskets for up to one day after the first
item is added to the basket. Users have only one shopping basket each and
may empty their basket at any time.

Users of the site may be anonymous and can remain anonymous until they
agree to purchase the items in the shopping basket.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To purchase items in a shopping basket, the user must log in to the system. To
log in, a user must have an account. To get an account, a user must provide at
least his surname, first name, one address line, a city, a zip code, a country, his
birth date, an email address, and a password. The email address is used as the
user's login name. The user may also optionally provide a middle initial, a title,
two additional address lines, a state, a telephone number, and a fax number.

When a user purchases wines, his order is archived.

A user may receive a percentage discount on the price of an order. A discount
can be levied on a particular day, a minimum threshold quantity, or given to a
regular customer.

An order may have a delivery charge that is levied according to the user's
location and the delivery mode. Delivery modes include sea mail, regular mail,
and express mail. An order may also have a note that is directed to the delivery
company; for example, a note might indicate to "leave the wines at the back
door of the house."

Wines are classified into broad types of red, white, sparkling, sweet, and
fortified. Wines also have a name, a vintage, and a description; descriptions are
optional free-form text that are typically a review of the wine similar to that found
on the label.

Wines are made with different grape varieties, including Chardonnay, Semillon,
Merlot, and so on. A wine can be made of any number of grape varieties, and
the order of these grape varieties is important. For example, for a wine made of
two varieties, Cabernet and Merlot, a Cabernet Merlot is different from a Merlot
Cabernet.

Users may browse wines at the winestore by type or wine region.

Wines are produced by one winery.

Wineries have a description—which is typically a review—as well as a phone
and fax number.

Wineries are in one region. A region is an area—for example, the Barossa
Valley in South Australia—and each region has a description and, possibly, an
image or map of the area.

A shopping basket is an incomplete order that contains items. It can be
converted to a completed order after the user logs in. Each item in an order is
for a particular wine, a quantity of that wine to be purchased, and a price per
bottle. The price of the wine is always the price of the first bottle of wine added
to the shopping cart, which in turn is always the cheapest available inventory
price.

The quantities of wines in the shopping basket can be updated by the user, and
items can be removed from the shopping basket.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The wines available for sale are stored in an inventory. Each inventory record
has a date added and is for a particular wine. The inventory contains a stock
quantity available at a particular per-bottle and per-case price. There can be
several inventory records for a wine, representing different shipments that
arrived at the winestore on different dates or that have a different price.

The user will always be advertised prices from the cheapest inventory for each
wine. When a user adds a wine to her shopping basket, she is guaranteed this
price.

A user can purchase only wines that are in stock.

When a user converts his shopping basket to an order, the availability of
sufficient inventory to complete the order is checked. If insufficient wine is
available, the user is alerted, and the quantities in the shopping basket are
updated; this situation can occur if a user adds more wine to his basket than is
available.

When sufficient inventory is available to complete an order, the quantity of wine
in the inventory is reduced as the order is finalized. The inventory reduced is
always the oldest inventory of that wine.

1.5.2 Components of the Winestore

This section outlines where the principles and practical techniques to develop each
component of the winestore are covered throughout this book. The completed
winestore application is the subject of Chapter 10 through Chapter 13.

1.5.2.1 Database-driven querying

In Chapter 4, we introduce the techniques to connect to a DBMS, run a moderately
complex SQL query, retrieve results, and process these results. To illustrate these
techniques, we implement the Hot New Wines panel on the front page of the
winestore. The completed panel is shown in Figure 1-5. The panel shows the
newest three wines added to the database that have been reviewed by a wine expert.
The completed shopping cart component is described in Chapter 11 and includes
the panel code developed in Chapter 4.

Figure 1-5. The completed front page panel with the Hot New Wines panel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.5.2.2 User-driven querying and browsing

Users can display selected wines stocked at the winestore by entering simple search
criteria.

The result of clicking Search after selecting wines of type "Red" in the "Margaret
River" region is shown in Figure 1-6. The results screen shows the first 12 of 38
wines that match the criteria and has links at the base of the screen to allow users to
move through the results.

Figure 1-6. Links at the bottom of the browse page allow users to move through the results set

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The techniques for collecting user input with HTML <form> widgets, query
formulation with user input, and results browsing are presented in Chapter 5. There
we also introduce the basics of securing a web database application by
preprocessing user input. The completed code for this module is in Chapter 13.

1.5.2.3 Data entry and saving records to a database

Chapter 6 introduces techniques to write data to a database. We illustrate the
principles of writing data by developing a simple customer membership <form> in
Chapter 6, Chapter 7, and Chapter 8. The complete implementation of the
customer membership process is discussed in Chapter 10, and the completed
<form> is shown in Figure 1-7.

Figure 1-7. The customer <form> collects and updates member information

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Writing data requires careful consideration of how other users are interacting with the
database at the same time. We introduce the theory and practice of writing to
databases in Chapter 6, as well as the PHP functions to manage and report on the
writing process.

1.5.2.4 Validation in the client and middle tiers

We continue our development of the simplified customer <form> in Chapter 7,
where we introduce validation in the client and middle tiers. Validation in both tiers is
important. Client-side validation with JavaScript lightens the web-server load in the
middle tier, is fast for the user, and has no network overhead. Server-side validation
is also important: users can bypass client-tier validation or may not have it configured
correctly, it may not be supported by the browser, and complete and complex
validation might be possible only in the middle tier.

Figure 1-8 shows a customer <form> validation error message produced using the
client-side JavaScript techniques discussed in Chapter 7.

Figure 1-8. A JavaScript validation error for the winestore customer <form>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.5.2.5 User tracking and session management

Adding state to HTTP is the subject of Chapter 8, where we introduce the PHP
session-management techniques that manage the transaction processes of a user at
the winestore. We discuss the merits of these session management techniques and
illustrate when they should and should not be used. In Appendix D, we discuss
alternatives to session management that use the database tier for state maintenance.

We illustrate PHP sessions by extending the customer <form> example from
Chapter 6 and Chapter 7. We show a practical example of storing and redisplaying
data when the user returns to fix data entry errors from the validation process. At the
conclusion of Chapter 8, the simple customer data entry <form> is complete. A full
implementation of the winestore customer <form> using the same techniques is the
subject of Chapter 10, and sessions are used throughout the code examples in
Chapter 10 through Chapter 13.

1.5.2.6 Authentication

Authentication is the identification of two communicating parties. We discuss the
principles of security and authentication in Chapter 9.We illustrate the principles with
examples from the customized customer login and logout process at the winestore.
The completed login and logout process at the winestore is discussed in Chapter
10.

1.5.2.7 The complete application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The winestore includes several complete components that are the subjects of
Chapter 10 through Chapter 13:

The full implementation of the shopping cart is covered in Chapter 11.

Presentation of a finalized order, email confirmation, and delivery of a receipt
are covered in Chapter 12.

Updating quantities in the shopping cart is discussed in Chapter 11.

The full membership application process, amending of customer details, and
logging in and out are covered in Chapter 10.

Implementing the complex ordering process that manages the inventory is
discussed in Chapter 12.

Housekeeping, separating presentation from content, and searching are
presented in Chapter 13.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Chapter 2. PHP
In this chapter, we introduce the PHP scripting language. PHP is similar to high-level
languages such as C, Perl, Pascal, FORTRAN, and Java, and programmers who
have experience with any of these languages should have little trouble learning PHP.
This chapter serves as an introduction to PHP; it's not a programming guide. We
assume you are already familiar with programming in a high-level language.

The topics covered in this chapter include:

PHP basics, including script structure, variables, supported types, constants,
expressions, and type conversions

Condition and branch statements supported by PHP, including if, if...else,
and the switch statements

Looping statements

Arrays and array library functions

Strings and string library functions

Regular expressions

Date and time functions

Integer and float functions

How to write functions, reuse components, and determine the scope and type of
variables

An introduction to PHP object-oriented programming support

Common mistakes made by programmers new to PHP, and how to solve them

Programmers new to PHP should read Section 2.1, which describes the basic
structure of a PHP script and its relationship to HTML, and includes discussion of how
PHP handles variables and types. The two sections that follow, Section 2.2 and
Section 2.3, deal with conditional statements and looping structures and should be
familiar material. We then present a short example that puts many of the basic PHP
concepts together.

The remainder of the chapter expands on the more advanced features of PHP,
presents a reference to selected library functions, and discusses some of the
common mistakes that programmers make when learning PHP. This material can be
examined briefly, and used later as a reference while reading Chapter 4 to 13 and
while programming in PHP. However, programmers new to PHP should consider
reading the beginning of the Section 2.5 and Section 2.6 sections to understand
the way PHP supports these concepts, as there are important differences from other
languages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We don't attempt to cover every function and every library that are supported by PHP.
However, we provide brief descriptions of the supported libraries in Appendix E. In
later chapters, we discuss more specialized library functions that support the topics
and techniques presented here.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

2.1 Introducing PHP

The current version of PHP is PHP4, which we call PHP throughout this book. The
current release at the time of writing is 4.0.6.

PHP is a recursive acronym that stands for PHP: Hypertext Preprocessor; this is in
the naming style of GNU, which stands for GNU's Not Unix and which began this odd
trend. The name isn't a particularly good description of what PHP is and what it's
commonly used for. PHP is a scripting language that's usually embedded or
combined with HTML and has many excellent libraries that provide fast, customized
access to DBMSs. It's an ideal tool for developing application logic in the middle tier
of a three-tier application.

2.1.1 PHP Basics

Example 2-1 shows the first PHP script in this book, the ubiquitous "Hello, world."
When requested by a web browser, the script is run on the web server and the
resulting HTML document sent back to the browser and rendered as shown in Figure
2-1.

Figure 2-1. The rendered output of Example 2-1 shown in the Netscape browser

Example 2-1. The ubiquitous Hello, world in PHP

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
<html>
<head>
 <title>Hello, world</title>
</head>
<body bgcolor="#ffffff">
 <h1>
 <?php
 echo "Hello, world";
 ?>
 </h1>
</body>
</html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</html>

Example 2-1 illustrates the basic features of a PHP script. It's a mixture of HTML—
in this case it's mostly HTML—and a PHP script. The script in this example:

<?php
 echo "Hello, world";
?>

simply prints the greeting, "Hello, world."

The PHP script shown in Example 2-1 is rather pointless: we could simply have
authored the HTML to include the greeting directly. Because PHP integrates so well
with HTML, using PHP to produce static strings is far less complicated and less
interesting than using other high-level languages. However, the example does
illustrate several features of PHP:

The begin and end script tags are <?php and ?> or, more simply, just <? and ?
>. The longer begin tag style <?php avoids conflicts with other processing
instructions that can be used in HTML. We use both styles in this book.

Other begin and end tag styles can also be configured, such as the HTML style
that is used with JavaScript or other embedded scripts: <script
language="PHP"> and </script>.

Whitespace has no effect, except to aid readability for the developer. For
example, the script could have been written succinctly as <?php echo
"Hello, world";?> with the same effect. Any mix of spaces, tabs, carriage
returns, and so on in separating statements is allowed.

A PHP script is a series of statements, each terminated with a semicolon. Our
simple example has only one statement: echo "Hello, world";.

A PHP script can be anywhere in a file and interleaved with any HTML
fragment. While Example 2-1 contains only one script, there can be any
number of PHP scripts in a file.

When a PHP script is run, the entire script including the start and end script tags
<?php and ?> is replaced with the output of the script.

When we present a few lines of code that are sections of larger
scripts, we usually omit the start and end tags.

The freedom to interleave any number of scripts with HTML is one of the most
powerful features of PHP. A short example is shown in Example 2-2; a variable,
$outputString="Hello, world", is initialized before the start of the HTML
document, and later this string variable is output twice, as part of the <title> and
<body> elements. We discuss more about variables and how to use them later in this
chapter.

Example 2-2. Embedding three scripts in a single document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?php $outputString = "Hello, world"; ?>
<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
<html>
<head>
 <title><?php echo $outputString; ?></title>
</head>
<body bgcolor="#ffffff">
 <h1><?php echo $outputString; ?></h1>
</body>
</html>

The flexibility to add multiple scripts to HTML can also lead to unwieldy, hard-to-
maintain code. Care should be taken in modularizing code and HTML; we discuss
how to separate code and HTML using templates in Chapter 13.

2.1.1.1 Creating PHP scripts

A PHP script can be written using plain text[1] and can be created with any text editor,
such as joe, vi, nedit, emacs, or pico.

[1] While printable characters with the most significant bit are allowed, PHP scripts are usually written using characters
from the 7-bit ASCII character set.

If you save a PHP script in a file with a .php extension under the directory configured
as Apache's document root, Apache executes the script when a request is made for
the resource. Following the installation instructions given in Appendix A, the
document root is:

/usr/local/apache/htdocs/

Consider what happens when the script shown in Example 2-1 is saved in the file:

/usr/local/apache/htdocs/example.2-1.php

Apache—when configured with the PHP module—executes the script when requests
to the URL http://localhost/example.2-1.php are made, assuming the web browser is
running on the same machine as the web server.

If directory permissions don't permit creation of files in the document root, it's also
possible to work in the user home directories. If the installation instructions in
Appendix A have been followed, a directory can be created by a user beneath her
home directory and the permissions set so that the directory is readable by the web
server:

mkdir ~/public_html
chmod a+rx ~/public_html

The example file can then be created with the filename:

~/public_html/example.2-1.php

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

~/public_html/example.2-1.php

The file can then be retrieved with the URL http://localhost/~user/example.2-1.php,
where user is the user login name.

2.1.1.2 Comments

Comments can be included in code using familiar styles from other high-level
programming languages. This includes the following styles:

// This is a one-line comment

This is another one-line comment style

/* This is how you
 can create a multi-line
 comment */

2.1.1.3 Outputting data with echo and print

The echo statement used in Example 2-1 and Example 2-2 is frequently used and
designed to output any type of data. The print statement can be used for the same
purpose. Consider some examples:

echo "Hello, world";

// print works just the same
print "Hello, world";

// numbers can be printed too
echo 123;

// So can the contents of variables
echo $outputString;

The difference between print and echo is that echo can output more than one
argument:

echo "Hello, ", "world";

There is also a shortcut that can output data. The following very short script outputs
the value of the variable $temp:

<?=$temp; ?>

The print and echo statements are also often seen with parentheses:

echo "hello";

// is the same as
echo ("hello");

Parentheses make no difference to the behavior of print. However, when they are
used with echo, only one output parameter can be provided.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

used with echo, only one output parameter can be provided.

The echo and print statements can be used for most tasks and can output any
combination of static strings, numbers, arrays, and other variable types discussed
later in this chapter. We discuss more complex output with printf in Section 2.6
later in this section.

2.1.1.4 String literals

PHP can create double- and single-quoted string literals. If double quotation marks
are needed as part of a string, the easiest approach is to switch to the single-
quotation style:

echo 'This works';
echo "just like this.";

// And here are some strings that contain quotes
echo "This string has a ': a single quote!";
echo 'This string has a ": a double quote!';

Quotation marks can be escaped like this:

echo "This string has a \": a double quote!";
echo 'This string has a \': a single quote!';

One of the convenient features of PHP is the ability to include the value of a variable
in a string literal. PHP parses double-quoted strings and replaces variable names with
the variable's value. The following example shows how:

$number = 45;
$vehicle = "bus";
$message = "This $vehicle holds $number people";

// prints "This bus holds 45 people"
echo $message;

To include backslashes and dollar signs in a double-quoted string, the escaped
sequences \\ and \$ can be used. The single-quoted string isn't parsed in the same
way as a double-quoted string and can print strings such as:

'a string with a \ and a $'

We discuss parsing of string literals in more detail in Section 2.6.

2.1.2 Variables

Variables in PHP are identified by a dollar sign followed by the variable name.
Variables don't need to be declared, and they have no type until they are assigned a
value. The following code fragment shows a variable $var assigned the value of an
expression, the integer 15. Therefore, $var is defined as being of type integer.

$var = 15;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$var = 15;

Because the variable in this example is used by assigning a value to it, it's implicitly
declared. Variables in PHP are simple: when they are used, the type is implicitly
defined—or redefined—and the variable implicitly declared.

The variable type can change over the lifetime of the variable. Consider an example:

$var = 15;
$var = "Sarah the Cat";

This fragment is acceptable in PHP. The type of $var changes from integer to string
as the variable is reassigned. Letting PHP change the type of a variable as the
context changes is very flexible and a little dangerous.

Variable names are case-sensitive in PHP, so $Variable, $variable,
$VAriable, and $VARIABLE are all different variables.

One of the most common sources of bugs in PHP is failing to
detect that more than one variable has accidentally been
created. The flexibility of PHP is a great feature but is also
dangerous. We discuss later how to set the error reporting of
PHP so that it creates warning messages sensitive to
unassigned variables being used.

2.1.3 Types

PHP has four scalar types—boolean, float, integer, and string—and two compound
types, array and object.

In this book, and particularly in this chapter, we present function
prototypes that specify the types of arguments and return values.
There are many functions that allow arguments or return values
to be of different types, which we describe as mixed.

Variables of a scalar type can contain a single value at any given time. Variables of a
compound type—array or object—are made up of multiple scalar values or other
compound values. Arrays and objects have their own sections later in this chapter.
Other aspects of variables—including global variables and scope—are discussed
later, with user-defined functions.

Boolean variables are as simple as they get: they can be assigned either true or
false. Here are two example assignments of a Boolean variable:

$variable = false;
$test = true;

An integer is a whole number, while a float is a number that has an exponent and a
fractional part. The number 123.01 is a float, and so is 123.0. The number 123 is an
integer. Consider the following two examples:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// This is an integer
$var1 = 6;

// This is a float
$var2 = 6.0;

A float can also be represented using an exponential notation:

// This is a float that equals 1120
$var3 = 1.12e3;

// This is also a float that equals 0.02
$var4 = 2e-2

You've already seen examples of strings earlier, when echo() and print()
were introduced, and string literals are covered further in Section 2.6. Consider two
example string variables:

$variable = "This is a string";
$test = 'This is also a string';

2.1.4 Constants

Constants associate a name with a simple, scalar value. For example, the Boolean
values true and false are constants associated with the values 1 and 0,
respectively. It's also common to declare constants in a script. Consider this example
constant declaration:

define("pi", 3.14159);

// This outputs 3.14159
echo pi;

Constants aren't preceded by a $ character; they can't be changed once they have
been defined; they can be accessed anywhere in a script, regardless of where they
are declared; and they can only be simple, scalar values.

Constants are useful because they allow parameters internal to the script to be
grouped. When one parameter changes—for example, if you define a new maximum
number of lines per web page—you can alter this constant parameter in only one
place and not throughout the code.

2.1.5 Expressions, Operators, and Variable Assignment

We've already described simple examples of assignment, in which a variable is
assigned the value of an expression using an equals sign. Most numeric assignments
and expressions that work in other high-level languages also work in PHP. Here are
some examples:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Assign a value to a variable
$var = 1;

// Sum integers to produce an integer
$var = 4 + 7;

// Subtraction, multiplication, and division
// that might have a result that is a float or
// an integer, depending on the initial value of $var
$var = (($var - 5) * 2) / 3;

// These all add 1 to $var
$var = $var + 1;
$var += 1;
$var++;

// And these all subtract 1 from $var
$var = $var - 1;
$var -= 1;
$var--;

// Double a value
$var = $var * 2;
$var *= 2;

// Halve a value
$var = $var / 2;
$var /= 2;

// These work with float types too
$var = 123.45 * 28.2;

There are many mathematical functions available in the math library of PHP for more
complex tasks. We introduce some of these in Section 2.9.

String assignments and expressions are similar:

// Assign a string value to a variable
$var = "test string";

// Concatenate two strings together
// to produce "test string"
$var = "test" . " string";

// Add a string to the end of another
// to produce "test string"
$var = "test";
$var = $var . " string";

// Here is a shortcut to add a string to
// the end of another
$var .= " test";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$var .= " test";

2.1.5.1 Expressions

Expressions in PHP are formulated in much the same way as other languages. An
expression is formed from literal values (integers, strings, floats, Booleans, arrays,
and objects), operators, and function calls that return values. An expression has a
value and a type; for example, the expression 4 + 7 has the value 11 and the type
integer, and the expression "Kelpie" has the value Kelpie and the type string. PHP
automatically converts types when combining values in an expression. For example,
the expression 4 + 7.0 contains an integer and a float; in this case, PHP considers
the integer as a floating-point number, and the result is a float. The type conversions
are largely straightforward; however, there are some traps, which are discussed later
in this section.

2.1.5.2 Operator precedence

The precedence of operators in an expression is similar to the precedence defined in
any other language. Multiplication and division occur before subtraction and addition,
and so on. However, reliance on evaluation order leads to unreadable, confusing
code. Rather than memorize the rules, we recommend you construct unambiguous
expressions with parentheses, because parentheses have the highest precedence in
evaluation.

For example, in the following fragment $variable is assigned a value of 32 because
of the precedence of multiplication over addition:

$variable = 2 + 5 * 6;

The result is much clearer if parentheses are used:

$variable = 2 + (5 * 6);

2.1.6 Type Conversion

PHP provides several mechanisms to allow variables of one type to be considered as
another type. Variables can be explicitly converted to another type with the following
functions:

string strval(mixed variable)
integer intval(mixed variable)
float floatval(mixed variable)

The function settype(mixed variable, string type) can explicitly set the
type of variable to type, where type is again one of array, boolean, float, integer,
object, or string.

PHP supports type-casting in much the same way as C, to allow the type of an
expression to be changed. By placing the type name in parentheses in front of a
variable, PHP converts the value to the desired type:

(int) $var

or (integer) $var
Cast to integer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

or (integer) $var
(bool) $var

or (boolean) $var
Cast to Boolean

(float) $var, (double) $var

or (real) $var
Cast to float

(string) $var Cast to string
(array) $var Cast to array
(object) $var Cast to object

The rules for converting types are mostly common sense, but some conversions may
not appear so straightforward. Table 2-1 shows how various values of $var are
converted using the (int), (bool), (string), and (float) casting operators.

Table 2-1. Examples of type conversion in PHP using casting operators
Value of $var (int) $var (bool) $var (string) $var (float) $var

null 0 false "" 0
true 1 true "1" 1
false 0 false "" 0
0 0 false "0" 0
3.8 3 true "3.8" 3.8
"0" 0 false "0" 0
"10" 10 true "10" 10
"6 feet" 6 true "6 feet" 6
"foo" 0 true "foo" 0

2.1.6.1 Automatic type conversion

Automatic type conversion occurs when two differently typed variables are combined
in an expression or when a variable is passed as an argument to a library function
that expects a different type. When a variable of one type is used as if it were another
type, PHP automatically converts the variable to a value of the required type. The
same rules are used for automatic type conversion as are demonstrated in Table 2-
1.

Some simple examples show what happens when strings are added to integers and
floats and when strings and integers are concatenated:

// $var is set as an integer = 115
$var = "100" + 15;

// $var is set as a float = 115.0
$var = "100" + 15.0;

// $var is set as a string = "39 Steps"
$var = 39 . " Steps";

Not all type conversions are so obvious and can be the cause of hard-to-find bugs:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// $var is set as an integer = 39
$var = 39 + " Steps";

// $var is an integer = 42
$var = 40 + "2 blind mice";

// $var is a float, but what does it mean
$var = "test" * 4 + 3.14159;

Automatic type conversion can change the type of a variable. Consider the following
example:

$var = "1"; // $var is a string == "1"
$var += 2; // $var is now an integer == 3
$var /= 2; // $var is now a float == 1.5
$var *= 2; // $var is still a float == 3

Care must be taken when interpreting non-Boolean values as
Boolean. Many library functions in PHP return values of different
types: false if a valid result could not be determined, or a valid
result. A valid return value of 0, 0.0, "0", an empty string,
null, or an empty array is interpreted false when used as a
Boolean value.

The solution is to test the type of the variable using the functions
described in the next section.

2.1.7 Examining Variable Type and Content

Because PHP is flexible with types, it provides the following functions that can check
a variable's type:

boolean is_int(mixed variable)
boolean is_float(mixed variable)
boolean is_bool(mixed variable)
boolean is_string(mixed variable)
boolean is_array(mixed variable)
boolean is_object(mixed variable)

All the functions return a Boolean value of true or false for the variable variable,
depending on whether it matches the variable type that forms the name of the
function. For example, the following prints 1, that is, true:

$test = 13.0;
echo is_float($test); // prints 1 for true

2.1.7.1 Debugging with print_r() and var_dump()

PHP provides the print_r() and var_dump() functions, which print the type
and value of an expression in a human-readable form:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

print_r(mixed expression)
var_dump(mixed expression [, mixed expression ...])

These functions are useful for debugging a script, especially when dealing with arrays
or objects. To test the value and type of $variable at some point in the script, the
following code can be used:

$variable = 15;
var_dump($variable);

This prints:

int(15)

While the var_dump() function allows multiple variables to be tested in one call,
and provides information about the size of the variable contents, print_r()
provides a more concise representation of arrays and objects. These functions can be
used on variables of any type, and we use them throughout this chapter to help
illustrate the results of our examples.

2.1.7.2 Testing, setting, and unsetting variables

During the running of a PHP script, a variable may be in an unset state or may not yet
be defined. PHP provides the isset() function and the empty() language
construct to test the state of variables:

boolean isset(mixed var)
boolean empty(mixed var)

isset() tests if a variable has been set with a non-null value, while empty()
tests if a variable has a value. The two are different, as shown by the following code:

$var = "test";

// prints: "Variable is Set"
if (isset($var)) echo "Variable is Set";

// does not print
if (empty($var)) echo "Variable is Empty";

A variable can be explicitly destroyed using unset():

unset(mixed var [, mixed var [, ...]])

After the call to unset in the following example, $var is no longer defined:

$var = "foo";

// Later in the script
unset($var);

// Does not print
if (isset($var)) echo "Variable is Set";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if (isset($var)) echo "Variable is Set";

Another way to test that a variable is empty is to force it to the Boolean type using the
(bool) cast operator discussed earlier. The example interprets the $var variable as
type Boolean, which is equivalent to testing for !empty($var):

$var = "foo";

// Both lines are printed
if ((bool)$var) echo "Variable is not Empty";
if (!empty($var)) echo "Variable is not Empty";

Table 2-2 show the return values for isset($var), empty($var), and
(bool)$var when the variable $var is tested. Some of the results may be
unexpected: when $var is set to "0", empty() returns true.

Table 2-2. Expression values
State of the variable $var isset($var) empty($var) (bool)$var

$var = null; false true false
$var = 0; true true false
$var = true true false true
$var = false true true false
$var = "0"; true true false
$var = ""; true true false
$var = "foo"; true false true
$var = array(); true true false
unset $var; false true false

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

2.2 Conditions and Branches

The control structures in PHP are similar in syntax to those in other high-level
programming languages.

Conditionals add control to scripts and permit branching so that different statements
are executed depending on whether expressions are true or false. There are two
branching statements in PHP: if, with the optional else clause, and switch,
usually with two or more case clauses.

2.2.1 if...else Statement

The if statement conditionally controls execution and its use in PHP is as in any
other language. The basic format of an if statement is to test whether a condition is
true and, if so, to execute one or more statements.

The following if statement executes the echo statement and outputs the string when
the conditional expression, $var is greater than 5, is true:

if ($var > 5)
 echo "The variable is greater than 5";

The if statement executes only the one, immediately following statement.

Multiple statements can be executed as a block by encapsulating the statements
within braces. If the expression evaluates as true, the statements within braces are
executed. If the expression isn't true, none of the statements are executed. Consider
an example in which three statements are executed if the condition is true:

if ($var > 5)
{
 echo "The variable is greater than 5.";
 // So, now let's set it to 5
 $var = 5;
 echo "In fact, now it is equal to 5.";
}

The if statement can have an optional else clause to execute a statement or block
of statements if the expression evaluates as false. Consider an example:

if ($var > 5)
 echo "Variable greater than 5";
else
 echo "Variable less than or equal to 5";

It's also common for the else clause to execute a block of statements in braces, as
in this example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if ($var > 5)
{
 echo "Variable is less than 5";
 echo "-----------------------";
}
else
{
 echo "Variable is equal to or larger than 5";
 echo "-------------------------------------";
}

Consecutive conditional tests can lead to examples such as:

if ($var < 5)
 echo "Value is very small";
else
 if ($var < 10)
 echo "Value is small";
 else
 if ($var < 20)
 echo "Value is big";
 else
 if ($var < 30)
 echo "Value is very big";

If consecutive, cascading tests are needed, the elseif statement can be used. The
choice of which method to use is a matter of personal preference. This example has
the same functionality as the previous example:

if ($var < 5)
 echo "Variable is very small";
elseif ($var < 10)
 echo "Variable is small";
elseif ($var < 20)
 echo "Variable is big";
elseif ($var < 30)
 echo "Variable is very big";

2.2.2 switch Statement

The switch statement can be used as an alternative to if to select an option from a
list of choices:

switch ($menu)
{
 case 1:
 echo "You picked one";
 break;
 case 2:
 echo "You picked two";
 break;
 case 3:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 case 3:
 echo "You picked three";
 break;
 case 4:
 echo "You picked four";
 break;
 default:
 echo "You picked another option";
}

This example can be implemented with if and elseif, but the switch method is
usually more compact, readable, and efficient to type. The use of break statements
is important: they prevent execution of statements that follow in the switch
statement and continue execution with the statement that follows the closing brace.

If break statements are omitted from a switch statement, you get a bug. If the user
chooses option 3, the script outputs not just:

 "You picked three"

but also:

 "You picked three. You picked four. You picked another option"

The fact that break statements are needed is sometimes considered to be a feature
but is more often a source of difficult-to-detect bugs.

2.2.3 Conditional Expressions

The most common conditional comparison is to test the equality of two expressions
with the Boolean result of true or false. Equality is tested with the double-equal
operator, ==. Consider an example:

$var = 1;

if ($var == 1)
 echo "Equals one!";

If $var is equal to 1, the example evaluates as true and prints the message. If the
example evaluates as false, nothing is printed.

Inequality can be tested with the != inequality operator:

$var = 0;

if ($var != 1)
 echo "Does not equal one!";

This evaluates as true and prints the message if $var isn't equal to 1. The operator
!= is usually referred to as the not equals operator, because the exclamation mark
character negates an equality expression.

If the equality operator == and the assignment operator = are
unfamiliar beware: they are easy to inadvertently interchange.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unfamiliar beware: they are easy to inadvertently interchange.
This is a very common bug and hard to detect.

The incorrectly formed conditional expression ($var = 1)
always evaluates as true, because the assignment that actually
occurs always succeeds and, therefore, is always true.

The error of incorrectly replacing an assignment with == is a far
less common mistake. However, it's also difficult to detect
because an incorrectly written assignment of $var == 1; is
quietly evaluated as true or false with no effect on $var.

Expressions can be combined with parentheses and with the Boolean operators &&
(and) and || (or). For example, the following expression returns true and prints the
message if $var is equal to either 3 or 7:

if ($var == 3) || ($var == 7)
 echo "Equals 3 or 7";

The following expression returns true and prints the message if $var equals 2 and
$var2 equals 6:

if ($var == 2) && ($var2 == 6)
 echo "The variables are equal to 2 and 6";

Interestingly, if the first part of the expression ($var == 2) evaluates as false, PHP
doesn't evaluate the second part of the expression ($var2 == 6), because the
overall expression can never be true; both conditions must be true for an && (and)
operation to be true. This short-circuit evaluation property has implications for
design; to speed code, write the expression most likely to evaluate as false as the
left-most expression, and ensure that computationally expensive operations are as
right-most as possible.

Never assume that expressions combined with the Boolean
operators && and || are evaluated. PHP uses short-circuit
evaluation when determining the result of a Boolean expression.

More complex expressions can be formed through combinations of the Boolean
operators and the liberal use of parentheses. For example, the following expression
evaluates as true and prints the message if one of the following is true: $var
equals 6 and $var2 equals 7, or $var equals 4 and $var2 equals 1.

if ((($var == 6) && ($var2 == 7)) ||
 (($var == 4) && ($var2 == 1)))
 echo "Expression is true";

As in assignment expressions, parentheses ensure that evaluation occurs in the
required order.

Equality and inequality are the two basic comparisons, but numbers are also
compared to determine which is greater or lesser. Consider the following examples:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Returns true if $var is less than 5
if ($var < 5)
 echo "Less than 5";

// Returns true if $var is less than or equal to 5
if ($var <= 5)
 echo "Less than or equal to 5";

// Returns true if $var is greater than 5
if ($var > 5)
 echo "Larger than 5";

// Returns true if $var is greater than or equal to 5
if ($var >= 5)
 echo "Equal to or larger than 5";

There is a new operator in PHP4, the is-identical operator ===. This isn't found in
other languages and returns true only if the expression evaluates as equal and the
arguments are of the same type. Consider an example:

// Returns true, since both are integers and equal
if (5 === 5)
 echo "Same types and value";

// Returns false, since there are mixed types
// (5.0 is a float, and 5 is an integer)
if (5.0 === 5)
 echo "This never prints!";

// The normal equality check would return true
if (5.0 == 5)
 echo "This always prints";

The conditional expressions described here can compare strings
but usually not with the expected results. If strings need to be
compared—a common requirement—use the PHP string library
function strcmp().

The strcmp() function is a string function used in this book
and is discussed in more detail later in Section 2.6.

Any of the Boolean expressions we have discussed can be negated with an
exclamation mark !, the unary not operator. The following two expressions are
equivalent:

if (!($var != 1))
 echo "variable is one";

if ($var == 1)
 echo "variable is one";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 echo "variable is one";

So are the following:

if ($var < 10)
 echo "less than 10";

if (!($var >= 10))
 echo "less than 10";

Probably the most common use of the unary not operator is to check if a function call
fails, and we often use this with the database functions in later chapters.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

2.3 Loops

Loops in PHP have the same syntax as other high-level programming languages.

Loops add control to scripts so that statements can be repeatedly executed as long
as a conditional expression remains true. There are four loop statements in PHP:
while, do...while, for, and foreach. The first three are general-purpose loop
constructs, and foreach is used exclusively with arrays.

2.3.1 while

The while loop is the simplest looping structure but sometimes the least compact to
use. The while loop repeats one or more statements—the loop body—as long as a
condition remains true. The condition is checked first, then the loop body is
executed. So, the loop never executes if the condition isn't initially true. Just as in
the if statement, more than one statement can be placed in braces to form the loop
body.

The following fragment illustrates the while statement by printing out the integers
from 1 to 10 separated by a space character:

$counter = 1;
while ($counter < 11)
{
 echo $counter;
 echo " ";
 // Add one to $counter
 $counter++;
}

2.3.2 do...while

The difference between while and do...while is the point at which the condition is
checked. In do...while, the condition is checked after the loop body is executed.
As long as the condition remains true, the loop body is repeated.

You can emulate the functionality of the while example as follows:

$counter = 1;
do
{
 echo $counter;
 echo " ";
 $counter++;
} while ($counter < 11);

The contrast between while and do...while can be seen in the following
example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$counter = 100;
do
{
 echo $counter;
 echo " ";
 $counter++;
} while ($counter < 11);

This example outputs 100, because the body of the loop is executed once before the
condition is evaluated as false.

The do...while loop is the least-frequently used loop construct, probably because
executing a loop body once when a condition is false is an unusual requirement.

2.3.3 for

The for loop is the most complicated of the loop constructs, but it also leads to the
most compact code.

Consider this fragment that implements the example used to illustrate while and
do...while:

for($counter=1; $counter<11; $counter++)
{
 echo $counter;
 echo " ";
}

The for loop statement has three parts separated by semicolons, and all parts are
optional:

Initial statements

Statements that are executed once, before the loop body is executed.

Loop conditions

The conditional expression that is evaluated before each execution of the loop
body. If the conditional expression evaluates as false, the loop body is not
executed.

End-loop statements

Statements that are executed each time after the loop body is executed.

The previous code fragment has the same output as our while and do...while
loop count-to-10 examples. $counter=1 is an initial statement that is executed only
once, before the loop body is executed. The loop condition is $counter<11, and this
is checked each time before the loop body is executed; when the condition is no
longer true—i.e., when $counter reaches 11—the loop is terminated. The end-
loop statement $counter++ is executed each time after the loop body statements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

loop statement $counter++ is executed each time after the loop body statements.

Our example is a typical for loop. The initial statements sets up a counter, the loop
condition checks the counter, and the end-loop statement increments the counter.
Most for loops used in PHP scripts have this format.

Conditions can be as complex as required, as in an if statement. Moreover, several
initial and end-loop statements can be separated by commas. This allows for
complexity:

for($x=0,$y=0; $x<10&&$y<$z; $x++,$y+=2)

However, complex for loops can lead to confusing code.

2.3.4 foreach

The foreach statement was introduced in PHP4 and provides a convenient way to
iterate through the values of an array. Like a for loop, the foreach statement
executes the loop body once for each value in an array. The following code fragment
converts an array of centimeter values to inches for each value in the array:

// Construct an array of integers
$lengths = array(0, 107, 202, 400, 475);

// Convert an array of centimeter lengths to inches
foreach($lengths as $cm)
{
 $inch = (100 * $cm) / 2.45;
 echo "$cm centimeters = $inch inches\n";
}

The foreach loop is an extremely useful and convenient method of processing
arrays and is discussed in detail in Section 2.5.2.

2.3.5 Changing Loop Behavior

To break out of a loop early—before the loop condition becomes false—the break
statement is useful. This example illustrates the idea:

for($x=0; $x<100; $x++)
{
 if ($x > $y)
 break;
 echo $x;
}

If $x reaches 100, the loop terminates normally. However, if $x is (or becomes)
greater than $y, the loop is terminated early, and program execution continues after
the loop body. The break statement can be used with all loop types.

To start again from the top of the loop without completing all the statements in the
loop body, use the continue statement. Consider this example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

loop body, use the continue statement. Consider this example:

$x = 1;

while($x<100)
{
 echo $x;
 $x++;
 if ($x > $y)
 continue;
 echo $y;
}

The example prints and increments $x each time the loop body is executed. If $x is
greater than $y, the loop is begun again from the top; otherwise, $y is printed, and
the loop begins again normally. Like the break statement, continue can be used
with any loop type.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

2.4 A Working Example

In this section, we use the techniques described so far to develop a simple, complete
PHP script. The script doesn't process input from the user, so we leave some of the
best features of PHP as a web scripting language for discussion in later chapters.

Our example is a script that produces a web page containing the times tables. Our
aim is to output the 1-12 times tables. The first table is shown in Figure 2-2 as
rendered by a Netscape browser.

Figure 2-2. The output of the times-tables script shown rendered in a Netscape browser

To begin the development, we need to design how the output should appear and,
therefore, what HTML needs to be produced. If we use simple HTML markup, the first
12 lines of the HTML produces Example 2-3 as follows:

<html>
<head>
 <title>The Times-Tables</title>
</head>
<body bgcolor="#ffffff">
<h1>The Times Tables</h1>
<p>The 1 Times Table

1 x 1 = 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1 x 1 = 1

2 x 1 = 2

3 x 1 = 3

4 x 1 = 4

5 x 1 = 5

The script produces this output using a mixture of HTML and an embedded PHP
script.

The completed PHP script and HTML to produce the times tables are shown in
Example 2-3. The first nine lines are HTML that produces the <head> components
and the <h1>The Times Tables</h1> heading at the top of the web page.
Similarly, the last two lines are HTML that finishes the document: </body> and
</html>.

Between the two HTML fragments that start and end the document is a PHP script to
produce the times-table content and its associated HTML. The script begins with the
PHP open tag <?php and finishes with the close tag ?>.

Example 2-3. A script to produce the times tables

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
<html>
<head>
 <title>The Times-Tables</title>
</head>
<body bgcolor="#ffffff">
<h1>The Times Tables</h1>
<?php
 // Go through each table
 for($table=1; $table<13; $table++)
 {
 echo "<p>The " . $table . " Times Table\n";

 // Produce 12 lines for each table
 for($counter=1; $counter<13; $counter++)
 {
 $answer = $table * $counter;

 // Is this an even-number counter?
 if ($counter % 2 == 0)
 // Yes, so print this line in bold
 echo "
$counter x $table = " .
 "$answer";

 else
 // No, so print this in normal face
 echo "
$counter x $table = $answer";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 echo "
$counter x $table = $answer";
 }
 }
?>
</body>
</html>

The script is designed to process each times table and, for each table, to produce a
heading and 12 lines. To do this, the script consists of two nested loops: an outer and
inner for loop.

The outer for loop uses the integer variable $table, which is incremented by 1
each time the loop body is executed until $table is greater than 12. The body of the
outer loop prints the heading and executes the inner loop that actually produces the
body of each times table.

The inner loop uses the integer variable $counter to generate the lines of the times
tables. Inside the loop body, the $answer to the current line is calculated by
multiplying the current value of $table by the current value of $counter.

Every second line of the tables and the times-table headings are encapsulated in the
bold tag and bold end tag , which produces alternating bold lines in the
resulting HTML output. After calculating the $answer, an if statement follows that
decides whether the line should be output in bold tags. The expression the if
statement tests uses the modulo operator % to test if $counter is an odd or even
number.

The modulo operation divides the variable $counter by 2 and returns the remainder.
So, for example, if $counter is 6, the returned value is 0, because 6 divided by 2 is
exactly 3 with no remainder. If $counter is 11, the returned value is 1, because 11
divided by 2 is 5 with a remainder of 1. If $counter is even, the conditional
expression:

 ($counter % 2 == 0)

is true, and bold tags are printed.

2.4.1 Comments on Example 2.3

Example 2-3 is complete but isn't especially interesting. Regardless of how many
times the script is executed, the result is the same web page. In practice, you might
consider running the script once, capturing the output, and saving it to a static HTML
file. If you save the output as HTML, the user can retrieve the same page, with less
web-server load and a faster response time.

In Chapter 4, we introduce more PHP scripts that don't support input from the user.
However, the difference is that the scripts interact with the MySQL DBMS and run
SQL queries. The result is that the pages can change if the underlying data in the
database is updated. Therefore, unlike our simple example here, the scripts in
Chapter 4 may not be readily replaced with static HTML pages.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

2.5 Arrays

Arrays in PHP are sophisticated and more flexible than in many other high-level
languages. An array is an ordered set of variables, in which each variable is called an
element. Technically, arrays can be either numbered or associative, which means that
the elements of an array can be accessed by a numeric index or by a textual string,
respectively.

In PHP, an array can hold scalar values—integers, Booleans, strings, or floats—or
compound values—objects and even other arrays, and can hold values of different
types. In this section, we show how arrays are constructed and introduce several
useful array functions from the PHP library.

2.5.1 Creating Arrays

PHP provides the array() language construct that creates arrays. The following
examples show how arrays of integers and strings can be constructed and assigned
to variables for later use:

$numbers = array(5, 4, 3, 2, 1);
$words = array("Web", "Database", "Applications");

// Print the third element from the array
// of integers: 3
echo $numbers[2];

// Print the first element from the array
// of strings: "Web"
echo $words[0];

By default, the index for the first element in an array is 0. The values contained in an
array can be retrieved and modified using the bracket [] syntax. The following code
fragment illustrates the bracket syntax with an array of strings:

$newArray[0] = "Potatoes";
$newArray[1] = "Carrots";
$newArray[2] = "Spinach";

// Oops, replace the third element
$newArray[2] = "Tomatoes";

Numerically indexed arrays can be created to start at any index value. Often it's
convenient to start an array at index 1, as shown in the following example:

$numbers = array(1=>"one", "two", "three", "four");

Arrays can also be sparsely populated, such as:

$oddNumbers = array(1=>"one", 3=>"three", 5=>"five");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$oddNumbers = array(1=>"one", 3=>"three", 5=>"five");

An empty array can be created by assigning a variable with no parameters with
array(). Values can then be added using the bracket syntax. PHP automatically
assigns the next numeric index—the largest current index plus one—when an index
isn't supplied. Consider the following example, which creates an empty array
$errors and tests whether that array is empty at the end of the script. The first error
added with $errors[] is element 0, the second is element 1, and so on:

$errors = array();

// later in the code ..
$errors[] = "Found an error";

// ... and later still
$errors[] = "Something went horribly wrong";

// Now test for errors
if (empty($errors))
 // Phew. We can continue
 echo "Phew. We can continue";
else
 echo "There were errors";

2.5.1.1 Associative arrays

An associative array uses string indexes—or keys—to access values stored in the
array. An associative array can be constructed using array(), as shown in the
following example, which constructs an array of integers:

$array = array("first"=>1, "second"=>2, "third"=>3);

// Echo out the second element: prints "2"
echo $array["second"];

The same array of integers can also be created with the bracket syntax:

$array["first"] = 1;
$array["second"] = 2;
$array["third"] = 3;

There is little difference between using numerical or string indexes to access values.
Both can reference elements of an associative array, but this is confusing and should
be avoided in practice.

Associatively indexed arrays are particularly useful for interacting with the database
tier. Arrays are used extensively in Chapter 4, Chapter 5, and Chapter 6, and
more examples and array-specific functions are presented there.

2.5.1.2 Heterogeneous arrays

The values that can be stored in a single PHP array don't have to be of the same
type; PHP arrays can contain heterogeneous values. The following example shows

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

type; PHP arrays can contain heterogeneous values. The following example shows
the heterogeneous array $mixedBag:

$mixedBag = array("cat", 42, 8.5, false);

var_dump($mixedBag);

The function var_dump() displays the contents (with a little whitespace added for
clarity):

array(4) { [0]=> string(3) "cat"
 [1]=> int(42)
 [2]=> float(8.5)
 [3]=> bool(false) }

2.5.1.3 Multidimensional arrays

PHP arrays can also hold other arrays creating multidimensional arrays. Example 2-
4 shows how multidimensional arrays can be constructed.

Example 2-4. Examples of multidimensional arrays in PHP

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
<html>
<head>
 <title>Multi-dimensional arrays</title>
</head>
<body bgcolor="#ffffff">
<h2>A two dimensional array</h2>
<?php

 // A two dimensional array using integer indexes
 $planets = array(array("Mercury", 0.39, 0.38),
 array("Venus", 0.72, 0.95),
 array("Earth", 1.0, 1.0),
 array("Mars", 1.52, 0.53));

 // prints "Earth"
 print $planets[2][0]
?>

<h2>More sophisticated multi-dimensional array</h2>
<?php

 // More sophisticated multi-dimensional array
 $planets2 = array(
 "Mercury"=> array("dist"=>0.39, "dia"=>0.38),
 "Venus" => array("dist"=>0.39, "dia"=>0.95),
 "Earth" => array("dist"=>1.0, "dia"=>1.0,
 "moons"=>array("Moon")),
 "Mars" => array("dist"=>0.39, "dia"=>0.53,
 "moons"=>array("Phobos", "Deimos")),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "moons"=>array("Phobos", "Deimos")),
);

 // prints "Moon"
 print $planets2["Earth"]["moons"][0];
?>
</body>
</html>

The first array constructed in Example 2-4 is two-dimensional and is accessed using
integer indexes. The array $planets contains four elements, each of which is an
array that contains three values: the planet name, the distance from the Sun, and the
planet diameter relative to the Earth.

The second array in Example 2-4 is a little more sophisticated: the array
$planets2 uses associative keys to identify an array that holds information about a
planet. Each planet has an array of values that are associatively indexed by the name
of the property that is stored; the array is effectively acting like a property list. For
those planets that have moons, an extra property is added that holds an array of the
moon names.

As stated in the introduction to this section, PHP arrays are very flexible. Many data
structures—such as property lists, stacks, queues, and trees—can be created using
arrays. We limit our usage of arrays to simple structures; the examination of more
complex data structures is outside the scope of this book.

2.5.2 Using foreach Loops with Arrays

As we discussed earlier, the easiest way to iterate through—or traverse—an array is
using the foreach statement.The foreach statement was specifically introduced in
PHP4 to make working with arrays easier.

The foreach statement has two forms:

foreach(array_expression as $value) statement
foreach(array_expression as $key => $value) statement

Both iterate through an array expression, executing the body of the loop for each
element in the array. The first form assigns the value from the element to a variable
identified with the as keyword; the second form assigns both the key and the value to
a pair of variables.

The following example shows the first form in which the array expression is the
variable $lengths, and each value is assigned to the variable $cm:

// Construct an array of integers
$lengths = array(0, 107, 202, 400, 475);

// Convert an array of centimeter lengths to inches
foreach($lengths as $cm)
{
 $inch = $cm / 2.54;
 echo "$cm centimeters = $inch inches\n";
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

The example iterates through the array in the same order it was created:

0 centimeters = 0 inches
107 centimeters = 42.125984251969 inches
202 centimeters = 79.527559055118 inches
400 centimeters = 157.48031496063 inches
475 centimeters = 193.87755102041 inches

The first form of the foreach statement can also iterate through the values of an
associative array, however the second form assigns both the key and the value to
variables identified as $key => $value. The next example shows how the key is
assigned to $animal, and the value is assigned to $sound to generate verses of
"Old MacDonald":

// Old MacDonald
$sounds = array("cow"=>"moo", "dog"=>"woof",
 "pig"=>"oink", "duck"=>"quack");

foreach ($sounds as $animal => $sound)
{
 echo "<p>Old MacDonald had a farm EIEIO";
 echo "
And on that farm he had a $animal EIEIO";
 echo "
With a $sound-$sound here";
 echo "
And a $sound-$sound there";
 echo "
Here a $sound, there a $sound";
 echo "
Everywhere a $sound-$sound";
}

This prints a verse for each $animal/$sound pair in the $sounds array:

Old MacDonald had a farm EIEIO
And on that farm he had a cow EIEIO
With a moo-moo here
And a moo-moo there
Here a moo, there a moo
Everywhere a moo-moo

Old MacDonald had a farm EIEIO
And on that farm he had a dog EIEIO
With a woof-woof here
And a woof-woof there
Here a woof, there a woof
Everywhere a woof-woof

When the second form of the foreach statement is used with a nonassociative
array, the index is assigned to the key variable and the value to the value variable.
The following example uses the index to number each line of output:

// Construct an array of integers
$lengths = array(0, 107, 202, 400, 475);

// Convert an array of centimeter lengths to inches
foreach($lengths as $index => $cm)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

foreach($lengths as $index => $cm)
{
 $inch = $cm / 2.54;
 $item = $index + 1;
 echo $index + 1 . ". $cm centimeters = $inch inches\n";
}

The foreach statement is used throughout Chapter 4 to Chapter 13.

2.5.3 Using Array Pointers

Along with the keys and the associated values stored in an array, PHP maintains an
internal index that points to the current element in the array. Several functions use
and update this array index to provide access to elements in the array. To illustrate
how this internal index can be used, consider the following example:

$a = array("a", "b", "c", "d", "e", "f");
echo current($a); // prints "a"

// Array ([1]=> a [value]=> a [0]=> 0 [key]=> 0)
print_r each($a);

// Array ([1]=> b [value]=> b [0]=> 1 [key]=> 1)
print_r each($a);

// Array ([1]=> c [value]=> c [0]=> 2 [key]=> 2)
print_r each($a);

echo current($a); // prints "d"

The internal index is set to point at the first element when a new array is created, and
the function current() returns the value pointed to by the array's internal index.
The function each() returns an array that holds the index key and the value of the
current element, and then increments the internal index of the array to point at the
next element. The array each() returns has four elements: two that hold the key,
accessed by the numeric index 0 and the associative key key; and two that hold the
value, accessed by the numeric index 1 and the associative key value.

Other functions that use the array's internal pointer are end(), next(), prev(),
reset(), and key().

Before the foreach statement was introduced to the PHP language, a common way
to iterate through an associative array was to use a while loop with the each()
function to get the key/value pairs for each element and the list() function to
assign these values to variables. The following example shows how such an iteration
is performed through the $sounds array to generate verses of "Old MacDonald":

$sounds = array ("pig"=>"oink", "cow"=>"moo",
 "duck"=>"quack", "dog"=>"woof");

while (list($animal, $sound) = each($sounds))
{
 echo "<p>Old MacDonald had a farm EIEIO";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 echo "<p>Old MacDonald had a farm EIEIO";
 echo "
And on that farm he had a $animal EIEIO";
 echo "
With a $sound-$sound here";
 echo "
And a $sound-$sound there";
 echo "
Here a $sound, there a $sound";
 echo "
Everywhere a $sound-$sound";
}

The foreach statement is clearer and should be used in most cases. However we
include the while loop example here because many existing scripts use this
structure to iterate through an associative array.

The list() function isn't really a function, but a language construct that assigns
multiple variables from an array expression:

list($var1, $var2, ...) = array_expression

list() appears on the left side of an assignment and an array expression appears
on the right. The arguments to list() must be variables. The first variable is
assigned the value of the first element in the array, the second variable the value from
the second element, and so on. We avoid using the list() construct, because its
use leads to assumptions about the number of elements in an array. The need to use
list() to access the key/value pairs returned from each() is avoided with the
foreach statement.

2.5.4 Basic Array Functions

In this section, we introduce selected basic PHP array library functions.

2.5.4.1 Counting elements in arrays

The count() function returns the number of elements in the array var:

integer count(mixed var)

The following example prints 7 as expected:

$days = array("Mon", "Tue", "Wed", "Thu",
 "Fri", "Sat", "Sun");

echo count($days); // 7

The count() function works on any variable type and returns 0 when either an
empty array or a variable that isn't set is examined. If there is any doubt, isset()
and is_array() should be used to check the variable being considered.

2.5.4.2 Finding the maximum and minimum values in an array

The maximum and minimum values can be found from an array numbers with max(
) and min(), respectively:

number max(array numbers)
number min(array numbers)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

number min(array numbers)

If an array of integers is examined, the returned result is an integer, if an array of
floats is examined, min() and max() return a float:

$var = array(10, 5, 37, 42, 1, -56);
echo max($var); // prints 42
echo min($var); // prints -56

Both min() and max() can also be called with a list of integer or float arguments:

number max(number arg1, number arg2, number arg3, ...)
number min(number arg1, number arg2, number arg3, ...)

Both max() and min() work with strings or arrays of strings, but the results may
not always be as expected.

2.5.4.3 Finding values in arrays with in_array() and array_search()

The in_array() function returns true if an array haystack contains a specific
value needle:

boolean in_array(mixed needle, array haystack [, boolean strict])

The following example searches the array of integers $smallPrimes for the integer
19:

$smallPrimes = array(3, 5, 7, 11, 13, 17, 19, 23, 29);

if (in_array(19, $smallPrimes))
 echo "19 is a small prime number"; // Always printed

A third, optional argument can be passed that enforces a strict type check when
comparing each element with the needle. In the following example in_array() by
default returns true; however, with strict type checking, the string "19" doesn't
match the integer 19 held in the array and returns false:

$smallPrimes = array(3, 5, 7, 11, 13, 17, 19, 23, 29);

if (in_array("19", $smallPrimes, true))
 echo "19 is a small prime number"; // NOT printed

The array_search() function—introduced with PHP 4.0.5—works the same way
as the in_array() function, except the key of the matching value needle is
returned rather than the Boolean value true:

mixed array_search(mixed needle, array haystack [, boolean strict])

However, if the value isn't found, array_search() returns false. The following
fragment shows how array_search() works with both associative and indexed
arrays:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$measure = array("inch"=>1, "foot"=>12, "yard"=>36);

// prints "foot"
echo array_search(12, $measure);

$units = array("inch", "centimeter", "chain", "furlong");

// prints 2
echo array_search("chain", $units);

Because array_search() returns a mixed result—the Boolean value false if the
value isn't found or the key of the matching element—a problem is encountered when
the first element is found. PHP's automatic type conversion treats the value 0—the
index of the first element—as false in a Boolean expression.

Care must be taken with functions, such as array_search(),
that return a result or the Boolean value false to indicate when
a result can't be determined. If the return value is used as a
Boolean—in an expression or as a Boolean parameter to a
function—a valid result may be automatically converted to
false. If such a function returns 0, 0.0, "c", an empty string,
or an empty array, PHP's automatic type conversion converts the
result to false when a Boolean value is required.

The correct way to test the result is to use the is-identical operator ===, as shown in
the following example:

$index = array_search("inch", $units);

if ($index === false)
 echo "Unknown unit: inch";
else
 // OK to use $index
 echo "Index = $index";

2.5.4.4 Reordering elements in arrays with array_reverse()

Often it's useful to consider an array in reverse order. The array_reverse()
function creates a new array by reversing the elements from a source array:

array array_reverse(array source [, bool preserve_keys])

The following example shows how to reverse an indexed array of strings:

$count = array("zero", "one", "two", "three");

$countdown = array_reverse($count);

Setting the optional preserve_keys argument to true reverses the order but

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Setting the optional preserve_keys argument to true reverses the order but
preserves the association between the index and the elements. For a numerically
indexed array, this means that the order of the elements is reversed, but the indexes
that access the elements don't change. This might seem a bit weird, but the following
example shows what is happening:

$count = array("zero", "one", "two", "three");
$countdown = array_reverse($count, true);
print_r($countdown);

This prints:

Array ([3] => three [2] => two [1] => one [0] => zero)

2.5.5 Sorting Arrays

In the previous section we showed how to reverse the elements of an array. In this
section we show how to sort arrays. Unlike the array_reverse() function that
returns a copy of the source array in the new order, the sorting functions rearrange
the elements in the source array itself. Because of this behavior, the sort functions
must be passed a variable, not an expression.

2.5.5.1 Sorting with sort() and rsort()

The simplest array-sorting functions are sort() and rsort(), which rearrange
the elements of the subject array in ascending and descending order, respectively:

sort(array subject [, integer sort_flag])
rsort(array subject [, integer sort_flag])

Both functions sort the subject array based on the values of each element. The
following example shows the sort() function on an array of integers:

$numbers = array(24, 19, 3, 16, 56, 8, 171);
sort($numbers);

foreach($numbers as $n)
 echo $n . " ";

The output of the example prints the elements sorted by value:

3 8 16 19 24 56 171

Another way to examine the contents of the sorted array is to use the print_r()
function described in Section 2.1.7. The output of the statement
print_r($numbers) shows the sorted values with the associated index:

Array ([0] => 3
 [1] => 8
 [2] => 16
 [3] => 19
 [4] => 24
 [5] => 56
 [6] => 171)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [6] => 171)

The following example shows the rsort() function on the same array:

$numbers = array(24, 19, 3, 16, 56, 8, 171);
rsort($numbers);
print_r($numbers);

The output of the example shows the elements sorted in reverse order by value:

Array ([0] => 171
 [1] => 56
 [2] => 24
 [3] => 19
 [4] => 16
 [5] => 8
 [6] => 3)

By default, PHP sorts strings in alphabetical order and numeric values in numeric
order. An optional parameter, sort_flag, can be passed to force the string or
numeric sorting behavior. In the following example, the PHP constant SORT_STRING
sorts the numbers as if they were strings:

$numbers = array(24, 19, 3, 16, 56, 8, 171);
sort($numbers, SORT_STRING);
print_r($numbers);

The output of the example shows the result:

Array ([0] => 16
 [1] => 171
 [2] => 19
 [3] => 24
 [4] => 3
 [5] => 56
 [6] => 8)

Many of the array sorting functions accept a sort_flag parameter. Other sort flags
are SORT_REGULAR to compare items in the array normally and SORT_NUMERIC that
forces items to be compared numerically.

sort() and rsort() can be used on associative arrays, but the keys are lost.
The resulting array contains only the values in the sorted order. Consider the
following example:

$map =
 array("o"=>"kk", "e"=>"zz", "z"=>"hh", "a"=>"rr");

sort($map);
print_r($map);

The print_r() output shows the modified array without the key values:

Array ([0] => hh [1] => kk [2] => rr [3] => zz)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Array ([0] => hh [1] => kk [2] => rr [3] => zz)

2.5.5.2 Sorting associative arrays

It's often desirable to keep the key/value associations when sorting associative
arrays. To maintain the key/value association the asort() and arsort()
functions are used:

asort(array subject [, integer sort_flag])
arsort(array subject [, integer sort_flag])

Like sort() and rsort(), these functions rearrange the elements in the subject
array from lowest to highest and highest to lowest, respectively. The following
example shows a simple array sorted by asort():

$map =
 array("o"=>"kk", "e"=>"zz", "z"=>"hh", "a"=>"rr");

asort($map);
print_r($map);

The print_r() function outputs the structure of the sorted array:

Array ([z] => hh
 [o] => kk
 [a] => rr
 [e] => zz)

When assort() and arsort() are used on nonassociative arrays, the order of
the elements is arranged in sorted order, but the indexes that access the elements
don't change. This might seem a bit weird; effectively the indexes are treated as
association keys in the resulting array. The following example shows what is
happening:

$numbers = array(24, 19, 3, 16, 56, 8, 171);
asort($numbers);
print_r($numbers);

This outputs:

Array ([2] => 3
 [5] => 8
 [3] => 16
 [1] => 19
 [0] => 24
 [4] => 56
 [6] => 171)

2.5.5.3 Sorting on keys

Rather than sort on element values, the ksort() and krsort() functions
rearrange elements in an array by sorting on the keys or the indexes:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

integer ksort(array subject [, integer sort_flag])
integer krsort(array subject [, integer sort_flag])

ksort() sorts the elements in the subject array from lowest key to highest key, and
krsort() sorts in the reverse order. The following example demonstrates the
ksort() function:

$map =
 array("o"=>"kk", "e"=>"zz", "z"=>"hh", "a"=>"rr");

ksort($map);
print_r($map);

The sorted array $map is now:

Array ([a] => rr
 [e] => zz
 [o] => kk
 [z] => hh)

There is little point in using ksort() on an integer-indexed array because the keys
are already in order. When krsort() is used on an indexed array, it reverses the
order of the elements.

2.5.5.4 Sorting with user-defined element comparison

The sorting functions described so far in this section sort elements in alphabetic,
numeric, or alphanumeric order. To sort elements based on user-defined criteria,
PHP provides three functions:

usort(array subject, string compare_function)
uasort(array subject, string compare_function)
uksort(array subject, string compare_function)

usort() sorts the subject array based on the value of each element, uasort()
preserves the key/value associations as described earlier for the asort() function,
and uksort() rearranges the elements based on the key of each element. When
these functions sort the subject array, the user-defined compare function is called to
determine if one element is greater than, lesser than, or equal to another. The
compare function can be written to implement any sort order, but the function must
conform to the prototype:

integer my_compare_function(mixed a, mixed b)

We discuss how to write functions in more detail in Section 2.10. The compare
function takes two arguments, a and b, and returns -1 if a is less than b, 1 if a is
greater than b, and 0 if a and b are equal. How the function determines that one value
is less than, greater than, or equal to another depends on the requirements of sorting.
The following example shows how usort() sorts an array of strings based on the
length of each string:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Compare two string values based on the length
function cmp_length($a, $b)
{
 if (strlen($a) < strlen($b)) return -1;
 if (strlen($a) > strlen($b)) return 1;

 // String lengths must be equal
 return 0;
}

$animals =
 array("cow", "ox", " hippopotamus", "platypus");

usort($animals, "cmp_length");

print_r($animals);

The array $animals is printed:

Array ([0]=>ox [1]=>cow [2]=>platypus [3]=>hippopotamus)

In this example, cmp_length() is defined as the compare function, but it isn't
called directly by the script. The name of the function, "cmp_length", is passed as
an argument to usort(), and usort() uses cmp_length() as part of the
sorting algorithm. User-defined functions used in this way are often referred to as
callback functions.

PHP has several library functions that allow user-defined behavior through user-
defined callback functions. The array_map() and array_walk() functions
allow user-defined functions to be applied to the elements of an array. We provide
another example in Appendix D where we implement user-defined session
management.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

2.6 Strings

A string of characters—a string—is probably the most commonly used data type
when developing scripts, and PHP provides a large library of string functions to help
transform, manipulate, and otherwise manage strings. We introduced PHP strings
earlier, in Section 2.1.1. Here, we examine string literals in more detail and describe
some of the useful string functions PHP provides.

2.6.1 String Literals

As already shown in previous examples, enclosing characters in single quotes or
double quotes can create a string literal. Single-quoted strings are the simplest form
of string literal; double-quoted strings are parsed to substitute variable names with the
variable values and allow characters to be encoded using escape sequences. Single-
quoted strings don't support all the escape sequences, only \' to include a single
quote and \\ to include a backslash.

Tab, newline, and carriage-return characters can be included in a double-quoted
string using the escape sequences \t, \n, and \r, respectively. To include a
backslash, a dollar sign, or a double quote in a double-quoted string, use the escape
sequences \\, \$, or \".

Other control characters and characters with the most significant bit set can be
included using escaped octal or hexadecimal sequences. For example, to include the
umlauted character ö, the octal sequence \366 or the hexadecimal sequence \xf6
are used:

//Print a string that includes a lowercase
//o with the umlaut mark
echo "See you at the G\xf6teborg Film Festival";

PHP uses eight-bit characters in string values, so the range of characters that can be
represented is \000 to \377 in octal notation or \x00 to \xff in hexadecimal
notation.

Unlike many other languages, PHP allows newline characters to be included directly
in a string literal. The following example show the variable $var assigned with a
string that contains a newline character:

// This is Ok. $var contains a newline character
$var = 'The quick brown fox
 jumps over the lazy dog';

This feature is used in later chapters to construct SQL statements that are readable in
the source code, for example:

$query = "SELECT max(order_id)
 FROM orders
 WHERE cust_id = $custID";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHERE cust_id = $custID";

Other control characters, such as tabs and carriage returns, and characters with the
most significant bit set—those in the range \x80 to \xff—can also be directly
entered into a string literal. We recommend that escape sequences be used in
practice to aid readability and portability of source files.

2.6.1.1 Variable substitution

Variable substitution provides a convenient way to output variables embedded in
string literals. When PHP parses double-quoted strings, variable names are identified
when a $ character is found and the value of the variable is substituted. We have
already used examples earlier in this chapter such as:

$cm = 127;
$inch = $cm / 2.54;

// prints "127 centimeters = 50 inches"
echo "$cm centimeters = $inch inches";

When the name of the variable is ambiguous, braces {} can delimit the name as
shown in the following example:

$memory = 256;

// Fails: no variable called $memoryMbytes
$message = "My computer has $memoryMbytes of RAM";

// Works: Curly braces are used delimit variable name
$message = "My computer has {$memory}Mbytes of RAM";

// This also works
$message = "My computer has ${memory}Mbytes of RAM";

Braces are also used for more complex variables, such as multidimensional arrays
and objects:

echo "Mars is {$planets['Mars']['dia']} times the diameter of the Earth";

echo "There are {$order->count} green bottles ...";

Example 2-4 shows how the multidimensional array $planets is assigned, and
objects and the member access operator -> are discussed in Section 2.11.

2.6.1.2 Length of a string

The length property of a string is determined with the strlen() function, which
returns the number of eight-bit characters in the subject string:

integer strlen(string subject)

Consider an example that prints 16:

print strlen("This is a String"); // prints 16

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

print strlen("This is a String"); // prints 16

2.6.2 Printing and Formatting Strings

Earlier we presented the basic method for outputting text—with echo and print—
and the functions print_r() and var_dump(), which can determine the
contents of variables during debugging.

PHP provides several other functions that allow more complex and controlled
formatting of strings.

2.6.2.1 Creating formatted output with sprintf() and printf()

Sometimes more complex output is required than can be produced with echo or
print. For example, a floating-point value such as 3.14159 might need to be
truncated to 3.14 as it is output. For complex formatting, the sprintf() or
printf() functions are useful:

string sprintf (string format [, mixed args...])
integer printf (string format [, mixed args...])

The operation of these functions is modeled on the identical C programming language
functions, and both expect a string with optional conversion specifications, followed
by variables or values as arguments to match any formatting conversions. The
difference between sprintf() and printf() is that the output of printf()
goes directly to the output buffer PHP uses to build a HTTP response, whereas the
output of sprintf() is returned as a string.

Consider an example printf statement:

printf("Result: %.2f\n", $variable);

The format string Result: %.2f\nis the first parameter to the printf statement.
Strings like Result: are output the same as with echo or print. The %.2f
component is a conversion specification:

All conversion specifications begin with a % character.

The f indicates how the type of value should be interpreted. The f means the
value should be interpreted as a floating-point number, for example, 3.14159 or
128.23765. Other possibilities include b, c, d, and s, where b means binary, c
means a single character, d means integer, and s means string.

The .2 is an optional width specifier. In this example, .2 means two decimal
places, so the overall result of %.2f is that a floating-point number with two
decimal places is output. A specifier %5.3f means that the minimum width of
the number before the decimal point should be five (by default, the output is
padded on the left with space characters and right-aligned), and three digits
should occur after the decimal point (by default, the output on the right of the
decimal point is padded on the right with zeros).

In the example, the value that is actually output using the formatting string %.2f is the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the example, the value that is actually output using the formatting string %.2f is the
value of the second parameter to the printf function—the variable $variable.

To illustrate other uses of printf, consider the examples in Example 2-5.

Example 2-5. Using printf to output formatted data

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
<html>
<head>
 <title>Examples of using printf()</title>
</head>
<body bgcolor="#ffffff">
<h1>Examples of using printf()</h1>
<pre>
<?php
 // Outputs "3.14"
 printf("%.2f\n", 3.14159);

 // Outputs " 3.14"
 printf("%10.2f\n", 3.14159);

 // Outputs "3.1415900000"
 printf("%.10f\n", 3.14159);

 // Outputs "halfofthe"
 printf("%.9s\n", "halfofthestring");

 // Outputs " 3.14 3.141590 3.142"
 printf("%5.2f %f %7.3f\n", 3.14159, 3.14159, 3.14159);

 // Outputs "1111011 123 123.000000 test"
 printf("%b %d %f %s\n", 123, 123, 123, "test");
?>
</pre>
</body>
</html>

2.6.2.2 Padding strings

A simple method to space strings is to use the str_pad() function:

string str_pad(string input, int length [, string padding [, int pad_type]])

Characters are added to the input string so that the resulting string is characters in
length. The following example shows the simplest form of str_pad() that adds
spaces to the end of the input string:

// prints "PHP" followed by three spaces
echo str_pad("PHP", 6);

An optional string argument padding can be supplied that is used instead of the space

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An optional string argument padding can be supplied that is used instead of the space
character. By default, padding is added to the end of the string. By setting the optional
argument pad_type to STR_PAD_LEFT or to STR_PAD_BOTH, the padding is added
to the beginning of the string or to both ends. The following example shows how
str_pad() can create a justified index:

$players =
 array("DUNCAN, king of Scotland"=>"Larry",
 "MALCOLM, son of the king"=>"Curly",
 "MACBETH"=>"Moe",
 "MACDUFF"=>"Rafael");

echo "<pre>";

// Print a heading
echo str_pad("Dramatis Personae", 50, " ", STR_PAD_BOTH) . "\n";

// Print an index line for each entry
foreach($players as $role=>$actor)
 echo str_pad($role, 30, ".")
 . str_pad($actor, 20, ".", STR_PAD_LEFT) . "\n";

echo "</pre>";

The example prints:

 Dramatis Personae
DUNCAN, king of Scotland.....................Larry
MALCOLM, son of the king.....................Curly
MACBETH..Moe
MACDUFF.....................................Rafael

2.6.2.3 Changing case

The following PHP functions return a copy of the subject string with changes in the
case of the characters:

string strtolower(string subject)
string strtoupper(string subject)
string ucfirst(string subject)
string ucwords(string subject)

The following fragment shows how each operates:

print strtolower("PHP and MySQL"); // php and mysql
print strtoupper("PHP and MySQL"); // PHP AND MYSQL
print ucfirst("now is the time"); // Now is the time
print ucwords("now is the time"); // Now Is The Time

2.6.2.4 Trimming whitespace

PHP provides three functions that trim leading or trailing whitespace characters—null,
tab, vertical-tab, newline, carriage-return, and space characters—from strings:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

string ltrim(string subject)
string rtrim(string subject)
string trim(string subject)

The three functions return a copy of the subject string: trim() removes both
leading and trailing whitespace characters, ltrim() removes leading whitespace
characters, and rtrim() removes trailing whitespace characters. The following
example shows the effect of each:

$var = trim(" Tiger Land\n"); // "Tiger Land"
$var = ltrim(" Tiger Land\n"); // "Tiger Land\n"
$var = rtrim(" Tiger Land\n"); // " Tiger Land"

2.6.2.5 Rendering newline characters with

Whitespace characters generally don't have any significance in HTML, but it's often
useful to preserve newlines when a page is rendered. The nl2br() function
generates a string by inserting the HTML break element
[2] before all
occurrences of the newline character in the source argument:

[2] From PHP Version 4.0.5 onwards, nl2br() inserts the XHTML-compliant
 markup that includes the
shorthand way of closing an empty element. Earlier versions inserted
, which isn't valid XML.

string nl2br(string source)

The following example shows how nl2br() works:

// A short poem
$verse = "Isn't it funny\n";
$verse .= "That a bear likes honey.\n";
$verse .= "I wonder why he does?\n";
$verse .= "Buzz, buzz, buzz.\n";

// The four lines are rendered as one
echo $verse;

// Renders the poem on four lines in HTML as intended
echo nl2br($verse);

2.6.3 Comparing Strings

PHP provides the string comparison functions strcmp() and strncmp() that
safely compare two strings, str1 and str2:

integer strcmp(string str1, string str2)
integer strncmp(string str1, string str2, integer length)

While the equality operator == can compare two strings, the result isn't always as
expected when the strings contain characters with the most significant bit set. Both
strcmp() and strncmp() take two strings as arguments, str1 and str2, and
return 0 if the strings are identical, 1 if str1 is less than str2, and -1 if str1 is greater
that str2. The function strncmp() takes a third argument length that restricts the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that str2. The function strncmp() takes a third argument length that restricts the
comparison to length characters. These examples show the results of various
comparisons:

print strcmp("aardvark", "zebra"); // -1
print strcmp("zebra", "aardvark"); // 1
print strcmp("mouse", "mouse"); // 0
print strncmp("aardvark", "aardwolf", 4); // 0
print strncmp("aardvark", "aardwolf", 5); // -1

The functions strcasecmp() and strncasecmp() are case-insensitive versions
of strcmp() and strncmp().

The functions strncmp(), strcasecmp(), or strncasecmp() can be used
as the callback function when sorting arrays with usort().

2.6.4 Finding and Extracting Substrings

PHP provides several simple and efficient functions that can identify and extract
specific substrings of a string.

2.6.4.1 Extracting a substring from a string

The substr() function returns a substring from a source string:

string substr(string source, integer start [, integer length])

When called with two arguments, substr() returns the characters from the source
string starting from position start—counting from zero—to the end of the string. With
the optional length argument, a maximum of length characters are returned. The
following examples show how substr() works:

$var = "abcdefgh";

print substr($var, 2); // "cdefgh"
print substr($var, 2, 3); // "cde"
print substr($var, 4, 10); // "efgh"

If a negative start position is passed, the starting point of the returned string is
counted from the end of the source string. If the length is negative, it's treated as the
index, and the returned string ends length characters from the end of the source
string. The following examples show how negative indexes can be used:

$var = "abcdefgh";

print substr($var, -1); // "h"
print substr($var, -3); // "fgh"
print substr($var, -5, 2); // "de"
print substr($var, -5, -2); // "def"

2.6.4.2 Finding the position of a substring

The strpos() function returns the index of the first occurring substring needle in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The strpos() function returns the index of the first occurring substring needle in
the string haystack:

integer strpos(string haystack, string needle [, integer offset])

When called with two arguments, the search for the substring needle is from the start
of the string haystack at position zero. When called with three arguments, the search
occurs from the index offset into the haystack. The following examples show how
strpos() works:

$var = "To be or not to be";

print strpos($var, "T"); // 0
print strpos($var, "be"); // 3

// Start searching from the 5th character in $var
print strpos($var, "be", 4); // 16

The strrpos() function returns the index of the last occurrence of the single
character needle in the string haystack:

integer strrpos(string haystack, string needle)

Unlike strpos(), strrpos() searches for only a single character, and only the
first character of the needle string is used. The following examples show how
strrpos() works:

$var = "To be or not to be";

// Prints 13: the last occurrence of "t"
print strrpos($var, "t");

// Prints 0: Only searches for "T" which
// is found at position zero
print strrpos($var, "Tap");

// False: "Z" does not occur in the subject
onlyprint strrpos($var, "Zoo");

If the substring needle isn't found by strpos() or strrpos(), both functions
return false. The is-identical operator === should be used when testing the returned
value from these functions against false. If the substring needle is found at the start
of the string haystack, the index returned is zero and is interpreted as false if used
as a Boolean value.

2.6.4.3 Extracting a found portion of a string

The strstr() and stristr() functions search for the substring needle in the
string haystack and return the portion of haystack from the first occurrence of needle
to the end of haystack:

string strstr(string haystack, string needle)
string stristr(string haystack, string needle)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

string stristr(string haystack, string needle)

The strstr() search is case-sensitive; the stristr() search isn't. If the needle
isn't found in the haystack string, both strstr() and stristr() return false.
The following examples show how the functions work:

$var = "To be or not to be";

print strstr($var, "to"); // "to be"
print stristr($var, "to"); // "To be or not to be"
print stristr($var, "oz"); // false

The strrchr() function returns the portion of haystack by searching for the single
character needle; however, strrchr() returns the portion from the last occurrence
of needle:

string strrchr(string haystack, string needle)

Unlike strstr() and stristr(), strrchr() searches for only a single
character, and only the first character of the needle string is used. The following
examples show how strrchr() works:

$var = "To be or not to be";

// Prints: "not to be"
print strrchr($var, "n");

// Prints "o be": Only searches for "o" which
// is found at position 14
print strrchr($var, "oz");

2.6.4.4 Extracting multiple values from a string

PHP provides the explode() and implode() functions, which convert strings to
arrays and back to strings:

array explode(string separator, string subject [, integer limit])
string implode(string glue, array pieces)

The explode() function returns an array of strings created by breaking the subject
string at each occurrence of the separator string. The optional integer limit determines
the maximum number of elements in the resulting array; when the limit is met, the last
element in the array is the remaining unbroken subject string. The implode()
function returns a string created by joining each element in the array pieces, inserting
the string glue between each piece. The following example shows both the
implode() and explode() functions:

$guestList = "Sam Meg Sarah Ben Jess May Adam";
$name = "Fred";

// Check if $name is in the $guestList
if (strpos($guestList, $name) === false)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if (strpos($guestList, $name) === false)
{
 $guestArray = explode(" ", $guestList);
 sort($guestArray);
 echo "Sorry '$name' is not on the guest list.\n";
 echo "Guest list: " . implode(", ", $guestArray)
}

When the string $name isn't found in the string $guestList using strpos(), the
fragment of code prints a message to indicate that $name isn't contained in the list.
The message includes a sorted list of comma-separated names: explode()
creates an array of guest names that is sorted and then, using implode(), is
converted back into a string with each name separated by a comma and a space. The
example prints:

Sorry 'Fred' is not on the guest list.
Guest list: Adam, Ben, Jess, May, Meg, Sam, Sarah

2.6.5 Replacing Characters and Substrings

PHP provides several simple functions that can replace specific substrings or
characters in a string with other strings or characters. In the next section we discuss
powerful tools for finding and replacing complex patterns of characters. The functions
described in this section, however, are more efficient than regular expressions and
are often the better choice when searching and replacing strings.

2.6.5.1 Replacing substrings

The substr_replace() function replaces a substring identified by an index with a
replacement string:

string substr_replace(string source, string replace, int start [, int length])

Returns a copy of the source string with the characters from the position start to the
end of the string replaced with the replace string. If the optional length is supplied,
only length characters are replaced. The following examples show how
substr_replace() works:

$var = "abcdefghij";

// prints "abcDEF";
echo substr_replace($var, "DEF", 3);

// prints "abcDEFghij";
echo substr_replace($var, "DEF", 3, 3);

// prints "abcDEFdefghij";
echo substr_replace($var, "DEF", 3, 0);

The str_replace() function returns a string created by replacing occurrences of
the string search in subject with the string replace:

mixed str_replace(mixed search, mixed replace, mixed subject)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mixed str_replace(mixed search, mixed replace, mixed subject)

In the following example, the subject string, "old-age for the old", is printed with
both occurrences of old replaced with new:

$var = "old-age for the old.";

echo str_replace("old", "new", $var);

The result is:

new-age for the new.

Since PHP Version 4.0.5, str_replace() allows an array of search strings and a
corresponding array of replacement strings to be passed as parameters. The
following example shows how the fields in a very short form letter can be populated:

// A short form-letter for an overdue account
$letter = "Dear #title #name, You owe us $#amount.";

// Set-up an array of three search strings that
// will be replaced in the form-letter
$fields = array("#title", "#name", "#amount");

// An array of debtors. Each element is an array that
// holds the replacement values for the form-letter
$debtors = array(
 array("Mr", "Cartwright", "146.00"),
 array("Ms", "Yates", "1,662.00"),
 array("Dr", "Smith", "84.75"));

foreach($debtors as $debtor)
 echo "<p>" . str_replace($fields, $debtor, $letter);

The output of this script is as follows:

Dear Mr Cartwright, You owe us $146.00.
Dear Ms Yates, You owe us $1,662.00.
Dear Dr Smith, You owe us $84.75.

If the array of replacement strings is shorter than the array of search strings, the
unmatched search strings are replaced with empty strings.

2.6.5.2 Translating characters and substrings

The strtr() function translates characters or substrings in a subject string:

string strtr(string subject, string from, string to)
string strtr(string subject, array map)

When called with three arguments, strtr() translates the characters in the subject
string that match those in the from string with the corresponding characters in the to
string. When called with two arguments, a subject string and an array map,
occurrences of the map keys in subject are replaced with the corresponding map
values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following example uses strtr() to replace all lowercase vowels with the
corresponding umlauted character:

$mischief = strtr("command.com", "aeiou", "äëïöü");
print $mischief; // prints cömmänd.cöm

When an associative array is passed as a translation map, strtr() replaces
substrings rather than characters. The following example shows how strtr() can
expand acronyms:

// Short list of acronyms used in e-mail
$glossary = array("BTW"=>"by the way",
 "IMHO"=>"in my humble opinion",
 "IOW"=>"in other words",
 "OTOH"=>"on the other hand");

// Maybe now I can understand
print strtr($geekMail, $glossary);

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

2.7 Regular Expressions

In this section we show how regular expressions can achieve more sophisticated
pattern matching to find, extract, and even replace complex substrings within a string.

While regular expressions provide capabilities beyond those described in the last
section, complex pattern matching isn't as efficient as simple string comparisons. The
functions described in the last section are more efficient than those that use regular
expressions and should be used if complex pattern searches aren't required.

This section starts with a brief description of the POSIX regular expression syntax.
This isn't a complete description of all the capabilities, but we do provide enough
details to create quite powerful regular expressions. The second half of the section
describes the functions that use POSIX regular expressions. Examples of regular
expressions can be found in this section and in Chapter 7.

2.7.1 Regular Expression Syntax

A regular expression follows a strict syntax to describe patterns of characters. PHP
has two sets of functions that use regular expressions: one set supports the Perl
Compatible Regular Expression (PCRE) syntax, while the other supports the POSIX
extended regular expression syntax. In this book we use the POSIX functions.

To demonstrate the syntax of regular expressions, we introduce the function ereg():

boolean ereg(string pattern, string subject [, array var])

ereg() returns true if the regular expression pattern is found in the subject string.
We discuss how the ereg() function can extract values into the optional array
variable var later in this section.

The following trivial example shows how ereg() is called to find the literal pattern
"cat" in the subject string "raining cats and dogs":

// prints "Found a cat"
if (ereg("cat", "raining cats and dogs"))
 echo "Found 'cat'";

The regular expression "cat" matches the subject string, and the fragment prints
"Found 'cat'".

2.7.1.1 Characters and wildcards

To represent any character in a pattern, a period is used as a wildcard. The pattern
"c.." matches any three-letter string that begins with a lowercase "c"; for example,
"cat", "cow", "cop", etc. To express a pattern that actually matches a period, use
the backslash character \—for example, "\.com" matches ".com" but not "xcom".

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the backslash character \—for example, "\.com" matches ".com" but not "xcom".

The use of the backslash in a regular expression can cause confusion. To include a
backslash in a double-quoted string, you need to escape the meaning of the
backslash with a backslash. The following example shows how the regular expression
pattern "\.com" is represented:

// Sets $found to true
$found = ereg("\\.com", "www.ora.com");

It's better to avoid the confusion and use single quotes when passing a string as a
regular expression:

$found = ereg('\.com', "www.ora.com");

2.7.1.2 Character lists

Rather than using a wildcard that matches any character, a list of characters enclosed
in brackets can be specified within a pattern. For example, to match a three-character
string that starts with a "p", ends with a "p", and contains a vowel as the middle
letter, the expression:

ereg("p[aeiou]p", $var)

can be used. This returns true for any string that contains "pap", "pep", "pip",
"pop", or "pup". A range of characters can also be specified; for example, "[0-9]"
specifies the numbers 0 through 9:

// Matches "A1", "A2", "A3", "B1", ...
$found = ereg("[ABC][123]", "A1 Quality"); // true

// Matches "00" to "39"
$found = ereg("[0-3][0-9]", "27"); //true

A list can specify characters that aren't matches using the not operator ^ as the first
character in the brackets. The pattern "[^123]" matches any character other than 1,
2, or 3. The following examples show more regular expressions that make use of the
not operator in lists:

// true for "pap", "pbp", "pcp", etc. but not "php"
$found = ereg("p[^h]p", $val);

// true if $var does not contain
// alphanumeric characters
$found = ereg("[^0-9a-zA-Z]", $val);

The ^ character can be treated as normal by placing it in a position other than the
start of the characters enclosed in the brackets. For example, "[0-9^]" matches the
characters 0 to 9 and the ^ character. The - character can be matched by placing it
at the start or the end of the list; for example, "[-123]" matches characters -, 1, 2,
or 3.

2.7.1.3 Anchors

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A regular expression can specify that a pattern occur at the start or end of a subject
string using anchors. The ^ anchors a pattern to the start, and the $ character
anchors a pattern to the end of a string. For example, the expression:

 ereg("^php", $var)

matches strings that start with "php" but not others. The following code shows the
operation of both:

$var = "to be or not to be";

$match = ereg("^to", $var); // true
$match = ereg('be$', $var); // true
$match = ereg("^or", $var); // false

Both anchors can be used in one regular expression to match a whole string. The
following example illustrates this:

// Must match "Yes" exactly
$match = ereg('^Yes$', "Yes"); // true
$match = ereg('^Yes$', "Yes sir"); // false

2.7.1.4 Optional and repeating characters

By following a character in a regular expression with a ?, *, or + operator, the pattern
matches zero or one, zero to many, or one to many occurrences of the character,
respectively.

The ? operator allows zero or one occurrence of a character, so the expression:

 ereg("pe?p", $var)

matches either "pep" or "pp", but not the string "peep". The * operator allows zero
or many occurrences of the "o" in the expression:

 ereg("po*p", $var)

and matches "pp", "pop", "poop", "pooop", and so on. Finally, the + operator
allows one to many occurrences of "b" in the expression:

 ereg("ab+a", $var)

so while strings such as "aba", "abba", and "abbba" match, "aa" doesn't.

The operators ?, *, and + can also be used with a wildcard or a list of characters. The
following examples show how:

$var = "www.rmit.edu.au";

// True for strings that start with "www"
// and end with "au"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// and end with "au"
$matches = ereg('^www.*au$', $var); // true

$hexString = "x01ff";

// True for strings that start with 'x'
// followed by at least one hexadecimal digit
$matches = ereg('x[0-9a-fA-F]+$', $hexString); // true

The first example matches any string that starts with "www" and ends with "au"; the
pattern ".*" matches a sequence of any characters, including a blank string. The
second example matches any sequence that starts with the character "x" followed
by one or more characters from the list [0-9a-fA-F].

A fixed number of occurrences can be specified in braces. for example, the pattern "
[0-7]{3}" matches three-character numbers that contain the digits 0 through 7:

$valid = ereg("[0-7]{3}", "075"); // true
$valid = ereg("[0-7]{3}", "75"); // false

The braces syntax also allows the minimum and maximum occurrences of a pattern
to be specified as demonstrated in the following examples:

$val = "58273";

// true if $val contains numerals from start to end
// and is between 4 and 6 characters in length
$valid = ereg('^[0-9]{4,6}$', $val); // true

$val = "5827003";
$valid = ereg('^[0-9]{4,6}$', $val); // false

// Without the anchors at the start and end, the
// matching pattern "582768" is found
$val = "582768986456245003";

$valid = ereg("[0-9]{4,6}", $val); // true

2.7.1.5 Groups

Subpatterns in a regular expression can be grouped by placing parentheses around
them. This allows the optional and repeating operators to be applied to groups rather
than just a single character. For example, the expression:

 ereg("(123)+", $var)

matches "123", "123123", "123123123", etc. Grouping characters allows
complex patterns to be expressed, as in the following example that matches a URL:

// A simple, incomplete, HTTP URL regular expression that doesn't allow numbers
$pattern = '^(http://)?[a-zA-Z]+(\.[a-zA-z]+)+$';

$found = ereg($pattern, "www.ora.com"); // true

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$found = ereg($pattern, "www.ora.com"); // true

The regular expression assigned to $pattern includes both the start and end
anchors, ^ and $, so the whole subject string, "www.ora.com" must match the
pattern. The start of the pattern is the optional group of characters "http://", as
specified by "(http://)?". This doesn't match any of the subject string in the
example but doesn't rule out a match, because the "http://" pattern is optional.
Next the "[a-zA-Z]+" pattern specifies one or more alpha characters, and this
matches "www" from the subject string. The next pattern is the group "(\.[a-zA-
z]+)". This pattern must start with a period—the wildcard meaning of . is escaped
with the backslash—followed by one or more alphabetic characters. The pattern in
this group is followed by the + operator, so the pattern must occur at least once in the
subject and can repeat many times. In the example, the first occurrence is ".ora"
and the second occurrence is ".com".

Groups can also define subpatterns when ereg() extracts values into an array. We
discuss the use of ereg() to extract values later in this section.

2.7.1.6 Alternative patterns

Alternatives in a pattern are specified with the | operator; for example, the pattern
"cat|bat|rat" matches "cat", "bat", or "rat". The | operator has the lowest
precedence of the regular expression operators, treating the largest surrounding
expressions as alternative patterns. To match "cat", "bat", or "rat" another way,
the following expression can be used:

$var = "bat";
$found = ereg("(c|b|r)at", $var); // true

Another example shows alternative beginnings to a pattern:

// match some URLs
$pattern = '(^ftp|^http|^gopher)://';

$found = ereg($pattern, "http://www.ora.com"); // true

2.7.1.7 Escaping special characters

We've already discussed the need to escape the special meaning of characters used
as operators in a regular expression. However, when to escape the meaning depends
on how the character is used. Escaping the special meaning of a character is done
with the backslash character as with the expression "2\+3, which matches the string
"2+3". If the + isn't escaped, the pattern matches one or many occurrences of the
character 2 followed by the character 3. Another way to write this expression is to
express the + in the list of characters as "2[+]3". Because + doesn't have the same
meaning in a list, it doesn't need to be escaped in that context. Using character lists in
this way can improve readability. The following examples show how escaping is used
and avoided:

// need to escape (and)
$phone = "(03) 9429 5555";
$found = ereg("^\([0-9]{2,3}\)", $phone); // true

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$found = ereg("^\([0-9]{2,3}\)", $phone); // true

// No need to escape (*.+?)| within parentheses
$special = "Special Characters are (,), *, +, ?, |";
$found = ereg("[(*.+?)|]", $special); // true

// The back-slash always needs to be quoted to match
$backSlash = 'The backslash \ character';
$found = ereg('^[a-zA-Z \\]*$', $backSlash); //true

// Don't need to escape the dot within parentheses
$domain = "www.ora.com";
$found = ereg("[.]com", $domain); //true

Another complication arises due to the fact that a regular expression is passed as a
string to the regular expression functions. Strings in PHP can also use the backslash
character to escape quotes and to encode tabs, newlines, etc. Consider the following
example, which matches a backslash character:

// single-quoted string containing a backslash
$backSlash = '\ backslash';

// Evaluates to true
$found = ereg("^\\\\ backslash\$", $backSlash);

The regular expression looks quite odd: to match a backslash, the regular expression
function needs to escape the meaning of backslash, but because we are using a
double-quoted string, each of the two backslashes needs to be escaped. The last
complication is that PHP interprets the $ character as the beginning of a variable
name, so we need to escape that. Using a single-quoted string can help make regular
expressions easier to read and write.

2.7.1.8 Metacharacters

Metacharacters can also be used in regular expressions. For example, the tab
character is represented as \t and the carriage-return character as \n. There are
also shortcuts: \d means any digit, and \s means any whitespace. The following
example returns true as the tab character, \t, is contained in the $source string:

$source = "fast\tfood";

$result = ereg('\s', $source); // true

2.7.2 Regular Expression Functions

PHP has several functions that use POSIX regular expressions to find and extract
substrings, replace substrings, and split a string into an array. The functions to
perform these tasks come in pairs: a case-sensitive version and a case-insensitive
version. While case-sensitive regular expressions can be written, the case-insensitive
versions of these functions allow shorter regular expressions.

2.7.2.1 Finding and extracting values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ereg() function, and the case-insensitive version eregi(), are defined as:

boolean ereg(string pattern, string subject [, array var])
boolean eregi(string pattern, string subject [, array var])

Both functions return true if the regular expression pattern is found in the subject
string. An optional array variable var can be passed as the third argument; it is
populated with the portions of subject that are matched by up to nine grouped
subexpressions in pattern. Both functions return false if the pattern isn't found in the
subject.

To extract values from a string into an array, patterns can be arranged in groups
contained by parentheses in the regular expression. The following example shows
how the year, month, and day components of a date can be extracted into an array:

$parts = array();
$value = "2001-09-07";
$pattern = '^([0-9]{4})-([0-9]{2})-([0-9]{2})$';

ereg($pattern, $value, $parts);

// Array ([0]=> 2001-09-07 [1]=>2001 [2]=>09 [3]=>07
print_r($parts);

The expression:

'^([0-9]{4})-([0-9]{2})-([0-9]{2})$'

matches dates in the format YYYY-MM-DD. After calling ereg(), $parts[0] is
assigned the portion of the string that matches the whole regular expression—in this
case, the whole string 2001-09-07. The portion of the date that matches each group
in the expression is assigned to the following array elements: $parts[1] contains
the year matched by ([0-9]{4}), $parts[2] contains the month matched by
([0-9]{2}), and $parts[3] contains the day matched by "([0-9]{2})".

2.7.2.2 Replacing substrings

The following functions create new strings by replacing substrings:

string ereg_replace(string pattern, string replacement, string source)
string eregi_replace(string pattern, string replacement, string source)

They create a new string by replacing substrings of the source string that match the
regular expression pattern with a replacement string. These functions are similar to
the str_replace() function described earlier in the Section 2.6 section, except
that the replaced substrings are identified using a regular expression. Consider the
examples:

$source = "The quick\tbrown\n\tfox jumps";

// prints "The quick brown fox"
echo ereg_replace("[\t\n]+", " ", $source);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

echo ereg_replace("[\t\n]+", " ", $source);

$source = "\xf6 The quick\tbrown\n\tfox jumps\x88";

// replace all non-printable characters with a space
echo ereg_replace("[^ -~]+", " ", $source);

The second example uses the regular expression "[^ -~]+" to match all characters
except those that fall between the space character and the tilde character in the
ASCII table. This represents almost all the printable 7-bit characters.

2.7.2.3 Splitting a string into an array

The following two functions split strings:

array split(string pattern, string source [, integer limit])
array spliti(string pattern, string source [, integer limit])

They split the source string into an array, breaking the string where the matching
pattern is found. These functions perform a similar task to the explode() function
described earlier and as with explode(), a limit can be specified to determine the
maximum number of elements in the array.

The following simple example shows how split() can break a sentence into an
array of "words" by recognizing any sequence of nonalphabetic characters as
separators:

$sentence = "I wonder why he does\nBuzz, buzz, buzz!";
$words = split("[^a-zA-Z]+", $sentence);

When complex patterns aren't needed to break a string into an array, the explode(
) function makes a better choice.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

2.8 Date and Time Functions

There are several PHP library functions that work with dates and times. Most either
generate a Unix timestamp or format a Unix timestamp in a human-readable form.

2.8.1 Generating a Timestamp

Date and time is generally represented as a Unix timestamp: the number of seconds
since 1 January 1970 00:00:00 Greenwich Mean Time. Most systems represent a
timestamp using a signed 32-bit integer, allowing a range of dates from December 13,
1901 through January 19, 2038. While timestamps are convenient to work with in
scripts, care must be taken when manipulating timestamps to avoid integer overflow
errors. A common source of errors is to compare two timestamps in which the date
range is greater than the largest positive integer—a range just over 68 years for a
signed 32-bit integer.

PHP gives unexpected results when comparing two integers that
differ by an amount greater than the largest positive integer,
typically 231-1. A safer way to compare large integers is to cast
them to floating-point numbers. The following example illustrates
this point:

$var1 = -2106036000; // 16/08/1902
$var2 = 502808400; // 24/08/1984

// $result is assigned false
$result = $var1 < $var2;

// $result is assigned true as expected
$result = (float) $var1 < (float) $var2;

Even floating-point numbers can overflow. To manipulate
numbers of arbitrary precision, the BCMath library should be
considered.

2.8.1.1 Current time

PHP provides several functions that generate a Unix timestamp. The simplest:

integer time()

returns the timestamp for the current date and time, as shown in this fragment:

// prints the current timestamp: e.g., 1008553254
echo time();

2.8.1.2 Creating timestamps with mktime() and gmmktime()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To create a timestamp for a past or future date in the range December 13, 1901
through January 19, 2038, the mktime() and gmmktime() functions are
defined:

int mktime(int hour, int minute, int second, int month, int day, int year
 [, int is_dst])
int gmmktime(int hour, int minute, int second, int month, int day, int year
 [, int is_dst])

Both create a timestamp from the supplied components; the parameters supplied to
gmmktime() represent a GMT date and time, while the parameters supplied to
mktime() represent the local time. This example creates a timestamp for 9:30 A.M.
on June 18, 1998:

$aDate = mktime(9, 30, 0, 6, 18, 1998);

Both functions are reasonably tolerant of zero values, and both correctly handle
values out-of-range, allowing scripts to add a quantum of time without range
checking. If the components of a date are outside the range of dates the function is
defined for, -1 is returned. The following example shows how 30 days can be added
to a date and time:

$paymentPeriod = 30; // Days

// generates a timestamp for 26 June 2002 by
// adding 30 days to 27 May 2002
$paymentDue =
 mktime(0, 0, 0, 5, 27 + $paymentPeriod, 2002);

// A different approach adds the appropriate number
// of seconds to the timestamp for 27 May 2002
$paymentDue = mktime(0, 0, 0, 5, 27, 2002)
 + ($paymentPeriod * 24 * 3600);

Both functions allow the supplied date to be interpreted as daylight savings time by
setting the flag is_dst to 1.

The order of the arguments to these functions is unusual and easily confused. While
the mktime() and gmmktime() functions are similar to the Unix mktime()
function, the arguments aren't in the same order.

2.8.1.3 String to timestamp

This function generates a timestamp by parsing the human-readable date and time—
between December 13, 1901 and January 19, 2038—from the string time:

integer strtotime(string time)

The function interprets several standard representations of a date, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Absolute dates and times
$var = strtotime("25 December 2002");
$var = strtotime("14/5/1955");
$var = strtotime("Fr1, 7 Sep 2001 10:28:07 -1000");

// The current time: equivalent to time()
$var = strtotime("now");

// Relative times
echo strtotime("+1 day");
echo strtotime("-2 weeks");
echo strtotime("+2 hours 2 seconds");

Care should be taken when using strtotime() with user-supplied dates. It's
better to limit the use of strtotime() to cases when the string to be parsed is
under the control of the script, for example, checking a minimum age using a relative
date:

// date of birth: timestamp for 16 August, 1983
$dob = mktime(0, 0, 0, 16, 8, 1982);

// Now check that the individual is over 18
if ((float)$dob < (float)strtotime("-18 years"))
 echo "Legal to drive in the state of Victoria";

Note that both timestamps are cast to floating-point numbers before comparing them
to avoid the integer overflow problem highlighted earlier. A different solution to this
problem is presented in Chapter 7.

2.8.1.4 Subsecond times

While a Unix timestamp represents a date and time accurate to the second, many
applications require times to be represented to the subsecond. PHP provides the
function:

string microtime()

This returns a string that contains both a Unix timestamp in seconds and a
microsecond component. The returned string begins with the microsecond
component, followed by the integer timestamp:

// prints the time now in the format "usec sec"
// e.g., 0.34783800 1008553410
echo microtime();

One common use of the function microtime() is to generate the seed for a
random-number generator:

// Generate a seed.
$seed = (float)microtime() * 100000000;

srand($seed);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

srand($seed);

Because the microsecond component appears at the start of the string returned from
microtime(), the returned value can be converted to a float with the (float)
cast operator. Multiplying the float result by 100,000,000 ensures that you pass a
suitably varying integer to the seeding function srand(). Random-number
generation is covered in more detail in Section 2.9.

2.8.2 Formatting a Date

While the Unix timestamp is programmatically useful, it isn't a convenient display
format. The date() and gmdate() functions return a human-readable formatted
date and time:

string date(string format [, integer timestamp])
string gmdate(string format [, integer timestamp])

The format of the returned string is determined by the format argument. A
predetermined date can be formatted by passing in the optional timestamp argument.
Otherwise, both functions format the current time. The format string uses the
formatting characters listed in Table 2-3 to display various components or
characteristics of the timestamp. To include the characters from the table, the
backslash character is used. The following examples show various combinations:

// Set up a timestamp for 08:15am 24 Aug 1964
$var = mktime(8, 15, 25, 8, 24, 1964);

// "24/08/1964"
echo date('d/m/Y', $var);

// "08/24/64"
echo date('m/d/y', $var);

// "Born on Thursday 24th of August"
echo date('\B\o\r\n \o\n l jS \of F", $var);

Table 2-3. Formatting characters that represent various date and time components
Formatting
character Meaning

a, A "am" or "pm"; "AM" or "PM"
S Two-character English ordinal suffix: "st", "nd", "rd", "th"
d, j Day of the month: with leading zeros: "01"; without: "1"
D, l Day of the week: as three letters: "Mon"; spelled out: "Monday"
M, F Month: as three letters: "Jan"; spelled out: "January"
m, n Month: with leading zeros: "01"-"12"; without: "1"-"12"
h, g Hour, 12-hour format: with leading zeros: "09"; without: "9"
H, G Hour, 24-hour format: with leading zeros: "01"; without "1"
i Minutes:"00" to "59"
s Seconds: "00" to "59"
Y, y Year: four digits "2002"; two digits "02"

r RFC-2822 formatted date: e.g., "Tue, 29 Jan 2002 09:15:33 +1000" (added in PHP
4.0.4)

w Day of the week as number: "0" (Sunday) to "6" (Saturday)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

t Days in the month: "28" to "31"
z Days in the year: "0" to "365"
B Swatch Internet time
L Leap year: "0" for normal year; "1" for leap-year
I Daylight savings time: "0" for standard time; "1" for daylight savings
O Difference to Greenwich Mean Time in hours: "+0200"
T Time zone setting of this machine
Z Time zone offset in seconds: "-43200" to "43200"
U Seconds since the epoch: 00:00:00 1/1/1970

PHP also provides the equivalent functions:

string strftime(string format [, integer timestamp])
string gmstrftime(string format [, integer timestamp])

The format string uses the same formatting character sequences as the C library
function strftime().

2.8.3 Validating a Date

The function checkdate() returns true if a given month, day, and year form a
valid Gregorian date:

boolean checkdate(integer month, integer day, integer year)

This function isn't based on a timestamp and so can accept a larger range of dates:
basically any dates in the years 1 to 32767. It automatically accounts for leap years.

// Works for a wide range of dates
$valid = checkdate(1, 1, 1066); // true
$valid = checkdate(1, 1, 2929); // true

// Correctly identify bad dates
$valid = checkdate(13, 1, 1996); // false
$valid = checkdate(4, 31, 2001); // false

// Correctly handles leap years
$valid = checkdate(2, 29, 1996); // true
$valid = checkdate(2, 29, 2001); // false

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

2.9 Integer and Float Functions

Apart from the basic operators +, -, /, *, and %, PHP provides the usual array of
mathematical library functions. In this section, we present some of the library
functions that are used with integer and float numbers.

2.9.1 Absolute Value

The absolute value of an integer or a float can be found with the abs() function:

integer abs(integer number)
float abs(float number)

The following examples show the result of abs() on floats and integers:

echo abs(-1); // prints 1
echo abs(1); // prints 1
echo abs(-145.89); // prints 145.89
echo abs(145.89); // prints 145.89

2.9.2 Ceiling and Floor

The ceil() and floor() functions can return the integer value above and below
a fractional value, respectively:

float ceil(float value)
float floor(float value)

The return type is a float because an integer may not be able to represent the result
when a large value is passed as an argument. Consider the following examples:

echo ceil(27.3); // prints 28
echo floor(27.3); // prints 27

2.9.3 Rounding

The round() function uses 4/5 rounding rules to round up or down a value to a
given precision:

float round(float value [, integer precision])

Rounding by default is to zero decimal places, but the precision can be specified with
the optional precision argument. The 4/5 rounding rules determine if a number is
rounded up or down based on the digits that are lost due to the rounding precision.
For example, 10.4 rounds down to 10, and 10.5 rounds up to 11. The following
examples show rounding at various precisions:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

echo round(10.4); // prints 10
echo round(10.5); // prints 11
echo round(2.40964, 3); // prints 2.410
echo round(567234.56, -3); // prints 567000
echo round(567234.56, -4); // prints 570000

2.9.4 Number Systems

PHP provides the following functions that convert numbers between integer decimal
and the commonly used number systems, binary, octal, and hexadecimal:

string decbin(integer number)
integer bindec (string binarystring)
string dechex(integer number)
integer hexdec(string hexstring)
string decoct(integer number)
integer octdec(string octalstring)

The decimal numbers are always treated as integers, and the numbers in the other
systems are treated as strings. When converting to decimal, care must be taken that
the source number isn't greater than the maximum value an integer can hold. Here
are some examples:

echo decbin(45); // prints "101101"
echo bindec("1001011"); // prints 75
echo dechex(45); // prints "2D"
echo hexdec("5a7b"); // prints 23163
echo decoct(45); // prints "55"
echo octdec("777"); // prints 511

2.9.5 Basic Trigonometry Functions

PHP supports the basic set of trigonometry functions and are listed in Table 2-4.

Table 2-4. Trigonometry functions supported by PHP
Function Description

float sin(float arg) Sine of arg in radians
float cos(float arg) Cosine of arg in radians
float tan(float arg) Tangent of arg in radians
float asin(float arg) Arc sine of arg in radians
float acos(float arg) Arc cosine of arg in radians
float atan(float arg) Arc tangent of arg in radians

float atan2(float y, float x) Arc tangent of x/y where the sign of both arguments determines
the quadrant of the result

float pi() Returns the value 3.1415926535898
float deg2rad(float arg) Converts arg degrees to radians
float rad2deg(float arg) Converts arg radians to degrees

2.9.6 Powers and Logs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The PHP mathematical library includes the exponential and logarithmic functions
listed in Table 2-5.

Table 2-5. Exponential and logarithmic functions
Function Description

float exp(float arg) e to the power of arg
float pow(float base, number exp) Exponential expression base to the power of exp
float sqrt(float arg) Square root of arg
float log(float arg) Natural logarithm of arg
float log10(float arg) Base-10 logarithm of arg

2.9.7 Random Number Generation

PHP provides the function rand(), which returns values from a generated
sequence of pseudo-random numbers. Well-known algorithms generate sequences
that appear to have random behavior but aren't truly random. The srand() function
seeds the algorithm and needs to be called before the first use of the rand()
function in a script. Otherwise, the function returns the same numbers each time a
script is called. The prototypes of the functions are:

void srand(integer seed)
integer rand()
integer rand(integer min, integer max)

The srand() function is called by passing an integer seed that is usually
generated from the current time. When called with no arguments, rand() returns a
random number between 0 and the value returned by getrandmax(). When
rand() is called with two arguments—the min and max values—the returned
number is a random number between min and max. Consider this example:

// Generate a seed.
$seed = (float) microtime() * 100000000;

// Seed the pseudo-random number generator
srand($seed);

// Generate some random numbers
print rand(); // between 0 and getmaxrand()
print rand(1, 6); // between 1 and 6 (inclusive)

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

2.10 User-Defined Functions

Functions provide a way to group together related statements into a cohesive block.
For reusable code, a function saves duplicating statements and makes maintenance
of the code easier.

We've already presented many examples of function calls in this chapter. Once
written, a user-defined function is called in exactly the same way. Consider an
example of a simple user-developed function as shown in Example 2-6.

Example 2-6. A user-defined function to output bold text

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Simple Function Call</title>
</head>
<body bgcolor="#ffffff">
<?php

function bold($string)
{
 echo "" . $string . "\n";
}

// First example function call (with a static string)
echo "this is not bold\n";
bold("this is bold");
echo "this is again not bold\n";

// Second example function call (with a variable)
$myString = "this is bold";
bold($myString);
?>
</body></html>

The script defines the function bold(), which takes one parameter, $string, and
prints that string prefixed by a bold tag and suffixed with a tag. The bold(
) function, defined here, can be used with a string literal expression or a variable, as
shown.

Functions can also return values. For example, consider the following code fragment
that declares and uses a function heading(), which returns a string using the
return statement:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

return statement:

function heading($text, $headingLevel)
{
 switch ($headingLevel)
 case 1:
 $result = "<h1>" . ucwords($text) . "</h1>";
 break;

 case 2:
 $result = "<h2>" . ucwords($text) . "</h2>";
 break;

 case 3:
 $result = "<h3>" . ucfirst($text) . "</h3>";
 break;

 default:
 $result = "<p>" . ucfirst($text) . "";

 return($result);
}

$test = "user defined functions";
echo heading($test, 2);

The function takes two parameters: the text of a heading and a heading level. Based
on the value of $headingLevel, the function builds the HTML suitable to display the
heading—changing the case of the $text appropriately. The previous fragment
generates the string:

<h2>User Defined Functions</h2>

The variable that is returned by a return statement can optionally be placed in
parentheses: the statements return($result) and return $result are
identical.

2.10.1 Argument Types and Return Types

The argument and return types of a function aren't declared when the function is
defined. PHP allows arguments of any type to be passed to the function, and as with
variables, the return type is determined when a result is actually returned. Consider a
simple function that divides two numbers:

function divide($a, $b)
{
 return ($a/$b);
}

$c = divide(4, 2); // assigns an integer value = 2
$c = divide(3, 2); // assigns a float value = 1.5
$c = divide(4.0, 2.0); // assigns a float value = 2.0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$c = divide(4.0, 2.0); // assigns a float value = 2.0

If the types of arguments passed to the function are critical, they should be tested as
shown earlier in Section 2.1.3.

2.10.2 Variable Scope

Variables used inside a function are different from those used outside a function. The
variables used inside the function are limited to the scope of the function (there are
exceptions to this rule, which are discussed later in this section). Consider an
example that illustrates variable scope:

function doublevalue($var)
{
 $temp = $var * 2;
}

$variable = 5;
doublevalue($variable);
echo "\$temp is: $temp";

This example outputs the string:

$temp is:

and no value for $temp. The scope of the variable $temp is local to the function
doublevalue() and is discarded when the function returns.

The PHP script engine doesn't complain about undeclared variable being used. It just
assumes the variable is empty. However, this use of an undefined variable can be
detected using the error-reporting settings discussed later, in Section 2.12.

If you want to use a value that is local to a function elsewhere in a script, the easiest
way to do so is to return the value of the variable. This example achieves this:

function doublevalue($var)
{
 $returnVar = $var * 2;
 return($returnVar);
}

$variable = 5;
$temp = doublevalue($variable);
echo "\$temp is: $temp";

The example prints:

$temp is: 10

You could have still used the variable name $temp inside the function
doublevalue(). However, the $temp inside the function is a different variable
from the $temp outside the function. The general rule is that variables used

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

from the $temp outside the function. The general rule is that variables used
exclusively within functions are local to the function, regardless of whether an
identically named variable is used elsewhere. There are two exceptions to this
general rule: variables passed by reference and those declared global in the
function aren't local to the function.

2.10.2.1 Global variables

If you want to use the same variable everywhere in your code, including within
functions, you can do so with the global statement. The global statement declares
a variable within a function as being the same as the variable that is used outside of
the function. Consider this example:

function doublevalue()
{
 global $temp;
 $temp = $temp * 2;
}

$temp = 5;
doublevalue();
echo "\$temp is: $temp";

Because $temp is declared inside the function as global, the variable $temp used
in doublevalue() is a global variable that can be accessed outside the function.
Because the variable $temp can be seen outside the function, the script prints:

$temp is: 10

A word of caution: avoid overuse of global as it makes for confusing code.

The global variable declaration can be a trap.

In some other languages, global variables are usually declared
global outside the functions and then used in the functions.

In PHP, it's the opposite: to use a global variable inside a
function, declare the variable as global inside the function.

An alternative to using global is to return more than one variable from a function by
creating and returning an array of values. A better approach is to pass parameters by
reference instead of by value. We discuss the latter approach in the next section.

2.10.3 How Variables Are Passed to Functions

By default, variables are passed to functions by value, not by reference. The following
example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function doublevalue($var)
{
 $var = $var * 2;
}

$variable = 5;
doublevalue($variable);
echo "\$variable is: $variable";

has the output:

$variable is: 5

The parameter $variable that is passed to the function doublevalue() isn't
changed by the function. What actually happens is that the value 5 is passed to the
function, doubled to be 10, and the result lost forever! The value is passed to the
function, not the variable itself.

2.10.3.1 Passing arguments by reference

An alternative to returning a result or using a global variable is to pass a reference to
a variable as an argument to the function. This means that any changes to the
variable within the function affect the original variable. Consider this example:

function doublevalue(&$var)
{
 $var = $var * 2;
}

 $variable = 5;
 doublevalue($variable);
 echo "\$variable is: $variable";
?>

This prints:

$variable is: 10

The only difference between this example and the last one is that the parameter $var
to the function doublevalue() is prefixed with an ampersand character: &$var.
The ampersand means that a reference to the original variable is passed as the
parameter, not just the value of the variable. The result is that changes to $var in the
function affect the original variable $variable outside the function.

Functions that are defined with arguments that are references to variables can't be
called with literal expressions, because the function expects a variable to modify.
PHP reports an error when such a call is made.

2.10.3.2 Assigning by reference

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Referencing with the ampersand can also be used when assigning variables, which
allows the memory holding a value to be accessed from more than one variable. This
example illustrates the idea:

$x = 10;
$y = &$x;
$y++;
echo $x;
echo $y;

Here's how it prints:

11
11

Because $y is a reference to $x, any change to $y affects $x. In effect, they are the
same variable. So, by adding 1 to $y, you also add 1 to $x, and both are equal to 11.

The reference $y can be removed with:

unset($y);

This has no effect on $x or its value.

2.10.3.3 Default argument values

PHP allows functions to be defined with default values for arguments. A default value
is simply supplied in the argument list using the = sign. Consider the modified
heading() function described earlier:

function heading($text, $headingLevel = 2)
{
 switch ($level)
 case 1:
 $result = "<h1>" . ucwords($text) . "</h1>";
 break;

 case 2:
 $result = "<h2>" . ucwords($text) . "</h2>";
 break;

 case 3:
 $result = "<h3>" . ucfirst($text) . "</h3>";
 break;

 default:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 default:
 $result = "<p>" . ucfirst($text) . "";

 return($result);
}

$test = "user defined functions";
echo heading($test);

When calls are made to the heading() function, the second argument can be
omitted, and the default value 2 is assigned to the $headingLevel variable.

2.10.4 Reusing Functions with Include and Require Files

To use functions across many PHP scripts, PHP supports the include statement
and the require directive.

If you decide you wish to reuse the bold() function from Example 2-6 in more
than one script, you can store it in an include file. For example, you can create a file
called functions.inc and put the bold() function in the file:

<?php
function bold($string)
{
 echo "" . $string . "\n";
}
?>

Any PHP code in an include file must be surrounded by the PHP
start and end script tags. The PHP script engine treats the
contents of include files as HTML unless script tags are used.

In a script, you can then use the include statement to provide access to the function
bold():

<html>
<head>
 <title>Simple Function Call</title>
</head>
<body bgcolor="#ffffff">
<?
include "functions.inc";

// First example function call (with a static string)
echo "this is not bold\n";
bold("this is bold");
echo "this is again not bold\n";

// Second example function call (with a variable)
$myString = "this is bold";
bold($myString);
?>
</body></html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</body></html>

The script works as before, but the function bold() can now be reused across
several scripts by including functions.inc. We use include files throughout Chapter 4
through Chapter 13.

Be careful when using the include statement. Including the
same file twice or declaring a function in the script that is already
in an include file causes PHP to complain about the function
being redefined.

The include statement is treated in the same way as other statements. For
example, you can conditionally include different files using the following code
fragment:

if ($netscape == true)
{
 include "netscape.inc";
}
else
{
 include "other.inc";
}

The file is included only if the include statement is executed in the script. The
braces used in this example are necessary: if they are omitted, the example doesn't
behave as expected.

If a file must always be included, the require directive should be used instead of
include. The require directive is processed before the script is executed, and the
contents of the required file are always inserted in the script. This is useful for
creating reusable HTML. For example, if you want to add the same header or footer
to every page on a site—regardless of errors or other problems—require makes
this easy and simple to maintain.

Consider the following HTML fragment:

<hr>
(c) 2001 Hugh E. Williams and David Lane

If you want this fragment at the base of every page, the fragment can be stored in a
file footer.inc and the directive added to the bottom of every script you develop:

require "footer.inc";

The benefit is that if you want to update the HTML footer, you need to do so in only
one file.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

2.11 Objects

PHP has limited support for object-oriented programming and allows programmers to
define their own classes and create object instances of those classes. We make little
use of objects in this book, and this section serves as an introduction to PHP's
support of object-oriented features. The subject of object-oriented programming is
extensive, and we don't provide a complete explanation of the subject here.

2.11.1 Classes and Objects

A class defines a compound data structure made up of member variables and a set of
functions—known as methods or member functions—that operate with the specific
structure. Example 2-7 shows how a class Counter is defined in PHP. The class
Counter contains two member variables—the integers $count and $startPoint—
and four functions that use these member variables. Collectively, the variables and
the functions are members of the class Counter.

Example 2-7. A simple class definition of the user-defined class Counter

<?php
 // A class that defines a counter.
 class Counter
 {
 // Member Variables
 var $count = 0;
 var $startPoint = 0;

 // Methods
 function startCountAt($i)
 {
 $this->count = $i;
 $this->startPoint = $i;
 }

 function increment()
 {
 $this->count++;
 }

 function reset()
 {
 $this->count = $this->startPoint;
 }

 function showvalue()
 {
 print $this->count;
 }
 }
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

?>

To use the data structures and functions defined in a class, an instance of the class—
an object—needs to be created. Like other data types—integers, strings, arrays, and
so on—objects are held by variables. However, unlike other types, objects are
created using the new operator. An object of class Counter can be created and
assigned to a variable as follows:

$aCounter = new Counter;

Once the variable $aCounter is created, the member variables and functions of the
new object can be used. Members of the object, both variables and functions, are
accessed using the -> operator. Consider the following example:

echo $aCounter->count; // prints 0
$aCounter->increment();
echo $aCounter->count; // prints 1

// Bypass the function that updates count
$aCounter->count = 101;

In the class definition, the code that defines member functions can access the
member variables with the variable $this as can be seen in the Counter function
implementations in Example 2-7. The variable $this has special meaning and acts
as a placeholder until a real object is created. For example, when the function
$aCounter->increment() is called, the variable $this acts as $aCounter.

By placing the code shown in Example 2-7 in the file counter.inc, the class Counter
can be used by other scripts to create new objects, as shown in Example 2-8.

Example 2-8. Creating and using objects of class Counter

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
 <html>
 <head><title>Counter</title></head>
 <body>
 <?php
 include "counter.inc";

 // Create a new object of type "counter"
 $temp = new Counter;

 // Set the counter to 10
 $temp->startCountAt(10);

 // Increment the counter
 $temp->increment();
 $temp->increment();
 $temp->increment();

 // Print out the value of the counter
 echo "<p>Counter is now: ";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 echo "<p>Counter is now: ";
 $temp->showvalue();

 // Reset the counter
 $temp->reset();

 // Print out the value of the counter
 echo "<p>Counter is now: ";
 $temp->showvalue();
 ?>
 </body></html>

Many objects of the same class can be created. For example, you can use the
following fragment to create three objects and assign them to three variables:

$a = new Counter;
$b = new Counter;
$c = new Counter;

The variables $a->count, $b->count, and $c->count are different. Each variable
is of type object and references an object of the class Counter, but the objects
themselves are independent.

2.11.2 Inheritance

One of the powerful concepts in object-oriented programming is inheritance.
Inheritance allows a new class to be defined by extending the capabilities of an
existing base class. PHP allows a new class to be created by extending an existing
class with the extends keyword. Example 2-9 shows how the class Counter is
extended to create the new class BottleCounter that can determine the number of
cases of wine to be shipped.

Example 2-9. A new class BottleCounter is defined by extending the base class Counter

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
 <html>
 <head><title>Bottle Counter</title></head>
 <body>
 <?php
 include "counter.inc";

 class BottleCounter extends Counter
 {
 // Add 12 bottles to the counter
 function addCase()
 {
 $this->count += 12;
 }

 // Return the number of cases to be shipped
 function caseCount()
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 return ceil($this->count / 12);
 }

 // A Constructor that sets the initial count
 function BottleCounter($startCount)
 {
 $this->count = $startCount;
 }
 }

 // Create a new object of type "BottleCounter"
 // and pass the initial count of 12
 $temp = new BottleCounter(12);

 // Increment the counter
 $temp->increment();

 // Add another Case
 $temp->addCase();

 // Print out the value of the counter: 24
 echo "<p>Counter is now: ";
 $temp->showvalue();

 // Print the number of cases
 $cases = $temp->caseCount();
 echo "<p>The number of cases to ship: $cases";
 ?>
 </body></html>

The new class BottleCounter doesn't add any new member variables but does add
three new member functions. The functions of the class BottleCounter use the
member variables of the base class Counter in ways appropriate to BottleCounter.
The function addCase() increments the $count variable by 12, and the function
caseCount() returns the total number of cases that need to be shipped, including
any partially filled cases.

The final function, BottleCounter(), is the constructor of the class BottleCounter.
Member functions with the same name as the class are treated differently. PHP uses
these functions as constructors, and they are called when new objects of that class
type are created. A constructor function can include arguments that can be used to
initialize member variables when a new object is created. Example 2-9 showed how
a new BottleCounter object is created:

// Create a new object of type "BottleCounter"
// and pass the initial count of 12
$temp = new BottleCounter(12);

The power of inheritance doesn't come from simply reusing code. Objects created
from the extended class can be used as if they were created from the existing base
class. This ability to use an object as if it were an instance of the base class is known
as polymorphism. You can use the class Counter as a base for other new classes,
such as a CanCounter class in which a case is 24 cans, not 12 bottles. Code that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

such as a CanCounter class in which a case is 24 cans, not 12 bottles. Code that
uses an object of class Counter can then be used with objects of type BottleCounter
or CanCounter. Consider this example, which defines the function
volumeDiscount(), designed to return a discount factor based on a Counter
object:

// Return a discount factor based on
// the value of the Counter $var
function volumeDiscount($var)
{
 // use $var as a Counter
 if ($var->count > 24)
 return 0.95;
 else
 return 1.0;
}

$bottles = new BottleCounter(10);
$cans = new CanCounter(24);

$bottleDiscountFactor = volumeDiscount($bottles);
$canDiscountFactor = volumeDiscount($cans);

If both the BottleCounter and CanCounter classes are defined as extensions of
Counter, the function volumeDiscount() can be called on objects of those
classes.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

2.12 Common Mistakes

When switching to PHP, there are several common mistakes even experienced
programmers make. In this short section, we highlight some of these mistakes and
the basics of how to rectify them.

2.12.1 A Page That Produces Partial or No Output

One of the most common problems in debugging PHP scripts is seeing:

No page rendered by the web browser when much more is expected

A pop-up dialog box stating that the "Document Contains No Data"

A partial page when more is expected

Most of these problems are caused not by a bug in script-programming logic, but by a
bug in the HTML produced by the script. For example, if the </table>, </form>, or
</frame> closing tags are omitted, the page may not be rendered.

The HTML problem can usually be identified by viewing the HTML page source using
the web browser. With Netscape, the complete output of the erroneous example is
shown in the page-source view, and the HTML problem can hopefully be easily
identified.

For compound or hard-to-identify HTML bugs, the W3C validator at
http://validator.w3.org retrieves a page, analyzes the correctness of the HTML,
and issues a report. It's an excellent assistant for debugging and last-minute
compliance checks before delivery of an application.

If the problem still proves hard to find, consider adding calls to the flush() function
after echo, print, or printf statements. flush() empties the output buffer
maintained by the PHP engine, sending all currently buffered output to the web
server. The function has no effect on buffering at the web server or the web browser,
but it ensures that all data output by the script is available to the web server to be
transmitted and rendered by a browser. Remember to remove the flush() function
calls after debugging, because unnecessary flushing may prevent efficient buffering
of output by the PHP scripting engine.

A common problem that shouldn't be confused with those described here is not
receiving a response from the web server and getting a "no response" error message.
This problem is a symptom of the bugs described in the next section, and can be
distinguished from the problems described here by observing the web browser. Most
of the popular graphical browsers show they are waiting for a response by animating
the logo in the top-right corner. For the HTML problems described here, the page
loading process will be complete, the logo animation will have stopped, and the HTML
page source can be viewed through the web browser menus.

2.12.2 Variable Problems

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this section, we discuss problems that cause a page never to arrive at the web
browser, or complete pages to appear with missing output from variables.

2.12.2.1 Variable naming

Making a mistake with a variable name sometimes inadvertently creates never-ending
loops. The result of a never-ending loop is that the web browser eventually times out
and alerts the user that the web server isn't responding to an HTTP request.

The following loop never ends, and no output is produced:

for($counter=0; $counter<10; $Counter++)
 myFunction();

The variable $counter is never incremented. Instead, another variable, $Counter,
is, so $counter is always less than 10. Common bugs result from subtle changes in
variable names through changing case, omitting or including underscores, or simple
typographic errors.

Never-ending loops can also produce unexpected output. The following loop can
render thousands of greetings in a web browser in a very short time:

for($counter=0; $Counter<10; $counter++)
 echo "
hello";

These errors can sometimes be detected by setting the PHP error-reporting level to a
higher sensitivity. Adding the following code fragment to the top of each PHP script or
to a file included with the require directive reports undefined variable errors:

error_reporting(E_ALL);

This forces variables to be declared by assigning a value before they can be used.
Consider the following example:

error_reporting(E_ALL);
for($counter=0; $Counter<10; $counter++)
 echo "
hello";

This produces an unending number of warning messages stating:

Warning: Undefined variable: Counter in /var/lib/apache/htdocs/winestore/a.php on line 2

The script keeps on running, because it's only a warning. A custom error handler can
be incorporated that stops the script when an error or warning is encountered by
using the set_error_handler() function. We discuss error handlers in Chapter
10.

2.12.2.2 Missing output

An uninitialized variable produces no output. This seems obvious, but it can be hard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An uninitialized variable produces no output. This seems obvious, but it can be hard
to identify if the problem is a subtle typographic error. Consider this example of a
change in case:

$testvariable = "hello";
echo "The value of test is $testVariable";

This produces the string:

The value of test is

The problem can be much harder to identify by visual inspection if the variable is part
of a complex operation, such as being used as an array element index, part of
<table> output, or as a parameter to a database query.

If output appears but isn't as expected, an uninitialized variable is a possibility. The
simplest approach to detecting the error is then to check for a bug by setting
error_reporting(E_ALL) at the top of the script as discussed in the last section.

The function isset() can also control execution and debug code, because it
returns true if the variable exists (even if it's set to NULL or an empty string) and
false if it has never been used.

Another related problem involves variable names appearing where values should.
This is usually the simple problem of an omitted dollar sign and is easy to fix. For
example:

echo "the value of test is test";

This should have been:

echo "the value of test is $test";

If a dollar sign is omitted in a statement such as an assignment or conditional, the
PHP interpreter reports a specific parse error with its default error-reporting level.

A similar problem can also occur when single quotes are used instead of double
quotes, because single-quoted strings are always output directly, and the string isn't
interpreted like a double-quoted string is. For example:

echo 'the value of test is $test';

This produces:

the value of test is $test

It doesn't output the value of the variable $test.

2.12.3 Complaints About Headers

We have not introduced the functions header() and setcookie() in this
chapter. Both functions can output HTTP headers that are sent by the web server
back to the web browser, and they are used frequently in web database applications.
The functions are introduced and discussed in Chapter 5, Chapter 6, Chapter 8,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The functions are introduced and discussed in Chapter 5, Chapter 6, Chapter 8,
and Chapter 9.

A common problem seen in producing HTTP headers with PHP is the error message
beginning:

Warning: Cannot add header information - headers already sent...

Headers can be sent only before any HTML is output, and this includes any
whitespace at the top of the file. So, for example, if there is a blank line or single
space character before the script open tag <?php, HTML has been output—albeit not
very interesting HTML—and the call to header() or setcookie() reports this
error.

It's possible to avoid header problems by altering how PHP buffers data using the
output control library functions. These functions are outside the scope of this book.

2.12.4 Other Common Problems

The three problem categories we have outlined so far are the most infuriating and
common mistakes programmers make in PHP. We outline a few less common and
less PHP-specific problems here.

Omitting a semicolon at the end of a statement is usually easy to detect. The PHP
interpreter continues to parse the script and, when it reaches a threshold of confusion
or exceeds the maximum statement length, it reports an error one or more lines later
that indicates a semicolon has been missed. In most cases, this is easy to fix, and the
line missing the semicolon is identified in the error message.

In some cases, a missing semicolon can be as hard to identify as a missing closing
brace or a missing quotation mark. The following erroneous code is missing a closing
brace:

<?
for($x=0; $x<100 ;$x++)
{
 for($y=0; $y<100; $y++) {
 echo "test1";
 for($z=0; $z<100; $z++)
 echo "test2";
}
?>

The error reported is:

Parse error: parse error in bug.php on line 9

Line 9 is the last line of the script, so the nature and cause of the problem aren't
immediately clear. However, parse errors that aren't immediately obvious on the
reported line in the error message are usually on the line above, or there may be a
missing brace or quotation mark.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It takes only a minute or so to identify the missing brace in this example, but more
complex functions can take much longer to fix. This highlights the importance of
indentation in code and also of avoiding the practice of placing opening braces at the
ends of lines. Braces should always be placed on lines of their own.

Missing open and close script tags can cause similar problems, but these are much
easier to identify. If an open script tag is missing, it's obvious because some portion
of the code—if not all—is displayed in the browser. A missing close tag usually
causes a parse error, because the PHP script engine is confused when it tries to
parse HTML and interpret it as PHP.

If script source is always displayed and never run, it's likely that Apache is
misconfigured. Specifically, it's likely that the AddType directive for processing PHP
scripts was not uncommented in the Apache installation process; this seems to be the
default in recent RedHat Linux distributions.

Another possible cause of scripts being displayed and not run is that the PHP scripts
aren't saved in files ending with the .php suffix. This problem often occurs with legacy
PHP3 code, because PHP3 scripts usually use the .php3 suffix. The problem can be
corrected by renaming the script files so they end in the .php suffix or by adding an
additional AddType directive to the Apache httpd.conf file:

AddType application/x-httpd-php .php3

In some rare cases, a PHP3 script might require minor modifications to run under
PHP4.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Chapter 3. MySQL and SQL
In this chapter, we introduce the MySQLdatabase management system (DBMS) and
the SQL database query language for defining and manipulating databases. Using
our case study, Hugh and Dave's Online Wines, as a guide, we illustrate examples of
how to use SQL. The techniques that we discuss are used to interact with a DBMS
after a database has been designed. An introduction to relational modeling and
design can be found in Appendix C, and a more comprehensive introduction to
MySQL and SQL can be found in many of the resources that are listed in Appendix
E.

In this chapter, we cover the following topics:

A short introduction to relational databases and relational modeling

A quick start guide to the winestore database and its full entity-relationship
model

The MySQL command interpreter and the basic features of MySQL

Using SQL to create and modify databases, tables, and indexes

Using SQL to insert, delete, and update data

The SQL SELECT statement for querying, with examples of simple and
advanced queries

Functions and operators in SQL and MySQL

Advanced features, including managing indexes and keys, tuning the MySQL
DBMS, security, and the limitations of MySQL

We assume that you have already installed MySQL. If not, the guide in Appendix A
will help you. Chapter 6 covers other selected advanced database topics that arise
when writing to databases, such as supporting multiple users, transactions, and
locking in MySQL. Complete examples of SQL queries and MySQL in use in a web
database application can be found in Chapter 10 to Chapter 13.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

3.1 Database Basics

The field of databases has its own terminology. Terms such as database, table,
attribute, row, primary key, and relational model have specific meanings and are used
throughout this chapter. In this section, we present an example of a simple database
to introduce the basic components of relational databases, and we list and define
selected terms used in the chapter. More detail can be found in Appendix C.

3.1.1 Introducing Relational Databases

An example relational database is shown in Figure 3-1. This database stores data
about wineries and the wine regions they are located in. A relational database
manages data in tables, and there are two tables in this example: a winery table that
manages wineries, and a region table that manages information about wine regions.

Figure 3-1. An example relational database containing two related tables

Databases are managed by a relational database management system (RDBMS). An
RDBMS supports a database language to create and delete databases and to
manage and search data. The database language used in almost all DBMSs is SQL,
a set of statements that define and manipulate data. After creating a database, the
most common SQL statements used are INSERT, UPDATE, DELETE, and SELECT,
which add, change, remove, and search data in a database, respectively.

A database table may have multiple columns, or attributes, each of which has a
name. For example, the winery table in Figure 3-1 has four attributes, winery ID,
winery name, address, and region ID. A table contains the data as rows or
records, and a row contains attribute values. The winery table has five rows, one for
each winery managed by the database, and each row has a set of values. For
example, the first winery has a winery ID value of 1, the winery name value Moss
Brothers, and an address of Smith Rd., and is situated in the region ID numbered
3. Region 3 is a row in the region table and is Margaret River in Western Australia.

The relationship between wineries and regions is maintained by assigning a region
ID to each winery row. Managing relationships in this way is fundamental to relational

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ID to each winery row. Managing relationships in this way is fundamental to relational
database technology, and different types of relationship can be maintained. In this
example, more than one winery can be situated in a region—three wineries in the
example are situated in the Barossa Valley—but a winery can be situated in only one
region.

Attributes have data types. For example, in the winery table, the winery ID is an
integer, the winery name and address are strings, and the region ID is an
integer. Data types are assigned when a database is designed.

Tables usually have a primary key, which is one or more values that uniquely identify
each row in a table. The primary key of the winery table is winery ID, and the
primary key of the region table is region ID. Primary keys are usually indexed to
provide fast access to rows when they are searched by the primary key value. For
example, an index is used to find the details of the region row that matches a given
region ID in a winery table row.

Figure 3-2 shows the example database modeled using entity-relationship (ER)
modeling. The winery and region tables or entities are shown as rectangles. Each
entity has attributes, and the primary key is shown underlined. The relationship
between the tables is shown as a diamond that connects the two tables, and in this
example the relationship is annotated with an M at the winery-end of the relationship.
The M indicates that there are potentially many winery rows associated with each
region. Because the relationship isn't annotated at the other end, this means that
there is only one region associated with each winery. ER modeling is discussed in
more detail in Appendix C.

Figure 3-2. An example relational model of the winery database

3.1.2 Terminology

Database

A repository to store data.

Table

The part of a database that stores the data. A table has columns or attributes,
and the data stored in rows.

Attributes

The columns in a table. All rows in table entities have the same attributes. For
example, a customer table might have the attributes name, address, and
city. Each attribute has a data type such as string, integer, or date.

Rows

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The data entries in a table. Rows contain values for each attribute. For example,
a row in a customer table might contain the values "Matthew Richardson," "Punt
Road," and "Richmond." Rows are also known as records.

Relational model

A model that uses tables to store data and manage the relationship between
tables.

Relational database management system

A software system that manages data in a database and is based on the
relational model. DBMSs have several components described in detail in
Chapter 1.

SQL

A query language that interacts with a DBMS. SQL is a set of statements to
manage databases, tables, and data.

Constraints

Restrictions or limitations on tables and attributes. For example, a wine can be
produced only by one winery, an order for wine can't exist if it isn't associated
with a customer, having a name attribute could be mandatory for a customer.

Primary key

One or more attributes that contain values that uniquely identify each row. For
example, a customer table might have the primary key of cust ID. The cust
ID attribute is then assigned a unique value for each customer. A primary key is
a constraint of most tables.

Index

A data structure used for fast access to rows in a table. An index is usually built
for the primary key of each table and can then be used to quickly find a
particular row. Indexes are also defined and built for other attributes when those
attributes are frequently used in queries.

Entity-relationship modeling

A technique used to describe the real-world data in terms of entities, attributes,
and relationships. This is discussed in Appendix C.

Normalized database

A correctly designed database that is created from an ER model. There are
different types or levels of normalization, and a third-normal form database is
generally regarded as being an acceptably designed relational database. We
discuss normalization in Appendix C.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

3.2 Quick Start Guide

This section is a quick start guide to loading the sample winestore database and
understanding the design of the winestore database that is used in examples
throughout this book.

3.2.1 Loading the Winestore Database

A local copy of the winestore database is required to test the examples in this and
later chapters. MySQL must be installed and configured before the winestore
database can be loaded. MySQL installation instructions can be found in Appendix
A.

The steps to load the winestore database are as follows:

1. Download a copy of the winestore database from this book's web site; look for
winestore.database.tar.gz.

2. Uncompress the winestore database package in any directory by running:

gzip -d winestore.database.tar.gz

3. Untar the tape archive file by running:

tar xvf winestore.database.tar

A list of files extracted is output.

4. Check that MySQL is running using:

/usr/local/bin/mysqladmin -uroot -ppassword version

where password is the root user password. If MySQL isn't running, log in as the
Linux root user, and start the MySQL server using:

/usr/local/bin/safe_mysqld --user=mysql &

5. Run the MySQL command-line interpreter using the username and password
created when MySQL was installed, and load the winestore data. The login
name is username, and the password is password:

/usr/local/bin/mysql -uusername -ppassword < winestore.database

6. After the loading is complete—it may take a few seconds—the database can be
tested by running a query. Type the following command on one line:

/usr/local/bin/mysql -uusername -ppassword -e 'USE winestore; SELECT * FROM region;'

This should produce the list of wine regions as output:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

+-----------+---------------------+-------------+------+
| region_id | region_name | description | map |
+-----------+---------------------+-------------+------+
1	Goulburn Valley	NULL	NULL
2	Rutherglen	NULL	NULL
3	Coonawarra	NULL	NULL
4	Upper Hunter Valley	NULL	NULL
5	Lower Hunter Valley	NULL	NULL
6	Barossa Valley	NULL	NULL
7	Riverland	NULL	NULL
8	Margaret River	NULL	NULL
9	Swan Valley	NULL	NULL
+-----------+---------------------+-------------+------+

The winestore database has now been loaded and tested.

3.2.2 The Winestore Database

To complete the introduction to the winestore database, we include in this section a
summary of the entity-relationship model of the winestore and the SQL statements
that create the winestore using the MySQL DBMS. This section is included for easy
reference.

3.2.2.1 The winestore entity-relationship model

Figure 3-3 shows the completed entity-relationship model for the online winestore
derived from the system requirements listed in Chapter 1. Appendix C includes a
description of the meaning of each shape and line type used in the figure.

Figure 3-3. The winestore ER model

The winestore model can be summarized as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A customer at the online winestore purchases wines by placing one or more
orders.

Each customer has exactly one set of user details.

Each order contains one or more items.

Each item is for a specific quantity of wine at a specific price.

A wine is of a type such as "Red," "White," or "Sparkling."

A wine has a vintage year; if the same wine has two or more vintages from
different years, these are treated as two or more separate, distinct wines.

Each wine is made by one winery.

Each winery is located in one region.

Each wine has one or more grape_variety entries. For example, a wine of
wine_name "Archibald" might be made of the grape_variety entries
"Sauvignon" and "Cabernet." The order of the entries is important. For example,
a "Cabernet Sauvignon" is different from a "Sauvignon Cabernet."

Each wine may have one or more inventories.

Each inventory for a wine represents the on-hand stock of a wine that is
available at a particular cost or case_cost (a case is 12 bottles of wine). If a
wine is available at two prices, there are two inventories.

3.2.2.2 Creating the winestore with SQL

The CREATE TABLE SQL statements that build the winestore database are shown for
reference in Example 3-1.

The statements in Example 3-1 are derived from the entity-relationship model in
Figure 3-1, and the process of converting this model to CREATE TABLE statements
is described in Appendix C. An electronic copy of the statements can be found in the
winestore.database file used to create the winestore database earlier in this section.

Example 3-1. The complete winestore DDL statements

CREATE TABLE wine (
 wine_id int(5) DEFAULT '0' NOT NULL auto_increment,
 wine_name varchar(50) DEFAULT '' NOT NULL,
 winery_id int(4),
 type varchar(10) DEFAULT '' NOT NULL,
 year int(4) DEFAULT '0' NOT NULL,
 description blob,
 PRIMARY KEY (wine_id),
 KEY name (wine_name)
 KEY winery (winery_id)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 KEY winery (winery_id)
);

CREATE TABLE winery (
 winery_id int(4) DEFAULT '0' NOT NULL auto_increment,
 winery_name varchar(100) DEFAULT '' NOT NULL,
 region_id int(4),
 description blob,
 phone varchar(15),
 fax varchar(15),
 PRIMARY KEY (winery_id),
 KEY name (winery_name)
 KEY region (region_id)
);

CREATE TABLE region (
 region_id int(4) DEFAULT '0' NOT NULL auto_increment,
 region_name varchar(100) DEFAULT '' NOT NULL,
 description blob,
 map mediumblob,
 PRIMARY KEY (region_id),
 KEY region (region_name)
);

CREATE TABLE customer (
 cust_id int(5) NOT NULL auto_increment,
 surname varchar(50) NOT NULL,
 firstname varchar(50) NOT NULL,
 initial char(1),
 title varchar(10),
 addressline1 varchar(50) NOT NULL,
 addressline2 varchar(50),
 addressline3 varchar(50),
 city varchar(20) NOT NULL,
 state varchar(20),
 zipcode varchar(5),
 country varchar(20),
 phone varchar(15),
 fax varchar(15),
 email varchar(30) NOT NULL,
 birth_date date(),
 salary int(7),
 PRIMARY KEY (cust_id),
 KEY names (surname,firstname)
);

CREATE TABLE users (
 cust_id int(4) DEFAULT '0' NOT NULL,
 user_name varchar(50) DEFAULT '' NOT NULL,
 password varchar(15) DEFAULT '' NOT NULL,
 PRIMARY KEY (user_name),
 KEY password (password)
);

CREATE TABLE grape_variety (

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE TABLE grape_variety (
 variety_id int(3),
 variety_name varchar(20),
 PRIMARY KEY (variety_id),
 KEY var (variety)
);

CREATE TABLE inventory (
 wine_id int(5) DEFAULT '0' NOT NULL,
 inventory_id int(3) NOT NULL,
 on_hand int(5) NOT NULL,
 cost float(5,2) NOT NULL,
 case_cost float(5,2) NOT NULL,
 dateadded timestamp(12) DEFAULT NULL,
 PRIMARY KEY (wine_id,inventory_id)
);

CREATE TABLE orders (
 cust_id int(5) DEFAULT '0' NOT NULL,
 order_id int(5) DEFAULT '0' NOT NULL,
 date timestamp(12),
 discount float(3,1) DEFAULT '0.0',
 delivery float(4,2) DEFAULT '0.00',
 note varchar(120),
 PRIMARY KEY (cust_id,order_no)
);

CREATE TABLE items (
 cust_id int(5) DEFAULT '0' NOT NULL,
 order_id int(5) DEFAULT '0' NOT NULL,
 item_id int(3) DEFAULT '1' NOT NULL,
 wine_id int(4) DEFAULT '0' NOT NULL
 qty int(3),
 price float(5,2),
 date timestamp(12),
 PRIMARY KEY (cust_id,order_no,item_id)
);

CREATE TABLE wine_variety (
 wine_id int(5) DEFAULT '0' NOT NULL,
 variety_id int(3) DEFAULT '0' NOT NULL,
 id int(1) DEFAULT '0' NOT NULL,

 PRIMARY KEY (wine_id, variety_id)
);

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

3.3 MySQL Command Interpreter

The MySQL command interpreter is commonly used to create databases and tables
in web database applications and to test queries. Throughout the remainder of this
chapter we discuss the SQL statements for managing a database. All these
statements can be directly entered into the command interpreter and executed. The
statements can also be included in server-side PHP scripts, as discussed in later
chapters.

Once the MySQL DBMS server is running, the command interpreter can be used. The
command interpreter can be run using the following command from the shell,
assuming you've created a user hugh with a password shhh:

% /usr/local/bin/mysql -uhugh -pshhh

The shell prompt is represented here as a percentage character, %.

Running the command interpreter displays the output:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 36 to server version: 3.22.38

Type 'help' for help.

mysql>

The command interpreter displays a mysql> prompt and, after executing any
command or statement, it redisplays the prompt. For example, you might issue the
statement:

mysql> SELECT NOW();

This statement reports the time and date by producing the following output:

+---------------------+
| NOW() |
+---------------------+
| 2002-01-01 13:48:07 |
+---------------------+
1 row in set (0.00 sec)

mysql>

After running a statement, the interpreter redisplays the mysql> prompt. We discuss
the SELECT statement later in this chapter.

As with all other SQL statements, the SELECT statement ends in a semicolon. Almost

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As with all other SQL statements, the SELECT statement ends in a semicolon. Almost
all SQL command interpreters permit any amount of whitespace—spaces, tabs, or
carriage returns—in SQL statements, and they check syntax and execute statements
only after encountering a semicolon that is followed by a press of the Enter key. We
have used uppercase for the SQL statements throughout this book. However, any mix
of upper- and lowercase is equivalent.

On startup, the command interpreter encourages the use of the help command.
Typing help produces a list of commands that are native to the MySQL interpreter
and that aren't part of SQL. All non-SQL commands can be entered without the
terminating semicolon, but the semicolon can be included without causing an error.

The MySQL command interpreter allows flexible entry of commands and SQL
statements:

The up and down arrow keys allow previously entered commands and
statements to be browsed and used.

The interpreter has command completion. If you type the first few characters of
a string that has previously been entered and press the Tab key, the interpreter
automatically completes the command. For example, if wines is typed and the
Tab key pressed, the command interpreter outputs winestore, assuming the
word winestore has been previously used.

If there's more than one option that begins with the characters entered, or you
wish the strings that match the characters to be displayed, press the Tab key
twice to show all matches. You can then enter additional characters to remove
any ambiguity and press the Tab key again for command completion.

Several common statements and commands are pre-stored, including most of
the SQL keywords discussed in this chapter.

To use the default text editor to create SQL statements, enter the command
edit in the interpreter. This invokes the editor defined by the EDITOR shell
environment variable. When the editor is exited, the MySQL command
interpreter reads, parses, and runs the file created in the editor.

When the interpreter is quit and run again later, the history of commands and
statements is kept. It is still possible to scroll up using the up arrow and to
execute commands and statements that were entered earlier.

You can run commands and SQL statements without actually launching the
MySQL command interpreter. For example, to run SELECT now() from the
Linux shell, enter the following command:

mysql -ppassword -e "SELECT now();"

This is particularly useful for adding SQL commands to shell or other scripts.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

3.4 Managing Databases, Tables, and Indexes

The Data Definition Language (DDL) is the set of SQL statements used to manage a
database. In this section, we use the MySQL command interpreter to create
databases and tables using the online winestore as a case study. We also discuss
the statements that delete, alter, and drop databases and tables, as well as
statements for managing indexes.

3.4.1 Creating Databases

The CREATE DATABASE statement can create a new, empty database without any
tables or data. The following statement creates a database called winestore:

mysql> CREATE DATABASE winestore;

To work with a database, the command interpreter requires the user to be using a
database before SQL statements can be issued. Different command interpreters have
different methods for using a database and these aren't part of the SQL standard. In
the MySQL interpreter, you can issue the command:

mysql> use winestore

For the rest of this chapter, we omit the mysql> prompt from the command
examples.

3.4.2 Creating Tables

After issuing the use winestore command, you then usually issue commands to
create the tables in the database, as shown in Example 3-1. (You already created
the tables in the winestore database in Section 3.2 of this chapter). Let's look at one
of these tables, the customer table. The statement that created this table is shown in
Example 3-2.

Example 3-2. Creating the customer table with SQL

CREATE TABLE customer (
 cust_id int(5) DEFAULT '0' NOT NULL auto_increment,
 surname varchar(50) NOT NULL,
 firstname varchar(50) NOT NULL,
 initial char(1),
 title varchar(10),
 addressline1 varchar(50) NOT NULL,
 addressline2 varchar(50),
 addressline3 varchar(50),
 city varchar(20) NOT NULL,
 state varchar(20),
 zipcode varchar(5),
 country varchar(20) DEFAULT 'Australia',

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 country varchar(20) DEFAULT 'Australia',
 phone varchar(15),
 fax varchar(15),
 email varchar(30) NOT NULL,
 salary int(7),
 birth_date date(),
 PRIMARY KEY (cust_id),
 KEY names (surname,firstname)
);

The CREATE TABLE statement has three parts:

Following the CREATE TABLE statement is a free-form table name—in this case
customer.

Following an opening bracket is a list of attribute names, types, and modifiers.

After the attribute list is a list of keys; that is, information defining what attributes
satisfy the uniqueness constraints of a primary key and what attributes are to be
indexed for fast access.

A table name may contain any character except a forward slash / or a period, and the
name is usually the name of an entity created in the ER model. Attribute names may
contain any character, and there are many possible data types for attributes. Details
of selected commonly used types are shown in Table 3-1.

Table 3-1. Common SQL data types for attributes
Data type Comments

int(length) Integer; used for IDs, age, counters, etc.
float(length,decimals) Floating-point number; used for currency, measurements, etc.

timestamp(length)
Updates each time the row is modified or can be manually set. A length of
14 (the default) displays an attribute containing date and time in the
format YYYYMMDDHHMMSS. Length 12 displays YYMMDDHHMMSS, 8
displays YYYYMMDD, and 6 displays YYMMDD.

char(length) A space-padded, fixed-length text string.
varchar(length) An unpadded, variable-length text string with a specified maximum length.
blob An attribute that stores up to 64 KB of data.

For situations where the data stored is always much smaller or larger than the
maximum possible value, many attribute types have variants of tiny, small,
medium, and big. For example, int has variants smallint, mediumint, and
bigint.

Modifiers may be applied to attributes. Two common modifiers are NOT NULL—data
can't be added without this attribute having a value—and DEFAULT, which sets the
data to the value that follows when no data is supplied.

Identifier attributes—an example in the customer table is the cust_id attribute—
often have the modifier auto_increment. The auto_increment modifier
automatically writes a unique number into an attribute when no value is supplied. For
example, if you insert 10 customer rows into the customer table, you can
automatically generate a cust_id of 11 by inserting NULL (or zero) as the value for
cust_id. Only one attribute in each table can have the auto_increment modifier.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cust_id. Only one attribute in each table can have the auto_increment modifier.

All numeric attributes have optional zerofill and unsigned modifiers. The former
left-pads a value with zeros up to the size of the attribute type. The latter allows only
positive values to be stored and roughly doubles the maximum positive value that can
be stored.

Inserting NULL into a TIMESTAMP (or another date or time type) attribute stores the
current date and time. What is stored in the attribute depends on its length. For
example, if the attribute has the type TIMESTAMP(12), both the time and date are
stored in the format YYMMDDHHMMSS. If today is January 3, 2002 and time is
10:43:23, the value stored is 020103104323.

More details on attribute types and modifiers can be found in Section 7.7 of the
manual.html file distributed with MySQL.

The final component of the CREATE TABLE statement is a specification of key
constraints and indexes that are required. In Example 3-2, we specify that the
unique identifier is the cust_id attribute by adding the statement PRIMARY KEY
(cust_id). The PRIMARY KEY constraint has two restrictions: the attribute must be
defined as NOT NULL, and any value inserted must be unique. It is good practice to
explicitly state a PRIMARY KEY for all tables; determining primary keys from an ER
model is discussed in Appendix C.

We also show in our example another KEY definition; KEY is a synonym for INDEX. In
this case, we have defined a KEY names (surname, firstname) to permit fast
access to data stored in the customer table by a combination of surname and
firstname values. In many cases—without yet knowing what kinds of queries will be
made on the database—it is difficult to determine what indexes should be specified.
MySQL permits up to 16 indexes to be created on any table, but unnecessary indexes
should be avoided. Each index takes additional space, and it must be updated as the
data stored in the table is inserted, deleted, and modified. We discuss index tuning in
Section 3.10.

3.4.3 Altering Tables and Indexes

Indexes can be added or removed from a table after creation. For example, to add an
index to the customer table, you can issue the following statement:

ALTER TABLE customer ADD INDEX cities (city);

To remove an index from the customer table, use the following statement:

ALTER TABLE customer DROP INDEX names;

The ALTER TABLE statement can also be used to add, remove, and alter all other
aspects of the table, such as attributes and the primary index. We don't discuss
statements for altering the database in this book; many examples can be found in
Section 7.8 of the manual.html file that is distributed with MySQL.

3.4.4 Displaying Database Structure with SHOW

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Details of databases, tables, and indexes can be displayed with the SHOW command.
The SHOW command isn't part of the SQL standard and is MySQL-specific. It can be
used in several ways:

SHOW DATABASES

Lists the databases that are accessible by the MySQL DBMS.

SHOW TABLES

Shows the tables in the database once a database has been selected with the
use command.

SHOW COLUMNS FROM tablename

Shows the attributes, types of attributes, key information, whether NULL is
permitted, defaults, and other information for a table. For example:

SHOW COLUMNS FROM customer

shows the attribute information for the customer table. DESCRIBE table
produces the same output.

SHOW INDEX FROM tablename

Presents the details of all indexes on the table, including the PRIMARY KEY. For
example:

SHOW INDEX FROM customer

shows that there are two indexes, the primary index and the names index.

SHOW STATUS

Reports details of the MySQL DBMS performance and statistics.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

3.5 Inserting, Updating, and Deleting Data

The Data Manipulation Language (DML) encompasses all SQL statements used for
manipulating data. There are four statements that form the DML statement set:
SELECT, INSERT, DELETE, and UPDATE. We describe the last three statements in
this section. While SELECT is also part of DML, we cover it in its own section,
Section 3.6. Longer worked examples using all the statements can be found in the
section Section 3.8.

3.5.1 Inserting Data

Having created a database and the accompanying tables and indexes, the next step
is to insert data. Inserting a row of data into a table can follow two different
approaches. We illustrate both approaches by inserting the same data for a new
customer, Dimitria Marzalla.

Consider an example of the first approach using the customer table:

INSERT INTO customer
 VALUES (NULL,'Marzalla','Dimitria', 'F','Mrs',
 '171 Titshall Cl','','','St Albans','WA',
 '7608','Australia','(618)63576028','',
 'dimitria@lucaston.com','1969-11-08',35000);

In this approach a new row is created in the customer table, then the first value listed
—in this case, a NULL—is inserted into the first attribute of customer. The first
attribute of customer is cust_id and—because cust_id has the
auto_increment modifier and this is the first row—a 1 is inserted as the cust_id.
The value "Marzalla" is then inserted into the second attribute surname, "Dimitria"
into firstname, and so on. The number of values inserted must be the same as the
number of attributes in the table. To create an INSERT statement in this format, you
need to understand the ordering of attributes in the table.

The number inserted by an auto_increment modifier can be checked with the
MySQL-specific function last_insert_id(). In this example, you can check
which cust_id was created with the statement:

SELECT last_insert_id();

This statement reports:

+------------------+
| last_insert_id() |
+------------------+
| 1 |
+------------------+
1 row in set (0.00 sec)

You can see that the new row has cust_id=1. To check a value, the function should

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can see that the new row has cust_id=1. To check a value, the function should
be called immediately after inserting a new row.

When inserting data, nonnumeric attributes must be enclosed in either single or
double quotes. If a string contains single quotation marks, the string is enclosed in
double quotation marks. For example, consider the string "Steve O'Dwyer". Likewise,
strings containing double quotation marks can be enclosed in single quotation marks.
An alternative approach is to escape the quotation character by using a backslash
character; for example, consider the string 'Steve O\'Dwyer'. Numeric attributes aren't
enclosed in quotes.

The same insertion can also be performed using a second approach. Consider this
example:

INSERT INTO customer
 SET surname = 'Marzalla',
 firstname = 'Dimitria',
 initial='F',
 title='Mrs',
 addressline1='171 Titshall Cl',
 city='St Albans',
 state='WA',
 zipcode='7608',
 country='Australia',
 phone='(618)63576028',
 email='dimitria@lucaston.com',
 birthdate='1969-11-08',
 salary=35000;

In this approach, the attribute name is listed, followed by an assignment operator, "=",
and then the value to be assigned. This approach doesn't require the same number of
values as attributes, and it also allows arbitrary ordering of the attributes. cust_id
isn't inserted, and it defaults to the next available cust_id value because of the
combination of the auto_increment and DEFAULT modifiers.

The first approach can actually be varied to function in a similar way to the second by
including parenthesized attribute names before the VALUES keyword. For example,
you can create an incomplete customer row with:

INSERT INTO customer (surname,city) VALUES ('Smith','Sale');

Other approaches to loading data using a similar syntax are also possible. A popular
variation is to insert data into a table from another table using a query, and it's
discussed briefly in Section 3.8.3.

3.5.1.1 Bulk loading into a database

Another data insertion method is to bulk-load data from a formatted ASCII text file. A
formatted text file is usually a comma-delimited (also known as a comma-separated)
or tab-delimited file, where the values to be inserted are separated by comma or tab
characters, respectively.

The statement LOAD DATA INFILE can bulk-load data from a file. This is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The statement LOAD DATA INFILE can bulk-load data from a file. This is
nonstandard SQL. For example, consider the following customer information that has
been exported from a legacy spreadsheet program:

0,"Marzalla","Dimitria","F","Mrs","171 Titshall Cl","","","St
Albans","WA","7608","Australia", "(618)63576028","","dimitria@lucaston.com",
"1969-08-11","35000"

The data might be saved in the file customer.cdf. Note that the attribute values are in
the same order as the attributes in the winestore customer table; most export wizards
in spreadsheet software allow data to be reorganized as it is exported. Also, note that
the first value is 0 and, because this value will be inserted into the cust_id attribute,
the auto_increment feature assigns the next available cust_id value; inserting 0
has the same effect as inserting NULL.

The file can be inserted into the customer table using the statement:

LOAD DATA INFILE 'customer.cdf' INTO TABLE customer
 FIELDS TERMINATED BY ',' ENCLOSED BY '"'
 LINES TERMINATED BY '\n';

If quotation marks form part of an attribute, they must be escaped using backslashes:

"RMB 123, \"The Lofty Heights\""

Spreadsheet software often automatically escapes quotation marks in strings when
data is exported.

3.5.1.2 Transferring data between databases and DBMSs

For many databases—particularly those in which legacy data is being redeployed into
a DBMS—most of the data insertion occurs as the database is created. A common
approach is to create a script that contains SQL statements that can be repeatedly
replayed; it's the approach we used to create the winestore database. This has the
advantage that the script can be run on many different DBMSs, and it makes
migration easier than with the LOAD DATA INFILE approach.

To remove and partially rebuild the winestore database, we might author a script
containing the statements shown in Example 3-3.

Example 3-3. Script for creating and inserting winestore data

DROP DATABASE winestore;
CREATE DATABASE winestore;
use winestore

CREATE TABLE customer (
 cust_id int(5) NOT NULL auto_increment,
 surname varchar(50) NOT NULL,
 firstname varchar(50) NOT NULL,
 initial char(1),
 title varchar(10),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 title varchar(10),
 addressline1 varchar(50) NOT NULL,
 addressline2 varchar(50),
 addressline3 varchar(50),
 city varchar(20) NOT NULL,
 state varchar(20),
 zipcode varchar(5),
 country varchar(20),
 phone varchar(15),
 fax varchar(15),
 email varchar(30) NOT NULL,
 birthdate date(),
 salary int(7),
 PRIMARY KEY (cust_id),
 KEY names (surname,firstname)
);

INSERT INTO customer VALUES (NULL,'Marzalla','Dimitria', 'F','Mrs','171 Titshall
Ccl','','','St Albans','WA', '7608','Australia','(618)63576028','',
com','1969-08-11',35000);

INSERT INTO customer VALUES (NULL,'LaTrobe','Anthony', 'Y','Mr','125 Barneshaw
St','','','Westleigh','WA','865
5','Australia','(618)73788578','(618)73786674', 'Anthony@Karumba.com','1952-03-10',54000);

INSERT INTO customer VALUES (NULL,'Fong','Nicholas','K','Mr','99 Kinsala Pl',
'','','Stormlea','NSW','6400','Australia',
'(612)85534220','(612)85535180','Nicholas@Torquay.com',
'1942-06-29',170000);

INSERT INTO customer VALUES (NULL,'Stribling','James','','Mr','6 Woodburne Pl','','',
'Legana','QLD','6377','Australia','(617)66603522', '','James@Murrabit.com', '1943-11-
22',25000);

The script in Example 3-3, which has been saved to a file winestore.database, can
be replayed using the MySQL command and a shell redirection:

% mysql -ppassword < winestore.database

This script runs the command interpreter with the statements and commands listed in
the file winestore.database.

Data that is already managed in a MySQL database can be extracted using the utility
mysqldump:

% mysqldump -ppassword winestore > winestore.database

The statements to DROP, CREATE, and use the database can be manually added with
an editor to permit replaying of the script. We manually added the first three lines of
Example 3-3 after using mysqldump to create the script.

To use the script to create a duplicate database, winestore2, for testing, you can
change the first three lines of Example 3-3 to:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DROP DATABASE winestore2;
CREATE DATABASE winestore2;

use winestore2

3.5.2 Deleting Data

There is an important distinction between dropping and deleting in SQL. DROP is used
to remove tables or databases; DELETE is used to remove data.

The statement:

DELETE FROM customer;

deletes all data in the customer table but doesn't remove the table. In contrast,
dropping the table removes the data and the table.

A DELETE statement with a WHERE clause can remove specific rows; WHERE clauses
are frequently used in querying, and they are explained later in Section 3.8.3.
Consider a simple example:

DELETE FROM customer WHERE cust_id = 1;

This deletes the customer with cust_id=1. Consider another example:

DELETE FROM customer WHERE surname = 'Smith';

This removes all rows for customers with the surname Smith.

3.5.3 Updating Data

Data can be updated using a similar syntax to that of the INSERT statement.
Consider an example:

UPDATE customer SET email = lower(email);

This replaces the string values of all email attributes with the same string in
lowercase. The function lower() is one of many functions discussed later in
Section 3.9.

The UPDATE statement is also often used with the WHERE clause. For example:

UPDATE customer SET title = 'Dr' WHERE cust_id = 7;

This updates the title attribute of customer #7. Consider a second example:

UPDATE customer SET zipcode = '3001' WHERE city = 'Melbourne';

This updates the zipcode of all rows with a city value Melbourne.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

3.6 Querying with SQL SELECT

We begin this section by covering the basics of using the SELECT statement. We then
introduce the WHERE clause for selecting data that matches a condition. The section
concludes with an introduction to the more advanced features of SELECT statements.

3.6.1 Basic Querying

The SELECT statement is used to query a database and for all output operations in
SQL. Consider an example query:

SELECT surname, firstname FROM customer;

This outputs the values of the attributes surname and firstname from all rows, or
records, in the customer table. Assuming we previously inserted four rows when we
created the winestore database, the output from the MySQL command interpreter is:

+-----------+-----------+
| surname | firstname |
+-----------+-----------+
Marzalla	Dimitria
LaTrobe	Anthony
Fong	Nicholas
Stribling	James
+-----------+-----------+
4 rows in set (0.04 sec)

Any attributes of a table may be listed in a SELECT statement by separating each with
a comma. If all attributes are required, the shortcut of an asterisk character (*) can
be used. Consider the statement:

SELECT * FROM region;

This outputs all the data from the table region:

+-----------+---------------------+-------------+------+
| region_id | region_name | description | map |
+-----------+---------------------+-------------+------+
1	Goulburn Valley	NULL	NULL
2	Rutherglen	NULL	NULL
3	Coonawarra	NULL	NULL
4	Upper Hunter Valley	NULL	NULL
+-----------+---------------------+-------------+------+
4 rows in set (0.07 sec)

SELECT statements can also output data that isn't from a database. Consider the
following example:

SELECT curtime();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT curtime();

This example runs a function that displays the current time:

+-----------+
| curtime() |
+-----------+
| 08:41:50 |
+-----------+
1 row in set (0.02 sec)

The SELECT statement can even be used as a simple calculator, using the
mathematical functions described in the later section Section 3.9:

SELECT log(100)*4*pi();

This outputs:

+-----------------+
| log(100)*4*pi() |
+-----------------+
| 57.870275 |
+-----------------+
1 row in set (0.19 sec)

3.6.2 WHERE Clauses

A WHERE clause is used as part of most SELECT queries; it limits retrieval to those
rows that match a condition.

Consider this grape-growing region table containing the details of nine regions:

SELECT * from region;
+-----------+---------------------+-------------+------+
| region_id | region_name | description | map |
+-----------+---------------------+-------------+------+
1	Goulburn Valley	NULL	NULL
2	Rutherglen	NULL	NULL
3	Coonawarra	NULL	NULL
4	Upper Hunter Valley	NULL	NULL
5	Lower Hunter Valley	NULL	NULL
6	Barossa Valley	NULL	NULL
7	Riverland	NULL	NULL
8	Margaret River	NULL	NULL
9	Swan Valley	NULL	NULL
+-----------+---------------------+-------------+------+
9 rows in set (0.00 sec)

It is possible to select only a few rows with a SELECT statement by adding a WHERE
clause. For example, to show only the first three regions, you can issue the following
statement:

SELECT * FROM region
 WHERE region_id<=3;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHERE region_id<=3;

This outputs all attributes for only the first three region rows:

+-----------+------------------+-------------+------+
| region_id | region_name | description | map |
+-----------+------------------+-------------+------+
1	Goulburn Valley	NULL	NULL
2	Rutherglen	NULL	NULL
3	Coonawarra	NULL	NULL
+-----------+------------------+-------------+------+
3 rows in set (0.00 sec)

You can combine the attribute and row restrictions and select only the region_name
and region_id attributes for the first three regions:

SELECT region_id, region_name FROM region
 WHERE region_id <= 3;
+-----------+------------------+
| region_id | region_name |
+-----------+------------------+
1	Goulburn Valley
2	Rutherglen
3	Coonawarra
+-----------+------------------+
3 rows in set (0.00 sec)

More complex WHERE clauses use the Boolean operators AND and OR, as well as the
functions described later in Section 3.9. The Boolean operators AND and OR have
the same function as the PHP && and || operators introduced in Chapter 2.

Consider an example query that uses the Boolean operators:

SELECT * FROM customer
 WHERE surname='Marzalla' AND
 firstname='Dimitria';

This retrieves rows that match both criteria, that is, those customers with a surname
Marzalla and a firstname Dimitria.

Consider a more complex example:

SELECT cust_id FROM customer
 WHERE (surname='Marzalla' AND firstname LIKE 'M%')
 OR email='john@lucaston.com';

This finds rows with either the surname Marzalla and a firstname beginning with
M, or customers with the email address john@lucaston.com. The OR operator isn't
exclusive, so an answer can have an email of john@lucaston.com, a surname of
Marzalla, and a firstname beginning with M. This query, when run on the winestore
database, returns:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

+---------+
| cust_id |
+---------+
| 440 |
| 493 |
+---------+
2 rows in set (0.01 sec)

SELECT queries are often sophisticated and a long WHERE clause may include many
AND and OR operators. More complex examples of queries are shown in the later
section Section 3.7.

The WHERE clause is also a common component of UPDATE and DELETE statements,
and we have shown simple examples of using WHERE with these earlier in this
chapter. Consider another example of an UPDATE with a WHERE clause:

UPDATE wine SET winery_id = 298 WHERE winery_id = 299;

In this case, for wines that are made by the winery with winery_id=299, the
winery_id is changed to winery_id=298.

The WHERE clause can be used similarly in a DELETE. Consider an example:

DELETE FROM wine WHERE winery_id = 299;

This removes only selected rows based on a condition; here the wines made by the
winery with winery_id=299 are deleted.

3.6.3 Sorting and Grouping Output

We will now discuss techniques to manage the order and grouping of the output.

3.6.3.1 ORDER BY

The ORDER BY clause sorts the data after the query has been evaluated. Consider
an example:

SELECT surname, firstname FROM customer
 WHERE title='Mr'
 AND city = 'Portsea'
 ORDER by surname;

This query finds all customers who have a title Mr and live in Portsea. It then
presents the results sorted alphabetically by ascending surname:

+-----------+-----------+
| surname | firstname |
+-----------+-----------+
Dalion	Anthony
Galti	Jim
Keisling	Mark
Leramonth	James

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Leramonth	James
Mellili	Derryn
Mockridge	James
Nancarral	Joshua
Ritterman	James
+-----------+-----------+
8 rows in set (0.01 sec)

Sorting can be on multiple attributes. For example:

SELECT surname, firstname, initial FROM customer
 WHERE zipcode='3001' OR
 zipcode='3000'
 ORDER BY surname, firstname, initial;

This presents a list of customers in areas with zipcode='3000' or
zipcode='3001', sorted first by ascending surname, then (for those customers
with the same surname) by firstname, and (for those customers with the same
surname and first name), by initial. So, for example, the output may be:

+-----------+-----------+---------+
| surname | firstname | initial |
+-----------+-----------+---------+
Keisling	Belinda	C
Leramonth	Hugh	D
Leramonth	Joshua	H
Leramonth	Joshua	R
Young	Bob	A
+-----------+-----------+---------+
5 rows in set (0.11 sec)

By default, the ORDER BY clause sorts in ascending order, or ASC. To sort in reverse
or descending order, DESC can be used. Consider an example:

SELECT * FROM customer
 WHERE city='Melbourne'
 ORDER BY surname DESC;

3.6.3.2 GROUP BY

The GROUP BY clause is different from ORDER BY because it doesn't sort the data for
output. Instead, it sorts the data early in the query process, for the purpose of
grouping or aggregation. An example shows the difference:

SELECT city, COUNT(*) FROM customer
 GROUP BY city;

This query outputs a sorted list of cities and, for each city, the COUNT of the number of
customers who live in that city. The effect of COUNT(*) is to count the number of
rows per group. In this example, it doesn't matter what is counted; COUNT(surname)
has exactly the same result.

Here are the first few lines output by the query:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

+--------------+----------+
| city | COUNT(*) |
+--------------+----------+
Alexandra	14
Armidale	7
Athlone	9
Bauple	6
Belmont	11
Bentley	10
Berala	9
Broadmeadows	11

The query aggregates or groups all the rows for each city into sets, and the
COUNT(*) operation counts the number in each set. So, for example, there are 14
customers who live in Alexandra.

The GROUP BY clause can find different properties of the aggregated rows. Here's an
example:

SELECT city, MAX(salary) FROM customer
 GROUP BY city;

This query first groups the rows by city and then shows the maximum salary in each
city. The first few rows of the output are as follows:

+-----------+-------------+
| city | MAX(salary) |
+-----------+-------------+
Alexandra	109000
Armidale	75000
Athlone	84000
Bauple	33000

The GROUP BY clause should be used only when the query is
designed to find a characteristic of a group of rows, not the
details of individual rows.

There are several functions that can be used in aggregation with the GROUP BY
clause. Five particularly useful functions are:

AVG()

Finds the average value of a numeric attribute in a set

MIN()

Finds a minimum value of a string or numeric attribute in a set

MAX()

Finds a maximum value of a string or numeric attribute in a set

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SUM()

Finds the sum total of a numeric attribute

COUNT()

Counts the number of rows in a set

The SQL standard places a constraint on the GROUP BY clause that MySQL doesn't
enforce. In the standard, all attributes that are selected (i.e., appear after the SELECT
statement) must appear in the GROUP BY clause. Most examples in this chapter don't
meet this unnecessary constraint of the SQL standard.

3.6.3.3 HAVING

The HAVING clause permits conditional aggregation of data into groups. For example,
consider the following query:

SELECT city, count(*), max(salary)
 FROM customer
 GROUP BY city
 HAVING count(*) > 10;

The query groups rows by city, but only for cities that have more than 10 resident
customers. For those groups, the city, count() of customers, and maximum
salary of a customer in that city is output. Cities with less than 10 customers are
omitted from the result set. The first few rows of the output are as follows:

+--------------+----------+-------------+
| city | count(*) | max(salary) |
+--------------+----------+-------------+
Alexandra	14	109000
Belmont	11	71000
Broadmeadows	11	51000
Doveton	13	77000
Eleker	11	97000
Gray	12	77000

The HAVING clause must contain an attribute or expression from the SELECT clause.

The HAVING clause is used exclusively with the GROUP BY
clause. It is slow and should never be used instead of a WHERE
clause.

3.6.3.4 DISTINCT

The DISTINCT operator presents only one example of each row from a query.
Consider an example:

SELECT DISTINCT surname FROM customer;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT DISTINCT surname FROM customer;

This shows one example of each different customer surname in the customer table.
This example has exactly the same effect as:

SELECT surname FROM customer GROUP BY surname;

The DISTINCT clause is usually slow to run, much like the GROUP BY clause. We
discuss how indexes and query optimization can speed queries later in this chapter.

3.6.4 Limiting Result Sets in MySQL

An additional operator is available in MySQL that limits the size of the result sets. For
example, the following query returns only the first five rows from the wine table:

SELECT * FROM wine LIMIT 5;

This saves query evaluation time and reduces the size of the result set that must be
buffered by the DBMS. The LIMIT operator is MySQL-specific.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

3.7 Join Queries

A join query is a querying technique that matches rows from two or more tables based
on a join condition in a WHERE clause and outputs only those rows that meet the
condition. As part of the process of converting the winestore entity-relationship model
to SQL statements, we have included the attributes required in any practical join
condition.

To understand which tables can be joined in the winestore database, and how the
joins are processed, it is helpful to have a copy of the ER model at hand.

3.7.1 Beware of the Cartesian Product

Oddly, the easiest way to introduce join queries is to discuss what not to do. Consider
this query, which we might intuitively, but wrongly, use to find all the wineries in a
region:

SELECT winery_name,region_name FROM winery, region;

This query produces—in part—the following results:

+-------------------------------+-------------+
| winery_name | region_name |
+-------------------------------+-------------+
Ryan Ridge Winery	Victoria
Macdonald Creek Premium Wines	Victoria
Davie's	Victoria
Porkenberger Brook Vineyard	Victoria
Rowley Hill Vineyard	Victoria

The impression here is that, for example, Ryan Ridge Winery is located in the Victoria
region. This might not be the case. Why? First, you can use the techniques covered
so far in this chapter to check which region Ryan Ridge Winery is located in:

SELECT region_id FROM winery
 WHERE winery_name='Ryan Ridge Winery';

The result is region_id=2.

Now query the region table to find the name of region_id=2 using:

SELECT region_name FROM region
 WHERE region_id=2;

The region_name is South Australia. So, Ryan Ridge Winery isn't in Victoria at all!

What happened in the first attempt at a join query? The technical answer is that you
just evaluated a cartesian product; that is, you produced as output all the possible
combinations of wineries and regions. These odd results can be seen if you add an
ORDER BY clause to the original query:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ORDER BY clause to the original query:

SELECT winery_name, region_name FROM winery, region
 ORDER BY winery_name, region_name;

Recall that the ORDER BY clause sorts the results after the query has been evaluated;
it has no effect on which rows are returned from the query. Here is the first part of the
result of the query with the ORDER BY clause:

+----------------------+-------------------+
| winery_name | region_name |
+----------------------+-------------------+
Anderson Creek Wines	New South Wales
Anderson Creek Wines	South Australia
Anderson Creek Wines	Victoria
Anderson Creek Wines	Western Australia
Anderson Group	New South Wales
Anderson Group	South Australia
Anderson Group	Victoria
Anderson Group	Western Australia

The query produces all possible combinations of the four region names and 300
wineries in the sample database! In fact, the size of the output can be accurately
calculated as the total number of rows in the first table multiplied by the total rows in
the second table. In this case, the output is 4 x 300 = 1,200 rows.

3.7.2 Elementary Natural Joins

A cartesian product isn't the join we want. Instead, we want to limit the results to only
the sensible rows, where the winery is actually located in the region. From a database
perspective, we want only rows in which the region_id in the winery table matches
the corresponding region_id in the region table. This is a natural join.[1]

[1] It isn't quite true to say that the joins described here are natural joins. A true natural join doesn't require you to
specify the join condition, because "natural" implies that the system figures this out itself. So, a real natural join doesn't
need the WHERE clause; one is automatically included "behind the scenes." The joins described throughout this
chapter are actually called inner joins, but the results are identical to a those of a natural join.

Consider a revised example using a natural join:

SELECT winery_name, region_name
 FROM winery, region
 WHERE winery.region_id = region.region_id
 ORDER BY winery_name;

An ORDER BY clause has been added to sort the results by winery_name but this
doesn't affect the join. This query produces—in part—the following sensible results:

+----------------------+-------------------+
| winery_name | region_name |
+----------------------+-------------------+
Anderson Creek Wines	Western Australia
Anderson Group	New South Wales
Beard	South Australia
Beard and Sons	Western Australia
Beard Brook	New South Wales

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

| Beard Brook | New South Wales |

Several features are shown in this first successful natural join:

The FROM clause contains more than one table name. In this example, SELECT
retrieves rows from the tables winery and region.

Attributes in the WHERE clause are specified using both the table name and
attribute name, separated by a period. This usually disambiguates uses of the
same attribute name in different tables.

So, for example, region_id in the region table and region_id in the winery
table are disambiguated as region.region_id and winery.region_id.
This procedure can also be used for clarity in queries, even if it isn't required. It
can be used in all parts of the query, not just the WHERE clause.

The WHERE clause includes a join clause that matches rows between the
multiple tables. In this example, the output is reduced to those rows where
wineries and regions have matching region_id attributes, resulting in a list of
all wineries and which region they are located in. This is the key to joining two or
more tables to produce sensible results.

3.7.2.1 Examples

The natural join can be used in many other examples in the winestore. Consider
another example that finds all the wines made by all the wineries:

SELECT winery_name, wine_name, type
 FROM winery, wine WHERE
 wine.winery_id = winery.winery_id;

This query finds all wines made by wineries through a natural join of the winery and
wine tables using the winery_id attribute. The result is a large table of the 1,028
wines stocked at the winestore, their types, and the relevant wineries.

You can extend this query to produce a list of wines made by a specific winery or
group of wineries. To find all wines made by wineries with a name beginning with
Borg, use:

SELECT winery_name, wine_name, type
 FROM winery, wine WHERE
 wine.winery_id = winery.winery_id AND
 winery.winery_name LIKE 'Borg%';

This example extends the previous example by producing not all natural join pairs of
wines and wineries, but only those for the winery or wineries beginning with Borg. The
LIKE clause is covered later, in Section 3.9.

Here are two more example join queries:

To find the name of the region Ryan Ridge Winery is situated in:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT region.region_name FROM region,winery
 WHERE winery.region_id=region.region_id AND
 winery.winery_name='Ryan Ridge Winery';

To find which winery makes Curry Hill Red:

SELECT winery.winery_name FROM winery, wine
 WHERE wine.winery_id=winery.winery_id AND
 wine.wine_name='Curry Hill Red';

3.7.2.2 Table aliases in SQL queries

To save typing and add additional functionality, table aliases are sometimes used in
queries. Consider an example that finds all inventory details of wine #183:

SELECT * FROM inventory i, wine w
WHERE i.wine_id = 183 AND
 i.wine_id = w.wine_id;

In this query, the FROM clause specifies aliases for the table names. The alias
inventory i means than the inventory table can be referred to as i elsewhere in
the query. For example, i.wine_id is the same as inventory.wine_id. This
saves typing in this query.

Aliases are powerful for complex queries that need to use the same table twice but in
different ways. For example, to find any two customers with the same surname, you
can write the query:

SELECT c1.cust_id, c2.cust_id FROM
 customer c1, customer c2 WHERE
 c1.surname = c2.surname AND
 c1.cust_id != c2.cust_id;

The final clause, c1.cust_id!=c2.cust_id, is essential; without it, all customers
are reported as answers. This occurs because all customers are rows in tables c1
and c2 and, for example, a customer with cust_id=1 in table c1 has—of course—
the same surname as the customer with cust_id=1 in table c2.

3.7.2.3 Using DISTINCT in joins

The next join example uses the DISTINCT operator to find red wines that cost less
than $10. Wines can have more than one inventory row, and the inventory rows for
the same wine can have the same per-bottle cost. The DISTINCT operator shows
each wine_name and cost pair once by removing any duplicates. To find which red
wines cost less than $10, use:

SELECT DISTINCT wine_name, cost
 FROM wine,inventory WHERE
 wine.wine_id=inventory.wine_id AND
 inventory.cost<10 AND
 UPPER(wine.type)='RED';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 UPPER(wine.type)='RED';

Here are two examples that use DISTINCT to show only one matching answer:

To find which cities customers live in:

SELECT DISTINCT city FROM customer;

To find which customers have ordered wines:

SELECT DISTINCT surname,firstname FROM customer,orders
 WHERE customer.cust_id = orders.cust_id
 ORDER BY surname,firstname;

3.7.3 Joins with More than Two Tables

Queries can join more than two tables. In the next example, the query finds all details
of each item from each order by a particular customer, customer #2. The example
also illustrates how frequently the Boolean operators AND and OR are used:

SELECT * FROM customer, orders, items WHERE
 customer.cust_id = orders.cust_id AND
 orders.order_id = items.order_id AND
 orders.cust_id = items.cust_id AND
 customer.cust_id = 2;

In this query, the natural join is between three tables, customer, orders, and items,
and the rows selected are those in which the cust_id is the same for all three
tables, the cust_id is 2, and the order_id is the same in the orders and items
tables.

If you remove the cust_id=2 clause, the query outputs all items in all orders by all
customers. This is a large result set, but still a sensible one that is much smaller than
the cartesian product!

Here are two more examples that join three tables:

To find which wines are made in the Margaret River region:

SELECT wine_name FROM wine,winery,region
 WHERE wine.winery_id=winery.winery_id AND
 winery.region_id=region.region_id AND
 region.region_name='Margaret River';

To find which region contains the winery that makes the Red River Red wine:

SELECT region_name FROM wine,winery,region
 WHERE wine.winery_id=winery.winery_id AND
 winery.region_id=region.region_id AND
 wine.wine_name='Red River Red';

Extending to four or more tables generalizes the approach further. To find the details
of customers who have purchased wines from Buonopane Wines, use:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT DISTINCT customer.cust_id, customer.surname, customer.firstname
 FROM customer, winery, wine, items
 WHERE customer.cust_id=items.cust_id AND
 items.wine_id=wine.wine_id AND
 wine.winery_id=winery.winery_id AND
 winery.winery_name='Buonopane Wines'
 ORDER BY customer.surname, customer.firstname;

This last query is the most complex so far and contains a four-step process. The
easiest way to understand a query is usually to start with the WHERE clause and work
toward the SELECT clause:

1. The WHERE clause restricts the winery rows to those that bear the name
Buonopane Wines.

2. The resultant winery rows—there is probably only one winery called Buonopane
Wines—are joined with wine to find all wines made by Buonopane Wines.

3. The wines made by Buonopane Wines are joined with the items that have been
purchased.

4. The purchases of Buonopane Wines are joined with the customer rows of the
customers who have purchased the wine. You can leave out the orders table,
because the items table contains a cust_id for the join; if you need the order
number, the discount applied, or another orders attribute, the orders table needs
to be included in the query.

5. The result is the details of customers who have purchased Buonopane Wines.
DISTINCT is used to show each customer only once. ORDER BY sorts the
customer rows into telephone directory order.

Designing a query like this is a step-by-step process. We began by testing a query to
find the winery_id of wineries with the name Buonopane Wines. Then, after testing
the query and checking the result, we progressively added additional tables to the
FROM clause and join conditions. Finally, we added the ORDER BY clause.

The next example uses three tables but queries the complex many-to-many
relationship in the winestore that exists between the wines and grape_variety tables
via the wine_variety table. As outlined in the system requirements in Chapter 1, a
wine can have one or more grape varieties and these are listed in a specific order
(e.g., Cabernet, then Sauvignon). From the other perspective, a grape variety such as
Cabernet can be in hundreds of different wines. The relationship is managed by
creating an intermediate table between grape_variety and wine called wine_variety.

Here is the example query that joins all three tables. To find what grape varieties are
in wine #1004, use:

SELECT variety FROM grape_variety, wine_variety, wine
 WHERE wine.wine_id=wine_variety.wine_id AND
 wine_variety.variety_id=grape_variety.variety_id AND
 wine.wine_id=1004
 ORDER BY wine_variety.id;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ORDER BY wine_variety.id;

The result of the query is:

+-----------+
| variety |
+-----------+
| Cabernet |
| Sauvignon |
+-----------+
2 rows in set (0.00 sec)

The join condition is the same as any three-table query. The only significant
difference is the ORDER BY clause that presents the results in the same order they
were added to the wine_variety table (assuming the first variety gets ID=1, the
second ID=2, and so on).

We've now covered as much complex querying in SQL as we need to in this chapter.
If you'd like to learn more, see the pointers to resources included in Appendix E.
SQL examples in web database applications can be found throughout Chapter 4 to
Chapter 13.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

3.8 Modifying the Database

In this section, we consider simple examples of writing data to databases. Multiple
users writing data, how to manage locking of databases, and more complex
transactions with the MySQL DBMS are discussed in Chapter 6.

3.8.1 Adding a New Wine to the Winestore

To illustrate a write transaction with the winestore database, consider an example of
inserting a new wine. This process can be performed with the MySQL command-line
interpreter. Only one user is interacting with the DBMS in this example.

Let's suppose that 24 bottles of a new wine, a Curry Hill Cabernet Merlot 1996 made
by De Morton Hill wineries, have arrived, and you wish to add a row to the database
for the new wine.

The addition has several steps, the first of which is an INSERT INTO statement to
create the basic row for the wine in the wine table:

INSERT INTO wine
 SET wine_name='Curry Hill',
 type='Red',
 year=1996,
 description='A beautiful mature wine. Smooth to taste
 Ideal with red meat.';

This creates a new row and sets the basic attributes. The wine_id is set to the next
available value because of the auto_increment and DEFAULT modifiers. The
remaining attributes to insert require further querying and then subsequent updates.

The second step is to set the winery_id for the new wine. We need to search for
the De Morton Hill winery to identify the winery_id:

SELECT winery_id FROM winery
 WHERE winery_name='De Morton Hill';

The result returned is:

+-----------+
| winery_id |
+-----------+
| 221 |
+-----------+
1 row in set (0.00 sec)

We can now update the new wine row to set the winery_id=221. However, which
row to update? An easy way to find the wine_id of the new wine row is to use the
built-in function last_insert_id(). As discussed in the earlier section Section
3.5, this function returns the number created by the most recent auto_increment
modifier:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SELECT last_insert_id();

This returns the wine_id of the inserted row:

+------------------+
| last_insert_id() |
+------------------+
| 1029 |
+------------------+
1 row in set (0.00 sec)

You can now issue the UPDATE statement:

UPDATE wine SET winery_id = 221
 WHERE wine_id = 1029;

The third step is to set the variety information for the new wine. We need the
variety_id values for Cabernet and Merlot. These can be found with a simple
query:

SELECT * FROM grape_variety;

In part, the following results are produced:

+------------+------------+
| variety_id | variety |
+------------+------------+
1	Riesling
2	Chardonnay
3	Sauvignon
4	Blanc
5	Semillon
6	Pinot
7	Gris
8	Verdelho
9	Grenache
10	Noir
11	Cabernet
12	Shiraz
13	Merlot

Cabernet has a variety_id=11 and Merlot a variety_id=13. We can now insert
two rows into the wine_variety table. Because Cabernet is the first variety, set its
ID=1, and ID=2 for Merlot:

INSERT INTO wine_variety
 SET wine_id=1029, variety_id=11, id=1;
INSERT INTO wine_variety
 SET wine_id=1029, variety_id=13, id=2;

The final step is to insert the first inventory row into the inventory table for this wine.
There are 24 bottles, with a per-bottle price of $14.95 and per-case price of $171.99:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

INSERT INTO inventory VALUES (1029, 1, 24, 14.95, 171.99);

We've now completed the process of inserting rows into other tables in the winestore
is similar. Adding data to the winery, region, inventory, and orders tables follows the
same approach. Insertion of rows into the customer and grape_variety tables is
simpler because there are no attributes that require lookups in other tables.

3.8.2 Buying a Bottle of Wine from the Winestore

In this example, we consider the steps required to buy a bottle of wine. Again,
assume that there is only one user reading or writing data with the DBMS. The
complete process—implemented as part of the winestore web database application—
is described in Chapter 12.

To motivate this example, consider a customer, Dimitria Marzalla, who has added two
bottles of the new De Morton Wines Curry Hill Cabernet Merlot 1996 to her shopping
cart and now wishes to purchase the wines.

Before showing you how the purchase is finalized, let's examine the information
recorded in the user shopping cart and what we know about the user.

First, we know that cust_id=1 is the ID for this customer and that the wine being
purchased has wine_id=1029. This associated information has been previously
determined in the process of collecting data for the purchase in the online winestore.

Second, we need to consider how the shopping cart is managed in the winestore. We
use the orders and items tables to manage the shopping cart for each user. When a
user adds the first item to her shopping cart, a new row is created in the orders table
with a dummy cust_id=-1 and the next available order_id for this dummy
customer. We use a dummy customer number because customers don't need to log
in to add wine to their shopping carts, and because finalized orders are distinguished
by having the cust_id of a customer who is a member.

For this example, assume that the shopping cart has order_id=354, and the
dummy customer is cust_id=-1. Also assume that the row in the items table that
represents the wine in the shopping cart has a cust_id=-1, an order_id=354, an
item_id=1, a wine_id=1029, a quantity qty=2, and the price information for the
wine. The price is $14.95 per bottle.

Before finalizing an order, we need to determine if there are two bottles of the wine
available. A wine can be added to the shopping cart if there is any stock available, but
this doesn't necessarily mean that there is more than one bottle left or that another
user has not purchased the wine in the meantime. If there is sufficient wine available
to finalize an order, we reduce the on-hand stock by two bottles. Checking if there are
two bottles available can be done with the following query:

SELECT SUM(on_hand)
 FROM inventory
 WHERE wine_id=1029;

A GROUP BY wine_id is unnecessary in this case because only one wine is selected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A GROUP BY wine_id is unnecessary in this case because only one wine is selected.

Assuming there are more than two bottles available, we need to reduce the on-hand
stock, beginning with the oldest inventory; this was one of the system requirements
defined in Chapter 1. There are several ways to find the oldest inventory and the
wine per-bottle price. A simple technique is to inspect the inventories:

SELECT inventory_id,cost,on_hand
 FROM inventory
 WHERE wine_id=1029
 ORDER BY date_added;

The oldest (and only) inventory_id=1, and there is an on-hand stock of 24 bottles.
We then reduce the on-hand stock by two:

UPDATE inventory
 SET on_hand = on_hand - 2
 WHERE wine_id=1029 AND inventory_id=1;

If the on-hand stock in an inventory row is reduced to zero—which isn't so in this case
—we then remove that row:

DELETE FROM inventory
 WHERE wine_id = 1029 AND inventory_id=1;

Other possibilities may also occur, such as having to manipulate two inventories
because the oldest inventory has only one bottle left. These possibilities are
discussed in further detail in Chapter 12.

Having reserved two bottles of the wine for shipping, we can finalize the order for the
customer. To do so, we need to store the details of the shopping cart entries in the
orders and items tables. As discussed previously, by tracking the shopping cart of this
user we know it has the order_id=354 for the dummy cust_id=-1. We also need
to know how many previous orders this customer has made:

SELECT max(order_id) FROM orders WHERE customer_id=1;

If you find the customer previously made two orders, you update the shopping cart
order row so that it is now the third order for this customer. Use this statement:

UPDATE orders SET cust_id = 1,
 order_id = 3,
 date = NULL,
 delivery = 7.95,
 discount = 0
 WHERE cust_id = -1 AND order_id = 354;

The shopping cart entry is now a customer order. date=NULL sets the date attribute
to be the current system time and date. The delivery cost is $7.95, and there is no
discount on the order.

To complete the order, we also update the related items row in the shopping cart,
which contains the two bottles of wine. Use the following UPDATE statement:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

which contains the two bottles of wine. Use the following UPDATE statement:

UPDATE items SET cust_id = 1,
 order_id = 3,
 date = NULL
 WHERE cust_id = -1 AND
 order_id = 354 AND
 item_id = 1;

There is no need to update the wine_id, price, or qty (quantity).

We can now confirm to the customer the purchase of two bottles of Curry Hill and ship
the order.

This isn't quite the whole picture of purchasing wines or updating the database. In
Chapter 6, we return to similar examples and discuss the implications and problems
of many users interacting with the database at the same time.

3.8.3 INSERTing with a SELECT Statement

We'll now show how insertion and querying can be closely tied together with an
INSERT INTO ... SELECT statement. This is useful for copying data and, if
needed, modifying the data as it is copied.

Consider an example to create a permanent record of the total sales to each
customer up to this month, let's say it's April. First, create a simple table to store the
customer and sales details:

CREATE TABLE salesuntilapril
(
 cust_id int(5) NOT NULL,
 surname varchar(50),
 firstname varchar(50),
 totalsales float(5,2),
 PRIMARY KEY (cust_id)
);

Now issue a combined INSERT INTO ... SELECT statement to populate the new
table with the customer details and the total sales:

INSERT INTO salesuntilapril
 (cust_id, surname, firstname, totalsales)
 SELECT customer.cust_id, surname, firstname, SUM(price)
 FROM customer, items
 WHERE customer.cust_id = items.cust_id
 GROUP BY items.cust_id;

The four attributes listed in the SELECT statement are mapped to the four attributes
listed in the INSERT INTO statement. For example, the customer.cust_id in the
SELECT line is mapped into cust_id in the salesuntilapril table.

A query on the new table shows part of the results:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT * from salesuntilapril;
+---------+-------------+-----------+------------+
| cust_id | surname | firstname | totalsales |
+---------+-------------+-----------+------------+
2	LaTrobe	Anthony	566.42
3	Fong	Nicholas	821.78
4	Stribling	James	181.69
5	Choo	Richard	534.99
6	Eggelston	Perry	657.37
7	Mellaseca	Kym	1216.88

There are two sensible limitations of the INSERT INTO ... SELECT statement:
first, the query can't contain an ORDER BY, and second, the FROM clause can't
contain the target table of the INSERT INTO.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

3.9 Functions

Functions and operators can be used in SQL statements. This section lists these
functions and operators and provides examples. A full list of functions with examples
is available in Section 7.4 of the manual.html file distributed with MySQL.

3.9.1 Arithmetic and comparison operators

Table 3-2 shows examples of the basic arithmetic and comparison operators in
SELECT statements. The basic arithmetic operators are *, +, /, and -, as well as the
parentheses () to control the order of evaluation of an expression.

Table 3-2. Using the arithmetic and comparison operators
Statement Output

SELECT 8+3*2; 14
SELECT (8+3)*2; 22
SELECT 2=2; 1
SELECT 1!=2; 1
SELECT 2<=2; 1
SELECT 3<=2; 0

The comparison operators include =, !=, <, >, <=, and >=. Four examples are shown
in Table 3-2. If an expression evaluates as true, the output is 1; if an expression
evaluates as false, the output is 0. To test for equality, a single equals sign is used;
this contrasts with PHP, where the double equals (==) is used for equality tests, and
a single equals sign is used for assignment.

To test whether two items are equal, the != operator is provided. Less-than-or-equal-
to is represented by <=, and greater-than-or-equal-to is represented by >=.
Parentheses can explicitly express the evaluation order.

3.9.1.1 String-comparison operators and functions

Table 3-3 shows examples of the MySQL string-comparison operators and
functions. Many of the MySQL string functions shown here are similar to PHP
functions, which were introduced in Chapter 2.

Table 3-3. Using string comparison functions and operators
Statement Output

SELECT 'Apple' LIKE 'A%'; 1
SELECT 'Apple' LIKE 'App%'; 1
SELECT 'Apple' LIKE 'A%l%'; 1
SELECT concat('con','cat'); 'concat'
SELECT length('Apple'); 5
SELECT locate('pp','Apple'); 2
SELECT substring('Apple',2,3); 'ppl'
SELECT ltrim(' Apple'); 'Apple'
SELECT rtrim('Apple '); 'Apple'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT trim(' Apple '); 'Apple'
SELECT space(3); ' '
SELECT strcmp('a','a'); 0
SELECT strcmp('a','b'); -1
SELECT strcmp('b','a'); 1
SELECT lower('Apple'); 'apple'
SELECT upper('Apple'); 'APPLE'

The string functions work as follows:

The string-comparison function LIKE is useful. The % character represents any
number of unspecified characters, are generally known as wildcards. So, for
example, the comparison of the string 'Apple' LIKE 'A%' is 1 (true), as is
the comparison of 'Apple' LIKE 'App%'. The underscore character can be
used to match a single unspecified, wildcard character; for example, 'Apple'
LIKE 'Appl_' is true, while 'Appl' LIKE 'Appl_' is false.

concat() joins or concatenates two strings together, so the result of calling
concat() with two string parameters is a single string consisting of the
parameters.

length() returns the length of the string in characters.

locate() returns the location of the first string parameter in the second string
parameter. If the string doesn't occur, the result is 0.

substring() returns part of the string passed as the first parameter. The
string that is returned begins at the offset supplied as the second parameter and
is of the length supplied as the third parameter.

ltrim() removes any left-padding space characters from the string
parameter and returns the left-trimmed string.

rtrim()removes any right-padding space characters from the string
parameter and returns the right-trimmed string.

trim() performs the function of both ltrim() and rtrim(); that is, any
leading or trailing spaces are removed, and the trimmed string is returned.

space() returns a string consisting of spaces of the length of the integer
parameter.

strcmp() compares two string parameters. If they are identical, it returns 0. If
the first string is alphabetically less than the second, it returns a negative
number. If the first string is alphabetically greater than the second, it returns a
positive number. Uppercase characters are less than lowercase characters.

lower() converts the string parameter to lowercase and returns the
lowercase string.

upper() converts the string parameter to uppercase and returns the
uppercase string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

While not detailed in Table 3-3, regular expressions can be used through the
function regexp(). For more on regular expressions in PHP, see Chapter 2.

3.9.1.2 Mathematical functions

We make little use of the mathematical functions provided by MySQL in this book.
However, Table 3-4 shows selected MySQL mathematical functions and their
output.

Table 3-4. Using the MySQL mathematical functions
Statement Output

SELECT abs(-33); 33
SELECT abs(33); 33
SELECT mod(10,3); 1
SELECT 10 % 3; 1
SELECT floor(3.14159); 3
SELECT ceiling(3.14159); 4
SELECT round(3.14159); 3
SELECT log(100); 4.605170
SELECT log10(100); 2
SELECT pow(2,3); 8
SELECT sqrt(36); 6
SELECT sin(pi()); 0.000000
SELECT cos(pi()); -1.000000
SELECT tan(pi()); -0.000000
SELECT rand(); 0.8536
SELECT truncate(3.14159,3); 3.141
SELECT format(12345.23,0); 12,345
SELECT format(12345.23, 1); 12,345.2

Several of the functions in Table 3-4 require some explanation:

The abs() operator returns the absolute value of a number; that is, it removes
the negative sign from negative numbers.

The modulo operator—which has two identical variants, % and mod()—
divides the first number by the second number and outputs the remainder.

The floor() and ceiling() functions are complementary: floor()
returns the largest integer not greater than the parameter; ceiling() returns
the smallest integer not less than the parameter.

The round() function rounds to the nearest integer.

Both the natural logarithm, log(), and base-10 logarithm, log10(), are
available.

The pow() function raises the first number to the power of the second.

sqrt() takes the square root of the parameter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sqrt() takes the square root of the parameter.

The trigonometry functions sin(), cos(), and tan() take values
expressed in radians as parameters. The complementary arc sin, arc cos, and
arc tan are available as asin(), acos(), and atan().

The rand() function returns a pseudorandom number in the range 0 to 1.

The truncate() function removes decimal places without rounding.

The format() function isn't really a mathematical function but is instead used
for returning numbers in a predefined format. The first parameter is the number,
and the second parameter is the number of decimal places to return. The first
parameter is rounded so that, for example, 123.56 formatted to one decimal
place is 123.6. This function is seldom used in web database applications,
because formatting is usually performed in PHP scripts.

3.9.1.3 Date and time functions

Table 3-5 shows sample uses of selected time and date functions available in
MySQL. The date_add() function can be used to add and subtract times and
dates; more details can be found in Section 7.4.11 of the manual.html file distributed
with MySQL.

Table 3-5. Using the date and time functions
Statement Output

SELECT dayofweek('2000-05-03'); 3
SELECT dayname('2000-05-03'); Wednesday
SELECT monthname('2000-05-03'); May
SELECT week('2000-05-03'); 18
SELECT date_add("2000-05-03", INTERVAL 1 DAY); 2000-05-04
SELECT curdate(); 2002-01-01
SELECT curtime(); 11:27:20
SELECT now(); 2002-01-01 11:27:20

3.9.1.4 Miscellaneous operators and functions

Miscellaneous operators and functions are shown in Table 3-6.

Table 3-6. Miscellaneous operators and functions
Statement Output

Control flow functions
SELECT if(1<0,"yes","no") no
Encryption functions
SELECT password('secret') 428567f408994404
SELECT encode('secret','shhh') "|ï ¨~
SELECT decode('"|ï ¨~','shhh') secret
Other functions
SELECT database() winestore
SELECT user() dimitria@localhost

The conditional function if outputs the first string if the expression is true and the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The conditional function if outputs the first string if the expression is true and the
second if it is false. This can be used in complex ways. For example, it could be
used in an UPDATE statement for intelligent changes to an attribute:

UPDATE customer SET country =
 if(trim(country)='','Australia',country);

In this case, the SQL statement replaces blank country attributes with Australia and
leaves already filled country attributes unaltered.

Authentication and securing data using password(), encode(), and decode(
) are discussed in Chapter 9. The functions database() and user() provide
the names of the current database and user.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

3.10 More on SQL and MySQL

In this section we discuss miscellaneous tools and techniques for using SQL and
MySQL. We introduce:

Choosing keys and indexes for fast searching

Elementary database-tuning techniques

Adding and deleting users of a DBMS, and changing user permissions

Limitations of MySQL

3.10.1 Keys, Primary Keys, and Indexes

As discussed earlier in our introduction to SQL, each table should have a PRIMARY
KEY definition as part of the CREATE TABLE statement. A primary key is an attribute
—or set of attributes—that uniquely identifies a row in a table. Storing two rows with
the same primary key isn't permitted and, indeed, an attempt to INSERT duplicate
primary keys produces an error.

In MySQL, the attribute values of the primary key are stored in an index to allow fast
access to a row. The default MySQL index type is fast for queries that find a specific
row, a range of rows, for joins between tables, grouping data, ordering data, and
finding minimum and maximum values. Indexes don't provide any speed
improvement for retrieving all the rows in a table or for other query types.

Indexes are also useful for fast access to rows by values other than those that are
associated with attributes in the primary key. For example, in the customer table, you
might define an index by adding the clause:

KEY namecity (surname,firstname,city)

to the CREATE TABLE statement. After you define this index, some queries that select
a particular customer through a WHERE clause can use it. Consider an example:

SELECT * FROM customer
 WHERE surname = 'Marzalla' AND
 firstname = 'Dimitria' AND
 city = 'St Albans';

This query can use the new index to locate—in at most a few disk accesses—the row
that matches the search criteria. Without the index, the DBMS must scan all the rows
in the customer table and compare each row to the WHERE clause. This might be quite
slow and certainly requires significantly more disk accesses than the index-based
approach (assuming the table has more than a few rows).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A particular feature of DBMSs is that they develop a query evaluation strategy and
optimize it without any interaction from the user or programmer. If an index is
available, and it makes sense to use it in the context of a query, the DBMS does this
automatically. All you need to do is identify which queries are common, and make an
index available for those common queries by adding the KEY clause to the CREATE
TABLE statement or using ALTER TABLE on an existing table.

Careful index design is important. The namecity index we have defined can also
speed queries other than those that supply a complete surname, firstname, and
city. For example, consider a query:

SELECT * FROM customer
 WHERE surname = 'LaTrobe' AND
 firstname = 'Anthony';

This query can also use the index namecity, because the index permits access to
rows in sorted order first by surname, then firstname, and then city. With this
sorting, all "LaTrobe, Anthony" index entries are clustered together in the index.
Indeed, the index can also be used for the query:

SELECT * FROM customer
 WHERE surname LIKE 'Mar%';

Again, all surnames beginning with "Mar" are clustered together in the index.
However, the index can't be used for a query such as:

SELECT * FROM customer
 WHERE firstname = 'Dimitria' AND
 city = 'St Albans';

The index can't be used because the leftmost attribute named in the index, surname,
isn't part of the WHERE clause. In this case, all rows in the customer table must be
scanned and the query is much slower (again assuming there are more than a few
rows in the customer table, and assuming there is no other index).

Careful choice of the order of attributes in a KEY clause is
important. For an index to be usable in a query, the leftmost
attribute must appear in a WHERE clause.

There are other cases in which an index can't be used, such as when a query
contains an OR that isn't on an indexed attribute:

SELECT * FROM customer
 WHERE surname = 'Marzalla' OR
 email = 'dimitria@lucaston.com';

Again, the customer table must be completely scanned, because the second
condition, email='dimitria@lucaston.com', requires all rows to be retrieved as
there is no index available on the attribute email. Also, the case where the ORed
attribute isn't the leftmost attribute in an index requires a complete scan of the
customer table. The following example requires a complete scan:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT * FROM customer
WHERE firstname = 'Dimitria' OR
surname = 'Marzalla';

If all the attributes in the index are used in all the queries, to optimize index size, the
leftmost attribute in the KEY clause should be the attribute with the highest number of
duplicate entries.

Because indexes speed up queries, why not create indexes on all the attributes you
can possibly search on? The answer is that while indexes are fast for searching, they
consume space and require updates each time rows are added or deleted, or key
attributes are changed. So, if a database is largely static, additional indexes have low
overheads, but if a database changes frequently, each additional index slows the
update process significantly. In either case, indexes consume additional space, and
unnecessary indexes should be avoided.

One way to reduce the size of an index and speed updates is to create an index on a
prefix of an attribute. Our namecity index uses considerable space: for each row in
the customer table, an index entry is up to 120 characters in length because it is
created from the combined values of the surname, firstname, and city
attributes.[2] To reduce space, you can define the index as:

[2] This isn't the space actually required by an index entry, because the data is compressed for storage. However,
even with compression, the fewer characters indexed, the more compact the representation, the more space saved,
and—depending on the usability of the index—the faster searching and updates are.

KEY namecity (surname(10),firstname(3),city(2));

This uses only the first 10 characters of surname, 3 of firstname, and the first 2
characters of city to distinguish index entries. This is quite reasonable, because 10
characters from a surname distinguishes between most surnames, and the addition of
a few characters from a first name and the prefix of their city should be sufficient to
uniquely identify almost all customers. Having a smaller index with less information
can also mean that queries are actually faster, because more index information can
be retrieved from disk per second, and disk retrieval speed is almost always the
bottleneck in query performance.

The space saving is significant with a reduced index. A new index entry requires only
15 characters, a saving of up to 105 characters, so index insertions, deletions, and
modifications are now likely to be much faster. Note that for TEXT and BLOB attribute
types, a prefix must be taken when indexing, because indexing the entire attribute is
impractical and isn't permitted by the MySQL DBMS.

3.10.2 Tuning the Database System

Careful index design is one technique that improves the speed of a DBMS and can
reduce the resource requirements of a database. However, comprehensive database
tuning is a complex topic that fills many books. We include in this section only a few
additional practical ideas to begin to improve the performance of a database system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As discussed previously, accessing a hard disk is slow and is usually the bottleneck
in DBMS performance. More specifically, disk seeking—moving the disk head to get
information from another location of the disk—is the slowest component of disk
access. Therefore, most techniques described in this section are also techniques that
improve performance by minimizing disk space requirements.[3]

[3] Reducing disk space requirements improves both disk seek and read performance. Disk read performance is
improved because less data is required to be transferred, while seek performance is improved because the disk head
has to move less on average when randomly accessing a smaller file than when accessing a larger file.

Here are some ways to improve DBMS performance:

Carefully choose attribute types and lengths. Where possible, use small variants
such as SMALLINT or MEDIUMINT rather than the regular choice INT. When
using fixed-length attributes, such as CHAR, specify a length that is as short as
practical.

Use fixed-length attributes; that is, try to avoid types such as VARCHAR or BLOB.
While fixed-length text attributes may waste space, scanning fixed-length rows
in a query is much faster than scanning variable-length rows.

Design indexes with care. As discussed in the last section, keep the primary key
index as small as possible, create only indexes that are needed, and use
prefixes of attributes where possible. Ensure that the leftmost attribute in the
index is the most frequently used in queries and, if all attributes are used, make
sure the leftmost attribute is the one with the highest number of duplicate
entries.

Create a statistics table if aggregate functions such as COUNT() or SUM()
are frequently used in queries on large tables. A statistics table stores only one
row that is manually updated with the aggregate values of another table. For
example, if the statistics table maintains the count of rows in a large customer
table, each time a row is inserted or deleted in the customer table, the count is
updated in the statistics table. For large tables, this is often faster than
calculating aggregate functions with the slow built-in functions that require
complete processing of all rows.

If large numbers of rows are deleted from a table, or a table containing variable-
length attributes is frequently modified, disk space may be wasted. MySQL
doesn't usually remove deleted or modified data; it only marks the location as
being no longer in use. Wasted space can affect access speed.

To reorganize a table—by copying data to a temporary location and back again
—MySQL provides the OPTIMIZE TABLE command, which should be used
periodically. For example:

OPTIMIZE TABLE customer;

The OPTIMIZE command should be run when the DBMS is offline for
scheduled maintenance. The command is nonstandard SQL.

It is possible to create different table types for specific tasks. The default in
MySQL is the MyISAM type, and all the tables described so far are this table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MySQL is the MyISAM type, and all the tables described so far are this table
type. For small, temporary, frequently used lookup tables, a different type, the
heap table type, can be used. There are other types, and we briefly discuss
alternatives in Chapter 6. More details are provided in Section 9.4 of the
MySQL user manual.

Section 10.7 of the MySQL manual includes other excellent ideas for simple
performance improvement.

Another aspect of database tuning is optimizing the performance of the DBMS itself.
Included with the MySQL installation is the mysqladmin tool for database
administration. Details of the system setup can be found by running the following
command from a Linux shell:

% mysqladmin -ppassword variables

This shows, in part, the following selected system parameters:

join_buffer current value: 131072
key_buffer current value: 8388600
net_buffer_length current value: 16384
record_buffer current value: 131072
sort_buffer current value: 2097144
table_cache current value: 64

The important parameters are those that impact disk use. MySQL has several main-
memory buffer parameters that control how much data is kept in memory for
processing. These include:

The record_buffer for scanning all rows in a table

The sort_buffer for ORDER BY and GROUP BY operations

The key_buffer for storing indexes in main memory

The join_buffer for joins that don't use indexes

In general, the larger these buffers, the more data from disk is cached or stored in
memory and the fewer disk accesses are required. However, if the sum of these
parameters is near to exceeding the size of the memory installed in the server, the
underlying operating system will start to swap data between disk and memory, and
the DBMS will be slow. In any case, careful experimentation based on the application
is likely to improve DBMS performance.

Section 10.2.3 of the MySQL manual suggests parameter settings when starting the
MySQL server. First, for machines with at least 64 MB of memory, large tables in the
DBMS, and a moderate number of users, use:

safe_mysqld -O key_buffer=16M -O table_cache=128 \
 -O sort_buffer=4M -O record_buffer=1M &

Second, if there is less than 64 MB of memory available, and there are many users,
try the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

safe_mysqld -O key_buffer=512k -O sort_buffer=100k \
 -O record_buffer=100k &

The following setting might be appropriate for the winestore, because many users are
expected, the queries are largely index-based, and the database is small:

safe_mysqld -O key_buffer=512k -O sort_buffer=16k \
 -O table_cache=32 -O record_buffer=8k
 -O net_buffer=1K &

Even more conservative settings might also be acceptable.

There are two other parameters we have not discussed. The table_cache
parameter manages the maximum number of open tables per user connection, while
the net_buffer parameter sets the minimum size of the network query buffer in
which incoming queries are kept before they are executed.

The mysqladmin utility can report the status of the DBMS:

% mysqladmin -ppassword status

The output has the following format:

Uptime: 5721024 Threads: 14 Questions: 7874982
Slow queries: 6 Opens: 115136 Flush tables: 1
Open tables: 62

This gives a brief point-in-time summary of the DBMS status and can help find more
about the number of user connections, queries, and table use. Similar output can be
generated by running the commands SHOW STATUS and SHOW VARIABLES through
the MySQL command interpreter.

Information about query performance can be gained with the benchmark()
function, which can be used iteratively for tuning when altering table design or DBMS
system parameters. The following statement illustrates benchmarking:

SELECT benchmark(10000, COUNT(*))
 FROM items;

This statement reports the time taken to evaluate 10,000 calls to COUNT() on the
items table.

3.10.3 Adding and Deleting Users

We have not yet discussed adding and deleting users from the MySQL DBMS. Our
rationale in leaving this topic until this final section is that DBMS users aren't as
important in a web database application as in other applications. Because access to
the database and DBMS is generally controlled in the application logic of the middle
tier, usually only one or two DBMS users are needed.

A user, hugh, who has full control over all aspects of the DBMS and can access the
DBMS from the machine that hosts the DBMS, can be created with the statement:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GRANT ALL PRIVILEGES ON *.* TO hugh@localhost
 IDENTIFIED BY 'password' WITH GRANT OPTION;

Allowing access over a network can be added with:

GRANT ALL PRIVILEGES ON *.* TO hugh@"%"
 IDENTIFIED BY 'password' WITH GRANT OPTION;

There is no need to allow network access for a web database application if the
middle-tier components—the web server and scripting engine—are installed on the
same machine as the DBMS.

This user can then connect to the database from the shell with the command:

% mysql -ppassword -uhugh

The user information is stored in the mysql database in the user table, which can be
explored with:

USE mysql;
SELECT * FROM user;

The mysql database and the user table can be managed in the same way as any
other database. For example, you can update the password of the new user with the
UPDATE statement:

UPDATE user
 SET password=password('newpwd')
 WHERE user='hugh';

Note the use of the password() function we described earlier to encrypt the
password for storage in the user table.

3.10.3.1 Permissions

Users can be added to the system with an INSERT INTO the user table in the mysql
database or, as previously illustrated, you can use the GRANT statement. Moreover,
privileges can be adjusted with an UPDATE, added with GRANT, or removed with
REVOKE.

Consider the following example:

GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
 ON winestore.*
 TO dave@localhost
 IDENTIFIED BY 'password';

This adds a new user dave and allows him to use only the SQL statements listed in
the winestore database. The parameter winestore.* means all tables within the
winestore database.

Privileges can be removed with the REVOKE statement. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Privileges can be removed with the REVOKE statement. For example:

REVOKE DROP,CREATE ON winestore.* FROM dave@localhost;

If the privilege or privileges are to be revoked for all databases in the DBMS, not just
a single database, winestore.* can be replaced with *.*.

The following privileges can be used in GRANT and REVOKE statements:

ALL PRIVILEGES, FILE, RELOAD, ALTER, INDEX, SELECT,
CREATE, INSERT, SHUTDOWN, DELETE, PROCESS, UPDATE,
DROP, REFERENCES, USAGE

3.10.4 Limitations of MySQL

The most significant limitation of MySQL is that it doesn't support nested queries.
However, support is planned in MySQL Version 4. Nested queries are those that
contain another query. Consider an example nested query to find the wines that have
inventory stock:

SELECT DISTINCT wine_id FROM wine
WHERE wine_id IN
 (SELECT wine_id from inventory);

The query returns the wine_id values from the wine table that are found in the
inventory table. Nested queries use the IN, NOT IN, EXISTS, and NOT EXISTS
operators.

In many cases, a nested query can be rewritten as a join query. For example, to find
the wines that are in stock, you can use the following join query:

SELECT DISTINCT wine.wine_id FROM wine, inventory
WHERE wine.wine_id = inventory.wine_id;

However, some nested queries can't be rewritten as join queries; for difficult queries,
temporary tables are often a useful workaround.

A limitation of DELETE and UPDATE is that only one table can be specified in the
FROM clause. This problem is particular to MySQL and related to the lack of support
for nested queries. This limitation can make modifications of data difficult. For
example, it prevents data being deleted or updated using the properties of another
table. A solution involves data being copied to a temporary table using a combined
INSERT and SELECT statement that joins together data from more than one table.
Then, the data can be deleted or updated in the temporary table and then transferred
back to the original table. Another approach, using the concat() string function, is
discussed in Section 1.4.4.1 in the MySQL manual.

To avoid UPDATE and DELETE problems, consider adding additional attributes to
tables at design time. For example, in the winestore we added a DATE attribute to the
items table so that shopping-cart items can be removed easily if they aren't
purchased within one day. Removing rows from the items table based on the DATE in
the orders table is difficult without support for nested queries.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MySQL doesn't support stored procedures or triggers. Stored procedures are queries
that are compiled and stored in the DBMS. They are then invoked by the middle-tier
application logic, with the benefit that the query is parsed only once and there is less
communication overhead between the middle and database tiers. Triggers are similar
to stored procedures but are invoked by the DBMS when a condition is met. Stored-
procedure support is planned for MySQL, but trigger support isn't.

Views aren't supported in MySQL. Views consolidate read-only access to several
tables based on a join condition. For example, a view might allow a user to browse
the sales made up to April without the need to create a temporary table, as we did in
the example in Section 3.8. View support is planned for the future.

Limitations that we don't discuss here include the lack of support for foreign keys and
cursors. More detail on the limitations of MySQL can be found in Section 1.4 of the
manual distributed with MySQL.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Chapter 4. Querying Web Databases
This chapter is the first of six that introduce practical web database application
development. In Chapter 1, we introduced our case-study application, Hugh and
Dave's Online Wines. We use the winestore here to illustrate the basic principles and
practice of building commonly used web database components.

In this chapter, we introduce the basics of connecting to the MySQL DBMS with PHP.
We detail the key MySQL functions used to connect, query databases, and retrieve
result sets, and we present the five-step process for dynamically serving data from a
database. Queries that are driven by user input into an HTML <form> or through
clicking on hypertext links are the subject of Chapter 5.

We introduce the following techniques in this chapter:

Using the five-step web database querying approach to develop database-
driven queries

Coding a simple solution to produce HTML <pre> preformatted text

Using the MySQL library functions for querying databases

Handling MySQL DBMS errors

Producing formatted output with the HTML <table> environment

Using include files to modularize database code

Adding multiple queries to a script and consolidating the results into one HTML
presentation environment

Performing simple calculations on database data

Developing basic database-driven scripts incrementally and producing modular
code encapsulated in functions

Our case study in this chapter is the front-page panel from the winestore that shows
customers the Hot New Wines available at the winestore. The front page of the
winestore is shown in Figure 4-1, and the panel is the section of the page that
contains the list of the three newest wines that have been added to the database and
reviewed by a wine expert.

Figure 4-1. The front page of the winestore, showing the front page panel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We begin by introducing the basic principles of web database querying. Our first
examples use a simple approach to presenting result sets using the HTML <pre>
preformatted text tag. We then build on this approach and introduce result
presentation with the <table> environment. The panel itself is a complex case study,
and we follow its development as natural join queries are introduced, conditional
presentation of results included, and the HTML <table> environment used for more
attractive presentation. We focus on iterative development, starting simply and
progressively adding new functionality. The complete code for the front page of the
winestore application is presented in Chapter 11.

For completeness, we conclude this chapter with a brief overview of how other
DBMSs can be accessed and manipulated with PHP.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

4.1 Connecting to a MySQL Database

Chapter 1 introduced the three tiers of a web database application. In this chapter,
we begin to bring the tiers together by developing application logic in the middle tier.
We show the PHP scripting techniques to query the database tier and render HTML
in a client-tier web browser.

In this section, we present the basics of connecting to and querying the winestore
database using a simple query. The output is also simple: we use the HTML <pre>
tag to reproduce the results in the same format in which they are returned from the
database. The focus of this section is the DBMS interaction, not the presentation.
Presentation is the subject of much of the remainder of this chapter.

4.1.1 Opening and Using a Database Connection

In Chapter 3, we introduced the MySQL command interpreter. In PHP, there is no
consolidated interface. Instead, a set of library functions are provided for executing
SQL statements, as well as for managing result sets returned from queries, error
handling, and setting efficiency options. We overview these functions here and show
how they can be combined to access the MySQL DBMS.

Connecting to and querying a MySQL DBMS with PHP is a five-step process.
Example 4-1 shows a script that connects to the MySQL DBMS, uses the winestore
database, issues a query to select all the records from the wine table, and reports the
results as preformatted HTML text. The example illustrates six of the key functions for
connecting to and querying a MySQL database with PHP. Each function is prefixed
with the string mysql_. We explain the function of this script in detail in this section.

Example 4-1. Connecting to a MySQL database with PHP

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Wines</title>
</head>
<body><pre>
<?php
 // (1) Open the database connection and use the winestore
 // database
 $connection = mysql_connect("localhost","fred","shhh");

 mysql_select_db("winestore", $connection);

 // (2) Run the query on the winestore through the
 // connection
 $result = mysql_query ("SELECT * FROM
 wine", $connection);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 wine", $connection);

 // (3) While there are still rows in the result set,
 // fetch the current row into the array $row
 while ($row = mysql_fetch_row($result))
 {
 // (4) Print out each element in $row, that is,
 // print the values of the attributes
 for ($i=0; $i<mysql_num_fields($result); $i++)
 echo $row[$i] . " ";

 // Print a carriage return to neaten the output
 echo "\n";
 }
 // (5) Close the database connection
 mysql_close($connection);
?>
</pre>
</body>
</html>

The five steps of querying a database are numbered in the comments in Example 4-
1, and they are as follows:

1. Connect to the DBMS and use a database. Open a connection to the MySQL
DBMS using mysql_connect(). There are three parameters: the hostname
of the DBMS server to use, a username, and a password. Once you connect,
you can select a database to use through the connection with the
mysql_select_db() function. In this example, we select the winestore
database.

Let's assume here that MySQL is installed on the same server as the scripting
engine and therefore, we can use localhost as the hostname.

The function mysql_connect() returns a connection handle. A handle is a
value that can be used to access the information associated with the
connection. As discussed in Step 2, running a query also returns a handle that
can access results.

To test this example—and all other examples in this book that connect to the
MySQL DBMS—replace the username fred and the password shhh with those
you selected when MySQL was installed following the instructions in Appendix
A. This should be the same username and password used throughout Chapter
3.

2. Run the query. Let's run the query on the winestore database using
mysql_query(). The function takes two parameters: the SQL query itself
and the DBMS connection to use. The connection parameter is the value
returned from the connection in the first step. The function mysql_query()
returns a result set handle resource; that is, a value that can retrieve the output
—the result set—of the query in Step 3.

3. Retrieve a row of results. The function mysql_fetch_row() retrieves one

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Retrieve a row of results. The function mysql_fetch_row() retrieves one
row of the result set, taking only the result set handle from the second step as
the parameter. Each row is stored in an array $row, and the attribute values in
the array are extracted in Step 4. A while loop is used to retrieve rows until
there are no more rows to fetch. The function mysql_fetch_row() returns
false when no more data is available.

4. Process the attribute values. For each retrieved row, a for loop is used to print
with an echo statement each of the attributes in the current row. Use
mysql_num_fields() is used to return the number of attributes in the row;
that is, the number of elements in the array. For the wine table, there are six
attributes in each row: wine_id, wine_name, type, year, winery_id, and
description.

The function mysql_num_fields() takes as a parameter the result handle
from Step 2 and, in this example, returns 6 each time it is called. The data itself
is stored as elements of the array $row returned in Step 3. The element
$row[0] is the value of the first attribute (the wine_id), $row[1] is the value
of the second attribute (the wine_name), and so on.

The script prints each row on a line, separating each attribute with a single
space character. Each line is terminated with a carriage return using echo "\n"
and Steps 3 and 4 are repeated.

5. Close the DBMS connection using mysql_close(), with the connection to be
closed as the parameter.

The first 10 wine rows produced by the script in Example 4-1 are shown in
Example 4-2. The results are shown marked up as HTML.

Example 4-2. Marked-up HTML output from the code shown in Example 4-1

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Wines</title>
</head>
<body><pre>
1 Archibald Sparkling 1997 1
2 Pattendon Fortified 1975 1
3 Lombardi Sweet 1985 2
4 Tonkin Sparkling 1984 2
5 Titshall White 1986 2
6 Serrong Red 1995 2
7 Mettaxus White 1996 2
8 Titshall Sweet 1987 3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8 Titshall Sweet 1987 3
9 Serrong Fortified 1981 3
10 Chester White 1999 3
...
</pre>
</body>
</html>

Other functions can be used to manipulate the database—in particular, to process
result sets differently—and we discuss these later in this chapter. However, the basic
principles and practice are shown in the six functions we have used. These key
functions are described in more detail in the next section.

4.1.2 Essential Functions for Accessing MySQL with PHP

resource mysql_connect([string host], [string username], [string password])

Establishes a connection to the MySQL DBMS. The function returns a
connection resource handle on success that can be used to access databases
through subsequent commands. Returns false on failure (error handling is
discussed later in this section).

The command has three optional parameters, all of which—host, username,
and password—are used in practice. The first permits not only the hostname,
but also an optional port number; the default port for MySQL is 3306 (ports are
discussed in more detail in Appendix B). However, when the DBMS runs on
the same machine as the PHP scripting engine and the web server—and you
have set up a database user that can access the DBMS from the local machine
—the first parameter need only be localhost.

In Example 4-1, the function call:

mysql_connect("localhost", "fred", "shhh")

connects to the MySQL DBMS on the local machine with the username fred and
a password of shhh. As discussed in the last section, you should replace these
with the username and password values you chose in Appendix A and used in
Chapter 3. If the connection is successful, the returned result is a connection
resource handle that should be stored in a variable for use as a parameter to
other MySQL functions.

This function needs to be called only once in a script, assuming you don't close
the connection (see mysql_close(), later in this section). Indeed,
subsequent calls to the function in the same script with the same parameters—
the same host, username, and password triple—don't return a new connection.
They return the same connection handle returned from the first successful call
to the function.

int mysql_select_db (string database, [resource connection])

Uses the specified database on a connection. In Example 4-1, the
database winestore is used on the connection returned from mysql_connect(
). If the second parameter is omitted, the last connection opened is assumed,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

). If the second parameter is omitted, the last connection opened is assumed,
or an attempt is made to open a connection with mysql_connect() and no
parameters. We caution against omitting the connection parameter.

resource mysql_query(string SQL_command, [resource connection])

Runs the SQL statement SQL_command. In practice, the second argument isn't
optional and should be a connection handle returned from a call to
mysql_connect(). The function mysql_query() returns a resource—a
result handle that can fetch the result set—on success, and false on failure.

In Example 4-1, the function call:

$result=mysql_query("SELECT * FROM wine", $connection)

runs the SQL query SELECT * FROM wine through the previously established
DBMS connection resource $connection. The return value is assigned to
$result, a result resource handle that is used as a parameter to
mysql_fetch_row() to retrieve the data.

The query string passed to mysql_query() or
mysql_unbuffered_query() doesn't need to be
terminated with a semicolon; the latter function is discussed
later in this section.

If the second parameter to mysql_query() is omitted, PHP tries to use any
open connection to the MySQL DBMS. If no connections are open, a call to
mysql_connect() with no parameters is issued. In practice, the second
parameter should be supplied.

array mysql_fetch_row(resource result_set)

Fetches the result set data one row at a time by using as a parameter the result
handle result_set that was returned from an earlier mysql_query()
function call. The results are returned as an array, and the elements of the array
can then be processed with a loop statement. The function returns false when
no more rows are available.

In Example 4-1, a while loop repeatedly calls the function and fetches rows
into the array variable $row until there are no more rows available.

int mysql_num_fields(resource result_set)

Returns the number of attributes associated with a result set handle
result_set. The result set handle is returned from a prior call to
mysql_query().

This function is used in Example 4-1 to determine how many elements to
process with the for loop that prints the value of each attribute. In practice, the
function might be called only once per query and the returned result assigned to
a variable that can be used in the for loop. This is possible since all rows in a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a variable that can be used in the for loop. This is possible since all rows in a
result set have the same number of attributes. Avoiding repeated calls to DBMS
functions where possible is likely to improve performance.

The array function count() can also be used to count the number of
elements in an array.

int mysql_close([resource connection])

Closes a MySQL connection that was opened with mysql_connect(). The
connection parameter is optional. If it is omitted, the most recently opened
connection is closed.

As we discuss later, this function doesn't really need to be called to close a
connection opened with mysql_connect(), because all connections are
closed when a script terminates. Also, this function has no effect on persistent
connections opened with mysql_pconnect(); these connections stay open
until they are unused for a specified period. We discuss persistent connections
in the next section.

The functions we have described are a contrasting approach for DBMS access to the
consolidated interface of the MySQL command line interpreter. mysql_connect()
and mysql_close() perform equivalent functions to running and quitting the
interpreter. The mysql_select_db() function provides the use database
command, and mysql_query() permits an SQL statement to be executed. The
mysql_fetch_row() and mysql_num_fields() functions manually retrieve a
result set that's automatically output by the interpreter.

4.1.3 More MySQL Functions in PHP

Web database applications can be developed that use only the six functions we have
described. However, in many cases, additional functionality is required. For example,
database tables sometimes need to be created, information about database table
structure needs to be used in reporting or querying, and it is desirable to retrieve
specific rows in a result set without processing the complete dataset.

Additional functions for interacting with a MySQL DBMS using PHP are the subject of
this section. We have omitted functions that are used to report on insertions,
deletions, and updates. These are discussed in Chapter 6.

4.1.3.1 Frequently used functions

int mysql_data_seek(resource result_set, int row)

This function retrieves only some results from a query. It allows retrieval from a
result set to begin at a row other than the first row. For example, executing the
function for a result_set with a row parameter of 10, and then issuing a
mysql_fetch_row(), mysql_fetch_array(), or
mysql_fetch_object(), retrieves the tenth row of the result set.

This function can reduce communications between the database and middle
tiers in an application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The parameter result_set is the result resource handle returned from
mysql_query(). The function returns true on success and false on
failure.

array mysql_fetch_array(resource result_set, [int result_type])

This function is an extended version of mysql_fetch_row() that returns
results into an associative array, permitting access to values in the array by their
table attribute names.

Consider an example query on the wine table using the mysql_query()
function:

$result=mysql_query("SELECT * FROM wine", $connection)

A row can then be retrieved into the array $row using:

$row=mysql_fetch_array($result)

After retrieving the row, elements of the array $row can be accessed by their
attribute names in the wine table. For example, echo $row["wine_name"]
prints the value of the wine_name attribute from the retrieved row. Attributes
can also be accessed by their element numbers. For example, echo $row[1]
also works.

There are three tricks to using mysql_fetch_array():

Even though an attribute might be referenced as customer.name in the
SELECT statement, it must be referenced as $row["name"] in the
associative array; this is a good reason to design databases so that
attribute names are unique across tables. If attribute names are not
unique, aliases can be used in the SELECT statement; we discuss this
later in this chapter.

Aggregates fetched with mysql_fetch_array()—for example,
SUM(cost)—are associatively referenced as $row["SUM(cost)"].

NULL values are ignored when creating the returned array. This has no
effect on associative access to the array but can change the numbering of
the array elements for numeric access.

The second parameter to mysql_fetch_array(), result_type, controls
whether associative access, numeric access, or both are possible on the
returned array. Because the default is MYSQL_BOTH, there is no reason to
supply or change the parameter.

object mysql_fetch_object(resource result_set, [int result_type])

This function is another alternative for returning results from a query. It returns
an object that contains one row of results associated with the result_set
handle, permitting access to values in an object by their table attribute names.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, after a query to SELECT * from wine, a row can be retrieved
into the object $object using:

$object =mysql_fetch_object($result)

The attributes can then be accessed in $object by their attribute names. For
example:

echo $object->wine_name

prints the value of the wine_name attribute from the retrieved row. Attributes
can also be accessed by their element numbers. For example, echo
$object->1 also works.

The second parameter to mysql_fetch_object() controls whether
associative access, numeric access, or both are possible on the returned array.
The default is MYSQL_BOTH, but MYSQL_ASSOC and MYSQL_NUM can also be
specified.

int mysql_free_result(resource result_set)

This function frees the resources associated with a result_set handle. This
process happens when a script terminates, so the function need be called only if
repeated querying is performed in one script and MySQL memory use is a
concern.

int mysql_num_rows(resource result_set)

This function returns the number of rows associated with the result_set
query result resource handle. This function works only for SELECT queries;
queries that modify a database should use mysql_affected_rows(), which
is discussed in Chapter 6.

If the number of rows in a table is required but not the data itself, it is more
efficient to run an SQL query of the form SELECT count(*) FROM table
and retrieve the result, rather than running SELECT * FROM table and then
using mysql_num_rows() to determine the number of rows in the table.

resource mysql_pconnect([string host:port], [string user], [string password])

This function is a performance-oriented alternative to mysql_connect() that
reuses open connections to the MySQL DBMS. The p in mysql_pconnect()
stands for persistent, meaning that a connection to the DBMS stays open after a
script terminates. Open connections are maintained as a pool that is available to
PHP. When a call to mysql_pconnect() is made, a pooled connection is
used in preference to creating a new connection. Using pooled connections
saves the costs of opening and closing connections.

Whether persistency is faster in practice depends on the
server configuration and the application. However, in
general, for web database applications with many users

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

general, for web database applications with many users
running on a server with plenty of main memory,
persistency is likely to improve performance.

This function need be called only once in a script. Subsequent calls to
mysql_pconnect() in any script—with the same parameters—check the
connection pool for an available connection. If no connections are available, a
new connection is opened.

The function takes the same parameters and returns the same results as its
non-persistent sibling mysql_connect(). It returns a connection resource
handle on success that can access databases through subsequent commands;
it returns false on failure. The command has the same three optional
parameters as mysql_connect().

A connection opened with mysql_pconnect() can't be
closed with mysql_close(). It stays open until unused for
a period of time. The timeout is a MySQL DBMS parameter
—not a PHP parameter—and is set by default to five
seconds; it can be adjusted with a command-line option to
the MySQL DBMS script safe_mysqld. For example, to set
the timeout to 10 seconds:

safe_mysqld --set-variable connect_timeout=10

resource mysql_unbuffered_query(string query, [resource connection])

This function is available only in PHP 4.0.6 or later. The function executes a
query without retrieving and buffering the result set. This is useful for queries
that return large result sets or that are slow to execute. The advantage is that no
resources are required to store a large result set, and the function returns
before the SQL query is complete. In contrast, the function mysql_query()
doesn't return until the query is complete and the results have been buffered for
subsequent retrieval.

The disadvantage of mysql_unbuffered_query() is that
mysql_num_rows() can't be called for the result resource handle, because
the number of rows returned from the query isn't known.

The function is otherwise identical to mysql_query().

4.1.3.2 Other functions

int mysql_change_user(string user, string password, [string database,
[resource connection]])

Changes the logged-in MySQL user to another user, using that user's
password for an optionally specified database and connection. If omitted,
the current database and most recently opened connection are assumed.
Returns false on failure and, if it does fail, the previous, successful connection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns false on failure and, if it does fail, the previous, successful connection
stays current.

int mysql_create_db(string db, [resource connection])

Creates a database named db using the connection resource returned from a
mysql_connect() function call or the last-opened connection if the
parameter is omitted.

int mysql_drop_db(string db, [resource connection])

Drops a database named db using the connection resource returned from a
mysql_connect() function call or the last-opened connection if the
parameter is omitted.

object mysql_fetch_field(resource result_set, [int attribute_number])

Returns as an object the metadata for each attribute associated with a
result_set resource returned from a query function call. An optional
attribute_number can be specified to retrieve the metadata associated with
a specific attribute. However, repeated calls process the attributes one by one.

The properties of the object returned by the function are:

name

The attribute name

table

The name of the table that the attribute belongs to

max_length

The maximum length of the attribute

not_null

Set to 1 if the attribute can't be NULL

primary_key

Set to 1 if the attribute forms part of a primary key

unique_key

Set to 1 if the attribute is a unique key

multiple_key

Set to 1 if the attribute is a nonunique key

numeric

Set to 1 if the attribute is a numeric type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

blob

Set to 1 if the attribute is a BLOB type

type

The type of the attribute

unsigned

Set to 1 if the attribute is an unsigned numeric type

zerofill

Set to 1 if the numeric column is zero-filled

Example 4-3 is a script that uses the mysql_fetch_field() function to
emulate most of the behavior of the SHOW COLUMNS or DESCRIBE commands
discussed in Chapter 3. The code uses the same five-step query process
discussed earlier, with the exception that mysql_fetch_field() is used in
place of mysql_fetch_row(). Sample output for the table wine is shown in
Example 4-4. The same result could have been achieved by executing
DESCRIBE WINE on the winestore database using mysql_query() and
retrieving the results with mysql_fetch_object().

This function also has other uses. For example, it can be used in validation—the
subject of Chapter 7—to check whether the data entered by a user is longer
than the maximum length of the database attribute. Indeed, a script can be
developed that automatically performs basic validation based on the table
structure.

Example 4-3. Using mysql_fetch_field() to describe the structure of a table

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Wine Table Structure</title>
</head>
<body><pre>
<?php
 // Open a connection to the DBMS
 $connection = mysql_connect("localhost","fred","shhh");

 mysql_select_db("winestore", $connection);

 // Run a query on the wine table in the
 // winestore database to retrieve one row
 $result = mysql_query ("SELECT * FROM wine LIMIT 1",
 $connection);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $connection);

 // Output a header, with headers spaced by padding
 print str_pad("Field", 20) .
 str_pad("Type", 14) .
 str_pad("Null", 6) .
 str_pad("Key", 5) .
 str_pad("Extra", 12) . "\n";

 // for each of the attributes in the result set
 for($i=0;$i<mysql_num_fields($result);$i++)
 {
 // Get the meta-data for the attribute
 $info = mysql_fetch_field ($result);

 // Print the attribute name
 print str_pad($info->name, 20);

 // Print the data type
 print str_pad($info->type, 6);

 // Print a "(", the field length, and a ")" e.g.(2)
 print str_pad("(" . $info->max_length . ")", 8);

 // Print out YES if attribute can be NULL
 if ($info->not_null != 1)
 print " YES ";
 else
 print " ";

 // Print out selected index information
 if ($info->primary_key == 1)
 print " PRI ";
 elseif ($info->multiple_key == 1)
 print " MUL ";
 elseif ($info->unique_key == 1)
 print " UNI ";

 // If zero-filled, print this
 if ($info->zerofill)
 print " Zero filled";

 // Start a new line
 print "\n";
 }

 // Close the database connection
 mysql_close($connection);
?>
</pre>
</body>
</html>

Example 4-4. HTML output of the DESCRIBE WINE emulation script in Example 4-1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Wine Table Structure</title>
</head>
<body><pre>
Field Type Null Key Extra
wine_id int (1) PRI
wine_name string(9) MUL
type string(9)
year int (4)
winery_id int (1) MUL
description blob (0) YES
</pre>
</body>
</html>

resource mysql_list_tables(string database, [resource connection])

Returns a result set resource handle that can be used as input to
mysql_tablename() to list the names of tables in a database accessed
through a connection. If the connection is omitted, the last-opened
connection is assumed.

string mysql_tablename(resource result, int table_number)

Used in combination with mysql_list_tables() to produce a list of tables
in a database. Returns the name of the table indexed by the numeric value
table_number using a result resource returned from the
mysql_list_tables() function.

The number of tables in a database can be determined by calling
mysql_num_rows() with the result resource handle returned from
mysql_list_tables() as a parameter.

4.1.3.3 Functions to avoid

Several MySQL functions shouldn't be used in practice:

The functions of mysql_fetch_field() are also available in the non-object-
based alternatives mysql_fetch_length(), mysql_field_flags(),
mysql_field_name(), mysql_field_len(), mysql_field_table(
), and mysql_field_type(); as these functions are almost a complete
subset of mysql_fetch_field(), we don't describe them here.

The function mysql_result() is a slower alternative to fetching and
processing a row with mysql_fetch_row() or mysql_fetch_array()
and shouldn't be used in practice.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mysql_fetch_assoc() fetches a row of results as an associative array only,
providing half the functionality of mysql_fetch_array(). The other half—
fetching into an array accessed by numeric index—is provided by
mysql_fetch_row(). Since mysql_fetch_array() provides both sets
of functionality—or can provide the same functionality by passing through
MYSQL_ASSOC as the second parameter—it should be used instead.

mysql_field_seek() can seek to a specific field for a subsequent call to
mysql_fetch_field(), but this is redundant because the field number can
be supplied directly to mysql_fetch_field() as the optional second
parameter.

mysql_db_query() combines the functionality of mysql_select_db()
and mysql_query(). This function has been deprecated in recent releases
of PHP.

4.1.4 Error Handling of MySQL Database Functions

Database functions can fail. There are several possible classes of failure, ranging
from critical—the DBMS is inaccessible or a fixed parameter is incorrect to
recoverable, such as a password being entered incorrectly by the user.

The PHP interface functions to MySQL support two error-handling functions for
detecting and reporting errors:

int mysql_errno(resource connection)

Returns the error number of the last error on the connection resource

string mysql_error(resource connection)

Returns a descriptive string of the last error on the connection resource

Example 4-5 shows the script illustrated earlier in Example 4-1 with additional
error handling. We have deliberately included an error where the name of the
database winestore is misspelled as "winestor". The error handler is a function,
showerror(), that—with the database name error—prints a phrase in the format:

Error 1049 : Unknown database 'winestor'

The error message shows both the numeric output of mysql_errorno() and the
string output of mysql_error(). The die() function outputs the message and
then gracefully ends the script.

The functions mysql_query() and
mysql_unbuffered_query() return false only on failure;
that is, when a query is incorrectly formed and can't be executed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A query that executes but returns no results still returns a result
resource handle. However, a subsequent call to
mysql_num_rows() reports no rows in the result set.

The mysql_connect() and mysql_pconnect() functions
don't set either the error number or error string on failure and so
must be handled manually. This custom handling can be
implemented with a die() function call and an appropriate text
message, as in Example 4-5.

Example 4-5. Querying a database with error handling

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Wines</title>
</head>
<body><pre>
<?php

 function showerror()
 {
 die("Error " . mysql_errno() . " : " . mysql_error());
 }

 // (1) Open the database connection
 if (!($connection = @ mysql_connect("localhost",
 "fred","shhh")))
 die("Could not connect");

 // NOTE : 'winestore' is deliberately misspelt to
 // cause an error
 if (!(mysql_select_db("winestor", $connection)))
 showerror();

 // (2) Run the query on the winestore through the
 // connection
 if (!($result = @ mysql_query ("SELECT * FROM wine",
 $connection)))
 showerror();

 // (3) While there are still rows in the result set,
 // fetch the current row into the array $row
 while ($row = mysql_fetch_row($result))
 {
 // (4) Print out each element in $row, that is,
 // print the values of the attributes
 for ($i=0; $i<mysql_num_fields($result); $i++)
 echo $row[$i] . " ";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 echo $row[$i] . " ";

 // Print a carriage return to neaten the output
 echo "\n";
 }
 // (5) Close the database connection
 if (!mysql_close($connection))
 showerror();
?>
</pre>
</body>
</html>

The MySQL error-handling functions should be used with the @ operator that
suppresses default output of error messages by the PHP script engine. Omitting the @
operator produces messages that contain both the custom error message and the
default error message produced by PHP. Consider an example where the string
localhost is misspelled, and the @ operator is omitted:

if (!($connection = mysql_connect("localhos",
 "fred",:"shhh")))
 die("Could not connect");

This fragment outputs the following error message that includes both the PHP error
and the custom error message:

Warning: MySQL Connection Failed: Unknown MySQL Server
Host 'localhos' (0) in Example 4-5.php on line 42

Could not connect

Don't forget to add an @ operator as the prefix to any function call
that is handled manually with a custom error handler. The @
operator prevents PHP from issuing its own internal error
message.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

4.2 Formatting Results

So far in this chapter we have shown the basic techniques for connecting to and
querying a MySQL DBMS using PHP. In this section, we extend this to produce
results with embedded HTML that have both better structure and presentation.

Let's consider an example that presents results in an HTML <table> environment.
Example 4-6 shows a script to query the winestore database and present the details
of wines. Previously, in Example 4-5, the details of wines were displayed by
wrapping the output in HTML <pre> tags. The script in Example 4-6 uses the
function displayWines() to present the results as an HTML <table>. The main
body of the script has a similar structure to previous examples, with the exceptions
that the query is stored in a variable, and the username, password, and the
showerror() function are stored in separate files and included in the script with
the include directive. We introduced the include directive in Chapter 2 and
discuss it in more detail later in this section.

The displayWines() function first outputs a <table> tag, followed by a table row
<tr> tag with six <th> header tags and descriptions matching the six attributes of
the wine table. We could have output these using mysql_fetch_field() to
return the attribute names rather than hardcoding the heading names. However, in
most cases, the headers are hardcoded because attribute names are less meaningful
to users than manually constructed textual descriptions.

Example 4-6. Producing simple <table> output with MySQL

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Wines</title>
</head>
<body>
<?php
 include 'error.inc';
 include 'db.inc';

 // Show the wines in an HTML <table>
 function displayWines($result)
 {

 echo "<h1>Our Wines</h1>\n";

 // Start a table, with column headers
 echo "\n<table>\n<tr>\n" .
 "\n\t<th>Wine ID</th>" .
 "\n\t<th>Wine Name</th>" .
 "\n\t<th>Type</th>" .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "\n\t<th>Type</th>" .
 "\n\t<th>Year</th>" .
 "\n\t<th>Winery ID</th>" .
 "\n\t<th>Description</th>" .
 "\n</tr>";

 // Until there are no rows in the result set,
 // fetch a row into the $row array and ...
 while ($row = @ mysql_fetch_row($result))
 {
 // ... start a TABLE row ...
 echo "\n<tr>";

 // ... and print out each of the attributes
 // in that row as a separate TD (Table Data).
 foreach($row as $data)
 echo "\n\t<td> $data </td>";

 // Finish the row
 echo "\n</tr>";
 }

 // Then, finish the table
 echo "\n</table>\n";
 }

 $query = "SELECT * FROM wine";

 // Connect to the MySQL server
 if (!($connection = @ mysql_connect($hostname,
 $username,
 $password)))
 die("Cannot connect");

 if (!(mysql_select_db("winestore", $connection)))
 showerror();

 // Run the query on the connection
 if (!($result = @ mysql_query ($query, $connection)))
 showerror();

 // Display the results
 displayWines($result);

 // Close the connection
 if (!(mysql_close($connection)))
 showerror();
?>
</body>
</html>

After producing the HTML <table> open tag, the displayWines() function
retrieves the rows in the result set, showing each row as a separate <table> row
using the <tr> tag. Each attribute value for each wine—where the attributes match
the headings—is displayed within the row as <table> data using the <td> tag.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the headings—is displayed within the row as <table> data using the <td> tag.
Carriage returns and tab characters are used to lay out the HTML for readability; this
has no effect on the presentation of the rendering of the document by a web browser,
but it makes the HTML much more readable if the user views the HTML source.

The results of using a <table> environment instead of <pre> tags are more
structured and more visually pleasing. The output in a Netscape browser is shown in
Figure 4-2, along with a window showing part of the HTML source generated by the
script.

Figure 4-2. Presenting wines from the winestore in an HTML <table> environment

4.2.1 Using Include Files in Practice

Example 4-7 and Example 4-8 show the two files included with the include
directive in Example 4-6. As discussed in Chapter 2, the include directive allows
common functions in other files to be accessible from within the body of a script
without directly adding the functions to the code.

Example 4-7. The db.inc include file

<?
 $hostName = "localhost";
 $databaseName = "winestore";
 $username = "fred";
 $password = "shhh";
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 4-8. The error.inc include file

<?
 function showerror()
 {
 die("Error " . mysql_errno() . " : " . mysql_error());
 }
?>

Both include files are added to all code developed for the winestore and allow easy
adjustment of the database server name, database name, and DBMS username and
password. The flexibility to adjust these parameters in a central location allows testing
of the system on a backup or remote copy of the data, by changing the database
name or hostname in one file. This approach also allows the use of different
username and password combinations with different privileges, for testing purposes.

We have chosen to name our include files with the .inc extension. This presents a
minor security problem. If the user requests the include file, the source of the include
file is shown in the browser. This may expose the username and password for the
DBMS, the source code, the database structure, and other details that should be
secure.

There are three ways to address this problem. First, you can store the include files
outside the document tree of the Apache web server installation. For example, store
the include files in the directory /usr/local/include/php and use the complete path in
the include directive. Second, you can use the extension .php instead of .inc. In this
case, the include file is processed by the PHP script engine and produces no output
because it contains no main body. Third, you can configure Apache so that files with
the extension .inc are forbidden to be retrieved.

All three approaches to securing include files work effectively in practice. Using the
extension .php for include files is the simplest solution but has the disadvantage that
includes files can't be easily distinguished from other files. In the online winestore, we
have configured Apache to disallow retrieval of files with the extension .inc.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

4.3 Case Study: The Front-Page Panel

In this section, we show how to engineer a front-page panel—we call this the panel.
The completed panel was shown in Figure 4-1. We use the techniques discussed so
far in this chapter to present more attractive HTML <table> formatted results, to
process multiple query results, and to customize the output based on the data
retrieved. No significant new concepts are introduced in the case study.

The panel case study is a progressive development of a script to display the details of
new wines. We show the following details in the panel:

Information about the three wines most recently added to the database,
including the vintage year, the winery, the wine name, and the varieties

The review written by a wine writer

How much a bottle costs, how much a case of a dozen bottles costs, and any
per-bottle discount users receive if they purchase a case

To achieve the outcome of a functional and attractive panel, you need to query the
wine, winery, inventory, grape_variety, and wine_variety tables. You also need to use
the structure of the HTML <table> environment to achieve distinct presentation of
the three components—the details, the review, and the price—of each newly added
wine. Last, you need some mathematics to calculate any savings for buying a case
and present these savings to the user.

The panel component developed in this chapter is the basis of the front page of our
online winestore. However, shopping cart features that are not discussed in detail
here have been added to the production version shown in Figure 4-1. The finalized
code that includes the shopping-cart functionality is discussed further in Chapter 5,
and the completed code is presented in Chapter 11.

In engineering the panel, we use the following techniques:

Querying with the MySQL proprietary LIMIT modifier

Using SQL table aliases in querying

Using the HTML <table> environment as a presentation tool

Producing consolidated HTML output from multiple SQL queries

Presenting data based on calculations

Using MySQL functions—especially mysql_fetch_array()—in practice

Script development is an iterative process of adding features. It is almost always
easier to start with the skeleton of a component and progressively add functionality to
achieve the final goal. The Web is particularly good for this: a click on the Refresh or
Reload buttons in a web browser tests a script, without the need for compilation or

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Reload buttons in a web browser tests a script, without the need for compilation or
processing of other components of the system. Moreover, PHP is good at reporting
errors to the browser, and the HTML output can easily be viewed. In most browsers,
right-clicking on the HTML document in the web browser window offers the option to
view the HTML source.

4.3.1 Step 1: Producing Visually Appealing Tables

Example 4-9 shows a script that is the first step in producing the panel. Not
surprisingly, the script combines the same querying process described earlier with an
HTML <table> environment to wrap the output. The output is more attractive than in
previous examples and the output in a Netscape browser is shown in Figure 4-3.

Figure 4-3. The first step in producing a front-page panel that shows more attractive
presentation

The basis of the script is a moderately complex SQL query that uses table aliases
and the LIMIT operator:

SELECT wi.winery_name,
 i.cost,
 i.case_cost,
 w.year,
 w.wine_name,
 w.description
 FROM wine w, winery wi, inventory i
 WHERE w.description != ""
 AND w.winery_id = wi.winery_id
 AND w.wine_id = i.wine_id
 ORDER BY i.date_added DESC LIMIT 3;

The table aliases allow the query to be written concisely. For example, the inventory
table can be referenced throughout the query by the single character i.

The query returns one row for each inventory of a wine. If a wine has multiple
inventories, the wine appears multiple times. The query also outputs the wine's
winery_name, the vintage attribute year, the wine_name, and a descriptive review,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

winery_name, the vintage attribute year, the wine_name, and a descriptive review,
description. The WHERE clause ensures that only reviewed wines—those with a
description that isn't empty—are returned. The WHERE clause also implements a
natural join with the wine table using the primary keys of the winery and inventory
tables.

The ORDER BY clause in the SQL query uses the DESC modifier. The date_added
isn't an attribute of the wine, it is a value from the latest-added inventory, and the
LIMIT 3 ensures only the three latest-added inventories are retrieved.

The include files error.inc and db.inc are included in the script, as discussed in the
last section.

Example 4-9. A script to display the three newest wines added to the winestore

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Hugh and Dave's Online Wines</title>
</head>
<body bgcolor="white">

<h1>New Wines</h1>
Here are three top new wines we have in stock

<?php
 include 'db.inc';
 include 'error.inc';

 $query = "SELECT wi.winery_name,
 i.cost,
 i.case_cost,
 w.year,
 w.wine_name,
 w.description
 FROM wine w, winery wi, inventory i
 WHERE w.description != \"\"
 AND w.winery_id = wi.winery_id
 AND w.wine_id = i.wine_id
 ORDER BY i.date_added DESC LIMIT 3";

 // Open a connection to the DBMS
 if (!($connection = @ mysql_connect($hostName,
 $username,
 $password)))
 die("Could not connect to database");

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 // Run the query created above on the database through
 // the connection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // the connection
 if (!($result = @ mysql_query ($query, $connection)))
 showerror();

 echo "\n<table border=\"0\">";

 // Process the three new wines
 while ($row = @ mysql_fetch_array($result))
 {
 // Print a heading for the wine
 echo "\n<tr>\n\t<td bgcolor=\"maroon\">" .
 "" .
 $row["year"] . " " .
 $row["winery_name"] . " " .
 $row["wine_name"] . " " .
 "</td>\n</tr>";

 // Print the wine review
 echo "\n<tr>\n\t<td bgcolor=\"silver\">" .
 "Review: " .
 $row["description"] .
 "</td>\n</tr>";

 // Print the pricing information
 echo "\n<tr>\n\t<td bgcolor=\"gray\">" .
 "Our price: " .
 $row["cost"] .
 "(" . $row["case_cost"] . " a dozen)" .
 "</td>\n</tr>";

 // Blank row for presentation
 echo "\n<tr>\n\t<td></td>\n</tr>";
 }

 echo "\n</table>\n";

 if (!mysql_close($connection))
 showerror();
?>
</body>
</html>

Besides the moderately complex SQL query, Example 4-9 is only slightly more
sophisticated than the examples in previous sections. The code to produce the
<table> isn't complex but is a little less readable because:

The information for each wine is represented over three table rows using three
<tr> tags.

Different background colors for the single <td> element are set in each table
row <tr>; the colors are maroon, silver, and gray.

The color attribute of the tag is set to white for the heading of each
wine.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The bold tag is used for pricing information.

A blank row between wines is used for spacing in the presentation.

mysql_fetch_array() is used to retrieve rows. This has the advantage that
the elements of the $row array can be referenced by attribute name. The
resultant code is more readable and more query-independent than if
mysql_fetch_row() is used.

Manipulating presentation by using structure is, unfortunately, part of working with
HTML.

4.3.1.1 Limitations of Step 1

This code is an incomplete solution to the aims we described in the introduction to the
case study. Three particular limitations are:

The varieties of the wines are not shown. For example, you can't tell that the
first-listed Binns Hill Vineyard Morfooney is a Cabernet Sauvignon variety.

The user expects that the dozen price represents a per-bottle saving over
purchasing bottles in smaller quantities. However, the front panel doesn't show
the saving, and the user needs a calculator to decide whether a dozen bottles is
worth the discount.

The first-listed wine appears twice. There are two inventory entries for the same
wine, and the query has returned two rows for that same wine, with the only
difference being the prices.

Another explanation for a double appearance could be that there are two wines
with the same review and year, but with different grape_varieties. This is very
unlikely and isn't the case here.

We improve the panel progressively in the next section to address these limitations,
while also adding new features.

4.3.2 Step 2: Adding Varieties to the Panel

To add varieties to the panel, you need two SQL queries in a single script. This next
step adds an additional query to find the varieties of a wine, and the consolidated
varieties are presented together with the vintage, winery, and wine name.

The second addition to the panel in this step is the calculation and conditional display
of results. We introduce a new feature to the panel that calculates the savings in
buying a dozen bottles and shows the user the per-bottle saving of buying a case of
wine, but only when there is such a saving. We don't deal with the situation where a
case costs more than 12 single purchases.

The script showing these two new concepts is in Example 4-10. The script improves
on Example 4-9 by removing the first two limitations identified in the last section.
The output of Example 4-10 is shown in Figure 4-4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-4. Adding wine varieties and discounts to the panel

Example 4-10. An improved display with varieties and the dozen-bottle discount

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Hugh and Dave's Online Wines</title>
</head>
<body bgcolor="white">

<h1>New Wines</h1>
Here are three top new wines we have in stock

<?php
 include 'db.inc';
 include 'error.inc';

 // Print out the varieties for a wineID
 function showVarieties($connection, $wineID)
 {
 // Find the varieties of the current wine,
 // and order them by id
 $query = "SELECT gv.variety
 FROM grape_variety gv,
 wine_variety wv, wine w
 WHERE w.wine_id = wv.wine_id
 AND wv.variety_id = gv.variety_id
 AND w.wine_id = $wineID
 ORDER BY wv.id";

 // Run the query
 if (!($result = @ mysql_query($query, $connection)))
 showerror();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 showerror();

 // Retrieve the varieties ...
 while ($row = @ mysql_fetch_array($result))
 // ... and print each one
 echo " " . $row["variety"];
 }

 // ---------

 $query = "SELECT wi.winery_name,
 i.cost,
 i.case_cost,
 w.year,
 w.wine_name,
 w.description,
 w.wine_id
 FROM wine w, winery wi, inventory i
 WHERE w.description != \"\"
 AND w.winery_id = wi.winery_id
 AND w.wine_id = i.wine_id
 ORDER BY i.date_added DESC LIMIT 3";

 // Open a connection to the DBMS
 if (!($connection = @ mysql_connect($hostName,
 $username,
 $password)))
 die("Could not connect to database");

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 // Run the query created above on the database through
 // the connection
 if (!($result = @ mysql_query ($query, $connection)))
 showerror();

 echo "\n<table border=\"0\">";
 // Process the three new wines
 while ($row = @ mysql_fetch_array($result))
 {
 // Print a heading for the wine
 echo "\n<tr>\n\t<td bgcolor=\"maroon\">" .
 "" .
 $row["year"] . " " .
 $row["winery_name"] . " " .
 $row["wine_name"] . " ";

 // Print the varieties for this wine
 showVarieties($connection, $row["wine_id"]);

 echo "</td>\n</tr>";

 // Print the wine review
 echo "\n<tr>\n\t<td bgcolor=\"silver\">" .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 echo "\n<tr>\n\t<td bgcolor=\"silver\">" .
 "Review: " .
 $row["description"] .
 "</td>\n</tr>";

 // Print the pricing information
 echo "\n<tr>\n\t<td bgcolor=\"gray\">" .
 "Our price: " .
 $row["cost"] .
 "(" . $row["case_cost"] . " a dozen)";

 // Calculate the saving for 12 or more bottle
 $dozen_saving = $row["cost"] - ($row["case_cost"]/12);

 // If there's a saving, show what it is
 if ($dozen_saving > 0)
 printf(" Save %.2f per bottle when
 buying a dozen\n", $dozen_saving);

 echo "</td>\n</tr>";

 // Blank row for presentation
 echo "\n<tr>\n\t<td></td>\n</tr>";
 }

 echo "\n</table>\n";

 if (!mysql_close($connection))
 showerror();
?>
</body>
</html>

4.3.2.1 Adding a second or subsequent query

Often one query isn't enough to gather all the information required for a report or
component in a web database application. The panel is a good example: it is difficult
to formulate a single query that can retrieve the wine details (wine_name, year, and
description), the winery_name, the inventory data (cost and case_cost), and
the varieties (from the wine_variety and grape_variety tables).

It is possible to write a single query, but the query needs post-processing to remove
duplicate information before presentation. A natural join of wine, winery, inventory,
wine_variety, and grape_variety produces one row per variety of each wine. So, for
example, a Cabernet Merlot variety wine is two rows in the output, one row for
Cabernet and one row for Merlot. The post-processing involves consolidating the two
rows into one HTML <table> row for presentation by using an if statement to
check that all other values are identical.

In many cases, more than one query is issued to produce a consolidated result. In the
case of the panel, the existing query is used to get most of the information (all the
data from wine, winery, and inventory). The second query is nested inside the first;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

data from wine, winery, and inventory). The second query is nested inside the first;
that is, for each row retrieved from the result set of the first query, you run the new
query to get the varieties. The result is that the script runs four queries: one to retrieve
the three wines, and three queries to get their varieties.

Let's return to Example 4-10. The first query has not changed and still returns one
row per inventory of each of the most recently added wines that has a written review.
For each wine, the script produces a heading showing the year, winery_name, and
wine_name.

It is after this query is run and the year, winery_name, and wine_name output that
the new functionality of an additional query begins. In this example, a function,
showVarieties(), is called. This function runs a query to find the varieties of a
particular wine with a wine_id value that matches the parameter $wineID:

$query = "SELECT gv.variety
 FROM grape_variety gv,
 wine_variety wv, wine w
 WHERE w.wine_id = wv.wine_id
 AND wv.variety_id = gv.variety_id
 AND w.wine_id = $wineID
 ORDER BY wv.id";

For example, the query identifies that the first-listed 1999 Binns Hill Vineyard
Morfooney with wine_id=191 is a Cabernet Sauvignon. The results are ordered by
wine_variety.id so that, as in previous examples, a Cabernet Merlot can be
distinguished from a Merlot Cabernet.

The subsequent processing of the second query follows a similar pattern to the first. A
mysql_query() retrieves all result rows with mysql_fetch_array() and prints
out the only attribute retrieved, $row["variety"], the grape variety of the wine.
The connection isn't closed because it's needed, later to find the next wine's varieties.

This multiple-query approach is common and is used throughout the winestore; the
approach is used in the panel to produce order receipts for presentation and email
confirmation, and in many of the stock and customer reports.

4.3.2.2 Adding calculations to the result presentation

Often data that is displayed to the user isn't stored directly in the database. For
example, the total of an order placed by the user isn't stored. Instead, the following
pieces of information are stored: the quantity of each item ordered, the item's price,
the delivery cost, and any discount applied. From these, calculating and displaying
the total requires some mathematics.

Why isn't such data stored? The answer is usually that it is redundant: storing it adds
no more information to the database. The down side is that you need calculations to
recreate output when it is needed. In this section, this is illustrated with a simple
example that shows the per-bottle saving when a user purchases more than a dozen
bottles.

Returning to the script in Example 4-10, having produced a complete heading that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returning to the script in Example 4-10, having produced a complete heading that
now includes the wine variety, we produce the wine review in the script as before.
However, rather than finishing with a simple bottle cost and case_cost, we do
some calculations that show users any savings through buying a case:

$dozen_saving = $row["cost"] - ($row["case_cost"]/12);
if ($dozen_saving > 0)
 printf("Save %-.2f per bottle
 when buying a dozen\n", $dozen_saving);

The element $row["cost"] is the cost of a single bottle, and
$row["case_cost"] is the cost of a case. Since a case contains 12 bottles, it
follows that the cost of 1 bottle in the case is $row["case_cost"]/12. The
difference between the price of a single bottle and the price of bottle that comes in a
case is then:

$row["cost"]-($row["case_cost"]/12)

The result is stored in $dozen_saving.

A saving is printed out only if there is one; that is, when $dozen_saving is greater
than zero. In the case where buying a dozen bottles at once costs the same as 12
separate purchases (or maybe more!), nothing is shown. printf is used in
preference to echo, so that you can include the formatting string %-.2f to show
exactly two decimal places (that is, the cents of the $dozen_saving).

There are many examples of calculations that are performed on the raw data from the
database to present information to the user in our winestore. These include
calculating order totals, discounts, receipt information, delivery charges, and so on.
Elementary mathematics is a common component of most web database
applications; it's used throughout later examples.

4.3.3 Step 3: Finishing the Panel

We have built a satisfactory component. However, one problem identified earlier still
remains. The first-listed wine appears twice. In this case it is because there are two
inventory entries for the same wine, with the only difference being the prices. Of
course, our user will pick the cheapest.

4.3.3.1 Fixing the queries

To address the inventory problem—where a wine appears multiple times in the front
panel if there are multiple inventories of that wine—you need to modify the initial
query.

Only one row should be produced per wine, not one per inventory. To do this, remove
the inventory table attributes from the SELECT statement and add a DISTINCT to
remove the duplicates. However, you can't remove the inventory table fully from the
query, because you still need to ORDER BY date_added to display the newest
wines added to our winestore cellar. The query is now as follows:

$query = "SELECT wi.winery_name,
 w.year,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 w.year,
 w.wine_name,
 w.description,
 w.wine_id
 FROM wine w, winery wi, inventory i
 WHERE w.description != \"\"
 AND w.winery_id = wi.winery_id
 AND w.wine_id = i.wine_id
 GROUP BY winde-id
 ORDER BY i.date_added DESC LIMIT 3";

With this modified query, one entry is produced per wine. However, having removed
the inventory attributes, you no longer have the pricing information.

You need another query and some script reorganization. Example 4-11 shows a
substantially rewritten script that adds a second new function, showPricing(),
that has the correct inventory handling. The function showPricing() has a similar
structure to showVarieties().

showPricing() adds the cheapest inventory price to the panel for each wine and
uses a new query. The query is:

$query = SELECT min (cost), min (case_cost)
 FROM inventory
 WHERE wine_id = $wineID;

Example 4-11. Script with correct inventory handling for the latest wine display

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Hugh and Dave's Online Wines</title>
</head>
<body bgcolor="white">

<h1>New Wines</h1>
Here are three top new wines we have in stock

<?php
 include 'db.inc';
 include 'error.inc';

 // Print out the varieties for a wineID
 function showVarieties($connection, $wineID)
 {
 // Find the varieties of the current wine,
 // and order them by id
 $query = "SELECT gv.variety
 FROM grape_variety gv,
 wine_variety wv, wine w
 WHERE w.wine_id = wv.wine_id
 AND wv.variety_id = gv.variety_id

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AND wv.variety_id = gv.variety_id
 AND w.wine_id = $wineID
 ORDER BY wv.id";

 // Run the query
 if (!($result = @ mysql_query($query, $connection)))
 showerror();

 // Retrieve the varieties ...
 while ($row = @ mysql_fetch_array($result))
 // ... and print each one
 echo " " . $row["variety"];
 }

 // Print out the pricing information
 function showPricing($connection, $wineID)
 {
 // Find the cheapest prices for the wine,
 $query = SELECT min (cost), min (case_cost)
 FROM inventory
 WHERE wine_id = $wineID

 // Run the query
 if (!($result = @ mysql_query($query, $connection)))
 showerror();

 // Retrieve the cheapest price
 $row = @ mysql_fetch_array($result);

 // Print the pricing information
 echo "\n<tr>\n\t<td bgcolor=\"gray\">" .
 "Our price: " .
 $row["min(case_cost)"] .
 "(" . $row["min(cost)"] . " a dozen)";

 // Calculate the saving for 12 or more bottle
 $dozen_saving = $row["min(cost)"] - ($row["min(case_cost)"]/12);

 // If there's a saving, show what it is
 if ($dozen_saving > 0)
 printf(" Save %.2f per bottle when
 buying a dozen\n", $dozen_saving);
 echo "</td>\n</tr>";
 }

 // ---------

 $query = "SELECT wi.winery_name,
 w.year,
 w.wine_name,
 w.description,
 w.wine_id
 FROM wine w, winery wi, inventory i
 WHERE w.description != \"\"
 AND w.winery_id = wi.winery_id

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AND w.winery_id = wi.winery_id
 AND w.wine_id = i.wine_id
 GROUP BY w.wine_id
 ORDER BY i.date_added DESC LIMIT 3";

 // Open a connection to the DBMS
 if (!($connection = @ mysql_connect($hostName,
 $username,
 $password)))
 die("Could not connect to database");

 if (!mysql_select_db("winestore", $connection))
 showerror();

 // Run the query created above on the database through
 // the connection
 if (!($result = @ mysql_query ($query, $connection)))
 showerror();

 echo "\n<table border=\"0\">";

 // Process the three new wines
 while ($row = @ mysql_fetch_array($result))
 {
 // Print a heading for the wine
 echo "\n<tr>\n\t<td bgcolor=\"maroon\">" .
 "" .
 $row["year"] . " " .
 $row["winery_name"] . " " .
 $row["wine_name"] . " ";

 // Print the varieties for this wine
 showVarieties($connection, $row["wine_id"]);

 echo "</td>\n</tr>";

 // Print the wine review
 echo "\n<tr>\n\t<td bgcolor=\"silver\">" .
 "Review: " .
 $row["description"] .
 "</td>\n</tr>";

 // Show the pricing information
 showPricing($connection, $row["wine_id"]);

 // Blank row for presentation
 echo "\n<tr>\n\t<td></td>\n</tr>";
 }

 echo "\n</table>\n";

 if (!mysql_close($connection))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (!mysql_close($connection))
 showerror();
?>
</body>
</html>

The difference in producing price information is that the code doesn't retrieve all rows
in the result set with a loop. Rather, it retrieves only one row—the row representing
the cheapest inventory. It then outputs the min(cost) and min(case_cost) as
previously, with the same dozen_saving calculation.

The final panel, with correct inventory handling, calculations, and varieties, is shown
in Figure 4-5.

Figure 4-5. Panel with correct inventory handling, calculations, and varieties

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

4.4 Interacting with Other DBMSs Using PHP

Interacting with other relational DBMSs is similar to using MySQL. In this section, we
outline the key functions to access Microsoft SQL Server, ODBC-compliant, Oracle,
and PostgreSQL DBMSs. We illustrate how to interact with different DBMSs by
presenting four rewritten versions of Example 4-1 that include different DBMS
functionality.

Functions for accessing other databases, including Informix and Sybase, can be
found in the PHP manual. For DBMSs that are not supported natively by PHP, ODBC
can usually be used; we discuss ODBC later in this section.

4.4.1 Microsoft SQL Server

Similarly to the MySQL function library, there are many functions for connecting to,
querying, and extracting results from Microsoft SQL Server DBMSs.

SQL Server can be used under the Microsoft Windows operating system by making
minor changes to THE configuration of PHP in the php.ini file; these changes are
discussed in the online PHP manual. SQL Server can also be accessed from a Linux
platform by installing the FreeTDS package available from http://www.freetds.org
and recompiling PHP with the -with-sybase option; this enables both Sybase and SQL
Server support. SQL Server databases can also be accessed using the ODBC library
discussed in the next section.

Six functions are listed here, and Example 4-12 shows these implemented in a
modified version of Example 4-1.

resource mssql_connect(string host, string username, string password)

Establishes a connection to a SQL Server DBMS. On success, the function
returns a connection resource handle that can access databases through
subsequent commands. Returns false on failure.

The parameters (all of which are optional) and their use are identical to those of
the mysql_connect() function.

int mssql_select_db(string database, resource connection)

Uses the database on the connection, where the connection is a
resource returned from mssql_connect().

resource mssql_query(string SQL_command, resource connection)

Runs an SQL command through the connection created with
mssql_connect() on the database selected with mssql_select_db().
Returns a resource—a result handle used to fetch the result set—on success
and false on failure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

array mssql_fetch_row(resource result_set)

Fetches the result set data, row-by-row, following an mssql_query()
command using the result_set resource returned by the query. The results
are returned as an array, and use is again identical to mysql_fetch_row().
false is returned when no more rows are available.

int mssql_num_fields(resource result_set)

Returns the number of attributes in a result_set resource handle, where the
result_set handle is returned from mssql_query().

int mssql_close(resource connection)

Closes a SQL Server connection opened with mssql_connect().

Example 4-12. Connecting to a Microsoft SQL Server database with PHP

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Wines</title>
</head>
<body><pre>
<?php
<?
 // (1) Open the database connection and select the
 // winestore
 $connection = mssql_connect("localhost","fred","shhh");
 mssql_select_db("winestore", $connection);

 // (2) Run the query on the winestore through the
 // connection
 $result = mssql_query("SELECT * FROM wine",
 $connection);

 // (3) While there are still rows in the result set
 while ($row = mssql_fetch_row($result))
 {
 // (4) Print out each attribute in the row
 for ($i=0; $i<mssql_num_fields($result); $i++)
 echo $row[$i] . " ";

 // Print a carriage return to neaten the output
 echo "\n";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 echo "\n";
 }

 // (5) Close the database connection
 mssql_close($connection);
?>
</pre>
</body>
</html>

4.4.2 Open DataBase Connectivity (ODBC)

For DBMSs that are not supported natively by PHP—such as Microsoft Access—
Open DataBase Connectivity (ODBC) functions are available to connect to, query,
and retrieve results. ODBC also offers database-tier flexibility where, for example, a
low-end DBMS such as Access can be replaced with a high-end DBMS such as
Oracle without modifying the middle-tier PHP scripts. In addition, selected DBMSs—
including IBM DB2, Adabas D, and Sybase SQL Anywhere—use ODBC functions for
direct access; that is, they don't have their own function libraries but use ODBC
natively as a function library.

An ODBC client is required for the DBMS if ODBC is to be used. For example,
MySQL can be used with ODBC by installing the MyODBC client described in Section
12 of the MySQL manual; the MyODBC client is available from
http://www.mysql.com.

Five key ODBC functions are listed here, and Example 4-13 shows these
implemented in a modified version of Example 4-1.

resource odbc_connect(string datasource, string username, string password,
 [int cursor_type])

Establishes a connection to an ODBC data source. On success, the function
returns a connection resource handle that can access databases through
subsequent commands. The first parameter is a DSN to indicate the data
source to connect to. The DSN parameter can require some experimentation; it
depends on the DBMS being accessed. The DSN can sometimes be prefixed
with DSN= and sometimes this can be omitted. The second and third
parameters, as well as the return value (a connection resource), are the same
as for mysql_connect(). The fourth parameter is often unnecessary;
however, if problems are encountered using ODBC, try passing through a fourth
parameter of SQL_CUR_USE_ODBC.

resource odbc_exec(resource connection, string query)

Runs an SQL query on the connection returned from odbc_connect().
Returns a result resource handle on success and false on failure.

int odbc_fetch_row(resource result_set)

Fetches the result-set data, row-by-row, following an odbc_exec() command
using the result_set identifier returned by the query. The results are returned
as an array, and the use is identical to mysql_fetch_row(). false is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

as an array, and the use is identical to mysql_fetch_row(). false is
returned when no more rows are available.

int odbc_num_fields(resource result_set)

Returns the number of attributes associated with a result_set handle, where
the result_set handle is returned from odbc_exec().

int odbc_close(resource connection)

Closes an ODBC data source opened with odbc_connect().

Example 4-13. Connecting to an ODBC data source with PHP

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Wines</title>
</head>
<body><pre>
<?php
 // (1) Open the database connection
 $connection =
 odbc_connect("DSN=winestore","fred","shhh");

 // (2) Run the query on the winestore through the
 // connection
 $query = odbc_exec($connection, "SELECT * FROM
 wine");

 // (3) While there are still rows in the result set
 while ($row = odbc_fetch_row($result))
 {

 // (4) Print out each attribute in the row
 for ($i=0; $i<odbc_num_fields($result); $i++)
 echo $row[$i] . " ";

 // Print a carriage return to neaten the output
 echo "\n";
 }

 // (5) Close the connection
 odbc_close($connection);
?>
</pre>
</body>
</html>

4.4.3 Oracle 7 and 8 Through the OCI8 Interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Oracle is well-supported with PHP functions, and seven key functions are listed here.
Example 4-14 shows these functions implemented in a modified version of
Example 4-1. The functions require that Oracle 8 client libraries be installed and the
functions use the Oracle 8 Call Interface (OCI8). Support for previous versions of
Oracle is available through a separate function library we don't discuss here.

Oracle access is a six-step process. A connection is opened, and then a query is first
prepared with OCIParse() and executed with OCIExecute(). Then, each row is
retrieved with OCIFetch() and individual attributes are retrieved from the row with
OCIResult(). Last, the connection is closed. Our treatment of Oracle functions is
brief, and more detail can be found in the PHP manual.

The key functions are:

resource OCILogon(string username, string password, string database)

Establishes a connection to an Oracle DBMS. On success, the function returns
a connection handle that can access databases through subsequent
commands. Parameters are the same as those for mysql_connect().

resource OCIParse(resource connection, string SQL_command)

Returns a query resource handle that can subsequently be executed, or returns
false on error. The connection resource created with OCILogon() is
passed as a parameter, along with an SQL_command. The function doesn't
execute the query—OCIExecute() does that—but this function is required to
set up the query for execution.

int OCIExecute(resource query_handle)

Runs the query set up with OCIParse(), taking the return value of
OCIParse() as the only parameter. Results are subsequently fetched with
OCIFetch(). Returns true on success and false on failure.

int OCIFetch(resource query_handle)

Buffers a row from the last OCIExecute() call specified with the
query_handle returned from OCIParse(). Returns true if a row is
retrieved and false when no more rows are available. Attributes are fetched
from this buffer with OCIResult().

int OCINumCols(resource query_handle)

Returns the number of attributes associated with the query specified in
OCIParse().

mixed OCIResult(resource query_handle, int attribute_number)

Fetches the value of attribute_number from the current row retrieved with
OCIFetch(). Takes the return result of OCIParse() as the first parameter.

int OCILogoff(resource connection)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int OCILogoff(resource connection)

Closes an Oracle connection opened with OCILogon().

Example 4-14. Connecting to an Oracle data source with PHP

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Wines</title>
</head>
<body><pre>
<?php
 // (1) Open the database connections
 $connection = OCILogon("fred","shhh", "winestore");

 // (2) Setup the query on the winestore through the
 // connection
 $query = OCIParse($connection, "SELECT * FROM
 wine");

 // (3) Run the query
 OCIExecute($query);

 // (4) Output the results
 while (OCIFetch($query))
 {
 // (5) Print out the attributes in this row
 for($x=1;$x<=OCINumCols($query);$x++)
 echo OCIResult($query,$x);

 echo "\n";
 }

 // (6) Close the database connection
 OCILogoff($connection);
?>
</pre>
</body>
</html>

4.4.4 PostgreSQL

PostgreSQL DBMSs are accessed in much the same way as MySQL and Microsoft
SQL Server DBMSs. Again, there are many—often functionally overlapping—
functions for connecting to, querying, and extracting results from a PostgreSQL
DBMS.

The five key functions are listed here, and Example 4-15 shows these implemented
in a modified version of Example 4-1.

resource pg_connect(string connection_details)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

resource pg_connect(string connection_details)

Establishes a connection to a PostgreSQL DBMS. On success, the function
returns a connection resource handle that can access databases through
subsequent commands. It returns false on failure.

The parameters are similar to those of the mysql_connect() function, but
the parameters are concatenated into a single string that usually includes the
keywords host, dbname, user, and password. For example, to connect to
localhost, use the winestore database, and log in as fred with password shhh,
the format is:

$connection = pg_connect("host=localhost dbname=winestore
 user=fred password=shhh");

resource pg_exec(resource connection, string SQL_command)

Runs an SQL command through the connection created with pg_connect()
(the database is selected with pg_connect()). Returns a resource—a result
handle used to fetch the result set—on success, and false on failure.

array pg_fetch_row(resource result_set)

Fetches the result-set data, row by row, following a pg_exec() command
using the result_set resource returned by the query. The results are
returned as an array, and the use is identical to mysql_fetch_row(). false
is returned when no more rows are available.

int pg_num_fields(resource result_set)

Returns the number of attributes in a result_set resource handle, where the
result_set handle is returned from pg_exec().

int pg_close(resource connection)

Closes a PostgreSQL connection opened with pg_connect().

Example 4-15. Connecting to a PostgreSQL server database with PHP

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Wines</title>
</head>
<body><pre>
<?php
 // (1) Open the database connections
 $connection = pg_connect("host=localhost
 user=fred password=shhh dbname=winestore");

 // (2) Run the query on the winestore through the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // (2) Run the query on the winestore through the
 // connection
 $result = pg_exec($connection,"SELECT * FROM wine");

 // (3) While there are still rows in the result set
 while ($row = pg_fetch_row($result))
 {
 // (4) Print out each attribute in the row
 for ($i=0; $i<pg_num_fields($result); $i++)
 echo $row[$i] . " ";

 // Print a carriage return to neaten the output
 echo "\n";
 }

 // (5) Close the database connection
 pg_close($connection);
?>
</pre>

</body>
</html>

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Chapter 5. User-Driven Querying
In this chapter, we build on the querying techniques discussed in Chapter 4 and
complete our coverage of techniques that read data from web databases. We focus
here on user-driven querying, in which the user provides data that controls the query
process. To input parameters into the querying process, the user usually selects or
types data into an HTML <form> environment, or clicks on links that request scripts.

We explain user-driven querying by introducing how to:

Pass data from a web browser to a web server.

Access user data in scripts.

Secure interactive query systems.

Query databases with user data.

Produce one script that contains an HTML <form> and the code that outputs
the query results. We call this a combined script.

Develop results pages with previous page and next page links.

Use five-step querying to produce components for user input.

Our case-study example in this chapter is the wine browsing component of the
winestore. Similar to most user-driven modules, the wine browsing component has
two subcomponents: first, the search bar allows the user to enter a type of wine as a
criteria for a database query; and, second, the results pages show the user the wines
that match the criteria entered in the search bar. The search bar is shown in Figure
5-1 at the base of the winestore search page, and the results of running the query
are presented above it in a results page. The results pages allow the user to view the
wines in pages of 12 wines each, move between results pages, and add wines to his
shopping cart.

Figure 5-1. The winestore search bar and results page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The querying just described is a two-component user-driven querying process. A less
common type of user-driven querying describes a query that doesn't produce output,
but instead returns the user directly to the query input component. This one-
component querying process is often used to add items to a shopping cart. We also
explain one-component querying in this chapter.

Extended examples of user-driven querying can be found in Chapter 10 to Chapter
13.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

5.1 User Input

Three techniques can be used to pass data that drives the querying process in a web
database application:

Manual entry of a URL to retrieve a PHP script resource and provide
parameters to the resource. For example, a user may open a URL using the
Open Page option in the File menu of the Netscape web browser.

Data entry through HTML <form> environments. For example, <form>
environments can capture textual input, and input is made by selecting radio
buttons, selecting one or more items from a drop-down select list, clicking on
buttons, and through other data entry widgets.

Embedded hypertext links that can be clicked to retrieve a PHP script resource
and provide parameters to the script.

Using an HTML <form> and clicking on hypertext links are the most common
techniques for providing user input for querying in web database applications.

In practice, user data or parameters are passed from a web browser to a web server
using HTTP; Chapter 1 contains an introduction to HTTP and more details can be
found in Appendix B. Using HTTP, data is passed with one of two methods, GET or
POST. In the GET method, data is passed as part of the requested URL; the GET
method gets a resource with the parameters modifying how the resource is retrieved.
In the POST method, the data is encoded separately from the URL and forms part of
the body of the HTTP request; the POST method is used when data is to be posted or
stored on the server. The HTML <form> environment can specify either the GET or
POST method, while an embedded link or a manually entered URL with parameters
always uses the GET method.

In this section, we discuss how to:

Pass parameters from a web browser to a PHP script. You will see how HTTP
requests can include user data by creating URLs, developing HTML <form>
environments, and embedding links in HTML documents.

Process user data to ensure it is a minimal security threat to the web server or
the DBMS.

Section 5.2 introduces techniques to execute queries that include user input and to
present the results.

5.1.1 Passing Data with URLs

The first technique that passes data from a web browser to a web server is manual
entry of a URL in a web browser.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Consider an example user request with a parameter. In this example, the user types
the following URL directly into the Location box in the Location toolbar of a Netscape
browser:

http://localhost/example.5-1.php?regionName=Riverland

The URL specifies that the resource to be retrieved is example.5-1.php with a
query string parameter of regionName=Riverland appended to the resource
name. The user then presses the Enter key to issue an HTTP request for the
resource and to use the GET method that passes the parameter to the resource. The
query string parameter consists of two parts: a parameter name regionName and a
value for that parameter of Riverland.

The script resource example.5-1.php is shown in Example 5-1. Before the script is
processed by the PHP scripting engine, variables associated with any parameters to
the resource are initialized and assigned values. In this example, a variable
$regionName, which has the same name as the URL parameter name, is
automatically initialized by the PHP engine and assigned the value Riverland that
was passed in the URL. This variable and its value are then accessible from within
the script, making the data passed by the user available in the middle tier.

Example 5-1. Printing the value of a parameter passed to the script with an HTTP request

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Parameter</title>
</head>
<body>
<?php
 include 'db.inc';

 echo "RegionName is " . $regionName . "\n";
?>
</body>
</html>

As a result of running the script, the following HTML document is created with the
value of the query string parameter printed as part of the output:

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Parameter</title>
</head>
<body>
RegionName is Riverland
</body>
</html>

In practice, as discussed later in Section 5.2, this data might be used as part of a
clause in an SQL query.

Automatic variable initialization from parameters is one of the best features of PHP.
PHP automatically initializes each variable that has the same name as a parameter in
an HTTP request, and the parameter values are automatically assigned to the
variables. No additional programming is required to access query string parameters.

More than one parameter can be passed with an HTTP GET request by separating
each parameter with an ampersand character. For example, to pass two parameters
regionName and Type with the values Yarra and Red, respectively, the following
URL can be created:

http://localhost/test.php?regionName=Yarra&Type=Red

The values of these parameters can then be printed in the script test.php using the
fragment:

echo $regionName;
echo $Type;

5.1.2 Passing Data with the HTML <form> Environment

The second technique that captures data passed from a browser to a server is the
HTML <form> environment.

Manually entering data as part of a URL is unusual. Instead, users typically enter data
into an HTML <form> that is then encoded by the browser as part of an HTTP
request. Example 5-2 is an HTML document that contains a <form> in which to
enter the name of a wine region. The page, rendered with a Netscape browser, is
shown in Figure 5-2.

Figure 5-2. A simple page to capture user input

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 5-2. An HTML <form> for entry of a regionName

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Explore Wines in a Region</title>
</head>
<body bgcolor="white">
 <form action="example.5-1.php" method="GET">

Enter a region to browse :
 <input type="text" name="regionName" value="All">
 (type All to see all regions)

 <input type="submit" value="Show wines">
 </form>

Home
</body>
</html>

When the user presses the button labeled Show Wines, the data entered in the
<form> is encoded in an HTTP request for the resource example.5-1.php. The
resource to be requested is specified in the action attribute of the <form> tag, as is
the method used for the HTTP request:

<form action="example.5-1.php" method="GET">

In this <form>, there is only one <input> widget with the attribute type="text"
and name="regionName". When the GET method is used, the name of this attribute
and its value result are appended to the URL as query string parameters. If the user
types Yarra Valley into the text widget and then clicks on Show Wines, the
following URL is requested:

http://localhost/example.5-1.php?regionName=Yarra+Valley

Submitting the <form> has the same result as manually typing in the URL but the
user need not understand URLs and HTTP requests when using <form>.

After submitting the <form>, the script in Example 5-1 outputs as a response an
HTML document containing the phrase "regionName is Yarra Valley". Note that the
space character entered by the user in the <form> is automatically encoded in the
URL as a plus character by the web browser, then decoded back to a space character
by the PHP scripting engine.

The HTTP POST method can be used in a <form> instead of the GET method by
changing the method="GET" attribute of the <form> tag to method="POST"; the
merits of POST versus GET are discussed in more detail in Appendix B. This change
of method has no effect on automatic variable initialization in PHP scripts, and the
PHP script engine initializes variables from the parameters passed in the POST
request in the same way it does for GET requests. The script in Example 5-1 can be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

request in the same way it does for GET requests. The script in Example 5-1 can be
used without modification to process a regionName attribute that is passed with a
POST request.

All <form> fields—whether passed using the GET or POST
methods—are automatically translated into PHP variables for
direct use in scripts.

This is one of the best features of PHP, making it far simpler to
write web-enabled scripts in PHP than in other languages.
However, it introduces a minor security risk discussed later.

5.1.3 Passing Data with Embedded Links

The third technique that passes data from a web browser to a web server is
embedding links in an HTML document. This technique runs queries in most web
database applications and is conceptually similar to manually entering a URL. We
show how to create embedded links using the results of database queries in Section
5.2.

Embedded links in an HTML document can be authored in the same way a manually
created URL is typed into a web browser. Consider the script shown in Example 5-3
that is rendered in a Netscape browser in Figure 5-3.

Figure 5-3. The HTML document shown in Example 5-3 rendered in a Netscape browser

Example 5-3. HTML document containing three links that pass two different parameters

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html401/loose.dtd">
<html>
<head>
 <title>Explore Wines</title>
</head>

<body bgcolor="#ffffff">

Explore all our

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Explore all our

wines

Explore our

red wines

Explore our

premium reds from the Riverland

Home</body>
</html>

The script contains three links that can request the resource example.5-4.php and
pass different parameters to the resource. For example, the first link in the HTML
document is:

Explore all our
wines

Clicking on this link creates an HTTP request for the URL:

http://localhost/example.5-4.php?
regionName=All&wineType=All

The result of the request is that the script in Example 5-4 is run, and the following
HTML document is created:

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Parameters</title>
</head>
<body>
regionName is All

wineType is All
</body>
</html>

Example 5-4. A simple script to print out HTTP attributes and values

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Parameters</title>
</head>
<body>
<?php
 include 'db.inc';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 include 'db.inc';

 $regionName = clean($regionName, 30);
 $wineType = clean($wineType, 10);

 echo "regionName is " . $regionName . "\n";
 echo "
wineType is " . $wineType . "\n";
?>
</body>
</html>

Note that the ampersand characters in the URLs in the HTML document are replaced
with &, because the ampersand character has a special meaning in HTML and
should not be included directly in a document. When the link is clicked, the encoded
& is translated by the browser to & in forming the HTTP request.

5.1.4 Security and User Data

This section introduces simple techniques that preprocess user data to solve many
common security holes in web database applications.

Using the techniques described here doesn't completely secure
a system. Remember that securing a web database application
is important, and that the advice offered here isn't a complete
solution. A discussion of other security issues is presented in
Chapter 9.

Data that is passed from a web browser to a web server should be secured using the
steps described here. For this purpose, we have authored the clean() function to
ensure that the data passed to a script is of the correct length and that special
characters aren't misused to attack the system. To understand why the clean()
function is needed, we describe an example attack later in this section. The function
is part the include file db.inc that is used in all scripts in the online winestore.

Consider the following script. It uses the PHP exec() library function to run a
program on the web server. The exec() function takes two parameters, the
program to run and an array populated with any output of the program. In this
example, the script uses exec() to run the Unix cal program and to pass the user-
entered parameter $userString to the program. The information in the parameter
userString can be provided by using an HTML <form> with a text input widget, by
manually creating a URL, or by embedding a link in an HTML document.

<?php
 // DO NOT INSTALL THIS SCRIPT ON A WEB SERVER

 // Run "cal" with the parameter $userString
 // Store the results in the array $result
 exec("/usr/bin/cal $userString", $result);
?>

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <title>Calendar</title>
 </head>
<body>
<pre>
<?php
 // Print out each line of the calendar
 foreach($result as $element)
 echo "$element\n";
?>
</pre>
</body>
</html>

Never use exec() or other commands to run programs from a
web script or to query a database without securing the user data.
Do not install the calendar example on a web server.

The Unix cal program is a useful utility that produces monthly or yearly calendars for
any date. For example, to produce a calendar for the whole of 2003, a user could
request the URL:

http://localhost/cal.php?userString=2003

This runs the command /usr/bin/cal 2003 and outputs the complete 2003
calendar, as shown in Figure 5-4.

Figure 5-4. Output of the dangerous calendar example when the user requests a 2003 calendar

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To produce a calendar for February 2003, the user requests:

http://localhost/cal.php?userString=2+2003

Requesting the URL without any parameters produces the calendar for the current
month:

http://localhost/cal.php

While this script might seem useful and innocuous, this script is a major security hole
and should never be installed on a web server.

To illustrate why the script should never be installed, consider how it can be misused.
If a user wants to enter two or more commands on a single line in a Unix shell, he can
do so by separating the commands with a semicolon character. For example, to see
who is logged in and then to list the files in the current directory, a user can type the
following commands at the shell:

% who ; ls

Now, consider what happens if he exploits this feature by requesting the following
URL:

http://localhost/cal.php?userString=2001;cat+/etc/passwd

The script produces a 2001 calendar, followed by the system password file, as shown
in Figure 5-5! The script allows a creative user to do things the web server process
can do. The identity of the owner of the web server process affects the severity of the
actions that can be performed, but this is at best a major security hole.

Figure 5-5. Output when the user requests a 2001 calendar and the system password file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Semicolons, colons, greater-than and less-than signs, and other special characters
can cause a script or a query to provide undesirable functions, especially if the script
executes the library functions system() or exec() to run server commands.
Even if a <form> makes it difficult for a user to enter undesirable data, he can
manually create his own request by entering a URL and authoring a query string.

Never trust anything you don't have control of, that is, anything
not in middle or database tiers.

SQL querying also has problems. For example, a user can guess the structure of
database tables and how a query is formed from user input. A user might guess that a
query uses an AND clause and that a particular <form> text widget provides one of
the values to the query. The user might then add additional AND and OR clauses to
the query by entering a partial SQL query in the text widget. While such tricks may
expose data that should remain hidden from the user, problems compound if the user
inserts or deletes data with the techniques discussed in Chapter 6. However, many
problems can be solved with careful server-side validation, as discussed in Chapter
7 and the approach described next.

To improve security and prevent special-character attacks, user data should be
processed with the clean() function:

function clean($input, $maxlength)
{
 $input = substr($input, 0, $maxlength);
 $input = EscapeShellCmd($input);
 return ($input);
}

The first line uses the substr() function to reduce the variable $input to a
maximum length of $maxlength by taking a substring beginning at the first
character. You can use 30 as a maximum $regionName length for Example 5-1,
and the calendar example might use a maximum length of 7. The second line calls
the library function EscapeShellCmd(), which escapes any special-purpose
characters—such as semicolons, colons, greater-than and less-than signs, and so on
—by replacing the character with a single backslash and then the character.

For many purposes, the clean steps are sufficient to ensure data is safe. As an
example, if the parameter userString has a value of:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

example, if the parameter userString has a value of:

2001;cat /etc/passwd

then a call of:

clean($userString, 7)

produces the harmless string 2001\;ca.

This string has no detrimental effect and provides the user with no hidden data.
clean() is used to preprocess all user data for the winestore.

User data that has not been preprocessed or cleaned is often known as tainted data,
a term originating from the Perl scripting language. Rectifying this through the
processing we have described untaints user data.

5.1.5 How PHP Initializes Variables

As we have discussed throughout this section, variables are automatically initialized
by PHP from the parameters passed in an HTTP request.

Automatic initialization of variables is an excellent feature for simple scripts, but it has
security and processing implications. If required, the automatic initialization can be
turned off by setting register_globals=false in the php.ini configuration file,
usually found in the directory /usr/local/lib/. The php.ini file was copied to this location
as part of the PHP installation instructions in Appendix A.

When the PHP script engine is invoked, the engine declares and initializes variables
in a predefined order. The automatic initialization feature works in this order:

1. By default, environment variables are initialized first.

2. Variables are initialized from query string parameters passed with the GET
method.

3. POST method parameters are initialized.

4. Variables from cookies are initialized.

5. The Apache server internal variables are initialized.

The initialization order can be changed from the default by adjusting the
variables_order setting in php.ini. The security problem occurs when a user
knowingly or inadvertently overrides a previously initialized variable. For example, the
PATH environment variable is one of the first initialized when the script engine is
invoked. If a GET request contains an attribute named PATH, this overrides the
environment variable of the same name, because GET variables are initialized after
environment variables. By understanding the initialization process, the user can
override previously set variables by passing through parameters. This can change
script behavior and possibly lead to a security problem.

If the register_globals feature is turned off, a PHP script must use a different

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the register_globals feature is turned off, a PHP script must use a different
method to access user data. This method is more secure and requires that arrays be
accessed to retrieve specific user parameters. For example, the GET variables are
stored in an associative array, $HTTP_GET_VARS.

Consider the following URL that is requested by a user:

http://localhost/test.php?varname=value

The variable $varname can be printed in a PHP script by accessing the associative
array $HTTP_GET_VARS using:

echo $HTTP_GET_VARS["varname"];

The only disadvantage of this approach is that the script is tailored for the GET
method. Changing the <form> submission method from GET to POST requires
modifying the script. All references to $HTTP_GET_VARS must be replaced with
references to $HTTP_POST_VARS, because the array $HTTP_POST_VARS stores all
variables passed using the POST method. However, the use of associative arrays is
more secure because the script doesn't function if the user maliciously changes the
<form> submission method in an attempt to compromise the system.

We often initialize local variables at the beginning of a script from the contents of the
$HTTP_GET_VARS or $HTTP_POST_VARS arrays. This emulates the
register_globals feature of PHP but without the security issues. Local variables
make the code more attractive and readable. For example, the following code
fragment initializes three variables from the contents of the $HTTP_GET_VARS array:

$surname = $HTTP_GET_VARS["surname"];
$firstname = $HTTP_GET_VARS["firstname"];
$title = $HTTP_GET_VARS["title"];

The result is that the script behaves the same as if register_globals is on. This
also has the advantage that if the <form> submission method is changed from GET
to POST, the code need be modified only in one place.

Other external variables can be accessed similarly:

POST variables can found in the array $HTTP_POST_VARS.

Cookie variables can be found in the array $HTTP_COOKIE_VARS.

Environment variables can be found in the array $HTTP_ENV_VARS.

Session variables can be found in the array $HTTP_SESSION_VARS.

Server variables can be found in the array $HTTP_SERVER_VARS.

Cookies and sessions are discussed in Chapter 8.

We have set register_globals=true in the online winestore application.
However, the security implications of automatic initialization should be considered
when designing any application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

5.2 Querying with User Input

To introduce querying with user input, we begin by explaining a script that retrieves
the wines made in a wine region that is specified by a user. This script, shown in
Example 5-5, is a companion to the HTML <form> in Example 5-2.

Example 5-5. A script to display all wineries in a region

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Exploring Wines in a Region</title>
</head>

<body bgcolor="white">
<?php

 include 'db.inc';

 // Show all wines in a region in a <table>
 function displayWinesList($connection,
 $query,
 $regionName)
 {
 // Run the query on the DBMS
 if (!($result = @ mysql_query ($query, $connection)))
 showerror();

 // Find out how many rows are available
 $rowsFound = @ mysql_num_rows($result);

 // If the query has results ...
 if ($rowsFound > 0)
 {
 // ... print out a header
 echo "Wines of $regionName
";

 // and start a <table>.
 echo "\n<table>\n<tr>" .
 "\n\t<th>Wine ID</th>" .
 "\n\t<th>Wine Name</th>" .
 "\n\t<th>Type</th>" .
 "\n\t<th>Year</th>" .
 "\n\t<th>Winery</th>" .
 "\n\t<th>Description</th>\n</tr>";

 // Fetch each of the query rows
 while ($row = @ mysql_fetch_array($result))
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 // Print one row of results
 echo "\n<tr>" .
 "\n\t<td>" . $row["wine_id"] . "</td>" .
 "\n\t<td>" . $row["wine_name"] . "</td>" .
 "\n\t<td>" . $row["type"] . "</td>" .
 "\n\t<td>" . $row["year"] . "</td>" .
 "\n\t<td>" . $row["winery_name"] . "</td>" .
 "\n\t<td>" . $row["description"] . "</td>" .
 "\n</tr>";
 } // end while loop body

 // Finish the <table>
 echo "\n</table>";
 } // end if $rowsFound body

 // Report how many rows were found
 echo "$rowsFound records found matching your
 criteria
";
 } // end of function

 // Secure the user parameter $regionName
 $regionName = clean($regionName, 30);

 // Connect to the MySQL DBMS
 if (!($connection = @ mysql_connect($hostName,
 $username,
 $password)))
 die("Could not connect");

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 // Start a query ...
 $query = "SELECT w.wine_id,
 w.wine_name,
 w.description,
 w.type,
 w.year,
 wry.winery_name
 FROM winery wry, region r, wine w
 WHERE wry.region_id = r.region_id
 AND w.winery_id = wry.winery_id";

 // ... then, if the user has specified a region,
 // add the regionName as an AND clause ...
 if ($regionName != "All")
 $query .= " AND r.region_name = \"$regionName\"";

 // ... and then complete the query.
 $query .= " ORDER BY w.wine_name";

 // run the query and show the results

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // run the query and show the results
 displayWinesList($connection, $query, $regionName);

 // Close the DBMS connection
 mysql_close($connection);
?>
</body>
</html>

The script in Example 5-5 uses the querying techniques discussed in Chapter 4.
This example differs from the others in several ways:

It expects input of a wine region to be provided through the HTTP attribute
regionName.

The automatically initialized variable $regionName is untainted with the
clean() function we discussed in the last section.

The value of the variable $regionName is used in querying.

The script uses the five-step process described in Chapter 4 to provide the following
functionality:

1. Connect to the MySQL DBMS. The variable $hostName is set in db.inc along
with the username $username and password $password. The code then
selects the database name set in db.inc.

2. Build an SQL query, $query, to find wine and winery information for the region
entered by the user through the <form> in Example 5-1.

The variable $regionName is used to construct a query on the winestore
database, making the query dependent on the user input and, therefore, a user-
driven query. This works as follows: if the user enters a regionName into the
<form>, an additional AND clause is added to the query that restricts the
r.region_name to be equal to the user-supplied region name. For example, if
the user enters Margaret River, the clause:

AND r.region_name = "Margaret River"

is added to the query.

If the $regionName is All, no restriction on region is made, and the query
retrieves wines for all regions.

3. The function displayWinesList() is then called to run the query.

4. displayWinesList() produces a <table> with headings, processes the
result set and produces <table> rows, and finishes the </table> with a
message indicating how many records are present in the table. This is similar
functionality to the scripts discussed in Chapter 4.

Other than the processing of the user parameter and the handling of the All regions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Other than the processing of the user parameter and the handling of the All regions
option, no significant new functionality is introduced in allowing the user to drive the
query process in this example. We improve the processing and develop more
modular code in the next section.

5.2.1 Combined Scripts

The approach described in the last section separates the HTML <form> and the PHP
processing script into two files. It is more common to implement both in the same
script where the code can produce a <form> or run a query, depending if user
parameters are supplied. If the script is called with no parameters, the script produces
a <form> for user input and, if it is called with input from the <form>, it runs the
query. This is called a combined script.

For wine searching, a combined script is implemented by replacing the main section
of Example 5-5 with the code fragment shown in Example 5-6. The difference
between the two scripts is that Example 5-6 has the structure:

// Has the user provided the parameter?
if (empty($regionName))
{
 // Yes, produce the HTML <form> to collect a regionName
} else
{
 // No, run the query for wines in the region $regionName
}

With this structure, when the variable $regionName is empty—that is, the user has
not yet entered anything—the user <form> is produced. When a value has been
entered, the query is run and the results are output. Example 5-6 shows you how to
replace the main section of the code from Example 5-5 with the <form> from
Example 5-2. With this modification, only one file is required to produce the user
form and then process the query output.

Example 5-6. A combined <form> and processing script to display wineries in a region

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Exploring Wines in a Region</title>
</head>

<body bgcolor="white">
<?php

 include 'db.inc';

 // Show all wines in a region in a <table>
 function displayWinesList($connection,
 $query,
 $regionName)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $regionName)
 {
 // Run the query on the DBMS
 if (!($result = @ mysql_query ($query, $connection)))
 showerror();

 // Find out how many rows are available
 $rowsFound = @ mysql_num_rows($result);

 // If the query has results ...
 if ($rowsFound > 0)
 {
 // ... print out a header
 echo "Wines of $regionName
";

 // and start a <table>.
 echo "\n<table>\n<tr>" .
 "\n\t<th>Wine ID</th>" .
 "\n\t<th>Wine Name</th>" .
 "\n\t<th>Type</th>" .
 "\n\t<th>Year</th>" .
 "\n\t<th>Winery</th>" .
 "\n\t<th>Description</th>\n</tr>";

 // Fetch each of the query rows
 while ($row = @ mysql_fetch_array($result))
 {
 // Print one row of results
 echo "\n<tr>" .
 "\n\t<td>" . $row["wine_id"] . "</td>" .
 "\n\t<td>" . $row["wine_name"] . "</td>" .
 "\n\t<td>" . $row["type"] . "</td>" .
 "\n\t<td>" . $row["year"] . "</td>" .
 "\n\t<td>" . $row["winery_name"] . "</td>" .
 "\n\t<td>" . $row["description"] . "</td>" .
 "\n</tr>";
 } // end while loop body

 // Finish the <table>
 echo "\n</table>";
 } // end if $rowsFound body

 // Report how many rows were found
 echo "$rowsFound records found matching your
 criteria
";
 } // end of function

 $scriptName = "example.5-6.php";

 // Has the user provided the parameter?
 if (empty($regionName))
 {
 // No, the user hasn't provided a parameter
?>
 <form action="<?=$scriptName;?>" method="GET">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <form action="<?=$scriptName;?>" method="GET">

Enter a region to browse :
 <input type="text" name="regionName" value="All">
 (type All to see all regions)

 <input type="submit" value="Show wines">
 </form>

 Home
<?php
 } // end of if empty($regionName) body
 else
 {
 // Secure the user parameter $regionName
 $regionName = clean($regionName, 30);

 // Connect to the MySQL DBMS
 if (!($connection = @ mysql_connect($hostName,
 $username,
 $password)))
 die("Could not connect");

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 // Start a query ...
 $query = "SELECT w.wine_id,
 w.wine_name,
 w.description,
 w.type,
 w.year,
 wry.winery_name
 FROM winery wry, region r, wine w
 WHERE wry.region_id = r.region_id
 AND w.winery_id = wry.winery_id";

 // ... then, if the user has specified a region,
 // add the regionName as an AND clause ...
 if ($regionName != "All")
 $query .= " AND r.region_name = \"$regionName\"";

 // ... and then complete the query.
 $query .= " ORDER BY w.wine_name";

 // run the query and show the results
 displayWinesList($connection, $query, $regionName);

 // Close the DBMS connection
 mysql_close($connection);
 } // end of else if empty($regionName) body
?>
</body>
</html>

We use this combined script structure throughout the rest of this book. Output of
Example 5-6 with the Margaret River parameter is shown in Figure 5-6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 5-6 with the Margaret River parameter is shown in Figure 5-6.

Figure 5-6. Output of the combined script from Example 5-6

5.2.2 Adding Links to Results

As discussed in the earlier section Section 5.1.3, scripts can also include
embedded URLs with parameters that can run queries. This is a powerful tool, and
one that is used in most web database applications. In this section, we show the
power of this technique with an example from the winestore. In the next section, we
show how embedded URLs can be used in a longer case study.

In Chapter 4, we authored the panel to display the latest wines that have been
added to the winestore. We noted that the panel used in the winestore has Add to
Cart functionality, in which a user can click on a link, and a bottle or case of wine is
added to her shopping cart. This functionality is implemented using an embedded
URL that is dynamically created from data in the database. Example 5-7 displays
the code used to add the "Add to Cart" link that's embedded in the panel. The code
creates a URL with parameters that specify the quantity and the product to add to the
shopping cart.

Example 5-7. The code used to add the "Add to Cart" link

echo "<tr align=\"right\"><td>" .
 "<a href=\"example.5-8.php?qty=1&wineId=" .
 $row["wine_id"] .
 "\">Add a bottle to the shopping cart" .
 "</td></tr>";

The code fragment in Example 5-7 creates a link such as:

http://localhost/example.5-8.php?qty=1&wineId=801

The URL parameter wineId is formed with the database wine_id attribute value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The URL parameter wineId is formed with the database wine_id attribute value
that is associated with the current wine being displayed in the panel. When the user
clicks the link, example.5-8.php is requested and the parameters are supplied to the
script. The user can type the URL directly her their web browser with the same effect,
or you can author a <form> for the same purpose. We discuss the script example.5-
8.php in the next section.

Be careful what information is embedded in links. For example,
never embed the price of an item you later rely on to create an
invoice for the user. Remember that the user can manually enter
URLs in their browser and can modify any of the parameters. If a
price is embedded, a user can create the URL manually and
change the price of the item!

5.2.3 One-Component Querying

In many web database applications, functionality is included that allows the user to
click on a link that performs an action but allows the user to remain on the same
page. This is one-component querying, in which the query input component is
displayed, but there is no corresponding page that shows output of the query. In this
section, we discuss how one-component querying is used and the principles of
adding one-component queries to an application.

Figure 5-7 illustrates the principle of one-component querying. When the user
selects a link on a page—let's assume this page is named browse.php and we refer
to this as the calling page—an HTTP request for a PHP script addcart.php is sent to
the server. At the server, the script addcart.php is interpreted by the PHP script
engine and, after carrying out the database actions in the script, no output is
produced. Instead—and this is the key to one-component querying—an HTTP
Location: header is sent as a response to the web browser, and this header
causes the browser to request the original calling page, browse.php. The result is that
the calling page is redisplayed, and the user has the impression that he remained on
the query input component page.

Figure 5-7. The principle of one-component querying

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A good example of an application of one-component queryING was illustrated in the
last section, where we showed how Add to Cart functionality can be incorporated in
the winestore panel. One excellent way to support Add to Cart is to author a script
that adds the wine to the user's cart and then redirects the user back to the panel.
The cart is updated after a click, and the user can continue reading about and,
hopefully, purchasing wines.

Example 5-8 shows a one-component script. In practice, the script adds a quantity
of a specific wine to a shopping cart, using the parameters embedded in the links in
the page generated by the script in Example 5-7. However, for simplicity we have
not included the database queries here; modifying the database is the subject of the
next chapter, and the full code for this example is presented in Chapter 11.

Example 5-8. Implementing one-component querying for the Add to Cart functionality

<?
 if (!empty($wineId) && !empty($qty))
 {
 // Database functionality goes here

 // This is the key to one-component querying:
 // Redirect the browser back to the calling page,
 // using the HTTP response header "Location:"
 // and the PHP environment variable $HTTP_REFERER
 header("Location: $HTTP_REFERER");
 exit;
 } else
 echo "Incorrectly called.";
?>

The key to Example 5-8 is the final two lines of a successful execution of the script:

header("Location: $HTTP_REFERER");
exit;

The header() function sends an additional HTTP response header. In one-
component querying, the response includes the Location header that redirects a
browser to another URL, in this case the URL of the calling page. The URL of the
calling page is automatically initialized into the PHP web server environment variable
$HTTP_REFERER. The exit statement causes the script to abort after sending the
header.

Consider an example where the calling page is the resource example.5-7.php that is
output by the script in Example 5-7. This is the page that shows the user the Hot
New Wines panel and allows the user to click on a link to add an item to her shopping
basket. The user then clicks on a link on this page and requests this URL:

http://localhost/example.5-8.php?qty=1&wineId=801

After successfully completing the request by running the script in Example 5-8 and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After successfully completing the request by running the script in Example 5-8 and
adding the item to the shopping cart, the following header is sent back to the browser
as a response:

Location: http://localhost/example.5-7.php

This header redirects the browser back to the calling page, completing the one-
component query.

The header() command can be issued only before data is
sent. In one-component querying, the script that carries out the
database actions shouldn't produce any output, so this usually
isn't a problem. A call to the header() function should also be
followed by an exit statement if no further processing of
statements after the header() function call is desired. We
discussed the symptoms of header() function problems and
how to solve them in Chapter 2.

One-component querying is useful in situations where only the query screen is
required or the results page and the query page are the same page. For example, in
the winestore, one-component querying is used to update quantities in the shopping
cart when the user alters the quantities of wine in his shopping cart. In general, one-
component querying works well for simple update operations; these are the subject of
Chapter 6.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

5.3 Case Study: Previous and Next Browsing

The subject of this section is a case study that uses the concepts we have discussed
so far in this chapter. We show how to develop page browsing tools to display results
over several pages and permit users to move between these pages. We develop this
code as a generic, reusable module. A modified version of the code is used in the
winestore, and the winestore browsing code is included in Chapter 13.

The aim of our case study is to show how to display large result sets in pages. Each
page should be able to be displayed efficiently and viewed without using the web
browser's vertical scroll bar. We also aim to make the component intuitive to use,
allow direct access to any page in the results, and allow pages to be navigated using
previous and next hypertext links.

We develop the module step-by-step. We begin by developing support for multiple
results pages, and the previous and next links. Later in this section, we add
functionality to display page numbers as links that permit direct access to a chosen
page. The output of the final version of the module when it is used to browse
winestore regions is shown in Figure 5-8.

Figure 5-8. A generic page browsing tool with previous and next links

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this section, as a generic page-based browser is developed, we retire the special-
purpose displayWinesList() function completed in Example 5-6. It's replaced
with a new, generic, multipurpose function browse(). However, before we discuss
how this is done, we describe what we need to achieve.

The following features are required when a user browses the wines in a region:

Only one page of wineries is shown at a time. When the user runs the query,
only the first 20 rows of results are shown.

As in Figure 5-8, an embedded Next link displays that allows the user to move
to the next page of rows. If the user is accessing the first page, the Next link
runs a query that shows the second page of results; that is, rows 21 to 40.

When the user reaches the last page of results—which usually has less than 20
rows—the Next link is hidden.

An embedded Previous link is shown that moves backward through the pages.

The Previous link is hidden when the first page is displayed.

This can be further improved by adding page numbers to each page that allow direct
access to other pages without repeatedly clicking on the previous or next links. We
discuss this functionality later in this section.

5.3.1 Step 1: Using the Generic browse Function

We show how the Previous and Next links are created with PHP in the browse()
function later, but let's return for a moment to the main body of the browsing script.
Example 5-9 shows a script that uses the new generic browse() function to show
the wines made in a region. The main segment populates several new variables that
are parameters to the browse() function:

$pageHeader

A header for the results pages. In this case, the header is a text string Wines
of, followed by the name of the region being displayed; in the example, this can
create the grammatically odd Wines of All, but fixing this is outside the
scope of this discussion.

$browseString

Part of the URL that is requested when the Previous and Next links are clicked.
The value of $browseString is appended immediately after the ? in the URL
and duplicates the variables and values passed through from the <form>
displayed to the user. In Example 5-9, $browseString forms a variable and
value pair such as regionName=Margaret%20River. The PHP library
function rawurlencode() can encode spaces and other special characters
in the URL.

$header

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A 2D array that contains the HTML column headers and the names of the
attributes to be displayed in these columns. The columns are numbered from
left to right, so $header[0] is the information for the first column. We use
associative access to the second element for readability: $header[0]
["header"] is the text that displays at the top of the first HTML column in the
<table>, while $header[0]["attrib"] is the name of the query attribute in
the result set displayed in the first column.

Each column should have both a header and an attrib. The header should
be human-readable text, while the attrib is the attribute name from the
SELECT clause of the SQL query.

The browse() function takes these three variables—$pageHeader,
$browseString, and $header—as parameters. The current $scriptName is also
passed and can construct URLs for embedded links. The other parameters are the
database $connection, and the $offset in the result set of the first row on the
page that is displayed. The value of $offset is initially zero after running a query
and, because it isn't part of the <form>, it's initialized in Example 5-9 to zero when
not set. In this example, we show only the modified section of the main component of
the script for preparing a query. The function browse(), shown in Example 5-10,
is called in this fragment to provide generic browsing.

Example 5-9. Adding browsing functionality to the winestore database

 // Untaint the user data
 $regionName = clean($regionName, 30);

 $scriptName = "example.5-9.php";

 // Is there any user data?
 if (empty($regionName))
 {
 // No, so show the <form>
?>
<form action="<?=$scriptName;?>" method="GET">

Enter a region to browse :
 <input type="text" name="regionName" value="All">
 (type All to see all regions)

 <input type="submit" value="Show wines">
</form>

Home
<?php
 } // if user data
 else
 {
 // Yes, there is user data so show the results

 // Connect to the DBMS
 if (!($connection = @ mysql_connect($hostName,
 $username,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $username,
 $password)))
 showerror();

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 // Set $offset to zero if not previously set
 if (empty($offset))
 $offset = 0;

 // Build the query
 $query = "SELECT w.wine_id,
 w.wine_name,
 w.description,
 w.type,
 w.year,
 wry.winery_name
 FROM winery wry, region r, wine w
 WHERE wry.region_id = r.region_id
 AND w.winery_id = wry.winery_id";

 // Add the regionName if the user has provided it
 if ($regionName != "All")
 $query .= " AND r.region_name = \"$regionName\"";

 // Add a sort on the end of the query
 $query .= " ORDER by w.wine_name";

 // Initialize the browse() function parameters

 // Query prefix for the next/previous links
 $browseString = "regionName=" .
 rawurlencode($regionName);

 // Page header for the browse screen
 $pageHeader = "Wines of " . $regionName;

 // HTML <TABLE> column headers
 $header[0]["header"] = "Wine ID";
 $header[1]["header"] = "Wine Name";
 $header[2]["header"] = "Wine Type";
 $header[3]["header"] = "Year";
 $header[4]["header"] = "Winery";
 $header[5]["header"] = "Description";

 // Query attributes to display in <TABLE> columns
 $header[0]["attrib"] = "wine_id";
 $header[1]["attrib"] = "wine_name";
 $header[2]["attrib"] = "type";
 $header[3]["attrib"] = "year";
 $header[4]["attrib"] = "winery_name";
 $header[5]["attrib"] = "description";

 // Call generic browsing code to browse query

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Call generic browsing code to browse query
 browse($scriptName, $connection,
 $browseString, $offset, $query,
 $pageHeader, $header);

 } // end if else user data
?>
</body>
</html>

5.3.2 Step 2: Implementing the Generic browse Function

The initial implementation of the browse() function is shown in Example 5-10.
The structure is similar to that of the hardcoded displayWinesList(), with the
additional features to display the result set page-by-page with the embedded
Previous and Next links.

Example 5-10. Generic browsing code for any query

define(ROWS, 20);

// Browse through the $connection by the running $query.

// Begin the display of data with row $rowOffset.
// Put a header on the page, $pageHeader

// Use the array $header[]["header"] for headers on
// each <table> column
// Use the array $header[]["attrib"] for the names
// of the database attributes to show in each column

// Use $browseString to prefix an embedded link
// to the previous, next, and other pages

function browse($scriptName,
 $connection,
 $browseString,
 $rowOffset,
 $query,
 $pageHeader,
 $header)
{

 // (1) Run the query on the database through the
 // connection
 if (!($result = @ mysql_query ($query, $connection)))
 showerror();

 // Find out how many rows there are
 $rowsFound = @ mysql_num_rows($result);

 // Is there any data?
 if ($rowsFound != 0)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if ($rowsFound != 0)
 {
 // Yes, there is data.

 // (2a) The "Previous" page begins at the current
 // offset LESS the number of ROWS per page
 $previousOffset = $rowOffset - ROWS;

 // (2b) The "Next" page begins at the current offset
 // PLUS the number of ROWS per page
 $nextOffset = $rowOffset + ROWS;

 // (3) Seek to the current offset
 if (!mysql_data_seek($result, $rowOffset))
 showerror();

 // (4a) Output the header and start a table
 echo $pageHeader;
 echo "<table border=\"1\">\n<tr>";

 // (4b) Print out the column headers from $header
 foreach ($header as $element)
 echo "\n\t<th>" . $element["header"] . "</th>";

 echo "\n</tr>";

 // (5a) Fetch one page of results (or less if on the
 // last page)
 for ($rowCounter = 0;
 (($rowCounter < ROWS) &&
 ($row = @ mysql_fetch_array($result)));
 $rowCounter++)
 {
 // Print out a row
 echo "\n<tr>";

 // (5b) For each of the attributes in a row
 foreach($header as $element)
 {
 echo "\n\t<td>";

 // Get the database attribute name for the
 // current attribute
 $temp = $element["attrib"];

 // Print out the value of the current
 // attribute
 echo $row["$temp"];

 echo "</td>";
 } // end foreach attribute

 echo "\n</tr>\n";
 } // end for rows in the page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Finish the results table, and start a footer
 echo "\n</table>\n
";

 // (6) Show the row numbers that are being viewed
 echo ($rowOffset + 1) . "-" .
 ($rowCounter + $rowOffset) . " of ";
 echo "$rowsFound records found matching " .
 "your criteria\n
";

 // (7a) Are there any previous pages?
 if ($rowOffset > 0)
 // Yes, so create a previous link
 echo "\n\t<a href=\"" . $scriptName .
 "?offset=" . rawurlencode($previousOffset) .
 "&" . $browseString .
 "\">Previous ";
 else
 // No, there is no previous page so don't
 // print a link
 echo "Previous ";

 // (7b) Are there any Next pages?
 if (($row != false) && ($rowsFound > $nextOffset))
 // Yes, so create a next link
 echo "\n\t<a href=\"" . $scriptName .
 "?offset=" . rawurlencode($nextOffset) .
 "&" . $browseString .
 "\">Next ";
 else
 // No, there is no next page so don't
 // print a link
 echo "Next ";

 } // end if rowsFound != 0
 else
 {
 echo "
No rows found matching your criteria.\n";
 }
 // (7c) Create a link back to the query input page
 echo "
<a href=\"" . $scriptName .
 "\">Back to Search
";
}

The browse() function performs the following steps that are numbered in the
comments in Example 5-10:

1. It runs the $query through the $connection. If there are rows returned from
the query, the remaining steps are followed. If not, a message is printed.

2. It calculates where in the result set a Previous and Next link should be relative
to the current offset, $rowOffset, that was passed in as a parameter:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to the current offset, $rowOffset, that was passed in as a parameter:

// (2a) The "Previous" page begins at the current
// offset LESS the number of ROWS per page
$previousOffset = $rowOffset - ROWS;

// (2b) The "Next" page begins at the current offset
// PLUS the number of ROWS per page
$nextOffset = $rowOffset + ROWS;

The offsets are used later to construct the Previous and Next links. ROWS is the
numbers of rows per HTML page, and is defined as 20 at the beginning of
Example 5-10.

3. It then uses mysql_data_seek() to seek in the result set, so that a
subsequent call to mysql_fetch_array() retrieves row number
$rowOffset.

4. The code then prints out the page header and iterates through the $header
array printing out the associatively accessed "header" elements as <table>
headings in the first <table> row.

5. The script then retrieves and prints one page of rows from the result set (or, if
there is less than a page of rows left to process, as many rows as are available).

A for loop retrieves each row, and then a foreach loop prints out each
attribute value in the row according to how it's listed in the $header associative
array element attrib. To allow attributes to be referenced associatively by
name, mysql_fetch_array() is used.

6. Having printed the data in a <table>, the script prints out the range of rows
displayed (from $rowOffset + 1 through $rowOffset + $rowCounter)
and the total number of rows that are retrieved with the query.

7. To conclude the function, the script produces the Previous and Next embedded
links if they are required, and a Back to Search link. The previous link is created
with the following code fragment:

// Are there any previous pages?
if ($rowOffset > 0)
 // Yes, so create a previous link
 echo "<a href=\"" . $scriptName .
 "?offset=" . rawurlencode($previousOffset) .
 "&" . $browseString .
 "\">Previous ";
 else
 // No, there is no previous page so don't
 // print a link
 echo "Previous ";

A Previous link is produced only if the first row displayed—$rowOffset—isn't
row zero; that is, we have just produced a second or later page. The code is a
little cryptic, but it produces an embedded hypertext link to $scriptName, with
the parameter $browseString that provides parameters to another query, and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the parameter $browseString that provides parameters to another query, and
the offset variable set to the value of $previousOffset calculated earlier.

The rawurlencode() function isn't strictly needed here—we are only coding
a number—but consistently using it to create URLs with correctly encoded
characters is good practice. The Next link is created with similar logic, and the
Back to Search link is a static link to $scriptName without any parameters.

We have now developed a generic browser and applied it to browsing the wines of a
region. A similar skeleton to Example 5-9 can be developed to browse customers,
inventories, or orders, and all can use the generic browse() function.

5.3.3 Step 3: Adding Page Numbers

In this section, we extend the browse() function to produce page numbers to
permit direct access to the pages, removing the need for the user to repeatedly click
the Previous or Next links to find a particular page or row. The extended fragment of
browse() that produces the page links is shown in Example 5-11.

Example 5-11. Adding direct page access to browse()

// (7a) Previous link code goes here

// Output the page numbers as links
// Count through the number of pages in the results
for($x=0, $page=1;
 $x<$rowsFound;
 $x+=ROWS, $page++)
 // Is this the current page?
 if ($x < $rowOffset ||
 $x > ($rowOffset + $numRowsToFetch - 1))
 // No, so print out a link
 echo "<a href=\"" . $scriptName .
 "?offset=" . rawurlencode($x) .
 "&" . $browseString .
 "\">" . $page . " ";
 else
 // Yes, so don't print a link
 echo $page . " ";

// (7b) Next link code goes here

The page number code consists of a for loop that works as follows:

The loop begins counting rows using the variable $x—starting at row zero—and
pages using $page, starting on page one. The loop finishes when $x is equal to
the number of rows in the query result set.

In the body of the loop, if the row $x isn't on the current page displayed in the
HTML <table>, an embedded link is output that is marked with the page
number $page. The link is to the script resource $scriptName, with the
parameters in $browseString and an offset of the current value of $x. The
current value of $x is the first row on the page numbered $page. Clicking on

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

current value of $x is the first row on the page numbered $page. Clicking on
the link requests the script again and produces the results for $page that begin
with the row with an offset of $x.

For example, if $x is row 220, and the $page is 11, the embedded link output
by the code fragment is:

11

If $x is a row on the currently displayed page, the code outputs the page
number without the embedded hypertext link.

The case study of a generic browse() function is now complete. Additional
features can be added, as discussed briefly in the next section.

5.3.4 What's Missing from the Previous and Next Browser

Features that aren't described here but could be incorporated in the browse()
function include:

Configurable colors for columns, headers, and links.

Configurable column alignment and fonts.

Other layouts, such as horizontal table-based layouts. See the winestore Hot
New Wines panel as an example. A horizontal layout is used in the online
winestore and is accessible from the book's web site.

Embedding of links in the body of the <table> so that other queries can be run
by clicking on data in the <table>. Our customized version for the winestore
that is described in Chapter 13 supports this feature.

Spreadsheet-like features, such as the ability to click on a column heading to
sort the data by that column.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

5.4 Case Study: Producing a select List

To conclude this chapter, we present a short case study of dynamically producing
<form> components from a database. The techniques used are an application of the
five-step querying process from Chapter 4.

We have already identified that the scripts in most of this chapter's examples require
that the user remember and reproduce the names of the wine regions. A far better
approach—and one that works well for small numbers of items—is to present values
using the HTML <select> input type. For the wine regions, the <select> input has
the following structure:

<select name="regionName">
<option selected> All
<option> Barossa Valley
<option> Coonawarra
<option> Goulburn Valley
<option> Lower Hunter Valley
<option> Margaret River
<option> Riverland
<option> Rutherglen
<option> Swan Valley
<option> Upper Hunter Valley
</select>

With only a small number of wine regions, it is tempting to develop a static HTML
page with an embedded list of region names. However, this is poor and inflexible. If
the region database table changes—that is, new regions are added or deleted or you
want to change a region_name value—you have to remember to update the HTML
page. Moreover, a spelling mistake or an extra space when creating the HTML page
renders a <select> option useless, because it no longer matches the values in the
database when used for querying. A better approach is to use the techniques from
Chapter 4 to dynamically query the database and produce a <select> element
using the region_name values stored in the region table.

Consider the approach of dynamically producing HTML. First, you retrieve the set of
different values of the region_name attribute in the region table. Then, you format
the values as HTML <option> elements and present a HTML <form> to the user.
When the user chooses a region and submits the <form>, you should run a query
that uses the region name the user selected as one of the query parameters to match
against data in the database and to produce a result set. Because the values chosen
by the user in the <form> are compared against database values, it makes sense
that the list values should originate from the database.

In this section, we develop a component that can be reused to produce select lists
in different modules of a web database application. An example that uses this new
component is shown in Example 5-12.

Example 5-12. Producing an HTML <form> that contains a database-driven select list

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Connect to the DBMS
 if (!($connection = @ mysql_connect($hostName,
 $username,
 $password)))
 showerror();

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 echo "\nRegion: ";

 // Produce the select list
 // Parameters:
 // 1: Database connection
 // 2. Table that contains values
 // 3. Attribute that contains values
 // 4. <SELECT> element name
 // 5. An additional non-database value
 // 6. Optional <OPTION SELECTED>
 selectDistinct($connection,
 "region",
 "region_name",
 "regionName",
 "All",
 "All");

 echo "\n
<input type=\"submit\"" .
 "value=\"Show wines\">" .
 "\n</form>\n
";
 echo "Home";

The component itself is discussed later but is encapsulated in the function
selectDistinct(), which takes the following parameters:

A database connection handle, in this case, a connection opened with
mysql_connect and stored in $connection.

A database name, $database, which is a variable that is set to winestore in
the include file db.inc, as discussed in Chapter 4.

The database table from which to produce the list. In this case, the table region
contains the region name data.

The database table attribute with the values to be used as the text for each
<option> element shown to the user in the list. In this example, it's
region_name from the region table.

The name of the HTML <select> element. We use regionName, but this can
be anything and isn't dependent on the underlying database.

An additional option to add to the list if required; the value All doesn't occur in
the region database table but is an extra value added to the list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An optional default value to output as the <option selected> in the list; this
option is shown as selected when the user accesses the page. All is used as a
default here.

The output of the function for the parameters used in Example 5-12 is shown in
Figure 5-9.

Figure 5-9. The selectDistinct() function in action

The remainder of the script fragment in Example 5-12 produces the other required
tags in the HTML document.

5.4.1 Implementing the selectDistinct Function

This section details the implementation of the generic selectDistinct()
function. The function produces a <select> list with an optional <option
selected> element using attribute values retrieved from a database table. One
additional non-database item can be added to the list. The body of the function is
shown in Example 5-13.

Example 5-13. The body of the selectDistinct() function for producing select lists

 function selectDistinct ($connection,
 $tableName,
 $columnName,
 $pulldownName,
 $additionalOption,
 $defaultValue)
 {
 $defaultWithinResultSet = FALSE;

 // Query to find distinct values of $columnName
 // in $tableName
 $distinctQuery = "SELECT DISTINCT $columnName
 FROM $tableName";

 // Run the distinctQuery on the databaseName
 if (!($resultId = @ mysql_query ($distinctQuery,
 $connection)))
 showerror();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 showerror();

 // Retrieve all distinct values
 $i = 0;
 while ($row = @ mysql_fetch_array($resultId))
 $resultBuffer[$i++] = $row[$columnName];

 // Start the select widget
 echo "\n<select name=\"$pulldownName\">";

 // Is there an additional option?
 if (isset($additionalOption))
 // Yes, but is it the default option?
 if ($defaultValue == $additionalOption)
 // Show the additional option as selected
 echo "\n\t<option selected>$additionalOption";
 else
 // Just show the additional option
 echo "\n\t<option>$additionalOption";

 // check for a default value
 if (isset($defaultValue))
 {
 // Yes, there's a default value specified

 // Check if the defaultValue is in the
 // database values
 foreach ($resultBuffer as $result)
 if ($result == $defaultValue)
 // Yes, show as selected
 echo "\n\t<option selected>$result";
 else
 // No, just show as an option
 echo "\n\t<option>$result";
 } // end if defaultValue
 else
 {
 // No defaultValue

 // Show database values as options
 foreach ($resultBuffer as $result)
 echo "\n\t<option>$result";
 }
 echo "\n</select>";
 } // end of function

The implementation of selectDistinct() is useful for most cases in which a
<select> list needs to be produced. The first section of the code queries the table
$tableName passed as a parameter, extracts the values of the attribute
$columnName—also passed as a parameter—into an array $resultBuffer, and
produces a <select> element with the name attribute $pulldownName. The code
is a five-step querying module.

The remainder of the code deals with the possible cases for a default value passed
though as $defaultValue:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

though as $defaultValue:

If there is an $additionalOption, it is output as an <option>. If it is also
the default option, it is output as the <option selected>.

If there is no $defaultValue passed through as a parameter, the code
produces an option for each value in $resultBuffer with no <option
selected>.

If there is a $defaultValue, the code iterates through the $resultBuffer
to see if this value is in the result set. If the value does occur in the
$resultBuffer, it is output as the <option selected>.

The regionName select list for the online winestore has the default option of
All—which isn't a region in the region table—and this is added manually to the list of
options the user can choose from.

Generic, database-independent—or at least table-independent—code is a useful
addition to a web database application. Similar functions to selectDistinct()
can be developed using the same five-step process to produce radio buttons,
checkboxes, multiple-select lists, or even generic complete <form> pages based on
a database table.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Chapter 6. Writing to Web Databases
Many web database systems aren't only information resources for users but are also
tools for storing new information. In our online winestore, users and administrators
write data to the database in several situations. Users can purchase wines by
creating an order, they can become members, they can manage a shopping cart, and
the winestore administrator can manage the stock.

Writing data in web database applications requires different techniques than reading
data. Issues of transactions and concurrency become important, and we introduce
these issues and the principles of dealing with them in this chapter. The introduction
is practical: we focus on the basic management techniques of locking and unlocking
tables, and how to safely implement simple database writes in MySQL when there is
more than one user simultaneously accessing a database. Most importantly, we
identify when special approaches are required, and when these can be safely omitted
from a web database application.

We begin by discussing a <form> designed to capture input for database writes. We
also include more simple example scripts that illustrate more about PHP and its use
in processing <form> input. We discuss some of the problems of <form>
submission and validation further in the next chapter.

We also include in this chapter an example illustrating the reload problem, where
variables and values are resubmitted when a web page in a browser is, for example,
resized. This has practical problems—such as inadvertently buying two bottles of
wine—and we discuss a solution that uses HTTP headers.

We then discuss how files can be uploaded from a web browser to a web server and
the data then inserted into a MySQL table. We use as an example the uploading of
GIF images of maps of wine regions. We also show how these images can be
displayed using SQL queries.

By the conclusion of this chapter, we will have covered the skills to build a simple but
complete web database application. Several advanced topics remain, including
validation of user-supplied data, adding state to a web database application, and
authenticating users. We cover these three topics in the next three chapters.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

6.1 Database Inserts, Updates, and Deletes

Simple database insertions and updates are much the same as queries. We begin
this section with a simple case study example that is similar to the querying examples
we presented in the last two chapters. However, inserting, updating, and deleting data
does require some additional care. After presenting this first example of inserting
data, we show a common problem that our first example suffers from—the reload
problem—and discuss a solution. After that, we return to further, richer examples of
writing to a database and discuss more complex problems and solutions.

Example 6-1 shows a script that presents a <form> for adding a new region to the
winestore database and requires the user to provide a new region name and
description. The script is similar to the user-driven combined scripts of Chapter 5. If
the region name and description are both not empty, an INSERT SQL statement is
prepared to insert the new region, using a NULL value for the region_id. As we
discussed in Chapter 3, inserting NULL into an auto_increment PRIMARY KEY
attribute allocates the next available key value.

If the query is successful—and one row is affected as expected—a success message
is printed. If an error occurs, error handling using the method described in Chapter 4
is used. We discuss the function mysql_affected_rows() later in Section
6.1.3.

Example 6-1. A combined script to insert a new region in the winestore database

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Insert a Region</title>
</head>
<body>
<?php
 include 'db.inc';
 include 'error.inc';

 // Test for user input
 if (empty($regionName) || empty($description))
 {
?>
 <form method="GET" action="example.6-1.php">
 Region_name:

 <input type="text" name="regionName" size=80>

Description:

 <textarea name="description" rows=4 cols=80></textarea>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <textarea name="description" rows=4 cols=80></textarea>

 <input type="submit">
 </form>
<?php
 }
 else
 {
 if (!($connection = @ mysql_connect($hostName,
 $username,
 $password)))
 die("Could not connect to database");

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 $insertQuery = "INSERT INTO region VALUES
 (NULL, " .
 "\"" . $regionName . "\", " .
 "\"" . $description . "\", " .
 "NULL)";

 if ((@ mysql_query ($insertQuery,
 $connection))
 && @ mysql_affected_rows() == 1)
 echo "<h3>Region successfully inserted</h3>";
 else
 showerror();
 } // if else empty()
?>
</body>
</html>

Most write operations can use a format similar to that of Example 6-1. In particular,
where database changes are reasonably infrequent and can be performed in one
step, most of the more complex issues we describe later in Section 6.2 can be
ignored. For the winestore, adding or updating customer details, regions, wineries,
and inventory requires almost no more sophistication.

However, as noted earlier, Example 6-1 does have one undesirable side effect that
is common in web database applications. The problem isn't really related to modifying
the database but rather to the statelessness of the HTTP protocol. We discuss this
side effect—the reload problem—and an effective solution in the next section.

6.1.1 Reloading Data and Relocation Techniques

Simple updates using the approach shown in Example 6-1 are susceptible to a
common problem of the stateless HTTP protocol that we call the reload problem.
Consider what happens when a user successfully enters a new region name and
description, and clicks the Submit button. Since the script is a combined script, the
same code is executed for a second time, the HTTP encoded variables and values
are passed through with the GET method request, a new row is inserted in the region
table, and a success message is displayed. So far, everything is going according to
plan.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Consider now what happens if the user reloads the success message page with the
Reload or Refresh button in the browser. Unfortunately, the variables and values are
resubmitted to the same script, and another region row—with the same name and
description—is added to the region table. There is no way in this example that the first
click of the Submit button to add the first row can be distinguished from a second
action that sends the same variables and values to the script. A representation of the
reload problem is shown in Figure 6-1.

Figure 6-1. The reload problem

The same reload problem occurs when the user stores the URL as a bookmark or
favorite location in her browser and then later requests the URL. Other actions that
return to the success page, such as using the Back button, have the same
undesirable effect. Perhaps surprisingly, resizing the browser window or printing the
page also creates a new HTTP request and causes the reload problem. In our case,
each request for the URL adds another identical region to the winestore!

The reload problem occurs in many situations. Actions that
rerequest a document from the server include pressing the
Reload or Refresh buttons, printing, saving the URL in the
browser and returning to the page using a bookmark or favorite,
using the Back or Forward buttons, pressing the Enter key in the
URL Location entry box, and resizing the browser window.

The reload problem isn't always a significant problem. For example, if you use the
SQL UPDATE statement to update customer details, and the values are amended with
the same correct values repeatedly, there is no data duplication. Indeed, if a row is
deleted and the user repeats the operation, the user, at worst, sees a MySQL DBMS
error message. However, while some UPDATE and DELETE operations are less
susceptible to the reload problem, a well-designed system avoids the problem
altogether. Avoidance prevents user confusion and unnecessary DBMS activity. We
discuss a solution in a moment.

The HTTP POST method is a little less susceptible to the reload problem than the GET

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The HTTP POST method is a little less susceptible to the reload problem than the GET
method. If a user reretrieves the script after the first database change, the browser
should ask the user whether or not to repost form data as per the HTTP specification.
If the user answers OK, the database operation is repeated causing the problem.
However, if the user bookmarks the page or reenters the URL at a later time, the
<form> is redisplayed because the POST variables and values aren't part of the URL
and are lost.

A solution to the reload problem is shown in Figure 6-2, based on the HTTP
Location: header, the same header used for one-component querying in Chapter
5.

Figure 6-2. Solving the reload problem with a redirection to a receipt page

The reload solution works as follows:

1. The user submits the <form> with the variables and values for a database write
operation (an SQL INSERT, UPDATE, or DELETE).

2. The SQL write operation is attempted.

3. Whether or not the modification is successful, an HTTP Location: header is
sent to the browser to redirect the browser to a new, receipt page.

HTTP GET encoded variables and values are usually included with the
Location: header to indicate whether the action was successful or not.
Additionally, text to display might be sent as part of the redirection URL.

4. An informative—but harmless—receipt page is displayed to the user, including
a success or failure message, and other appropriate text.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The HTTP redirection solves the reload problem. If the user reloads the receipt page
the browser has been redirected to, he sees the receipt again, and no database write
operations occur. Moreover, since the receipt page receives information about the
success or failure of the operation—and any other information identifying the action—
encoded in the URL, the receipt page URL can be saved and reloaded in the future
without any undesirable effect.

6.1.1.1 Solving the reload problem in practice

A modified version of Example 6-1 with the redirect functionality is shown in
Example 6-2. The code is almost identical to that of Example 6-1, with two
exceptions.

The first difference in the script in Example 6-2 is that regardless of whether the
database insert succeeds or fails, the header() function is called. This redirects
the browser to the script shown in Example 6-3 by sending a Location:
example.6-3.php HTTP header. The difference between the success and failure
cases is what is appended to the URL as a query string. In the case of success,
status=T and the value of the added region_id attribute are sent. A value of
status=F is sent on failure.

The second difference is that the script allows the user to upload a map of the wine
region in GIF format for storage in the database. We discuss this functionality in the
next section. The script also uses the function mysql_insert_id(); look for this
function in the later section Section 6.1.3.

Example 6-2. An insertion script

<?php
 include 'db.inc';
 include 'error.inc';

 if (empty($regionName) || empty($description))
 {
?>
 <!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
 <html>
 <head>
 <title>Insert a Region</title>
 </head>
 <body>
 <form enctype="multipart/form-data"
 action="example.6-2.php" method="post">
 Region_name:

<input type="text" name="regionName" size=80>

Description:

<textarea name="description" rows=4 cols=80>
 </textarea>
 <input type="hidden"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <input type="hidden"
 name="MAX_FILE_SIZE" value="100000">

Region map (GIF format):
 <input name="userfile" type="file">

<input type="submit">
 </form>
 </body>
 </html>
<?php
 }
 else
 {
 $regionName = clean($regionName, 50);
 $description = clean($description, 2048);

 if (!($connection = @ mysql_connect($hostName,
 $username,
 $password)))
 die("Could not connect to database");

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 // Was an image file uploaded?
 if (is_uploaded_file($userfile))
 {
 // Open the uploaded file
 $file = fopen($userfile, "r");

 // Read in the uploaded file
 $fileContents =
 fread($file, filesize($userfile));

 // Escape special characters in the file
 $fileContents = AddSlashes($fileContents);
 }
 else
 $fileContents = NULL;

 // Insert region data, including the image file
 $insertQuery = "INSERT INTO region VALUES
 (NULL, " .
 "\"" . $regionName . "\", " .
 "\"" . $description . "\", " .
 "\"" . $fileContents . "\")";

 if ((@ mysql_query ($insertQuery,
 $connection))
 && @ mysql_affected_rows() == 1)
 header("Location: example.6-3.php?" .
 "regionId=". mysql_insert_id($connection) .
 "&status=T");
 else
 header("Location: example.6-3.php?" .
 "status=F");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "status=F");
 }
?>

The script in Example 6-3 is a receipt page. When requested with a parameter
status=T, it queries the database and displays the details of the newly inserted
region. The region is identified by the value of the query string variable regionId.
The script also uses another script to display the image of the map inserted by the
user; this approach is discussed next. On failure, where status=F, the script
displays a database insertion failure message. If the script is unexpectedly called
without a status parameter, an error message is displayed.

Example 6-3. The redirection receipt page

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Region Receipt</title>
</head>

<body bgcolor="white">
<?php
 include 'db.inc';
 include 'error.inc';

 $regionId = clean($regionId, 3);
 $status = clean($status, 1);

 // did the insert operation succeed?
 switch ($status)
 {
 case "T":
 // Yes, insert operation succeeded.
 // Show details of the new region as
 // a receipt page. The new region_id
 // is in the variable $regionId

 $query = "SELECT * FROM region WHERE " .
 "region_id = $regionId";

 // Connect to the MySQL DBMS
 if (!($connection = @ mysql_connect($hostName,
 $username,
 $password)))
 die("Could not connect to database");

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 // Run the query on the DBMS
 if (!($result = @ mysql_query ($query, $connection)))
 showerror();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 showerror();

 if ($row = @ mysql_fetch_array($result))
 {
 echo "The following region was added";
 echo "\n
Region number: " . $row["region_id"];
 echo "\n
Region name: " . $row["region_name"];
 echo "\n
Region description: " .
 $row["description"];
 // Use the script example.6-4.php to display
 // the map GIF
 echo "\n
Region map : " .
 "\n
<img src=\"example.6-4.php?region_id=" .
 $regionId . "\">";
 } // if mysql_fetch_array()

 // leave the switch statement
 break;

 case "F":
 // No, insert operation failed
 // Show an error message
 echo "The region insert operation failed.";
 echo "
Contact the winestore administrator.";

 // leave the switch statement
 break;

 default:
 // User did not provide a status parameter
 echo "You arrived unexpectedly at this page.";
 } // end of switch
?>
</body>
</html>

Several different receipt pages would be developed for an application to informatively
display enough information for each different insert, update, and delete operation.

6.1.2 Uploading and Inserting Files into Databases

Example 6-2 and Example 6-3 also show how files can be uploaded from a web
browser to a web server, the file data inserted into a database, and the data then
retrieved and displayed as part of a web page. In the examples, the file uploaded is a
GIF image, but the techniques can be applied to any file or content type.

Files are transferred using the <form> encoding type multipart/form-data and
the POST method. Most modern browsers—such as Netscape and Internet Explorer—
support this encoding type and the <input> of type file. The <input> of type
file displays a widget into which the user can enter a filename; it also displays a
Browse button that displays a file dialog for finding files. Therefore, the following
fragment from Example 6-2 is all that is needed for a user to select a file and for it to
be transferred from a browser to a server:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<form enctype="multipart/form-data" action="example.6-2.php" method="post">

Region map (GIF format):
<input name="userfile" type="file">

<input type="submit">
</form>

The uploaded file and information about it can be accessed directly at the web server
using PHP. Assuming the <input> widget of type file has a name=userfile, the
name of the file on the web server can be accessed as $userfile. The original
name of the file on the browser can also be accessed as $userfile_name, the file
size as $userfile_size, and the type of the file as $userfile_type.

The following fragment from Example 6-3 checks if a file has been uploaded and, if
so, reads the contents of the file into the variable $fileContents:

 // Was an image file uploaded?
 if (is_uploaded_file($userfile))
 {
 // Open the uploaded file
 $file = fopen($userfile, "r");

 // Read in the uploaded file
 $fileContents =
 fread($file, filesize($userfile));

 // Escape special charcters in the file
 $fileContents = AddSlashes($fileContents);
 }
 else
 $fileContents = NULL;

The library function is_uploaded_file() should always be
used to make sure the file being processed was actually
uploaded to the web server. Without the check, a security
problem can arise if the user supplies the filename of a file on
the web server as a value for userfile using a GET or POST
request.

The function fopen() opens a file on disk; in this example, it opens the file in read
mode by supplying the r flag as the second parameter. The function fread()
reads the contents of a file, in this case into the variable $fileContents. In this
example, the number of bytes read from the file is the file size, determined by using
the function filesize(). After reading the file, any special characters are escaped
by adding slashes using the AddSlashes() function. It's necessary to do this
before the content of the file can be added to the database.

The file data in $fileContents is then inserted in the same way as any other data
into the region table:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Insert region data, including the image file
$insertQuery = "INSERT INTO region VALUES
 (NULL, " .
 "\"" . $regionName . "\", " .
 "\"" . $description . "\", " .
 "\"" . $fileContents . "\")";

The end result is that a new region has a name, a textual description, and an
associated GIF image stored as the map attribute.

Displaying images from a database is straightforward. The script shown in Example
6-4 retrieves a map image from the region table and outputs the image using the
echo statement. The region_id of the required image is supplied as a parameter
using the GET method. A header is output to the browser that defines the MIME type
of the image, in this case image/gif, and the data follows.

Example 6-4. A script to retrieve GIF images from the region table map attribute

<?
 include 'db.inc';
 include 'error.inc';

 $region_id = clean($region_id, 2);

 if (empty($region_id))
 exit;

 // Connect to the MySQL DBMS
 if (!($connection = @ mysql_pconnect($hostName,
 $username,
 $password)))
 die("Could not connect to database");

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 $query = "SELECT map FROM region
 WHERE region_id = $region_id";

 // Run the query on the DBMS
 if (!($result = @ mysql_query ($query,$connection)))
 showerror;

 $data = @ mysql_fetch_array($result);

 if (!empty($data["map"]))
 {
 // Output the GIF MIME header
 header("Content-Type: image/gif");
 // Output the image
 echo $data["map"];

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 echo $data["map"];
 }
?>

The script in Example 6-4 is requested by an embedded tag in Example 6-
3:

echo "\n
Region map : " .
 "<img src=\"example.6-4.php?region_id=" .
 $regionId . "\">";

The result is that when the user views the receipt page in Example 6-3, the
uploaded image from the database is displayed.

The techniques we have described work for small files such as most GIF images.
Several additional configuration steps are required if files larger than a few
megabytes are to be uploaded:

As in Example 6-2, an additional hidden <form> field must be added to
specify the maximum allowed upload file size, such as:

<input type="hidden" name="MAX_FILE_SIZE" value="100000">

The memory limit of a PHP script should be greater than the maximum file size.
This can be set by adjusting the memory_limit parameter in the php.ini file,
which was copied to /usr/local/lib/ in the installation instructions in Appendix A.

The maximum file upload size should be set by modifying the
upload_max_filesize parameter in the php.ini file.

The maximum POST size should be set to be greater than the maximum file size
by modifying the post_max_size parameter in the php.ini file.

The maximum execution time for a PHP script should set to an appropriate
value to allow the upload to complete. The default value is 30 seconds. The
parameter can be changed by modifying the max_execution_time parameter
in the php.ini file.

The web server must be restarted after any changes, so that the php.ini
configuration file is reread. This can be done by executing the command
apachectl restart in the directory /usr/local/apache/bin/, assuming the
installation instructions in Appendix A were followed.

6.1.3 Inserting, Updating, and Deleting Data

In this section, we complete our discussion of the basics of modifying data by
individually considering inserting, updating, and deleting data. We illustrate the
principles of each technique in PHP through introductory case study examples;
complete examples are presented in Chapter 10 to Chapter 13. Let's begin by
looking at two useful PHP functions, both of which have already been used in
Example 6-1 and Example 6-2.

6.1.3.1 PHP DML functions for database modifications

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following two functions are used with the MySQL functions described in Chapter
4. The first, mysql_affected_rows(), is used to insert, delete, and update data.
The second, mysql_insert_id(), is used only for insert operations.

int mysql_affected_rows([resource connection])

Reports the number of rows affected by the last UPDATE, DELETE, or INSERT
SQL statement. The function takes as an optional parameter a DBMS
connection resource handle. If no parameter is passed, the most recently
opened connection is assumed. The function should not be used with SELECT
statements; mysql_num_rows() should be used instead.

For example, if a customer is deleted with the SQL statement:

DELETE FROM customer WHERE CUST_ID=1

then mysql_affected_rows() returns a value of 1 if that customer has
been successfully deleted. If the query:

INSERT INTO customer SET cust_id = 700

is executed successfully, the function also returns 1.

However, the function may report that zero rows were affected, even if a
statement works successfully, because it is possible that an operation may not
modify the database. For example, the statement:

UPDATE customer SET zipcode='3053' WHERE city = 'Carlton'

always executes but mysql_affected_rows() returns 0 if there are no
customers who live in Carlton. Similarly, if a customer row has already been
deleted, the function returns 0.

int mysql_insert_id([resource connection])

Returns the AUTO_INCREMENT identifier value associated with the most
recently executed SQL INSERT statement. The function is used, for example, to
find the cust_id of a new customer when relying on AUTO_INCREMENT to
allocate the next available cust_id primary key value after an INSERT INTO
customer operation.

The last connection opened is assumed if the connection resource handle
parameter is omitted.

This function should be called immediately after the insertion of a row and the
result saved in a variable, since the function works for a connection and not on
a per-query basis. Subsequent insertions through the same connection make it
impossible to retrieve previous key values using this function.

6.1.3.2 Inserting data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We have already illustrated several examples of insertion of data. Let's consider the
principles of insertion and a more complex example.

Phase one of the insertion process is data entry. Example 6-5 shows an HTML
<form> for capturing data to be inserted into the winestore customer table. The
<form> allows entry of customer details into <input type="text"> controls. Only
mandatory customer details are entered through this example; the completed
customer <form> is presented in Chapter 10.

The date of birth entry—as noted in the instruction before the control—is required in
the format DD/MM/YYYY. This requires later conversion to the native MySQL YYYY-
MM-DD database format before storing in the database. This conversion is a validation
step and, as such, is part of the second phase of insertion that is discussed in detail
in Chapter 7. The HTML <form> rendered in a Netscape browser is shown in
Figure 6-3.

Example 6-5. An HTML <form> that collects customer data

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head><title>Customer Details</title></head>
<body bgcolor="white">
<form method="POST" action="example.6-6.php">
<h1>Customer Details</h1>
<h3>Please fill in the details below to join.
Fields shown in red are
mandatory.</h3>

<table>
<col span="1" align="right">

<tr>
 <td>Surname:</td>
 <td><input type="text" name="surname" size=50></td>
</tr>

<tr>
 <td>First Name:</td>
 <td><input type="text" name="firstName" size=50></td>
</tr>

<tr>
 <td>Address:</td>
 <td><input type="text" name="address1" size=50></td>
</tr>

<tr>
 <td>City:</td>
 <td><input type="text" name="city" size=50></td>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <td><input type="text" name="city" size=50></td>
</tr>

<tr>
 <td>Date of birth (dd/mm/yyyy): </td>
 <td><input type="text" name="dob" size=10></td>
</tr>

<tr>
 <td>Email/username:</td>
 <td><input type="text" name="email" size=50></td>
</tr>

<tr>
 <td><input type="submit" value="Submit"></td>
</tr>

</table>
</form>
</body>
</html>

Figure 6-3. The customer entry <form> from Example 6-5 rendered in a Netscape browser

The second phase of insertion is data validation and then the database operation
itself. Example 6-6 shows the PHP script to insert a new customer. The script has a
simple structure, with naive validation that tests only whether values have been
supplied for the mandatory fields.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 6-6. A validation example that tests for mandatory fields

<?php
 include 'error.inc';
 include 'db.inc';

 // Initialise an error string
 $errorString = "";

 // Clean and trim the POSTed values
 foreach($HTTP_POST_VARS as $varname => $value)
 $formVars[$varname] = trim(clean($value, 50));

 // Validate the firstname
 if (empty($formVars["firstName"]))
 // First name cannot be a null string
 $errorString .=
 "\n
The first name field cannot be blank.";

 // Validate the Surname
 if (empty($formVars["surname"]))
 // the user's surname cannot be a null string
 $errorString .=
 "\n
The surname field cannot be blank.";

 // Validate the Address
 if (empty($formVars["address1"]))
 // the user's address cannot be a null string
 $errorString .=
 "\n
You must supply at least one address line.";

 // Validate the City
 if (empty($formVars["city"]))
 // the user's city cannot be a null string
 $errorString .= "\n
You must supply a city.";

 // Validate Date of Birth
 if (empty($formVars["dob"]))
 // the user's date of birth cannot be a null string
 $errorString .= "\n
You must supply a date of birth.";

 elseif (!ereg("^([0-9]{2})/([0-9]{2})/([0-9]{4})$",
 $formVars["dob"], $parts))
 // Check the format
 $errorString .=
 "\n
The date of birth is not a valid date " .
 "in the format DD/MM/YYYY";

 if (empty($formVars["email"]))
 // the user's email cannot be a null string
 $errorString .= "\n
You must supply an " .
 "email address.";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Now the script has finished the validation,
 // check if there were any errors
 if (!empty($errorString))
 {
 // There are errors. Show them and exit.
?>
<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
<html>
<head><title>Customer Details Error</title></head>
<body bgcolor="white">
<h1>Customer Details Error</h1>
<?=$errorString?>

Return to the customer form
</body>
</html>
<?php
 exit;
 }

 // If we made it here, then the data is valid

 if (!($connection = @ mysql_pconnect($hostName,
 $username,
 $password)))
 die("Could not connect to database");

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 // Reassemble the date of birth into database format
 $dob = " \"$parts[3]-$parts[2]-$parts[1]\"";

 // Create a query to insert the customer
 $query = "INSERT INTO customer
 set cust_id = NULL, " .
 "surname = \"" . $formVars["surname"] . "\", " .
 "firstname = \"" . $formVars["firstName"] . "\", " .
 "addressline1 = \"" . $formVars["address1"] . "\", " .
 "city = \"" . $formVars["city"] . "\", " .
 "email = \"" . $formVars["email"] . "\", " .
 "birth_date = $dob";

 // Run the query on the customer table
 if (!(@ mysql_query ($query, $connection)))
 showerror();

 // Find out the cust_id of the new customer
 $custID = mysql_insert_id();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $custID = mysql_insert_id();

 // Now show the customer receipt
 header("Location: customer_receipt.php?custID=$custID");
?>

If an error occurs in the validation process in Example 6-6, the script appends an
error description to the string $errorString. The validation of the $dob variable is
more complex than that of other fields because the data entry format and database
storage format of the field are different, and there are specific requirements for the
structure of a date field in a MySQL database table; the techniques used for this
reformatting step are discussed in the next chapter.

If an error has occurred, the descriptive string $errorString is output to the
browser, followed by an embedded link to allow the user to return to the <form> in
Example 6-5. Unfortunately, if the user does click on this link—instead of pressing
the Back button—she is returned to an empty <form>. A solution to this problem is
presented in Chapter 8.

If the validation succeeds, the final step of the insertion process is completed. Any
data that must be reformatted for insertion is modified, and the INSERT query
executed. In this implementation, NULL is inserted as the cust_id attribute to use
the auto_increment feature and avoid any of the problems discussed in the later
section Section 6.2. If the query succeeds, the script redirects to a receipt page that
reports the results; we don't discuss the receipt page here, but the complete code is
presented in Chapter 10.

6.1.3.3 Updating data

Updating data is usually a more complex process than inserting it. A three-step
process for updates is used in most web database applications:

1. Using a key value, matching data is read from the database.

2. The data is presented to the user for modification.

3. The data is updated by writing the modified data to the database, using the key
value from the first step.

The first step of this process is usually user-driven: the user provides information that
identifies the data to be updated. The information to identify the data—for example, a
primary key value such as a cust_id—might be gathered in one of several ways:

It may be entered into a <form> by the user. For example, the user may be
asked to type in or select from a list the customer identifier of the customer he
wishes to modify.

It may be determined from another user-driven query. For example, the user
might provide a surname and a first name through a <form>, and a SELECT
query can then retrieve the unique customer identifier cust_id of that
customer from the database (assuming the surname and first name combination
is unique).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It may be formatted into an embedded link by a script. For example, you can
produce a list of descriptions of regions from the winestore, where each entry in
the list is a hypertext link that has the unique region identifier encoded as a
query string.

These methods of gathering data from the user are discussed in Chapter 5. Here,
let's assume that a primary key is provided through one of these techniques, and the
value of the primary key has been encoded in an HTTP request that can be
processed by the update script.

Step 1 is completed by retrieving the data that matches the primary key value
provided by the user. Step 2 is to present the data to the user. To achieve this, a
<form> is usually created that contains the values of each attribute that can be
modified. In some cases, some attributes may not be presented to the user, and other
values may require reformatting from their database representation for presentation.
Reformatting is discussed in detail in Chapter 7.

In addition to presenting the data to the user, a method is required to store the
primary key value associated with the data, because it is needed in Step 3 as a key to
update the data. There are several approaches to maintaining this key across the
three-step process, and one simple approach is presented in the next section.

Step 2 is complete when the user submits the <form> containing the modified data.
Step 3 updates the database; this uses the same process as inserting new data.

6.1.3.4 Case study: Inserts and updates in practice

Example 6-7 shows a modified version of Example 6-5 that supports database
updates. The script implements the first two steps of the three-step update process
from the previous section. We discuss the third step later in this section.

Example 6-7. Allowing entry of new customer details and displaying customer details

<?php
 include 'db.inc';
 include 'error.inc';

 $custID = clean($custID, 5);

 // Has a custID been provided?
 // If so, retrieve the customer details for editing.
 if (!empty($custID))
 {
 if (!($connection = @ mysql_pconnect($hostName,
 $username,
 $password)))
 die("Could not connect to database");

 if (!mysql_select_db($databaseName, $connection))
 showerror();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 showerror();

 $query = "SELECT * FROM customer
 WHERE cust_id = " . $custID;

 if (!($result = @ mysql_query($query, $connection)))
 showerror();

 $row = mysql_fetch_array($result);

 // Reset $formVars, since we're loading from
 // the customer table
 $formVars = array();

 // Load all the form variables with customer data
 $formVars["surname"] = $row["surname"];
 $formVars["firstName"] = $row["firstname"];
 $formVars["address1"] = $row["addressline1"];
 $formVars["city"] = $row["city"];
 $formVars["email"] = $row["email"];
 $formVars["dob"] = $row["birth_date"];
 $formVars["dob"] = substr($formVars["dob"], 8, 2) .
 "/" .
 substr($formVars["dob"], 5, 2) .
 "/" .
 substr($formVars["dob"], 0, 4);
 }
?>
<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
<html>
<head><title>Customer Details</title></head>
<body bgcolor="white">
<form method="post" action="example.6-8.php">
<h1>Customer Details</h1>
<h3>Please fill in the details below to join.
 Fields shown in red are
 mandatory.</h3>
<table>
<col span="1" align="right">

<tr>
 <td><input type="hidden" name="custID"
 value="<? echo $custID;?>"></td>
</tr>

<tr>
 <td>First name:</td>
 <td><input type="text" name="firstName"
 value="<? echo $formVars["firstName"]; ?>" size=50></td>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 value="<? echo $formVars["firstName"]; ?>" size=50></td>
</tr>

<tr>
 <td>Surname:</td>
 <td><input type="text" name="surname"
 value="<? echo $formVars["surname"]; ?>" size=50></td>
</tr>

<tr>
 <td>Address:</td>
 <td><input type="text" name="address1"
 value="<? echo $formVars["address1"]; ?>" size=50></td>
</tr>

<tr>
 <td>City:</td>
 <td><input type="text" name="city"
 value="<? echo $formVars["city"]; ?>" size=20></td>
</tr>

<tr>
 <td>Date of birth (dd/mm/yyyy): </td>
 <td><input type="text" name="dob"
 value="<? echo $formVars["dob"]; ?>" size=10></td>
</tr>

<tr>
 <td>Email/username:</td>
 <td><input type="text" name="email"
 value="<? echo $formVars["email"]; ?>" size=50></td>
</tr>

<tr>
 <td><input type="submit" value="Submit"></td>
</tr>

</table>
</form>
</body>
</html>

Step 1 of the update process works as follows. The script in Example 6-7 can
process a custID passed through with an HTTP request. If the variable is set—for
example, custID=1—this is an update operation. For an update, the script queries
the database for the matching customer row and initializes variables with the results
of the query. For example, when a surname is retrieved for a customer, the variable
$formVars["surname"] is initialized with data from the database using:

$formVars["surname"] = $row["surname"]

This initialization of variables completes the first step of the update process.

The second step of the process—displaying the retrieved data for modification by the
user—is achieved by modifying the <form>. We include throughout the <form> code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

user—is achieved by modifying the <form>. We include throughout the <form> code
in Example 6-7 short PHP scripts that initialize each <input> widget by setting the
value attribute. For example, consider the HTML and PHP code fragment:

<tr>
 <td>Surname:</td>
 <td><input type="text" name="surname"
 value="<? echo $formVars["surname"]; ?>" size=50></td>
</tr>

This fragment creates a text input widget to enter a surname and uses a short PHP
fragment to prefill the widget with the value of the variable
$formVars["surname"]. If the variable was initialized and isn't empty, the
database value is displayed for editing by the user.

The second step of the process is completed by embedding the value of $custID in
the <form> as a hidden input element. The $custID is embedded so it can be
passed to the next script, where it then constructs the SQL query to perform the
update operation. There are other ways this value can be passed through the three
steps; these techniques are the subject of Chapter 8.

Example 6-8 implements the third step. The process is the same as inserting new
data, with the exception of the SQL query that uses the $custID from the customer
<form> to identify the row to be updated. The script not only supports updates but
also supports the insert functionality of Example 6-6; if $custID isn't set, the data
is inserted as a new row. As previously, after the database operation, the browser is
redirected to a receipt page to avoid the reload problem. However, the update
process is now susceptible to other problems that are described in the later section
Section 6.2.

Example 6-8. Updating existing and inserting new customer rows

<?php
 include 'error.inc';
 include 'db.inc';

 $custID = clean($custID, 5);

 // Initialise an error string
 $errorString = "";

 // Clean and trim the POSTed values
 foreach($HTTP_POST_VARS as $varname => $value)
 $formVars[$varname] = trim(clean($value, 50));

 // Validate the firstname
 if (empty($formVars["firstName"]))
 // First name cannot be a null string
 $errorString .=
 "\n
The first name field cannot be blank.";

 // Validate the Surname

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Validate the Surname
 if (empty($formVars["surname"]))
 // the user's surname cannot be a null string
 $errorString .=
 "\n
The surname field cannot be blank.";

 // Validate the Address
 if (empty($formVars["address1"]))
 // the user's address cannot be a null string
 $errorString .=
 "\n
You must supply at least one address line.";

 // Validate the City
 if (empty($formVars["city"]))
 // the user's city cannot be a null string
 $errorString .= "\n
You must supply a city.";

 // Validate Date of Birth
 if (empty($formVars["dob"]))
 // the user's date of birth cannot be a null string
 $errorString .= "\n
You must supply a date of birth.";

 elseif (!ereg("^([0-9]{2})/([0-9]{2})/([0-9]{4})$",
 $formVars["dob"], $parts))
 // Check the format
 $errorString .=
 "\n
The date of birth is not a valid date " .
 " in the format DD/MM/YYYY";

 if (empty($formVars["email"]))
 // the user's email cannot be a null string
 $errorString .=
 "\n
You must supply an email address.";

 // Now the script has finished the validation,
 // check if there were any errors
 if (!empty($errorString))
 {
 // There are errors. Show them and exit.
?>
<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
<html>
<head><title>Customer Details Error</title></head>
<body bgcolor="white">
<h1>Customer Details Error</h1>
<?=$errorString?>

Return to the customer form
</body>
</html>
<?php
 exit;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 exit;
 }

 // If we made it here, then the data is valid

 if (!($connection = @ mysql_pconnect($hostName,
 $username,
 $password)))
 die("Could not connect to database");

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 // Reassemble the date of birth into database format
 $dob = " \"$parts[3]-$parts[2]-$parts[1]\"";

 // Is this an update?
 if (!empty($custID))
 {
 // Create a query to update the customer
 $query = "UPDATE customer SET ".
 "surname = \"" . $formVars["surname"] . "\", " .
 "firstname = \"" . $formVars["firstName"] . "\", " .
 "addressline1 = \"" . $formVars["address1"] . "\", " .
 "city = \"" . $formVars["city"] . "\", " .
 "email = \"" . $formVars["email"] . "\", " .
 "birth_date = " . $dob .
 " WHERE cust_id = $custID";
 }
 else
 // Create a query to insert the customer
 $query = "INSERT INTO customer
 set cust_id = NULL, " .
 "surname = \"" . $formVars["surname"] . "\", " .
 "firstname = \"" . $formVars["firstName"] . "\", " .
 "addressline1 = \"" . $formVars["address1"] . "\", " .
 "city = \"" . $formVars["city"] . "\", " .
 "email = \"" . $formVars["email"] . "\", " .
 "birth_date = $dob";

 // Run the query on the customer table
 if (!(@ mysql_query ($query, $connection)))
 showerror();

 // Is this an insert?
 if (empty($custID))
 // Find out the cust_id of the new customer
 $custID = mysql_insert_id();

 // Now show the customer receipt
 header("Location: customer_receipt.php?custID=$custID");
?>

6.1.3.5 Deleting data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The basic principle of deletion is a two-step process: first, identify the row or rows to
be deleted; and second, remove the data with an SQL DELETE statement.As in an
update, the first step requires a key value be provided, and any technique described
for capturing keys in updates can be used. We assume here that a unique, primary
key value for the row to be deleted is available.

Deleting rows using a primary key value is a minor modification to the update
functionality of the script in Example 6-8. For example, the following fragment
creates and runs a query to delete a specified customer identified by the value of
$custID:

 // Connect to the database, clean, and validate data

 // We have a custID. Set up a delete query
 $query = "DELETE FROM customer
 WHERE cust_id = $custID";

 if ((@ mysql_query ($query, $connection))
 && @ mysql_affected_rows() == 1)
 {
 // Query ran ok

 // Relocate to the receipt page with status=T
 header("Location: " .
 "delete_receipt.php?" .
 "cust_id=$custID" .
 "&status=T");
 }
 else
 {
 // Failed to delete customer row.
 // Relocate to the status page with status=F
 header("Location: " .
 "delete_receipt.php?" .
 "status=F");
 }

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

6.2 Issues in Writing Data to Databases

In this section, we discuss issues that emerge in database applications when multiple
users access a database system; some users are inserting, updating, or deleting
data, while others run queries.

To motivate the problems and solutions discussed here, consider an example.
Imagine a user of the winestore wants to buy the last bottle of an expensive, rare wine
that's in stock. The user browses the database and finds the wine. There is only bottle
left, and the user quickly adds this to her shopping cart. The shopping cart is a row in
the order table with only one related row in the items table. Now, the user decides to
finalize the purchase and is presented with a summary of the shopping cart.

However, while the user fumbles about finding her password to log in, another user
enters the system. This user quickly locates the same wine, sees that there is only
one bottle left, adds it to his shopping cart, logs in to the system, and purchases the
wine. When our first user finally logs in to finalize the order, all the details look fine,
but the wine has actually been sold. Our database UPDATE operation to deduct from
the inventory fails since the stock value is already zero, and we end up reporting an
error to our original—now very unhappy and confused—user.

Consider another example. Imagine that one of our winestore stock managers wants
to order 12 more bottles of a popular wine, but only if there are less than two dozen
bottles currently in stock. The manager runs a query to sum the total stock for that
wine from the inventory table. The result is that there are 15 bottles left, so the
manager decides to place an order. However, he heads off to fill his coffee cup first,
leaving the system displaying the query result.

A second stock manager arrives at her desk with the same intention: to order more of
this popular wine if there are less than 24 bottles. The result of the query is the same:
15 bottles. The second manager orders a dozen bottles, and updates the inventory to
27, knowing the bottles will arrive in the afternoon. The problem occurs when the first
manager returns: he doesn't rerun the query—why should he?—and he too orders 12
bottles and updates the inventory to 27. Now the system has record of 27 bottles, but
two dozen will arrive in the afternoon to take the total to 39!

The first problem is a design issue—as well as an example of an unrepeatable read—
and one that can be solved with more restrictive system requirements, knowledge of
how the DBMS behaves, and some careful script development. The second is a
classic problem—what textbooks describe as a lost update—and it requires more
understanding of relational database problems and theory. We cover simple solutions
to fundamental problems like these here, and discuss how MySQL implements
locking for transactions, concurrency, and performance.

This section isn't intended as a substitute for a relational database text. Most
textbooks contain extensive treatment of transaction and concurrency topics, and
most of these are highly relevant to the state problems of web database applications.

6.2.1 Transactions and Concurrency

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We have illustrated two examples of the problems users have when they access a
web database at the same time (that is, concurrently). Allowing uncontrolled
interleaving of SQL statements—where each of the users is reading and writing—can
result in several well-known problems. The management of a group of SQL
statements—we call these transactions—is one important area of the theory and
practice of relational databases. Here are four of the more common problems of
concurrent read and write transactions:

Lost update problem

User A reads from the database, recording a value. User B reads the same
value, then updates the value immediately. User A then updates the value,
overwriting the update written by User B. An example of this lost update
problem was described in the introduction to this section through the stock
update example.

Dirty read problem

User A reads a value from the database, changes the value, and writes it back
to the database. User B then reads the value, changes the value, and writes it
back to the database. User A then decides not to proceed for some reason with
the rest of his actions and therefore wants to undo the changes he made. The
problem is that User B has read and used the changed value, resulting in a dirty
read problem.

Consider an example: a manager decides to add a 3% surcharge to a particular
wine inventory, so she reads and updates the cost of that wine in the inventory
table. Another manager decides to apply a 10% discount to all wines made by a
particular winery, which happens to include the wine just surcharged. After all
this, the first manager realizes she has made a mistake: the wrong wine was
updated! Unfortunately, the second manager has already used this incorrect
value as input into his update, and the change can't be undone correctly.

Incorrect summary problem

One user updates values while another reads and summarizes the same
values. Values summarized may be read before or after each individual update,
resulting in unpredictable results.

For example, consider a case in the winestore in which one user updates
inventories and another produces a management stock report.

Unrepeatable read problem

A value is read in by a user, updated by another user, and subsequently reread
by the first user for verification. Despite not modifying the value, the first user
encounters two different values, i.e., an unrepeatable read.

Fortunately, most of these problems can be solved through locking or careful design

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fortunately, most of these problems can be solved through locking or careful design
of scripts that carry out database transactions. However, some problems may be
deliberately unsolved in a particular system because they restrict the system
requirements or add unnecessary complexity. We discuss locking in the next section.

6.2.2 Locking for Concurrency in MySQL

It has been shown that a simple scheme called locking—actually, two-phase
locking—solves the four transaction problems identified in the last section.

6.2.2.1 When and how to lock tables

The first and most important point is that the primary use of locking is to solve
concurrency problems. If scripts are being implemented that write to the database but
aren't multistep operations susceptible to the problems described in the last section,
locks aren't needed. Simple scripts that insert one row, delete one row, or update one
row, and that don't use results of a previous SELECT or data entered by the user as
input, don't require a lock.

Locking is required only when developing scripts that first read a
value from a database and later write that value to the database.
Locks are never required for self-contained insert, update, or
delete operations such as updating a customer's details, adding
a region to the region table, or unconditionally deleting an
inventory. Locking may not be required for all parts of a web
database application: parts of the application can still be safely
used without violating any locking conditions.

Locks are variables with a special property. With its default settings, each MySQL
table has an associated lock variable. If a user sets the lock variable for a particular
table, no other user can perform particular actions on that table. The user who has set
the lock variable holds the lock on the table. In practice, there are two kinds of locks
for each table: READ LOCKs, when a user is only reading from a table, and WRITE
LOCKs, when a user is both reading and writing to a table.

Having locks in a DBMS leads to four rules of use:

If a user wants to write to a table, and she is performing a transaction
susceptible to a concurrency problem, she must obtain a WRITE LOCK on that
table.

If a user only wants to read from a table, and he is performing a transaction
susceptible to a concurrency problem, he must obtain a READ LOCK on that
table.

If a user requires a lock, she must lock all tables used in the transaction.

A user must release all locks when a database transaction is complete.

When a user holds a WRITE LOCK on a table, no other users can read or write to that
table. When a user holds a READ LOCK on a table, other users can also read or hold a
READ LOCK, but no user can write or hold a WRITE LOCK on that table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

READ LOCK, but no user can write or hold a WRITE LOCK on that table.

SELECT, UPDATE, INSERT, or DELETE operations that don't use
LOCK TABLES don't proceed if locks are held that would logically
prevent their operation. For example, if a user holds a WRITE
LOCK on a table, no other user can issue a SELECT, UPDATE,
INSERT, DELETE, or LOCK operation on that table.

The following segment of an interaction with the MySQL command interpreter
illustrates the use of locks in a summarization task that requires locking:

mysql> LOCK TABLES items READ, temp_report WRITE;
mysql> SELECT sum(price) FROM items WHERE cust_id=1;
+------------+
| sum(price) |
+------------+
| 438.65 |
+------------+
1 row in set (0.04 sec)

mysql> UPDATE temp_report SET purchases=438.65
 WHERE cust_id=1;
mysql> UNLOCK TABLES;

In this example, a temporary table called temp_report is updated with the result of a
SELECT operation on the items table. If locks aren't used, the items table can be
modified by another user, possibly altering the summary value of $438.65 used as
input to the UPDATE operation. There are two locks obtained for this transaction: first,
a READ LOCK on items, since we don't need to change items but we don't want
another user to make a change to it; and, second, a WRITE LOCK on temp_report,
because we want to change the table, and we don't want other users to read or write
to the report while we make changes. The UNLOCK TABLES operation releases all
locks held; locks can't be progressively released.

It isn't permitted by MySQL to lock only one of the two tables used in the transaction
above. The following rules apply to locks:

If a lock is held, all other tables that are to be used must also be locked. Failing
to do so results in a MySQL error.

If aliases are used in queries—for example:

SELECT * from customer c where c.custid=1

the alias must be locked with:

LOCK TABLES customer c READ

or:

LOCK TABLES customer c WRITE

(depending on the transaction requirements).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If different aliases for the same table are used, each different alias must be
locked.

In many cases—including those in which locking is required if the tasks are
implemented intuitively—locking can be avoided. When designing transactions,
careful use of mysql_insert_id() (as opposed to using max() to find the next
available identifier), use of temporary summary tables, and updates that are relative
(such as UPDATE customer SET discount=discount*1.1) are practical
techniques to avoid using the output of previous SELECT statements.

6.2.2.2 The LOCK TABLES and UNLOCK TABLES statements in MySQL

The LOCK TABLES statement is used to lock the listed tables in either READ or WRITE
mode. As discussed earlier, all tables that are accessed in the transaction must be
locked in either READ or WRITE mode and must be listed in a single LOCK TABLES
statement.

A script that issues a LOCK TABLES statement is suspended until all locks listed are
successfully obtained. There is no time limit in waiting for locks. For locks that can't
be immediately obtained—because the lock is held by another user or an operation is
running on the table already—the request is placed at the back of either the write- or
read-lock queue for the table, depending on the lock required. The write-lock queue
has priority over the read-lock queue, so a user who wants a write lock obtains it
when it becomes available, regardless of how long another user has been waiting in
the read-lock queue. This is a design decision in MySQL that gives priority to
database modifications over database queries.

MySQL is designed to give writing priority over reading.
Regardless of how long a user has been queued in the READ
LOCK queue, any request in the WRITE LOCK queue receives
priority. This can lead to a problem called starvation, where a
transaction never completes because it can't obtain the required
locks. However, since most web database applications read from
databases much more than they write, and locks are required in
only a few situations, starvation is very uncommon in practice.

If low-priority writing is essential to an application, a
LOW_PRIORITY option can be prefixed before the WRITE
clause. If a transaction is queued for a LOW_PRIORITY WRITE,
it receives the lock only when the READ LOCK queue is empty
and no other users are reading from the table. Again,
consideration of possible starvation is important.

Locks can't be progressively obtained through several LOCK TABLES statements.
Indeed, issuing a second LOCK TABLES is the same as issuing an UNLOCK TABLES
to release all locks and then issuing the second LOCK TABLES. There are good
reasons for the strictness of this related to a well-known locking problem called
deadlock, which we don't discuss here. However, MySQL is deadlock-free because of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

deadlock, which we don't discuss here. However, MySQL is deadlock-free because of
the strictness and functionality of the LOCK TABLES and UNLOCK TABLES
statements.[1]

[1] Deadlock is a difficult problem. As recently as Version 3.22.23 of MySQL, there were bug fixes to MySQL to avoid
deadlocking problems in the DBMS.

MySQL has a feature called INSERT DELAYED for insertion that
is described in the MySQL manual.

Don't mix locking with INSERT DELAYED for insertion operations.
The INSERT DELAYED process is carried out by the MySQL
DBMS at a later time—under its own control—and the locks held
by the user can't be used by the DBMS. INSERT DELAYED
should be used only in situations in which locking isn't required.

6.2.2.3 Locking for performance

Locking is primarily designed to ensure that concurrent transactions can execute
safely. However, locking is also a useful performance tool to optimize the
performance of a particular transaction.

Consider, for example, a situation where we urgently require a complex report on the
stock in the winestore that uses a slow SELECT statement with a GROUP BY, ORDER
BY, and HAVING clause, and that joins together many tables. With other users
running queries and using system resources, this query may run even slower. A
solution is to use LOCK TABLES with the WRITE option to stop other users running
queries or database updates, and to have exclusive access to the database for the
query duration. This permits better optimization of the query processing by the DBMS,
dedication of all the system resources to the query, and faster disk access.

The downside of locking for performance is the reduction in concurrent access to the
database. Users may be inconvenienced by slow responses or timeouts from the web
database application. Locking for performance should be used sparingly.

6.2.3 Locking Tables in Web Database Applications

Example 6-9 shows a PHP function, updateDiscount(), that requires locking to
ensure that the value returned from the SELECT query can't change before the
UPDATE operation. The script is designed to be run either by the winestore system
administrator—it would then require a <form> for user input—or as the final module
in the ordering process for users. Another example that requires locking for winestore
ordering is included in Chapter 12.

The script in Example 6-9 is designed to reward loyal customers. If the customer
has spent a significant amount on an order at the winestore, a percentage discount is
applied to her order. The function updateDiscount() forms the body of the script.
It takes as parameters a cust_id, an order_id for that customer, a discount to
apply to that order, and a threshold total. If the total amount spent by the user
exceeds the threshold total, the discount is applied to the order.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 6-9. The updateDiscount function in which locking is required

 function updateDiscount($custId, $orderId,
 $discount, $minimum,
 $connection)
 {
 $ok = false;

 // Lock all tables required in this transaction
 $query = "LOCK TABLES items READ,
 orders WRITE, customer READ";

 if (!mysql_query($query, $connection))
 showerror();

 // Run query to find out how much a user
 // has spent in this purchase
 $query = "SELECT SUM(price*qty)
 FROM items, orders, customer
 WHERE customer.cust_id =
 orders.cust_id
 AND orders.order_id = items.order_id
 AND items.cust_id = orders.cust_id
 AND orders.order_id = $orderId
 AND customer.cust_id = $custId";

 if (!($result = mysql_query($query, $connection)))
 showerror();

 // Get the $row with the total spent
 $row = mysql_fetch_array($result);

 // Is the amount spent more than the threshold?
 if ($row["SUM(price*qty)"] > $minimum)
 {
 // Yes, so give the customer a discount
 // for this order
 $query = "UPDATE orders
 SET discount = $discount
 WHERE cust_id = $custId
 AND order_id = $orderId";

 if (!mysql_query($query, $connection))
 showerror();

 $ok = true;
 }

 // Unlock the tables
 $query = "UNLOCK TABLES";

 if (!mysql_query($query, $connection))
 showerror();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 showerror();

 // Return whether the discount was given or not
 return $ok;
 }

The locking of items, orders, and customer is performed before the query, and the
UNLOCK TABLES statement is issued after the database update of the discount. As
discussed in the last section, all tables and aliases that are used must be locked for
either READ or WRITE. MySQL reports an error if, for example, items is accessed but
not locked while orders and customer were locked. If an unlocked table needs to be
accessed—or locking must be avoided for a particular table—a second DBMS
connection can be opened and used.

6.2.3.1 Locking methods that don't work in web database applications

There are several locking paradigms that don't work in a web database application
because of the statelessness of HTTP. Each approach fails, because there is either
no guarantee or no possibility that the locked tables will be unlocked. If tables are
locked indefinitely, other transactions can't proceed, and the DBMS will most likely
need to be shut down and restarted.

Be careful with locking in web database applications. Remember
the basic rule that all locks should be unlocked by the same
script during the same execution of the script.

All web scripts that require locking should have the structure
lock, query, update, and unlock. There must be no user
interaction or intervening calls to other scripts that require input.

The following approaches to transactions and locking in a web database application
should be avoided:

Failing to issue an UNLOCK TABLES on a locked persistent database connection
opened with mysql_pconnect(). The locks aren't released when the script
terminates, and there is no guarantee that the script will be run in the future or
that the same persistent connection will be used again.

It isn't necessary to issue an UNLOCK TABLES if a nonpersistent connection
opened with mysql_connect() is used. Locks are automatically released
when the script finishes. However, it is good practice to include the UNLOCK
TABLES statement.

Locking one or more tables during the first execution of a script, then querying
or updating during a second or subsequent execution of the script. Remember
that each database connection in a script is independent and is treated as a
different user by MySQL. Such an approach queries and updates without locks
unless, by chance, the same persistent connection that issued the locks is
reused. A subsequent UNLOCK TABLES may fail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

reused. A subsequent UNLOCK TABLES may fail.

Retrieving a value such as the next available primary key value, presenting this
to the user, waiting for the user to enter further details, and then adding a row to
the database with that identifier. Remember that another user may add a row
while the first user is entering the required details, and locks should never be
carried across several scripts or different executions of the same script.

6.2.3.2 Locking with an auxiliary table

If values must be shown to a user, consider adding a summary table for identifiers, or
copying rows to a temporary table. For example, an identifier table can store the next
available identifier for each other table, this can then be incremented by the script and
the value can be used in subsequent scripts without locking problems and without any
clashes in numbering.

This solution is shown in Example 6-10, using an auxiliary table named ids that
manages the next available region_id attribute. The use of the additional table
prevents duplicate rows being inserted, and avoids any problems with locking or
updates.

Example 6-10. An auxiliary table manages the next region_id attribute

<?php
 // This code needs an auxiliary table called "ids"
 // that might be created with:
 // CREATE TABLE ids (
 // region_id int default 0,
 // other_id int default 0,
 // another_id int default 0
 //);
 // It has one row, and no primary key is required.
 // After creating the table, a row is needed,
 // so issue an: INSERT INTO ids (NULL, NULL, NULL);
 // (if it's being added later, use MAX() to get the
 // correct ID values!)

 include 'db.inc';
 include 'error.inc';

 function getNextRegion ($connection)
 {
 // A nice way to do it... use an auxiliary table
 // Lock the auxiliary table
 $query = "LOCK TABLES ids WRITE";

 if (!mysql_query($query, $connection))
 showerror();

 // Add one to the region_id attribute
 $query = "UPDATE ids SET region_id = region_id + 1";

 if (!mysql_query($query, $connection))
 showerror();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 showerror();

 // Find out the new value of region_id
 $query = "SELECT * FROM ids";

 if (!($result = mysql_query($query, $connection)))
 showerror();

 // Get the row that is returned
 $row = mysql_fetch_array($result);

 // Unlock the table
 $query = "UNLOCK TABLES";

 if (!mysql_query($query, $connection))
 showerror();

 // Return the region_id
 return ($row["region_id"]);
 }
 // MAIN -----
 if (!($connection = @ mysql_connect($hostName,
 $username,
 $password)))
 die("Could not connect to database");

 if (!mysql_select_db($databaseName))
 showerror();

 if (empty($regionId))
 {
 $regionId =
 getNextRegion($connection, $databaseName);
?>
<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Insert a region</title>
</head>
<body bgcolor="white">
region_id: <?= $regionId ?>

<form method="post" action="example.6-10.php">
 <input type="hidden"
 name="regionId" value="<?=$regionId;?>">

region_name:

<input type="text" name="regionName" size=80>

description:

<textarea name="description" rows=4 cols=80>
 </textarea>

<input type="submit">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<input type="submit">
</form>
</body>
</html>
<?php
 }
 else
 {
 $regionId = clean($regionId, 3);
 $regionName = clean($regionName, 20);
 $description = clean($description, 255);

 $query = "INSERT INTO region SET " .
 "region_id = " . $regionId . ", " .
 "region_name = \"" . $regionName . "\", " .
 "description = \"" . $description . "\"";

 if ((@ mysql_query ($query, $connection))
 && @ mysql_affected_rows() == 1)
 header("Location:insert_receipt.php?" .
 "values=$regionId&status=T");
 else
 header("Location: insert_receipt.php?status=F");
 }
?>

6.2.3.3 The table-level locking paradigm in MySQL

Until recently, MySQL supported only table locking. Other DBMSs support locking at
other levels, including locking rows, groups of rows, attributes across all rows in a
table, and disk pages.

A common argument against using MySQL has been that table locking is too heavy-
handed and that it limits concurrency in web database applications. This isn't really
true, except when there are specific requirements that are uncharacteristic of web
database applications.

Table locking works particularly well in web database applications, where typically:

DELETE and UPDATE operations are on specific rows—most often accessed by
the primary key value—and the rows are accessed through an index.

There are many more read operations than write operations.

Operations require locks on whole tables. Examples include GROUP BY
operations, updates of sets of rows, and reading in most rows in a table.

By default, MySQL uses a type of table called MyISAM. Up to now, the MyISAM and
heap have supported only table locking. However, three new database types have
recently become supported by MySQL, and these have different locking paradigms:

The Berkeley Database (BDB) tables have disk page-level locking; the LOCK
TABLES statement can still be used in BDB.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TABLES statement can still be used in BDB.

The InnoDB tables have row-level locking. They are designed to support very
large volumes of data efficiently, and the locking mechanisms are designed to
have low overheads.

The Gemini tables have both row- and table-level locking; unlike the other table
types that can be used with MySQL, the Gemini table is covered by a
commercial license and isn't free software.

Support for BDB and InnoDB tables must be compiled into MySQL during the
installation process, and each requires MySQL 3.23.34 or a later version. The Gemini
table type is a component of the commercially available NuSphere product range.
Configuration of these table types is outside the scope of this book.

Interestingly, the MyISAM tables permit a limited form of concurrency that isn't
immediately obvious with the table-locking paradigm. When a mix of select and write
operations occur on a MyISAM table, MySQL automatically allows write operations to
change copies of the data. Other SELECT statements being run by other users read
the unchanged data and, when they are completed, the modified copies are written
back to the database. This approach is known as data versioning.

6.2.3.4 Other locking paradigms

The row-locking paradigm is used in the InnoDB and Gemini table types, and is the
dominant paradigm in other DBMSs. The BDB table type offers page locking, which is
similar to locking selected rows.

Row or page locking works well in situations that are infrequently seen in web
database applications, such as:

Transaction environments where a number of steps need to be undone or rolled
back.

Many users are writing to the same tables concurrently.

Locks need to be maintained for long periods of time.

The drawbacks of row and page locking include:

Higher memory requirements to manage an increased number of locks

Poor performance, since there is much more locking and unlocking activity

Slow locking for operations that require locks on a whole table, such as GROUP
BY operations

6.2.3.5 What isn't covered here

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are two significant topics related to transactions and concurrency that aren't
covered in this chapter. We have omitted these topics because they are less
important in web database applications than in traditional relational systems, and
because this book isn't intended as a substitute for a good relational database text or
the documentation of the MySQL DBMS.

The first is a more traditional treatment of transactions from a commit and rollback
perspective. The InnoDB, BDB, and Gemini table types support a model where a
statement can be issued to begin a transaction that consists of several database
operations. On completion of the operations, a commit statement can be issued to
write the changes to the database and verify that these changes have occurred. If, for
some reason, the operations need to be undone—for example, when a user presses
Cancel—a rollback command can be issued to return the database to its original
state.

Commit and rollback processing is useful, but it can be argued that it is less
interesting in the stateless HTTP environment, in which operations need to be as
independent as possible. For most practical purposes in web database applications,
complex transactional processing isn't required.

The second topic we have not covered is recovery. Database recovery techniques
are based on logging, in which database changes are written to a file that can be
used for transaction rollback and for DBMS system recovery. MySQL does support
logging for recovery, and more details can be found in the MySQL manual.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Chapter 7. Validation on the Server and Client
Validation is essential to web database applications. Ensuring that data meets user
and system requirements is important, but ensuring that the database constraints are
met by the data is critical. There are three possible data environments in which
validation can occur in a three-tiered web database application: in the DBMS, in
server-side scripts, and on the client. We discuss the merits and possibilities of these
approaches to validation in this chapter.

As the name suggests, client-tier validation occurs at the client browser before a
request is sent to the server and is usually validation of <form> data. The most
common way to implement client-tier validation is using the scripting language best
known as JavaScript. JavaScript isn't a fully fledged programming language, but it's
one that can be effectively used for simple tasks such as validation. The drawback of
validation at the client is that it depends on the user and his environment: the user
can disable JavaScript, and can willfully or passively circumvent the validation, and
the client environment isn't usually managed or standardized by the developer of the
web database application.

Server-side validation is usually performed in a middle-tier script and is the essential
validation tool. When data is inserted, updated, or deleted at the DBMS, it's
undesirable to rely on the constraint-checking validation implicitly performed by the
DBMS in the database tier. Trapping errors using the PHP MySQL error functions is
difficult, has unnecessary network and DBMS overhead, and is hard to present to the
user in a meaningful way. A much better approach is to use the middle-tier PHP
scripts to validate data and ensure that all constraints of the database are met before
modifying the database.

In this chapter, we extend our discussion of validation in PHP. We have already
introduced basic validation principles in Chapter 5 with the clean() function for
security and in Chapter 6 with the field empty() checks used before modifying the
customer table. We extend those discussions here by introducing the principles of
validation and the practice of validating <form> variables and values with PHP. We
use the customer <form> we developed in Chapter 6 as our case study. We then
consider in more detail the variables and values that are sent from a browser to a
server, their variations, and the traps to watch for.

After discussing server-side validation, we discuss client-side JavaScript and how
simple validation can be performed at the client to save network costs and improve
responsiveness of an application to the user. We also introduce other simple tasks
that can be effectively accomplished with JavaScript.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

7.1 Validation and Error Reporting for Web Database Applications

There is nothing worse for a user than annoying, overly persistent, inaccurate, or
uninformative validation. For example, error messages that describe an error but
don't specify which field contains the error are difficult to correct. However, there is no
correct recipe for balancing validation with system requirements: what is pleasing or
mandated by requirements in one application might be annoying or useless in
another. In this section, we consider practical validation models for web database
applications.

Validation is actually two processes: finding errors and presenting error messages.
Finding errors can be interactive—where data is checked as it's entered—or it can be
post-validation, where the data is checked after entry. Presenting errors can be field-
by-field—where a new error message is presented to the user for each error found—
or it can be batched, where all errors are presented as a single message. There are
other dimensions to validation and error processing, such as the degree of error that
is tolerated and the experience level of the user. However, considering only the basic
processes, the choice of when to error-check and when to notify the user, leads to
four common approaches:

Interactive validation with field-by-field errors

The data in each field is validated when the user exits or changes the field. If
there is an error, the user is alerted to that error and may be required to fix the
error before proceeding.

Interactive validation with batch errors

The data in all fields is validated when the user leaves one field. If there are one
or more errors, the user is alerted to these, and normally the user can't proceed
beyond the current page without fixing all errors.

Post-validation with field-by-field errors

The user first enters all data with no validation. The data is then checked and
errors are reported field-by-field in separate error messages to the user.
Usually, for each error, the cursor is placed in the field requiring amendment.

Post-validation with batch errors

The user first enters all data with no validation. The data is then checked, and
all errors in the data are reported in one message to the user. The user then
fixes all errors and resubmits the data for revalidation.

In Chapter 6—without discussing the details—we covered several simple post-
validation techniques to check whether mandatory <form> data was entered before
inserting or updating data in the database. In addition, we used a batch reporting
method, where errors were reported as a list by constructing an error string. In the
case study example in this chapter, we discuss additional validation for the customer
<form> data to more carefully inspect both mandatory and optional fields. The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<form> data to more carefully inspect both mandatory and optional fields. The
completed validation code is listed in Chapter 10.

7.1.1 Models That Don't Work

Interactive models are difficult to implement in the web environment. Server-side
scripts are impractical for this task, since an HTTP request and response is required
to validate each field that's entered. This is usually unacceptable, because the user is
required to submit the data after entering each field, response times are likely to be
slow, and the server load high.

Client-side scripts can implement an interactive model. However, validation on the
client should not be the only method of validation because—as we emphasized in
Chapter 5—the user can passively or actively avoid the client-side processes. We
discuss the partially interactive solution of including client-side scripts with an HTML
<form> later in this chapter.

7.1.2 Models That Do Work

Post-validation models are practical in web database applications. Both client- and
server-side scripts can validate all <form> data during the submission process. In
many applications, reasonably comprehensive validation is performed on the client
side when the user clicks the <form> submit button. If this validation succeeds, data
is submitted to the server and the same—or more comprehensive—validation is
performed. Duplicating client validation on the server is essential because of the
unreliability of client-side scripts and lack of control over the client environment.

Client-side validation reduces server and network load, because
the user's browser ensures the data is valid prior to the HTTP
request. Client-side validation is also usually faster for the user.

The post-validation model can be combined with either field-by-field or batch error
reporting. For server-side validation, the batch model is preferable to a field-by-field
implementation, as the latter approach has more overhead and is usually slower
because each <form> error requires an additional HTTP request and response.

For client-side post-validation, either error-reporting model can be used. The
advantage of the field-by-field model is that the cursor can be directed to the field
containing the error, making error correction easier. The disadvantage is that several
errors require several error messages, and this can be frustrating for the user. The
advantage of the batch approach is that all errors are presented in one message. The
disadvantage is that the cursor can't easily be directed to the field requiring
correction.

Server-side validation is essential to secure a web database and
to ensure that system and DBMS constraints are met.

Client-side validation may be implemented in addition to server-
side validation, but all client-side functionality should be
duplicated at the server side. Never trust the user or the client
browser.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The choice of which reporting model to use depends on the size and complexity of
the <form> and on the system requirements.

In the next section, we introduce the practice of server-side post-validation using the
batch error reporting method. We introduce client-side scripting as a tool for validation
and error reporting in Section 7.3.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

7.2 Server-Side Validation

In this section, we introduce validation on the server. The techniques described here
are typical of those that validate a <form> after the user has submitted data to the
server. We show how to extend and integrate this approach further in Chapter 8 so
that the batch errors are reported as part of the customer <form>, and we show the
completed customer entry <form> and validation in Chapter 10.

7.2.1 Case Study: Customer Validation in the Winestore

In this section, we show how to validate selected winestore customer <form> data,
including examples of the validation checks required for mandatory fields, field
lengths, and data types. Many functions—including the regular expression and string
functions—are discussed in detail in Chapter 2.

Our system requirements in Chapter 1 note the following validation requirements:

A user must provide a surname, first name, one address line, a city, a state, a
zip code, a country, a birth date, an email address, and a password.

The user may also optionally provide a middle initial, a title, two additional
address lines, a state, a telephone number, and a fax number.

Testing whether mandatory fields have been entered is straightforward, and we have
implemented this in our examples in Chapter 6. For example, to test if the user's
surname has been entered, use the following approach:

// Validate the Surname
if (empty($formVars["surname"]))
 // the user's surname cannot be a null string
 $errorString .=
 "\n
The surname field cannot be blank.";

For optional fields, omit this check.

While it isn't specified in the brief system requirements, it's reasonable to assume that
the fields provided by the user should be validated using additional checks. For
example, telephone and fax numbers should be numeric and conform to a well-known
template. Email addresses should meet the requirements of the RFC-2822 document
available from http://www.ietf.org or at least a reasonable approximation;
moreover, the domain part of the email address—such as webdatabasebook.com—
should be an actual, existing domain. We describe additional validation steps in this
section; the complete code for the customer <form> validation is listed in Chapter
10.

7.2.1.1 Validating dates

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dates of birth, expiry dates, order dates, and other dates are commonly entered by
users. Most dates require checks to see if the date is valid and also if it's in a required
range. In the customer <form>, the user is required to provide a date of birth. We
validate this date of birth to check it has been entered, and to check its format, its
validity, and whether it's within a range; the range of valid dates in the example
begins with the user being alive—we assume alive users are born after 1890—and
ends with the user being at least 18 years of age.

Date-of-birth checking is implemented with the following code fragment:

// Validate Date of Birth
if (empty($formVars["dob"]))
 // the user's date of birth cannot be a null string
 $errorString .= "You must supply a date of birth.";

 elseif (!ereg("^([0-9]{2})/([0-9]{2})/([0-9]{4})$",
 $formVars["dob"], $parts))
 // Check the format
 $errorString .=
 "The date of birth is not a valid date in the " .
 "format DD/MM/YYYY";

elseif (!checkdate($parts[2],$parts[1],$parts[3]))
 $errorString .= "The date of birth is invalid. " .
 "Please check that the month is between 1 and 12, " .
 "and the day is valid for that month.";

 elseif (intval($parts[3]) < 1890)
 // Make sure that the user has a reasonable birth year
 $errorString .=
 "You must be alive to use this service.";

 // Check whether the user is 18 years old.
 // If all the following are NOT true,
 // then report an error.
elseif
 // Were they born more than 19 years ago?
 (!((intval($parts[3]) < (intval(date("Y") - 19))) ||

 // No, so were they born exactly 18 years ago, and
 // has the month they were born in passed?
 (intval($parts[3]) == (intval(date("Y")) - 18) &&
 (intval($parts[2]) < intval(date("m")))) ||

 // No, so were they born exactly 18 years ago
 // in this month, and was the day today or earlier
 // in the month?
 (intval($parts[3]) == (intval(date("Y")) - 18) &&
 (intval($parts[2]) == intval(date("m"))) &&
 (intval($parts[1]) <= intval(date("d"))))))

 $errorString .=
 "You must be 18+ years of age to use this service.";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "You must be 18+ years of age to use this service.";

If any date test fails, an error string is appended to the $errorString, and no
further checks of the date are made. A valid date passes all the tests.

The first check tests if a date has been entered. The second check uses a regular
expression to check whether the date consists of numbers and if it matches the
template DD/MM/YYYY:

(!ereg("^([0-9]{2})/([0-9]{2})/([0-9]{4})$",
$formVars["dob"], $parts))

Whatever the result of this check, the expression also explodes the date into the array
$parts so that the component that matches the first grouped expression ([0-
9{2}) is found in $parts[1], the second grouped expression in $parts[2], and
the third grouped expression in $parts[3]. The ereg() function stores the string
matching the complete expression in $parts[0]. The overall result of processing a
date that matches the template is that the day of the month is accessible as
$parts[1], the month as $parts[2], and the year as $parts[3].

The third check uses the exploded data stored in the array $parts and the function
checkdate() to test if the date is a valid calendar date. For example, the date
31/02/1970 would fail this test.

The fourth check tests if the year is greater than 1890. The function intval()
converts a string to an integer. A test such as if ($parts[3] < 1890) may not
work as desired, because $parts[3] is a string—which can be unreliably converted
to an integer, as discussed in Chapter 2—and 1890 is an integer. Both the PHP
functions intval()—to convert strings to integers for comparisons—and strval(
)—to convert integers to strings—are useful tools in range-checking <form> fields.

The fifth and final check tests if the user is 18 years of age or older. There are many
ways to do this, with perhaps the most obvious being finding the difference between
the date of birth and the current date using library functions, and checking that this
difference is more than 18 years. The strtotime() function converts a date string
in the format MM/DD/YYYY to a large numeric Unix timestamp value that represents
the number of seconds since January 1, 1970. This can be cast to a float to ensure
reliable comparison as discussed in Chapter 2.

However, our approach here to validating if a user is over 18 years of age uses only
logic, and the intval() and date() functions:

// Check whether the user is 18 years old.

// If all the following are NOT true,
 // then report an error.
 elseif
 // Were they born more than 19 years ago?
 (!((intval($parts[3]) < (intval(date("Y") - 19))) ||

 // No, so were they born exactly 18 years ago, and
 // has the month they were born in passed?
 (intval($parts[3]) == (intval(date("Y")) - 18) &&

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (intval($parts[3]) == (intval(date("Y")) - 18) &&
 (intval($parts[2]) < intval(date("m")))) ||

 // No, so were they born exactly 18 years ago
 // in this month, and was the day today or earlier
 // in the month?
 (intval($parts[3]) == (intval(date("Y")) - 18) &&
 (intval($parts[2]) == intval(date("m"))) &&
 (intval($parts[1]) <= intval(date("d"))))))
 $errorString .=
 "You must be 18+ years of age to use this service.";

First, we check if the user's date of birth is 19 or more years ago; if this is the case,
there is no error. Second, we check if the user was born exactly 18 years ago in a
month earlier than the current month; if this is the case, again there is no error. Last,
we check if the user was born exactly 18 years ago, in the current month, and on a
day less than or equal to the current day; yet again, if this is true, there is no error.
The parameters to the function date() are discussed in Chapter 2.

There are other approaches to checking differences between dates. For example,
one approach is to use the MySQL functions described in Chapter 3 through an SQL
query. The query need not use a database; that is, SQL can be used as a simple
calculator. This approach is perhaps less desirable than the approach we have
described, because there is no database activity involved in our example, and
database activity adds unnecessary overhead. However, if one or more dates are
extracted in the script from a database, MySQL date and time functions are a useful
alternative.

7.2.1.2 Validating numeric fields

Checking that values are numeric, are within a range, or have the correct format is
another common validation task. For winestore customers, there are three numeric
fields: the zip code, and the fax and telephone numbers.

We validate zip codes using a regular expression:

// Validate Zipcode
if (!ereg("^([0-9]{4,5})$", $formVars["zipcode"]))
 $errorString .=
 "The zipcode must be 4 or 5 digits in length";

This permits a zip code of either four or five digits in length; this works for both U.S.
zip codes and Australian postcodes, but it's unsuitable for many other countries.
Another common validation check with zip codes is to check that they match the city
or state using a database table, but we don't consider this approach here.

The optional phone and fax numbers are also validated using regular expressions:

// Phone is optional, but if it is entered it must have
// correct format
$validPhoneExpr = "^([0-9]{2,3}[]?)?[0-9]{4}[]?[0-9]{4}$";

if (!empty($formVars["phone"]) &&
 !ereg($validPhoneExpr, $formVars["phone"]))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 !ereg($validPhoneExpr, $formVars["phone"]))
 $errorString .=
 "The phone number must be 8 digits in length, " .
 "with an optional 2 or 3 digit area code";

The if statement contains two clauses: a check as to whether the field contains data
and, if that is true, a check of the contents of the field using ereg(). As discussed
in Chapter 2—as in many other programming languages—the second clause is
checked only if the first clause is true when an AND (&&) expression is evaluated. If
the variable is empty, the ereg() expression isn't evaluated.

The ereg() expression works as follows:

The expression ^([0-9]{2,3}[]?)? matches either zero or one occurrence
of the bracketed expression at the beginning of the value. Inside the brackets,
the expression that is matched is either two or three digits and an optional
single space character (represented as []?). For example, a string "03 "
matches, as does "013 ", "03", and "013".

The rest of the expression [0-9]{4}[]?[0-9]{4}$ matches exactly four
digits, followed by an optional space, followed by another four digits, and then
the end of the string is expected. For example, the strings 1234 1234 and
12341234 both match the expression.

The entire expression matches the following classes of strings: 03 1234 1234,
013 1234 1234, 1234 1234, 0312341234, 01312341234, 03 12341234,
013 12341234, 12341234, 0131234 1234, and 031234 1234.

7.2.1.3 Validating email addresses

Email addresses are another common data entry item that requires field organization
checking. There is a standard maintained by the Internet Engineering Task Force
(IETF) called RFC-2822 that defines what a valid email address can be, and it's much
more complex than might be expected. For example, an address such as the
following is valid:

" <test> "@webdatabasebook.com

We use the following complex regular expression and network functions to validate an
email address:

$validEmailExpr =
 "^[0-9a-z~!#$%&_-]([.]?[0-9a-z~!#$%&_-])*" .
 "@[0-9a-z~!#$%&_-]([.]?[0-9a-z~!#$%&_-])*$";

if (empty($formVars["email"]))
 // the user's email cannot be a null string
 $errorString .= "You must supply an email address.";

elseif (!eregi($validEmailExpr, $formVars["email"]))
 // The email must match the above regular expression
 $errorString .=
 "The email address must be in the name@domain format.";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "The email address must be in the name@domain format.";

elseif (strlen($formVars["email"]) > 50)
 // The length cannot exceed 50 characters
 $errorString . =
 "The email address can be no longer than 50 characters.";

elseif (!(getmxrr(substr(strstr($formVars["email"], '@'), 1), $temp)) ||
 checkdnsrr(gethostbyname(substr(strstr($formVars["email"], '@'), 1)),"ANY"))
 // There must be a Domain Name Server (DNS) record
 // for the domain name
 $errorString .= "The domain does not exist.";

If any email test fails, an error string is appended to the $errorString, and no
further checks of the email value are made. A valid email passes all tests.

The first check tests to make sure that an email address has been entered. If it's
omitted, an error is generated. It then uses a regular expression to check if the email
address matches a template. It isn't RFC-2822-compliant but works reasonably for
most email addresses:

It uses eregi(), so either upper- or lowercase are matched by the use of a-
z.

It expects the string to begin with a character from the set 0-9, a-z, and
~!#$%&_-. There has to be at least one character from this set at the beginning
of the email address for it to be valid.

After the first character matches, there is an optional bracketed expression:

([.]?[0-9a-z~!#$%&_-])*

This expression is optional since it's suffixed with the * operator. However, if it
does match, it matches any number of the characters specified. There can only
be one consecutive full-stop if a full-stop occurs, as determined by the
expression [.]?. The expression, for example, matches the string
fred.williams.test% but not fred..williams.

After the initial part of the email address, an @ character is expected. The @ has
to occur after the first word for the string to be valid; our regular expression
rejects email addresses that have only the initial or local component such as
fred.

Our validation expects there to be another word of at least length 1 after the @
symbol, and this can be followed by any combination of the permitted
characters. Strings of permitted characters can be separated by a single full-
stop.

The function is imperfect. It allows several illegal email addresses and doesn't
allow many that are legal but unusual.

The third step is to check the length of the email address. If it exceeds 50 characters,
an error is generated. The fourth and final step is to check whether the domain of the
email address actually exists:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

elseif (!(getmxrr(substr(strstr($formVars["email"], '@'), 1), $temp)) ||
 checkdnsrr(gethostbyname(substr(strstr($formVars["email"], '@'), 1)),"ANY"))
 // There must be a Domain Name Server (DNS) record
 // for the domain name
 $errorString .= "The domain does not exist.";

The function getmxrr() queries an Internet domain name server (DNS) to check if
there is a record of the email domain as a mail exchanger (MX). If the domain isn't an
MX, the domain is checked with the DNS using the checkdnsrr() function, after
converting the domain name to a numeric IP address with the gethostbyname()
function. The second parameter to checkdnsrr() is the type of records to check,
and ANY record is specified valid. If both tests fail, the domain of the email address
isn't valid and we reject the email address.

7.2.2 Processing <form> Data on the Server Side

In this section, we discuss the validation peculiarities of the HTML <form>
environment and what is actually submitted from a <form> in an HTTP request.

7.2.2.1 Processing <form> controls with the MULTIPLE attribute

Simple <form> elements, such as the <input> element, allow only one value to be
associated with them. For example, an <input> element with the name attribute
surname may have an associated value of Smith; in a URL query string, this
association is represented as surname=Smith. Indeed, all the controls included in
<form> examples in previous chapters have only one associated value. However,
the <select multiple> element allows the association of more than one value
with a variable in a <form>.

The <select multiple> element allows users to select zero or more items from a
list. When the selected values are sent through using the GET or POST methods, each
selected item has the same variable name but a different value. For example,
consider what happens when the user selects options b and c in the following HTML
<form>:

<form method="GET" action="click.php">
<select multiple name="choice">
<option>a</option>
<option>b</option>
<option>c</option>
<option>d</option>
</select>

<input type="submit">
</form>

When the user clicks Submit, the following URL is requested:

http://localhost/click.php?choice=b&choice=c

From a PHP perspective, this means that the variable $choice—which has the
same name as that of the <select multiple>—is overwritten as the request is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

same name as that of the <select multiple>—is overwritten as the request is
decoded, and an echo $choice prints the last value that was selected. In this case,
echo $choice outputs c.

There are at least two solutions to this problem in PHP. First, it's possible to add more
complex processing of the two automatically initialized arrays, HTTP_GET_VARS or
HTTP_POST_VARS, to detect duplicate variable names and handle these for generic
processing. Second, more elegantly and simply, you can use a PHP feature, which is
described next.

The second approach works as follows. You modify the <form> and replace the
name of the <select multiple> with an array-like structure, name="choice[]".
The PHP interpreter then treats the variable as an array and stores the multiple
values into $choice[0], $choice[1], etc. In the previous example, the <select
multiple> element is renamed as choice[]:

<html><form method="GET">
<select multiple name="choice[]">
<option>a</option>
<option>b</option>
<option>c</option>
<option>d</option>
</select>

<input type="submit">
</select></form></html>

If the user selects options b and c, the following PHP fragment prints out all selected
values, in this case both b and c:

foreach($choice as $value)
 echo $value;

The bracket array notation in a <form> can cause some problems with client-side
scripts—such as those written in JavaScript—and such <form> elements should be
referenced wrapped in single quotes in a JavaScript script. Client-side JavaScript for
validation is discussed later in this chapter.

Interestingly, <textarea> and <input> elements can also be suffixed with brackets
to put values into an array, should the need arise.

7.2.2.2 Other <form> issues

Checkbox elements in a <form> have the following format:

<form method="GET" action="click.php">
<input type="checkbox" name="check">
<input type="submit">
</form>

A checkbox has two states, on and off, and is usually rendered as a small clickable
square in a graphical web browser. If the checkbox in the example is clicked, and the
<form> submitted, the following URL is requested:

http://localhost/click.php?check=on

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://localhost/click.php?check=on

However, if the checkbox isn't clicked, the URL requested is as follows:

http://localhost/click.php

The important difference is that a checkbox is never off from the server perspective. If
the checkbox isn't clicked, no variable or value is submitted to the server. Therefore,
in a PHP script, a checkbox should be tested with the following fragment:

if ($check == "on")
 echo "Checkbox is on";
else
 echo "Checkbox is off";

Additionally, in the previous example, if the checkbox isn't clicked, it isn't possible to
determine whether the <form> has been submitted or has never been displayed. An
easy solution is to add a name attribute to the submit <input> element as follows:

<form method="GET" action="click.php">
<input type="checkbox" name="check">
<input type="submit" name="submit" value="Submit Query">
</form>

If this <form> is submitted with the checkbox in the off state, the following URL is
requested:

http://localhost/click.php?submit=Submit+Query

Testing whether the variable $submit is empty() can then distinguish between the
initial display of the <form> and a subsequent submission of the <form> with the
checkbox in the off state. The following script skeleton performs this check:

if (!empty(submit))
 // carry out processing
else
 // display the <form>

In addition, the naming of submit <input> elements permits more than one submit
button to be added to a <form>. This allows two or more different types of
submission that may have different validation or other behavior. For example, both
Save and Cancel buttons may be present in the <form> as two different types of
submission process. We use this approach in the winestore and discuss it further in
Chapter 11.

Multiple <select> elements have the same property as checkboxes; if no item in the
list is selected, no variable or value is submitted to the server.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

7.3 Client-Side Validation with JavaScript

In this section, we briefly introduce the JavaScript scripting language as a client-side
method for validation and other simple tasks. JavaScript isn't a fully fledged
programming language like PHP: it can't connect to databases, it's limited as to which
system resources it can interact with, and it can't do most tasks a web database
application requires. However, JavaScript is good for interacting with a <form> and
for controlling the display of data to the user.

The client-side scripting language we use here is best known as
Java-Script. However, in June 1998, the European Computer
Manufacturers Association (ECMA) agreed to be responsible for
the standard implementations of the scripting language by
Microsoft, Netscape, and Sun. Accordingly, the real name of the
language is now ECMA-Script, based on the standard ECMA-
262. The most recent version of ECMA-262 is the third edition,
dated December 1999.

Common uses of JavaScript in web database applications include:

Validation of <form> data, the main topic of this section.

Simple interaction with <form> data; e.g., JavaScript is often used to calculate
values and display these in a data-entry widget.

Enhancing user interactions by adding dynamic elements to a web page.
Common features include pull-down menus, mouseover changes to the
presentation (rollovers), and dialog boxes.

Customizing the browser and using information from the browser to enhance
presentation.

Most of these techniques are oriented around events. An event is an action that
occurs—such as a mouse passing over an object or a user clicking on a button—and
that can be trapped through JavaScript code.

7.3.1 Validating <form> Data with JavaScript

In a web database application, client-side validation should
implement the same or less validation than a server-side script.

Never rely on client-side validation as the only method to ensure
that system requirements, security policies, or DBMS constraints
are met.

Client-side validation is optional but has benefits, including faster response to the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

user than server-side validation, a reduction in web-server load, and a reduction in
network traffic. Moreover, client-side validation can be implemented as interactive
validation, not only as post-validation, as on the server side. However, validation in
the client tier is unreliable: the user can bypass the validation through design, error, or
configuration. For that reason, client-side validation is a tool that should be used only
to improve speed, reduce load, and add features, and never to replace server-side
validation.

Consider the short JavaScript validation example in Example 7-1.

Example 7-1. A simple JavaScript example to check if a <form> field is empty

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Simple JavaScript Example</title>

<script type="text/javascript">
<!-- Hide the script from old browsers
function containsblanks(s)
{
 for(var i = 0; i < s.value.length; i++)
 {
 var c = s.value.charAt(i);
 if ((c == ' ') || (c == '\n') || (c == '\t'))
 {
 alert('The field must not contain whitespace');
 return false;
 }
 }
 return true;
}
// end hiding -->
</script>
</head>

<body>
 <h2>Username Form</h2>
 <form onSubmit="return(containsblanks(this.userName));"
 method="post" action="test.php">
 <input type="text" name="userName" size=10>
 <input type="submit" value="SUBMIT">
 </form>
</body>
</html>

This example is designed to check if a userName field contains whitespace and, if so,
to show a dialog box containing an error message to the user. The dialog box is
shown in Figure 7-1.

Figure 7-1. The dialog box produced when whitespace is entered in the userName field

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The example contains no PHP but only a mixture of HTML and JavaScript. Almost all
the JavaScript is encapsulated between the <script> and </script> tags in the
first 17 lines of the example. The JavaScript function contained in the tags,
containsblanks(), is executed when the user submits the <form>.

The function call is part of the <form> element:

<form onSubmit="return(containsblanks(this.userName));"
 method="post" action="test.php">

When the submission event occurs—the user presses the Submit button—the
onSubmit action handler is triggered. In this case, the function containsblanks(
) is called with one parameter, this.userName. The object this refers to the
<form> itself and the expression this.userName refers to the input widget within
the <form>. The function call itself is wrapped in a return() expression. The
overall result of executing containsblanks() is that if the function returns false,
the <form> isn't submitted to the server; if the function returns true, the HTTP
request proceeds as usual.

The syntax of the JavaScript code is similar to PHP, and to other languages such as
C and Java. The function containsblanks() works as follows:

A for loop repeatedly performs actions on the characters entered by the user.
The expression s.value.length refers to the length of the string value
entered by the user into the userName widget. The length property is one of
the predefined properties of the value attribute of the <input> widget.

Each character in the string entered by the user is stored in a character variable
c. s.value.charAt(i) is again an expression related to the value entered by
the user in the <form>. The value attribute of the widget has an associated
function (or, more correctly, a method) called charAt() that returns the value
of the character at the position passed as a parameter. For example, if the user
enters test in the widget, s.value.charAt(0) returns t, and
s.value.charAt(1) returns e.

The if statement checks whether the current character is a space, a tab
character, or a carriage return. If so, the alert() function is called with an
error string as a parameter. The alert() function presents a dialog box in the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

error string as a parameter. The alert() function presents a dialog box in the
browser that shows the error message and has an OK button, as shown in
Figure 7-1. When the user clicks OK, the function returns false, and the
submission process stops.

If the string doesn't contain any whitespace, the function containsblanks()
returns true, and the <form> submits as usual.

Note that the HTML comment tags are included inside the <script> tags and
surround the actual body of the JavaScript script. This is good practice, because if
JavaScript is disabled or the user has an old browser that knows nothing about
scripts, the comments hide the script from a potentially confused browser. An old
browser happily displays the HTML page as usual, and most also ignore the
onSubmit event handler in the <form> element.

7.3.1.1 Case study: A generic JavaScript validation function

The example in this section shows more features of JavaScript as a validation tool.
An example of errors produced by applying the techniques described in this section to
customer validation is shown in Figure 7-2.

Figure 7-2. A dialog box showing errors produced by the JavaScript validation function

A sophisticated and general-purpose data entry function for post-validation and batch
error reporting is shown in Example 7-2. Only part of the script is shown; the
remainder of the script includes the same PHP code to retrieve data and the HTML to
display the customer <form> as in Example 6-7 in Chapter 6.

Example 7-2. A general-purpose JavaScript <form> validation function

<!-- The following code is a modified version of that
 described below -->

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 described below -->

<!-- This example is from the book _JavaScript:
 The Definitive Guide_. -->
<!-- Written by David Flanagan. Copyright (c) 1996
 O'Reilly & Associates. -->
<!-- This example is provided WITHOUT WARRANTY either
 expressed or implied.-->
<!-- You may study, use, modify, and distribute it for
 any purpose. -->

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Customer Entry Form</title>

<script type="text/javascript">
<!-- Hide the script from old browsers

// A utility function that returns true if a string
// contains only whitespace characters.
function isblank(s)
{
 for(var i = 0; i < s.length; i++)
 {
 var c = s.charAt(i);
 if ((c != ' ') &&
 (c != '\n') &&
 (c != '\t'))
 return false;
 }
 return true;
}

// This is the function that performs <form> validation.
// It will be invoked from the onSubmit() event handler.
// The handler should return whatever value this function
// returns.
function verify(f)
{
 var msg;
 var empty_fields = "";
 var errors = "";

 // Loop through the elements of the form, looking for all
 // text and textarea elements that don't have an
 // "optional" property defined. Then, check for fields
 // that are empty and make a list of them.
 // Also, if any of these elements have a "min" or a "max"
 // property defined, then verify that they are numbers
 // and that they are in the right range.
 // Put together error messages for fields that are wrong.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Put together error messages for fields that are wrong.
 for(var i = 0; i < f.length; i++)
 {
 var e = f.elements[i];

 if (((e.type == "text") ||
 (e.type == "textarea")) &&
 !e.optional)
 {
 // first check if the field is empty
 if ((e.value == null) ||
 (e.value == "") ||
 isblank(e.value))
 {
 empty_fields += "\n " +
 e.description;
 continue;
 }

 // Now check for fields that are supposed
 // to be numeric.
 if (e.numeric ||
 (e.min != null) ||
 (e.max != null))
 {
 var v = parseFloat(e.value);
 if (isNaN(v) ||
 ((e.min != null) && (v < e.min)) ||
 ((e.max != null) && (v > e.max)))
 {
 errors += "\n- The field " +
 e.description +
 " must be a number";
 if (e.min != null)
 errors += " that is greater than " +
 e.min;

 if (e.max != null &&
 e.min != null)
 errors += " and less than " +
 e.max;

 else if (e.max != null)
 errors += " that is less than " +
 e.max;

 errors += ".\n";
 }
 }

 // Now check for fields that are supposed
 // to be emails.
 // Not exactly as described in RFC 2822, but
 // a rough attempt
 // of the form "local-bit@domain-bit"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // of the form "local-bit@domain-bit"
 if (e.email && !isblank(e.value))
 {
 var seenAt = false;
 var append = "";
 for(var j = 0; j < e.value.length; j++)
 {
 var c = e.value.charAt(j);
 if ((c == ' ') ||
 (c == '\n') ||
 (c == '\t'))
 append +=
 "\n - not contain white-space";
 if ((c == '@') && (seenAt == true))
 append +=
 "\n - contain only one @";
 if ((c == '@'))
 seenAt = true;
 }

 if (seenAt == false)
 append +=
 "\n - contain exactly one @";
 if (append)
 errors += "- The field " +
 e.description +
 " must: " + append;
 }

 // Now check for fields that are supposed
 // to be DOBs.
 if (e.dob && !isblank(e.value))
 {
 var slashCount = 0;
 var append = "";
 var addedError1 = false;
 var addedError2 = false;

 for(var j = 0; j < e.value.length; j++)
 {
 var c = e.value.charAt(j);

 if ((c == '/'))
 slashCount++;

 if (c != '/' &&
 (c < '0' || c > '9') &&
 addedError1 == false)
 {
 addedError1 = true;
 append +=
 "\n - must contain only numbers " +
 "and forward-slashes";
 }
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 if (j != 10 || slashCount != 2)
 append +=
 "\n - must have the format DD/MM/YYYY";
 if (slashCount != 2)
 append +=
 "\n - must contain two slashes";
 if (append)
 errors += "- The field " +
 e.description +
 " must: " + append;
 }

 // Now check for fields that are supposed
 // not to have spaces
 if (e.nospaces)
 {
 var seenAt = false;
 var append = "";

 for(var j = 0; j < e.value.length; j++)
 {
 var c = e.value.charAt(j);

 if ((c == ' ') ||
 (c == '\n') ||
 (c == '\t'))
 errors += "- The field " + e.description +
 " must not contains white-space";
 }
 }

 } // if (type is text or textarea) and !optional
 } // for each character in field

 // Now, if there were any errors, then display the
 // messages, and return true to prevent the form from
 // being submitted. Otherwise return false
 if (!empty_fields && !errors)
 return true;

 msg = "__ _ _\n\n"
 msg += "The form was not submitted because of the " +
 "following error(s).\n";
 msg += "Please correct these error(s) and re-submit.\n";
 msg += "__ _ _\n\n"

 if (empty_fields)
 {
 msg += "- The following required field(s) are empty:"
 + empty_fields + "\n";
 if (errors)
 msg += "\n";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 msg += "\n";
 }
 msg += errors;
 alert(msg);
 return false;
}
// end hiding -->
</script>

</head>
<body>
<h2>Customer Details</h2>
<hr>
<form onSubmit="this.firstName.nospaces = true;
 this.firstName.description = 'First Name';
 this.surname.description = 'Surname';
 this.address1.description = 'Address Line 1';
 this.city.description = 'City';
 this.email.description = 'Email';
 this.email.email = true;
 this.dob.dob = true;
 this.dob.description = 'Date of Birth (DD/MM/YYYY)';
 return verify(this);"
 method="post" action="example.6-8.php">

In the example, the <form> tag contains a long script for the onSubmit event that is
called when the user clicks the Submit button. The code creates and sets properties
for each data entry widget. As all widgets are mandatory, a description property is
created and set (e.g., this.email.description = 'Email'). This description is
later displayed in an error dialog box if data isn't entered. For widgets that are optional
—there are none in this example, but the full customer <form> in Chapter 10 has
them—an optional = true property can be set.

For widgets that require specific validation, a property that describes the data type is
set. For example, the email widget has a property of this.email.email = true
to ensure that validation appropriate to an email field is performed. After setting all
properties for all fields, the verify() function is called with the <form> (this
refers to the <form>) object as a parameter; the <form> object includes all widgets
and their properties.

For compactness, we don't describe in detail how the verify() function works.
However, it has the following features:

The function progressively creates a message to display to the user—much like
$errorString in the PHP validation—as errors are detected. After collecting
all errors, an error dialog box is shown listing all errors the user needs to correct
before the <form> will submit. An example of the error dialog box is shown in
Figure 7-2.

All widgets that are inputs of type text or textarea and aren't optional are
checked to ensure they contain data.

Numeric fields are checked to ensure they are actually numeric and, if the value
must fall in a range, the value is checked to ensure it's within the range.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Emails are checked in a simplistic way. The email must contain exactly one @
symbol and must not contain whitespace.

Dates are checked to ensure they are in the DD/MM/YYYY format used in most
countries.

Fields that should not contain whitespace are checked to ensure they don't
contain spaces, tabs, or carriage returns.

The verify() function isn't comprehensive and certainly doesn't do all the
validation proposed for the winestore customer <form>. However, in most cases, the
customer <form> can't be submitted without a good chance of it passing the server-
side validation checks.

JavaScript code can be reused across multiple HTML pages without adding the code
to each page. For example, the code surrounded by the <script> and </script>
tags in Example 7-2 can be saved in the file valid.js and then included into several
HTML pages using the src attribute of the <script> element:

<script type="text/javascript" src="valid.js">
</script>

This approach has the advantage of reducing network traffic if the user has a web
browser cache, because a copy of the script can be reused in multiple HTML pages.

7.3.1.2 Case study: A password <form> validation function

Example 7-3 gives a final example of JavaScript validation. In this example, the
validation is interactive; that is, the fields are validated as data is entered. Instead of
the onSubmit event, an onChange event is trapped for the two password widgets,
formPassword1 and formPassword2; the function thesame() is called
whenever the user changes the data in a widget and then leaves it. The reporting is
field-by-field, and a sample dialog box output by the script is shown in Figure 7-3.

Figure 7-3. A dialog box produced by the script in Example 7-3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The function thesame() checks if the current widget contains data. If it does, the
data in the widget is compared to the data in the other password widget. If the data in
the widgets is different, an error message is shown to the user. It's necessary to test
whether both widgets actually contain data in interactive validation; without this check,
the function annoyingly displays an error before the user has the opportunity to enter
data into both widgets.

Example 7-3. Using JavaScript for interactive validation of password fields

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Password Validation</title>

<script type="text/javascript">
<!-- Hide the script
function thesame(value1, value2, description)
{
 if (((value1 != null) ||
 (value1 != "")) &&
 value2 != "" &&
 value1 != value2)
 {
 alert("The " + description + " must be identical.");
 return (false);
 }
 return (true);
}
// end hiding -->
</script>
</head>

<body>
 <h2>Username Form</h2>
 <form
 method="post" action="test.php">

Username:
 <input type="text" name="userName" size=10>

Password:
 <input type="password" name="formPassword1" onChange="
 thesame(formPassword1.value, formPassword2.value,
 'passwords');"
 size=10>

Re-enter password:
 <input type="password" name="formPassword2" onChange="
 thesame(formPassword2.value, formPassword1.value,
 'passwords');"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 'passwords');"
 size=10>

<input type="submit" value="SUBMIT">
 </form>
</body>
</html>

There are several other events that are commonly trapped and handled in validation:

onBlur

When a user removes focus from a <form>, <frame>, or window

onClick

Left mouse button click on a <form> element

onFocus

When a user brings focus to a <form>, <frame>, or window

onUnload

When the user exits a page

7.3.2 JavaScript Tips and Tricks

In this section we present other common tools implemented with JavaScript that
aren't particular to web database applications. Examples include:

Mouse rollovers, where an image is changed to highlight an option as the
mouse cursor passes over it

Calculating and updating <form> fields based on user changes to data

Interacting with the web browser and windows to trigger events and manipulate
presentation

Detecting which browser application and version the user is using

7.3.2.1 Rollover presentation with mouseOver events

Example 7-4 shows a basic implementation of the common rollover feature used in
many web applications.

Example 7-4. mouseOver example with JavaScript

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html401/loose.dtd">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "http://www.w3.org/TR/html401/loose.dtd">
<html>
<head>
<title>MouseOver Example</title>
</head>

<body bgcolor="#ffffff">
<a href="add_to_cart.php"
 onMouseOut="cart.src='cart_off.jpg'"
 onMouseOver="cart.src='cart_on.jpg'">
<img src="cart_off.jpg" border=0 name="cart"
 alt="cart picture">
</body>
</html>

When the page is first loaded, an image of a shopping cart in plain gray off-mode is
shown; the image is used in the front page of the winestore. As usual, the image is
loaded with the HTML fragment:

The only difference to the usual approach of loading images is that the tag has
a name attribute, in this case name="cart".

If the mouse passes over the cart image, an onMouseOver event is generated, and
the JavaScript action carried out is:

onMouseOver="cart.src='cart_on.jpg'"

The event handler changes the value of the src attribute of the tag with the
name="cart". The result is that a new image is loaded to replace the off-mode
image with an on-mode image. In this case, a shopping cart with a blue foreground is
shown.

When the mouse leaves the image region, the onMouseOut event is generated and
handled with the following JavaScript fragment:

onMouseOut="cart.src='cart_off.jpg'"

This restores the original gray off-mode image. The impression to the user is that the
cart element is highlighted as the user focuses on the element; the same technique is
used to highlight menu options and to produce pop-up and pull-down menus.

7.3.2.2 Prefilling <form> data with JavaScript calculations

Another common use of JavaScript is to prefill a <form> with data from a calculation.
Example 7-5 shows how data can be managed and updated in the winestore
shopping cart (this approach isn't actually used in the online winestore).

When the user changes the quantity of wine he intends to purchase, an onChange
event is generated. This change event is handled by the update() function, which
modifies the value attribute of the total widget, showing the new total cost to the
user. The new value shown to the user is calculated by multiplying together the
quantity.value and the unit.value. Of course, as in all web database

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

quantity.value and the unit.value. Of course, as in all web database
applications, the values and mathematics should be rechecked at the server when the
<form> is submitted to the server.

Example 7-5. Using JavaScript to dynamically update values of <form> widgets

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html401/loose.dtd">
<html>
<head>
 <title>Dynamic Form Update Example</title>

<script type="text/javascript">
<!-- Hide the script from old browsers
function update(quantity, unit, total)
{

 total.value = unit.value * quantity.value;
}
// end the hiding -->
</script>
</head>

<body>
<h1>Your Shopping Cart</h1>
<form method="get" action="test.php">
<table border="0" width="100%" cellpadding="0" cellspacing="5">
<tr>
 <td>Quantity </td>
 <td>Wine</td>
 <td>Unit Price</td>
 <td>Total</td>
</tr>

<tr>
 <td><input type="text" name="quantity" value="1"
 size=3 onChange="update(quantity,unit,total);">
 <td>1997 Anderson and Sons Wines Belcombe Grenache</td>
 <td>$<input type="text" value="17.29" name="unit"
 readonly></td>
 <td>$<input type="text" value="17.29" name="total"
 align="right" readonly></td>
</tr>
</table>
<input type="submit" value="Purchase Wines">
</form>
</body>
</html>

7.3.2.3 Interacting with the web browser

Unfortunately, JavaScript can be used to annoy. We have all suffered the continual

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unfortunately, JavaScript can be used to annoy. We have all suffered the continual
popping-up of new windows without the usual toolbars (these are known as
consoles), changes in the browser appearance, and resizing of the browser.

Having said that, adding features that are helpful is desirable. Example 7-6 shows
four examples of handlers for buttons that use methods or functions defined for the
browser window object. The function window.close() closes the focused
window, window.print() shows the print dialog window,
windows.history.go(-1) goes back one page, and window.open() opens a
new browser window.

Example 7-6. Closing and opening windows with JavaScript, printing the current page, and
adding a Back button to a <form>

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html401/loose.dtd">
<html>
<head>
 <title>Playing with the Browser and Windows</title>
</head>
<body>
<h1>Playing with the Browser and Windows</h1>
<form action="example.7-6.php">
 <input type="button" value="Close Window"
 onClick="window.close();">

<input type="button" value="Print Window"
 onClick="window.print();">

<input type="button" value="Go Back"
 onclick="javascript:window.history.go(-1);">

<input type="button" value="Visit the book site"
 onClick="
 window.open('../www.webdatabasebook.com/default.htm',
 'BookSite',
 'toolbar=yes,location=yes,menubar=yes,
 directories=yes,scrollbar=yes,resizable=yes');">
</form>
</body></html>

The page rendered in a Netscape browser is shown in Figure 7-4.

Figure 7-4. Controlling the browser behavior through buttons

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Only window.open() has any complexity. The first parameter is the URL to
request in the new window, the second is a title, and the third is a set of properties the
new window has. Without the list of properties that are included, the default new
window has no Location box, no toolbars, no scrollbars, and can't be resized: it's an
evil console!

7.3.2.4 Which browser is the user using?

More advanced JavaScript highlights annoying differences in support of standard
features by different browsers. Even different versions of Netscape or Internet
Explorer support different JavaScript features.

Example 7-7 shows how the browser application name and version can be detected
with both JavaScript and PHP. The output of the script rendered in a Netscape
browser is shown in Figure 7-5. If a JavaScript script requires customization for a
particular product, if statements can carry out actions in different ways. Another
common approach in JavaScript-intensive web database applications is to write two
sites: one that uses Internet Explorer JavaScript and another that uses Netscape
Navigator JavaScript.

Example 7-7. Which browser is the user using?

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html401/loose.dtd">
<html>
<head>
 <title>Playing with the Browser and Windows</title>
</head>
<body>
<script type="text/javascript">
<!-- Hide the script from old browsers
 var version = navigator.appName
 var number = parseInt(navigator.appVersion)
 alert("You are using the " + version +
 " browser, version " + number);
// end the hiding -->
</script>

This page should pop up a box if you have a JavaScript-capable and enabled
browser.

But, using PHP, we can tell you that you're using the
<? printf("%s", $HTTP_USER_AGENT); ?> browser.
</body></html>

Figure 7-5. Detecting the browser application details using the script in Example 7-7

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.3.2.5 Comments

The short examples in this section implement common JavaScript web database
features, and we recommend that JavaScript be used only for these simple
manipulations and the basic validation tasks. Using JavaScript for more complex
tasks may reveal annoying differences between browser applications, browser
versions, and different platforms. These differences can be compounded by the fact
that the web database application developer usually has little control over the
standardization of the client JavaScript environment.

Pointers to books and other resources on JavaScript are included in Appendix E.

Building complex JavaScript adds a thicker client to a web
database application.

This book is focused on thin clients, where the majority of the
application logic resides in the middle tier. We recommend that
JavaScript be kept simple: complex tasks should be left to the
middle-tier scripts, and interfaces should still function correctly
even if JavaScript is faulty or disabled.

If complex JavaScript is required or desired, make sure it's
tested on all the popular platforms with the popular browser
products and ver sions.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Chapter 8. Sessions
A fundamental characteristic of the Web is the stateless interaction between browsers
and web servers. As discussed in Chapter 1, HTTP is a stateless protocol. Each
HTTP request a browser sends to a web server is independent of any other request.
The stateless nature of HTTP allows users to browse the Web by following hypertext
links and visiting pages in any order. HTTP also allows applications to distribute or
even replicate content across multiple servers to balance the load generated by a
high number of requests. These features are possible because of the stateless nature
of HTTP.

This stateless nature suits applications that allow users to browse or search
collections of documents. However, applications that require complex user interaction
can't be implemented as a series of unrelated, stateless web pages. An often-cited
example is a shopping cart in which items are added to the cart while searching or
browsing a catalog. The state of the shopping cart—the selected items—needs to be
stored somewhere. When the user requests the order page, the items for that user
need to be displayed.

Stateful web database applications can be built using sessions, and session
management is the topic of this chapter. In this chapter we:

Discuss how sessions are managed in the stateless environment of the Web
and introduce the three characteristics of server-side session management

Introduce cookies for storing state

Show how to use and configure the PHP session management library

Use PHP session management to improve the client entry <form> in the
winestore case study

Provide a brief list of reasons for using, or avoiding, session management over
the Web

The focus of this chapter is on the session management provided by PHP. However,
other techniques to keep state are briefly discussed, including the use of cookies.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

8.1 Building Applications That Keep State

Applications sometimes need to use the result of one request when processing
another. For example, a request that adds an item to a shopping cart needs to be
remembered when the request is made to create the order. In other words, the state
of the application needs to be stored between HTTP requests. There are two ways to
achieve this: variables that hold the state can be stored in the browser and included
with each request or variables can be stored on the server.

Most of this chapter is devoted to the second alternative, where the middle tier stores
and manages the application state using sessions. However, in this section we briefly
discuss solutions that store state in the client tier. One technique described in this
section is the use of cookies. While cookies can store state in the client tier, they are
also used in middle-tier session management, as described later in this chapter.

8.1.1 Managing State in the Client Tier

Data sent with the GET or POST methods can include the application state with each
HTTP request. An illustration of this approach can be seen in the previous and next
browsing features developed in Chapter 5. In this example, there are two pieces, or
states, that need to be considered when a page is browsed: the query parameters the
user provided and which page should be displayed.

The solution developed in Chapter 5 encodes the query and an offset as an
embedded link. An example URL that displays the fourth page of results may be as
follows:

http://localhost/example.5-10.php?regionName=All&offset=40

This solution allows navigation through large search result sets. Similar solutions are
used in the URLs generated to jump between the results pages of web search
engines such as Google or Altavista. Cookies can be used for the same purpose.

Encoding the variables that hold state with each HTTP request increases the amount
of data that has to be transmitted over the Web, and when data is encoded using the
GET method, applications can generate long URLs. While HTTP doesn't restrict the
length of URLs, some older browsers and proxy servers do enforce limits.

When state variables are encoded as part of the URL, or even when they are
included as cookies, it is possible for the user to change the values that are sent with
the request. For example, a user can enter the following URL manually if she wants to
see the records starting from row #7 in the result set:

http://localhost/example.5-10.php?regionName=All&offset=7

Changing the offset in a results page is harmless, but changing the item price of a
bottle of wine is more serious. As discussed in Chapter 6 and Chapter 7, an
application can't rely on data that is sent from the browser.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.1.2 Cookies

Cookies are often used to store application state in a web browser. As with data sent
with the GET or POST methods, cookies are sent with HTTP requests made by a
browser. A cookie is a named piece of information that is stored in a web browser. A
browser can create a cookie using JavaScript, but a cookie is usually sent from the
web server to the client in the Set-Cookie header field as part of an HTTP
response. Consider an example HTTP response:

HTTP/1.0 200
Content-Length: 1276
Content-Type: text/html
Date: Tue, 06 Nov 2001 04:12:49 GMT
Expires: Tue, 06 Nov 2001 04:12:59 GMT
Server: simwebs/3.1.6
Set-Cookie: animal=egg-laying-mammal

<html>...</html>

The web browser that receives this response remembers the cookie and includes it
as the header field Cookie in subsequent HTTP requests to the same web server.
For example, if a browser receives the response just shown, a subsequent request
has the following format:

GET /duck/bill.php HTTP/1.0
Connection: Keep-Alive
Cookie: animal=egg-laying-mammal
Host: www.webdatabasebook.com
Referer: http://www.webdatabasebook.com/

There are several additional parameters used with the Set-Cookie header that
define when a cookie can be included in a request:

A cookie can have a date and time at which it expires. The browser includes the
cookie in requests up until that date and time. If no expiry date is given, the
cookie is remembered only while the browser is running. Cookies that are kept
only while the browser is running are known as session cookies.

A domain limits the sites to which a browser can send the cookie. If no domain
is set, the browser includes the cookie only in requests sent to the server that
set the cookie.

Browsers don't include the cookie in requests for resources that aren't in the
specified path. This is useful if only part of a web site requires that a cookie be
sent. For example, if the path is set to /admin, requests for resources in that
path, such as http://localhost/admin/home.php include the cookie, while
requests for resources in other paths, such as
http://localhost/winestore/home.php, do not.

A cookie can also be marked as secure, instructing the browser to send the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A cookie can also be marked as secure, instructing the browser to send the
cookie only when using a secure connection through the Secure Sockets Layer
protocol. This prevents sensitive data stored in a cookie from being transmitted
in an insecure form. Encryption using the SSL software is discussed in Chapter
9.

Cookies can be included in an HTTP response using the header() function;
however, the developer needs to know how to encode the cookie name, value, and
the other parameters described earlier in the Set-Cookie header field. To simplify
cookie creation, PHP provides the setcookie() function that generates a correct
header field.

When an HTTP request that contains cookies is processed, PHP makes the values of
the cookies available to the script in the global associative array
$HTTP_COOKIE_VARS. If register_globals is enabled, a variable with the name
of the cookie is also initialized by PHP; the register_globals feature in the
php.ini file is discussed in Chapter 5.Example 8-1 tests to see if the variable
$count has been set from a cookie, and either sets the value to 0 or increments
$count accordingly. The script also creates a cookie named start, with the value
set to the current time, when the $count is set to 0. The cookie start is set only at
the beginning of this stateful interaction.

Example 8-1. Setting a cookie using PHP

<?php

// See if the HTTP request has set $count as the
// result of a Cookie called "count"
if(!isset($count)) {
 // No cookie called count, set the counter to zero
 $count = 0;

 // .. and set a cookie with the "start" time
 // of this stateful interaction
 $start = time();
 setcookie("start", $start, time()+600, "/", "", 0);

} else {
 $count++;
}

// Set a cookie "count" with the current value
setcookie("count", $count, time()+600, "/", "", 0);

?>
<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
<html>
 <head><title>Cookies</title></head>
 <body>
 <p>This page comes with cookies: Enjoy!

count = <?=$count ?>.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

count = <?=$count ?>.

start = <?=$start ?>.
 <p>This session has lasted
 <?php
 $duration = time() - $start;
 echo "$duration";
 ?>
 seconds.
 </body>
</html>

The setcookie() function is called with six arguments, although only the first—the
name—is required:

int setcookie(string name, [string value], [int expire], [string path]

The two calls to setcookie() in Example 8-1 add the Set-Cookie header field
to the HTTP response. The first encodes the start cookie with the value of the
current time as an integer returned from the time() function. The second encodes
the count cookie with the value of the variable $count. Both cookies are set with the
expiry date of the current time plus 600 seconds; that is, 10 minutes. With the path
parameter set to /, the browser includes the cookies with all requests to the site. By
passing an empty string for the domain, the browser includes the cookies only with
requests to the domain of the machine serving this page. The final parameter 0
allows the browser to transmit the cookies over both secure and insecure
connections.

Cookies can be used for simple applications that don't require complex data to be
kept between requests. However, there is a limit on the number and size of cookies
that can be set: a browser can keep only the last 20 cookies sent from a particular
domain, and the values that a cookie can hold are limited to 4 KB in size. Also, there
are arguments about both the privacy and the security of applications that use
cookies, and users often disable cookie support in their browsers. We discuss some
of the security issues of cookies in Chapter 9.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

8.2 Session Management Over the Web

Storing the state in the web server—the middle tier—can solve the problem of
increased request size and protect the state of an application from accidental or
intentional changes a user might make.

A session is a way to identify and manage the state—the session variables -- for a
particular user. When a user sends an HTTP request, the middle tier must process
the current request in the context of the user's session. When a session is started, the
client is given a session identifier -- often a cookie—that is included with subsequent
requests to the server. The server uses the session identifier to locate the
corresponding session before processing the request.

Rather than storing all the variables needed to maintain state and include them with
each request, the browser stores a single session identifier that finds and initializes
the variables stored on the server. The session identifier is like the ticket given at a
cloak room. The ticket is much easier to carry around and ensures that the holder
gets her own hat and coat.

One implication of storing session variables in the middle tier is that data needs to be
stored for each session. The question is, for how long? Because HTTP is stateless,
there is no way to know when a user has finished with a session. Ideally, the user
logs out of an application, and the logout script ends the session. However, because
a server can never be sure if a user is still there, the server needs to clean up old
sessions that have not been used for a period of time. This last point is important,
because sessions consume resources on the server, and dormant sessions may
present a security risk. How long the timeout should be depends on the needs of the
application, and we discuss this in more detail later in this chapter.

In summary, there are three characteristics session management over the Web must
exhibit:

Information or state must be stored. For example, a selected bottle of wine in a
shopping cart, a customer name, or a credit card number must be maintained
across multiple HTTP requests.

Each HTTP request must carry an identifier that allows the server to process the
request in the context of the stored state. For example, when an order is
submitted, it must be processed with the correct items and customer details.

Sessions need to have a timeout . Otherwise, if a user leaves the web site,
there is no way the server can tell when the session should end.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

8.3 PHP Session Management

With the release of PHP4, session management was introduced as an extension to
the PHP language. PHP provides several session-related functions, and developing
applications that use PHP sessions is straightforward. The three important features of
session management are mostly taken care of by the PHP scripting engine.

In this section, we present how to use PHP sessions, showing how sessions are
started and ended and how session variables are used. We list the PHP functions for
building session-based web applications. Because not all browsers support cookies,
and some users actively disable them, we describe how to use PHP sessions without
relying on cookies. Finally, we show how to configure PHP session management with
a discussion on the garbage collection used to remove old sessions and other
configuration parameters.

8.3.1 Overview

An overview of PHP session management is shown in Figure 8-1. When a user first
enters the session-based application by making a request to a page that starts a
session, PHP generates a session ID and creates a file that stores the session-
related variables. PHP sets a cookie to hold the session ID in the response the script
generates. The browser then records the cookie and includes it in subsequent
requests. In the example shown in Figure 8-1, the script welcome.php records
session variables in the session store, and a request to next.php then has access to
those variables because of the session ID.

Figure 8-1. The interaction between the browser and the server when initial requests are made
to a session-based application

The out-of-the-box configuration of PHP session management uses disk-based files
to store session variables. Using files as the session store is adequate for most
applications in which the numbers of concurrent sessions are limited. A more scalable
solution that uses a MySQL database as a session store is provided in Appendix D.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.3.2 Starting a Session

PHP provides a session_start() function that creates a new session and
subsequently identifies and establishes an existing one. Either way, a call to the
session_start() function initializes a session.

The first time a PHP script calls session_start(), a session identifier is
generated, and, by default, a Set-Cookie header field is included in the response.
The response sets up a session cookie in the browser with the name PHPSESSID and
the value of the session identifier. The PHP session management automatically
includes the cookie without the need to call to the setcookie() or header()
functions.

The session identifier (ID) is a random string of 32 hexadecimal digits, such as
fcc17f071bca9bf7f85ca281094390b4. As with other cookies, the value of the
session ID is made available to PHP scripts in the $HTTP_COOKIE_VARS associative
array and in the $PHPSESSID variable.

When a new session is started, PHP creates a session file. With the default
configuration, session files are written in the /tmp directory using the session
identifier, prefixed with sess_, for the filename. The filename associated with our
example session ID is /tmp/sess_fcc17f071bca9bf7f85ca281094390b4.

If a call is made to session_start(), and the request contains the PHPSESSID
cookie, PHP attempts to find the session file and initialize the associated session
variables as discussed in the next section. However, if the identified session file can't
be found, session_start() creates an empty session file.

8.3.3 Using Session Variables

Variables need to be registered with the session_register() function that's
used in a session. If a session has not been initialized, the session_register()
function calls session_start() to open the session file. Variables can be
registered—added to the session file—with the session_register() call as
follows:

// Register the variable named "foo"
session_register("foo");
$foo = "bar";

Note that it is the name of the variable that is passed to the session_register()
function, not the variable itself. Once registered, session variables are made
persistent and are available to scripts that initialize the session. PHP tracks the
values of session variables and saves their values to the session file: there is no need
to explicitly save a session variable before a script ends. In the previous example, the
variable $foo is automatically saved in the session store with its value bar.

Variables can be removed from a session with the session_unregister()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function call; again, the name of the variable is passed as the argument, not the
variable itself. A variable that is unregistered is no longer available to other scripts
that initialize the session. However, the variable is still available to the rest of the
script immediately after the session_unregister() function call.

Scripts that initialize a session have access to the session variables through the
associative array $HTTP_SESSION_VARS, and PHP automatically initializes the
named session variables if register_globals is enabled.

Example 8-2 shows a simple script that registers two variables: an integer $count,
which is incremented each time the script is called, and $start, which is set to the
current time from the library function time() when the session is first initialized.
The script tests if the variable $count has been registered to determine if a new
session has been created. If the variable $count has been registered already, the
script increments its value.

Do not use the existence of $PHPSESSID as indicative of a new session, or as a
method to access the session ID. The first time a script is called and the session is
created, the PHPSESSID cookie may not be set. Only subsequent requests are
guaranteed to contain the PHPSESSID cookie. PHP provides a session_id()
function that returns the session ID for the initialized session.

The script shown in Example 8-2 displays both variables: $count shows how many
times the script has been called, and time() - $start shows how many seconds
the session has lasted.

Example 8-2. Simple PHP script that uses a session

<?php
 // Initialize a session. This call either creates
 // a new session or re-establishes an existing one.
 session_start();

 // If this is a new session, then the variable
 // $count will not be registered
 if (!session_is_registered("count"))
 {
 session_register("count");
 session_register("start");

 $count = 0;
 $start = time();
 }
 else
 {
 $count++;
 }

 $sessionId = session_id();

?>
<!DOCTYPE HTML PUBLIC

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
<html>
 <head><title>Sessions</title></head>
 <body>
 <p>This page points at a session
 (<?=$sessionId?>)

count = <?=$count?>.

start = <?=$start?>.
 <p>This session has lasted
 <?php
 $duration = time() - $start;
 echo "$duration";
 ?>
 seconds.
 </body>
</html>

Session variables can be of the type Boolean, integer, double, string, object, or arrays
of those variable types. Care must be taken when using object session variables,
because PHP needs access to the class definitions of registered objects when
initializing an existing session. If objects are to be stored as session variables, you
should include class definitions for those objects in all scripts that initialize sessions,
whether the scripts use the class or not. Objects and classes are described in
Chapter 2.

PHP stores session variables in the session file by serializing the values. The
serialized representation of a variable includes the name, the type, and the value as a
stream of characters suitable for writing to a file. Here's an example of a file that was
created when the script shown in Example 8-2 was run several times:

count|i:6;start|i:986096496;

A PHP developer need not worry how serialization occurs; PHP session management
takes care of reading and writing session variables automatically.

8.3.4 Ending a Session

At some point in an application, sessions may need to be destroyed. For example,
when a user logs out of an application, a call to the session_destroy() function
can be made. A call to session_destroy() removes the session file from the
system but doesn't remove the PHPSESSID cookie from the browser.

Example 8-3 shows how the session_destroy() function is called. A session
must be initialized before the session_destroy() call can be made. You should
also test to see if $PHPSESSID is a set variable before killing the session. This
prevents the code from creating a session, then immediately destroying it if the script
is called without identifying a session. However, if the user has previously held a
session cookie, PHP initializes the $PHPSESSID variable, and the code redundantly
creates and destroys a session.

Example 8-3. Ending a session

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?php
 // Only attempt to end the session if there
 // is a $PHPSESSID set by the request.
 if(isset($PHPSESSID)) {
 $message = "<p>End of session ($PHPSESSID).";
 session_start();
 session_destroy();
 } else {
 $message = "<p>There was no session to destroy!";
 }
?>
<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
<html>
 <head><title>Sessions</title></head>
 <body>
 <?=$message?>
 </body>
</html>

8.3.5 Functions for Accessing Sessions in PHP

In this section we list the key functions used to build session-based applications in
PHP. Greater control over sessions can be achieved through the configuration of
PHP—as we discuss in the Section 8.3.8 section—or by using GET variables to
encode the session ID, as discussed in the next section.

Boolean session_start()

Initializes a session by either creating a new session or using an identified one.
Checks for the variable $PHPSESSID in the HTTP request. If a session identifier
isn't included in the request, or an identified session isn't found, a new session
is created. If a session ID is included in the request, and a session isn't found, a
new session is created with the PHPSESSID encoded in the request. When an
existing session is found, the session variables are read from the session store
and initialized. Using PHP's default settings, a new session is created as a file
in the /tmp directory. This function always returns true.

string session_id([string id])

Can be used in two ways: to return the ID of an initialized session and to set the
value of a session ID before a session is created. When used to return the
session ID, the function must be called without arguments after a session has
been initialized. When used to set the value of the session ID, the function must
be called with the ID as the parameter before the session has been initialized.

Boolean session_register(mixed name [, mixed ...])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Boolean session_register(mixed name [, mixed ...])

Registers one or more variables in the session store. Each argument is the
name of a variable, or an array of variable names, not the variable itself. Once a
variable is registered, it becomes available to any script that identifies that
session. This function calls the session_start() code internally if a session
has not been initialized. The session_unregister() function is called to
remove a variable from the session. Returns true when the variables are
successfully registered.

Boolean session_is_registered(string variable_name)

Returns true if the named variable has been registered with the current
session and false otherwise. Using this function to test if a variable is
registered is a useful way to determine if a script has created a new session or
initialized an existing one.

session_unregister(string variable_name)

Unregisters a variable with the initialized session. Like the
session_register() function, the argument is the name of the variable,
not the variable itself. Unlike the session_register() function, the session
needs to be initialized before calling this function. Once a variable has been
removed from a session with this call, it is no longer available to other scripts
that initialize the session. However, the variable is still available to the rest of
the script that calls session_unregister().

session_unset()

Unsets the values of all session variables. This function doesn't unregister the
actual session variables. A call to session_is_registered() still returns
true for the session variables that have been unset.

Boolean session_destroy()

Removes the session from the PHP session management. With PHP's default
settings, a call to this function removes the session file from the /tmp directory.
Returns true if the session is successfully destroyed and false otherwise.

8.3.6 Session Management Without Cookies

A change that can be made to the default PHP session management is to encode the
$PHPSESSID value as an attribute in a GET or POST method request and avoid the
need to set a cookie.

A simple experiment that illustrates what happens when users disable cookies is to
request the script shown in Example 8-2 from a browser that has cookie support
turned off. When repeated requests are made, the counter doesn't increment, and the
session duration remains at zero seconds. Because a cookie isn't sent from the
browser, the variable $PHPSESSID is never set. The other side effect is that each
time the page is requested, a session file is created in the /tmp directory. Many users
configure their browsers to not accept cookies, and session-based applications won't
work unless they are written to handle the missing cookie.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The session identifier that would have been sent as a cookie in this experiment can
be transmitted in a GET or POST method request. While the session_start()
function can use $PHPSESSID set by either a GET or POST method request, it is more
practical to use the GET variable. Using the POST variable leads to the reload problem
described in Chapter 6. Continuing the experiment, requests that don't contain the
cookie can identify an existing session by setting an attribute in a GET method request
with the name PHPSESSID and the value of the session ID. For example, an initial
request can be made to Example 8-1 with the URL:

http://localhost/example.8-1.php

This creates a session and an associated file such as:

/tmp/sess_be20081806199800da22e24081964000

Subsequent requests can be made that include the PHPSESSID:

http://localhost/example.8-1.php?PHPSESSID=be20081806199800da22e24081964000

The response shows the counter set to 1 and the correct session duration. Repeated
requests to this URL behave as expected: the counter increments, and the calculated
duration increases.

If you write session-based applications to use the URL to identify sessions, the
application doesn't fail for users who don't allow cookies. Applications can use a test
cookie to see if cookies are supported by the browser or just not use cookies at all.

When register_globals is enabled, and both a cookie and
GET or POST are used to set the $PHPSESSID, the cookie wins.
A GET or POST attribute value is overwritten by the value
associated with the cookie because of the default order in which
PHP initializes those variables.

The safe way to read cookies and GET and POST attributes that
have name conflicts is to use the $HTTP_COOKIE_VARS,
$HTTP_GET_VARS, and $HTTP_POST_VARS arrays.

Another advantage of avoiding cookies is that some browsers, such as Netscape and
Internet Explorer, share cookies across all instances of the program running for a
particular user on the same machine. This behavior prevents a user from having
multiple sessions with a web database application.

8.3.6.1 Encoding the session ID as a GET variable

Scripts that generate embedded links to pages that use session variables need to
include a GET attribute named PHPSESSID in the URL. This can be done using the
basic PHP string support and calls to session_id(). For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

basic PHP string support and calls to session_id(). For example:

<?php
 // Initialize the session
 session_start();

 // Generate the embedded URL to link to
 // a page that processes an order
 $orderUrl = "/order.php?PHPSESSID=" . session_id();
?>

<a href="<?=$orderUrl ?>">Create Order

To aid the creation of URLs that link to session-based scripts, PHP sets the constant
SID that contains the session ID in the form suitable to use as a URL query string. If
there is no session initialized, PHP sets the value of SID to be a blank string. If a
session is initialized, it sets the SID to a string containing the session ID in the form:

PHPSESSID=be20081806199800da22e24081964000

By including the value of SID when URLs are constructed, the hypertext links
correctly identify the session. A link that points to a script that expects a session ID
can be encoded like this:

<?php
 // Initialize the session
 session_start();
?>

<a href="/order.php?<?=SID?>">Create Order

As an alternative to writing code to formulate the session ID into the URL, PHP
includes a URL rewrite feature that automatically modifies reference URLs to include
the session ID as a GET attribute. To activate this feature, PHP needs to be
configured with - -enable-trans-id and then recompiled. Once URL rewrite is
activated, PHP parses the HTML generated by scripts and automatically alters the
embedded URLs to include the PHPSESSID query string. The URL rewrite feature
has the disadvantage that extra processing is required to parse every generated
page.

8.3.6.2 Turning off cookies

PHP session management can be instructed not to set the PHPSESSID cookie by
changing the session.use_cookies parameter to 0 in the php.ini file. The session
configuration parameters in the php.ini file are described in the later section Section
8.3.8.

8.3.7 Garbage Collection

While it is good practice to build applications that provide a way to end a session—
with a script that makes a call to session_destroy()—there is no guarantee that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

with a script that makes a call to session_destroy()—there is no guarantee that
a user will log out by requesting the appropriate PHP script. PHP session
management has a built-in garbage collection mechanism that ensures unused
session files are eventually cleaned up. This is important for two reasons: it prevents
the directory from filling up with session files that can cause performance to degrade
and, more importantly, it reduces the risk of someone guessing session IDs and
hijacking an old unused session.

There are two parameters that control garbage collection:
session.gc_maxlifetime and session.gc_probability, both defined in the
php.ini file. A garbage collection process is run when a session is initialized, for
example, when session_start() is called. Each session is examined by the
garbage collection process, and any sessions that have not been accessed for a
specified period of time are removed. This period is specified as seconds of inactivity
in the gc_maxlifetime parameter—the default value being 1,440 seconds. The
file-based session management uses the update time of the file to determine the last
access. To prevent the garbage collection process from removing active session files,
PHP must modify the update time of the file when session variables are read, not just
when they are written.

The garbage collection process can become expensive to run, especially in sites with
high numbers of users, because the last-modified date of every session file must be
examined. The second parameter gc_probability sets the percentage probability
that the garbage collection process will be activated. A setting of 100% ensures that
sessions are examined for garbage collection with every session initialization. The
default value of 1% means that garbage collection occurs with a probability of 1 in
100.[1] Depending on the requirements, some figure between these two extremes
balances the needs of the application and performance. Unless a site is receiving
less that 1,000 hits per day, the probability should be set quite low. For example, an
application that receives 1,000 hits in a 10-hour period with a gc_probability
setting of 10% runs the garbage collection function, on average, once every 6
minutes. Setting the gc_probability too high adds unnecessary processing load
on the server.

[1] Perhaps the gc_maxlifetime parameter should have been called gc_minlifetime, because the value
represents the minimum time garbage collection permits an inactive session to exist. Remember that garbage
collection is performed only when a request that initializes a session is made, and then only with the probability set by
gc_probability.

When it is important to prevent users from accessing old sessions, the
gc_probability should be increased. For example, the default session
configuration sets up a cookie in the browser to be deleted when the browser program
is terminated. This prevents a user from accidentally reconnecting to an old session.
However, if the session ID is encoded into a URL, a bookmarked page can find an old
session if it still exists. If session IDs are passed using the GET method, you should
increase the probability of running garbage collection.

8.3.8 Configuration of PHP Session Management

There are several parameters that can be manipulated to change the behavior of the
PHP session management. These parameters are set in the php.ini file in the section
headed [Session].

session.save_handler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This parameter specifies the method used by PHP to store and retrieve session
variables. The default value is files, to indicate the use of session files, as
described in the previous sections. The other values that this parameter can
have are: mm to store and retrieve variables from shared memory, and user to
store and retrieve variables with user-defined handlers. In Appendix D we
describe how to create user-defined handlers to store session variables in a
MySQL database.

session.save_path

This parameter specifies the directory in which session files are saved when the
session.save_handler is set to files. The default value is /tmp. When
implementing user-defined save_handler methods, the value of this
parameter is passed as an argument to the function that opens a session. User-
defined handlers are discussed in Appendix D.

session.use_cookies

This parameter determines if PHP sets a cookie to hold the session ID. Setting
this parameter to 0 stops PHP from setting cookies and may be considered for
the reasons discussed in the previous section. The default value is 1, meaning
that a cookie stores the session ID.

session.name

This parameter controls the name of the cookie, GET attribute, or POST attribute
that is used to hold the session ID. The default is PHPSESSID, and there is no
reason to change this setting unless there is a name collision with another
variable.

session.auto_start

With the default value of 0 for this setting, PHP initializes a session only when a
session call such as session_start() or session_register() is
made. If this parameter is set to 1, sessions are automatically initialized if a
session ID is found in the request. Allowing sessions to autostart adds
unnecessary overhead if session values aren't required for all scripts.

session.cookie_lifetime

This parameter holds the life of a session cookie in seconds and is used by
PHP when setting the expiry date and time of a cookie. The default value of 0
sets up a session cookie that lasts only while the browser program is running.
Setting this value to a number of seconds other than 0 sets up the cookie with
an expiry date and time. The expiry date and time of the cookie is set as an
absolute date and time, calculated by adding the cookie_lifetime value to
the current date and time on the server machine.[2]

[2] The actual expiry of the cookie is performed by the browser, which compares the expiry date and time of
the cookie with the client machine's date and time. If the date and time are incorrectly set on the client, a
cookie might expire immediately or persist longer than expected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

session.cookie_path

This parameter sets the valid path for a cookie. The default value is /, which
means that browsers include the session cookie in requests for resources in all
paths for the cookie's domain. Setting this value to the path of the session-
based scripts can reduce the number of requests that need to include the
cookie. For example, setting the parameter to /winestore instructs the
browser to include the session cookie only with requests that start with
http://www.webdatabasebook.com/winestore/.

session.cookie_domain

This parameter can override the domain for which the cookie is valid. The
default is a blank string, meaning that the cookie is set with the domain of the
machine running the web server, and the browser includes the cookie only in
requests sent to that domain.

session.cookie_secure

This parameter sets the secure flag of a cookie, which prevents a browser from
sending the session cookie over nonencrypted connections. When this setting is
1, the browser sends the session cookie over a network connection that is
protected using the Secure Sockets Layer, SSL. We discuss SSL in the next
chapter and provide installation instructions in Appendix A. The default value
of 0 allows a browser to send the session cookie over encrypted and
nonencrypted services.

session.serialize_handler

This parameter sets up the method by which variables are serialized, that is,
how they are converted into a stream of bytes suitable for the chosen session
store. The default value is php, which indicates use of the standard PHP
serialization functions. An alternative is wddx, which uses the WDDX libraries
that encode variables as XML.

session.gc_probability

This parameter determines the probability that the garbage collection process
will be performed when a session is initialized. The default value of 1 sets a 1%
chance of garbage collection. See the discussion in the previous section for a
full explanation of garbage collection.

session.gc_maxlifetime

This parameter sets the life of a session in number of seconds. The default
value is 1440, or 24 minutes. Garbage collection destroys a session that has
been inactive for this period. See the discussion in the previous section for a full
explanation of garbage collection.

session.referer_check

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This parameter can restrict the creation of sessions to requests that have the
HTTP Referer: header field set. This is a useful feature if access to an
application is allowed only by following a hypertext link from a particular page
such as a welcome page. If the HTTP Referer header field doesn't match the
value of this parameter, PHP creates a session, but the session is marked as
invalid and unusable. The default value of a blank string applies no restriction.

session.entropy_file

PHP generates the session IDs from a random number seeded by the system
date and time. Because the algorithm is known—it can be looked up in the PHP
source code—it makes guessing session IDs a little easier. If this parameter is
set to the name of a file, the first n bytes from that file (where n is specified by
the session.entropy_length parameter) make the ID less predictable. The
default value is left blank, meaning the default seeding method is used. One
alternative is to use /dev/urandom, a special Unix device that produces a
pseudorandom number.

session.entropy_length

This parameter is the number of bytes to use when generating a session ID
from the file specified by session.entropy_file. The default value is 0, the
required value when no entropy file is set.

session.cache_limiter

This parameter controls how responses can be cached by the browser. The
default is nocache, meaning that PHP sets up the HTTP response to avoid
browser caching. PHP sets the HTTP/1.1-defined header field Cache-Control
to no-cache, the HTTP/1.0 header field Pragma to no-cache, and—for good
measure—the Expires header field to Thu, 19 Nov 1981 08:52:00 GMT.
Applications that use sessions—and even stateless web database applications
—can be adversely affected when browsers cache pages. The other values
allowed, private and public, allow responses to be cached. The distinction
between private and public is apparent when a proxy server caches responses.
See Appendix B for more details about HTTP caching.

session.cache_expire

This parameter is used when caching is allowed; it sets the expiry date and time
of the response to be the current system time plus the parameter value in
minutes. The default value is 180.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

8.4 Case Study: Adding Sessions to the Winestore

In this section we use sessions to improve the user interaction with the client entry
<form> developed in Chapter 6. The improvements focus on the interaction when
the <form> is submitted and fields don't validate. We modify the scripts to:

Display error messages on the client entry <form>

Use session variables to pass back the submitted fields to the <form>
generation script, saving the user rekeying all the data to correct the errors

8.4.1 Improving the Client Entry <form>

The client entry <form>, generated by the script shown in Example 6-7, collects
client fields to either create a new client or edit the details of an existing client. The
script shown in Example 6-8 performs the server-side validation of the client
<form> data, and updates or inserts a row in the customer table if there are no
errors.

If the validation fails, the script shown in Example 6-8 generates a page to display
the errors to the user, and the user then follows a hypertext link back to the client
entry <form> to reenter the fields. The solution provided by Example 6-7 and
Example 6-8 suffers three problems:

The user is forced to reenter the entire client entry <form> from scratch when
an error is encountered during validation

The errors that are encountered during validation are displayed by Example 6-
8 and not the entry <form> where they would be useful

The error page generated by Example 6-8 isn't safe from the reload problem
described in Chapter 6

In this section we develop the scripts to make use of session variables to solve these
problems. Rather than displaying the error messages on a page generated by the
validation script, we make the necessary changes to display the errors in red above
the appropriate fields on the client entry <form>, as shown in Figure 8-2.

Figure 8-2. Client entry <form> showing error messages placed above the appropriate fields

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Both the script that generates the client entry <form> and the script that validates the
data need to be modified to use sessions and the session variables. Because the
validation script processes the fields collected in the client <form> and generates
any associated errors, we look at the changes required for that script first.

8.4.2 The Validation Script

We begin the improvements to the validation script with the changes required to
support an error message session variable and then discuss how to record the values
to pass back to the client entry <form> generation code. We then present the
complete structure of the modified validation script.

8.4.2.1 Improving error messages

We examine the changes required for error messages first. The validation script
checks each variable submitted from the client <form>. Each field is checked with
more or less rigor, depending on the purpose of the field. The script shown in
Example 6-8 builds up a long formatted error message by concatenating error
messages together as they are found. In the modified script, an associative array is
registered to hold error messages associated with each field. This allows more
flexibility when displaying the error messages.

First, we need to initialize a session and register a variable to hold an array of errors.
This is achieved by adding the following lines to the start of the script:

// Initialize a session
session_start();

// Register an error array - just in case!
if (!session_is_registered("errors"))
 session_register("errors");

// Clear any errors that might have been
// found previously
$errors = array();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$errors = array();

Because this validation script may be called several times in a session, any errors
that may have been recorded previously need to be cleared. This is the reason for
setting the $errors value to a new, empty array.

The script checks each variable and adds an error message to the associative array
$errors if an error is encountered. The error message is indexed by the name of the
field being checked. For example, the validation of the surname is coded as:

// Validate the Surname
if (empty($formVars["surname"]))
 // the user's surname cannot be a null string
 $errors["surname"] =
 "The surname field cannot be blank.";

Once all the fields have been validated, you can test the size of the array $errors to
determine if any errors were encountered. If the size of the $errors array is 0, you
create or update the row as before. If there are any error messages in the array, you
need to display them.

// Now the script has finished the validation,
// check if there were any errors
if (count($errors))
{
 // There are errors. Relocate back to the
 // client form
 header("Location: example.8-5.php");
 exit;
}

In Example 6-8, the script itself displays any errors, and because the request
contains variables in a POST method request, the resulting page suffers from the
reload problem discussed in Chapter 6. In a nonsession-based environment, this
problem can't be solved with a Location: header field, as the error messages are
lost. In the validation script developed here, we relocate back to the client entry
<form>—shown later, in Example 8-5—and let it display the errors held in the
session variable $errors. We show the changes that allow the client entry <form>
to display error messages in the next section.

8.4.2.2 Saving last-entered values as a session variable

We now develop the script to pass the field data from the validation script back to the
client entry <form> to avoid rekeying when an error occurs. The script is modified by
saving the user-entered data in another session variable, the associative array
$formVars. The client details <form> already uses an array, $formVars, to
populate the entry fields from a customer record when editing an existing client. By
setting the $formVars session variable in the validation script, the client entry
<form> populates the <input> fields with the values that were last entered.

The following code—inserted just after $errors is registered as a session variable—
registers the array $formVars and then loops through each user-entered variable,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

registers the array $formVars and then loops through each user-entered variable,
setting a value in the array, indexed by the name of the variable. Note that the
clean() function described in Chapter 5 is used to secure the user data.

// Set up a $formVars array with the POST variables
// and register with the session.
if (!session_is_registered("formVars"))
 session_register("formVars");

foreach($HTTP_POST_VARS as $varname => $value)
 $formVars[$varname] = trim(clean($value, 50));

When the modified client entry <form> is run, the most recent values entered
from the session variable $formVars are shown.

While the $HTTP_POST_VARS associative array can be stored in
a session and accessed like any other session variable, there is
a catch. The value of $HTTP_POST_VARS is determined by PHP
before scripts are run. If a session has registered a variable with
the name $HTTP_POST_VARS, the values held in
$HTTP_POST_VARS that were set up by PHP—as a result of
processing a POST request—are overwritten by the session
variable.

If register_globals is enabled in php.ini, the GET or POST
variables PHP sets up can also be overwritten by session
variables with the same name.

The safe way to read cookies, GET, and POST variables that
have name conflicts is to use the $HTTP_COOKIE_VARS,
$HTTP_GET_VARS, and $HTTP_POST_VARS associative arrays,
as discussed in Chapter 6.

The final change needed in Example 6-8 is to destroy the session when the script
successfully saved a row in the customer table:

// Clear the session
session_destroy();

8.4.2.3 The final validation script

Example 8-4 shows the final validation script derived from Example 6-8.

Example 8-4. The complete validation script derived from Example 6-8

<?php
 include 'db.inc';
 include 'error.inc';

 // Initialize a session

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Initialize a session
 session_start();

 // Register an error array - just in case!
 if (!session_is_registered("errors"))
 session_register("errors");

 // Clear any errors that might have been
 // found previously
 $errors = array();

 // Set up a $formVars array with the POST variables
 // and register with the session.
 if (!session_is_registered("formVars"))
 session_register("formVars");

 foreach($HTTP_POST_VARS as $varname => $value)
 $formVars[$varname] = trim(clean($value, 50));

 // Vaildate the firstName
 if (empty($formVars["firstName"]))
 // First name cannot be a null string
 $errors["firstName"] =
 "The first name field cannot be blank.";

 // Validate the Surname
 if (empty($formVars["surname"]))
 // the user's surname cannot be a null string
 $errors["surname"] =
 "The surname field cannot be blank.";

 // Validate the Address
 if (empty($formVars["address1"]))
 // all the fields of the address cannot be null
 $errors["address"] =
 "You must supply at least one address line.";

 // Validate the City
 if (empty($formVars["city"]))
 // the user's city cannot be a null string
 $errors["city"] = "You must supply a city.";

 // Validate Date of Birth
 if (empty($formVars["dob"]))
 // the user's date of birth cannot be a
 // null string
 $errors["dob"] =
 "You must supply a date of birth.";

 elseif (!ereg("^([0-9]{2})/([0-9]{2})/([0-9]{4})$",
 $formVars["dob"],
 $parts))
 // Check the format
 $errors["dob"] =
 "The date of birth is not a valid date " .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "The date of birth is not a valid date " .
 "in the format DD/MM/YYYY";

 if (empty($formVars["email"]))
 // the user's email cannot be a null string
 $errors["email"] =
 "You must supply an email address.";

 // Now the script has finished the validation,
 // check if there were any errors
 if (count($errors))
 {
 // There are errors. Relocate back to the
 // client form
 header("Location: example.8-5.php");
 exit;
 }

 // If we made it here, then the data is valid

 if (!($connection = @ mysql_pconnect($hostName,
 $username,
 $password)))
 showerror();

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 // Reassemble the date of birth into database format
 $dob = " \"$parts[3]-$parts[2]-$parts[1]\"";

 // Is this an update?
 if (!empty($custID))
 {
 $query = "UPDATE customer SET ".
 "surname = \"" . $formVars["surname"] . "\", " .
 "firstname = \"" . $formVars["firstName"] . "\", " .
 "addressline1 = \"" .
 $formVars["address1"] . "\", " .
 "city = \"" . $formVars["city"] . "\", " .
 "email = \"" . $formVars["email"] . "\", " .
 "birth_date = " . $dob .
 " WHERE cust_id = $custID";
 }
 else
 // Create a query to insert the customer
 $query = "INSERT INTO customer SET" .
 "cust_id = NULL, " .
 "surname = \"" . $formVars["surname"] . "\", " .
 "firstname = \"" .
 $formVars["firstName"] . "\", " .
 "addressline1 = \"" .
 $formVars["address1"] . "\", " .
 "city = \"" . $formVars["city"] . "\", " .
 "email = \"" . $formVars["email"] . "\", " .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "email = \"" . $formVars["email"] . "\", " .
 "birth_date = $dob";

 // Run the query on the customer table
 if (!(@ mysql_query ($query, $connection)))
 showerror();

 // Is this an insert?
 if (empty($custID))
 // Find out the cust_id of the new customer
 $custID = mysql_insert_id();

 // Clear the session
 session_destroy();

 // Now show the customer receipt
 header("Location: customer_receipt.php?custID=$custID");
?>

8.4.3 The Client Entry <form> Script

Now let's turn to the changes required for the script that generates the client entry
<form> shown in Example 6-7. In the last section, we set up two session variables:
the associative array $errors used to hold a list of error messages found in the
validation script and the associative array $formVars used to hold the POST
variables you processed.

8.4.3.1 Displaying previously entered values

As Example 6-7 already sets the value attribute of the <input> elements from the
array $formVars, there are no changes needed to display previously entered
values; Example 6-7 uses $formVars when displaying the current values of clients
from the customer table. By setting $formVars as a session variable, Example 6-7
displays the values passed back from the validation script with each <input> field.

8.4.3.2 Displaying error messages

Changes are required to display the errors that are saved in the session variable
$errors in the validation script. We have added the function fieldError() to
help display the error messages above the <input> fields. The function takes two
parameters: $errors, which is the associative array of error messages, and
$fieldName, which is the index into the array.

function fieldError($fieldName, $errors)
{
 if (isset($errors[$fieldName]))
 echo
 "$errors[$fieldName]
";
}

This function tests if the indexed error message exists and, if so, echoes an
appropriately formatted error message. When each <input> element is displayed, a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

appropriately formatted error message. When each <input> element is displayed, a
call is made to the fieldError() function, as shown for the firstName and
surname fields:

<tr>
 <td>First name:</td>
 <td><? echo fieldError("firstName", $errors); ?>
 <input type="text" name="firstName"
 value="<? echo $formVars["firstName"]; ?>"
 size=50></td>
</tr>
<tr>
 <td>Surname:</td>
 <td><? echo fieldError("surname", $errors); ?>
 <input type="text" name="surname"
 value="<? echo $formVars["surname"]; ?>"
 size=50></td>
</tr>

Figure 8-2 shows the final results: a client entry <form> with error messages placed
over the corresponding fields.

8.4.3.3 The final client entry script

Example 8-5 shows the complete client entry script, derived from Example 6-7,
that displays the previous <form> values and the error messages held in session
variables.

Example 8-5. Client entry form derived from Example 6-7

<?php
 include 'db.inc';
 include 'error.inc';

 function fieldError($fieldName, $errors)
 {
 if (isset($errors[$fieldName]))
 echo
 "$errors[$fieldName]
";
 }

 // Connect to a session.
 // Up to three session variables can be registered:
 // (1) $formVars - previously entered data that has
 // failed validation
 // (2) $errors - an array of error messages, up to
 // one per widget
 // (3) $custID - the customer ID of a customer
 // to edit
 session_start();

 // $custID can also be passed as a GET parameter
 // If it is, override any session variable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // If it is, override any session variable
 if (!empty($HTTP_GET_VARS["custID"]))
 $custID = clean($HTTP_GET_VARS["custID"], 5);

 // Has a custID been provided and are there no errors?
 // If so, retrieve the customer details for editing.
 if (!empty($custID) && empty($errors))
 {
 // Register the custID as a session variable
 if (!session_is_registered("custID"))
 session_register("custID");

 if (!($connection = @ mysql_pconnect($hostName,
 $username,
 $password)))
 die("Could not connect to database");

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 $query = "SELECT * FROM customer
 WHERE cust_id = " . $custID;

 if (!($result = @ mysql_query($query, $connection)))
 showerror();

 $row = mysql_fetch_array($result);

 // Reset $formVars, since we're loading from
 // the customer table
 $formVars = array();

 // Load all the form variables with customer data
 $formVars["surname"] = $row["surname"];
 $formVars["firstName"] = $row["firstname"];
 $formVars["address1"] = $row["addressline1"];
 $formVars["city"] = $row["city"];
 $formVars["email"] = $row["email"];
 $formVars["dob"] = $row["birth_date"];
 $formVars["dob"] =
 substr($formVars["dob"], 8, 2) . "/" .
 substr($formVars["dob"], 5, 2) . "/" .
 substr($formVars["dob"], 0, 4);
 }
?>
<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
<html>
<head><title>Customer Details</title></head>
<body bgcolor="white">
<form method="post" action="example.8-4.php">
<h1>Customer Details</h1>
<?php
 // Show meaningful instructions for UPDATE or INSERT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Show meaningful instructions for UPDATE or INSERT
 if (!empty($custID))
 echo "<h3>Please amend your details below as
 required. Fields shown in
 red are
 mandatory.</h3>";
 else
 echo "<h3>Please fill in the details below to
 join. Fields shown in
 red are
 mandatory.</h3>";
?>
<table>
<col span="1" align="right">

<tr><td>First name:</td>
 <td><? echo fieldError("firstName", $errors); ?>
 <input type="text" name="firstName"
 value="<? echo $formVars["firstName"]; ?>"
 size=50></td>
</tr>
<tr><td>Surname:</td>
 <td><? echo fieldError("surname", $errors); ?>
 <input type="text" name="surname"
 value="<? echo $formVars["surname"]; ?>"
 size=50></td>
</tr>
<tr><td>Address:</td>
 <td><? echo fieldError("address", $errors); ?>
 <input type="text" name="address1"
 value="<? echo $formVars["address1"]; ?>"
 size=50><td>
</tr>
<tr><td>City:</td>
 <td><? echo fieldError("city", $errors); ?>
 <input type="text" name="city"
 value="<? echo $formVars["city"]; ?>"
 size=20><td>
</tr>
<tr><td>Email/username:</td>
 <td><? echo fieldError("email", $errors); ?>
 <input type="text" name="email"
 value="<? echo $formVars["email"]; ?>"
 size=30><td>
</tr>
<tr><td>
 Date of birth (dd/mm/yyyy):
 </td>
 <td><? echo fieldError("dob", $errors); ?>
 <input type="text" name="dob"
 value="<? echo $formVars["dob"]; ?>"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 value="<? echo $formVars["dob"]; ?>"
 size=10><td>
</tr>
</table>

<input type="submit" value="SUBMIT">
</form>
</body>
</html>

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

8.5 When to Use Sessions

So far in this chapter we have described how to implement stateful applications using
sessions, but we have not discussed when they should or should not be used.
Sessions allow some kinds of applications to be developed that otherwise would be
difficult to implement on the Web. However, because HTTP is a stateless protocol,
building a stateful application can present problems and restrictions. Avoiding the
need to maintain state information is often a desirable goal. In this section we list
some reasons sessions are used and some reasons to avoid them.

8.5.1 Reasons to Use Sessions

Sessions can be used in web database applications for several reasons. Many
traditional database applications use sessions to help control user interaction, while
other applications use sessions to reduce server processing.

8.5.1.1 Performance

In a stateless environment, an application may need to repeat an expensive
operation. An example might be a financial calculation that requires many SQL
statements and calls to mathematics libraries before displaying the results on several
web pages. An application that uses a session variable to remember the result
exposes the user, and the server, to the cost of the calculation only once.

8.5.1.2 Sequence of interaction

Often a database application—or indeed any application—needs to present a series
of screens in a controlled order. One style of application—known as a wizard—guides
a user through what would otherwise be a complex task with a series of screens.
Wizards are sometimes used for complex configurations, such as some software
installations, and often alter the flow of screens based on user input. Some
applications require that a user enter via a known page. Applications, such as online
banking, often force a user to enter via a login page rather than allow access directly
to a function such as funds transfer.

8.5.1.3 Intermediate results

Many database applications validate data before creating or updating a record in the
database, preventing erroneous data from being saved. Sessions can keep the
intermediate data, so that incomplete data can be edited—rather that rekeyed—when
errors are detected. Earlier in this chapter we used sessions to improve the
interaction between the client entry <form> and validation scripts of the winestore

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

interaction between the client entry <form> and validation scripts of the winestore
application. In the case study, the fields entered by the user are held in an array as a
session variable until the validation is successful. Another example where
intermediate results can be used is when a database application collects and
validates data for a single record over a number of fill-in forms. A shopping cart is an
example where complete data may not be created until a user requests a purchase.
The winestore application doesn't implement the shopping cart this way; rather, a
shopping cart is implemented by creating a row in the orders table and adding rows to
the items table as items are selected. The winestore application then needs to store
only the cust_id and the order_no—the combination is the primary key of the
orders table—as session variables while a shopping cart is being used. We develop
the shopping cart in Chapter 11.

8.5.1.4 Personalization

Sessions can personalize a web site. Personalization not only includes background
color or layout alternatives, but can include recording a user's interests and modifying
searches. The winestore application can record favorite regions or a buyer's price
range as session variables; each query could then be modified to reflect these
settings. A result screen displays "wines from your favorite regions within your
budget" before displaying other wines.

8.5.2 Reasons to Avoid Sessions

The reasons to avoid sessions focus mainly on the stateless nature of HTTP. The
features of HTTP that support browsing access to a disparate collection of resources
don't support stateful applications. Stateful applications work over the Web often at
the expense of HTTP features.

8.5.2.1 Need for centralized session store

In an application that uses sessions, each HTTP request needs to be processed in
the context of the session variables to which that request belongs. The state
information recorded as the result of one request needs to be available to subsequent
requests. Most applications that implement sessions store session variables in the
middle tier. Once a session is created, all subsequent requests must be processed on
the web server that holds the session variables. This requirement prevents such
applications from using HTTP to distribute requests across multiple servers and
therefore can't easily scale horizontally to handle large numbers of requests.[3] One
way for a web database application to allow multiple web servers is to store session
variables in the database tier. This approach is described in Appendix D, where we
provide a PHP and MySQL implementation of a database-tier session store.

[3] Scaling up an application—increasing the number of requests an application can respond to in a given period—can
be achieved horizontally by providing more machines, and vertically by providing a single bigger, faster, or more
efficient machine.

8.5.2.2 Performance

When a server that offers session management processes a request, there is the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When a server that offers session management processes a request, there is the
unavoidable overhead of identifying and accessing session variables. The session
overhead results in longer processing times for requests, which affects the
performance and capacity of a site. While sessions can improve application
performance—for example, a session can keep the result of an expensive operation
—the gains may be limited and outweighed by the extra processing required. Servers
that manage session variables in memory require more memory. As the amount of
memory used by the web server grows, a system may need to move portions of
memory to disk—an operation known as swapping. Swapping memory in and out of
disk storage is slow and can severely degrade the performance of a server. Servers
that use files—such as the default PHP session management—incur the cost of
reading and writing a file on disk each time a session is accessed.

8.5.2.3 Timeouts

Sessions can also cause synchronization problems. Because HTTP is stateless,
there is no way of knowing when a user has really finished with an application. Other
network applications can catch the fact that a connection has been dropped and
clean up the state that was held on behalf of that user, even if the user did not use a
logout procedure (such as typing exit or clicking on a logout button). The Telnet
application is such an example where a user makes a connection to a system over
the Internet. However, unlike HTTP, the TCP/IP connection for Telnet is kept for the
length of the session, and if the connection is lost—say, if the client's PC crashes or
the power is lost—the user is logged out of the remote system. With a session over
the Web, the server doesn't know about these events and has to make a decision as
to how long to keep the session information. In the case of PHP session
management, a garbage collection scheme is used, as we discussed earlier in this
chapter.

8.5.2.4 Bookmark restrictions

Because HTTP is stateless, browsers allow users to save URLs as a list of
bookmarks or favorite sites. The user can return to a web site at a later date by simply
selecting a bookmarked URL. Web sites that provide weather forecasts, stock prices,
and even search results from a web search engine are examples of the sites a user
might want to bookmark. Consider the URL for a fictional site that provides stock
prices:

http://www.someexchange.com/stockprice.php?code=SIMCO

The URL encodes a query that identifies a particular stock, and presumably, the script
stockprice.php uses the query to display the current stock price of the company. The
URL can be bookmarked because it contains all that is needed to generate the stock
price page for the given company code. An alternative site may collect the company
code using a <form> and, when the form is submitted, use a session variable to hold
the company code as a query. The script that generates the stock price page reads
the session variable, looks up the current price, and generates the result for the
entered company code. If a user bookmarks the session-based stock price page and
comes back in a week, the session that stored the company code is unlikely to still
exist, and the script fails to display the desired company's stock price.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sometimes bookmarking a page makes no sense. Consider an online banking
application that allows transfer of funds between two accounts. A user would log in to
the application, then request the transfer page that collects the source and target
account details in a <form>. When that <form> is submitted, a confirmation page is
shown without actually performing the transaction. Revisiting this page through a
bookmark has no meaning if the transaction was subsequently confirmed or
canceled. Generally, the pages generated from applications such as online banking
can't be bookmarked because of the reliance on session variables. Session
management in such applications is often tied closely to authentication, a topic
explored further in Chapter 9.

8.5.2.5 Security

Sessions can provide a way for a hacker to break into a system. Sessions can be
open to hijacking; a hacker can take over after a legitimate user has logged into an
application. There is much debate about the security of session-based applications on
the Web, and we discuss some issues of session security in the next chapter.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Chapter 9. Authentication and Security
There are many database applications in which restrictions need to be applied to
control user access. Some applications deal with sensitive information such as bank
account details, while others provide information or services only to paying
customers. These applications need to authenticate and authorize user requests,
typically by collecting a username and password, and checking these against a list of
valid users. As well as authenticating those who have access to a service, web
applications often need to protect the data that is transmitted over the Internet from
those who shouldn't see it.

In this chapter we discuss the techniques used to build web database applications
that authenticate, authorize, and protect the data that is transmitted over the Web.
The topics covered in this chapter include:

How HTTP authentication works and how it can be used with Apache and PHP

Writing PHP scripts to manage user authentication and authorization

Writing PHP scripts that authenticate users against a table in a database

The practical aspects of building session-based web database applications to
authenticate users, including techniques that don't use HTTP authentication

A case study example that develops an authentication framework,
demonstrating many of the techniques presented in this chapter

The features of the encryption services provided by the Secure Sockets Layer

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

9.1 HTTP Authentication

The HTTP standard provides support to authenticate and authorize user access.
When a browser sends an HTTP request for a resource that requires authentication,
a server can challenge the request by sending a response with the status code of 401
Unauthorized. When an unauthorized response is received, the browser presents
a dialog box that collects a username and password; a dialog box presented by
Netscape is shown in Figure 9-1. After the username and password have been
entered, the browser then resends the request containing an extra header field that
encodes the user credentials.

Figure 9-1. Netscape requests a username and password

This support doesn't authenticate a user or provide authorization to access a
resource or service. The server needs the encoded username and password to
establish the user's credentials and then decide if the user is authorized to receive the
requested resource. How the server performs the authentication depends on the
application. An Apache server, configured to protect resources with authentication,
uses a file that contains a list of usernames and encrypted passwords, while other
applications might use a table of users in a database.

9.1.1 How HTTP Authentication Works

Figure 9-2 shows the interaction between a web browser and a web server when a
request is challenged The browser sends a request for a resource stored on the
server. The server sends back a challenge response with the status code set to 401
Unauthorized, and the header field WWW-Authenticate. The WWW-
Authenticate field contains parameters that instruct the browser on how to meet
the challenge. The browser may need to prompt for a username and password to
meet the challenge. The browser then resends the request, including the
Authorization header field that contains the credentials the server requires.

Example 9-1 shows the HTTP response sent from an Apache server when a
request is made for a resource that requires authentication.

Figure 9-2. The sequence of HTTP requests and responses when an unauthorized page is
requested

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9-1. An unauthorized response sent by Apache

HTTP/1.1 401 Authorization Required
Date: Mon, 21 May 2001 23:40:54 GMT
Server: Apache/1.3.19 (Unix) PHP/4.0.5
WWW-Authenticate: Basic realm="Marketing Secret"
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>401 Authorization Required</TITLE>
</HEAD><BODY>
<H1>Authorization Required</H1>
This server could not verify that you
are authorized to access the document
requested. Either you supplied the wrong
credentials (e.g., bad password), or your
browser doesn't understand how to supply
the credentials required.<P>
<HR>
<ADDRESS>Apache/1.3.19 Server at dexter Port 80</ADDRESS>
</BODY></HTML>

The WWW-Authenticate header field contains the challenge method, the method by
which the browser collects and encodes the user credentials. In the example the
method is set to Basic. The header field also contains the name of the realm the
authentication applies to.

The realm is used by the browser to label usernames and passwords and is displayed
when credentials are collected; Figure 9-1 shows the realm Marketing Secret. A

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

when credentials are collected; Figure 9-1 shows the realm Marketing Secret. A
browser can automatically respond to a challenge if the browser has previously
collected credentials for the realm. The browser stores authentication credentials for
each realm it encounters until the browser program is terminated. Once the browser
has collected the credentials, it resends the original request with the additional
Authorization header field. Example 9-2 shows a request containing encoded
credentials in the Authorization header field.

Example 9-2. An authorized request sent by the browser after the credentials have been
collected

GET /auth/keys.php HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/4.51 [en] (WinNT; I)
Host: localhost
Accept: image/gif, image/jpeg, image/pjpeg, image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8
Authorization: Basic ZGF2ZTpwbGF0eXB1cw==

The Basic encoding is just that: basic! The string that is encoded into the
Authorization header field is simply the username and the password separated
by a colon character and then base-64 encoded. Base-64 encoding isn't designed to
protect data; rather it allows binary data to be transmitted over a network, and
therefore provides no real protection of the username and password. The Basic
encoding of the credentials provides protection from casual inspection only.

Some web servers, including Apache, support the Digest encoding method. The
Digest method is more secure than the Basic method because the password isn't
sent over the network. When the Digest method is used, the server generates a
random string to send with the authorization challenge. The browser then encrypts the
random string using the password provided by the user as an encryption key. The
encrypted string is sent back to the server in the Authorization header field, as
the resource is rerequested. The server uses a copy of the password stored at the
server to encrypt the same random string and compares it to the encrypted string that
has just arrived. If they match, the server has authenticated the user. The advantage
is that only the encrypted random string is exchanged, not the user password.

Both the web server and the browser need to support the Digest encoding method.
Unfortunately, most browsers support only Basic. Microsoft has developed a
proprietary method for use with HTTP authentication called NTLM that is supported
only by Internet Explorer and Microsoft's IIS web server.

While the Basic encoding method provides no real security, the Secure Sockets
Layer (SSL) protocol can protect the HTTP requests and responses sent between
browsers and servers. Because of SSL, there is little pressure on browser builders to
implement more secure schemes. For web database applications that transmit
sensitive information, such as passwords, we recommend SSL be used. We discuss
SSL later in this chapter.

9.1.2 Using Apache to Authenticate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The simplest method to restrict access to an application is to use the Apache
authentication support. The Apache server can easily be configured to use HTTP
authentication to protect the resources it serves. Apache allows authentication to be
set up on a directory-by-directory basis by adding parameters to the Directory
setting in the httpd.conf configuration file. The following example shows part of an
httpd.conf file that protects the resources—HTML files, PHP scripts, images, and so
on—stored in the /usr/local/apache/htdocs/auth directory:

Set up an authenticated directory
<Directory "/usr/local/apache/htdocs/auth">
 AuthType Basic
 AuthName "Secret Mens Business"
 AuthUserFile /usr/local/apache/allow.users
 require hugh, dave, jim
</Directory>

If PHP scripts and other sensitive resources are placed within a protected directory, a
user can access the application only by first passing the Apache authentication. The
Apache server responds with a challenge to unauthorized requests for any resources
in the protected directory. The AuthType is set to Basic to indicate the method that
encodes the username and password collected from the browser, and the AuthName
is set to the name of the realm. Apache authorizes users who are listed in the
require setting by checking the username and password against those held in the
AuthUserFile. There are other parameters that aren't discussed here; you should
refer to the Apache references listed in Appendix E for full configuration details.

For simple web database applications, Apache authentication provides a suitable
solution. When usernames and passwords need to be checked against a database or
some other source, or when HTTP authentication can't meet the needs of the
application, authentication can be managed by PHP. The next section describes how
PHP can manage HTTP authentication directly without configuring Apache. Later, in
Section 9.4, we describe how to provide authentication without using HTTP
authentication support.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

9.2 HTTP Authentication with PHP

PHP can access the credentials collected using the HTTP mechanisms introduced in
the last section, and can actually manage the HTTP authentication without relying on
Apache's configuration.

9.2.1 Access to User Credentials from PHP

PHP provides access to the encoded credentials from the HTTP Authorized
header field through the global variables $PHP_AUTH_USER, $PHP_AUTH_PW, and
$PHP_AUTH_TYPE. PHP initializes the variable $PHP_AUTH_USER with the username
and $PHP_AUTH_PW with the password entered into the browser authentication dialog
box. The global variable $PHP_AUTH_TYPE is initialized with the encoding type used
by the browser; typically this value is set to Basic.

The script shown in Example 9-3 reads the authentication global variables and
displays them in the body of the response. For the PHP code in Example 9-3 to
display the authentication credentials, the script needs to be requested after a user
has been challenged for a username and password. This happens if the file
containing the script is placed within a directory configured by Apache to require
authentication.

Example 9-3. PHP access to authentication

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
<html>
 <head><title>Authentication</title></head>
 <body>
 <h2>Hi there <?=$PHP_AUTH_USER?></h2>

 <p>Thank you for your password
 '<?=$PHP_AUTH_PW?>'!

 </body>
</html>

Applications can use the encoded credentials to support features that rely on
identifying the user. For example, an application that charges on a per-page view
basis might use the $PHP_AUTH_USER variable when recording an access to a
particular page. In this way, Apache can provide the authentication, and the
application records the users' usage. While this approach removes the need to write
any PHP code to implement authentication, users and passwords need to be
maintained in an Apache password file. In the next section we describe how to
manage HTTP authentication from within a PHP script, thus relieving Apache of
authentication responsibilities and allowing different logic to be applied to the
authorization of requests.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.2.2 Managing HTTP Authentication with PHP

Rather than configuring Apache to authenticate requests, PHP scripts can manage
the HTTP authentication challenge directly. Scripts can be written to test the
$PHP_AUTH_USER and $PHP_AUTH_PW variables and send a response containing
the WWW-Authenticate header to challenge the browser. When a request contains
a username and password, the script can authenticate and authorize the request
using any logic that is required. In Example 9-4 the user credentials set in the
$PHP_AUTH_USER and $PHP_AUTH_PW variables are passed to the function
authenticated(). This function uses the unsophisticated authentication scheme
of checking that the password is the same as the username. In the next section we
show how to implement a secure scheme that stores passwords in a database.

Example 9-4. Script generates an unauthorized response if credentials aren't in request

<?php
function authenticated($username, $password)
{
 // If either the username or the password are
 // not set, the user is not authenticated
 if (!isset($username) || !isset($password))
 return false;

 // If the username is the same as the password
 // then the user is authenticated
 if ($username == $password)
 return true;
 else
 return false;
}

//Main --------

if(!authenticated($PHP_AUTH_USER, $PHP_AUTH_PW))
{
 // No credentials found - send an unauthorized
 // challenge response
 header("WWW-Authenticate: Basic realm=\"Flat Foot\"");
 header("HTTP/1.0 401 Unauthorized");

 // Set up the body of the response that is
 // displayed if the user cancels the challenge
 ?>
 <!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
 <html>
 <head>
 <title>Web Database Applications</title>
 </head>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </head>
 <body>
 <h2>You need a username and password to
 access this service</h2>
 <p>If you have lost or forgotten your
 password, tough!
 </body>
 </html>
 <?php

 exit;
}

// The response to authorized users
?>
<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
<html>
 <head>
 <title>Web Database Applications</title>
 </head>
 <body>
 <h2>Welcome!</h2>
 </body>
</html>

The authenticated() function returns false if either the $username or
$password hasn't been set, or if the two values aren't the same. If the user
credentials fail the test, you respond with the header field WWW-Authenticate with
the encoding scheme Basic and the realm name Flat Foot. You can also set the
response line to include the status code 401 Unauthorized. The PHP manual
suggests sending the WWW-Authenticate header before the HTTP/1.0 401
Unauthorized header to avoid problems with some versions of Internet Explorer
browsers.

The first time a browser requests this page, the script sends a challenge response
containing the 401 Unauthorized header field. If the user cancels the
authentication challenge, usually by clicking the cancel button in a dialog box that
collects the credentials, the HTML encoded in the challenge response is displayed.

While the script shown in Example 9-4 duplicates much of the HTML used for the
authorized response and the challenge response, you can't simplify the script by
putting the common HTML at the start of the file. Because the script calls the
header() function when credentials aren't included in the request or the supplied
credentials don't authenticate, you can't output any of the response body until you
know if the user has authenticated.

9.2.3 Authorizing User Access

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Writing PHP scripts to manage the authentication process allows for flexible
authorization logic to be applied when processing a request. Authenticating a user
successfully against a list or table of known users doesn't automatically authorize that
user to access an application. For example, an application might apply restrictions
based on group membership: a user belonging to the DIRECTORS group gets to see
the reports from the budget database, while others can't. The number of schemes for
restricting access is limited only by a developer's imagination or more often by that of
the marketing department. A user of a subscription-based service might supply a
correct username and password, but be denied access when a fee is 14 days
overdue. Access might be denied on Thursday evenings when system maintenance
is performed. Implementing such authorization schemes requires designing the
appropriate user table or tables.

There are several HTTP status codes that are appropriate to use when denying
access to a user. Earlier, we used the response code of 401 Unauthorized to
control HTTP authentication. The response status code of 403 Forbidden is
appropriate if an explanation as to why access has been denied is required. Example
9-5 uses the code of 403 Forbidden. The HTTP/1.1 standard describes 17 4xx
status codes that have various meanings. The infamous 404 Not Found is returned
by Apache if the requested resource doesn't exist, and a PHP script can return this
code if the exact reason for the refusal needs to be hidden. The code 402 Payment
Required has been included, but the HTTP standard has not provided an
interpretation of how it should be used.

9.2.3.1 Limits placed on IP addresses

A PHP script can access the IP address from which a request was sent by inspecting
the server variable $REMOTE_ADDR. This remote address can restrict access. A
simple example allows access only from a specific IP address. This can be used to
implement administration scripts that allow access only from a specific computer. A
variation, shown in Example 9-5, is to allow access to users on a particular network
subnet. Example 9-5 limits access to the main content of the script to requests sent
from clients with a range of IP addresses that begin with 141.190.17.

Example 9-5. PHP script that forbids access from browsers outside an IP subnet

<?php
if(strncmp("141.190.17", $REMOTE_ADDR, 10) != 0)
{
 header("HTTP/1.0 403 Forbidden");
 ?>
 <!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
 <html>
 <head><title>Marketing Department</title></head>
 <body>
 <h2>403 Forbidden</h2>
 <p>You cannot access this page from outside
 the Marketing Department.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 the Marketing Department.
 </body>
 </html>
 <?
 exit;
}
?>
<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
<html>
 <head><title>Marketing Department</title></head>
 <body>
 <h2>Marketing secrets!</h2>
 <p>Need new development team - the old one
 says No far too often.
 </body>
</html>

Another limit that can be applied using the IP address is to help prevent session
hijacking—a problem discussed later in this chapter.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

9.3 Authentication Using a Database

In a web database application, usernames and passwords can be stored in a table
rather than a file. This moves the data stored about users into a database and can
simplify the management of an application. In this section we develop techniques to
store usernames and passwords securely in a table.

Later in this chapter we continue the development of the winestore application using
the customer table as a source of authentication details. To demonstrate the
principles, consider the following simple table:

CREATE TABLE users (
 user_name varchar(10) not null,
 password varchar(15) not null,
 PRIMARY KEY (user_name),
 KEY password (password)
);

This table defines two attributes: user_name and password. The user_name must
be unique, and in the users table, it is defined as the primary key. The password
attribute needs to be indexed as you formulate queries on the password in the
authentication script developed later in this section. It's unwise to store user
passwords as plain text in this table. There are many ways to retrieve passwords from
a database, and even with good web site practices and policies, storing plain-text
passwords is a security risk.

PHP provides the crypt() function that can protect passwords stored in a
database:

string crypt(string plainText [, string salt])

Returns an encrypted string using the Unix DES encryption method. The plain
text to be encrypted is passed as the first argument, with an optional second
argument used to salt the DES encryption algorithm. By default, the salt is a
two-character string used by DES to make the encrypted string harder to crack;
PHP generates a random salt if one isn't provided. The first two characters of
the returned value is the salt used in the encryption process. This function is
one-way: the returned value can't be decrypted back into the original string.
There are several PHP constants that control the encryption process, and the
default behavior is assumed in the examples. You should consult the PHP
manual for more details.

Rather than encrypt the password directly, the crypt() function encrypts a digest
of the password, and the result is a constant length irrespective of the password
length. A two-character seed or salt is used by the crypt() function to effectively
provide an encryption key. If a salt isn't passed to the function, crypt() generates
its own random string.

A common strategy for storing passwords uses the first two characters of the
username as the salt to the crypt() function. This method of salting the encryption

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

username as the salt to the crypt() function. This method of salting the encryption
process helps to hide the cases where two or more users happen to choose the same
password. Example 9-6 shows how a password is encrypted using the username to
salt the crypt() function and updated in a user row. The updatePassword()
function takes a MySQL connection handle, a username, and a password as
parameters. The function creates the encrypted password and executes an UPDATE
statement to update the password for the selected user row.

Example 9-6. A function to update a password in the users table

<?php
include "db.inc";

// Update a password in a users table
function updatePassword($connection,
 $username,
 $password)
{

 // Use the first two characters of the
 // username as a salt
 $salt = substr($username, 0, 2);

 // Create the encrypted password
 $stored_password = crypt($password, $salt);

 // Update the user row
 $update_query =
 "UPDATE users
 SET password = '$stored_password'
 WHERE user_name = '$username'";

 // Execute the UPDATE
 $result = @ mysql_query ($update_query,
 $connection)
 or showerror();
}

?>

The following SELECT statement shows how rows in the users table might look:

mysql> SELECT * FROM users;
+-----------+---------------+
| user_name | password |
+-----------+---------------+
robin	roGNvdAjJ1BDw
sue	suRQ0N4.ZOh0.
jill	jiDKFQigcAGTc
margaret	maNLEWbP2wdY.
sally	saHXb3nOaykJM
penny	pekh5W4yLAyd.
+-----------+---------------+
6 rows in set (0.00 sec)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6 rows in set (0.00 sec)

Because crypt() is one way, once a password is stored, there is no way to read
back the original. This prevents desirable features such as reminding a user of his
forgotten password. However, importantly, it prevents all but the most determined
attempts to get access to the passwords.

When a script needs to authenticate a username and password collected from an
authentication challenge, a query is executed to find a user row in the users table.
Example 9-7 shows the authenticateUser() function that constructs and
executes this query. The function is called by passing in a handle to a connected
MySQL server and the username and password collected from the authentication
challenge. The script begins by testing $username and $password. If neither is set,
the function returns false. The $password is then encrypted using the crypt()
function with the first two characters from the $username as the salt. A SELECT
query is constructed to search the users table. A query is then executed that
searches for a user row in which the user_name and password attributes have the
respective values of $username and the encrypted password. If a row is found, the
$username and $password have been authenticated, and the function returns
true.

Example 9-7. Authenticating a user against an encrypted password in the users table

<?php
include 'db.inc';

function authenticateUser($connection,
 $username,
 $password)
{
 // Test the username and password parameters
 if (!isset($username) || !isset($password))
 return false;

 // Get the two character salt from the
 // username collected from the challenge
 $salt = substr($username, 0, 2);

 // Encrypt the password collected from
 // the challenge
 $crypted_password = crypt($password, $salt);

 // Formulate the SQL find the user
 $query = "SELECT password FROM users
 WHERE user_name = '$username'
 AND password = '$crypted_password'";

 // Execute the query
 $result = @ mysql_query ($query,
 $connection)
 or showerror();

 // exactly one row? then we have found the user

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // exactly one row? then we have found the user
 if (mysql_num_rows($result) != 1)
 return false;
 else
 return true;

}
?>

The authenticateUser() function developed in Example 9-7 is likely to be
used in many scripts and writing the code to a authentication.inc file allows the
function to be included in the scripts that require authentication. We could rewrite
Example 9-4 to use the database authentication function by including the
authentication.inc file:

<?php
include("authentication.inc");
include("db.inc");
include("error.inc");

// Connect to the MySQL server
// Connect to the Server
if (!($connection = mysql_connect($hostName,
 $username, $password)))

 die("Could not connect to database");
if (!mysql_selectdb("$databaseName, $connection)
 showerror();

if !authenticateUser($connection,
 $PHP_AUTH_USER,
 $PHP_AUTH_PW)))
{
 // No credentials found - send an unauthorized
 // challenge response ...
 header("WWW-Authenticate: Basic realm=\"Flat Foot\"");
 header("HTTP/1.0 401 Unauthorized");

 // ...

 exit;
}

// The HTML response to authorized users ...

?>

9.3.1 MySQL encryption

MySQL provides the encryption function password() that can be used instead of
the crypt() function; we introduced this function in Chapter 3. The MySQL
password() function can be incorporated into the SQL update or insert queries:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

password() function can be incorporated into the SQL update or insert queries:

$update_query =
 "UPDATE users
 SET password = password($password)
 WHERE user_name = '$username'";

Like crypt(), the MySQL password() function is a one-way function, but it is
simpler to use because it doesn't require a salt string. However, when identical
passwords are used, they are stored as identical encrypted strings. Another
disadvantage to using the MySQL password() function is that the password is
transmitted between the web server and the MySQL DBMS in its unencrypted form.
We recommend that crypt() be used rather than the MySQL password()
function when building web database applications.

9.3.1.1 Encrypting other data in a database

The PHP crypt() and MySQL password() functions can be used only to store
passwords, personal identification numbers (PINs), and so on. These functions are
one-way: once the original password is encrypted and stored, you can't get it back
because there are no corresponding decode functions. These functions can't be used
to store sensitive information an application needs to retrieve. For example, when a
customer submits an order, the customer's credit-card number needs to be decrypted
and used by the application to complete the transaction.

To store sensitive information the application needs to use, you need two-way
functions that use a secret key to encrypt and decrypt the data. We discuss
encryption briefly later, in Section 9.5. One significant problem when using a key to
encrypt and decrypt data is the need to securely manage the key. The issue of key
management is beyond the scope of this book.

PHP provides a set of functions that access the mcrypt library, which provides
encryption and decryption support using a variety of encryption standards. To use
mcrypt functions, you must install the libmcrypt library and then compile PHP with
the --with-mcrypt parameter.

MySQL also has the reversible encode() and decode() functions described in
Chapter 3.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

9.4 Web Database Applications and Authentication

So far in this chapter we have presented techniques that control access to resources
—in particular, PHP scripts—based around HTTP authentication. The simplest
technique discussed so far is to configure Apache to perform the authentication and
authorization. For greater flexibility, we have described how PHP can manage the
authentication process, allowing scripts to apply whatever logic is required to meet
the authorization needs.

In this section we discuss issues of building web database applications:

Examining why HTTP authentication works well with stateless applications

Showing how a stateful application might manage HTTP authentication and the
issues that are faced when building session-based web database applications

Discussing some reasons why HTTP authentication may not be suitable for all
applications

Developing an authentication framework that can be used in a web database
application illustrating the techniques presented in this section and earlier in this
chapter

9.4.1 Building Stateless Applications

HTTP authentication is particularly well suited to stateless applications. HTTP
authentication protects sets of resources, or realms, by challenging requests that
don't contain authenticated credentials. We described the HTTP authentication
process at the beginning of this chapter. Once an authenticated set of credentials has
been collected for a realm, the user can browse the resources protected by that
realm. For example, a web site may contain a set of browsable files—resources—on
a web server. It doesn't matter which resource is requested; the first time a user
accesses the site, she is challenged. Once the credentials are established, the user
can browse the resources unchallenged.

HTTP authentication also supports bookmarking—the ability to add URLs to a list of
bookmarks or favorite sites. The user can request the protected resource from the
web site at a later date by selecting a bookmarked URL. If the user has not visited
that site for some time, the request is challenged and the user is prompted for a
username and password.

The techniques we have presented so far in this chapter can authenticate stateless
applications. If you configure Apache to authenticate requests to an application's PHP
scripts, no extra code needs to be written. If more authorization control is required, a
function similar to the authenticateUser() function, shown in Example 9-7,
can be included at the start of each script.

9.4.2 Building Session-Based Applications

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Building stateful web applications requires special care because of the stateless
nature of HTTP. In Chapter 8 we presented session management as a technique for
building stateful applications. Many web database applications—such as on-line
banking—require both authentication and session management. We now look at
some of the issues that arise when building session-based applications that require
user authentication.

9.4.2.1 Forcing users to a login page

Many traditional database applications require users to log in before they can perform
any operations. For example, an online banking application may allow access only
after a user has entered credentials from a login page. In session-based applications,
forcing users to always authenticate themselves via a login script allows session
variables to be registered so that the rest of the application pages operate correctly. A
single point of entry can also record when users access an application or force users
to view advertising.

Using HTTP authentication, if a user makes a request for a script other than the login
page of the application, and the request doesn't contain the Authorization header
field, the response should redirect the user to the login page. This fragment of code
sets the Location header field, which instructs the browser to relocate to the login
page if either the $PHP_AUTH_USER or $PHP_AUTH_PW variables aren't set:

<?php
// If this is an unauthorized request, just
// re-locate to the login page of the application
if (!isset($PHP_AUTH_USER) || !isset($PHP_AUTH_PW))
 header("Location: login.php")
 exit();

 // ... perform authentication and authorization ...
?>

... rest of script ...

9.4.2.2 Authenticating without HTTP

HTTP authentication provides a simple mechanism for building applications that need
to control user access. HTTP authentication supports stateless applications well and,
with additional coding, can support stateful, session-based applications. However,
HTTP authentication may not meet the requirements of some web database
applications. Consider the following problems of HTTP authentication:

Browsers remember passwords

When a user enters his username and password into a browser authentication
dialog box—such as that shown in Figure 9-1—the browser remembers the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dialog box—such as that shown in Figure 9-1—the browser remembers the
credentials until the browser program is terminated or a new set of credentials
are collected. When the user finishes with a web application—even if the
application includes a logout page—the browser remembers the user
credentials and allows access back to the same pages without challenge. Users
may think they have logged off from an application correctly, only to leave an
unattended browser as a security risk. By typing in a URL or simply using the
Back button, another user can access the application unchallenged. The only
sure way to protect against this kind of access is to terminate the browser.

Applications can be written to minimize this risk. By writing scripts that
deliberately respond as unauthorized to a request that contains authenticated
credentials, an application can enforce the intention of a logout. However, the
application has to remember that the user logged out—or timed out—and
respond accordingly. Such schemes lead to clumsy interactions with the user

Limited to the browser authentication dialog

When an application uses HTTP authentication, the method for collecting user
credentials is limited to the authentication dialog box provided by the browser.
An online application might want to present the login page with some site
advertising. For example, the login page of an online store, such as our
winestore, can include new arrivals of stock as advertisements.

Another feature that isn't supported using the basic HTTP authentication is
allowing users to authenticate themselves with credentials other than a
username and a password. You can allow a user who has forgotten his
password, to go to an alternate login page that asks for his date of birth, his
mother's maiden name, or other personal details to authenticate. For this kind of
application you should collect a new password and restrict the number of
attempts to the alternate login screen; otherwise, there could be a security risk.

Some applications require multiple logins. For example, an application might be
a corporate information system that requires all users to log in for basic access
but then requires an additional username and password to access a restricted
part of the site. HTTP doesn't allow for multiple Authorization header fields
in the one request

Authentication can be built into session-based applications by collecting user
credentials in a <form>. When the <form> is submitted, the username and
password are authenticated, and the authenticated state is recorded as a session
variable. The authentication and authorization techniques developed earlier in this
chapter—for example the authenticateUser() function shown in Example 9-
7—can easily be modified to work with <form> data rather than $PHP_AUTH_USER
and $PHP_AUTH_PW.

Collecting user credentials in a <form> and storing the authenticated state in a
session has disadvantages. First, the username and password aren't encoded—not
even in a basic form—when passed from the browser to the web server. This problem
is solved by using the Secure Sockets Layer protocol as discussed later in this
chapter. Second, session hijacking may arise because the state of the session is
used to control access to the application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.4.2.3 Session hijacking

By using the authenticated state stored as a session variable, a session-based
application can be open to hijacking. When a request is sent to a session-based
application, the browser includes the session identifier, usually as a cookie, to access
the authenticated session. Rather than snoop for usernames and passwords, a
hacker can use a session ID to hijack an existing session. Consider an online banking
application in which a hacker waits for a real user to log in and then takes over the
session, by including the session ID in a request, and transfers funds into his own
account. If the session isn't encrypted, it is easy to read the session ID or, for that
matter, the username and password. We recommend that any application that
transmits usernames, passwords, cookies that identify sessions, or personal details
should be protected using encryption.

Even if the connection is encrypted, the session ID may still be vulnerable. If the
session ID is stored in a cookie on the client, it is possible to trick the browser into
sending the cookie unencrypted. This can happen if the cookie was set up by the
server without the secure parameter that prevents cookie transmission over an
insecure connection. Cookie parameters and how to set up PHP session
management to secure cookies are discussed in Chapter 8.

Hijack attempts can also be less sophisticated. A hacker can hijack a session by
randomly trying session IDs in the hope that an existing session might be found. On a
busy site many hundreds of sessions might exist at any one time, increasing the
chance of the success of such an attack. One precaution is to reduce the number of
idle sessions by setting short maximum lifetimes for dormant sessions, as discussed
in Chapter 8.

Another precaution is to use session IDs that are hard to guess. The default PHP
session management uses a random number—that can be configured with a random
seed—passed through an MD5hashing algorithm, which generates a 32-character ID.
The randomness and use of MD5 hashing in PHP session IDs make them much
harder to guess than an ID based on other parameters, such as the system time, the
client IP address, or the username.

9.4.2.4 Recording IP addresses to detect session hijack attempts

Earlier in this chapter we showed how to access the IP address of the browser when
processing a request. The script shown in Example 9-5 checked the IP address set
in the $REMOTE_ADDR variable against a hardcoded value to limit access to users on
a particular subnet.

The IP address of the client that sent a request can be used to help prevent session
hijacking. If the IP address set in $REMOTE_ADDR variable is recorded as a session
variable when a user initially connects to an application, subsequent requests can be
checked and allowed only if they are sent from the same IP address.

Using the IP address as recorded from the HTTP request has
limitations. Network administrators often configure proxy servers
to hide the originating IP address by replacing it with the address

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to hide the originating IP address by replacing it with the address
of the proxy server. All users who connect to an application via
such a proxy server appear to be located on the one machine.
Some large sites—such as a large university campus—might
even have several proxy servers to balance load, so successive
requests coming from a single user might appear to change
address.

9.4.3 Case Study: Customer Authentication

The case study example in this chapter is an authentication framework that doesn't
rely on HTTP authentication to collect the username and password. The scripts
developed in the case study illustrate how several techniques are applied and how
the issues raised relating to session-based applications are solved. In this case study,
we:

Develop a login <form> to collect user credentials

Authenticate the user credentials against encrypted passwords stored in the
customer table

Use the IP address of the login request to deny access to requests from other
machines

Develop a function that is included on each page to deny access without a
successful login

Develop a logout function

9.4.3.1 Case study overview

Each customer of the winestore has an entry in the customer table that records
confidential account details, including delivery address and credit-card details. Given
such information, there is a good reason to restrict access to the application and
protect confidential data.

We design the login page as a <form>, and the authentication is handled by the
script that processes POST variables. The POST method is used rather than GET
method to prevent the username and password from appearing in the URL. The
authentication uses a query on the customer table to check the credentials; we use
the approach described in Section 9.3.

We create a session to record the username that is authenticated and the IP address
of the machine from which the login request originated. Each protected script then
tests for the existence of the session variables that hold the authenticated name and
the originating IP address and checks these against the originating IP address of the
request for that script.

While the pages we have developed on the online winestore site are more attractive
than the examples in this section, the structure of the code is the same.

9.4.3.2 Login page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The login page displays a <form> that collects a username and password and is
used as the entry point for winestore customers. The login page is also used when a
login attempt fails, as the destination page when a member logs out, and as a
warning page when an unauthorized request is made to a script that requires a user
to log in. Also, if a user that is already authorized requests the login page, we display
a message to indicate that the user is already logged on. Figure 9-3 shows the
rendered login <form> with a message showing a failed login attempt.

Figure 9-3. The login page shows a failed login attempt

Example 9-8 shows the login script with two helper functions that generate the
HTML. The function login_page() generates the HTML <form> that collects two
named <input> fields: formUsername and formPassword. The argument
$loginMessage passes any error or warning messages the login page needs to
display. If the $loginMessage is set, a formatted message is generated and
included in the page. When the <form> is submitted, the formUsername and
formPassword fields are encoded as POST variables and are processed by the
script that performs the authentication.

The function logged_on_page() in Example 9-8 generates the HTML that is
used when the script detects that a user has already logged in to the application. The
main part of the script initializes a session and checks if the user has already been
authorized. If the session variable authenticatedUser is registered, the user has
already been authorized and the function logged_on_page() is called. If not, the
entry <form> is displayed by calling the function login_page(), and the session
is destroyed.

Example 9-8. The PHP script that generates the login <form>

<?php
// Function that returns the HTML FORM that is
// used to collect the username and password

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// used to collect the username and password

function login_page($errorMessage)
{
 // Generate the Login-in page
 ?>

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
 <html>
 <head><title>Login</title></head>
 <body>
 <h2>Winestore Login Page</h2>
 <form method="POST" action="example.9-9.php">

 <?
 // Include the formatted error message

 if (isset($errorMessage))
 echo
 "<h3>$errorMessage</h3>";

 // Generate the login <form> layout
 ?>
 <table>
 <tr><td>Enter your username:</td>
 <td><input type="text" size=10
 maxlength=10
 name="formUsername"></td></tr>
 <tr><td>Enter your password:</td>
 <td><input type="password" size=10
 maxlength=10
 name="formPassword"></td></tr>
 </table>
 <p><input type="submit" value="Log in">
 </form>
 </body>
 </html>
 <?
}

//
// Function that returns HTML page showing that
// the user with the $currentLoginName is logged on

function logged_on_page($currentLoginName)
{

 // Generate the page that shows the user
 // is already authenticated and authorized
 ?>

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
 <html>
 <head><title>Login</title></head>
 <body>
 <h2>Winestore</h2>
 <h2>You are currently logged in as
 <?=$currentLoginName ?></h2>
 Logout
 </body>
 </html>
 <?
}

// Main
session_start();

// Check if we have established a session
if (isset($HTTP_SESSION_VARS["authenticatedUser"]))
{
 // There is a user logged on
 logged_on_page(
 $HTTP_SESSION_VARS["authenticatedUser"]);
}
else
{
 // No session established, no POST variables
 // display the login form + any error message
 login_page($HTTP_SESSION_VARS["loginMessage"]);

 session_destroy();
}
?>

It is important that the script test the associative array holding the session variable
$HTTP_SESSION_VARS["authenticatedUser"] rather than the global variable
$authenticatedUser. Because of the default order in which PHP initializes global
variables from GET, POST, and session variables, a user can override the value of
$authenticatedUser simply by defining a GET or POST variable in the request. We
discussed security problems with PHP variable initialization in Chapter 5.

9.4.3.3 Authentication script

When the login <form> is submitted, the POST variables are processed by the
authentication script shown in Example 9-9. The authentication is performed by
passing a handle to a connected MySQL server, the username, and the password to
the function authenticateUser(). The function executes a query to find the user
row with the same username and encrypted password. As with the code in Example
9-7, we use the first two characters from the username as the salt string to the
crypt() function.

The Boolean control variable $authenticated is set to the return value of the
authenticateUser() function. If $authenticated is true, the username is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

authenticateUser() function. If $authenticated is true, the username is
registered as the $authenticatedUser session variable and the IP address of the
client machine from which the request originated as the $loginIpAddress session
variable.

If the authentication fails and $authenticated is set to false, the
$loginMessage session variable is registered containing the appropriate message
to display on the login <form> as shown in Figure 9-3. In Example 9-9 we always
relocate back to the login page, keeping the code reasonably simple. An alternative
would be to relocate back to a customer welcome page when authentication
succeeds and relocate back to the login page only when authentication fails.

Example 9-9. Authentication script

<?php
include 'db.inc';
include 'error.inc';

function authenticateUser($connection,
 $username,
 $password)
{
 // Test that the username and password
 // are both set and return false if not
 if (!isset($username) || !isset($password))
 return false;

 // Get the two character salt from the username
 $salt = substr($username, 0, 2);

 // Encrypt the password
 $crypted_password = crypt($password, $salt);

 // Formulate the SQL query find the user
 $query = "SELECT password FROM users
 WHERE user_name = '$username'
 AND password = '$crypted_password'";

 // Execute the query
 $result = @ mysql_query ($query,
 $connection)
 or showerror();

 // exactly one row? then we have found the user
 if (mysql_num_rows($result) != 1)
 return false;
 else
 return true;

}

// Main ----------

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 session_start();

 $authenticated = false;

 // Clean the data collected from the user
 $appUsername =
 clean($HTTP_POST_VARS["formUsername"], 10);
 $appPassword =
 clean($HTTP_POST_VARS["formPassword"], 15);

 // Connect to the MySQL server
 $connection = @ mysql_connect($hostname,
 $username,
 $password)
 or die("Cannot connect");
 if (!mysql_selectdb($databaseName,
 $connection))
 showerror()

 $authenticated = authenticateUser($connection,
 $appUsername,
 $appPassword);

 if ($authenticated == true)
 {
 // Register the customer id
 session_register("authenticatedUser");
 $authenticatedUser = $appUsername;

 // Register the remote IP address
 session_register("loginIpAddress");
 $loginIpAddress = $REMOTE_ADDR;
 }
 else
 {
 // The authentication failed
 session_register("loginMessage");
 $loginMessage =
 "Could not connect to the winestore " .
 "database as \"$appUsername\"";
 }

 // Relocate back to the login page
 header("Location: example.9-8.php");
?>

9.4.3.4 Logout script

A separate script is called when a user logs out of the application. Example 9-10
shows the script that unregisters the $authenticatedUser session variable,
registers the $loginMessage variable containing the appropriate message, and
relocates back to the login script. The login script checks if the $loginMessage
session variable is registered and displays the message that the user has logged out.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9-10. Logout script

<?php
 session_start();

 $appUsername =
 $HTTP_SESSION_VARS["authenticatedUser"];

 $loginMessage =
 "User \"$appUsername\" has logged out";

 session_register("loginMessage");

 session_unregister("authenticatedUser");

 // Relocate back to the login page
 header("Location: example.9-8.php");
?>

9.4.3.5 Authorizing other requests

The scripts shown in Example 9-8, Example 9-9, and Example 9-10 form a
framework that manages the login and logout functions and sets up the authentication
control session variables. Scripts that require authorization need to check the session
variables before they generate any output.

The authorization code that checks the authentication control session variables,
shown in Example 9-11, can be written to a separate file and included with each
protected page using the include directive. This saves having to rewrite the code
for each page that requires authorization.

Example 9-11 begins by initializing the session and calculating two Boolean flags.
The first flag $notAuthenticated is set to true if the session variable
$authenticatedUser isn't set. The second flag $notLoginIp is set to true only
if the session variable $loginIpAddress is set and has the same value as the IP
address of the client that sent this request. The IP address of the client that sent the
request is available to scripts in the server environment variable $REMOTE_ADDR.
Unlike with environment variables, PHP doesn't overwrite $REMOTE_ADDR by a GET
or POST variable with the same name.

Both the $notAuthenticated flag and the $notLoginIp flag are tested, and if
either is true, an appropriate $loginMessage is set and registered with the
session, and then the Location: header field is sent with the HTTP response to
relocate the browser back to the login script. The two cases are separated, because
the script might be enhanced to record more information about the possible hijack
attempt and even to destroy the session.

Example 9-11. Code that checks the authenticated state from the session variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?php
 session_start();

 $loginScript = "example.9-8.php";

 // Set a boolean flag to check if
 // a user has authenticated
 $notAuthenticated =
 !isset($HTTP_SESSION_VARS["authenticatedUser"]);

 // Set a boolean flag to true if this request
 // originated from the same IP address
 // as the one that created this session
 $notLoginIp =
 isset($HTTP_SESSION_VARS["loginIpAddress"])
 && ($HTTP_SESSION_VARS["loginIpAddress"] !=
 $REMOTE_ADDR);

 // Check that the two flags are false
 if($notAuthenticated)
 {
 // The request does not identify a session
 session_register("loginMessage");
 $loginMessage =
 "You have not been authorized to access the " .
 "URL $REQUEST_URI";

 // Re-locate back to the Login page
 header("Location: " . $loginScript);
 exit;
 }
 else if($notLoginIp)
 {
 // The request did not originate from the machine
 // that was used to create the session.
 // THIS IS POSSIBLY A SESSION HIJACK ATTEMPT

 session_register("loginMessage");
 $loginMessage =
 "You have not been authorized to access the " .
 "URL $REQUEST_URI from the address $REMOTE_ADDR";

 // Re-locate back to the Login page
 header("Location: " . $loginScript);
 exit;
 }

?>

To use the code developed in Example 9-11 to protect a page, we only need to
include the file containing the code. If we saved Example 9-11 to auth.inc,
protecting a page is easy:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?php include("auth.inc"); ?>
<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
<html>
 ...
 <h2>Your Credit Card details</h2>
 ...
 <p>Logout
 ...
</html>

As discussed in Chapter 4, including files with the .inc extension presents a security
problem. If the user requests the include file, the source of the include file is shown in
the browser.

There are three ways to address this problem:

Store the include files outside the document tree of the Apache web server
installation. For example, store the include files in the directory
/usr/local/include/php and use the complete path in the include directive.

Use the extension .php instead of .inc. In this case, the include file is interpreted
by the PHP script engine and produces no output because it contains no main
body.

Configure Apache so that files with the extension .inc can't be retrieved.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

9.5 Protecting Data on the Web

The Web isn't a secure environment. The open nature of the networking and web
protocols—TCP, IP, and HTTP—has allowed the development of many tools that can
listen in on data transmitted between browsers and web servers. It is easy to snoop
on passing traffic and read the contents of HTTP requests and responses. With a little
extra effort, a hacker can manipulate traffic and even masquerade as another user.

If an application transmits sensitive information over the Web, an encrypted
connection should be provided between the browser and the web server. The
information that would warrant an encrypted connection includes:

Sensitive information held on the server; e.g., commercial-in-confidence
documents and bank account balances

User credentials—usernames and passwords—used to gain access to sensitive
services such as online banking or the administration of the winestore

Personal details collected from the user, such as credit card numbers

Session IDs—used by the server to link HTTP requests to session variables

In this section we focus on the common method of encrypting data sent over the Web
using the Secure Sockets Layer. We discuss the basic mechanics of SSL in this
section, and provide an installation and configuration guide for SSL and Apache as
part of Appendix A.

This section isn't designed to cover the enormous topic of encryption. We limit our
brief discussion to the features of SSL, and how SSL can protect web traffic. More
details about cryptographic systems can be found in the references listed in Appendix
E.

9.5.1 The Secure Sockets Layer Protocol

The data that is sent between web servers and browsers can be protected using the
encryption services of the Secure Sockets Layer protocol, SSL. The SSL protocol
addresses three goals:

Privacy

The content of a message transmitted over the Internet can't be understood by
a casual (or determined) observer.

Integrity

The contents of a message received are correct and has not been tampered
with.

Authentication

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Both the sender and receiver of a message can be sure of each other's identity.

SSL was originally developed by Netscape, and there are two versions: SSL v2.0 and
SSL v3.0. We don't detail the differences here, but Version 3.0 supports more security
features than 2.0. The SSL protocol isn't a standard as such, and the Transport Layer
Security 1.0 (TLS) protocol has been proposed by the Internet Engineering Task
Force (IETF) as an SSL v3.0 replacement.

9.5.1.1 SSL architecture

To understand how SSL works, you need to consider how browsers and web servers
actually send and receive HTTP messages. Browsers send HTTP requests by calling
on the host systems' TCP/IP networking software, the software that does the work of
sending and receiving data over the Internet. When a request is to be sent—for
example when a user clicks on a hypertext link—the browser formulates the HTTP
request in memory and uses the host's TCP/IP network service to send the request to
the server. TCP/IP doesn't care that the message is HTTP; it is only responsible for
getting the complete message to the destination. When a web server receives a
message, data is read from its host's TCP/IP service and then interpreted as HTTP.
We discuss the relationship between HTTP and TCP/IP in more detail in Appendix
B.

As shown in Figure 9-4, The SSL protocol operates as a layer between the browser
and the TCP/IP services provided by the host. A browser passes the HTTP message
to the SSL layer to be encrypted before the message is passed to the host's TCP/IP
service. The SSL layer, configured into the web server, decrypts the message from
the TCP/IP service and then passes it to the web server. Once SSL is installed and
the web server is configured correctly, the HTTP requests and responses are
automatically encrypted. There is no scripting required to use the SSL services.

Figure 9-4. HTTP clients and servers, SSL, and the network layer that implements TCP/IP

Because SSL sits between HTTP and TCP/IP, secure web sites technically don't
serve HTTP, at least not directly over TCP. URLs that locate resources on a secure
server begin with https://, which means HTTP over SSL. The default port for an SSL
service is 443, not port 80 as with HTTP; for example, when a browser connects to
https://secure.example.com, it makes a TCP/IP connection to port 443 on
secure.example.com. Most browsers and web servers can support SSL, but keys and
certificates need to be included in the configuration of the server (and possibly the
browser, if client certification is required).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.5.1.2 Cipher suites

To provide a service that addresses the goals of privacy, integrity, and authentication,
SSL uses a combination of cryptographic techniques and functions, such as message
digests, digital certificates, and, of course, encryption. There are many different
standard algorithms that implement these functions, and SSL can use different
combinations to meet particular requirements, such as being legal to use in a
particular country! When an SSL connection is established, clients and servers
negotiate the best combination of techniques—based on common capabilities—to
ensure the highest level of protection. The combinations of techniques that can be
negotiated are known as cipher suites.

9.5.1.3 SSL sessions

When a browser connects to a secure site, the SSL protocol performs the following
four steps:

1. A cipher suite is negotiated. The browser and the server identify the major SSL
version supported, and then the configured capabilities. The strongest cipher
suit that can be supported by both systems is chosen.

2. A secret key is shared between the server and the browser. Normally the
browser generates a secret key that is asymmetrically encrypted using the
server's public key. Only the server can learn the secret by decrypting it with the
corresponding private key. The shared secret is used as the key to encrypt and
decrypt the HTTP messages that are transmitted. This phase is called the key
exchange.

3. The server is authenticated to the browser by examining the server's X.509
digital certificate. Often browsers are preloaded with a list of certificates from
Certification Authorities, and authentication of the server is transparent to a
user. If the browser doesn't know about the certificate, the user is warned.

4. The server examines the browser's X.509 certificate to authenticate the client.
This step is optional and requires that each client be set up with a signed digital
certificate. Apache can be configured to use fields from the browser's X.509
certificate as if they were the username and password encoded into an HTTP
Authorization header field. Client certificates aren't commonly used on the
Web.

These four steps briefly summarize the network handshaking between the browser
and server when SSL is used. Once the browser and server have completed these
steps, the HTTP request can be encrypted by SSL and sent to the web server.

The SSL handshaking is slow, and if this was to occur with every HTTP request, the
performance of a secure web site would be poor. To improve performance, SSL uses
the concept of sessions to allow multiple requests to share the negotiated cipher
suite, the shared secret key, and the certificates. An SSL session is managed by the
SSL software and isn't the same as a PHP session.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.5.1.4 Certificates and Certification Authorities

A signed digital certificate encodes information so that the integrity of the information
and the signature can be tested. The information contained in a certificate that is used
by SSL includes details about the organization and the organization's public key. The
public key that is contained in a certificate matches a private key held by the
organization that is configured into the organization's web server. The browser uses
the public key when an SSL session is established to encrypt a secret. The secret
can only be decrypted using the private key configured into the organization's server.
Encryption techniques that use a public and private key are known as asymmetric,
and SSL uses asymmetric encryption to exchange a secret key. The secret key can
then be used to encrypt the messages transmitted over the Internet.

A signed certificate also contains details about the Certification Authority (CA). The
CA digitally signs a certificate by adding its own organization details, an encrypted
digest of the certificate, and its own public key. With this information encoded, the
complete signed certificate can be verified as being correct.

There are dozens, perhaps hundreds, of CAs. A browser—or the user confronted by
a browser warning—can't be expected to recognize the digital signatures from all
these authorities. The X.509 certificate standard solves this problem by allowing
issuing CAs to have their signatures digitally signed by a more authoritative CA, who
can in turn have its signature signed by yet another, more trusted CA. Eventually the
chain of signatures ends with that of a root Certification Authority. It is the certificates
from the root CAs that are often preinstalled in a browser. Some browsers allow users
to add their own trusted certificates.

Self-signed certificates can be created and used to configure a web server with SSL.
We show how to create self-signed certificates in Appendix A. But will they be
trusted? The answer is probably not for secure applications.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Chapter 10. Winestore Customer Management
This chapter is the first of four that outline the case study winestore application. It
contains an overview of the complete application, as well as the customer
management scripts for the winestore. We also introduce the include files that store
common functionality used throughout the application.

The material presented here doesn't fully explain the scripts from the online
winestore. The descriptions are outlines, and careful reading of the scripts is required
to fully understand the functionality. Also, we avoid duplicating our discussions of the
principles and basic techniques for building web database applications. Chapter 2
through Chapter 9 are required background reading to fully understand the
implementations outlined here.

The online winestore illustrates the practice of developing web database applications
and isn't a production e-commerce application. It is a complete application but doesn't
have all the features of a full production system. Such a system would include
features such as credit-card processing, a password change facility, prompts that
confirm whether a user wishes to proceed with updates or orders, more
comprehensive search features, and an administrative interface. However, we plan to
add additional features to the online examples, and updates are available from the
book's web site at http://www.oreilly.com/catalog/webdbapps/ or at the
authors' site, http://www.webdatabasebook.com.

We recommend downloading and installing the online winestore on a local machine
by following the instructions in Appendix A and Chapter 3. The best way to
understand the code is to have a local copy of the application, to open the scripts in
an editor, and to walk through the scripts while using the application with a browser.
Modifications of the scripts are encouraged. Suggestions are welcome by email to
hugh@computer.org.

The scripts outlined in this chapter perform the following functions:

Becoming a member

The complete customer <form> based on the simplified version presented in
Chapter 6 and 8.

Updating customer details

This functionality is integrated into the script used for becoming a member, and
is again an extension of the customer <form> from Chapter 6 and Chapter 8.

Checking customer details

The complete validation and database management processes for updating and
creating new customers. These processes extend the customer <form>
introduced in Chapter 6 by applying the validation techniques from Chapter 7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

introduced in Chapter 6 by applying the validation techniques from Chapter 7.
The process includes creating and storing passwords using the encryption
techniques discussed in Chapter 9.

Providing a customer receipt

A receipt page that presents the results of the customer membership processing
and avoids the reload problem discussed in Chapter 6.

Logging in

Authenticating a user and using sessions to track the user login status. This is
an application of the techniques discussed in Chapter 8 and Chapter 9.

Miscellaneous database functions and common functions

An introduction to the include.inc file used throughout the winestore application,
as well as the customer error handler implemented using the PHP error library.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

10.1 Overview of the Winestore Application

The winestore application was developed to meet the requirements outlined in
Chapter 1. It has four separate modules that we discuss in this and the next three
chapters:

Customer management

Becoming a member, amending membership details, logging in, and logging
out. The scripts that implement this functionality are in this chapter. The web
database application techniques illustrated include querying and writing data,
sessions, post validation, batch error reporting, encryption of passwords, receipt
pages to avoid the reload problem, and managing user authentication.

Shopping cart

Adding wines to a shopping cart, deleting items from the cart, adjusting
quantities, and emptying the cart. The shopping cart is discussed in Chapter
11.

Ordering and shipping

Processing the cart so that it becomes an order, confirming shipping details by
email, and confirming shipping details with an HTML receipt. These scripts are
the subject of Chapter 12.

Browsing and searching

Searching and browsing the wines. The searching and browsing module is
briefly outlined in Chapter 13, along with related topics.

10.1.1 Winestore Scripts

Figure 10-1 and Figure 10-2 show the scripts developed for the winestore
application and how they interact. The three key user interface scripts, cart.1 ,
search.1, and cart.2, are shown in both figures. cart.5, the key script that manages
browser redirection using the header() function, is omitted from the figures; we
discuss why later in this section. Figure 10-1 shows the cart, customer, searching,
ordering, and shipping scripts. Scripts are shown as boxes. Solid boxes indicate
scripts that interact with the user, while dashed boxes don't produce output but
instead redirect to the script shown.

Figure 10-1. The winestore application architecture

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The main or home page of the online winestore is shown in Figures 10-1 and 10-2
and is labeled cart.1. This page allows the user to add bottles and cases of the three
selected "hot new wines" to his shopping cart; this functionality is shown by the
double-ended arrow to the add to cart script labeled cart.3. The cart.3 script is shown
as a dashed rectangle in Figure 10-1, indicating that it's a one-component query
module that has no output and instead redirects to the calling page.

The front page also allows the user to view his shopping cart by clicking on the cart
icon or the View Cart button at the base of the page. View-the-cart functionality is
provided by the cart.2 script introduced later in this section. Four other actions are
also possible from the front page:

Searching the wines using the script search.1

Becoming a member or changing customer details using the customer.2 script

Emptying the cart using the cart.4 script

Logging in or logging out using the scripts order.1 and order.2, respectively

The customer management process is provided by five scripts. The customer.1,
customer.2, and customer.3 scripts provide the become-a-member and change
details features. The script customer.2 presents an empty customer <form> to new
customers. The <form> allows entry of all customer details, including an email
address that is used as the login name of the user and a password for future visits to
the site. The customer.1 script validates customer data and, on success, writes to the
database and redirects to the customer receipt script customer.3. On validation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

database and redirects to the customer receipt script customer.3. On validation
failure, customer.1 redirects to customer.2, where the validation errors are reported
interleaved with the <form> widgets.

For customers who are amending their details, the password and email <input>
widgets are omitted from the customer <form>. For compactness, we have omitted
password-change functionality from the online site. Other possible extensions to the
password module include emailing password reminders to the user and emailing
account activation details.

The remaining two customer scripts are shown in Figure 10-2. The login and logout
scripts are shown, along with the three scripts from Figure 10-1 that interact with
these scripts. The login script interacts with the user, while the logout script doesn't
produce output but instead redirects to the home page.

Figure 10-2. More winestore application architecture

The script order.1 allows a user to provide his username and password credentials.
On successful processing of credentials, the user is logged in. A logged-in user can
then log out using the order.2 script. The order.2 logout script is a one-component
script that always redirects the browser to the front page after the logout action.

The view cart script cart.2 shows the user the contents of his shopping cart. If the cart
contains items, the quantities are presented in a <form> environment that allows the
user to make changes to quantities. Changing a quantity to zero deletes the item. To
update changes in quantities, the cart.6 script is requested by clicking the Update
Quantities button; this script redirects to cart.2, and either shows the user the
correctly updated quantities or reports an error describing why the update failed. The
user can also empty his cart completely by clicking on a button that requests the
cart.4 script.

When logged in, orders are placed by clicking on the Make Purchase button in the
view cart screen. When the button is clicked, the script order.3 is requested and the
complex database processing used to finalize an order is performed; an overview of
the purchasing process is presented in Chapter 3, and we outline the script in
Chapter 12. If the ordering process fails, order.3 redirects to cart.2, where errors are
reported. If the ordering process succeeds, order.3 redirects to shipping.1. The
shipping.1 script sends the user an email confirmation of his order and redirects to
shipping.2 which shows the user the same receipt as an HTML page. From

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shipping.2 which shows the user the same receipt as an HTML page. From
shipping.2, the user can return to the home page.

The view cart script cart.2 also allows the user to return to the home page, search, log
in, log out, or use the customer module.

The search.1 script allows the user to browse wines that are in stock. The user can
also choose to browse a specific wine type—such as Red or White—and a specific
region such as Margaret River. Bottles or cases of wine can be added to the shopping
cart by clicking on a link that requests and passes parameters to the cart.3 script. As
on the other main pages, the user can also click on buttons to view his cart, empty his
cart, return to the home page, become a member, log in, log out, or update his
membership details.

At the beginning of this section we stated that one important script was omitted from
Figure 10-1 and Figure 10-2. This script is cart.5. This script is requested when a
button is pressed on all pages that have more than one button, and it's responsible
for redirecting the browser to the correct script. Each button is an <input> element
of type submit, and all are elements of one <form>. As there is only one <form>,
only one script can be specified as the action attribute, and this script is cart.5. The
script processes requests, identifies which button was clicked by inspecting the name
attribute of the <input> element, and then redirects the browser to the appropriate
script. Therefore, in practice, many arrows shown in Figure 10-1 and Figure 10-2
should actually pass via cart.5.

An alternative approach to redirection via cart.5 is to include multiple <form>
elements in a script or use embedded links instead of buttons. Both alternatives work
well, but all approaches have drawbacks. The advantage of our approach is that
buttons are intuitive for the user and the HTML is kept simple. The disadvantage is
the extra HTTP response and request required for each redirection.

The winestore application can be used at either the book's web site or on your local
server, if you have followed the instructions to install the examples in Appendix A.
The source code described can also be viewed at the book's web site and—if the
installation instructions have been followed—can be edited and viewed in the
directory /usr/local/apache/htdocs/wda/ on your local server. A summary of the
winestore scripts, their filenames, and functions is shown in Table 10-1.

Table 10-1. The winestore scripts, filenames, and functions
Script Filename Function

cart.1 example.cart.1.php Home page and Hot New Wines panel
cart.2 example.cart.2.php Cart contents view
cart.3 example.cart.3.php Add to cart
cart.4 example.cart.4.php Empty cart
cart.5 example.cart.5.php Manage redirection
cart.6 example.cart.6.php Update cart quantities
customer.1 example.customer.1.php Validate and update customer
customer.2 example.customer.2php Customer entry <form>
customer.3 example.customer.3.php Customer receipt
order.1 example.order.1.php Log in
order.2 example.order.2.php Log out
order.3 example.order.3.php Finalize order

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shipping.1 example.shipping.1.php Email order confirmation
shipping.2 example.shipping.2.php Order receipt
search.1 example.search.1.php Browse and search wines
include.inc include.inc Common functionality
db.inc db.inc DBMS parameters
error.inc error.inc Custom error handler

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

10.2 Customer Management

In this section, we outline the customer management scripts customer.1, customer.2,
and customer.3. The customer.2 script is for data entry of customer details and
reporting errors and is based on the customer <form> case study from Chapter 6
and Chapter 8. The customer.1 script performs data validation and writes the
customer details to the winestore database. It is also based on the case study
examples from Chapter 6 and Chapter 8. The customer.3 receipt is designed to
avoid the reload problem after writing to the database.

10.2.1 Customer Validation

Example 10-1 lists the customer.1 script. It is based on Example 8-4 and has the
same structure with two exceptions:

It validates a superset of customer fields, that is, all the fields listed in Chapter
1.

It manages the encryption of passwords and user account allocation.

The validation techniques used for the additional fields—such as the telephone and
fax numbers, email address, zip code, and so on—are discussed in Chapter 7.

Example 10-1. The complete winestore customer validation script, customer.2

<?php
 // This script validates customer data entered into
 // example.customer.2.php.
 // If validation succeeds, it INSERTs or UPDATEs
 // a customer and redirect to a receipt page; if it
 // fails, it creates error messages and these are later
 // displayed by example.customer.2.php.

 include 'include.inc';

 set_error_handler("errorHandler");

 // Initialize a session
 session_start();

 // Register an error array - just in case!
 if (!session_is_registered("errors"))
 session_register("errors");

 // Clear any errors that might have been
 // found previously
 $errors = array();

 // Set up a $formVars array with the POST variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Set up a $formVars array with the POST variables
 // and register with the session.
 if (!session_is_registered("formVars"))
 session_register("formVars");

 foreach($HTTP_POST_VARS as $varname => $value)
 $formVars[$varname] = trim(clean($value, 50));

 // Validate the firstName
 if (empty($formVars["firstName"]))
 // First name cannot be a null string
 $errors["firstName"] =
 "The first name field cannot be blank.";

 elseif (!eregi("^[a-z'-]*$", $formVars["firstName"]))
 // First name cannot contain white space
 $errors["firstName"] =
 "The first name can only contain alphabetic " .
 "characters or \"-\" or \"'\"";

 elseif (strlen($formVars["firstName"]) > 50)
 $errors["firstName"] =
 "The first name can be no longer than 50 " .
 "characters";

 // Validate the Surname
 if (empty($formVars["surname"]))
 // the user's surname cannot be a null string
 $errors["surname"] =
 "The surname field cannot be blank.";

 elseif (strlen($formVars["surname"]) > 50)
 $errors["surname"] =
 "The surname can be no longer than 50 " .
 "characters";

 // Validate the Address
 if (empty($formVars["address1"]) &&
 empty($formVars["address2"]) &&
 empty($formVars["address3"]))
 // all the fields of the address cannot be null
 $errors["address"] =
 "You must supply at least one address line.";
 else
 {
 if (strlen($formVars["address1"]) > 50)
 $errors["address1"] =
 "The address line 1 can be no longer " .
 "than 50 characters";
 if (strlen($formVars["address2"]) > 50)
 $errors["address2"] =
 "The address line 2 can be no longer " .
 "than 50 characters";
 if (strlen($formVars["address3"]) > 50)
 $errors["address3"] =

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $errors["address3"] =
 "The address line 3 can be no longer " .
 "than 50 characters";
 }

 // Validate the user's Initial
 if (!empty($formVars["initial"]) &&
 !eregi("^[a-z]{1}$", $formVars["initial"]))
 // If there is a middle initial, it must be
 // one character in length
 $errors["initial"] =
 "The initial field must be empty or one " .
 "character in length.";

 // Validate the City
 if (empty($formVars["city"]))
 // the user's city cannot be a null string
 $errors["city"] = "You must supply a city.";

 elseif (strlen($formVars["city"]) > 20)
 $errors["city"] =
 "The city can be no longer than 20 characters";

 // Validate State - any string less than 21 characters
 if (strlen($formVars["state"]) > 20)
 $errors["state"] =
 "The state can be no longer than 20 characters";

 // Validate Zipcode
 if (!ereg("^([0-9]{4,5})$", $formVars["zipcode"]))
 $errors["zipcode"] =
 "The zipcode must be 4 or 5 digits in length";

 // Validate Country
 if (strlen($formVars["country"]) > 20)
 $errors["country"] =
 "The country can be no longer than 20 characters";

 // Phone is optional, but if it is entered it must have
 // correct format
 $validPhoneExpr =
 "^([0-9]{2,3}[]?)?[0-9]{4}[]?[0-9]{4}$";

 if (!empty($formVars["phone"]) &&
 !ereg($validPhoneExpr, $formVars["phone"]))
 $errors["phone"] =
 "The phone number must be 8 digits in length, " .
 "with an optional 2 or 3 digit area code";

 // Fax is optional, but if it is entered it must
 // have correct format
 if (!empty($formVars["fax"]) &&
 !ereg($validPhoneExpr, $formVars["fax"]))
 $errors["fax"] =
 "The fax number must be 8 digits in length, with " .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "The fax number must be 8 digits in length, with " .
 "an optional 2 or 3 digit area code";

 // Validate Date of Birth
 if (empty($formVars["dob"]))
 // the user's date of birth cannot be a null string
 $errors["dob"] = "You must supply a date of birth.";

 elseif (!ereg("^([0-9]{2})/([0-9]{2})/([0-9]{4})$",
 $formVars["dob"], $parts))
 // Check the format
 $errors["dob"] =
 "The date of birth is not a valid date in the " .
 "format DD/MM/YYYY";

 elseif (!checkdate($parts[2],$parts[1],$parts[3]))
 $errors["dob"] =
 "The date of birth is invalid. Please check " .
 "that the month is between 1 and 12, and the " .
 "day is valid for that month.";

 elseif (intval($parts[3]) < 1890)
 // Make sure that the user has a reasonable birth year
 $errors["dob"] =
 "You must be alive to use this service!";

 elseif
 // Check whether the user is 18 years old.
 // If all the following are NOT true, then report
 // an error.
 // Were they born more than 19 years ago?
 (!((intval($parts[3]) < (intval(date("Y") - 19))) ||

 // No, so were they born exactly 18 years ago, and
 // has the month they were born in passed?
 (intval($parts[3]) == (intval(date("Y")) - 18) &&
 (intval($parts[2]) < intval(date("m")))) ||

 // No, so were they born exactly 18 years ago in this
 // month, and was the day today or earlier in the month?
 (intval($parts[3]) == (intval(date("Y")) - 18) &&
 (intval($parts[2]) == intval(date("m"))) &&
 (intval($parts[1]) <= intval(date("d"))))))
 $errors["dob"] =
 "You must be 18+ years of age to use this ".
 "service.";

 // Only validate email if this is an INSERT
 if (!session_is_registered("loginUsername"))
 {
 // Check syntax
 $validEmailExpr =
 "^[0-9a-z~`!#$%&_-]([.]?[0-9a-z~!#$%&_-])*" .
 "@[0-9a-z~!#$%&_-]([.]?[0-9a-z~!#$%&_-])*$";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "@[0-9a-z~!#$%&_-]([.]?[0-9a-z~!#$%&_-])*$";

 if (empty($formVars["email"]))
 // the user's email cannot be a null string
 $errors["email"] =
 "You must supply an email address.";

 elseif (!eregi($validEmailExpr, $formVars["email"]))
 // The email must match the above regular
 // expression
 $errors["email"] =
 "The email address must be in the " .
 "name@domain format.";

 elseif (strlen($formVars["email"]) > 50)
 // The length cannot exceed 50 characters
 $errors["email"] =
 "The email address can be no longer than " .
 "50 characters.";

 elseif (!(getmxrr(substr(strstr($formVars["email"],
 '@'), 1), $temp)) ||
 checkdnsrr(gethostbyname(
 substr(strstr($formVars["email"],
 '@'), 1)),"ANY"))
 // There must be a Domain Name Server (DNS)
 // record for the domain name
 $errors["email"] =
 "The domain does not exist.";

 else
 {
 // Check if the email address is already in use in
 // the winestore
 if (!($connection = @ mysql_pconnect($hostName,
 $username,
 $password)))
 showerror();

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 $query = "SELECT * FROM users
 WHERE user_name = '" .
 $formVars["email"] . "'";

 if (!($result = @ mysql_query ($query,
 $connection)))
 showerror();

 // Is it taken?
 if (mysql_num_rows($result) == 1)
 $errors["email"] =
 "A customer already exists with this " .
 "login name.";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "login name.";
 }
 }

 // Only validate password if this is an INSERT
 // Validate password - between 6 and 8 characters
 if (!session_is_registered("loginUsername") &&
 (strlen($formVars["loginPassword"]) < 6 ||
 strlen($formVars["loginPassword"] > 8)))
 $errors["loginPassword"] =
 "The password must be between 6 and 8 " .
 "characters in length";

 // Now the script has finished the validation,
 // check if there were any errors
 if (count($errors) > 0)
 {
 // There are errors. Relocate back to the
 // customer <form>
 header("Location: example.customer.2.php");
 exit;
 }

 // If we made it here, then the data is valid

 if (!isset($connection))
 {
 if (!($connection = @ mysql_pconnect($hostName,
 $username,
 $password)))
 showerror();

 if (!mysql_select_db($databaseName, $connection))
 showerror();
 }

 // Reassemble the date of birth into database format
 $dob = "\"$parts[3]-$parts[2]-$parts[1]\"";

 // Is this an update?
 if (session_is_registered("loginUsername"))
 {
 $custID = getCustomerID($loginUsername, $connection);

 $query = "UPDATE customer SET ".
 "title = \"" . $formVars["title"] . "\", " .
 "surname = \"" . $formVars["surname"] . "\", " .
 "firstname = \"" . $formVars["firstName"] . "\", " .
 "initial = \"" . $formVars["initial"] . "\", " .
 "addressline1 = \"" . $formVars["address1"] . "\", " .
 "addressline2 = \"" . $formVars["address2"] . "\", " .
 "addressline3 = \"" . $formVars["address3"] . "\", " .
 "city = \"" . $formVars["city"] . "\", " .
 "state = \"" . $formVars["state"] . "\", " .
 "zipcode = \"" . $formVars["zipcode"] . "\", " .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "zipcode = \"" . $formVars["zipcode"] . "\", " .
 "country = \"" . $formVars["country"]. "\", " .
 "phone = \"" . $formVars["phone"] . "\", " .
 "fax = \"" . $formVars["fax"] . "\", " .
 "birth_date = " . $dob .
 " WHERE cust_id = $custID";
 }
 else
 $query = "INSERT INTO customer VALUES (NULL, " .
 "\"" . $formVars["surname"] . "\", " .
 "\"" . $formVars["firstName"] . "\", " .
 "\"" . $formVars["initial"] . "\", " .
 "\"" . $formVars["title"] . "\", " .
 "\"" . $formVars["address1"] . "\", " .
 "\"" . $formVars["address2"] . "\", " .
 "\"" . $formVars["address3"] . "\", " .
 "\"" . $formVars["city"] . "\", " .
 "\"" . $formVars["state"] . "\", " .
 "\"" . $formVars["zipcode"] . "\", " .
 "\"" . $formVars["country"] . "\", " .
 "\"" . $formVars["phone"] . "\", " .
 "\"" . $formVars["fax"] . "\", " .
 "\"" . $formVars["email"] . "\", " .
 $dob . ", " .
 0 . ")";

 // Run the query on the customer table
 if (!(@ mysql_query ($query, $connection)))
 showerror();

 // If this was an INSERT, we need to INSERT
 // also into the users table
 if (!session_is_registered("loginUsername"))
 {
 // Get the customer id that was created
 $custID = @ mysql_insert_id($connection);

 // Use the first two characters of the
 // email as a salt for the password
 $salt = substr($formVars["email"], 0, 2);

 // Create the encrypted password
 $stored_password =
 crypt($formVars["loginPassword"], $salt);

 // Insert a new user into the user table
 $query = "INSERT INTO users
 SET cust_id = $custID,
 password = '$stored_password',
 user_name = '" . $formVars["email"] . "'";

 if (!($result = @ mysql_query ($query, $connection)))
 showerror();

 // Log the user into their new account

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Log the user into their new account
 session_register("loginUsername");

 $loginUsername = $formVars["email"];
 }

 // Clear the formVars so a future <form> is blank
 session_unregister("formVars");
 session_unregister("errors");

 // Now show the customer receipt
 header("Location: example.customer.3.php?custID=$custID");
?>

The following fragment of Example 10-1 manages the creation of a new user
account but only if this is a new customer:

 if (!session_is_registered("loginUsername"))
 {
 // Get the customer id that was created
 $custID = @ mysql_insert_id($connection);

 // Use the first two characters of the
 // email as a salt for the password
 $salt = substr($formVars["email"], 0, 2);

 // Create the encrypted password
 $stored_password =
 crypt($formVars["loginPassword"], $salt);

 // Insert a new user into the user table
 $query = "INSERT INTO users
 SET cust_id = $custID,
 password = '$stored_password',
 user_name = '" . $formVars["email"] . "'";

 if (!($result = @ mysql_query ($query, $connection)))
 showerror();

 // Log the user into their new account
 session_register("loginUsername");

 $loginUsername = $formVars["email"];
 }

The session variable loginUsername indicates whether or not the user is logged in.
Therefore, the fragment adds a new row to the users table only if the user isn't logged
in. To store the password, the techniques from Chapter 9 are applied, and the
password is encrypted using crypt() with the first two characters of the email
address as the seed. After adding the row, the user is logged in by registering the
session variable loginUsername and assigning the email address value to it.

For updates of customer details, the external function getCustomerID() is called
prior to updating the row. The function returns the customer cust_id associated with
the loginUsername session variable passed as a parameter. The function is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the loginUsername session variable passed as a parameter. The function is
defined in the include.inc file.

If validation fails in Example 10-1, the script redirects to the customer.2 script
shown in Example 10-2. Any validation error messages are recorded in the array
errors and this array is used to display the messages interleaved with the customer
<form> widgets. If validation and the database write succeed, the script redirects to
the customer.3 script shown in Example 10-3.

10.2.2 The Customer <form>

The script customer.2 is shown in Example 10-2. The script displays a <form> for
customer data entry. If the user is logged in and validation has not previously failed,
the customer data is retrieved from the customer table and used to populate the
<form> widgets. If the user isn't logged in, and validation has not previously failed, a
blank <form> is shown to collect new member details. If data has failed validation,
the formVars array that is registered as a session variable is used to repopulate the
<form>, and the error messages from the errors array are displayed.

Two external functions from include.inc are used in Example 10-2:

void showMessage()

This function outputs any errors or notices created by other scripts. These
messages include login errors, cart update problems, ordering problems, etc.

void showLogin()

This function outputs in the top-right corner of the browser whether the user is
logged in or not. If the user is logged in, it outputs his email address.

The country widget has only three possible values: Australia, United States, and
Zimbabwe, In a full implementation of our case study, a database table of country
names would be maintained, and the function selectDistinct() would present
the <select> list. The function selectDistinct() is discussed in Chapter 5.

Example 10-2. The customer <form> script customer.1

<?php
 // This script shows the user a customer <form>.
 // It can be used both for INSERTing a new customer and
 // for UPDATE-ing an existing customer. If the customer
 // is logged in, then it is an UPDATE; otherwise, an
 // INSERT.
 // The script also shows error messages above widgets
 // that contain erroneous data; errors are generated
 // by example.customer.1.php

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 include 'include.inc';

 set_error_handler("errorHandler");

 // Show an error in a red font
 function fieldError($fieldName, $errors)
 {
 if (isset($errors[$fieldName]))
 echo "" .
 $errors[$fieldName] .
 "
";
 }

 // Connect to a session
 session_start();

 // Is the user logged in and were there no errors from
 // a previous validation?
 // If so, look up the customer for editing
 if (session_is_registered("loginUsername") &&
 empty($errors))
 {
 if (!($connection = @ mysql_pconnect($hostName,
 $username,
 $password)))
 showerror();

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 $custID = getCustomerID($loginUsername, $connection);

 $query = "SELECT * FROM customer
 WHERE cust_id = " . $custID;

 if (!($result = @ mysql_query($query, $connection)))
 showerror();

 $row = mysql_fetch_array($result);

 // Reset $formVars, since we're loading from
 // the customer table
 $formVars = array();

 // Reset the errors
 $errors = array();

 // Load all the form variables with customer data
 $formVars["title"] = $row["title"];
 $formVars["surname"] = $row["surname"];
 $formVars["firstName"] = $row["firstname"];
 $formVars["initial"] = $row["initial"];
 $formVars["address1"] = $row["addressline1"];

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $formVars["address1"] = $row["addressline1"];
 $formVars["address2"] = $row["addressline2"];
 $formVars["address3"] = $row["addressline3"];
 $formVars["city"] = $row["city"];
 $formVars["state"] = $row["state"];
 $formVars["zipcode"] = $row["zipcode"];
 $formVars["country"] = $row["country"];
 $formVars["phone"] = $row["phone"];
 $formVars["fax"] = $row["fax"];
 $formVars["email"] = $row["email"];
 $formVars["dob"] = $row["birth_date"];
 $formVars["dob"] = substr($formVars["dob"], 8, 2) .
 "/" .
 substr($formVars["dob"], 5, 2) .
 "/" .
 substr($formVars["dob"], 0, 4);
 }

?>
<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
<html>
<head><title>Customer Details</title></head>
<body bgcolor="white">
<?php
 // Show the user login status
 showLogin();
?>
<form method="post" action="example.customer.1.php">
<h1>Customer Details</h1>
<?php
 // Display any messages to the user
 showMessage();

 // Show meaningful instructions for UPDATE or INSERT
 if (session_is_registered("loginUsername"))
 echo "<h3>Please amend your details below as " .
 "required. Fields shown in " .
 "red are " .
 "mandatory.</h3>";
 else
 echo "<h3>Please fill in the details below to " .
 "join. Fields shown in " .
 "red are ".
 "mandatory.</h3>";
?>
<table>
<col span="1" align="right">

 <tr><td>Title:</td>
 <td><select name="title">
 <option <?php if ($formVars["title"]=="Mr")
 echo "selected";?>>Mr
 <option <?php if ($formVars["title"]=="Mrs")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <option <?php if ($formVars["title"]=="Mrs")
 echo "selected";?>>Mrs
 <option <?php if ($formVars["title"]=="Ms")
 echo "selected";?>>Ms
 <option <?php if ($formVars["title"]=="Dr")
 echo "selected";?>>Dr
 </select>
</td>
 </tr>

 <tr><td>First name:</td>
 <td><? echo fieldError("firstName", $errors); ?>
 <input type="text" name="firstName"
 value="<? echo $formVars["firstName"]; ?>"
 size=50></td>
 </tr>

 <tr><td>Surname:</td>
 <td><? echo fieldError("surname", $errors); ?>
 <input type="text" name="surname"
 value="<? echo $formVars["surname"]; ?>"
 size=50></td>
 </tr>

 <tr><td>Initial: </td>
 <td><? echo fieldError("initial", $errors); ?>
 <input type="text" name="initial"
 value="<? echo $formVars["initial"]; ?>"
 size=1></td>
 </tr>

 <tr><td>Address:</td>
 <td><? echo fieldError("address", $errors); ?>
 <? echo fieldError("address1", $errors); ?>
 <input type="text" name="address1"
 value="<? echo $formVars["address1"]; ?>"
 size=50></td>
 </tr>

 <tr><td></td>
 <td><? echo fieldError("address2", $errors); ?>
 <input type="text" name="address2"
 value="<? echo $formVars["address2"]; ?>"
 size=50></td>
 </tr>

 <tr><td></td>
 <td><? echo fieldError("address3", $errors); ?>
 <input type="text" name="address3"
 value="<? echo $formVars["address3"]; ?>"
 size=50></td>
 </tr>

 <tr><td>City:</td>
 <td><? echo fieldError("city", $errors); ?>
 <input type="text" name="city"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <input type="text" name="city"
 value="<? echo $formVars["city"]; ?>"
 size=20></td>
 </tr>

 <tr><td>State: </td>
 <td><? echo fieldError("state", $errors); ?>
 <input type="text" name="state"
 value="<? echo $formVars["state"]; ?>"
 size=20></td>
 </tr>

 <tr><td>Zipcode:</td>
 <td><? echo fieldError("zipcode", $errors); ?>
 <input type="text" name="zipcode"
 value="<? echo $formVars["zipcode"]; ?>"
 size=5></td>
 </tr>

 <tr><td>Country: </td>
 <td><? echo fieldError("country", $errors); ?>
 <select name="country">
 <option <?php
 if ($formVars["country"]=="Australia")
 echo "selected";?>>Australia
 <option <?php
 if ($formVars["country"]=="United States")
 echo "selected";?>>United States
 <option <?php
 if ($formVars["country"]=="Zimbabwe")
 echo "selected";?>>Zimbabwe
 </select></td>
 </tr>

 <tr><td>Telephone: </td>
 <td><? echo fieldError("phone", $errors); ?>
 <input type="text" name="phone"
 value="<? echo $formVars["phone"]; ?>"
 size=15></td>
 </tr>

 <tr><td>Fax: </td>
 <td><? echo fieldError("fax", $errors); ?>
 <input type="text" name="fax"
 value="<? echo $formVars["fax"]; ?>"
 size=15></td>
 </tr>

 <tr><td>Date of birth
 (dd/mm/yyyy): </td>
 <td><? echo fieldError("dob", $errors); ?>
 <input type="text" name="dob"
 value="<? echo $formVars["dob"]; ?>"
 size=10></td>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 size=10></td>
 </tr>

<?php
 // Only show the username/email and password
 // <input> widgets to new users
 if (!session_is_registered("loginUsername"))
 {
?> <tr><td>Email/username:</td>
 <td><? echo fieldError("email", $errors); ?>
 <input type="text" name="email"
 value="<? echo $formVars["email"]; ?>"
 size=50></td>
 </tr>

 <tr><td>Password:</td>
 <td><? echo fieldError("loginPassword", $errors); ?>
 <input type="password" name="loginPassword"
 value="<? echo $formVars["loginPassword"]; ?>"
 size=8></td>
 </tr>
<?php
 }
?>
<tr>
 <td><input type="submit" value="Submit"></td>
</tr>
</table>
</form>

 <img src="http://www.w3.org/Icons/valid-html401"
 height="31" width="88" align="right" border="0"
 alt="Valid HTML 4.01!">
</body>
</html>

10.2.3 The Customer Receipt Page

Example 10-3 shows the customer receipt script, customer.3, that is called after a
database write to insert or update a customer. The script is a receipt page that can be
bookmarked—it expects a cust_id as a GET method parameter—and the script
does nothing but read details from the database. Reloading of the page therefore has
no undesirable side effects. Customer receipts can be viewed only when logged in,
and a user is permitted to view only her own customer receipts; if the user attempts to
retrieve another user's details, a warning message is shown to the user, and the
cust_id is updated to be her own.

Example 10-3. The customer.3 customer receipt page

<?php
 // This script shows the user a receipt for their customer
 // UPDATE or INSERT.
 // It carries out no database actions and can be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // It carries out no database actions and can be
 // bookmarked. The user must be logged in to view it.

 include 'include.inc';

 set_error_handler("errorHandler");

 // Show the user a customer INSERT or UPDATE receipt
 function show_HTML_receipt($custID, $connection)
 {
 $query = "SELECT * FROM customer
 WHERE cust_id = $custID";

 if (!($result = @ mysql_query ($query, $connection)))
 showerror();

 // There is only one matching row
 $row = @ mysql_fetch_array($result);

 echo "\n<h1>Account details for " .
 "" . $row["email"] .
 "</h1>\n";

 echo "<p><i>Please record your password " .
 "somewhere safe for future use</i>\n";

 echo "<p>Your shipping and billing details are " .
 "as follows:\n
 " .
 $row["title"] . " " .
 $row["firstname"] . " " .
 $row["initial"] . " " .
 $row["surname"] . "\n
" .
 $row["addressline1"] . "\n";

 if ($row["addressline2"] != "")
 echo "\n
" .
 $row["addressline2"];

 if ($row["addressline3"] != "")
 echo "\n
" .
 $row["addressline3"];

 echo "\n
" .
 $row["city"] . " " .
 $row["state"] . " " .
 $row["zipcode"] . "\n
" .
 $row["country"] . "
\n";

 if ($row["phone"] != "")
 echo "\n
Telephone: " .
 $row["phone"] . "";

 if ($row["fax"] != "")
 echo "\n
Fax: " .
 $row["fax"] . "";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $row["fax"] . "";

 $row["dob"] = substr($row["birth_date"], 8, 2) . "/" .
 substr($row["birth_date"], 5, 2) . "/" .
 substr($row["birth_date"], 0, 4);

 echo "\n
Date of Birth: " .
 $row["dob"] . "\n
";

 }

 // Main ----------

 // Re-establish the existing session
 session_start();

 // Check if the user is logged in - this should never
 // fail unless the script is run incorrectly
 if (!session_is_registered("loginUsername"))
 {
 session_register("message");
 $message = "You must login to view your " .
 "customer receipt.";

 header("Location: example.cart.1.php");
 exit;
 }

 // Check the correct parameters have been passed
 if (!isset($custID))
 {
 session_register("message");

 $message = "Incorrect parameters to " .
 "example.customer.3.php";

 // Redirect the browser back to the calling page,
 // using the HTTP response header "Location:"
 // and the PHP environment variable $HTTP_REFERER
 header("Location: $HTTP_REFERER");
 exit;
 }

 // Check this customer matches the custID
 if ($custID != getCustomerID($loginUsername, NULL))
 {
 session_register("message");

 $message = "You can only view your own " .
 "customer receipt!";

 $custID = getCustomerID($loginUsername, NULL);
 }

 // Open a connection to the DBMS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Open a connection to the DBMS
 if (!($connection = @ mysql_pconnect($hostName,
 $username,
 $password)))
 showerror();

 if (!mysql_select_db($databaseName, $connection))
 showerror();

?>
<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html401/loose.dtd">
<html>
<head>
 <title>Hugh and Dave's Online Wines</title>
</head>
<body bgcolor="white">
<?php
 // Show the user login status
 showLogin();

 // Show the user any messages
 showMessage();

 // Show the customer confirmation
 show_HTML_receipt($custID, $connection);

 // Show buttons
 echo "<form action=\"example.cart.5.php\"" .
 " method=\"GET\">";
 echo "<table>";

 echo "<td><input type=\"submit\" name=\"home\"" .
 " value=\"Home\"></td>";

?>
</table>
</form>

<img
 src="http://www.w3.org/Icons/valid-html401"
 height="31" width="88" align="right" border="0"
 alt="Valid HTML 4.01!">
</body>
</html>

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

10.3 Authenticating Users

Example 10-4 shows the order.1 script that is used for logging into the winestore
application. The script is based on Example 9-8 and Example 9-9 from Chapter
9. If the user isn't logged in—which should always be the case unless the script is
unexpectedly called—and no credentials have been provided from a previous login
attempt, the script displays a login <form> to the user. When the user successfully
logs in, the script redirects to the calling page that's stored in the session variable
referer; if referer isn't set, it redirects to the home page.

When the user provides credentials—a username and a password—the script is re-
requested through the <form> submission process. The script encrypts the password
provided by the user and checks if this matches the password stored in the users
table. If it matches, the user is logged in by registering the session variable
loginUsername and unregistering any session variables associated with failed
attempts to update customer details. The session variable loginUsername stores
the user's email address, which, as discussed earlier, is the same as his username. If
the password is incorrect, an error is generated, and the login <form> is redisplayed
so the user can try again.

The framework used here is typical of authentication in a web database application.
However, possible improvements to the process can include limiting the number of
failed login attempts, a password changing feature, a password reminder module—
where the user is sent a password hint such as "What is your mother's maiden
name?"—and security restrictions such as requiring that a password contain a
mixture of uppercase, lowercase, numeric, and special characters.

Example 10-4. The order.1 login script for logging into the winestore application

<?php
// This script manages the login process.
// It should only be called when the user is not
// logged in.
// If the user is logged in, it will redirect back
// to the calling page.
// If the user is not logged in, it will show a login
// <form>

include 'include.inc';

set_error_handler("errorHandler");

function check_login($loginUsername, $loginPassword)
{
 global $referer;
 global $username;
 global $password;
 global $hostName;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 global $hostName;
 global $databaseName;
 global $message;

 // Get the two character salt from the
 // user-name collected from the challenge
 $salt = substr($loginUsername, 0, 2);

 // Encrypt the loginPassword collected from
 // the challenge
 $crypted_password = crypt($loginPassword, $salt);

 // Formulate the SQL find the user
 $query = "SELECT password FROM users
 WHERE user_name = '$loginUsername'
 AND password = '$crypted_password'";

 // Open a connection to the DBMS
 if (!($connection = @ mysql_pconnect($hostName,
 $username,
 $password)))
 showerror();

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 // Execute the query
 if (!($result = @ mysql_query($query, $connection)))
 showerror();

 // exactly one row? then we have found the user
 if (mysql_num_rows($result) == 1)
 {
 // Register the loginUsername to show the user
 // is logged in
 session_register("loginUsername");

 // Clear any other session variables
 if (session_is_registered("errors"))
 // Delete the form errors session variable
 session_unregister("errors");

 if (session_is_registered("formVars"))
 // Delete the formVars session variable
 session_unregister("formVars");

 // Do we need to redirect to a calling page?
 if (session_is_registered("referer"))
 {
 // Delete the referer session variable
 session_unregister("referer");

 // Then, use it to redirect
 header("Location: $referer");
 exit;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 exit;
 }
 else
 {
 header("Location: example.cart.1.php");
 exit;
 }
 }
 else
 {
 // Ensure loginUsername is not registered, so
 // the user is not logged in
 if (session_is_registered("loginUsername"))
 session_unregister("loginUsername");

 // Register an error message
 session_register("message");
 $message = "Username or password incorrect. " .
 "Login failed.";

 // Show the login page
 // so the user can have another go!
 login_page();
 exit;
 }
}

// Function that shows the HTML <form> that is
// used to collect the username and password
function login_page()
{
 global $message;

 ?>
<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
<html>
 <head>
 <title>Winestore Login Page</title>
 </head>
<body bgcolor="white">
<?php
 // Show login status (should be logged out!)
 showLogin();
?>
 <h2>Winestore Login Page</h2>
 <form method="POST" action="example.order.1.php">
<?php
 // Show messages
 showMessage();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 showMessage();
 ?>
<table>
<tr>
 <td>Enter your username:</td>
 <td><input type="text" size=15
 maxlength=30
 name="loginUsername"></td>
</tr>
<tr><td>Enter your password:</td>
 <td><input type="password" size=15
 maxlength=8
 name="loginPassword"></td>
</tr>
<tr>
 <td><input type="submit" value="Log in"></td>
</tr>
</table>

 <img src="http://www.w3.org/Icons/valid-html401"
 height="31" width="88" align="right" border="0"
 alt="Valid HTML 4.01!">
</form>
</body>
</html>
<?php
}

// ------------------

// Initialise the session
session_start();

if (isset($HTTP_POST_VARS["loginUsername"]))
 $loginUsername =
 clean($HTTP_POST_VARS["loginUsername"], 30);

if (isset($HTTP_POST_VARS["loginPassword"]))
 $loginPassword =
 clean($HTTP_POST_VARS["loginPassword"], 8);

// Check if the user is already logged in
if (session_is_registered("loginUsername"))
{
 // If they are, then just bounce them back where
 // they came from
 if (session_is_registered("referer"))
 {
 session_unregister("referer");
 header("Location: $referer");
 exit;
 }
 else
 {
 header("Location: example.cart.1.php");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 header("Location: example.cart.1.php");
 exit;
 }
}

// Have they provided only one of a username and
// password?
if ((empty($HTTP_POST_VARS["loginUsername"]) &&
 !empty($HTTP_POST_VARS["loginPassword"])) ||
 (!empty($HTTP_POST_VARS["loginUsername"]) &&
 empty($HTTP_POST_VARS["loginPassword"])))
{
 // Register an error message
 session_register("message");
 $message = "Both a username and password must " .
 "be supplied.";
}

// Have they not provided a username/password,
// or was there an error?
if (!isset($loginUsername) ||
 !isset($loginPassword) ||
 session_is_registered("message"))
 login_page();
else
 // They have provided a login. Is it valid?
 check_login($loginUsername, $loginPassword);
?>

Example 10-5 lists the winestore order.2 logout script. The script is simple: if the
session variable loginUsername is registered—this variable indicates the user is
logged in—it's unregistered; if it isn't registered, the script has been unexpectedly
called, and an error message is generated. In either case, the script then redirects
back to the calling page stored in the session variable referer, or to the home page
if referer isn't set. The script is a one-component script; that is, it carries out a
function, produces no output, and redirects back to the calling page.

Example 10-5. The order.2 logout script for logging out of the winestore application

<?php
 // This script logs a user out and redirects
 // to the calling page.

 include 'include.inc';

 set_error_handler("errorHandler");

 // Restore the session
 session_start();

 // Is the user logged in?
 if (session_is_registered("loginUsername"))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (session_is_registered("loginUsername"))
 session_unregister("loginUsername");
 else
 {
 // Register a message to show the user
 session_register("message");
 $message = "Error: you are not logged in!";
 }

 // Redirect the browser back to the calling page
 if (session_is_registered("referer"))
 {
 // Delete the redirection session variable
 session_unregister("referer");

 // Then, use it to redirect to the calling page
 header("Location: $referer");
 exit;
 }
 else
 header("Location: example.cart.1.php");
?>

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

10.4 The Winestore Include Files

The winestore include files are shown in Example 10-6, Example 10-7, and
Example 10-8. The db.inc include file in Example 10-6 and the error.inc include
file in Example 10-8 are both included in the include.inc file in Example 10-7.

Example 10-6 shows the db.inc file that lists the DBMS credentials for connecting to
the winestore database. The settings must be changed for a local installation of the
winestore application.

Example 10-6. The db.inc include file

<?php
 $hostName = "localhost";
 $databaseName = "winestore";
 $username = "fred";
 $password = "shhh";
?>

The db.inc include file stores the DBMS and database credentials to access the
online winestore. The hostName setting is the server name of the DBMS, the
databaseName setting is the winestore database name, and the username and
password are those used to access the MySQL DBMS. This file is identical to
Example 4-7 and is discussed in Chapter 4.

The include.inc file shown in Example 10-7 stores the common function used
throughout the winestore application.

Example 10-7. The include.inc file

<?php
 // This file contains functions used in more than
 // one script in the cart module

 include 'db.inc';
 include 'error.inc';

 // Untaint user data
 function clean($input, $maxlength)
 {
 $input = substr($input, 0, $maxlength);
 $input = EscapeShellCmd($input);
 return ($input);
 }

 // Print out the varieties for a wineID
 function showVarieties($connection, $wineID)
 {
 // Find the varieties of the current wine,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Find the varieties of the current wine,
 // and order them by id
 $query = "SELECT gv.variety
 FROM grape_variety gv,
 wine_variety wv, wine w
 WHERE w.wine_id = wv.wine_id
 AND wv.variety_id = gv.variety_id
 AND w.wine_id = $wineID
 ORDER BY wv.id";

 // Run the query
 if (!($result = @ mysql_query($query, $connection)))
 showerror();

 $varieties = "";

 // Retrieve and print the varieties
 while ($row = @ mysql_fetch_array($result))
 $varieties .= " " . $row["variety"];

 return $varieties;
 }

 // Show the user the details of one wine in their
 // cart
 function showWine($wineId, $connection)
 {
 global $username;
 global $password;
 global $databaseName;

 $wineQuery = "SELECT year, winery_name, wine_name
 FROM winery, wine
 WHERE wine.winery_id = winery.winery_id
 AND wine.wine_id = $wineId";

 $open = false;

 // If a connection parameter is not passed, then
 // use our own connection to avoid any
 // locking problems
 if (!isset($connection))
 {
 if (!($connection = @ mysql_connect($hostName,
 $username,
 $password)))
 showerror();

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 $open = true;
 }

 // Run the query created above on the database

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Run the query created above on the database
 // through the connection
 if (!($result = @ mysql_query ($wineQuery,
 $connection)))
 showerror();

 $row = @ mysql_fetch_array($result);

 // Print the wine details
 $result = $row["year"] . " " .
 $row["winery_name"] . " " .
 $row["wine_name"];

 // Print the varieties for this wine
 $result .= showVarieties($connection, $wineId);

 if ($open == true)
 @ mysql_close($connection);

 return $result;
 }

 // Print out the pricing information for a wineID
 function showPricing($connection, $wineID)
 {
 // Find the price of the cheapest inventory
 $query = "SELECT min(cost)
 FROM inventory
 WHERE wine_id = $wineID";

 // Run the query
 if (!($result = @ mysql_query($query,
 $connection)))
 showerror();

 // Retrieve the cheapest price
 $row = @ mysql_fetch_array($result);

 printf("Our price: $%.2f",
 $row["min(cost)"]);
 printf(" ($%.2f a dozen)",
 ($row["min(cost)"] * 12));
 }

 // Show the total number of items and dollar value of
 // the shopping cart, as well as a clickable cart icon
 function showCart($connection)
 {
 global $order_no;

 // Initialise an empty cart
 $cartAmount = 0;
 $cartCount = 0;

 // If the user has added items to their cart,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // If the user has added items to their cart,
 // then the variable order_no will be registered
 if (session_is_registered("order_no"))
 {
 $cartQuery = "SELECT qty, price " .
 "FROM items " .
 "WHERE cust_id = -1 " .
 "AND order_id = " . $order_no;

 // Find out the number and the dollar value of
 // the items in the cart. To do this, we run
 // the cartQuery through the connection on
 // the database
 if (!($result = @ mysql_query ($cartQuery,
 $connection)))
 showerror();

 while ($row = @ mysql_fetch_array($result))
 {
 $cartAmount += $row["price"] * $row["qty"];
 $cartCount += $row["qty"];
 }
 }

 // This sets up the cart picture.
 // The user can click on it to see the contents of
 // their cart. It also contains JavaScript, so that
 // the cart highlights
 // when the mouse is over it (a "roll-over")
 echo "<table>\n<tr>\n\t<td>";
 echo "<a href=\"example.cart.2.php\" " .
 "onMouseOut=\"cart.src='cart_off.jpg'\" " .
 "onMouseOver=\"cart.src='cart_on.jpg'\"> " .
 "<img src=\"cart_off.jpg\" vspace=0 border=0 " .
 "alt=\"cart picture\" name=\"cart\">\n";
 echo "\t</td>\n";
 printf("\t<td>Total in cart: $%.2f (%d items)</td>\n",
 $cartAmount, $cartCount);
 echo "</tr>\n</table>";
 }

 // Display any messages that are set, and then
 // clear the message
 function showMessage()
 {
 global $message;

 // Is there an error message to show the user?
 if (session_is_registered("message"))
 {
 echo "<h3>";
 echo "$message</h3>";
 // Clear the error message
 session_unregister("message");
 $message = "";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $message = "";
 }
 }

 // Show whether the user is logged in or not
 function showLogin()
 {
 global $loginUsername;

 // Is the user logged in?
 if (session_is_registered("loginUsername"))
 echo "<p align=\"right\">You are currently " .
 "logged in as $loginUsername</p>\n";
 else
 echo "<p align=\"right\">You are currently " .
 "not logged in</p>\n";
 }

 // Show the user a login or logout button.
 // Also, show them membership buttons as appropriate.
 function loginButtons()
 {
 if (session_is_registered("loginUsername"))
 {
 echo "\n\t<td><input type=\"submit\"" .
 " name=\"logout\" value=\"Logout\"></td>\n";
 echo "\n\t<td><input type=\"submit\"" .
 "name=\"account\" value=\"Change " .
 "Details\"></td>\n";
 }
 else
 {
 echo "\t<td><input type=\"submit\" " .
 "name=\"login\" value=\"Login\"></td>\n";
 echo "\n\t<td><input type=\"submit\" " .
 "name=\"account\" value=\"Become " .
 "a Member\"></td>\n";
 }
 }

 // Get the cust_id using loginUsername
 function getCustomerID($loginUsername, $connection)
 {
 global $databaseName;
 global $username;
 global $password;
 global $hostName;

 $open = false;

 // If a connection parameter is not passed, then
 // use our own connection to avoid any locking
 // problems
 if (!isset($connection))
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 if (!($connection = @ mysql_connect($hostName,
 $username,
 $password)))
 showerror();

 if (!mysql_select_db($databaseName,
 $connection))
 showerror();

 $open = true;
 }

 // We find the cust_id through the users table,
 // using the session variable holding their
 // loginUsername.
 $query = "SELECT cust_id
 FROM users
 WHERE user_name = \"$loginUsername\"";

 if (($result = @ mysql_query ($query, $connection)))
 $row = mysql_fetch_array($result);
 else
 showerror();

 if ($open == true)
 @ mysql_close($connection);

 return($row["cust_id"]);
 }

 // Produce a <select> list containing database
 // elements
 function selectDistinct ($connection,
 $tableName,
 $columnName,
 $pulldownName,
 $additionalOption,
 $defaultValue)
 {
 $defaultWithinResultSet = FALSE;

 // Query to find distinct values of $columnName
 // in $tableName
 $distinctQuery = "SELECT DISTINCT $columnName
 FROM $tableName";

 // Run the distinctQuery on the databaseName
 if (!($resultId = @ mysql_query ($distinctQuery,
 $connection)))
 showerror();

 // Retrieve all distinct values
 $i = 0;
 while ($row = @ mysql_fetch_array($resultId))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 while ($row = @ mysql_fetch_array($resultId))
 $resultBuffer[$i++] = $row[$columnName];

 // Start the select widget
 echo "\n<select name=\"$pulldownName\">";

 // Is there an additional option?
 if (isset($additionalOption))
 // Yes, but is it the default option?
 if ($defaultValue == $additionalOption)
 // Show the additional option as selected
 echo "\n\t<option selected>$additionalOption";
 else
 // Just show the additional option
 echo "\n\t<option>$additionalOption";

 // check for a default value
 if (isset($defaultValue))
 {
 // Yes, there's a default value specified

 // Check if the defaultValue is in the
 // database values
 foreach ($resultBuffer as $result)
 if ($result == $defaultValue)
 // Yes, show as selected
 echo "\n\t<option selected>$result";
 else
 // No, just show as an option
 echo "\n\t<option>$result";
 } // end if defaultValue
 else
 {
 // No defaultValue

 // Show database values as options
 foreach ($resultBuffer as $result)
 echo "\n\t<option>$result";
 }
 echo "\n</select>";
 } // end of function
?>

The include.inc file shown in Example 10-7 contains the following functions that are
used throughout the winestore application:

string clean(string input, integer maxlength)

Untaints a user-supplied input string by processing it with EscapeShellCmd(
) and takes a substring of length maxlength. Returns the untainted string. This
function is discussed in Chapter 5.

void showVarieties(resource connection, int wineID)

Queries the winestore database through the DBMS connection resource.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Queries the winestore database through the DBMS connection resource.
Prints the wine varieties associated with the wine identified by the wine_id
wineID.

string showWine(int wineID, resource connection)

Queries the winestore database through the DBMS connection resource.
Returns the year, winery name, wine details, and varieties of the wine identified
by wineID. The function showVarieties() is called to output the varieties.
If the connection resource is NULL, a new nonpersistent connection to the
DBMS is opened and closed; this can be used to avoid having to lock the tables
associated with a wine if the calling function requires locks for other operations.

void showPricing(resource connection, int wineID)

Queries the winestore database through the DBMS connection resource.
Prints the price of the wine identified by wineID and the cost of a case of that
wine where—for simplicity—a case of 12 bottles costs 12 times as much as 1
bottle.

void showCart(resource connection)

Produces a shopping cart icon that is an embedded link to the script cart.2. The
icon is a rollover, in which JavaScript loads a highlighted cart image when the
mouse is over the image. The script also queries the winestore database
through the DBMS connection resource and sums the total number of items
and the dollar value of the items in the user's shopping cart. These total values
are reported next to the cart.

void showMessage()

Reports any messages registered in the session variable message. If a
message is displayed, the session variable message is unregistered so that a
message appears only once.

void showLogin()

Reports whether the user is logged in or not based on whether the
loginUsername session variable is registered. If the user is logged in, the
message includes the user's login name.

void loginButtons()

Displays <form> buttons. If the user is logged in, the "logout" and "customer
change details" buttons are shown. If the user isn't logged in, the "login" and
"become a member" buttons are shown.

string getCustomerID(string loginUsername, resource connection)

Returns the cust_id associated with the user's email address or login name
loginUsername. Queries the winestore database through the DBMS
connection resource. If the connection resource is NULL, a new,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

connection resource. If the connection resource is NULL, a new,
nonpersistent connection to the DBMS is opened and closed; this can be used
to avoid having to lock the tables associated with a wine if the calling function
requires locks for other operations.

void selectDistinct (resource connection, string tableName, string
columnName, string pulldownName, string additionalOption, string
defaultValue)

Produces a drop-down list using the HTML <select> element. Values from the
columnName attribute of the table tableName are used to populate the
<select> element with the name pulldownName. The <option>
defaultValue is shown selected, and an additional nondatabase value—such
as All—can be added with the additionalOption parameter. This function
is described in detail in Chapter 5.

10.4.1 Custom Error Handlers

A custom error handler is used in the winestore in preference to the built-in PHP error
handler. Example 10-8 shows this handler incorporated in the include file error.inc.

Example 10-8. The error.inc custom error handler

<?
 // Trigger an error condition
 function showerror()
 {
 if (mysql_errno() || mysql_error())
 trigger_error("MySQL error: " .
 mysql_errno() .
 " : " . mysql_error(),
 E_USER_ERROR);
 else
 trigger_error("Could not connect to DBMS",
 E_USER_ERROR);
 }

 // Abort on error. Deletes session variables to leave
 // us in a clean state
 function errorHandler($errno, $errstr,
 $errfile, $errline)
 {
 switch ($errno)
 {
 case E_USER_NOTICE:
 case E_USER_WARNING:
 case E_WARNING:
 case E_NOTICE:
 case E_CORE_WARNING:
 case E_CORE_NOTICE:
 case E_COMPILE_WARNING:
 break;
 case E_USER_ERROR:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 case E_USER_ERROR:
 case E_ERROR:
 case E_PARSE:
 case E_CORE_ERROR:
 case E_COMPILE_ERROR:
 session_start();

 if (session_is_registered("message"))
 session_unregister("message");

 if (session_is_registered("order_no"))
 session_unregister("order_no");

 $errorString =
 "Winestore system error: $errstr (# $errno).
\n" .
 "Please report the following to the administrator:
\n" . "Error in

 // Send the error to the administrator by email
 error_log($errorString, 1, "hugh");
?>
<h2>Hugh and Dave's Online wines is temporarily unavailable</h2>
The following has been reported to the administrator:

<?=$errorString;?>
<?php
 // Stop the system
 die();

 default:
 break;
 }
 }
?>

At the beginning of each script in the winestore application, the handler is registered:

set_error_handler("errorHandler");

After this registration, any error, warning, or notice encountered in the script will cause
the function errorHandler() to be called.

The function set_error_handler() has the following prototype:

string set_error_handler(string error_handler)

On success, the function returns the previously defined error handler function name
as a string. The parameter error_handler is the name of the user-defined handler
function, in our example errorHandler. The returned value can be used later to
restore the previous error handler with set_error_handler().

PHP requires that the user-defined errorHandler() function have at least two
parameters: an error number and an error string. Three additional optional
parameters can be included in a custom error handler: the script file that caused the
error, the line number with the error, and additional variable context information. Our
handler supports the first two of the three optional parameters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Eight different errors, warnings, and notices can be generated by PHP during script
processing or during the precompilation process, generated by the PHP script engine
itself, or triggered manually by the developer. Our errorHandler() function
ignores all notices and warnings by returning if the error number errno parameter
falls into the WARNING or NOTICE classes. However, for all errors in the ERROR class
and for PARSE errors, our custom error handler carries out several actions:

1. It logs out the user and deletes any registered session messages.

2. It creates a string that incorporates details of the error.

3. It emails the error message to the system administrator—in this case to the
email account hugh—using the PHP library error_log() function.

4. It outputs the error message to the browser.

The advantage of a custom error handler is that additional features, such as deleting
session variables, closing database connections, and sending email messages, can
be incorporated in the error process.

The error_log() function has the following prototype:

int error_log (string message, int message_type [, string destination

The string message is the error message to be logged. The message_type can be
0, 1, or 3. A setting of 0 sends the message to the PHP system error logger, which is
configured using the error_log directive in the php.ini file. A setting of 1 sends an
email to the destination email address using the mail() function with any
additional email extra_headers that are provided; the mail() function and the
use of extra headers is discussed in Chapter 12. A setting of 3 appends the
message to the file destination. A setting of 2 isn't available in PHP4.

The showerror() function is also part of error.inc. This function is called whenever
a MySQL function fails throughout the winestore scripts. The function tests if
mysql_error() or mysql_errno() return nonzero values and, if so, it triggers
a user-generated error using the trigger_error() PHP library function:

void trigger_error (string error_message [, int error_type])

The trigger_error() function has two parameters: an error_message—
which is created using the return values of the MySQL error functions—and an
optional error_type that's set to E_USER_ERROR. If MySQL hasn't reported an
error, the mysql_connect() or mysql_pconnect() functions have failed, and
a message indicating this is manually created. The result of calling
trigger_error() is that the PHP script engine calls our custom registered
handler, errorHandler().

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Chapter 11. The Winestore Shopping Cart
In this chapter, we introduce the shopping cart developed for the online winestore.
The shopping cart is typical of those used in online stores: the user can add items to
the cart and manage the quantities of the different items. The solution we outline is
scalable and practical. The cart data is stored in the winestore database tables, and
only one session variable per user is required to track the cart's identity.

This chapter is the second of four that outline the complete winestore application. As
discussed in Chapter 10, the descriptions of the scripts aren't comprehensive, and
we assume you've read Chapter 2 to Chapter 9 as background. Also, we
encourage you to install a local copy of the application and to view, edit, and use the
scripts while reading this chapter.

We present here the four scripts that manage the shopping cart, a fifth script that
produces the home page that includes the Hot New Wines panel, and a sixth script
that manages redirection to other pages when the user clicks on buttons.

The scripts in this chapter perform the following functions:

Present the home page

Display the Hot New Wines panel based on the examples developed in
Chapter 4 and Chapter 5

View the shopping cart

Query the database and display the contents of the user's shopping cart

Add items to the cart

Add a quantity of a specific wine to the user's shopping cart

Empty the cart

Delete all the items in the cart and remove the cart

Update quantities

Manage changes to the number of bottles of wines in the cart, including deletion
of one or more wines

Process button clicks and redirect the browser

Manage the redirections required when the user presses the different buttons
on each of the winestore pages

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As with the other modules in the winestore, the shopping cart isn't a production
system. The scripts presented here illustrate the practice of developing a web
database application. Techniques shown include database interactivity, concurrency
management, using sessions, and one- and two-component querying.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

11.1 The Winestore Home Page

Example 11-1 shows the final implementation of the winestore home page
containing the Hot New Wines panel. The Hot New Wines panel is discussed in more
detail in Chapter 4, and the one-component functionality for adding one or a dozen
bottles of wine to the cart is discussed in Chapter 5. We discuss how clicks on the
add-to-cart links are managed later in Section 11.2.

The Hot New Wines panel is based on scripts presented in Chapter 4 and is
encapsulated in the function showPanel() in Example 11-1. The functions
showVarieties(), which displays the varieties of a specific wine, and
showPricing(), which shows the per-bottle and the per-case price of a wine, are
part of the include.inc file discussed in Chapter 10.

The main body of the script presents the front page using a mixture of HTML and
calls to functions. The function showCart() displays an embedded link cart icon
and the dollar total and number of items in the cart. The function showMessage()
displays any message registered in the session variable message, and the
showLogin() function displays the user's login status. The function
loginButtons() shows the user different buttons depending on whether or not
she is currently logged in. All these functions are part of include.inc and discussed in
Chapter 10.

The following code fragment inserts the file disclaimer into the body of the HTML:

require 'disclaimer';

The file is a text message that alerts the user that our system doesn't really sell wines
and that the scripts are covered by the GNU public license.

Example 11-1. cart.1 displays the winestore home page

<?php
 // This is the script that shows the user a list of
 // wines, and allows them to select wines to add to
 // their shopping cart

 include 'include.inc';

 set_error_handler("errorHandler");

 function showPanel($query, $connection)
 {
 // Run the query on the database through
 // the connection
 if (!($result = @ mysql_query ($query, $connection)))
 showerror();

 echo "<table border=0>\n";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 echo "<table border=0>\n";

 // Process the three new wines
 while ($row = @ mysql_fetch_array($result))
 {
 // Begin a heading for the wine
 echo "<tr>\n\t<td bgcolor=\"maroon\">" .
 "" .
 $row["year"] . " " .
 $row["winery_name"] . " " .
 $row["wine_name"] . " ";

 // Print the varieties for this wine
 echo showVarieties($connection, $row["wine_id"]);

 // Finish the first row heading
 echo "</td>\n</tr>\n";

 // Print the wine review
 if (!empty($row["description"]))
 echo "<tr>\n\t<td bgcolor=\"silver\">" .
 "Review: " .
 $row["description"];
 "</td>\n</tr>\n";

 // Print the pricing information
 echo "<tr>\n\t<td bgcolor=\"gray\">";

 // Print out the pricing information
 showPricing($connection, $row["wine_id"]);

 echo "</td>\n</tr>\n";

 // Show the single-bottle add to cart link
 echo "<tr>\n\t<td align=\"right\">" .
 "<a href=\"example.cart.3.php?" .
 "qty=1&wineId=" .
 $row["wine_id"] .
 "\">Add a bottle to the cart";

 // Show the dozen add to cart link
 echo " " .
 "<a href=\"example.cart.3.php?qty=12&wineId=" .
 $row["wine_id"] . "\">Add a dozen</td>\n";

 echo "</tr>\n";

 // Blank row for presentation
 echo "\n<tr>\n\t<td></td>\n</tr>\n";
 }

 echo "</table>\n";
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 // ---------

 // Initialize a session. This call either creates
 // a new session or re-establishes an existing one.
 session_start();

 // Open a connection to the DBMS
 if (!($connection = @ mysql_connect($hostName,
 $username,
 $password)))
 showerror();

 if (!mysql_select_db($databaseName, $connection))
 showerror();
?>
<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html401/loose.dtd">
<html>
 <head>
 <title>Hugh and Dave's Online Wines</title>
 </head>
<body bgcolor="white">
<?php
 // Show the user login status
 showLogin();

 // Show the dollar and item total of the cart
 showCart($connection);
?>
 <h1>Here are some Hot New Wines!</h1>
<?php
 // Display any messages to the user
 showMessage();

 // Show the "Hot New Wines"
 $query = "SELECT wi.winery_name,
 w.year,
 w.wine_name,
 w.wine_id,
 w.description
 FROM wine w, winery wi, inventory i
 WHERE w.winery_id = wi.winery_id
 AND w.wine_id = i.wine_id
 AND w.description IS NOT NULL
 GROUP BY w.wine_id
 ORDER BY i.date_added DESC LIMIT 3";

 // Include our disclaimer
 require 'disclaimer';

 // Show the user the "Hot New Wines" panel
 showPanel($query, $connection);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 showPanel($query, $connection);

 echo "<form action=\"example.cart.5.php\"" .
 " method=\"GET\">\n";
 echo "<table>\n<tr>\n";

 // If the cart has contents, offer the opportunity
 // to view the cart or empty the cart.
 if (session_is_registered("order_no"))
 {
 echo "\t<td><input type=\"submit\" " .
 "name=\"empty\" value=\"Empty Cart\"></td>\n";
 echo "\t<td><input type=\"submit\" " .
 "name=\"view\" value=\"View Cart\"></td>\n";
 }

 // Show the user the search screen button
 echo "\t<td><input type=\"submit\" " .
 "name=\"search\" value=\"Search\"></td>\n";

 // Show the user either a login or logout button
 loginButtons();

 echo "\n</tr>\n</table>\n";
 echo "</form>\n";

?>

 <img src="http://www.w3.org/Icons/valid-html401"
 height="31" width="88"
 align="right" border="0" alt="Valid HTML 4.01!">
</body>
</html>

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

11.2 The Shopping Cart Architecture

In Chapter 1, we introduced the requirements of the winestore shopping cart. A
shopping cart is analogous to an incomplete order, in which each item in the cart is
one or more bottles of a particular wine. Users can select any wine that is in stock to
add to the cart, and wines in the cart can be purchased for up to one day after they
have been added. The quantities of the wines can be updated by the user, and items
in the cart can be deleted. In addition, the entire cart can be emptied.

We use the orders and items tables to manage the shopping cart. Alternative
approaches include using only PHP sessions, JavaScript on the client, and database
tables designed specifically for shopping cart management. The JavaScript approach
is the least desirable because—as discussed in Chapter 7—JavaScript and the
client are unreliable. PHP sessions are a practical, simple solution, but storing data in
disk files results in unnecessary disk activity and relies on the operating system to
manage I/O efficiently. The default disk file session store can be replaced with a
MySQL session store, as discussed in Appendix D, but the approach is still likely to
be less efficient than purpose-built database tables. Designing database tables
specifically for shopping-cart management is a good solution, but—as we discuss
next—it is unnecessary in the winestore application.

We use the orders and items tables as follows. When a user adds an item to his
initially empty shopping cart, a new row is inserted into the orders table with a
cust_id of -1 and the next available order_id for this customer. A cust_id of -1
distinguishes between the shopping carts in the winestore and the actual customers:
actual customers have cust_id values of 1 or greater, while all shopping carts share
the cust_id of -1.

The order_id allocated to the user's cart is then stored as a session variable. The
existence of the session variable is used throughout the cart scripts to indicate that
the shopping cart has contents, and the value of the variable is used as a key to
retrieve the contents. The only practical difference between a completed order and a
shopping cart is that in the latter, the customer number is -1, signifying that the items
are in a shopping cart and not yet part of an actual order.

Shopping carts can be inspected using the MySQL command interpreter. First, you
can inspect how many active shopping carts there are by checking the orders tables:

mysql> SELECT order_id, date
 FROM orders WHERE cust_id = -1;
+----------+--------------+
| order_id | date |
+----------+--------------+
1	011210060918
2	011210061534
3	011210061817
4	011210063249
+----------+--------------+
4 rows in set (0.00 sec)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4 rows in set (0.00 sec)

Having found that there are four shopping carts active in the system, you can inspect
any cart to check their contents. Consider, for example, the contents of the fourth
shopping cart:

mysql> SELECT item_id, wine_id, qty, price
 FROM items
 WHERE cust_id = -1
 AND order_id = 4;
+---------+---------+------+-------+
| item_id | wine_id | qty | price |
+---------+---------+------+-------+
| 1 | 624 | 4 | 22.25 |
| 2 | 381 | 1 | 20.86 |
+---------+---------+------+-------+
2 rows in set (0.00 sec)

From this simple inspection, we know there are four shopping carts, and the owner of
the fourth cart has a total of five bottles of two different wines in her cart.

Throughout the rest of this section, we outline how the cart is implemented in PHP
and how the cart is updated and emptied. We discuss converting a cart to an order in
Chapter 12. Chapter 13 discusses other related topics including how the cart can
be automatically emptied if the user doesn't proceed with the order within 24 hours.

11.2.1 Viewing the Shopping Cart

Example 11-2 shows the cart.2 script, which displays the contents of the shopping
cart. Using the same approach as in Example 11-1, the script displays the user
login status, any errors or notices for the user, and a set of buttons to allow the user
to request other scripts in the winestore. The body of the script is the displayCart(
) function, which queries and displays the contents of the shopping cart.

displayCart() checks if the cart has contents by testing for the presence of the
session variable order_no. If order_no is registered, its value is the order_id
associated with the shopping cart, and the following query is executed:

$cartQuery = "SELECT qty, price, wine_id, item_id
 FROM items
 WHERE cust_id = -1
 AND order_id = $order_no";

The query retrieves the items in the user's cart, and the items are then displayed in an
HTML <table> environment. The quantities of each item are displayed within the
<table> as <input> elements of a <form>. Each element has an associated name
attribute that is set to the item_id of the item, and the value of the attribute is set to
the quantity of wine in the cart. For example, consider the following HTML fragment
that represents the second item in a user's cart:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<tr>
 <td><input type="text" size=3 name="2" value="13"></td>
 <td>1982 Grehan's Vineyard Galti Cabernet Sauvignon</td>
 <td>$20.86</td>
 <td>$271.18</td>
</tr>

When rendered in a browser, this item displays a quantity of 13 bottles that can be
edited by the user. If the user changes the quantity and clicks on the Update
Quantities button, a request is made for the cart.6 script to update the quantities. The
request includes the item_id of 2 as the GET method attribute and the new quantity
as its value. We discuss the cart.6 script later in this section.

Example 11-2. cart.2 displays the contents of the user's shopping cart

<?php
 // This script shows the user the contents of
 // their shopping cart

 include 'include.inc';

 set_error_handler("errorHandler");

 // Show the user the contents of their cart
 function displayCart($connection)
 {
 global $order_no;

 // If the user has added items to their cart, then
 // the variable order_no will be registered
 if (session_is_registered("order_no"))
 {
 $cartQuery = "SELECT qty, price, wine_id, item_id
 FROM items
 WHERE cust_id = -1
 AND order_id = $order_no";

 // Retrieve the item details of the cart items
 if (!($result = @ mysql_query($cartQuery,
 $connection)))
 showerror();

 $cartAmount = 0;
 $cartCount = 0;

 // Create some headings for the cart
 echo "<table border=\"0\" " .
 "cellpadding=\"0\" cellspacing=\"5\">";
 echo "\n<tr>";
 echo "\n\t<th>Quantity </th>";
 echo "\n\t<th>Wine</th>";
 echo "\n\t<th>Unit Price</th>";
 echo "\n\t<th>Total</th>";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 echo "\n\t<th>Total</th>";
 echo "\n</tr>";

 // Go through each of the wines in the cart
 while ($row = @ mysql_fetch_array($result))
 {
 // Keep a running total of the number of items
 // and dollar-value of the items in the cart
 $cartCount += $row["qty"];
 $lineTotal = $row["price"] * $row["qty"];
 $cartAmount += $lineTotal;

 // Show the quantity of this item in a text
 // input widget. The user can alter the quantity
 // and update it
 echo "\n<tr>";
 echo "\n\t<td>" .
 "<input type=\"text\" size=3 name=\"" .
 $row["item_id"] .
 "\" value = \"" .
 $row["qty"] .
 "\"></td>";

 // Show the wine details of the item
 echo "\n\t<td>";
 echo showWine($row["wine_id"], $connection);
 echo "</td>";

 // Show the per-bottle price
 printf("\n\t<td>$%.2f</td>", $row["price"]);

 // Show the total price of this item
 printf("\n\t<td>$%.2f</td>", $lineTotal);
 echo "\n</tr>";
 }

 echo "\n<tr></tr>";

 // Show the user the total number of bottles
 // and the total cost of the items in the cart
 printf("\n<tr>\n\t<td>%d items</td>",
 $cartCount);
 echo "\n\t<td></td>\n\t<td></td>";
 printf("\n\t<td>$%.2f</td>\n</tr>",
 $cartAmount);
 echo "\n</table>";
 }
 else
 {
 // The session variable $order_no is not
 // registered. Therefore, the user has not
 // put anything in the cart
 echo "<h3>" .
 "Your cart is empty</h3>";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "Your cart is empty</h3>";
 }
 }

 // ---------

 // Open a connection to the DBMS
 if (!($connection = @ mysql_pconnect($hostName,
 $username,
 $password)))
 showerror();

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 // Initialize a session. This call either creates
 // a new session or re-establishes an existing one.
 session_start();

?>
<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html401/loose.dtd">
<html>
<head>
 <title>Hugh and Dave's Online Wines</title>
</head>
<body bgcolor="white">
<?php
 // Show the user login status
 showLogin();
?>
<h1>Your Shopping Cart</h1>
<?php
 // Show the user any messages
 showMessage();
?>
<form action="example.cart.5.php" method="GET">
<?php
 // Show the contents of the shopping cart
 displayCart($connection);
?>

<table>
<tr>
 <td><input type="submit" name="home" value="Home"></td>
<?php
 // If the user has items in their cart, offer the
 // chance to update quantities or empty the cart or
 // finalize the purchase (if they're logged in)
 if (session_is_registered("order_no"))
 {
 echo "\n\t<td><input type=\"submit\" " .
 "name=\"update\" value=\"Update Quantities\"></td>";
 echo "\n\t<td><input type=\"submit\" " .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 echo "\n\t<td><input type=\"submit\" " .
 "name=\"empty\" value=\"Empty Cart\"></td>";
 if (session_is_registered("loginUsername"))
 echo "\n\t<td><input type=\"submit\" " .
 "name=\"buy\" value=\"Make Purchase\"></td>";
 }

 // Show the user the search screen button
 echo "\t<td><input type=\"submit\" " .
 "name=\"search\" value=\"Search\"></td>\n";

 // Show login or logout button
 loginButtons();
?>
</tr>
</table>
</form>

 <img src="http://www.w3.org/Icons/valid-html401"
 height="31" width="88" align="right" border="0"
 alt="Valid HTML 4.01!">
</body>
</html>

11.2.2 Adding Items to the Shopping Cart

Example 11-3 shows the cart.3 script, which adds items to the shopping cart. The
script expects two parameters: a wineId that matches a wine_id in the wine table
and a qty (quantity) of the wine to add to the cart. These parameters are supplied by
clicking on embedded links on the home or search pages. For example, the home
page contains links such as:

Add a bottle to the cart

When the user clicks on the link, the cart.3 script adds a bottle of the wine to the cart,
database processing occurs, and the user is redirected back to the calling page. This
use of one-component querying for adding wines to the cart is discussed in more
detail in Chapter 5.

cart.3 has several steps:

1. It checks whether the shopping cart exists. If it does exist, it locks the items
table for writing and the inventory table for reading. If the cart doesn't exist, the
orders table is also locked for writing.

2. Locking is required since the script may suffer from the dirty read and lost
update concurrency problems discussed in Chapter 6. These problems can
occur if another user is simultaneously creating a shopping cart—without
locking, both users may obtain the same cart number—or if an inventory is sold
out while an item is being added to the cart, in which case the item price in the
cart may be wrong.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. After locking the required tables, the script tests whether a cart already exists. If
it doesn't exist, it is created as a new row in the orders table with the next
available order_id for the dummy customer. The order_id is then assigned
to the session variable order_no. If the cart does exist, the script checks if the
item being added to the cart is already one of the items in the cart. If it is, the
item_id is saved so that the quantity of the item can be updated. If it isn't in
the cart, a new item_id is assigned to the new wine.

If this is a new item being added to the cart, the script queries to find the
cheapest inventory price for the wine. An error is reported if the wine has sold
out by registering a message as a session variable; messages are displayed by
all scripts that interact with the user through a call to the showMessage()
function incorporated in include.inc. Wines selling out is an unusual occurrence:
it occurs only if another user purchases all the remaining stock of a wine before
this user clicks on the embedded link.

4. After all checks of the cart and the inventory, the cart item is updated or
inserted.

5. The table locks are released.

6. Finally, the script redirects to the calling page, completing the one-component
add-to-cart script.

Example 11-3. cart.3 adds a quantity of a specific wine to the shopping cart

<?php
 // This script adds an item to the shopping cart
 // It expects a WineId of the item to add and a
 // quantity (qty) of the wine to be added

 include 'include.inc';

 set_error_handler("errorHandler");

 // Have the correct parameters been provided?
 if (empty($wineId) && empty($qty))
 {
 session_register("message");

 $message =
 "Incorrect parameters to example.cart.3.php";

 // Redirect the browser back to the calling page
 header("Location: $HTTP_REFERER");
 exit;
 }

 // Re-establish the existing session
 session_start();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 session_start();

 $wineId = clean($wineId, 5);
 $qty = clean($qty, 3);

 $update = false;

 // Open a connection to the DBMS
 if (!($connection = @ mysql_pconnect($hostName,
 $username,
 $password)))
 showerror();

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 // If the user has added items to their cart, then
 // the variable order_no will be registered

 // First, decide on which tables to lock
 // We don't touch orders if the cart already exists
 if (session_is_registered("order_no"))
 $query = "LOCK TABLES inventory READ, items WRITE";
 else
 $query = "LOCK TABLES inventory READ,
 orders WRITE,
 items WRITE";

 // LOCK the tables
 if (!(@ mysql_query ($query, $connection)))
 showerror();

 // Second, create a cart if we don't have one yet
 // or investigate the cart if we do
 if (!session_is_registered("order_no"))
 {
 // Find out the maximum order_id, then
 // register a session variable for the new order_id
 // A cart is an order for the customer
 // with cust_id = -1
 $query = "SELECT max(order_id) FROM orders
 WHERE cust_id = -1";

 if (!($result = @ mysql_query ($query, $connection)))
 showerror();

 // Save the cart number as order_no
 // This is used in all cart scripts to access the cart
 session_register("order_no");

 $row = @ mysql_fetch_array($result);
 $order_no = $row["max(order_id)"] + 1;

 // Now, create the shopping cart
 $query = "INSERT INTO orders

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $query = "INSERT INTO orders
 SET cust_id = -1,
 order_id = $order_no";

 if (!(@ mysql_query ($query, $connection)))
 showerror();

 // Default the item_id to 1
 $item_id = 1;
 }
 else
 {
 // We already have a cart.
 // Check if the customer already has this item
 // in their cart
 $query = "SELECT item_id, qty FROM items
 WHERE cust_id = -1
 AND order_id = $order_no
 AND wine_id = $wineId";

 if (!($result = @ mysql_query ($query, $connection)))
 showerror();

 // Is the item in the cart already?
 if (mysql_num_rows($result) > 0)
 {
 $update = true;
 $row = @ mysql_fetch_array($result);

 // Save the item number
 $item_id = $row["item_id"];
 }

 // If this is not an update, find the
 // next available item_id
 if ($update == false)
 {
 // We already have a cart, find the maximum item_id
 $query = "SELECT max(item_id) FROM items
 WHERE cust_id = -1
 AND order_id = $order_no";

 if (!($result = @ mysql_query ($query,
 $connection)))
 showerror();

 $row = @ mysql_fetch_array($result);

 // Save the item number of the new item
 $item_id = $row["max(item_id)"] + 1;
 }
 }

 // Third, add the item to the cart or update the cart
 if ($update == false)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if ($update == false)
 {
 // Get the cost of the wine
 // The cost comes from the cheapest inventory
 $query = "SELECT count(*), min(cost) FROM inventory
 WHERE wine_id = $wineId";

 if (!($result = @ mysql_query ($query, $connection)))
 showerror();

 $row = @ mysql_fetch_array($result);

 // This wine could have just sold out - check this
 // (this happens if another user buys the last bottle
 // before this user clicks "add to cart")
 if ($row["count(*)"] == 0)
 {
 // Register the error as a session variable
 // This message will then be displayed back on
 // page where the user adds wines to their cart
 session_register("message");
 $message =
 "Sorry! We just sold out of this great wine!";
 }
 else
 {
 // We still have some of this wine, so save the
 // cheapest available price
 $cost = $row["min(cost)"];
 $query = "INSERT INTO items
 SET cust_id = -1,
 order_id = $order_no,
 item_id = $item_id,
 wine_id = $wineId,
 qty = $qty,
 price = $cost";
 }
 }
 else
 $query = "UPDATE items
 SET qty = qty + $qty
 WHERE cust_id = -1
 AND order_id = $order_no
 AND item_id = $item_id";

 // Either UPDATE or INSERT the item
 // (Only do this if there wasn't an error)
 if (empty($message) &&
 (!(@ mysql_query ($query, $connection))))
 showerror();

 // Last, UNLOCK the tables
 $query = "UNLOCK TABLES";
 if (!(@ mysql_query ($query, $connection)))
 showerror();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 showerror();

 // Redirect the browser back to the calling page,
 // using the HTTP response header "Location:"
 // and the PHP environment variable $HTTP_REFERER
 header("Location: $HTTP_REFERER");
?>

11.2.3 Emptying the Shopping Cart

Example 11-4 lists the cart.4 script that empties the shopping cart. The script is
again a one-component module that carries out its actions, produces no output, and
then redirects back to the calling page. The script removes the row in the orders table
and any rows in the items table that have an order_id equal to the value of the
session variable order_no. It then deletes the session variable itself, thus
completing the emptying of the cart.

Example 11-4. cart.4 empties the cart

<?php
 // This script empties the cart and deletes the session

 include 'include.inc';

 set_error_handler("errorHandler");

 // Initialise the session - this is needed before
 // a session can be destroyed
 session_start();

 // Is there a cart in the database?
 if (session_is_registered("order_no"))
 {
 // Open a connection to the DBMS
 if (!($connection = @ mysql_connect($hostName,
 $username,
 $password)))
 showerror();

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 // First, delete the order
 $query = "DELETE FROM orders
 WHERE cust_id = -1
 AND order_id = $order_no";

 if (!(@ mysql_query ($query, $connection)))
 showerror();

 // Now, delete the items
 $query = "DELETE FROM items
 WHERE cust_id = -1
 AND order_id = $order_no";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AND order_id = $order_no";

 if (!(@ mysql_query ($query, $connection)))
 showerror();

 // Finally, destroy the session variable
 session_unregister("order_no");
 }
 else
 {
 session_register("message");
 $message = "There is nothing in your cart.";
 }

 // Redirect the browser back to the calling page.
 if (session_is_registered("referer"))
 {
 session_unregister("referer");
 header("Location: $referer");
 exit;
 }
 else
 header("Location: $HTTP_REFERER");
?>

11.2.4 Updating the Shopping Cart Quantities

The cart.6 script, which updates the quantities of items in the shopping cart, is shown
in Example 11-5. The script is requested by the cart.2 script and expects GET
method parameters of item_id and update quantity pairs. For example, consider the
following request for the script:

http://localhost/example.cart.6.php?1=12&2=13&3=6&update=Update+Quantities

This requests that the quantity of the first item in the cart be updated to 12 bottles, the
second item to 13 bottles, and the third item to 6 bottles.

The script works as follows:

1. It untaints the user data using the clean() function and assigns the results
into the array parameters.

2. It uses the foreach loop statement to iterate through each parameter. For
each parameter that isn't the update parameter, it checks to ensure that the
item_id and the quantity are both numbers of less than four or three digits in
length, respectively. If this test fails, a message is registered as a session
variable and displayed after the script redirects back to the cart.2 script.

3. If the quantity of the wine is zero, the item is deleted from the cart.

4. If the quantity is non-zero, the quantity is updated to the value passed as a
parameter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. If the cart is now empty—which happens if all items are set to zero quantities—
the cart is deleted by removing the cart row from the orders table.

6. The script redirects back to the cart.2 script.

Example 11-5. cart.6 updates the quantities of wines in the shopping cart

<?php
 // This script updates quantities in the cart
 // It expects parameters of the form XXX=YYY
 // where XXX is a wine_id and YYY is the new
 // quantity of that wine that should be in the
 // cart

 include 'include.inc';

 set_error_handler("errorHandler");

 // Re-establish the existing session
 session_start();

 // Clean up the data, and save the results
 // in an array
 foreach($HTTP_GET_VARS as $varname => $value)
 $parameters[$varname] = clean($value, 4);

 // Did they want to update the quantities?
 // (this should be true except if the user arrives
 // here unexpectedly)
 if (empty($parameters["update"]))
 {
 session_register("message");

 $message = "Incorrect parameters to ".
 "example.cart.6.php";

 // Redirect the browser back to the calling page
 header("Location: $HTTP_REFERER");
 exit;
 }

 // Open a connection to the DBMS
 if (!($connection = @ mysql_connect($hostName,
 $username,
 $password)))
 showerror();

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 // If the user has added items to their cart, then
 // the variable order_no will be registered

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // the variable order_no will be registered

 // Go through each submitted value and update the cart
 foreach($parameters as $itemName => $itemValue)
 {
 // Ignore the update variable
 if ($itemName != "update")
 {
 // The item's name must look like a wine_id
 if (ereg("^[0-9]{1,4}$", $itemName))
 {
 // The update value must be a number
 if (ereg("^[0-9]{1,3}$", $itemValue))
 {
 // If the number is zero, delete the item
 if ($itemValue == 0)
 $query = "DELETE FROM items
 WHERE cust_id = -1
 AND order_id = $order_no
 AND item_id = $itemName";
 else
 // otherwise, update the value
 $query = "UPDATE items
 SET qty = $itemValue
 WHERE cust_id = -1
 AND order_id = $order_no
 AND item_id = $itemName";

 if (!(@ mysql_query ($query, $connection)))
 showerror();

 } // if (ereg("^[0-9]{1,3}$", $itemValue))
 else
 {
 session_register("message");
 $message = "There was an error updating " .
 "your quantities. Try again.";
 }
 } // if (ereg("^[0-9]{1,4}$", $itemName))
 else
 {
 session_register("message");
 $message = "There was an error updating " .
 "quantities. Try again.";
 }
 } // if ($itemName != "update")
 } // foreach($parameters as $itemName => $itemValue)

 // The cart may now be empty. Check this.
 $query = "SELECT count(*)
 FROM items
 WHERE cust_id = -1
 AND order_id = $order_no";

 if (!($result = @ mysql_query ($query, $connection)))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (!($result = @ mysql_query ($query, $connection)))
 showerror();

 $row = mysql_fetch_array($result);

 // Are there no items left?
 if ($row["count(*)"] == 0)
 {
 // Delete the order
 $query = "DELETE FROM orders
 WHERE cust_id = -1
 AND order_id = $order_no";

 if (!(@ mysql_query ($query, $connection)))
 showerror();

 session_unregister("order_no");
 }

 // Go back to the cart
 header("Location: example.cart.2.php");
 exit;
?>

We have now completed our discussion of the shopping cart implementation.
Converting a shopping cart to an order is discussed in Chapter 12. In the next
section, we discuss how redirection is managed in the winestore application.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

11.3 Managing Redirection

The cart.5 script shown in Example 11-6 is a central point that manages redirection
to other scripts in the winestore. All pages that have more than one button request
this script using the action attribute of the <form> element. The script processes
the requests, determines from the GET method attributes which script should be
requested next, and then redirects the browser to that script.

For example, if the user clicks the Empty Cart button on any page, the following URL
is requested:

http://localhost/example.cart.5.php?empty=Empty+Cart

The cart.5 script is then processed, the following if test is found to be true, and the
script redirects to the cart.4 script:

// Did they want to empty the cart?
if (!empty($parameters["empty"]))
{
 // Redirect the browser to the empty page
 // using the HTTP response header "Location:"
 header("Location: example.cart.4.php");
 exit;
}

When redirecting to some scripts, the redirection also passes on the entire
QUERY_STRING—the query string is stored in the PHP environment variable
$QUERY_STRING—as a GET method parameter. In addition, a session variable,
referer, is registered in selected cases so that in later processing the script can
redirect to the original calling page.

As discussed in Chapter 10, there are several other possible approaches for
managing requests for different scripts throughout an application. An alternative to the
approach is to add each button to the HTML page as a separate <form> element
with its own action attribute. Other approaches include using embedded links or
images instead of buttons.

Example 11-6. cart.5 manages button clicks in the winestore

<?php
 // This script redirects the browser to another script,
 // depending on what parameters are provided. It is used
 // for processing several submit buttons from an
 // HTML <form>

 include 'include.inc';

 set_error_handler("errorHandler");

 session_start();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 session_start();

 // Clean up the data, and save the results in
 // an array
 foreach($HTTP_GET_VARS as $varname => $value)
 $parameters[$varname] = clean($value, 10);

 // Did they want to view the cart?
 if (!empty($parameters["view"]))
 {
 // Redirect the browser to the cart page
 // using the HTTP response header "Location:"
 header("Location: example.cart.2.php");
 exit;
 }

 // Did they want to go home?
 if (!empty($parameters["home"]))
 {
 // Redirect the browser to the home page
 // using the HTTP response header "Location:"
 header("Location: example.cart.1.php");
 exit;
 }

 // Did they want to empty the cart?
 if (!empty($parameters["empty"]))
 {
 // Redirect the browser to the empty page
 // using the HTTP response header "Location:"
 header("Location: example.cart.4.php");
 exit;
 }

 // Did they want to update the quantities?
 if (!empty($parameters["update"]))
 {
 // Redirect the browser to the update page
 // using the HTTP response header "Location:"
 header("Location: example.cart.6.php?" .
 $QUERY_STRING");
 exit;
 }

 // Did they want to save the search?
 if (!empty($parameters["savesearch"]))
 {
 // Redirect the browser to the search save page
 // using the HTTP response header "Location:"
 header("Location: example.cart.8.php?" .
 $QUERY_STRING");
 exit;
 }

 // Did they want to login to the site?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Did they want to login to the site?
 if (!empty($parameters["login"]))
 {
 // Save the referer page for later redirection
 if (session_is_registered("referer"))
 session_unregister("referer");
 session_register("referer");
 $referer = $HTTP_REFERER;

 // Redirect the browser to the login page
 // using the HTTP response header "Location:"
 header("Location: example.order.1.php?" .
 $QUERY_STRING");
 exit;
 }

 if (!empty($parameters["logout"]))
 {
 // Save the referer page for later redirection
 if (session_is_registered("referer"))
 session_unregister("referer");
 session_register("referer");
 $referer = $HTTP_REFERER;

 // Redirect the browser to the logout page
 // using the HTTP response header "Location:"
 header("Location: example.order.2.php?" .
 $QUERY_STRING");
 exit;
 }

 // Did they want to finalise the purchase?
 if (!empty($parameters["buy"]))
 {
 // Redirect the browser to the purchase page
 // using the HTTP response header "Location:"
 header("Location: example.order.3.php?" .
 $QUERY_STRING");
 exit;
 }

 // Did they want to edit customer details?
 if (!empty($parameters["account"]))
 {
 // Redirect the browser to the customer account
 // page using the HTTP response header "Location:"
 header("Location: example.customer.2.php");
 exit;
 }

 // They got here without providing an option, so
 // there is a problem
 echo "You arrived here unexpectedly.";
?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

?>

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Chapter 12. Ordering and Shipping at the Winestore
We complete our description of the shopping components of the winestore by
outlining the ordering and shipping modules in this chapter. The ordering module
manages the conversion of the shopping cart discussed in Chapter 11 to an order.
The module manages the most complex database interactions in the winestore and
includes locking to address concurrency problems. The shipping module consists of
two receipts: an email receipt that shows how the PHP mail() function is used in
practice and an HTML receipt that is similar to the customer receipt in Chapter 10.

This chapter is the third of four that outline the complete winestore application. As in
the previous two chapters, we emphasize that the scripts aren't a production system
but an illustration of web database application practice. We encourage use of the
scripts for any purpose and suggest that the best method to understand the scripts is
to view, edit, and use them while reading the chapter. We also emphasize that the
descriptions in this chapter are outlines and that a full understanding of the scripts
requires reading and using the code.

The scripts discussed in this chapter perform the following functions:

Finalize orders

Convert a shopping cart in the items and orders tables to an order and manage
the sale of wine through the inventory table

Email receipts

Send a confirmation email to the user

HTML order receipts

Complete the ordering process with an HTML receipt that avoids the reload
problem

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

12.1 Finalizing Orders

When a user finishes adding items to his cart, he usually proceeds to a purchase.
Finalizing an order requires several steps that include checking that sufficient
inventory is available to complete the order, converting the shopping cart to an order,
and deducting the wines sold from the inventory. These tasks require locking of the
database and are examples of moderately complex query processing. The script
order.3 shown in Example 12-1 performs these tasks.

The script works as follows:

1. It tests that the user is logged in and that the cart has contents. These tests
should never fail, as the Make Purchase button is shown only when the user is
viewing the cart, is logged in, and the cart has contents. If either test fails, an
error message is registered, and the script redirects to the calling script.

2. The inventory, items, and orders tables are locked for writing, and the users and
customer tables are locked for reading. The inventory, items, and orders tables
are all updated in the purchasing process, and they must be locked because the
inventory is first checked to ensure that sufficient quantities of wine are
available and then later updated. Without locking, it is possible for another user
to purchase the wine while this script is running, resulting in more wine being
sold than is in stock. This is an example of the dirty read concurrency problem
discussed in Chapter 6, and locking must be used to avoid the problem.

3. Each item in the cart is then processed, and the inventory is checked to ensure
that enough wine is available. If no wine is available—the count() of the
matching inventory rows is zero—an error message is registered. Similarly, if
less wine is available than the user wants—the sum() of the on_hand
quantity of the matching rows is less than the user's cart qty—an error
message is also registered. On error, the script also updates the user's cart so
that the quantity (qty) of wine in the user's cart matches the quantity that is
on_hand. In the case of an error, the script uses the function showWine() to
show the user the details of the wine. This function opens its own connection to
the DBMS so that the wine, wine_variety, winery, and grape_variety tables don't
need to be locked for reading in the order.

4. If the inventory checks succeed, the script proceeds to convert the user's cart to
be a customer's order. This process is straightforward:

a. Determine the cust_id from the loginUsername session variable using
the function getCustomerID().

b. Find the maximum order_id for this customer.

c. Update the orders and items rows by replacing the cust_id of -1 with
the customer's cust_id and the order_id with the next available
order_id for this customer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

order_id for this customer.

5. After the database has been updated, the cart is emptied using
session_unregister() to remove the order_no session variable.

6. Having completed the order and checked the inventory, the script finishes the
ordering process by reducing the inventory. This can never fail, since all
required tables are locked, and you've checked that sufficient quantities are
available. The process is similar to checking the cart: you iterate through each
item and, for each one, you update the inventory. The inventories are processed
from oldest to newest. Consider an example in which the user wants to
purchase 24 bottles of a wine. There are two inventories of this wine: the first
has 13 bottles and was added in May 2000; the second has 25 bottles and was
added in September 2001. To satisfy the order, the oldest inventory of 13
bottles is emptied and deleted, and the second inventory is reduced by 11
bottles.

7. With the process complete, the tables are unlocked. If there are no errors, the
script redirects to the shipping.1 script to confirm the order, and the cust_id
and order_id are passed as GET method parameters. If there are errors, the
user is returned to the cart view page.

Example 12-1. order.3 finalizes the user's purchase

<?php
 // This script finalizes a purchase
 // It expects that a cart has contents and that the
 // user is logged in

 include 'include.inc';

 set_error_handler("errorHandler");

 // Re-establish the existing session
 session_start();

 // Check if a cart exists - this should never fail
 // unless the script is run directly
 if (!session_is_registered("order_no"))
 {
 session_register("message");
 $message =
 "There are no items in your shopping cart!";

 // Redirect the browser back to the calling page
 header("Location: $HTTP_REFERER");
 exit;
 }

 // Check if the user is logged in - this should
 // never fail unless the script is run directly
 if (!session_is_registered("loginUsername"))
 {
 session_register("message");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 session_register("message");
 $message =
 "You must login to finalize your purchase.";

 // Redirect the browser back to the calling page
 header("Location: $HTTP_REFERER");
 exit;
 }

 // Open a connection to the DBMS
 if (!($connection = @ mysql_pconnect($hostName,
 $username,
 $password)))
 showerror();

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 // Several tables must be locked to finalize a purchase.
 // We avoid locking four other tables by
 // using another DBMS connection to produce the wine
 // information
 $query = "LOCK TABLES inventory WRITE,
 orders WRITE,
 items WRITE,
 users READ,
 customer READ";

 // LOCK the tables
 if (!(@ mysql_query ($query, $connection)))
 showerror();

 // Process each wine in the cart and find out if
 // there is sufficient stock available in the inventory
 $query = "SELECT * FROM items
 WHERE cust_id = -1
 AND order_id = $order_no";

 // Initialise an empty error message
 $message = "";

 if (!($result = @ mysql_query ($query, $connection)))
 showerror();

 // Get the next wine in the cart
 for ($winesInCart = 0;
 $winesInCart < mysql_num_rows($result);
 $winesInCart++)
 {
 $cartRow[$winesInCart] = @ mysql_fetch_array($result);

 // Is there enough of this wine on hand?
 $query = "SELECT COUNT(on_hand), SUM(on_hand)
 FROM inventory
 WHERE wine_id = " .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHERE wine_id = " .
 $cartRow[$winesInCart]["wine_id"];

 if (!($stockResult = @ mysql_query ($query,
 $connection)))
 showerror();

 $on_hand = @ mysql_fetch_array($stockResult);

 if ($on_hand["COUNT(on_hand)"] == 0)
 $available = 0;
 else
 $available = $on_hand["SUM(on_hand)"];

 // Is there more wine in the cart than is for sale?
 if ($cartRow[$winesInCart]["qty"] > $available)
 {
 if (!session_is_registered("message"))
 session_register("message");

 if ($available == 0)
 $message .= "Sorry! We just sold out of " .
 showWine($cartRow[$winesInCart]["wine_id"],
 NULL) .
 "\n
";
 else
 $message .= "Sorry! We only have " .
 $on_hand["SUM(on_hand)"] .
 " bottles left of " .
 showWine($cartRow[$winesInCart]["wine_id"],
 NULL) .
 "\n
";

 // Update the user's quantity to match the
 // available amount
 $query = "UPDATE items
 SET qty = " . $available .
 " WHERE cust_id = -1
 AND order_id = $order_no
 AND item_id = " .
 $cartRow[$winesInCart]["item_id"];

 if (!(@ mysql_query ($query, $connection)))
 showerror();
 }
 } // for $winesInCart < mysql_num_rows($result);

 // We have now checked if there is enough wine
 // available.
 // If there is, we can proceed with the order.
 // If not, we send the user back to the amended
 // cart to think about purchasing the lesser
 // amount.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (empty($message))
 {
 // Everything is ok - let's proceed then!
 // First of all, find out the user's cust_id and
 // the next available order_id for this customer.
 $custID = getCustomerID($loginUsername, NULL);

 $query = "SELECT max(order_id)
 FROM orders
 WHERE cust_id = $custID";

 if (($result = @ mysql_query ($query, $connection)))
 $row = mysql_fetch_array($result);
 else
 showerror();

 $newOrder_no = $row["max(order_id)"] + 1;

 // Now, change the cust_id and order_id of their cart!
 $query = "UPDATE orders
 SET cust_id = $custID , " .
 "order_id = " . $newOrder_no .
 " WHERE order_id = $order_no";

 if (!(@ mysql_query ($query, $connection)))
 showerror();

 $query = "UPDATE items
 SET cust_id = $custID , " .
 "order_id = " . $newOrder_no .
 " WHERE order_id = $order_no";

 if (!(@ mysql_query ($query, $connection)))
 showerror();

 // Officially empty the cart
 session_unregister("order_no");

 // Now we have to do the inventory.
 // We do this one cart item at a time.
 // For all items, we know that there *is*
 // sufficient inventory, since we've checked earlier
 foreach($cartRow as $currentRow)
 {
 // Find the inventories for this wine, oldest first
 $query = "SELECT inventory_id, on_hand
 FROM inventory
 WHERE wine_id = " .
 $currentRow["wine_id"] .
 " ORDER BY date_added";

 if (!($result = @ mysql_query ($query,
 $connection)))
 showerror();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 showerror();

 // While there are still bottles to be deducted
 while($currentRow["qty"] > 0)
 {
 // Get the next-oldest inventory
 $row = @ mysql_fetch_array($result);

 // Is there more wine in this inventory than
 // the user wants?
 if ($row["on_hand"] > $currentRow["qty"])
 {
 // Reduce the inventory by the amount the
 // user ordered
 $query = "UPDATE inventory
 SET on_hand = on_hand - " .
 $currentRow["qty"] .
 " WHERE wine_id = " .
 $currentRow["wine_id"] .
 " AND inventory_id = " .
 $row["inventory_id"];

 // The user doesn't need any more of this
 // wine
 $currentRow["qty"] = 0;
 }
 else
 {
 // Remove the inventory - we sold the
 // remainder to this user
 $query = "DELETE FROM inventory
 WHERE wine_id = " .
 $currentRow["wine_id"] .
 " AND inventory_id = " .
 $row["inventory_id"];

 // This inventory reduces the customer's
 // required amount by at least 1, but
 // we need to process more inventory
 $currentRow["qty"] -= $row["on_hand"];
 }

 // UPDATE or DELETE the inventory
 if (!(@ mysql_query ($query, $connection)))
 showerror();
 }
 }
 }
 else
 $message .= "\n
The quantities in your cart " .
 "have been updated\n.";

 // Last, UNLOCK the tables
 $query = "UNLOCK TABLES";
 if (!(@ mysql_query ($query, $connection)))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (!(@ mysql_query ($query, $connection)))
 showerror();

 // Redirect to the email confirmation page if
 // everything is ok
 // (supply the custID and orderID to the script)
 // otherwise go back to the cart page and show a message
 if (empty($message))
 {
 header("Location: example.shipping.1.php?" .
 "custID=$custID&orderID=$newOrder_no");
 exit;
 }
 else
 header("Location: example.cart.2.php");
?>

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

12.2 HTML and Email Receipts

Once an order has been processed, the winestore application confirms the shipping
of the wines through both an email and an HTML receipt. The order.3 script redirects
to the shipping.1 script shown in Example 12-2, which sends the user an email. In
turn, the shipping.1 script redirects to the shipping.2 script shown in Example 12-3,
which produces the HTML receipt. The HTML receipt can be visited again at a later
time by bookmarking the URL and, as it carries out no database updates, it doesn't
suffer from the reload problem described in Chapter 6. The receipt functionality is
separated into two scripts so that returning to the HTML receipt doesn't cause an
additional email receipt to be sent to the customer.

The function send_confirmation_email() in Example 12-2 creates the
destination address, the subject, the body, and additional headers of an email
message, and then sends that email message. The destination to address is created
using the firstname, the surname, and the email address of the customer so that,
for example, it has the following format:

Michael Smith <mike@webdatabasebook.com>

The additional email headers are static and always have the following format:

From: "Hugh and Dave's Online Wines" <help@webdatabasebook.com>
X-Sender: <help@webdatabasebook.com>
X-Mailer: PHP
X-Priority: 1
Return-Path: <help@webdatabasebook.com>

The subject of the email is always:

$subject = "Hugh and Dave's Online Wines: Order
 Confirmation";

The body of the message is created by querying and retrieving the details of the
customer, order, and items and appending data to the string $out. The following is
an example of the body of a confirmation email:

Dear Dr Smith,

Thank you for placing an order at Hugh and Dave's
Online Wines.

Your order (reference #653-71) has been fictionally
dispatched, and should be arriving in your imagination
soon now. Please quote the reference number in any
correspondence.

If it existed, the order would be shipped to:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If it existed, the order would be shipped to:

Dr Michael Smith
12 Hotham St.
Collingwood Victoria 3066
Australia

We have billed your fictional credit card

The order consists of:

Quantity Wine Unit Price Total
12 1999 Smith's Chardonnay $22.25 $267.00

Total: $267.00

Thank you for shopping at Hugh and Dave's Online Wines!

The email itself is sent with the following fragment:

// Send the email!
mail($to, $subject, $out, $headers);

The mail() function is a PHP library function; it's discussed later in this section.

The body of the script also checks that the user is logged in, that the correct
parameters of a cust_id and an order_id have been provided, and that the user
viewing the receipt is the owner of the receipt. If any of the checks fail, the user is
redirected so that an error message can be displayed.

Example 12-2. shipping.1 sends the user an order confirmation as an email

<?php
 // This script sends the user a confirmation email
 // for their order and then redirects to an HTML receipt
 // version

 include 'include.inc';

 set_error_handler("errorHandler");

 // Send the user an email that summarizes their purchase
 function send_confirmation_email($custID,
 $orderID,
 $connection)
 {
 // Find customer information
 $query = "SELECT *
 FROM customer
 WHERE cust_id = $custID";

 if (!($result = @ mysql_query ($query,
 $connection)))
 showerror();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 showerror();

 // There is only one matching row
 $row = @ mysql_fetch_array($result);

 // Start by setting up the "to" address
 $to = $row["firstname"] . " " .
 $row["surname"] . " <" .
 $row["email"] . ">";

 // Now, set up the "subject" line
 $subject = "Hugh and Dave's Online Wines: " .
 "Order Confirmation";

 // And, last (before we build the email), set up
 // some mail headers
 $headers = "From: Hugh and Dave's Online Wines" .
 "<help@webdatabasebook.com>\r\n";
 $headers .= "X-Sender: <help@webdatabasebook.com>\r\n";
 $headers .= "X-Mailer: PHP\r\n";
 $headers .= "X-Priority: 1\r\n";
 $headers .= "Return-Path: " .
 "<help@webdatabasebook.com>\r\n";

 // Now, put together the body of the email
 $out = "Dear " . $row["title"] .
 " " . $row["surname"] . ",\n" .
 "\nThank you for placing an order at " .
 "Hugh and Dave's Online Wines.\n";

 $out .= "\nYour order (reference #" . $custID .
 "-" . $orderID .
 ") has been fictionally dispatched,\n" .
 "and should be arriving in your imagination " .
 "soon now.\n" .
 "Please quote the reference number in any " .
 "correspondence.\n";

 $out .= "\nIf it existed, the order would be " .
 "shipped to: \n\n" .
 $row["title"] . " " .
 $row["firstname"] . " " .
 $row["initial"] . " " .
 $row["surname"] . "\n" .
 $row["addressline1"];

 if ($row["addressline2"] != "")
 $out .= "\n" . $row["addressline2"];

 if ($row["addressline3"] != "")
 $out .= "\n" . $row["addressline3"];

 $out .= "\n" . $row["city"] . " " .
 $row["state"] . " " .
 $row["zipcode"] . "\n" .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $row["zipcode"] . "\n" .
 $row["country"] . "\n\n";

 $out .= "We have billed your fictional " .
 "credit card \n\n";

 $out .= "The order consists of:\n\n";

 // This is a heading for the order summary
 $out .= str_pad("Quantity", 10) .
 str_pad("Wine", 55) .
 str_pad("Unit Price", 12) .
 str_pad("Total", 12) . "\n";

 $orderTotalPrice = 0;

 // list the particulars of each item in the order
 $query = "SELECT i.qty, w.wine_name, i.price,
 w.wine_id, w.year, wi.winery_name
 FROM items i, wine w, winery wi
 WHERE i.cust_id = $custID
 AND i.order_id = $orderID
 AND i.wine_id = w.wine_id
 AND w.winery_id = wi.winery_id
 ORDER BY item_id";

 if (!($result = @ mysql_query ($query, $connection)))
 showerror();

 // Add each item to the email
 while ($row = @ mysql_fetch_array($result))
 {
 // Work out the cost of this line item
 $itemsPrice = $row["qty"] * $row["price"];

 $orderTotalPrice += $itemsPrice;

 $wineDetail = showWine($row["wine_id"], $connection);

 $out .= str_pad($row["qty"],10) .
 str_pad(substr($wineDetail, 0, 53), 55);

 $out .= str_pad(sprintf("$%-.2f" ,
 $row["price"]), 10);
 . $out .= " ";
 $out .= str_pad(sprintf("$%-.2f", $itemsPrice), 12);
 $out .= "\n";
 }

 $out .= "\n\nTotal: ";

 $out .= sprintf("$%-.2f\n", $orderTotalPrice);

 $out .= "\n\nThank you for shopping at Hugh and " .
 "Dave's Online Wines!";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "Dave's Online Wines!";

 // Send the email!
 mail($to, $subject, $out, $headers);
 }

 // Main ----------

 // Re-establish the existing session
 session_start();

 // Check if the user is logged in - this should
 // never fail if unless the script is run incorrectly
 if (!session_is_registered("loginUsername"))
 {
 session_register("message");
 $message = "You must login to finalise " .
 "your purchase.";
 header("Location: example.cart.2.php");
 exit;
 }

 // Check the correct parameters have been passed
 // unless the script is run correctly
 if (!isset($custID) || !isset($orderID))
 {
 session_register("message");
 $message = "Incorrect parameters to " .
 "example.shipping.1.php";
 header("Location: example.cart.2.php");
 exit;
 }
 // Check this customer matches the custID
 if ($custID != getCustomerID($loginUsername, NULL))
 {
 session_register("message");

 $message = "You can only view your own receipts!";
 header("Location: example.order.1.php");
 exit;
 }

 // Open a connection to the DBMS
 if (!($connection = @ mysql_pconnect($hostName,
 $username,
 $password)))
 showerror();

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 // Send the user a confirmation email
 send_confirmation_email($custID, $orderID, $connection);

 // Redirect to a receipt page (this can't be the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Redirect to a receipt page (this can't be the
 // receipt page, since the reload problem would cause
 // extra emails).
 header("Location: example.shipping.2.php?" .
 "custID=$custID&orderID=$orderID");
?>

The mail() function is used to send the order confirmation receipt. The function is
also useful for sending passwords to users and sending strings to users that confirm
actions such as creating accounts and other tasks. It has the following function
prototype:

Boolean mail (string to, string subject, string body [, string
additional_headers, string [additional_parameters]])

Sends an email. The function requires a destination to address, a subject
string, and the body of an email message. Multiple destination addresses can
be specified in the to address by separating each with a comma. Optional
headers can also be specified and usually include the From: header
specifying the address of the sender of the email. Headers must be separated
with both a carriage return and a linefeed, usually specified with \r\n. The Cc:
header that is used to carbon-copy an email to a recipient is case-sensitive; the
header CC: is invalid. The additional_parameters parameter allows
options to be supplied to the program that actually sends the email, which in
most Linux installations, is sendmail or procmail. Additional parameters can
usually be omitted.

The function returns true if the mail is successfully sent and false otherwise.

Example 12-3 shows the shipping.2 script that confirms the shipping of an order
using HTML. The script has an identical structure to shipping.1 and executes the
same queries. The only difference is that the script outputs HTML rather than creating
strings to be emailed to the customer.

Example 12-3. shipping.2 confirms an order as an HTML receipt

<?php
 // This script shows the user an HTMl receipt of their
 // purchase. It is bookmarkable and carries out no
 // database writes.
 // The user must be logged in to review a receipt.

 include 'include.inc';

 set_error_handler("errorHandler");

 function show_HTML_receipt($custID,
 $orderID,
 $connection)
 {
 // Find customer information
 $query = "SELECT *
 FROM customer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FROM customer
 WHERE cust_id = $custID";

 if (!($result = @ mysql_query ($query, $connection)))
 showerror();

 // There is only one matching row
 $row = @ mysql_fetch_array($result);

 echo "\n<h1>" .
 "Your order (reference # $custID - $orderID) " .
 "has been dispatched</h1>\n";

 echo "Thank you " .
 $row["title"] . " " .
 $row["surname"] . ", " .
 "your order has been completed and dispatched. " .
 "Your order reference number is " .
 $custID . "-" .
 $orderID .
 ". Please quote this number in any" .
 " correspondence.
\n";

 echo "<p>If it existed, the order would have ".
 "been shipped to: \n
" .
 $row["title"] . " " .
 $row["firstname"] . " " .
 $row["initial"] . " " .
 $row["surname"] . "\n
" .
 $row["addressline1"] . "\n";

 if ($row["addressline2"] != "")
 echo "\n
" .
 $row["addressline2"];

 if ($row["addressline3"] != "")
 echo "\n
" .
 $row["addressline3"];

 echo "\n
" .
 $row["city"] . " " .
 $row["state"] . " " .
 $row["zipcode"] . "\n
" .
 $row["country"] . "\n
\n
";

 echo "\n<p>" .
 "We have billed your fictional credit card.";

 echo "\n<table border=0 width=50% " .
 "cellpadding=0 cellspacing=5>\n" .
 "\n<tr>" .
 "\n\t<td>Quantity</td>\n" .
 "\n\t<td>Wine</td>\n" .
 "\n\t<td align=\"right\">Unit Price</td>\n" .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "\n\t<td align=\"right\">Unit Price</td>\n" .
 "\n\t<td align=\"right\">Total</td>\n" .
 "\n</tr>";

 $orderTotalPrice = 0;

 // list the particulars of each item in the order
 $query = "SELECT i.qty, w.wine_name, i.price,
 w.wine_id, w.year, wi.winery_name
 FROM items i, wine w, winery wi
 WHERE i.cust_id = $custID
 AND i.order_id = $orderID
 AND i.wine_id = w.wine_id
 AND w.winery_id = wi.winery_id
 ORDER BY item_id";

 if (!($result = @ mysql_query ($query, $connection)))
 showerror();

 // Add each item to the receipt
 while ($row = @ mysql_fetch_array($result))
 {
 // Work out the cost of this line item
 $itemsPrice = $row["qty"] * $row["price"];

 $orderTotalPrice += $itemsPrice;

 $wineDetail = showWine($row["wine_id"],
 $connection);

 echo "\n<tr>" .
 "\n\t<td>" . $row["qty"] . "</td>" .
 "\n\t<td>" . showWine($row["wine_id"],
 $connection) . "</td>";

 printf("\n\t<td align=\"right\">$%-.2f</td>",
 $row["price"]);
 printf("\n\t<td align=\"right\">$%-.2f</td>",
 $itemsPrice);
 echo "\n</tr>\n";
 }

 echo "\n<tr></tr>" .
 "\n<tr>\n\t<td colspan=2 " .
 "align=\"left\"><i>Total of this order" .
 "</td>\n\t<td></td>";

 printf("\n\t<td align=\"right\">" .
 "$<i>%-.2f</td>\n", $orderTotalPrice);

 echo "\n</tr>\n</table>";

 echo "\n<p><i>An email confirmation has been sent " .
 "to you." .
 " Thank you for shopping at Hugh and Dave's " .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 " Thank you for shopping at Hugh and Dave's " .
 "Online Wines.</i>";
 }

 // Main ----------

 // Re-establish the existing session
 session_start();

 // Check if the user is logged in - this should never
 // fail if unless the script is run incorrectly
 if (!session_is_registered("loginUsername"))
 {
 session_register("message");
 $message = "You must login to view your receipt.";

 // Redirect the browser back to the calling page
 header("Location: example.order.1.php");
 exit;
 }

 // Check the correct parameters have been passed
 // unless the script is run correctly
 if (!isset($custID) || !isset($orderID))
 {
 session_register("message");

 $message = "Incorrect parameters to " .
 "example.shipping.2.php";

 header("Location: $HTTP_REFERER");
 exit;
 }

 // Check this customer matches the custID
 if ($custID != getCustomerID($loginUsername, NULL))
 {
 session_register("message");

 $message = "You can only view your own receipts!";
 header("Location: example.order.1.php");
 exit;
 }

 // Open a connection to the DBMS
 if (!($connection = @ mysql_pconnect($hostName,
 $username,
 $password)))
 showerror();

 if (!mysql_select_db($databaseName, $connection))
 showerror();

?>
<!DOCTYPE HTML PUBLIC

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html401/loose.dtd">
<html>
<head>
 <title>Hugh and Dave's Online Wines</title>
</head>
<body bgcolor="white">
<?php
 // Show the user login status
 showLogin();

 // Show the user any messages
 showMessage();

 // Show the confirmation HTML page
 show_HTML_receipt($custID, $orderID, $connection);
?>
<form action="example.cart.5.php" method="GET">
<table>
<tr>
 <td><input type="submit" name="home" value="Home"></td>
</tr>
</table>
</form>

 <img src="http://www.w3.org/Icons/valid-html401"
 height="31" width="88" align="right" border="0"
 alt="Valid HTML 4.01!">
</body>
</html>

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Chapter 13. Related Topics
This chapter completes our outline of the online winestore. We present here the
completed searching and browsing module, and two related topics in web database
applications.

The searching and browsing module is briefly outlined in this chapter. A more
comprehensive description is presented in Chapter 5. As in the previous three
chapters, we suggest that the best method of understand the module is to load it into
an editor and use and view the application locally while reading the chapter. We also
reemphasize that the code presented here isn't a production system and requires
modifications to be used in a production environment.

The scripts we outline in this chapter cover the following topics:

Cleaning up shopping carts

Automated queries that empty unused carts.

Templates

How to separate HTML structure from the code functionality. We illustrate the
benefits by showing how the shipping.2 order confirmation script can be
rewritten to use a template.

Searching and browsing

We list the completed wine searching and browsing script that is based on the
browse() and selectDistinct() functions discussed in Chapter 5.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

13.1 Automated Housekeeping

Queries are run by users through the web interface and by administrators through
either administrative web interfaces or from the MySQL command interpreter.
However, sometimes automated querying is necessary to produce periodic reports,
update data, or delete temporary data. We discuss how queries can be automated in
this section.

To show how queries can be automated, consider an example from the online
winestore. The shopping cart in the online winestore is implemented using the
winestore database. As discussed in Chapter 12, when an anonymous user adds a
wine to their shopping basket, an order row is added to the orders table. The row is
for a dummy customer with a cust_id=-1, and the next available order_id for this
dummy customer. A related items row is created for each item in the shopping cart.
The order_id is maintained in the session variable order_no so that orders by
different anonymous customers aren't confused.

Our system requirements in Chapter 1 specify that if a customer doesn't purchase
the wines in their shopping cart within one day, then the shopping cart should be
emptied. This is an example of a DELETE operation that should be automated. It is
impractical to require the administrator to run this query each day to remove junk
data.

The following query can be run from the Linux shell to remove all orders rows that are
more than one day old and are for the dummy customer:

% /usr/local/mysql/bin/mysql -uusername -psecret
 -e 'USE winestore; DELETE FROM orders WHERE
 unix_timestamp(date) <
 (unix_timestamp(date_add(now(), interval -1 day)))
AND cust_id = -1;'

The MySQL time and date function unix_timestamp() converts a timestamp
attribute to an integer that is accurate to the nearest second. In this query, we
compare the value of the entry in the orders table with the value of exactly one day
earlier from the current date and time. If the row is older than one day, then it is
deleted. The same query works for the items table, when orders is replaced with
items in the FROM clause.

13.1.1 cron Jobs

Having designed and tested the query, it can be inserted into a Unix cron table to
automate the operation. The crond daemon is a process that runs by default in a
Linux installation and continually checks the time. If any of the entries in user tables
match the current time, then the commands in the entries are executed. Consider an
example:

30 17 * * mon-fri echo 'Go home!'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

30 17 * * mon-fri echo 'Go home!'

This prints the string at 5:30 p.m. each working day. The two asterisks mean every
day of the month, and every month of the year respectively. The string mon-fri
means the days Monday to Friday inclusive. More details about cron can be found
by running man crontab in a Linux shell.

We can add our housekeeping query to our cron table by running:

% crontab -e

This edits the user's cron table.

We have decided that the system should check for old shopping carts every 30
minutes. To do so, we add the following two lines to the file:

0 * * * * /usr/local/mysql/bin/mysql -uusername -psecret
 -e 'USE winestore; DELETE FROM orders WHERE
 unix_timestamp(date) <
 (unix_timestamp(date_add(now(), interval -1 day)))
 AND cust_id = -1;'

30 * * * * /usr/local/mysql/bin/mysql -uusername -psecret
 -e 'USE winestore; DELETE FROM items WHERE
 unix_timestamp(date) <
 (unix_timestamp(date_add(now(), interval -1 day)))
 AND cust_id = -1;'

The first line contains the complete query command for the orders table from earlier in
this section, and the second line the items query. The shopping cart orders DELETE
query runs exactly on each hour, while the items DELETE query runs at 30 minutes
past each hour. Different times are used to balance the DBMS load.

Reports, updates, delete operations, and other tasks can be added to the cron table
in a similar way. For example, we can output a simple report of the number of bottles
purchased yesterday and send this to our email address each morning:

0 8 * * * mon-fri /usr/local/mysql/bin/mysql -uusername
 -psecret -e 'USE winestore; SELECT sum(qty) FROM
 items WHERE unix_timestamp(date) >
 (unix_timestamp(date_add(now(), interval -1 day))) AND
 cust_id != -1;' | mail help@webdatabasebook.com

We could also have automatically written the information to a log file or to a table in
the database.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

13.2 Templates

Separating code from HTML can be difficult in PHP. As we discussed in Chapter 1
and have shown throughout this book, one of the best features of PHP is that scripts
can be embedded anywhere in HTML documents. However, this can lead to
maintenance problems: if we want to redesign the presentation of the web site, then
we may need to rewrite code or, at the very least, understand how PHP and HTML
are interleaved in the application. This also makes it difficult to maintain code when it
is interleaved with presentational components.

A good solution for medium- to large-scale web database applications is to use
templates to separate markup and code. In this section, we illustrate how templates
can be used in PHP applications through a case study example from the online
winestore. In our example, we use the open source XTemplate class library available
from http://sourceforge.net/projects/xtpl/. The XTemplate library is object-
based, and Chapter 2 provides a brief introduction to the object-oriented features of
PHP. There are other excellent template libraries, including most notably the Smarty
PHP template engine available from
http://www.phpinsider.com/php/code/Smarty/.

13.2.1 Templates in the Shipping Module

Example 13-1 and Example 13-2 show a template module that displays the order
receipt. This script, called shipping.3, is a replacement for the shipping.2 script
discussed in Chapter 12. The output of retrieving Example 13-2 with a Netscape
web browser is shown in Figure 13-1. Example 13-1 is the application logic, and
Example 13-2 is the template.

Example 13-1. shipping.3 provides an order receipt

<?php
 include "xtpl.p";
 include "include.inc" ;

 set_error_handler("errorHandler");

 function show_HTML_receipt($custID, $orderID, $connection)
 {
 // Create a new XTemplate object called $xtpl
 $xtpl= new XTemplate ("example.shipping.3.xtpl");

 // Find customer information
 $query = "SELECT *
 FROM customer
 WHERE cust_id = $custID";

 if (!($result = @ mysql_query ($query, $connection)))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (!($result = @ mysql_query ($query, $connection)))
 showerror();

 // There is only one matching row
 $row = @ mysql_fetch_array($result);

 // Assign the orderId to the template
 $xtpl->assign("ORDER_ID", $orderID);

 // Assign the customer data to the template
 $xtpl->assign("CUSTOMER", $row);

 // Parse the template data
 $xtpl->parse("main.customer");

 $orderTotalPrice = 0;

 // list the particulars of each item in the order
 $query = "SELECT i.qty, w.wine_name, i.price,
 w.wine_id, w.year, wi.winery_name
 FROM items i, wine w, winery wi
 WHERE i.cust_id = $custID
 AND i.order_id = $orderID
 AND i.wine_id = w.wine_id
 AND w.winery_id = wi.winery_id
 ORDER BY item_id";

 if (!($result = @ mysql_query ($query, $connection)))
 showerror();

 // Add each item to the email
 while ($row = @ mysql_fetch_array($result))
 {
 // Work out the cost of this line item
 $itemsPrice = $row["qty"] * $row["price"];

 $orderTotalPrice += $itemsPrice;

 $wineDetail = showWine($row["wine_id"], $connection);

 // Assign the qty, wine details, price, and
 // total item cost to the template
 $xtpl->assign("QTY", $row["qty"]);
 $xtpl->assign("WINE", $wineDetail);
 $xtpl->assign("PRICE",
 sprintf("%-.2f", $row["price"]));
 $xtpl->assign("TOTAL",
 sprintf("%-.2f", $itemsPrice));

 // Parse a template row of items
 $xtpl->parse("main.items.row");
 }

 // Assign the order total to the template

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Assign the order total to the template
 $xtpl->assign("ORDER_TOTAL",
 sprintf("%-.2f", $orderTotalPrice));

 // parse all items
 $xtpl->parse("main.items");

 // parse the whole document
 $xtpl->parse("main");

 // output the templated data
 $xtpl->out("main");
}

 // Main ----------

 // Re-establish the existing session
 session_start();

 // Check if the user is logged in
 if (!session_is_registered("loginUsername"))
 {
 session_register("message");
 $message = "You must login to view your receipt.";

 // Redirect the browser back to the login page
 header("Location: example.order.1.php");
 exit;
 }

 // Check the correct parameters have been passed
 // unless the script is run correctly
 if (!isset($custID) || !isset($orderID))
 {
 session_register("message");
 $message = "Incorrect parameters to " .
 "example.shipping.3.php";

 header("Location: $HTTP_REFERER");
 exit;
 }

 // Check this customer matches the custID
 if ($custID != getCustomerID($loginUsername, NULL))
 {
 session_register("message");

 $message = "You can only view your own receipts!";
 header("Location: example.order.1.php");
 exit;
 }

 // Open a connection to the DBMS
 if (!($connection = @ mysql_pconnect($hostName,
 $username,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $username,
 $password)))
 showerror();

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 // Show the confirmation HTML page
 show_HTML_receipt($custID, $orderID, $connection);
?>

13.2.1.1 The application logic

Example 13-1 is the application logic that produces the order receipt. The script
logic is identical to that of the shipping.2 script discussed in Chapter 12. The
different features of this script are the omission of any code to produce output, and
the inclusion of the fragments of code that assign database values to presentation
elements, parse these elements, and call functions in the template class library.

The script in Example 13-1 works as follows:

1. Include the xtpl.p template library.

2. In the function show_HTML_receipt(), associate the script with the
template shown in Example 13-2:

$xtpl= new XTemplate ("example.shipping.3.xtpl");

This creates a new template object called $xtpl.

3. Query the customer table and assign the returned $row to an element of the
template named CUSTOMER. Also assign the orderID session variable to an
element of the template named ORDER_ID. Uppercase strings are used to
distinguish template elements from variables in the script, but this isn't essential.
After assigning the data, parse the main.customer template data (we discuss
the structure of the template later in this section).

4. Retrieve and assign each item in the order to the template elements QTY, WINE,
PRICE, and TOTAL. Now check that this data is correctly formed and associated
by parsing it. The following lines perform these functions:

// Assign the qty, wine details, price, and total item
// cost to the template
$xtpl->assign("QTY", $row["qty"]);
$xtpl->assign("WINE", $wineDetail);
$xtpl->assign("PRICE", sprintf("%-.2f", $row["price"]));
$xtpl->assign("TOTAL", sprintf("%-.2f", $itemsPrice));

// Parse a template row of items
$xtpl->parse("main.items.row");

We explain how this relates to the template later.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Assign the overall order total to the template and check the overall structure of
the data. The final check includes parsing the items and the overall main
output, and then outputting the data with the following code:

$xtpl->assign("ORDER_TOTAL",
sprintf("%-.2f", $orderTotalPrice));

// parse all items
$xtpl->parse("main.items");

// parse the whole document
$xtpl->parse("main");

// output the templated data
$xtpl->out("main");

13.2.1.2 The template

Example 13-2 is the template itself. It consists mostly of HTML but also contains a
Cascading Style Sheet for presentation. Cascading Style Sheets (CSS) are used to
control the styles that present output; references that discuss the CSS standard are
listed in Appendix E.

Interleaved throughout the template are the following HTML comments:

<!-- BEGIN: main -->
 <!-- BEGIN: customer -->
 <!-- END: customer -->
 <!-- BEGIN: items -->
 <!-- BEGIN: row -->
 <!-- END: row -->
 <!-- END: items -->
<!-- END: main -->

These comments describe the structural elements referenced in the PHP script in
Example 13-1. The elements are nested, so that the element customer is a child
of main, because <!-- BEGIN: customer --> occurs inside the <!-- BEGIN:
main --> and <!-- END: main --> tags. The customer element can therefore
be referenced in Example 13-1 as main.customer. A table row can be
referenced in Example 13-1 as main.items.row, because the structural element
row is inside items, and items is inside main.

Consider now how the template produces row data:

<!-- BEGIN: row -->
<tr>
 <td>{QTY}</td>
 <td>{WINE}</td>
 <td align="right">$ {PRICE}</td>
 <td align="right">$ {TOTAL}</td>
</tr>
<!-- END: row -->

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<!-- END: row -->

The tags {QTY}, {WINE}, {PRICE}, and {TOTAL} represent where data is inserted.
The data is assigned to these tags in Example 13-1 using the assign() function.
For example, {QTY} is the position where the order item quantities from the database
appear. If there are two database rows assigned to main.items.row elements, two
<tr> rows are produced as the body of the HTML <table>.

Example 13-2. HTML XTemplate used by Example 13-1 to output order receipts

<!-- BEGIN: main -->
<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html401/loose.dtd">
<html>
<head>
 <title>Hugh and Dave's Online Wines</title>

 <style type="text/css">
 body {background: #ffffff;
 color: #000000;
 font-family: Arial, sans-serif}
 h1 {font: arial}
 h2 {font: arial;
 font-size: 22}
 a {color: #0000ff;
 font: helvetica;
 font-weight: bold;
 text-decoration: none}
 </style>
</head>
<body bgcolor="white">
<!-- BEGIN: customer -->
<h1>Your order (reference # {CUSTOMER.cust_id} - {ORDER_ID})
has been dispatched</h1>
Thank you {CUSTOMER.title} {CUSTOMER.surname},
your order has been completed and dispatched.
Your order reference number is
{CUSTOMER.cust_id} - {ORDER_ID}.
Please quote this number in any correspondence.

<p>If it existed, the order would have been shipped to:

{CUSTOMER.title} {CUSTOMER.firstname} {CUSTOMER.initial}
{CUSTOMER.surname}

{CUSTOMER.addressline1}
{CUSTOMER.addressline2}
{CUSTOMER.addressline3}

{CUSTOMER.city} {CUSTOMER.state} {CUSTOMER.zipcode}

{CUSTOMER.country}

<p>We have billed your fictional credit card.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<p>We have billed your fictional credit card.
<!-- END: customer -->

<!-- BEGIN: items -->
<table border=0 width=50% cellpadding=0 cellspacing=5>
<tr>
 <td>Quantity</td>
 <td>Wine</td>
 <td align=\"right\">Unit Price</td>
 <td align=\"right\">Total</td>
</tr>
 <!-- BEGIN: row -->
<tr>
 <td>{QTY}</td>
 <td>{WINE}</td>
 <td align="right">$ {PRICE}</td>
 <td align="right">$ {TOTAL}</td>
</tr>
 <!-- END: row -->
<tr></tr>
<tr>
 <td colspan=2 align="left"><i>
 Total of this order</td>
 <td></td>
 <td align="right">$<i>{ORDER_TOTAL}</td>
</tr>
</table>
<!-- END: items -->
<p><i>An email confirmation has been sent to you.
Thank you for shopping at Hugh and Dave's Online Wines.</i>

<form action="example.cart.5.php" method="GET">
<table>
<tr>
 <td><input type="submit" name="home" value="Home"></td>
</tr>
</table>
</form>

 <img src="http://www.w3.org/Icons/valid-html401"
 height="31" width="88" align="right" border="0"
 alt="Valid HTML 4.01!">
</body>
</html>
<!-- END: main -->

The customer details are output by accessing the CUSTOMER element. For example,
the shipping details are produced with the fragment:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<p>If it existed, the order would have been shipped to:

{CUSTOMER.title} {CUSTOMER.firstname} {CUSTOMER.initial}
{CUSTOMER.surname}

{CUSTOMER.addressline1}
{CUSTOMER.addressline2}
{CUSTOMER.addressline3}

{CUSTOMER.city} {CUSTOMER.state} {CUSTOMER.zipcode}

{CUSTOMER.country}

The overall result of running Example 13-1 and using the template in Example 13-
2 is the output in Figure 13-1. The advantage of this approach is that the HTML in
Example 13-2 can be altered independently of the script in Example 13-1 and vice
versa. This means that application logic and presentation are as separate as
possible. The only links between the two are the structural markup components and
the embedded tags.

Figure 13-1. Output of Examples 13-1 and 13-2

The XTemplate library has more complex features not discussed here. More details
on the use of templates can be found at the web sites listed earlier in this section.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

13.3 Searching and Browsing

Example 13-3 shows the searching and browsing search.1 script used in the
winestore. The script browses wines by selecting a combination of a wine region
name and a wine type. For example, the script can browse the Red wines from the
Margaret River region. The user can also choose to browse All regions or All wine
types. The browsing interface supports Previous and Next page functionality using
embedded links, as well as direct access to any page in the results.

The script is based on the browse() function discussed in Chapter 5, which is
included here renamed as showWines(). The showWines() function is
customized for presenting wine details and has calls to the functions
showVarieties() and showPricing() from the include.inc include file. It also
has embedded links to add one or a dozen bottles of the displayed wine to the
shopping cart using the cart.3 script discussed in Chapter 11.

The body of the script checks if search criteria have been provided as GET method
parameters. If they have, these are used as parameters to the query that retrieves
wines. If GET method parameters aren't provided, the query is configured using any
previous search criteria that have been saved as the session variables
sessionRegionName and sessionWineType. In either case, the current search
criteria are then saved in the session variables for future use. The query string itself is
created using the setupQuery() function.

After running the query and presenting the results with the showWines() function,
two <select> lists containing the query parameters are presented using the
selectDistinct() function. This function is part of the include.inc file discussed
in Chapter 10, and the selectDistinct() function is discussed in detail in
Chapter 5.

The search.1 script in Example 13-3 is the final module in the online winestore
application, and this section concludes our discussion of the application.

Example 13-3. search.1 searches and browses wines in the winestore

<?php
 // This is the script that allows the to search and
 // browse wines, and to select wines to add to their
 // shopping cart

 include 'include.inc';

 set_error_handler("errorHandler");

 // Show the user the wines that match their query
 // This is a modified version of the browse() function
 // from Chapter 5

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // from Chapter 5
 function showWines($query,
 $connection,
 $offset,
 $scriptName,
 $browseString)
 {
 // Number of rows per page
 $ROWS = 12;

 // Run the query on the database through
 // the connection
 if (!($result = @ mysql_query ($query, $connection)))
 showerror();

 // Find out how many rows there are
 $rowsFound = @ mysql_num_rows($result);

 // Is there any data?
 if ($rowsFound != 0)
 {
 // Yes, there is data.

 // The "Previous" page begins at the current
 // offset LESS the number of ROWS per page
 $previousOffset = $offset - $ROWS;

 // The "Next" page begins at the current offset
 // PLUS the number of ROWS per page
 $nextOffset = $offset + $ROWS;

 // Seek to the current offset
 if (!@ mysql_data_seek($result, $offset))
 showerror();

 // Output the header and start a table
 echo "<table border=\"0\">\n";

 // Fetch one page of results (or less if on the
 // last page)
 for ($rowCounter = 0;
 (($rowCounter < $ROWS) &&
 ($row = @ mysql_fetch_array($result)));
 $rowCounter++)
 {
 echo "\n<tr>\n\t<td>" . $row["year"] . " " .
 $row["winery_name"] . " " .
 $row["wine_name"];

 // Print the varieties for this wine
 echo showVarieties($connection,
 $row["wine_id"]);

 // Print out the pricing information
 echo "\n\t
";
 showPricing($connection, $row["wine_id"]);

 echo "</td>";

 // Show the single-bottle add to cart link
 echo "\n\t<td><a href=\"example.cart.3.php?" .
 "qty=1&wineId=" .
 $row["wine_id"] .
 "\">Add a bottle to the cart</td>";

 // Show the dozen add to cart link
 echo "\n\t<td><a href=\"example.cart.3.php?" .
 "qty=12&wineId=" .
 $row["wine_id"] .
 "\">Add a dozen</td>";

 echo "\n</tr>";
 } // end for rows in the page

 // Finish the results table, and start a footer
 echo "\n</table>\n
\n";

 // Show the row numbers that are being viewed
 echo ($offset + 1), "-",
 ($rowCounter + $offset), " of ";
 echo "$rowsFound wines found matching " .
 "your criteria\n
";

 // Are there any previous pages?
 if ($offset > 0)
 // Yes, so create a previous link
 echo "<a href=\"" . $scriptName .
 "?offset=" . rawurlencode($previousOffset) .
 "&" . $browseString .
 "\">Previous ";
 else
 // No, there is no previous page so don't
 // print a link
 echo "Previous ";
 // Output the page numbers as links
 // Count through the number of pages in the results
 for($x=0, $page=1;
 $x<$rowsFound;
 $x+=$ROWS, $page++)
 // Is this the current page?
 if ($x < $offset || $x > ($offset + $ROWS - 1))
 // No, so print out a link
 echo "\n<a href=\"" . $scriptName .
 "?offset=" . rawurlencode($x) .
 "&" . $browseString .
 "\">" . $page . " ";
 else
 // Yes, so don't print a link
 echo "\n" . $page . " ";

 // Are there any Next pages?
 if (($row != false) && ($rowsFound > $nextOffset))
 // Yes, so create a next link
 echo "\n<a href=\"" . $scriptName .
 "?offset=" . rawurlencode($nextOffset),
 "&" . $browseString .
 "\">Next ";
 else
 // No, there is no next page so don't
 // print a link
 echo "\nNext ";

 } // end if rowsFound != 0
 else
 {
 echo "\n
No wines found matching your " .
 " criteria.\n";
 }
 }

 function setupQuery($regionName, $wineType)
 {

 // Show the wines stocked at the winestore that match
 // the search criteria
 $query = "SELECT DISTINCT wi.winery_name,
 w.year,
 w.wine_name,
 w.wine_id
 FROM wine w, winery wi,
 inventory i, region r
 WHERE w.winery_id = wi.winery_id
 AND wi.region_id = r.region_id
 AND w.wine_id = i.wine_id";

 // Add region_name restriction if they've
 // selected a search parameter
 if ($regionName != "All")
 $query .= " AND r.region_name = \"" .
 $regionName . "\"" .
 " AND r.region_id = wi.region_id";

 // Add wine type restriction if they've selected
 // a search parameter
 if ($wineType != "All")
 $query .= " AND w.type = \"" .
 $wineType . "\"";

 // Add sorting criteria
 $query .= " ORDER BY wi.winery_name, " .
 "w.wine_name, w.year";

 return ($query);
 }

 // ---------

 // Initialize the session
 session_start();

 // Process the search parameters.

 // If a regionName is passed as a GET parameter,
 // use it. Otherwise, load the session variable
 // from the last search. If there is no previous
 // search and no parameter, set search to "All"
 if (!empty($HTTP_GET_VARS["regionName"]))
 $regionName = clean($regionName, 30);
 elseif (session_is_registered("sessionRegionName"))
 $regionName = $sessionRegionName;
 else
 $regionName = "All";

 // Load wineType, using the same approach as
 // regionName
 if (!empty($HTTP_GET_VARS["wineType"]))
 $wineType = clean($wineType, 20);
 elseif (session_is_registered("sessionWineType"))
 $wineType = $sessionWineType;
 else
 $wineType = "All";

 // Load offset
 if (!empty($HTTP_GET_VARS["offset"]))
 $offset = clean($offset, 5);
 else
 $offset = 0;

 // Save the search criteria
 $sessionRegionName = $regionName;
 $sessionWineType = $wineType;

 // Register the search criteria if needed
 if (!session_is_registered("sessionRegionName"))
 {
 session_register("sessionRegionName");
 session_register("sessionWineType");
 }

 // Open a connection to the DBMS
 if (!($connection = @ mysql_pconnect($hostName,
 $username,
 $password)))
 showerror();

 if (!mysql_select_db($databaseName, $connection))
 showerror();

 // Build the query using the search criteria
 $query = setupQuery($regionName, $wineType);

 // This is used to encode the search parameters
 // for embedding in links to other pages of results
 $browseString = "wineType=" .
 urlencode($wineType) .
 "&regionName=" .
 urlencode($regionName);

 $scriptName = "example.search.1.php";

?>
<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html401/loose.dtd">
<html>
<head>
 <title>Hugh and Dave's Online Wines</title>
</head>
<body bgcolor="white">
<?php
 // Show the user login status
 showLogin();

 // Show the dollar and item total of the cart
 showCart($connection);

 // Show a meaningful heading that describes the
 // search criteria
 echo "<h1>" . $wineType . " wines";

 if ($regionName == "All")
 echo " from all regions.";
 else
 echo " of the " . $regionName . " region.";

 echo "</h1>\n";

 // Display any messages to the user
 showMessage();

 // Show the user their search
 showWines($query, $connection,
 $offset, $scriptName,
 $browseString);

 echo "<form action=\"example.cart.5.php\"" .
 " method=\"GET\">\n";
 echo "<table>\n<tr>\n";

 echo "\t<td>Choose a wine region:</td>\n\t<td>";
 // Produce a select list of wine regions
 selectDistinct($connection,
 "region",
 "region_name",
 "regionName",
 "All",
 $regionName);

 echo "</td>\n</tr>\n<tr>\n";

 echo "\t<td>Choose a wine type:</td>\n\t<td>";
 // Produce a select list of wine types
 selectDistinct($connection,
 "wine",
 "type",
 "wineType",
 "All",
 $wineType);

 echo "</tr>\n</table>\n";

 echo "<table>\n<tr>\n";

 // Show the user the search screen button
 echo "\t<td><input type=\"submit\" " .
 "name=\"search\" value=\"Search\"></td>\n";

 // Show the user the search screen button
 echo "\t<td><input type=\"submit\" " .
 "name=\"home\" value=\"Home\"></td>\n";

 // If the cart has contents, offer the opportunity
 // to view the cart or empty the cart.
 if (session_is_registered("order_no"))
 {
 echo "\t<td><input type=\"submit\" " .
 "name=\"empty\" value=\"Empty Cart\"></td>\n";
 echo "\t<td><input type=\"submit\" " .
 "name=\"view\" value=\"View Cart\"></td>\n";
 }

 // Show the user either a login or logout button
 loginButtons();

 echo "\n</tr>\n</table>\n";
 echo "</form>\n";
?>

 <img src="http://www.w3.org/Icons/valid-html401"
 height="31" width="88" align="right" border="0"
 alt="Valid HTML 4.01!">
</body>
</html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</html>

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Appendix A. Installation Guide
This appendix is a guide to installing the software used in the book. The first section
presents the steps to install and configure MySQL, Apache, and PHP under the Linux
operating system environment. We then present a short guide to downloading and
installing the PHP script examples used in this book. The last major section shows
how a secure Apache web server can be installed using the Secure Sockets Layer
library. We conclude with a list of installation resources for Microsoft Windows, Linux,
and other environments.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

A.1 Installing MySQL, Apache, and PHP

There are three approaches to installing MySQL, Apache, and PHP:

Install a distribution of the Linux operating system that includes the software as
precompiled packages. This is the easiest approach.

Purchase or obtain an installation package; pointers to PHP Triad for the
Microsoft Windows environment, and NuSphere for most platforms—including
Linux and Sun Solaris—are included at the end of this appendix. This is an easy
approach.

Obtain and build the software from source code. This is the most difficult
approach, but it has the advantage that the latest software is installed and the
configuration layout and options are controlled in the process.

This section focuses on the third approach, obtaining and building the software from
source code. Specifically, this section is a short guide to installation under the Linux
operating system, and the result is an installation of Apache with PHP as a static
module and a complete MySQL installation. We don't provide detailed information on
the configuration of the components, installation on other platforms, or choices that
can be made in installation. A short list of more detailed installation resources is
presented at the end of this appendix.

Before we begin, several basic components are required:

An ANSI-compliant C programming language compiler such as gcc; included in
almost all Linux distributions

flex, the fast lexical analyzer, included in almost all Linux distributions

bison, the GNU project parser generator; included in most Linux distributions

Superuser, that is, root access to the Linux machine on which the software is to
be installed

Common Linux utilities such as gzip, tar, and gmake

A.1.1 Installing MySQL

The instructions here are for installing MySQL 3. MySQL is bundled with only some
Linux installations. We assume that MySQL isn't installed or, if it is installed, that a
new version is to be installed to replace the current installation.

1. Download the latest version of MySQL from
http://www.mysql.com/downloads/mysql.html. Choose the latest stable
release and, from the stable release page, choose the option under "Source
Downloads" marked "tarball (.tar.gz)". Download the file into a directory where
files can be created and there is sufficient disk space. A good location is /tmp.
Change directory to this location using:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% cd /tmp

Note that the % character should not be typed in; this represents the Linux shell
prompt and indicates that the command should be entered at the shell prompt.

2. Uncompress the package in the new installation directory by running:

% gzip -d mysql-<version>.tar.gz

If MySQL 3.23.42 has been downloaded, the command is:

% gzip -d mysql-3.23.42.tar.gz

3. Un-tar the tape archive file by running:

% tar xvf mysql-<version_number>.tar

A list of files that are extracted is shown.

If the version downloaded is MySQL 3.23.42, the command is:

% tar xvf mysql-3.23.42.tar

4. Change directory to the MySQL distribution directory:

% cd mysql-<version>

If the version is MySQL 3.23.42, type:

% cd mysql-3.23.42

5. Add a new Unix group account for the MySQL files:

% groupadd mysql

6. Add a new Unix user who is a member of the newly created Unix group mysql:

% useradd -g mysql mysql

7. Decide on an installation directory. Later, we recommend that PHP and Apache
be installed in /usr/local/, so a good choice is /usr/local/mysql/. We assume
throughout these steps that /usr/local/mysql/ is used; if another directory is
chosen, replace /usr/local/mysql/ with the alternative choice in the remaining
steps.

8. Configure the MySQL installation by running the configure script. This detects
the available Linux tools and the installation environment for the MySQL
configuration:

% ./configure --prefix=/usr/local/mysql

9. Compile the MySQL DBMS:

% make

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% make

10. Install MySQL in the location chosen in Step 7 by running the command:

% make install

11. MySQL is now installed but isn't yet configured. Now, run the mysql_install_db
script to initialize the system databases used by MySQL:

% ./scripts/mysql_install_db

12. Change the owner of the MySQL program files to be the root user:

% chown -R root /usr/local/mysql

13. Change the owner of the MySQL databases and log files to be the mysql user
created in Step 6:

% chown -R mysql /usr/local/mysql/var

14. Change the group of the MySQL installation files to be the mysql group:

% chgrp -R mysql /usr/local/mysql

15. Copy the default medium-scale parameter configuration file to the default
location of /etc. These parameters are read when MySQL is started. The copy
command is:

% cp support-files/my-medium.cnf /etc/my.cnf

16. Edit the configuration file and adjust the default number of maximum
connections to match the default value for the maximum Apache web server
connections. Using a text editor, edit the file /etc/my.cnf, and find the section
beginning with the following text:

The MySQL server
[mysqld]

In this section, add the following line, then save the file, and exit the editor:

set-variable = max_connections=150

17. The MySQL configuration is now complete, and MySQL is ready to be started.
Start the MySQL DBMS with the following command:

% /usr/local/mysql/bin/safe_mysqld --user=mysql &

18. Check that the MySQL DBMS is running with the mysqladmin utility. The
following command reports statistics about the MySQL DBMS version and
usage:

% /usr/local/mysql/bin/mysqladmin version

19. Choose and set a password for root user access to the MySQL DBMS. To set
a password of secret, use:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% /usr/local/mysql/bin/mysqladmin -uroot password secret

Record the password for later use.

20. The MySQL server is currently running. However, when the machine is
rebooted, MySQL doesn't restart automatically.

After reboot, the command in Step 17 can be used to restart MySQL or,
alternatively, this process can be made automatic. To make the process
automatic, find the file rc.local (normally either in or below the directory /etc).
This file is used to list locally installed software that should be run on startup.
Using an editor, add the following line to the bottom of the rc.local file:

/usr/local/mysql/bin/safe_mysqld --user=mysql &

The installation of MySQL is now complete.

These steps install MySQL and start the DBMS server but don't configure a user or
user databases. The steps to add a user are the subject of the next section.

A.1.2 Configuring MySQL

The following steps create a user for the MySQL installation that is used in PHP
scripts to access the DBMS. The user can carry out all actions required in Chapter 4
to Chapter 13 on the winestore database but has no access to other databases and
can't change database access privileges. In addition, the new user can't access the
DBMS from a remote server, under the assumption that the MySQL DBMS and
Apache are installed on the same machine through following the instructions in this
appendix.

The steps are as follows:

1. Check that MySQL is running using the password defined in Step 19 of the
MySQL installation instructions:

% /usr/local/mysql/bin/mysqladmin -psecret version

If it isn't, then log in as the root user and start the MySQL DBMS using:

% /usr/local/mysql/bin/safe_mysqld --user=mysql &

2. Start the MySQL command line interpreter using the same password as in the
last step:

% /usr/local/mysql/bin/mysql -psecret

3. Add a new user to the user table in the mysql database. Choose a username to
replace username and a password to replace secret in the following command:

GRANT ALL PRIVILEGES ON winestore.* TO username@localhost
IDENTIFIED BY 'secret';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IDENTIFIED BY 'secret';

MySQL responds with:

Query OK, 0 rows affected (0.00 sec)

Record the username and password for use in the examples in Chapter 3 to
Chapter 13.

4. Quit the MySQL command interpreter with the command:

quit

MySQL responds with:

Bye

5. Test the user created in Step 3 by running the MySQL command interpreter
using the username and password:

% /usr/local/mysql/bin/mysql -uusername -psecret

MySQL responds with a message beginning:

Welcome to the MySQL monitor.

6. Quit the MySQL interpreter again with:

quit

The MySQL DBMS is now configured with a user who can access the winestore
database from the database server machine localhost. The winestore database
can't be tested yet; the winestore database is loaded and tested in Section 3.2 in
Chapter 3.

A.1.3 Installing Apache

The Apache web server is usually installed with most common Linux installations.
However, we assume that it isn't installed or that an upgrade is required. In any case,
it is essential that the source of Apache is available so that it can be recompiled to
include PHP as a module.

If a current version is running, kill the process or stop the web server by running the
script apachectl stop, usually found in the directory /usr/local/apache/bin.

Here are the steps to install Apache:

1. Get the latest version of the Apache HTTP Server from
http://www.apache.org/dist/httpd/. Choose the latest source code version
ending in the suffix .tar.gz and save the file in the /tmp directory. However, if a
secure Apache web server with SSL is required instead of the usual installation,
find out which is the latest version of Apache that has SSL support by first
following the instructions in the section "Installing Apache and ApacheSSL,"
later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Move the Apache distribution file to the base directory of the desired installation.
The most common location is /usr/local/ and, assuming the distribution
downloaded is Apache 1.3.20, and it was downloaded in the first step into the
/tmp directory, the command is:

% mv /tmp/apache_1.3.20.tar.gz /usr/local/

After moving the distribution to the desired location, change the directory to that
location using:

% cd /usr/local

3. Uncompress the package in the new installation directory by running:

% gzip -d apache_<version_number>.tar.gz

If the distribution downloaded is Apache 1.3.20, the command is:

% gzip -d apache_1.3.20.tar.gz

4. Un-tar the archive file by running:

% tar xvf apache_<version_number>.tar

The list of files extracted is shown.

If the version downloaded was Apache 1.3.20, then the command is:

% tar xvf apache_1.3.20.tar

5. Change directory to the Apache installation:

% cd apache_<version_number>

If the Apache version is 1.3.20, type:

% cd apache_1.3.20

6. Configure the Apache installation by running the configure script. This detects
the available Linux tools, the installation environment, and other details for the
Apache configuration:

% ./configure --with-layout=Apache

7. Apache has not yet been compiled or installed. The next step is to configure
and build the PHP installation, and then to complete the Apache installation. Go
ahead to Step 1 in Section A.1.4, and return to Step 8 when the PHP steps
are complete.

8. The PHP module is now ready to be installed as part of the Apache web server.
The following command reconfigures Apache to activate the PHP module
support. However, the library referred to in the activate-module command
doesn't yet exist (it is built in the next step):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% ./configure --with-layout=Apache --activate-module=src/modules/php4/libphp4.a

9. Compile the Apache web server using the command:

% make

10. Install the Apache server using the command:

% make install

If the installation of Apache with PHP support has been successful, the following
message is shown:

+---+
+
|You now have successfully built and installed the |
|Apache 1.3 HTTP server. To verify that Apache actually |
|works correctly you now should first check the |
|(initially created or preserved) configuration files |
| |
| /usr/local/apache/conf/httpd.conf
| |
|
| and then you should be able to immediately fire up |
| Apache the first time by running: |
| |
| /usr/local/apache/bin/apachectl start
| |
| Thanks for using Apache. The Apache Group |
| http://www.apache.org/ |
+---+

11. Edit the Apache configuration file and enable PHP script engine support for files
that have the suffix .php. To do this, edit the file
/usr/local/apache/conf/httpd.conf and remove the # character from the
beginning of the following line:

AddType application/x-httpd-php .php

After removing the comment character #, save the file and exit the editor.

12. Start the Apache web server by running the command indicated by the
installation process in Step 10:

% /usr/local/apache/bin/apachectl start

After the Apache server starts up, the following is displayed:

/usr/local/apache/bin/apachectl start: httpd started

13. Check that the server is responding to HTTP requests by accessing it using a
web browser. The simplest way to check is to use a web browser to load the
URL http://localhost/. If Apache is serving correctly, an Apache test page is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

URL http://localhost/. If Apache is serving correctly, an Apache test page is
shown; if a previously installed Apache has been upgraded, another page may
be displayed.

14. To test the PHP module, change the directory to the Apache document root:

% cd /usr/local/apache/htdocs

15. Create a file with the name phpinfo.php using a text editor. In the file, type the
following, then save the script, and exit the editor:

<? phpinfo(); ?>

16. Test the newly created PHP script by retrieving with a browser the following
URL http://localhost/phpinfo.php.

A web page of information about the Apache and PHP installation is shown. If
the page isn't shown—and this is a common installation problem—check that
Step 11 of these instructions was correctly completed. If a problem is found, edit
and correct the problem, and restart Apache with the following command:

% /usr/local/apache/bin/apachectl restart

17. Apache is now running and serving both static HTML and PHP scripts, and this
installation process is complete.

However, when the machine is rebooted, Apache will not be restarted
automatically. After reboot, the command in Step 12 can be used to restart
Apache or, alternatively, this process can be made automatic. To make the
process automatic, find the file rc.local, normally either in or below the directory
/etc. This file is used to list locally installed software that should be run on start
up. Using an editor, add the following line to the bottom of the rc.local file:

/usr/local/apache/bin/apachectl start

If Apache needs to be stopped at any time, this can by achieved by running:

/usr/local/apache/bin/apachectl stop

The installation of Apache, PHP, and MySQL is now complete. Instructions to
optionally install the winestore source code examples can be found in the later
section Section A.2.

A.1.4 Installing PHP

The instructions here are for installing PHP4. PHP is bundled with most Linux
installations. However, we assume PHP isn't installed or, if it is installed, that a newer
version is required to replace the existing installation. If Apache is being reinstalled,
PHP needs to be reinstalled also.

Here are the steps to installing PHP:

1. Steps 1 to 7 of the Apache installation instructions should be completed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Get the latest version of PHP from http://www.php.net/downloads.php .
Download the "Complete Source Code" version into the /tmp directory.

3. Choose an installation directory. If the Apache installation was begun in
/usr/local/, the same location can also be used for PHP. We assume in the
following steps that the base directory of the Apache installation and PHP
installation are the same. Move the PHP source code file to the base directory
of the desired installation. Assuming this is /usr/local/ and, assuming the
distribution downloaded is PHP 4.0.6 and it was downloaded into the /tmp
directory, the command is:

% mv /tmp/php-4.0.6.tar.gz /usr/local/

After moving the distribution to the desired location, change directory to that
location using:

% cd /usr/local

4. Uncompress the package in the new installation directory by running:

% gzip -d php-<version_number>.tar.gz

If the version downloaded is PHP 4.0.6, the command is:

% gzip -d php-4.0.6.tar.gz

5. Un-tar the distribution by running:

% tar xvf php-<version_number>.tar

A list of files extracted is displayed.

If the version downloaded is PHP 4.0.6, the command is:

% tar xvf php-4.0.6.tar

6. Change directory to the PHP installation:

% cd php-<version_number>

If the version is PHP 4.0.6, type:

% cd php-4.0.6

7. Configure the PHP installation by running the configure script. This detects the
available Linux tools, the installation environment, adds MySQL support, and
prepares for Apache integration. It assumes that MySQL has been installed
previously in the directory /usr/local/mysql:

% ./configure --with-mysql=/usr/local/mysql --with-apache=../apache_<

If Apache 1.3.20 is being used, type:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% ./configure --with-mysql=/usr/local/mysql --with-apache=../apache_1.3.20

8. Compile the PHP scripting engine by running:

% make

9. Now that the PHP scripting engine is built, install the PHP engine using:

% make install

10. The PHP installation is almost complete. Now copy across the default PHP
configuration file to the default location, This file, php.ini, contains the settings
that control the behavior of PHP and includes, for example, how variables are
initialized, how sessions are managed, and what scripting tags can be used.
The command to copy the file is:

% cp php.ini-dist /usr/local/lib/php.ini

11. Change directory to the Apache installation:

% cd ../apache_<version_number>

If Apache 1.3.20 is being installed, type:

% cd ../apache_1.3.20

12. The initial configuration of the PHP scripting engine module is now complete.
Return to Step 8 of the Apache installation procedure and complete the
installation of Apache, which includes a test of the PHP module.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

A.2 Installing the Winestore Examples

The winestore example PHP scripts are available from the author's web site,
http://www.webdatabasebook.com. To install the example scripts that are
presented in Chapter 4 to Chapter 10, perform the following steps.

1. Download the file http://www.webdatabasebook.com/wda.tar.gz into the
/tmp directory

2. Log in as the root user, make a directory for the file below the document root
of the Apache installation, and copy the file to that location:

% mkdir /usr/local/apache/htdocs/wda
% cp /tmp/wda.tar.gz /usr/local/apache/htdocs/wda

3. Change directory to the new location and install the files:

% cd /usr/local/apache/htdocs/wda
% gzip -d wda.tar.gz
% tar xvf wda.tar

4. Edit the file db.inc and modify the first two lines so that the password and
username match those selected in the previous section Section A.1.2. Save
the file and exit the editor.

5. Load the book homepage by requesting the URL: http://localhost/wda/.

Many of the examples run only if the winestore database has been loaded into the
MySQL DBMS by following the instructions in Section 3.2 in Chapter 3.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

A.3 Installing Apache to Use SSL

This section describes how to install a secure version of the Apache web server.
There are three major differences encountered when installing Apache to use SSL
versus installing Apache normally:

Secure Sockets Layer software is required.

There are several sources of Secure Sockets Layer software. The OpenSSL is
probably the most-commonly used with Apache

SSL patches must be applied to the Apache code before it is configured and
compiled.

Unlike installing other Apache modules, SSL installation requires that the core
Apache source code be modified or patched. Normal Apache modules—such
as the PHP module—interact with Apache using a defined application
programming interface or API. The Apache API provides functions that hide the
details of dealing with HTTP from Apache module developers.

However, the code that implements SSL needs to encrypt and decrypt HTTP
requests and responses. The Apache API is aimed at the wrong level, and SSL
patches need to be applied to Apache. There are several open source and
commercial SSL extensions and patches to Apache available. ApacheSSL
(http://www.apache-ssl.org) and mod_ssl (http://www.modssl.org) are
both open source and easy to install. We describe the installation of ApacheSSL
in this section.

A site certificate needs to be obtained and configured.

A self-signed certificate can be created, but it needs to replaced with a
purchased certificate from a Certification Authority when an application goes
live. There are dozens of organizations that can provide authoritative
certificates, including companies such as Verisign and Thawte.

A.3.1 Installing OpenSSL

1. Get the latest version of the OpenSSL from
http://www.openssl.org/source/. Download the Unix tar-ed and gzip-ed file
under the heading "Tarball." For example, download the file openssl-
0.9.6a.tar.gz.

2. Put the distribution file in a directory that can be used to build the OpenSSL
libraries. In our installation instructions, we use /usr/local/. The default
installation process installs OpenSSL in /usr/local/ssl. To use /usr/local/, log in
as the root user of the Linux installation; in any case, root access is required
in Step 5 to install in the default location.

3. Uncompress and un-tar the distribution file in the new installation directory using

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Uncompress and un-tar the distribution file in the new installation directory using
gzip and tar. If the version downloaded was 0.9.6a, the commands are:

% gzip -d openssl-0.9.6a.tar.gz
% tar xvf openssl-0.9.6a.tar

The distribution files are listed as they are extracted from the tar file.

4. Change the directory to the openssl source directory, run the config script, and
then make the installation. Assuming the version downloaded is 0.9.6a, the
commands are:

% cd openssl-0.9.6a
% ./config
% make
% make test

To install OpenSSL in a directory other than /usr/local/ssl, run config with the
openssldir=<directory-path> directive.

5. Build the install binaries of SSL. To do this, log in as the root user, and then
run the make install script:

% make install

This creates an installation of SSL in the directory /usr/local/ssl.

A.3.2 Installing Apache and ApacheSSL

Both Apache and ApacheSSL need to be installed together, and the ApacheSSL
version must match the Apache version. ApacheSSL may not always be available for
the latest version of Apache, so it is worth checking out the latest ApacheSSL version
first. The current version of ApacheSSL is applied to Apache 1.3.19.

1. Get the latest version of ApacheSSL by selecting a download site from
http://www.apache-ssl.org/ Download the tar-ed and gzip-ed distribution
file. For example, apache_1.3.19+ssl_1.44.tar.gz.

2. Get the matching version of the Apache web server source code that also ends
with .tar.gz from http://www.apache.org/dist/httpd/. For example, if the
ApacheSSL version downloaded in Step 1 was apache_1.3.19+ssl_1.44.tar.gz,
retrieve apache_1.3.19.tar.gz.

3. Put the Apache distribution file in the base directory where the installation is to
be performed. For these instructions, use /usr/local/ as in the Apache
installation instructions earlier in this appendix.

4. Unpack the Apache package first by running gzip -d <filename> and tar
xvf <filename>. With Apache Version 1.3.19:

% cd /usr/local
% gzip -d apache_1.3.19.tar.gz
% tar xvf apache_1.3.19.tar

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% tar xvf apache_1.3.19.tar

This creates an apache_1.3.19 source directory. Record the directory name that
was created to use in the next steps. It's assumed from here on that the version
is 1.3.19, and the directory is apache_1.3.19.

5. Copy the ApacheSSL distribution into the directory created in Step 4 that
already contains the Apache source:

% cp apache_1.3.19+ssl_1.44.tar.gz /usr/local/apache_1.3.19

6. Unpack the ApacheSSL distribution:

% cd /usr/local/apache_1.3.19
% gzip -d apache_1.3.19+ssl_1.44.tar.gz
% tar xvf apache_1.3.19+ssl_1.44.tar

7. Apply the patches using the FixPatch script that comes with ApacheSSL. This
script copies the appropriate files from the OpenSSL installation:

% ./FixPatch /usr/local/ssl

8. Type yes when prompted:

Do you want me to apply the fixed-up Apache-SSL patch for you? [n] yes

9. You've now applied the patches to Apache and can continue with the normal
installation by following Steps 6 to 10 in the Apache installation instructions
earlier in this appendix.

A.3.3 Creating a Key and Certificate

For ApacheSSL to operate, it needs to be configured with a private key and a
certificate. ApacheSSL comes with a script that runs the openssl utility to create a key
and a self-signed certificate. This is the easiest way to get started. Once the key and
certificate have been created, they need to be configured into Apache. Again, the
version of Apache and the patch applied are assumed to be Version 1.3.19; if a
different version is used, the following steps need to be changed to include the
correct directories based on the version number.

1. Create the key and signed certificate.

% cd /usr/local/apache_1.3.19/src
% make certificate

2. The make certificate script asks for several fields including country, state,
organization name, and the machine hostname encoded into the certificate. The
script produces a file that contains both the private key and the signed
certificate:

/usr/local/apache_1.3.19/SSLconf/conf/httpsd.pem

3. After logging in as the root user, copy the key and certificate file into the
Apache installation:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% cd /usr/local/apache_1.3.19/SSLconf/conf
% cp httpsd.pem /usr/local/apache/conf/default.pem

4. Modify the httpsd.conf file with a text editor so that PHP files are processed by
the PHP scripting engine. The configuration file is found in the directory
/usr/local/apache/conf/. Remove the initial # character from the following line:

AddType application/x-httpd-php .php

5. Modify the httpsd.conf file by changing the Port from 80 to the secure web
server port 443:

Port 443

6. Add the following lines to the end of the httpsd.conf file:

#
SSL Parameters
#
SSLCACertificateFile /usr/local/apache/conf/default.pem
SSLCertificateFile /usr/local/apache/conf/default.pem
SSLCacheServerPath /usr/local/apache/bin/gcache
SSLCacheServerPort 18698
SSLSessionCacheTimeout 3600

7. Start Apache. Unlike a normal Apache installation, ApacheSSL creates an
httpsdctl script:

% /usr/local/apache/bin/httpsdctl start

In some cases, this doesn't correctly start Apache. If this happens, use the
following alternative commands to explicitly specify the configuration file to use
with the secure Apache:

% cd /usr/local/apache/
% bin/httpsd -f conf/httpsd.conf

8. A secure Apache is now running and serving requests on port 443—the default
HTTPS port—with SSL. This can be tested by requesting the resource
https://localhost/ with a web browser. The installation process is now complete.

When a resource such as https://localhost/ is requested with a browser, the browser
alerts the user to an unknown certificate. To obtain a certificate that will be trusted by
users, the openssl utility needs to be run to create a private key and a certificate
request. The certificate request is then sent to a Certification Authority to be signed
using their authoritative certificates. There is a fee for this service. While the Apache
configuration allows both the key and the certificate to be placed in the one file, the
private key should not be sent to anyone, not even the Certification Authority.

If a trusted certificate is required, consult the OpenSSL documentation that describes
how to create keys and Certificate Signing Requests. This documentation can be
found at http://www.openssl.org/docs/apps/openssl.html.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

A.4 Installation Resources

For more information on installing and configuring, there are several resources:

For Microsoft Windows installation, we recommend the PHP Triad for Windows
installation package available from
http://sourceforge.net/projects/phptriad/. The package contains MySQL,
PHP, Apache, and PHPMyAdmin for MySQL maintenance through a web
browser interface.

NuSphere sells integrated Apache, PHP, and MySQL bundles with simple
installation procedures and software support. A free download of the installation
package without support is also available for Linux, Sun Solaris, and Microsoft
Windows environments. Under the Linux environment, NuSphere is installed by
following simple steps in a web browser.

The PHP online manual has instructions for installing PHP with most web
servers and platforms, but these instructions are concise. They are located at
http://www.php.net/manual.

Many of the online resources accessible from http://www.php.net/links.php
have installation tutorials or guides.

The MySQL manual provides an excellent step-by-step guide to installing and
configuring MySQL in many environments. The MySQL web site URL is:
http://www.mysql.com.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Appendix B. Internet and Web Protocols
In this appendix, we introduce the networking protocols and standards of the Internet.
The first part give a brief overview of the networking protocol TCP/IP and its basic
principles. The second, larger part of this appendix is a discussion of HTTP.

The introduction is brief, and we don't attempt to cover these topics completely.
Appendix E provides pointers to selected resources on the topics of the Internet and
web protocols.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

B.1 The Internet

The Internet had its beginnings in the late 1960s with the development of ARPAnet. A
primary goal of ARPAnet was to provide a decentralized network of computing
resources that did not rely on any one machine or system to operate; that is, no single
point of failure could bring the network down. For a network to achieve this, the
topology has to provide multiple paths between the computers connected to the
network. Such a topology is shown in Figure B-1. Computers are connected to
nodes in the network—or form nodes themselves—and so long as a path can be
followed through the links between nodes, the computers can communicate.

Figure B-1. A network topology that provides multiple communication paths

Another feature of ARPAnet was the use of packet switching. Unlike telephone
networks, where a dedicated circuit is established to carry the conversation between
two parties, ARPAnet carried data between two communicating systems as a stream
of packets, each sent as an individual transmission over the network. Sending a
message as a stream of packets allows valuable network bandwidth—the amount of
data that can be transmitted for a given period of time—to be shared between
different communications.

Packet switching adds complexity. The process of breaking a message into small
packets, deciding on the path to send packets, and reassembling of the message
before presenting the data to the receiving computer system required the
development of network protocols. One of the first protocols was the Network Control
Protocol (NCP); it was replaced in 1982 by the Transmission Control Protocol (TCP)
and the Internet Protocol (IP). The protocol suite is commonly known as TCP/IP.

Other networks using packet technologies were also being developed and, with the
introduction of TCP/IP, interconnections between these networks were possible.
Small office-based networks could be connected to main backbone networks such as
ARPAnet or the CSNET, the university-based Computer Science Network. These
backbone networks were connected to similar networks in other countries over
satellite links and submarine cables, and the Internet was born. The Internet isn't one
single network: it is many interconnected networks.

B.1.1 An Analogy

Before we discuss the TCP and IP protocols further, we present a broader picture of
how data is transmitted over the Internet by drawing an analogy to the service
provided by a courier company.

Imagine that we want to send some hand-drawn illustrations from our office in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Imagine that we want to send some hand-drawn illustrations from our office in
Melbourne, Australia, to the O'Reilly & Associates, Inc. office in Cambridge,
Massachusetts, U.S.A. We would put our drawings into an envelope addressed to our
editor Lorrie at O'Reilly's Cambridge office, and a courier would carry the envelope
back to the courier company's city office. At the courier's city office our envelope
would be sorted from the locally bound envelopes and packed into an air freight bag
for Los Angeles and then on to Boston. A similar process would happen, but in
reverse, once the bag was unloaded from the plane in Boston. Not knowing exactly
where Cambridge is, the envelope may be put on another plane, a train, or a donkey.
Eventually, our drawings arrive on Lorrie's desk. This detail isn't important to us,
because the courier company is providing a door-to-door service.

Our courier analogy demonstrates a message service over heterogeneous transport
technologies. The details on the envelope are understood by all courier companies
regardless of how they operate. At each point in the network of courier offices,
someone reads the details and makes a decision about where the envelope should
go next, and how. The Internet is many networks interconnected and a set of
protocols—just like the addresses and serial numbers on the envelope—that provide
an end-to-end service over the heterogeneous transport technologies.

Our analogy fails to demonstrate one other network characteristic. The set of
drawings make up one message as far as we and our editor are concerned. If it were
not for privacy expectations, our courier company could have opened the envelope
and repackaged each sheet of paper into individual envelopes and sent some by air
via Sydney, some via Auckland, and even some by sea. No doubt these separate
messages would not arrive at the courier's office at Cambridge in order—some might
not arrive at all and would have to be sent again—but as long as there was
information on each envelope that related them, the original message could be
reassembled. The courier's Cambridge office would have to hold on to messages that
arrived out of order, decide when to ask for missing envelopes to be resent, then
reassemble them into the one envelope and deliver the original message as if nothing
had happened. Of course, if a courier company did this, they would go out of
business, but this is what happens when applications such as web browsers and
servers send a message on the Internet.

B.1.2 TCP/IP

The Transmission Control Protocol and the Internet Protocol manage the sending and
receiving of messages as packets over the Internet. The two protocols together
provide a service to applications that use the Internet: communication through a
network.

The World Wide Web is a network application that uses the services of TCP and IP to
communicate over the Internet. When a web browser requests a page from a web
server, the TCP/IP services provide a virtual connection -- a virtual circuit—between
the two communicating systems. Remember that packet-switched networks don't
operate like telephone networks that create an actual circuit dedicated to a particular
call.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once a connection is established and acknowledged, the two systems can
communicate by sending messages. These messages can be large, such as the
binary representation of an image, and TCP may fragment the data into a series of IP
datagrams. An IP datagram is equivalent to the couriers' envelope in that it holds the
fragment of the message along with the destination address and several other fields
that manage its transmission through the network.

Each node in the network runs IP software, and IP moves the datagrams through the
network, one node at a time. When an IP node receives a datagram, it inspects the
address and other header fields, looks up a table of routing information, and sends it
on to the next node. Often these nodes are dedicated routers—systems that form
interconnections between networks—but the nodes can also include the computer
systems on which the applications are running. IP datagrams are totally independent
of each other as far as IP is concerned: the IP software just moves them from node to
node through a network.

The size of a datagram is primarily determined by the largest size message that can
be sent by any part of the network. Going back to our courier example: if Lorrie at
O'Reilly wanted to send three dozen books to our office, a single package would be
fine for air freight but would have to be broken up into smaller packages if the last leg
of the journey was by bicycle.

TCP software performs the function of gluing the fragments together at the destination
using the fragment identifier field in the IP datagram header. Because IP datagrams
are transmitted through the network independently, there is no guarantee they will
arrive at the destination in order, and TCP stores the fragments in a buffer until all
preceding fragments are received.

IP doesn't guarantee that datagrams are delivered. If an IP node receives a corrupt
datagram, it throws it away. Datagrams may be missing from the stream the TCP
software receives because a datagram was corrupt and not passed on from the IP
software or was delayed in the network. TCP buffers the fragments to allow the out-of-
order datagrams to arrive. If a missing datagram fails to arrive, TCP eventually
requests that it be resent. This can cause datagrams to be received twice; however
TCP recognizes and discards the duplicate datagram when it arrives.

B.1.2.1 IP addresses

To allow communication over heterogeneous networks, each with its own addressing
standard, every location in a network needs a globally unique IP address. A computer
that is connected to the Internet needs at least one IP address; a node that
interconnects two networks needs two.

IP addresses are 32-bit numbers that are commonly represented as a series of four
decimal numbers between 0 and 255, separated by a period. An example IP address
is 134.148.250.28. Some IP addresses have special meanings; for example, the IP
addresses 127.0.0.0 and 127.0.0.1 are reserved for loopback testing on a host. If a
connection is to be made from a client to server, both running on the same machine,
the address 127.0.0.1 can be used. This address loops back to 127.0.0.0, the
localhost. The address 0.0.0.0 is used by IP to identify the default route out of a
node.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A system's network file contains the links between network devices and IP addresses.
The IP network information can usually be found in the file /etc/networks on a Linux
system.

B.1.2.2 Ports

When a virtual connection is set up between two communicating systems, each end
is tied to a port. The port is an identifier used by the TCP software rather than an
actual physical device, and it allows multiple network connections to be made on one
machine by different applications.

When a message is received by the TCP software running on a host computer, the
data is sent to the correct application based on the port number. By convention, a
well-known port is normally used by a server providing a well-known service. A list of
well-known ports for various applications is maintained by Internet Assigned Number
Authority (IANA) and can be found at http://www.isi.edu/in-
notes/iana/assignments/port-numbers. For example, the File Transfer Protocol
(FTP) uses port 21, and a web server uses port 80.

Systems with TCP/IP software installed have a services file that lists the ports used
on that machine. This file is often preconfigured for well-known applications and is
maintained by the system administrator to reflect the actual port usage on the
machine. This file is usually /etc/services on a Linux system.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

B.2 Hypertext Transfer Protocol

As discussed in Chapter 1, HTTP is the standard that allows documents to be
communicated and shared over the Web. From a network perspective, HTTP is an
application-layer protocol that is built on top of TCP/IP. Using our courier analogy
from the previous section, HTTP is a kind of cover letter—like a fax cover sheet—that
is stored in the envelope and tells the receiver what language the document is in,
instructions on how to read the letter, and how to reply.

Since the original version, HTTP/0.9, there have only been two revisions of the HTTP
standard. HTTP/1.0 was released as RFC-1945[A] in May 1996 and HTTP/1.1 as
RFC-2616 in June 1999.

[A] Request for Comments, or RFCs, are submitted to the RFC editor (http://www.rfc-editor.org) usually by
authors attached to organizations such as the Internet Engineering Task Force (IETF at http://www.ietf.org). RFCs
date back to the early ARPAnet days and are used to present networking protocols, procedures, programs, and
concepts. They also include meeting notes, opinions, bad poems, and other humor: RFC-2324 describes the
Hypertext Coffee Pot Control Protocol.

B.2.1 Request and Response Model

HTTP is simple: a client—most conspicuously a web browser—sends a request for
some resource to a HTTP server, and the server sends back a response. The HTTP
response carries the resource—the HTML document or image or whatever—as its
payload back to the client. This simple request-response model is shown in Figure
B-2.

Figure B-2. Browser makes a request and the HTTP server responds

The term HTTP server is the correct description for what is more commonly called a
web server. Technically, a web browser is an example of a user agent. Other user
agents include proxy servers, applications that can provide services such as caching
of responses, and access control.

B.2.1.1 Simulating an HTTP request

A good way to understand the mechanics of HTTP is to simulate a request and
observe the response using the program telnet. From a command prompt, the telnet
program is run with the domain name component of the URL and the port number 80.
This instructs the telnet program to connect to the host machine on port 80, the port

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This instructs the telnet program to connect to the host machine on port 80, the port
that the web server usually listens on. Then an HTTP request is sent by typing in a
request line followed by a blank line (pressing the Enter key twice).

Example B-1 shows the request line:

HEAD / HTTP/1.0

followed by the server response. The HEAD keyword asks the server to respond with
only the HTTP response header fields and not the whole requested document, which
is useful if the requested page is large, or the request is for an image. The HEAD
keyword is followed by the resource component of the URL and the version of HTTP
that the client supports. To see a full response, the request line:

GET / HTTP/1.1

is entered followed by a blank line.

Example B-1. A simulated HTTP request using telnet

% telnet www.w3.org 80
Trying 18.29.1.35...
Connected to www.w3.org.
Escape character is '^]'.
HEAD / HTTP/1.1

HTTP/1.1 200 OK
Date: Wed, 26 Sep 2001 03:42:32 GMT
Server: Apache/1.3.6 (Unix) PHP/3.0.11
P3P: policyref="http://www.w3.org/2001/05/P3P/p3p.xml"
Cache-Control: max-age=600
Expires: Wed, 26 Sep 2001 03:52:32 GMT
Last-Modified: Tue, 25 Sep 2001 21:08:00 GMT
ETag: "5b42a7-4b06-3bb0f230"
Accept-Ranges: bytes
Content-Length: 19206
Connection: close
Content-Type: text/html; charset=us-ascii

Connection closed by foreign host.
%

B.2.2 Uniform Resource Locators

Uniform resource locators—more commonly known as URLs—are used as the
primary naming and addressing method of the Web. URLs belong to the larger class
of uniform resource identifiers; both identify resources, but URLs include specific host
details that allow connection to a server that holds the resource.

A URL can be broken into three basic parts: the protocol identifier; the host and
service identifier; and a resource identifier, a path with optional parameters and an
optional query that identifies the resource. The following example shows a URL that
identifies an HTTP resource:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://host_domain_name:8080/absolute_path?query

The HTTP standard doesn't place any limit on the length of a URL, however, some
older browsers and proxy servers do. The structure of a URL is formally described by
RFC-2396: Uniform Resource Identifiers (URI): Generic Syntax.

B.2.2.1 Protocol

The first part of the URL identifies the application protocol. HTTP URLs start with the
familiar http://. Other applications that use URLs to locate resources identify different
protocols; for example, URLs used with the File Transfer Protocol (FTP) begin with
ftp://. URLs that identify HTTP resources served over connections that are encrypted
using the Secure Sockets Layer start with https://. We discussed the use of the
Secure Sockets Layer to protect data transmitted over the Internet in Chapter 9.

B.2.2.2 Host and service identification

The next part of the HTTP URL identifies the host on which the web server is running,
and the port on which the server listens for HTTP requests. The domain name or the
IP address can identify the host component. Using the domain name allows user-
friendly web addresses such as:

http://www.w3.org/Protocols/

The equivalent URL using the IP address is more difficult to remember:

http://18.29.1.35/Protocols/

B.2.2.3 Nonstandard TCP ports

By convention, servers running well-known Internet applications use standard, well-
known TCP port numbers. By default, a HTTP server listens for requests on port 80,
an FTP server listens on port 21, and so on. The port number can be omitted from a
URL if the well-known port is used. Clients—such as web browsers—determine which
well-known port to connect to by the protocol indicated in the URL. For example,
requests for the URL http://www.ora.com are made to the host machine
www.ora.com on port 80. When a nonstandard port is used, the URL must include the
port number so the browser can successfully connect to the service. For example, the
URL http://www.example.com:8080 connects to the web server running on port 8080
on the host www.example.com.

B.2.2.4 Resource identification

The remaining URL components help locate a specific resource. The path, with
optional parameters, and an optional query are processed by the web server to locate
or compute a response. The path often corresponds to an actual file path on the
host's filesystem. For example, an Apache web server running on www.example.com
may store all the web content under the directory /usr/local/apache/htdocs and be
configured to use the path component of the URL relative to that directory. The HTTP
response to the URL http://www.example.com/marketing/home.php contains the file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

response to the URL http://www.example.com/marketing/home.php contains the file
/usr/local/apache/htdocs/marketing/home.php.

B.2.2.5 Parameters and queries

The path component of a URL can include parameters and queries that are used by
the web server. A common example is to include a query as part of the URL that runs
a search script. The following example shows the string q=red as a query that the
script search.php can use:

http://example.com/search.php?q=red

Multiple query terms can be encoded using the & character as a separator:

http://example.com/search.php?q=red&r=victoria

Parameters allow other information not related to a query to be encoded. For
example, consider the parameter lines=10 in the URL:

http://example.com/search.php;lines=10?q=red

This can be used by the search.php script to modify the number of lines to display in
a result screen.

While HTTP provides the distinction between parameters and queries, parameters
are more complex than what we have described here and are not commonly used in
practice. We discussed how PHP can use query variables encoded into URLs in
Chapter 5.

B.2.2.6 Fragment identifiers

A URL can include a fragment identifier that is interpreted by the client once a
requested resource has been received. A fragment identifier is included at the end of
a URL separated from the path by the # character. The meaning of the fragment
identifier depends on the type of the resource. For example, the following URL
includes the fragment identifier tannin for a HTML document:

http://example.com/documents/glossary.html#tannin

When a web browser receives the HTML resource, it then positions the rendered
document in the display to start at the anchor element if the
named anchor exists.

B.2.2.7 Absolute and relative URLs

The URI general syntax allows a resource to be specified as an absoluteor a relative
URL. Absolute URLs identify the protocol http://, the host, and the path of the
resource, and can be used alone to locate a resource. Here's an example absolute
URL:

http://example.com/documents/glossary.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://example.com/documents/glossary.html

Relative URLs don't contain all the components and are always considered with
respect to a base URL. A relative URL is resolved to an absolute URL, with respect to
the base URL. Typically, a relative URL contains the path components of a resource
and allows related sets of resources to reference each other in a relative way. This
allows path hierarchies to be readily changed without the need to change every URL
embedded in a set of documents.

A web browser has two ways to set base URLs when resolving relative URLs. The
first method allows a base URL to be encoded into the HTML using the <base>
element. The second method sets the base URL to that of the current document; this
is the default. For example, the following HTML document contains three relative
URLs embedded into <a> elements:

<html>
 <body>
 <h2>My Home Page</h2>
 <p>Read my Curriculum Vitae
 <p>Read my
 employment history
 <p>Visit
 Fred's home page
 </body>
</html>

Consider what happens if the example is requested with the following URL:

http://example.com/development/dave/home.html

The three relative URLs are resolved to the following absolute URLs by the browser:

http://example.com/development/dave/cv.html
http://example.com/development/dave/work/emp.html
http://example.com/admin/fred.html

Table B-1 shows several relative URLs and how they are resolved to the
corresponding absolute URLs given the base URL http://example.com/a/b/c.html?
foo=bar.

Table B-1. Example relative URLs resolved to absolute URLs
Relative URL Absolute URL with respect to http://example.com/a/b/c.html?foo=bar

d.html http://example.com/a/b/d.html
e/d.html http://example.com/a/b/e/d.html
/d.html http://example.com/d.html
../d.html http://example.com/a/d.html
#xyz http://example.com/a/b/c.html?foo=bar#xyz
./ http://example.com/a/b/
../ http://example.com/a/

B.2.2.8 URL encoding

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The characters used in resource names, query strings, and parameters must not
conflict with the characters that have special meanings or can't allowed in a URL. For
example, a question mark character identifies the beginning of a query, and an
ampersand (&) character separates multiple terms in a query. The meanings of these
characters can be escaped using a hexadecimal encoding consisting of the percent
character (%) followed by the two hexadecimal digits representing the ASCII encoded
of the character. For example, an ampersand (&) character is encoded as %26.

The characters that need to be escape-encoded are the control, space, and reserved
characters:

; / ? : @ & = + $,

Delimiter characters must also be encoded:

< > # % "

The following characters can cause problems with gateways and network agents, and
should also be encoded:

{} | \ ^ [] `

PHP provides the rawurlencode() function to protect them. For example,
rawurlencode() can build the href attribute of an embedded link:

echo '<a href="search.php?q=' .
 rawurlencode("100% + more") .
 '">';

The result is an <a> element with an embedded URL correctly encoded:

PHP also provides the urlencode() function that differs from the
rawurlencode() function in that the former encodes spaces as a + sign whereas
the latter encodes spaces as %20. The use of the + character to encode a space was
an early HTTP way to encode spaces.

B.2.3 HTTP Requests

The model used for HTTP requests is to apply methods to identified resources. A
HTTP request message contains a method name, a URL to which the method is to be
applied, and header fields. Some requests can include a body -- for example, the data
collected in a <form>—that is referred to in the HTTP standard as the entity-body.

Example B-2 shows the request message sent from a Netscape browser applying
the GET method to the grapes.gif resource. The action is to retrieve the image stored
in the file grapes.gif.

Example B-2. An example HTTP request message

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GET /grapes.gif HTTP/1.0
Accept: image/gif, image/jpeg, image/png, */*;
Accept-Charset: iso-8859-1,*,utf-8;
Accept-Encoding: gzip;
Accept-Language: en;
Connection: Keep-Alive;
Host: www.webdatabasebook.com;
User-Agent = Mozilla/4.51 [en] (WinNT; I);

The first line of the message is the request-line and contains the method name GET,
the request URL /grapes.gif, and the HTTP version HTTP/1.0, each separated
by a space character. The request-line is followed by a list of header fields. Each field
is represented as a name and value pair separated with a colon character, and lines
are separated with semicolons.

The header fields are followed by a blank line and then by the optional body of the
message. The POST method request usually contains a body of text, as we discuss in
the next section.

B.2.3.1 Request methods

There are six request methods, but only three are used in practice:

GET

Retrieves a resource. A query can be used to add extra information to the GET
request and, as we discussed in our introduction to URLs, these are appended
to the URL itself. A database search is a good example of an application of the
GET request: the resource is likely to be a web script, and the query component
of the URL is the search conditions.

POST

Sends data to a server. Rather than appending data to the URL, the data is sent
in the body of the HTTP request.

HEAD

Returns only the header fields in a response, not the resource itself. This can be
used for lightweight retrieval, so that the modification date of a resource can be
checked before the full resource is retrieved with GET.

DELETE

Allows a resource identified by the URL to be deleted from a server. This is the
counterpart to the PUT method and allows an author to remove a resource from
the specified URL. Usually not implemented.

PUT

Similar to the POST method, this method is designed to put a resource onto a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Similar to the POST method, this method is designed to put a resource onto a
server that can be later retrieved with the URL in the PUT request. Some HTML
editors and web servers support the PUT methods allowing authors to put
resources onto a web site at the specified URL. Usually not implemented.

TRACE

Produces diagnostic information.

The HTTP standard divides these methods into those that are safe and those that
aren't. The safe methods—GET and HEAD—don't have any persistent side effects on
the server. The unsafe methods—POST, PUT, and DELETE—by their nature are
designed to have persistent effects on the server. The standard allows for clients to
warn users that a request may be unsafe, and a browser should not resend a request
with the POST method without user confirmation.

The HTTP standard further classifies methods as idempotent when a request can be
repeated many times and have the same effect as if the method was called once. The
GET, HEAD, PUT, and DELETE methods are classified as idempotent; the POST
method isn't.

B.2.3.2 GET versus POST

Both the GET and POST methods send data to the server, but which method should
you use?

The HTTP standard includes the two methods to achieve different goals. The POST
method was intended to create a resource. The contents of the resource would be
encoded into the body of the HTTP request. For example, an order <form> might be
processed and a new row in a database created.

The GET method is used when a request has no side effects such as performing a
search, and the POST method is used when a request has side effects such as adding
a new row to a database. A more practical issue is that the GET method may result in
long URLs, and may even exceed some browser and server limits on URL length.

Use the POST method if any of the following are true:

The result of the request has persistent side effects such as adding a new
database row.

If the data collected on the form is likely to result in a large URL if implemented
using the GET method.

The data to be sent is in any encoding other than seven-bit ASCII.

Use the GET method if all the following are true:

If the request is essentially finding a resource, and HTML <form> data is to
help that search.

The result of the request has no persistent side effects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the data collected and the input field names in a HTML <form> are less than
1,024 characters in length.

B.2.4 HTTP Responses

When a web server processes a request from a browser, it attempts to apply the
method to the identified resource and create a response. The action of the request
may succeed, or it may fail for a variety of reasons, but the web server always sends
a response message back to the browser.

A HTTP response message contains a status line, header fields, and the requested
entity as the body of the message. The body of the response is usually the resource
requested in the request message. Example B-3 shows the result of a GET method
on a small HTML file.

Example B-3. An example HTTP response message

HTTP/1.1 200 OK
Date: Tue, 24 Oct 2001 02:54:37 GMT
Server: Apache/1.3.19
Last-Modified: Tue, 24 Oct 2001 02:53:08 GMT
ETag: "4445f-bf-39f4f994"
Content-Length: 321
Accept-Ranges: bytes
Connection: close
Content-Type: text/html

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
<html>
<head><title>Grapes and Glass</title></head>
<body>

<p>Welcome to my simple page
<p>
</body>
</html>

The status line—the first line of the message—starts with the protocol version of the
message, followed by a status code and a reason phrase, each separated by a space
character. The status line is followed by the header fields. As with the request, each
field is represented as a name and value pair separated with a colon character. A
blank line separates the header fields and the body of the response.

B.2.4.1 Status codes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTTP status codes are used to classify responses to requests. The HTTP status
code system is extensible, with a set of codes described in the standard that are
"generally recognized in current practice." HTTP defines a status code as a three-digit
number; the first digit is the class of response. The following list shows the five
classes of codes defined by HTTP:

1xx

Informational. HTTP 1.0 reserves this class of code for future use. HTTP 1.1
uses codes in this class to indicate the request has been received by the server
and that processing is continuing.

2xx

Success. The request was successfully received, and the action successfully
performed.

3xx

Redirection. When a response has a redirection code, the client needs to make
a further request to actually get the specified resource. The URL of the actual
resource is included in the response header field Location. When the status
code is set to 301, the browser automatically makes the request for the URL
specified in the Location header field. The use of the Location header field
is discussed further in Chapter 5, and used in many examples throughout this
book.

4xx

Client error. The request can't be processed due to bad syntax of the message,
the sender is unauthorized or forbidden to access the resource, or the resource
can't be found.

5xx

Server error. The server failed to fulfill an apparently valid request.

The actual code used for a particular response is largely determined by the
configuration of the web server, and not by a scripting environment that might create
a web application. Some scripting environments allow the web developer to explicitly
set these codes. For example, a script associated with a URL might simply set the
response code to 501 to indicate the requested function hasn't been implemented.

B.2.5 Caching

Most user agents, such as web browsers, allow HTTP responses to be cached, which

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Most user agents, such as web browsers, allow HTTP responses to be cached, which
can significantly reduce the number of requests sent to a web server and thus
improve the performance of a web application. HTTP responses are cached by
saving a response to a request in memory. When a browser considers a request, it
first looks to its local cache to see if it has an up-to-date copy of the response before
sending the request to the web server. Consider a web site that includes a company
logo on the top of each page in an image element such as:

When the browser requests a page that contains the image, a separate request is
sent to retrieve the image /images/logo.gif. If the image resource is cacheable, and
browser caching is enabled, the browser saves the response in a cache. A
subsequent request for the image is recognized, and the local copy from the cache is
used rather than sending the request for the resource to a web server.

A browser uses a cached response until the response becomes stale, or the cache
becomes full and the response is displaced by the resources from other requests.
The primary mechanism for determining if a response is stale is comparing the date
and time set in the Expires header field with the date and time of the host running
the user agent. If the date and time are incorrectly set on the user agent's host, a
cached response may expire immediately or be cached longer than expected.
HTTP/1.1 is more sophisticated than HTTP/1.0 in controlling the life of a cached
response using other parameters not discussed here.

Not all responses are cacheable. HTTP describes the conditions that allow a user
agent to cache a response in some detail; essentially most responses are cacheable
unless a cache-control header directs otherwise. There are many situations in which
an application may wish to prevent a page from being cached, particularly when the
content of a response is dynamically generated, such as in a web database
application.

B.2.5.1 HTTP/1.0 cache control

HTTP/1.0 uses the Pragma header set to the value no-cache to prevent caching.
Some old user agents don't support the use of the Pragma header to control the
caching of a response. The only way to prevent caching of a page with these older
user agents is to set the Expires header field to 0, which instructs many user agents
to immediately expire the response or change it to a past date and time. This practice
is recognized, but not formally supported by the HTTP standard.

B.2.5.2 HTTP/1.1 cache control

HTTP/1.1 uses the Cache-Control header field as its basic caching control
mechanism. The Cache-Control header can be used in both HTTP requests and
responses, however, we consider only HTTP responses here. Setting the Cache-
Control header field to no-cache in a HTTP response prevents the response from
being cached by a HTTP/1.1 user agent.

Some HTTP/1.1 Cache-Control settings are directed to user agents that maintain

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some HTTP/1.1 Cache-Control settings are directed to user agents that maintain
caches for more that one user, such as a proxy server. Proxy servers are used to
achieve several goals; one is to provide caching of responses for a group of users. A
local network, such as that found in a university department, can be configured to
send all HTTP requests to a proxy server. The proxy server forwards requests to the
destination web server and passes back the responses to the originating client. Proxy
servers can cache responses and thus reduce requests sent outside the local
network. Setting the Cache-Control header field to public allows a user agent to
make the cached response available to any request. Setting the Cache-Control
header field to private allows a user agent to make the cached response available
only to the client who made the initial request.

Setting the Cache-Control header to no-store prevents a user agent from storing
the response in nonvolatile storage, such as a hard disk. This prevents sensitive
information from being inadvertently saved beyond the life of a browser session.
HTTP/1.1 defines several other Cache-Control header fields not described here.

The HTTP/1.1 standard is relatively new, and there are several user agents that aren't
HTTP/1.1-aware or -compliant. While HTTP/1.1 provides better cache control
directives, it is wise to include header fields that are understood by HTTP/1.0
browsers, proxy servers, and other user agents.

B.2.6 HTTP and TCP/IP

Each time a HTTP request is sent, a TCP/IP connection is made. When a browser
makes a request, the following network activity results:

1. The browser initiates a TCP/IP connection to the web server on the host and
port identified in the URL of the request.

2. The host sends back a TCP acknowledgment to indicate a virtual circuit has
successfully been established.

3. The browser sends the HTTP request in full to the server using the established
connection.

4. The server acknowledges the receipt of the request and starts to generate a
response. The browser waits for the response and times out if the response
doesn't arrive within a preset time limit.

5. The server sends the HTTP response message to the browser.

6. The browser acknowledges the receipt of the complete HTTP response.

7. The server disconnects the virtual circuit.

Each HTTP request-response sequence is a completely separate network
connection: each request message sent by a web browser—or any other HTTP user
agent—is totally independent of any other request. Every request message a web
server receives has its own separate response. This independence of requests is
what makes the HTTP protocol stateless.

B.2.6.1 Simultaneous request model

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The stateless nature of the HTTP protocol allows applications that use HTTP to scale
well and also allows for some performance optimizations. Because the protocol is
stateless, one such optimization is that a web browser can make multiple HTTP
requests in parallel. Consider the HTML document shown in Example B-4 that
encodes references to two images.

Example B-4. The HTML document http://example.com/wine.html

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
<html>
<head><title>Grapes and Glass</title></head>
<body>

<p>Welcome to my simple page
<p>
</body>
</html>

After requesting the HTML document and processing it, the browser makes two
additional requests for the resources grapes.gif and glass.gif. In all, three separate
HTTP requests must be made to display the page. However, the browser can make
the two requests for the images simultaneously. The browser isn't concerned about
the order in which the images are retrieved and, because each request is
independent, TCP/IP can't guarantee that the requests are responded to in any
particular order.

Sending requests in parallel allows a browser to maximize the use of available
network bandwidth. However, a browser can make only a limited number of parallel
requests with improvements to performance and, typically, a limit of four simultaneous
requests provides the best results. The ability to send requests simultaneously allows
a web browser to use more network capacity relative to other applications. An
application such as FTP communicates through one TCP connection and therefore
has access to less bandwidth when a web browser makes four TCP connections in
parallel.

At the server end, simultaneous requests can be treated independently and may not
even be processed by the same web server. A common way to handle high volumes
of requests is to use specialized network hardware to balance connections across
multiple web servers running on different machines. The stateless nature of HTTP
allows for such configurations. We discussed the issues of session management and
the stateless nature of HTTP in Chapter 8.

B.2.6.2 Persistent connections

Web pages that consist of text alone are retrieved from a web server with one HTTP
request. However, many web pages contain images and other objects that require
additional HTTP requests; some corporate home pages contain more that 60 images,
each requiring a separate HTTP request. The page shown in Example B-4 requires

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

each requiring a separate HTTP request. The page shown in Example B-4 requires
three requests: the first to get the page and then two more to get the images. While
the browser is usually configured to make up to four parallel requests, with HTTP/1.0,
each request must open a separate TCP connection to the server. This is expensive
as each request adds to the cost of the TCP dialog required to open the virtual
connection.

As a result, browsers and web servers often support a keep-alive capability to reduce
the time taken to load web pages that contain images. This feature allows multiple
requests to be made in succession using the one TCP connection. After a specified
idle period, the connection is assumed to be no longer required and is closed by the
server. HTTP/1.1 uses persistent TCP connections as the default behavior. Persistent
connections not only improve the performance of the browser but reduce the load on
a HTTP server and on the network, because fewer TCP connections need to be
established.

In the same way as the simultaneous request model, a browser can send multiple
requests on a persistent connection without waiting for each response. This behavior
is called pipelining.

B.2.7 MIME

Originally, web pages were solely HTML documents encoding text and hypertext links
to other pages. The first version of HTTP, HTTP/0.9, was not much more than a way
to wrap HTML documents. However, web pages today are made up of a variety of
resources including images, Java applets, sounds, movies, and the HTML that glues
them all together.

To allow the transfer of other resources, HTTP/1.0 has borrowed the concepts of
Multipurpose Internet Mail Extensions (MIME) as a way to encode objects. As the
name suggests, MIME attaches content with encoding other that plain text to
electronic mail. HTTP's use of MIME is almost identical to its use in electronic mail.

MIME includes several header fields that describe the enclosed data and are included
in the HTTP messages that contain a body. If the response message is carrying a
HTML file, the Content-Type field is set to text/html. Web browsers examine the
media type in the Content-Type field to help decide how to render the body of a
response. They can also be configured to use particular helper applications for those
media types that can't be directly displayed. The Content-Length field is also set to
the number of bytes that make up the original content.

MIME uses media types to describe content. Media types are divided into a content-
type and subtype pairs. The MIME standard defines seven content-types and several
basic subtypes. The subtypes can be extended to specifically define different media.
A list of well-known subtypes for each content-type is maintained by the Internet
Assigned Number Authority (IANA) and can be found at http://www.isi.edu/in-
notes/iana/assignments/media-types/.

Media types are also used to describe browser and server capabilities, and
preferences. The Accept request header field informs the web server of browser
capabilities and preferences. This field carries a list of types in preference order and
can include weighting factors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Appendix C. Modeling and Designing Relational
Databases
Planning and designing a database is the essential first step to developing a web
database application. In this appendix, we introduce database modeling and the
techniques to convert a model into the SQL statements needed to create a database.

This appendix isn't intended to replace a course or book on relational databases.
Modeling requirements with an entity-relationship model requires both patience and
experience. Instead, we detail our thought processes in a case study that models the
winestore requirements and converts these to SQL CREATE TABLE statements.
Pointers to resources on modeling and database design are included in Appendix E.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

C.1 The Relational Model

Relational database management systems, or RDBMSs, maintain, enforce, and use
relationships between data. To illustrate the principles of relational databases, we use
the winestore system requirements and descriptions from Chapter 1 as the basis for
our examples.

C.1.1 Case Study: Relations in the Winestore

There are three essential types of data or entities that form the basis of the winestore.
First, there is the wine itself: each wine has characteristics or attributes such as a
name, a type, and a variety. Second, there is the customer, who has attributes such
as a name, an address, and a phone number. Last, and importantly in selling wine
online, is a customer purchase order. It is the order that forms a relationship between
customers and wines.

An order is made when a customer purchases a quantity of wine. Consider an
example. One of our customers, customer #37—we give our customers a number, so
as not to confuse two customers who have the same name—purchases two bottles of
wine #168, our 1996 Cape Mentelle Cabernet Merlot. The database stores this
relationship as an order: customer #37 placed their fifth order with us, ordered wine
#168, and required a quantity of two bottles. Figure C-1 shows a simple
representation of this relationship.

Figure C-1. Customer #37 purchases two bottles of wine #168

There are several constraints in the order that may be obvious but are worth stating:
there is only one customer #37, there is one wine we refer to as #168, and the next
time the customer orders with us, it will be their sixth order. Relational databases can
enforce many constraints on data stored, including ensuring in the example that an
order can be made only by a valid customer and that only wines we stock can be
ordered. When you represent data in a database, entities such as wine, customers,
and orders are represented as tables or relations that group together related data.

There are some limitations to this model. One limitation is that an order consists of
only one wine. There are several ways this problem can be resolved. Perhaps the
most obvious approach is to create additional attributes in the order, such as wine2,
quantity2, wine3, quantity3, and so on. The problem is where to stop: what is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

quantity2, wine3, quantity3, and so on. The problem is where to stop: what is
the maximum number of wines per order? And, if an order contains only one wine,
how are the unused attributes processed? Indeed, just as if you were designing a
spreadsheet, any report works only for that number of wines; any change means
redevelopment of the report.

Another solution to the problem is to introduce a new table that stores the items that
make up an order. This approach is subtle but solves the problems with the initial
approach. How, then, do you know when to add attributes or when to add tables?
Traditionally, this answer has been the somewhat technical explanation that the
database should be normalized according to a set of rules; most acceptably designed
databases are in the third-normal form. Fortunately, with the advent and refinement of
simpler modeling techniques for designing databases—such as entity-relationship
(ER) modeling—a well-designed database can be achieved by following simple rules.

We discuss ER modeling in the next section, as we focus on designing a workable
winestore.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

C.2 Entity-Relationship Modeling

Entity-relationship (ER) modeling is a simple and clear method of expressing the
design of database. ER modeling isn't new—it was first proposed by Chen in 1976—
but it has only emerged as the dominant modeling paradigm for databases in the past
10 or 12 years.

Figure C-2 shows a partial model of the winestore. In this diagram, you can see the
relationship between wines, wineries, and regions. Each wine has attributes such as
a name, type, and a description. A wine is made by a winery, and each winery
has attributes such as a name, phone, and description. Many wineries are
located in a region, where a region has a map and description.

Figure C-2. A simple ER model showing the relationship between wines, wineries, and regions

ER diagrams aren't complicated, and we have already illustrated most of the features
of ER modeling in Figure C-2. These features include:

Rectangles

Represent entities—that is, objects being modeled. Each entity is labeled with a
meaningful title.

Diamonds

Represent relationships between entities; a relationship is labeled with a
descriptive title that represents how the entities interact.

Ellipses

Represent attributes that describe an entity.

Lines

Connect entities to relationships. Lines may be without any annotation, be
annotated with an M and an N, or annotated with an M and a 1 (or an N and a 1).
Annotations indicate the cardinality of the relationship; we discuss cardinality
later in this section.

Lines

Connect attributes to entities. These lines are never labeled.

Other ER modeling tools include double ellipses, dashed ellipses, and double lines;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Other ER modeling tools include double ellipses, dashed ellipses, and double lines;
we use some of these advanced features later in this appendix. Useful references for
more advanced ER modeling—and enhanced ER (EER) modeling—are provided in
Appendix E.

C.2.1 Case Study: Modeling the Online Winestore

To illustrate how ER modeling can be used to effectively design a database, we
return to our online winestore.

C.2.1.1 System requirements analysis

The first step in developing a database model using ER modeling is to consider the
requirements of the system. The requirements for the online winestore were
described in Chapter 1 and are typically gathered from a scope document, customer
interviews, user requirements documents, and so on.

Many of the requirements affect development of the ER model, while others are more
general system requirements used to develop the web database application. One of
the skills of ER modeling is extracting the requirements that impact on the database
design from those that are functional elements of the system.

Once a system requirements analysis is complete, and the detailed requirements
written down, you can proceed to the conceptual database design using the ER
modeling techniques.

C.2.1.2 Identifying entities in ER modeling

Having identified the general requirements of the system, the first phase in
conceptual modeling and creating an ER model is to identify the entities in the
system.

Entities are objects or things that can be described by their characteristics. As we
identify entities, we list the attributes that describe the entity. For example, a customer
is an entity that has a name, an address, a phone, and other details.

Be careful when choosing entities. A customer or a wine is an
entity. Reducing the stock in the inventory and adding it to a
shopping cart is a function or process, not an entity. The basic
rule is that an entity is an object or thing.

Five entities and their attributes have already been identified earlier in this appendix.
Four are easy to determine from our requirements:

The wine entity has the attributes type, name, year, and description.

The customer entity has the attributes surname, firstname, initial,
title, addressline1, addressline2, addressline3, city, state,
zipcode, country, phone, fax, salary, birthdate, email address, and
discount.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

discount.

The winery entity has the attributes name, description, phone, and fax.

The region entity has the attributes name, description, and map.

We add a users entity to this list in order to maintain user account details at the
winestore:

The users entity has the attributes user_name and password. The
user_name is the same as the customer email address.

The remaining entities—and, in two cases, the distinction between the entities—are
harder to identify.

We have earlier identified the order entity in our introduction to ER modeling, but an
order is hard to precisely define. One description might be:

An order is an object created by a customer when they agree to purchase
one or more (possibly different) bottles of wine.

We can then say that an order is created on a date, and the system requirements in
Chapter 1 identify that an order has a discount, a delivery cost, and a delivery
note.

We can also say that this model of an order consists of one or more different wines
and, for each different wine, a quantity of that wine is purchased. The subparts in
each order—the different kinds of wines—are the items that make up the order. But is
the wine itself part of an item? The distinction is hard, but the correct answer is
probably no: this is a relationship, the items that make up an order are related to
wines.

There are now two more entities—orders and items—and two relationships, which
illustrates how difficult it is to reason about entities without considering how they are
related. Determining entities isn't always easy, and many different drafts of an ER
model are often required before a final, correct model is achieved. The ER model for
the winestore took several attempts to get right.

Here are the item and order entities:

The item entity—which is related to an order—has the attributes quantity and
price.

The order entity has attributes date, discount percentage, delivery cost,
and delivery note.

The system requirements in Chapter 1 showed that wines are delivered in
shipments. Each shipment is on a date and consists of a number of bottles, at a per-
bottle and per-case price. How is this incorporated into the model? Perhaps the most
obvious solution is to add quantity and price attributes to the wine entity. This
doesn't work well: it is difficult to maintain the possibly different prices for different
shipments and to maintain the correct shipment dates.

A good solution to the inventory problem is an inventory entity. This entity is related to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A good solution to the inventory problem is an inventory entity. This entity is related to
the wine, and maintains different sets of data for each shipment of each wine:

The inventory entity has an on-hand quantity, an item cost, a dateadded,
and a case cost (for a dozen bottles).

The final entity is somewhat of an oddity. If a wine is a Cabernet Merlot, you can
simply store the string Cabernet Merlot in an attribute in the wine entity. Another
approach is to have a grape_variety entity, where each different grape variety is
described individually. So, Cabernet is one instance of a grape_variety entity, and
Merlot is another. The grape_variety entity is then related to the wine entity. This
approach does seem overly complicated, but let's opt for it anyway because it
introduces an instructive twist to our modeling, a many-to-many relationship
discussed in the next section.

Let's add two attributes to the grape_variety entity, variety (the description) and ID
(a counter used to, for example, record that Cabernet is the first word in Cabernet
Merlot, and Merlot is the second word.

The grape_variety entity has two attributes, ID and variety.

There are other possible entities. For example, the shopping basket could be an
entity: the shopping cart is an object that contains items that will be ordered.
However, a shopping cart is an incomplete order and, hence, it's omitted from the
entity list. Including it is perhaps valid, and depends on how the entities are
interpreted from the requirements.

There are also other entities that are outside the scope of our requirements. For
example, a country might contain many regions, but there is no requirement for
countries to be modeled in our system. Also, the winestore itself is an entity, but we
are actually interested in the entities that make up the winestore, not really the whole
concept itself. Selecting entities is all about getting the granularity and scope of
choice right.

We have hinted at but not explicitly identified the relationships between the entities.
For example, a winery is part of a region, a wine is made by a winery, and an item is
related to a wine. The first step is to identify the entities and their attributes; the
second step is to identify how the entities are related.

C.2.1.3 Identifying relationships in ER modeling

Before identifying the relationships between the entities we have identified, we noted
earlier in this section that:

Lines connect entities to relationships. Lines may be without any
annotation, be annotated with an M and an N, or annotated with an M and a
1 (or an N and a 1). Annotations indicate the cardinality of the relationship.

Cardinality refers to the three possible relationships between two entities[A] and,
before you can consider how the entities are related, you need to explore the possible
kinds of relationship:

[A] Actually, relationships can exist between as many entities as there are in the model. Also, we have deliberately

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[A] Actually, relationships can exist between as many entities as there are in the model. Also, we have deliberately
omitted the distinction with relationships that are optional, that is, where one instance of an entity—such as a
customer—can exist without a related entity—such as an order. However, we avoid complex relationships in this
appendix; more detail can be found in the books listed in Appendix E.

One-to-one

A one-to-one relationship is represented by a line without any annotations that
joins two entities. One-to-one means that for the two entities connected by the
line, there is exactly one instance of the first entity for each one instance of the
second entity. An example might be customers and user details: each customer
has exactly one username and password, and that particular username and
password is only for that customer.

One-to-many (or many-to-one)

A one-to-many relationship is represented by a line annotated with a 1 and an M
(or a 1 and an N). One-to-many means that for the two entities connected by the
line, there are one or more instances of the second entity for each one instance
of the first entity. From the perspective of the second entity, any instance of the
second entity is related to only one instance of the first entity. An example is
wineries and wines: each winery sells many wines, but each wine is made by
exactly one winery. Many-to-one relationships are the most common
relationships between entities.

Many-to-many

A many-to-many relationship is represented by a line annotated with an M and
an N. Many-to-many means that for the two entities connected by the line, each
instance of the first entity is related to one or more instances of the second
entity and, from the other perspective, each instance of the second entity is
related to one or more instances of the first entity. An example is the
relationship between wineries and delivery firms: a winery may use many
delivery firms to freight wine to customers, while a delivery firm may work for
many different wineries.

It isn't surprising that many database modelers make mistakes with cardinalities.
Determining the cardinalities of the relationships between the entities is the most
difficult skill in ER modeling, but one that, when performed correctly, results in a well-
designed database. To illustrate how cardinality is determined, let's consider the
relationships between the entities in the winestore and present arguments for their
cardinalities.

Correctly assigning cardinalities is essential. Mistakes in
cardinalities of relationships lead to duplicated data,
inconsistencies, and redundancy in the database. All lead to
poor performance and a hard-to-maintain database.

C.2.1.4 Relationships in the winestore ER model

Before considering cardinalities, you need to consider what entities are related. You
know from previous discussion that a region is related to a winery, and that a winery
is related to a wine. There are other relationships that are implicitly identified: an order

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

is related to a wine. There are other relationships that are implicitly identified: an order
contains items, a customer places an order, users have customer details, and a wine
has an inventory.

There is also one crucial relationship that links the wines sold to the customer, that is,
the relationship between an order item and the inventory. Last, a wine contains one or
more different grape variety entities.

To assign cardinalities—which crucially affect the database design—start with the
relationship of wines to wineries. To begin, you need to decide what sort of
relationship these entities have and assign a descriptive term. A good description of
the relationship between wines and wineries is that a winery makes wine. Now draw a
diamond labeled makes between the entities wine and winery, and connect the
relationship to the two entities with an unannotated line. This process is shown in
Figure C-3 (A).

Figure C-3. A partial ER model showing the relationship between wines and wineries

The next step is to determine what cardinality to assign to this relationship. The most
effective approach to determining cardinality is to consider the relationship from the
perspective of both entities. From the perspective of a winery, the question to ask is:

Does a winery make exactly one wine or one or more wines?

The answer is the latter, so you write M at the wine-end of the relationship. From the
other perspective—that of the wine—you can ask a second simple question:

Is a wine made by exactly one or more than one winery?

This answer is the former—that limitation is noted in the system requirements—and
you can write a 1 at the winery-end of the relationship. The annotated, one-to-many
relationship is shown in Figure C-3 (B).

Dealing with the relationship between wineries and regions involves similar
arguments. You begin by describing the relationship. In this case, an appropriate
label might be that a winery is situated in a region. After drawing the diamond and
labeling it, now consider the cardinalities. A winery belongs in exactly one region, so
label the region end with a 1. A region contains one or more wineries, so you label
the winery end with an M.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the winery end with an M.

There are three more relationships that can be completed using the same one-to-
many arguments:

The consists-of relationship between orders and items

The purchase relationship between customers and orders

The stocked relationship between wines and inventories

You can label all three with a 1 and an M (or N). The consists-of relationship is labeled
with a 1 at the order end and an M at the item end. The purchase relationship is
labeled with an M at the order end and a 1 at the customer end. The stocked
relationship is labeled with an M at the inventory end and a 1 at the wine end. These
relationships are shown as part of Figure C-4.

Figure C-4. An almost complete ER model for the winestore

You know that the users and customer have a one-to-one relationship. Now draw a
line between the two entities and label it with a 1 at each end. Label the relationship
as has. You can also add the password attribute to the customers entity and omit the
users entity altogether. However, to fully illustrate the different features of ER
modeling, let's maintain the separation between customer and users entities.

The final two relationships are a more difficult to identify and annotate.

The first is the relationship between an order item and a wine. The one-to-many
cardinality isn't a difficult proposition, but determining that this relationship actually
exists is harder. When considering what makes up an order, there are two
possibilities: an item can be related to a specific inventory entry, or an item can be
related to a wine. The former is possibly more intuitive because the item that is
delivered is a bottle from our inventory. However, the latter works better when
modeling the system's data requirements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In our design, a customer order is made up of quantities of wines. You can label this
relationship as sells. The price of the wine is copied from the inventory and stored in
the order. This design is appropriate because the relationship between a customer
and a specific bottle is uninteresting once the order is shipped and, arguably, it is
uninteresting even as the order is packed.

The second difficult—and final—relationship is that between wines and grape
varieties. Naming the relationship is easy: let's call this relationship blend.
Determining the cardinality is harder. First, consider the relationship from the wine
perspective. A wine can contain more than one grape variety when it is a blend, so
you label the grape variety end of the relationship with an M. Now consider the
relationship from the grape variety perspective. A grape variety, such as semillon,
may be in many different wines. So, let's settle on a many-to-many relationship and
label the wine end with an N.

Our ER model is almost complete, and Figure C-4 shows it with all its entities and
relationships. What remains is to consider the key attributes in each of the entities,
which are discussed in the next section. As you consider these, you can adjust the
types of relationships slightly.

There are a few rules that determine what relationships, entities, and attributes are,
and what cardinalities should be used:

Expect to draft a model several times.

Begin modeling with entities, add attributes, and then determine relationships.

Include an entity only when it can be described with attributes that are needed
in the model.

Some entities can be modeled as attributes. For example, a country can be an
entity, but it might be better modeled as one of the attributes that is part of an
address.

Avoid unnecessary relationships. Only model relationships that are needed in
the system.

One-to-one relationships are uncommon. If two entities participate in a one-to-
one relationship, check that they aren't actually the same entity.

Many-to-many relationships are complex. Use one-to-many relationships in
preference where possible.

C.2.1.5 Identifying key attributes in ER modeling

In our introduction to ER modeling, we noted some of the implicit constraints of our
model, including that there is only one customer #37 and one wine that we refer to as
#168. In the model design so far, we haven't considered how to uniquely identify each
entity.

Uniqueness is an important constraint. When a customer places an order, you must

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Uniqueness is an important constraint. When a customer places an order, you must
be able to uniquely identify that customer and associate the unique order with that
unique customer. You also need to be able to uniquely identify the wines the
customer purchases. In fact, all entities must be uniquely identifiable; this is true for
all relational databases.

The next step is to identify the attributes or sets of attributes that uniquely identify an
entity. Begin with the customer. A surname (or any combination of names) doesn't
uniquely identify a customer. A surname, firstname, initial, and a complete
address may work, although there are some cases where children and parents
share the same name and address.

A less complicated approach for unique identification—and a common one that's
guaranteed to work—is to add an identifier number (ID) attribute to the entity. A short
unique identifier also leads to better database performance, as discussed in Chapter
3. Using this approach, assign ID #1 to the first customer, ID #2 to the second
customer, and so on. In the model, this new attribute is underlinedto indicate that it
uniquely identifies the customer as shown in Figure C-5.

Figure C-5. The customer entity with all attributes; the primary key is shown underlined

You can take the same approach with wine as for customers—for the same reasons
—and add an ID field.

For wineries and regions, the name is most likely unique or, at least, it can be made
so. However, for simplicity, you should also use the ID attribute approach to prevent
any ambiguity or need for the winestore administrator to create unique names for
wineries or regions. The same argument can be applied to grape varieties.

Orders can also be dealt with by a unique ID, as can items and inventory. However,
the uniqueness of this ID may be questionable. To illustrate, consider an example.
You can number each order across the whole system uniquely, beginning with the
system's first order #1. Alternatively, you can combine the customer ID with an order
ID and begin each different customer's orders with order ID #1. The combination of
customer ID and order ID is still unique, e.g., customer #37, order #1 is different from
customer #15, order #1. This latter scheme is an example of a full participation
relationship by a weak entity: an order isn't possible without a customer (hence, the
term full participation) and the customer ID forms part of the order entity's unique
identifier, hence the term weak entity.

You can use the scheme of full participation by a weak entity for orders; the other
approach of numbering orders across the whole collection also works well. An
advantage of this scheme is that the order number is more meaningful to the user—
for example, a user can tell from their order number how many orders they have

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

for example, a user can tell from their order number how many orders they have
placed—and the order number provides a convenient counting tool for reporting.
Participation is discussed briefly in the next section and weak entities are discussed
in more detail later in Section C.2.1.7.

You can follow similar arguments with items. An item can be uniquely numbered
across the whole system or can be numbered from #1 within an order. Again, this
depends on the participation and, as with orders, we follow the latter approach. The
same applies for inventory, which is numbered within a wine.

Because customer and users have a one-to-one relationship, the customer ID can be
used to uniquely identify a user. Therefore, the users entity has full participation as a
weak entity in the relationship with customer.

C.2.1.6 Other ER modeling tools

Other ER modeling tools include double ellipses and double lines. These tools permit
the representation of other constraints, multivalued attributes, and the specification of
full participation. In addition, it is possible for a relationship to have an attribute, that
is, for a diamond to have attributes that are part of the relationship, not part of the
entities. Useful references for more advanced ER modeling—and enhanced ER
(EER) modeling—are provided in Appendix E.

Double lines as relationships indicate full participation and represent cases where an
instance of one entity can't exist without a corresponding instance of the entity that it
is related to. An example is an order as discussed in the previous section. An order
can't exist without a customer to make that order. Therefore, correctly, the relationship
between order and customer should be represented as a double line; the same
constraints apply in the model to items and inventories.

Dashed ellipses represent multivalued attributes, attributes that may contain more
than one instance. For example, the attribute address can be multivalued, because
there could be a business address, a postal address, and a home address.
Multivalued attributes aren't used in our model.

In addition, there are other extensions to the modeling techniques that have already
been applied. For example, more than two entities can be related in a relationship
(that is, more than two entities can be connected to a diamond). For example, the
sale of a wine can be described as a three-way relationship between a wine, a
customer, and an order. A second complex technique is the composite attribute; for
example, an attribute of customer is address and the attribute address has its own
attributes, a street, city, and zipcode. We don't explore complex relationships in
this book.

C.2.1.7 Completing the ER model

Figure C-6 shows the final ER model with the unique key constraints shown. Notice
that for items, orders, users, and inventories, the attributes from other entities aren't
included. They are instead indicated as weak entities with a double rectangle and
they participate fully in the related entities as indicated by double lines.

Figure C-6. The complete ER model for the winestore database

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If items, orders, and inventories are numbered across the whole system, you can omit
the double rectangles. The double lines can be omitted if any entities can exist
without the related entity.

A summary of ER notation tools is shown in Figure C-7.

Figure C-7. Tools used in ER modeling

C.2.2 Converting an Entity-Relationship Model to SQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are five steps to convert an ER model to a set of SQL CREATE TABLE
statements.

C.2.2.1 Step 1: Convert regular entities to tables

The first step is the simplest. Here's what you do:

1. For each non-weak entity in the ER model, write out a CREATE TABLE
statement with the same name as the entity.

2. Include all attributes of the entity and assign appropriate types to the attributes.

3. Include the PRIMARY KEY of the entity.

4. Add any modifiers to attributes and any additional keys as required.

To perform this step, you need to make decisions about attribute types in the SQL
CREATE TABLE statements. Attribute types are discussed in Chapter 3.

There are several non-weak entities in the model. Begin with the region entity,
which has the attributes region_id, region_name, description, and map. You
might anticipate no more than 100 different regions, but being cautious is important if
more than 1,000 regions need to be stored. Accordingly, a type of int(4) allows up
to 10,000 regions. Using a similar argument, define region_name as a
varchar(100). Because descriptions may be long, let's define description as a
blob. A map—which is an image—is defined as a mediumblob.

As decided earlier in the chapter, the unique key of the region table is an ID, which is
now called region_id. Accordingly, you define a PRIMARY KEY of region_id. A
requirement of all primary keys is that they are specified as NOT NULL, and this is
added to the attribute. Now automate the creation of the values by adding the
auto_increment clause and a DEFAULT '0'. (Recall from Chapter 3 that storing
NULL or 0 in an auto_increment attribute is a MySQL feature that automatically
stores a unique ID larger than all other IDs for this table.)

The resulting definition for the region table is then as follows:

CREATE TABLE region (
 region_id int(4) DEFAULT '0' NOT NULL auto_increment,
 region_name varchar(100) DEFAULT '' NOT NULL,
 description blob,
 map mediumblob,
 PRIMARY KEY (region_id),
 KEY region (region_name)
);

Notice an additional KEY on the region_name named region. By adding this key,
you anticipate that a common query is a search by region_name. Also, a region
must have a name, so a NOT NULL is added to the region_name attribute.

The CREATE TABLE statements for the other non-weak entities are listed in Example
C-1. Remember, however, that this is only the first step: some of these CREATE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C-1. Remember, however, that this is only the first step: some of these CREATE
TABLE statements are altered by the processes in later steps.

Example C-1. CREATE TABLE commands for non-weak entities

CREATE TABLE wine (
 wine_id int(5) DEFAULT '0' NOT NULL auto_increment,
 wine_name varchar(50) DEFAULT '' NOT NULL,
 type varchar(10) DEFAULT '' NOT NULL,
 year int(4) DEFAULT '0' NOT NULL,
 description blob,
 PRIMARY KEY (wine_id)
);

CREATE TABLE winery (
 winery_id int(4) DEFAULT '0' NOT NULL auto_increment,
 winery_name varchar(100) DEFAULT '' NOT NULL,
 description blob,
 phone varchar(15),
 fax varchar(15),
 PRIMARY KEY (winery_id)
);

CREATE TABLE customer (
 cust_id int(5) NOT NULL auto_increment,
 surname varchar(50) NOT NULL,
 firstname varchar(50) NOT NULL,
 initial char(1),
 title varchar(10),
 addressline1 varchar(50) NOT NULL,
 addressline2 varchar(50),
 addressline3 varchar(50),
 city varchar(20) NOT NULL,
 state varchar(20),
 zipcode varchar(5),
 country varchar(20),
 phone varchar(15),
 fax varchar(15),
 email varchar(30) NOT NULL,
 birth_date date(),
 salary int(7),
 PRIMARY KEY (cust_id),
 KEY names (surname,firstname)
);

CREATE TABLE grape_variety (
 variety_id int(3),
 variety_name varchar(20)
 PRIMARY KEY (variety_id)
);

C.2.2.2 Step 2: Convert weak entities to tables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The second step is almost identical to the first but is used for weak entities. Here's
what you do:

1. For each weak entity in the model—there are three: inventory, order, and item—
translate the entity directly to a CREATE TABLE statement as in Step 1.

2. Include all attributes as in Step 1.

3. Include as attributes the primary key attributes of the owning entity; that is, the
entity the weak entity is related to. These attributes are in the table and are also
included as part of the primary key of the weak entity.

For example, for the inventory entity, create the following:

CREATE TABLE inventory (
 wine_id int(5) DEFAULT '0' NOT NULL,
 inventory_id int(3) NOT NULL,
 on_hand int(5) NOT NULL,
 cost float(5,2) NOT NULL,
 case_cost float(5,2) NOT NULL,
 dateadded timestamp(12) DEFAULT NULL,
 PRIMARY KEY (wine_id,inventory_id)
);

The wine_id is included from the wine table and forms part of the PRIMARY KEY
definition. All attributes can't be NULL in this inventory table, so you'll note liberal use
of NOT NULL. The dateadded attribute has a DEFAULT NULL, which if no value is
inserted, is automatically filled with the current date and time.

A similar approach is taken with orders, in which cust_id is included from the
customer table as an attribute and as part of the PRIMARY KEY definition:

CREATE TABLE orders (
 cust_id int(5) DEFAULT '0' NOT NULL,
 order_id int(5) DEFAULT '0' NOT NULL,
 date timestamp(12),
 discount float(3,1) DEFAULT '0.0',
 delivery float(4,2) DEFAULT '0.00',
 note varchar(120),
 PRIMARY KEY (cust_id,order_no)
);

The items table is slightly more complex, but made easier because orders has
already been defined. The items table includes the PRIMARY KEY attributes of the
entity it is related to (that is, orders). Because the PRIMARY KEY of orders is already
resolved, the resolution is as follows:

CREATE TABLE items (
 cust_id int(5) DEFAULT '0' NOT NULL,
 order_id int(5) DEFAULT '0' NOT NULL,
 item_id int(3) DEFAULT '1' NOT NULL,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 item_id int(3) DEFAULT '1' NOT NULL,
 qty int(3),
 price float(5,2),
 date timestamp(12),
 PRIMARY KEY (cust_id,order_no,item_id)
);

C.2.2.3 Step 3: One-to-one relationships

There is a one-to-one relationship between customer and users in our model. The
process for conversion is as follows:

1. Choose one of the two tables that participates in the relationship (this table has
already been identified and written out as part of Steps 1 or 2). If the
relationship involves total participation, choose the entity that totally
participates.

2. In the chosen table, include as an attribute (or attributes) the primary key of the
other table.

3. If the entities totally participate in each other and neither participates in another
relationship, consider removing one of the tables and merging the attributes into
a single table.

As users is the entity that totally participates in customer, the identifier cust_id from
customer is added to the users table and defined as the primary key attribute:

CREATE TABLE users (
 cust_id int(4) DEFAULT '0' NOT NULL,
 user_name varchar(50) DEFAULT '' NOT NULL,
 password varchar(15) DEFAULT '' NOT NULL,
 PRIMARY KEY (user_name),
);

C.2.2.4 Step 4: Regular one-to-many relationships

For a regular one-to-many relationship, here's the procedure:

1. Identify the table representing the many (M or N) side of the relationship.

2. Add to the many-side (M or N) table the primary key of the 1-side table.

3. Optionally, add NOT NULL to any attributes added.

In the model, this means adding a winery_id to the wine table:

CREATE TABLE wine (
 wine_id int(5) DEFAULT '0' NOT NULL auto_increment,
 wine_name varchar(50) DEFAULT '' NOT NULL,
 winery_id int(4),
 type varchar(10) DEFAULT '' NOT NULL,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 type varchar(10) DEFAULT '' NOT NULL,
 year int(4) DEFAULT '0' NOT NULL,
 description blob,
 PRIMARY KEY (wine_id)
);

For the winery table, it means adding a region_id:

CREATE TABLE winery (
 winery_id int(4) DEFAULT '0' NOT NULL auto_increment,
 winery_name varchar(100) DEFAULT '' NOT NULL,
 region_id int(4),
 description blob,
 phone varchar(15),
 fax varchar(15),
 PRIMARY KEY (winery_id)
);

The final regular one-to-many relationship is between wine and item. For this, add a
wine_id to items:

CREATE TABLE items (
 cust_id int(5) DEFAULT '0' NOT NULL,
 order_id int(5) DEFAULT '0' NOT NULL,
 item_id int(3) DEFAULT '1' NOT NULL,
 wine_id int(4) DEFAULT '0' NOT NULL,
 qty int(3),
 date timestamp(12),
 price float(5,2),
 PRIMARY KEY (cust_id,order_no,item_id)
);

In cases where you wish to prevent a row being inserted without a corresponding
value, you can add a NOT NULL to the attribute added in this step.

C.2.2.5 Step 5: Many-to-many relationships

For many-to-many relationships—there is one in our model between wine and
variety—the following procedure is used:

1. Create a new table with a composite name made of the two entities that are
related.

2. Add the primary keys of the two related entities to this new table.

3. Add an ID attribute if the order of relationship is important. For example, in the
winestore, a Cabernet Merlot Shiraz is different from a Shiraz Merlot Cabernet,
so an ID is required.

4. Define the primary key of this new table to be all attributes that form part of the
table.

In the example, create the following table:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE TABLE wine_variety (
 wine_id int(5) DEFAULT '0' NOT NULL,
 variety_id int(3) DEFAULT '0' NOT NULL,
 id int(1) DEFAULT '0' NOT NULL
 PRIMARY KEY (wine_id, variety_id)
);

The table contains the primary keys of the wine and grape_variety and defines these
—along with the ID attribute—as the PRIMARY KEY. No change is required to the
wine or grape_variety tables.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Appendix D. Managing Sessions in the Database Tier
In Chapter 8 we discussed the development of session-based applications using the
PHP session management features. In this appendix, we:

Discuss the motivation for storing session variables in the database tier of a
web database application

Show how PHP session handlers are written to implement user-defined
methods

Develop a fully functional set of PHP handlers that use a table in a MySQL
database to store session variables

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

D.1 Using a Database to Keep State

HTTP is a stateless protocol that allows applications to distribute resources across
more that one web server. This allows an application to distribute requests across
many web servers, thus dividing the load and permitting scaling of the application.

One of the main problems for session-based web applications is scalability.
Implementing session management in the middle tier of an application forces all
HTTP requests to be processed by a particular web server. To provide session
support, all HTTP requests that belong to a session must be processed in the context
of the session variables. Consider an application that holds the contents of a
shopping cart using session variables. An HTTP request that submits an order must
be processed by reading the session variables that hold the state of the cart. Figure
D-1 shows the three-tier architecture of a web database application, with the session
store in the web server environment. This is the approach described in Chapter 8.

Figure D-1. Three-tier architecture using a web server to store session variables

Figure D-2. Three-tier architecture using a database to store session variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Moving the session data to the database allows an application to scale horizontally at
the middle tier as shown in Figure D-2. The web server doesn't have to keep
session variables, so HTTP requests can be processed by different web servers. The
PHP scripts on each web server still implement the application logic, but session
variables are retrieved from a central database. In many applications, the middle tier
—the layer that implements the application logic—is the performance bottleneck. By
deploying multiple web servers, HTTP load balancing can be achieved and the
database server better utilized. However, there is a point at which the performance of
the DBMS becomes the bottleneck. Also, allowing multiple web servers to access a
central database server requires strategies to control concurrent access, a topic
discussed in Chapter 6.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

D.2 PHP Session Management

In Chapter 8 we showed how to build session-based applications using the PHP
session management functions. Applications use these functions to initialize sessions
and register session variables as shown in Example D-1. This simple script
initializes a session and registers two session variables: count and start.

Example D-1. A simple PHP script that uses a session

<?php
 // Initialize a session. This call either creates
 // a new session or re-establishes an existing one.
 session_start();

 // If this is a new session, then the variable
 // $count is not registered
 if (!session_is_registered("count"))
 {
 session_register("count");
 session_register("start");

 $count = 0;
 $start = time();
 }
 else
 {
 $count++;
 }

 $sessionId = session_id();

?>
<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
<html>
 <body>
 <p>This page points at a session
 (<?=$sessionId ?>)

count = <?=$count ?>.

start = <?=$start ?>.
 <p>This session has lasted
 <?php
 $duration = time() - $start;
 echo "$duration";
 ?>
 seconds.
 </body>
</html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</html>

By default, PHP manages sessions by storing session variables in files on disk and
uses the session ID as part of the filename. The session management functions and
file storage are discussed in more detail in Chapter 8.

PHP allows user-defined handlers to be written that change how sessions are
managed. The handlers define how PHP starts and terminates sessions, stores and
retrieves session variables, and removes idle sessions with garbage collection. By
implementing user-defined handlers, a developer can modify how PHP sessions are
stored, without needing to change any application logic. PHP scripts, such as that
shown in Example D-1, don't need to be modified except for an additional include
directive to use the user-defined session management handlers.

D.2.1 PHP Session Management Storage Methods

Because PHP abstracts the storage method from the programmatic interface to
session management, different storage strategies can be used. PHP can be
configured to store session variables in files on disk (the default method), in memory,
or in a user-defined way. The method used is configured by the
session.save_handler parameter in the php.ini file. Here are the values the
session.save_handler parameter can be set to:

files

This is the default storage method for PHP, where session variables are
serialized and written to a session file.

mm

The memory management storage method allows session variables to be
stored in Apache's runtime memory. Using memory has the advantage of better
performance than files on disk. However, if many sessions must be supported,
and each session uses a large volume of data, the memory used by the Apache
process may be high. To use memory to store session variables, Apache must
be configured and compiled to use an installed memory management module (-
-with-mm).

user

The user-defined method allows an application to save session variables to
systems other than file or memory, such as to a table in a database. By defining
several handler prototypes, PHP allows the developer to define the behavior of
the low-level session management. A full explanation is given in the next
section.

D.2.2 Building User-Defined Session Handlers

When the PHP session.save_handler parameter is set to user, PHP expects to
find functions that provide the low-level session management support. These are the
functions the developer needs to write. The functions must conform to the defined
prototypes:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Boolean open(string save_path, string session_name)

Called by PHP when session_start() or session_register() is
called to access the session store. PHP passes the php.ini parameters
session.save_path and session.name as arguments to this function, and
these arguments are used to locate the session store. By default,
session.save_path is set to /tmp to indicate the directory for the files
storage method, and session.name is set to PHPSESSID as the name of the
session ID cookie. These parameters select the database and table used to
store session variables.

Boolean close()

Called by PHP at the end of a script when a session is closed. The function
should return false if an error occurs during the close operation and true on
success.

mixed read(string session_id)

Called by PHP to read the variables for the session identified by session_id
when a session is initialized. The function returns a string that contains the
serialized session variables. The PHP engine converts the string to the
individual session variables and sets up the $HTTP_SESSION_VARS array. If no
session is found, the function should return a blank string. The function should
return false if an error occurs during the read operation and true on success.

Boolean write(string session_id, string values)

This function is called by PHP when session variables are updated and when a
session is initialized. This function is passed the ID of the session, and the
session variables serialized into a single string by PHP. The implementation of
write() must store the serialized string associated with the session, and
record the time the session was last accessed. The serialized string stored for
the session is returned by the read() handler. PHP uses this function not
only to update session variables but to record the last access time when a
session is initialized. The function should return false if an error occurs during
the write operation and true on success.

Boolean destroy(string session_id)

Called by PHP when the session identified by session_id is destroyed.
Removes storage dedicated to the identified session. The function should return
false if an error occurs during the destroy operation and true on success.

Boolean gc(int max_lifetime)

Called by PHP with a probability set by session.gc_probability when a
session is initialized. Removes the data and variables stored by dormant
sessions. The value of session.gc_maxlifetime is passed to this function
and is used to determine which are idle sessions. If the garbage collection
handler is executed without error, it should return true.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

handler is executed without error, it should return true.

While the return types and the parameters passed to the functions must conform to
the prototypes listed here, the actual function names can be different. These functions
need to be registered with PHP using session_set_save_handler():

session_set_save_handler(string open, string close, string read, string
write, string destroy, string gc)

Registers a set of PHP function names as the callback functions for user-
defined session management. The arguments to this function are the names of
the functions. The six parameters passed to session_set_save_handler(
) are interpreted as the names of the open, close, read, write, destroy,
and gc functions.

Once registered, PHP uses these handler functions when the PHP session
management calls are made. The handler functions aren't called directly by scripts
that use session management. More detail about these handlers is given later when
we describe the MySQL storage implementations.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

D.3 MySQL Session Store

In this section we develop a set of user-defined handlers that store session variables
in a MySQL table.

D.3.1 Session Table Structure

For the session handler code that stores session variables, a table is needed to hold
sessions. The following SQL CREATE TABLE statement creates a table to hold the
session ID, the serialized session variables, and a timestamp to indicate when the
session was last accessed:

CREATE TABLE PHPSESSION(
 session_id varchar(50) NOT NULL,
 session_variable text,
 last_accessed decimal(15, 3) NOT NULL,
 PRIMARY KEY (session_id),
 KEY last_acc (last_accessed)
);

There is an additional index that allows fast deletion of dormant sessions using
custom garbage-collection code described later.

When the code is up and running, the PHPSESSION table can be examined to see
the current sessions:

mysql> SELECT * FROM PHPSESSION;
+------------------------------+--------------------------------+----------------+
| session_id | session_variable | last_updated |
+------------------------------+--------------------------------+----------------+
| d003a284fbbf982c90aade5485 | count|i:39;start|i:1000900585; | 1000900661.575 |
| b74e720d5395800d5fabe7eab8 | count|i:0;start|i:1000900677; | 1000900678.705 |
+------------------------------+--------------------------------+----------------+
2 rows in set (0.02 sec)

D.3.2 Handler Implementations

The best way to arrange the functions that implement the session handlers is to place
them in a single support file. By placing the functions shown in Example D-2 through
Example D-9 in the one file, you can include that file at the beginning of any PHP
script using sessions. The support file containing the handler implementations—for
example mysql_sessions.inc—must be included before any session calls are made
as shown in the following example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?php
 include("mysql_sessions.inc");
 start_session();

 //... rest of script ...

?>

D.3.2.1 Support functions

The MySQL-based session handlers use the showerror() function implemented
in the error.inc include file, and the $hostName, $username, and $password
variables set in the db.inc include file. The showerror() function is used by the
handler implementations to display details about MySQL errors. The db.inc file
provides a central location for maintaining connection details. The error.inc and db.inc
files are described in Chapter 4.

Example D-2 shows the function getMicroTime(), which generates a
timestamp. The timestamp records the last session access in the sessionWrite()
handler and creates a query that identifies idle sessions in the sessionGC()
handler. The sessionWrite() handler and the sessionGC() handler are
developed later in this section.

Example D-2. The support function getMicroTime()

include("error.inc");
include("db.inc");

// Returns current time as a number.
// Used for recording the last session access.

function getMicroTime()
{
 // microtime() returns the number of seconds
 // since 0:00:00 January 1, 1970 GMT as a
 // microsecond part and a second part.
 // e.g.: 0.08344800 1000952237
 // Convert the two parts into an array
 $mtime = explode(" ", microtime());

 // Return the addition of the two parts
 // e.g.: 1000952237.08344800
 return($mtime[1] + $mtime[0]);
}

D.3.2.2 sessionOpen

Example D-3 shows the first of the session handlers required by PHP session
management. The sessionOpen() function sets two global variables to hold the
database connection and the table that manages the session variables. PHP passes
the php.ini file values of session.save_path and session.name as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the php.ini file values of session.save_path and session.name as
$database_name and $table_name, respectively. The $database_name
parameter selects the database, and the $table_name parameter is stored in the
global variable $session_table. The global variables $session_table and
$connection formulate and execute SELECT, INSERT, UPDATE, and DELETE
queries in the other handlers.

Example D-3. The sessionOpen handler

// The database connection
$connection;

// The global variable that holds the table name
$session_table;

// The session open handler called by PHP whenever
// a session is initialized. Always returns true.

function sessionOpen($database_name, $table_name)
{

 // Save the database name in a global variable
 global $connection;
 global $hostName;
 global $username;
 global $password;

 if (!($connection = @ mysql_pconnect($hostName,
 $username,
 $password)))
 showerror();

 if (!mysql_select_db($database_name, $connection))
 showerror();

 // Save the table name in a global variable
 global $session_table;
 $session_table = $table_name;

 return true;
}

Using the values of session.save_path and session.name as the database
name and the table name respectively, the MySQL session handlers developed in
this appendix can be configured to use any database and table as a session store.
With the handler shown in Example D-3, the name of the table is the same as the
name of the cookie used to hold the session ID. For example, consider the following
php.ini file settings:

session.save_path = winestore
session.name = PHPSESSION

With these settings, our module uses the PHPSESSION table in the winestore
database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

D.3.2.3 sessionRead

The sessionRead() handler function—shown in Example D-4—is called by PHP
each time a session is initialized. The handler returns the serialized string that holds
the session variables for the given session ID $sess_id. The function executes a
query to find the row with a session_id equal to $sess_id and, if the row is found,
the session_variable attribute is returned. If no session is found, sessionRead(
) returns a blank string. If an error occurs when the SELECT query is executed,
showerror() is called.

The query is constructed using the global variables $session_table and executed
using the global variable $connection set up by the sessionOpen() handler.
Note that this function returns all the session variables in the one serialized string.
The calling PHP code converts the string to the individual session variables and sets
up the $HTTP_SESSION_VARS array and the associated global variables if
register_globals has been enabled.

Example D-4. The sessionRead handler

// This function is called whenever a session_start()
// call is made and reads the session variables
// Returns "" when a session is not found
// (serialized)string - session exists

function sessionRead($sess_id)
{
 // Access the DBMS connection
 global $connection;

 // Access the global variable that holds the name
 // of the table that holds the session variables
 global $session_table;

 // Formulate a query to find the session
 // identified by $sess_id
 $search_query =
 "SELECT * FROM $session_table
 WHERE session_id = '$sess_id'";

 // Execute the query
 if (!($result = @ mysql_query($search_query,
 $connection)))
 showerror();

 if(mysql_num_rows($result) == 0)
 // No session found - return an empty string
 return "";
 else
 {
 // Found a session - return the serialized string
 $row = mysql_fetch_array($result);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $row = mysql_fetch_array($result);
 return $row["session_variable"];
 }
}

D.3.2.4 sessionWrite

The sessionWrite() handler function isn't responsible only for writing variables to
the session store but also records when session variables are read. sessionWrite(
) is called by PHP each time a variable is registered, when session variables change,
and when a session is initialized. It's important that the last_access time-stamp is
updated each time a session is initialized; that is, when session_start() is
called. If the last access time isn't updated, a session may be seen as dormant by the
garbage collection handler and destroyed even though the variables have recently
been read.

Example D-5 starts by executing a SELECT query to determine if a session exists. If
a session is found, then an UPDATE query is executed, otherwise a new session row
is created with an INSERT query. Both the INSERT and UPDATE queries set the
last_accessed field with the timestamp created by the support function
getMicroTime() that is shown in Example D-2.

Example D-5. The sessionWrite handler

// This function is called when a session is initialized
// with a session_start() call, when variables are
// registered or unregistered, and when session variables
// are modified. Returns true on success.

function sessionWrite($sess_id, $val)
{
 global $connection;
 global $session_table;

 $time_stamp = getMicroTime();

 $search_query =
 "SELECT session_id FROM $session_table
 WHERE session_id = '$sess_id'";

 // Execute the query
 if (!($result = @ mysql_query($search_query,
 $connection)))
 showerror();

 if(mysql_num_rows($result) == 0)
 {
 // No session found, insert a new one
 $insert_query =
 "INSERT INTO $session_table
 (session_id, session_variable, last_accessed)
 VALUES ('$sess_id', '$val', $time_stamp)";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 VALUES ('$sess_id', '$val', $time_stamp)";

 if (!mysql_query($insert_query,
 $connection))
 showerror();
 }
 else
 {
 // Existing session found - Update the
 // session variables
 $update_query =
 "UPDATE $session_table
 SET session_variable = '$val',
 last_accessed = $time_stamp
 WHERE session_id = '$sess_id'";

 if (!mysql_query($update_query,
 $connection))
 showerror();
 }
 return true;
}

D.3.2.5 sessionClose

The sessionClose() handler can perform any housekeeping functions that need
to be executed before a script ends. In the handler implementation shown in
Example D-6, the connection setup returned by the sessionOpen() is true.

Example D-6. The sessionClose handler

// This function is executed on shutdown of the session.
// Always returns true.

function sessionClose($sess_id)
{
 return true;
}

D.3.2.6 sessionDestroy

When session_destroy() is called, the sessionDestroy() handler shown in
Example D-7 is called. This function deletes the row identified by the $sess_id
argument from the table that holds the session variables.

Example D-7. The sessionDestroy handler

// This is called whenever the session_destroy()
// function call is made. Returns true if the session
// has successfully been deleted.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// has successfully been deleted.

function sessionDestroy($sess_id)
{
 global $connection;
 global $session_table;

 $delete_query =
 "DELETE FROM $session_table
 WHERE session_id = '$sess_id'";

 if (!($result = @ mysql_query($delete_query,
 $connection)))
 showerror();

 return true;
}

D.3.2.7 Garbage collection

The last handler to be defined is the garbage collection function. Example D-8
shows the implementation of sessionGC(), which queries for all session rows that
have been dormant for $max_lifetime seconds. PHP passes the value set in the
session.gc_maxlifetime parameter of the php.ini file. The time a session has
been dormant is calculated by subtracting the last update time—held in the session
row—from the current time.

Example D-8. Garbage collection handler

// This function is called on a session's start up with
// the probability specified in session.gc_probability.
// Performs garbage collection by removing all sessions
// that haven't been updated in the last $max_lifetime
// seconds as set in session.gc_maxlifetime.
// Returns true if the DELETE query succeeded.

function sessionGC($max_lifetime)
{
 global $connection;
 global $session_table;

 $time_stamp = getMicroTime();

 $delete_query =
 "DELETE FROM $session_table
 WHERE last_accessed < ($time_stamp - $max_lifetime)";

 if (!($result = @ mysql_query($delete_query,
 $connection)))
 showerror();

 return true;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

D.3.2.8 Registering session handlers

Finally, the handlers implemented in Example D-3 through Example D-8 need to
be registered as callback functions with PHP. Example D-9 shows the call to
session_set_save_handler() with the names of each handler function.

Example D-9. Registering the user-defined session handlers with PHP

// Call to register user call back functions.

session_set_save_handler("sessionOpen",
 "sessionClose",
 "sessionRead",
 "sessionWrite",
 "sessionDestroy",
 "sessionGC");

D.3.3 Using the User-Defined Session Handler Code

Once the user-defined session handler code is implemented, it can be used by setting
up the session configuration in the php.ini file and including the library at the top of
PHP scripts that use sessions. The session.save_handler parameter needs to
be set to user, indicating that user-defined handlers are used; the
session.save_path parameter is set to the name of the database; and
session.name parameter is set to the name of the table. The following example
settings are used if session variables are stored in the PHPSESSION table of the
winestore database:

session.save_handler = user
session.save_path = winestore
session.name = PHPSESSION

Example D-10 shows how application scripts are modified to use the MySQL
session store; the script is a copy of Example D-1, with the addition of the directive
to include mysql_session.inc.

Example D-10. A simple PHP script that uses the MySQL session store

<?php
 // Include the MySQL session handlers
 include("mysql_session.inc");

 // Initialize a session. This call either creates
 // a new session or re-establishes an existing one.
 session_start();

 // If this is a new session, then the variable
 // $count is not registered

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // $count is not registered
 if (!session_is_registered("count"))
 {
 session_register("count");
 session_register("start");

 $count = 0;
 $start = time();
 }
 else
 {
 $count++;
 }

 $sessionId = session_id();

?>
<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd" >
<html>
 <body>
 <p>This page points at a session
 (<?=$sessionId ?>)

count = <?=$count ?>.

start = <?=$start ?>.
 <p>This session has lasted
 <?php
 $duration = time() - $start;
 echo "$duration";
 ?>
 seconds.
 </body>

</html>

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Appendix E. Resources
This appendix contains lists of books and online resources that cover many of the
topics discussed in this book. The appendix is divided into four sections:

Client-tier resources

HTML, XML, XHTML, CSS, and JavaScript resources.

Middle-tier resources

Web server, web technology, and PHP resources. In particular, we include
pointers to third-party PHP development tools, an introduction to the PHP
libraries, and open source projects.

Database-tier resources

Database theory, SQL, and DBMS-specific resources.

Security and cryptography resources

Software installation resources are listed at the end of Appendix A.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

E.1 Client Tier Resources

More information on HTML, the related topic of CSS, JavaScript, and directions in the
standards that web browsers support can be found in the following resources:

The W3C web site http://www.w3.org has links to many of the web
standards, including HTML 4 (http://www.w3.org/TR/html4/), Cascading
Style Sheets, XML, and XHTML. The HTML validator—which was used to
validate all examples in this book—can be found at http://validator.w3.org.

The HTML Writer's Guild (HWG) is an organization that provides many useful
resources to web developers, including links to lists of browser features and
HTML validators. Trial membership is free for the first year. The HWG web site
is http://www.hwg.org.

HTML & XHTML: The Definitive Guide, C. Musciano and B. Kennedy (O'Reilly).
This book is a comprehensive guide to writing HTML web pages, and covers
HTML 4 features including Cascading Style Sheets.

Cascading Style Sheets: The Definitive Guide, E. A. Meyer (O'Reilly). Besides
presenting the CSS material with many examples and case studies, this book
provides a CSS support chart that shows which browsers support which
features.

JavaScript: The Definitive Guide, D. Flanagan (O'Reilly). Provides an in-depth
reference to JavaScript with selected code examples; this book is ideal for the
intermediate audience who can program and understand the requirements of
JavaScript for a web database application.

The original cookie specification was developed by Netscape and can be found
at http://www.netscape.com/newsref/std/cookie_spec.html.

XHTML 1.0 Recommendations can be found from the W3C site at
http://www.w3.org/TR/2000/REC-xhtml1-20000126/.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

E.2 Middle Tier Resources

This section lists resources that contain more information on the Apache web server,
web performance tuning, networking, PHP programming, and third-party PHP add-
ons including Integrated Development Environments (IDEs), script optimization tools,
and commercially supported installation packages.

E.2.1 Web Server and Web Technology Resources

More information on the Apache web server can be found in the following resources:

The local documentation installed with the Apache web server. After following
the Apache installation instructions in Appendix A, the Apache manual is
accessible as http://localhost/manual/.

The Apache HTTP Server web site: http://httpd.apache.org.

Apache: The Definitive Guide, B. Laurie and P. Laurie (O'Reilly). Oriented
around the directives that can be used in the httpd.conf file.

More information on web servers, web performance tuning, and web performance
modeling and traffic characteristics can be found in the following resources:

Web Performance Tuning, P. Killelea (O'Reilly).

Capacity Planning for Web Performance: Metrics, Models, and Methods, D. A.
Menascé and V. A. F. Almeida (Prentice-Hall).

Here are some good background books that cover a range of topics in the middle tier,
focusing on web servers and web technology, but are slightly out of date:

How to Set Up and Maintain a Web Site, L.D. Stein (Addison Wesley).

Web Server Technology: The Advanced Guide for World Wide Web Information
Providers, N.J. Yeager and R. E. McGrath (Morgan Kaufmann Publishers).

E.2.2 Networking and Web Resources

The W3C web site:http://www.w3.org/History.html. This URL provides a
good starting point that includes pages containing many links, time lines, growth
statistics, and other useful resources.

Internet Core Protocols, E. Hall and V. Cerf (O'Reilly). This book offers a good
introduction to the protocols of the Web.

The HTTP/1.0 specification is contained in RFC-1945 and is found on the IETF
web site at http://www.ietf.org/rfc/rfc1945.txt.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The HTTP/1.1 specification is contained in RFC-2616 and is found on the IETF
web site at http://www.ietf.org/rfc/rfc2616.txt.

The Uniform Resource Identifiers (URI): Generic Syntax specification is
contained in RFC-2396 and is found on the IETF web site at
http://www.ietf.org/rfc/rfc2396.txt.

RFC-1180: TCP/IP Tutorial, T. Socolofsky and C. Kale. This RFC provides a
tutorial on how data is passed through a TCP/IP network and can be found at:
ftp://ftp.rfc-editor.org/in-notes/rfc1180.txt.

E.2.3 More About PHP

This book can't replace an introductory programming book or any of the excellent
PHP resources that are available in add-on products or from the Web. This section is
a brief overview of those resources.

E.2.3.1 Books

There are now more than 20 books covering PHP, and many of these also introduce
interaction with the MySQL DBMS. We recommend the following books—in no
particular order—as offering good coverage of PHP scripting topics:

A Programmer's Introduction to PHP 4.0, W. Gilmore (Apress Publishing).
Designed for moderately experienced programmers who are new to PHP.

Beginning PHP4, C. Lea, W. Choi, A. Kent, G. Prasad, and C. Ullman (WROX
Press). Recommended for novice programmers.

PHP Essentials, J. Meloni (Prima Publishing). Recommended for novice
developers who are interested in introductory web database topics as well as
PHP.

PHP Bible, T. Converse and J. Park (Hungry Minds, Inc.). Recommended for
novice programmers. More than half the 689 pages cover PHP programming.

PHP Fast & Easy Web Development, J. Meloni (Prima Publishing).
Recommended for beginners.

PHP3: Programming Browser-Based Applications with PHP, D. Medinets and D.
Medinets (McGraw-Hill). Recommended for intermediate programmers, but the
book is written about PHP3 and doesn't include many of the new features that
are core to development in PHP4

Programming PHP, by R. Lerdorf and K. Tatroe (O'Reilly). A good introduction
to PHP.

Many books omitted from this list are also excellent books, but they may focus more
on web database topics than on PHP, or they overlap significantly with the content of
this book. A detailed and frequently updated list of all PHP and related books can be
found at: http://www.php.net/books.php.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

E.2.3.2 Web resources

The best place to start is to check the list of links at the official PHP site,
http://www.php.net/links.php.

Here are some resources we frequently use:

http://www.php.net/manual/

The annotated online PHP manual at the official PHP site. Includes many
comments for each library and function and tips on use and common problems
encountered.

http://www.zend.com

Site of the commercial company held by long-term developers of PHP. Includes
articles, resources, free code, and tutorials.

http://www.hotscripts.com/PHP/

Articles, tips, tutorials, and scripts; includes many tutorials on installation in a
variety of environments.

http://php.resourceindex.com

Scripts, code fragments, and documentation.

http://www.phpbuilder.com

Articles, documentation, and code fragments.

http://www.devshed.com/Server_Side/PHP/

Tutorial-style articles on a range of PHP topics.

http://px.sklar.com

A simple, low-bandwidth site that contains PHP code fragments and some
complete applications.

http://www.thickbook.com

Julie Meloni's site that supports her two books described in the last section.
Includes code and tutorials, some of which aren't covered in the books.

E.2.3.3 Libraries

PHP has many libraries available for most common tasks in web database
applications. In this section, we list most of the PHP libraries and point to other
chapters in which selected libraries are discussed in more detail. For most libraries,
we provide brief or only partial information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following is an alphabetically sorted list of the libraries:

Apache HTTP server functions

Includes a function to retrieve all HTTP headers, getallheaders().

Array functions

There are almost 50 functions to sort, merge, split, iteratively process, and
return information about arrays. We discuss many of these functions in detail in
Chapter 2.

BCMath arbitrary precision mathematics functions

A library of functions to perform high-precision calculations with large numbers.

Bzip compression functions

Tools to read and write files compressed with Julian Seward's highly effective
compression algorithm; however, it's a bit slow compared to gzip.

Calendar functions

For conversion between various calendars, including the Jewish and Gregorian
calendars, and for finding the date of Easter.

CCVS API functions

RedHat's solution for credit card transaction processing.

Character type functions

Additional string functions to check what characters are contained within a
string. These can be used as a replacement for or in addition to the validation
methods described in Chapter 7.

ClibPDF function library

Requires purchase of a license if used for commercial applications: The
ClibPDF library accesses a set of C functions for creating Adobe PDF
documents. The C library ClibPDF is available from http://www.fastio.com
along with a licensing agreement.

CURL (client URL library) functions

Functions that communicate with resources using the FTP, gopher, HTTP,
LDAP, Telnet, and other protocols.

Database functions

The MySQL library functions are discussed in detail in Chapter 4, with
additional information on some functions in Chapter 5 and Chapter 6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

additional information on some functions in Chapter 5 and Chapter 6.
Techniques for using the other DBMS libraries to connect to selected DBMSs
are discussed briefly at the end of Chapter 4. Many other DBMS libraries are
also available and detailed in the PHP manual; we don't discuss them here.

Date and time functions

The basics of date and time functions are described in Chapter 2. Examples
are also discussed in Chapter 7.

Direct IO functions

A function library that accesses a file descriptor. The library is C-like in
functionality, and C programmers will feel at home with the functions.

Directory functions

Changes directories in the filesystem, list files in a directory, etc.

Error handling and logging functions

Functions to change error reporting. Controlling the severity of PHP errors that
are detected for debugging purposes is discussed in Chapter 2, and custom
error handlers are discussed in Chapter 10.

Encryption functions

Selected encryption functions for producing cipher-text from plain text—and
reversing the process—are discussed in Chapter 9.

eXtensible Markup Language (XML) functions

XML is a data format for structured document interchange, and this library
provides tools to parse and retrieve components of XML documents.

Filesystem functions

Retrieves information about files, creates and modifies attributes of files, reads
and writes files, and performs many other low-level file operations.

Forms Data Format functions

Tools to handle form data sent using the Forms Data Format (FDF) that's part of
Adobe's PDF standard.

FTP

Functions that implement the File Transfer Protocol.

Functions functions

Seriously! A set of functions that inspects whether a function exists and returns
details, such as the number of parameters to a function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GNU teletext

A GNU project to internationalize programs by making substitution of program
output messages in different languages easier.

GMP functions

More math functions for arbitrary-length integers using the GNU MP library; an
alternative to the BCMath library described earlier in this section.

HTTP functions

The header() function creates HTTP headers in a response to a web
browser. It is discussed and used in examples in Chapter 5 to Chapter 13.
The function setcookie() sets a cookie in a web browser and is discussed
in Chapter 8.

Hyperwave functions

This library offers functions to access the Hyperwave information system or
document database. Use of the library requires purchase of the enterprise
Hyperwave Information Server.

Image and graphics functions

Contains over 50 functions to draw images and render true-type fonts using the
GD library.

IMAP, POP3, and NNTP functions

Network-oriented functions that use these protocols to retrieve and process
email messages and Internet news postings.

IRC gateway

Functions to access an Internet relay chat (IRC) gateway. IRC is an Internet-
base chat room.

Lightweight Directory Access Protocol (LDAP) functions

Tools to connect to and retrieve information from servers that store hierarchical
directory information using LDAP.

Mail functions

Really one function, mail(), to send an email to a destination; discussed in
Chapter 12.

Mathematical functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Functions to do just about anything to a number, but not to very large numbers
(for those, use the BCMath or the GMP library); for example, the mathematical
library includes trigonometry, random number generation, logarithm, and
exponential functions. Many of these are discussed in Chapter 2.

Modular Calendar Access Library (MCAL) functions

Tools to access and manage an event calendar, such as a desktop diary, that is
managed the underlying MCAL C library.

Ming functions for Flash

Tools that allows creation of Flash format movies.

mnoGoSearch functions

Functions that access the freely available text search engine mnoGoSearch.

Network functions

Networking libraries for high- and low-level network communications; for
example, includes functions to check if a domain name exists, and convert
numeric IP addresses to domain names and vice versa. A short background on
networking can be found in Appendix B

Output control

Manages the buffering of output by PHP, allowing control of the PHP script
engine's output.

PDF functions

Functions that create and manipulate Adobe Portable Document Format (PDF)
documents.

POSIX functions

Functions that get information about processes, users, and other system-
oriented aspects of functions defined in the IEEE 1003.1 (POSIX.1) standards
document.

Program execution functions

These are discussed briefly in the context of securing a web database
application in Chapter 5.

Pspell functions

Spelling functions that can not only check spelling but also make suggestions
for corrections.

GNU Re-code functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Functions that convert strings from one character set to another.

Regular expressions

Along with the string functions, an introduction to regular expression functions is
covered in Chapter 2. (We cover only the native regular expression library that
conforms to the POSIX 1003.2 standard, not the Perl-compatible regular
expressions functions).

Satellite CORBA client extension functions

Functions that can access and use CORBA distributed objects.

Semaphore and shared memory functions

Functions based on Unix System V semaphores that allow multiple users
controlled access to shared resources such as global variables in shared
memory.

Session management functions

These functions are covered in detail in Chapter 8; an alternate session
management module is discussed in Appendix D.

SHMOP shared memory functions

These functions duplicate the functionality of the System V shared memory
tools described previously, but without some of the overheads in creating and
managing shared memory spaces.

Simple Network Management Protocol (SNMP) functions

Functions that interact with SNMP agents to find available objects and to set
those objects.

SWF Shockwave Flash functions

Another function library to create and use Flash format movies, with overlapping
functionality to the Ming library described earlier.

Socket functions

Low-level network libraries to open, send, and receive data, and close network
sockets (sockets are often loosely referred to as ports, which are discussed in
Appendix B). Has some overlap with the network library, but the socket library
is more concerned with low-level networking tasks.

String functions

The popular string functions are discussed in detail in Chapter 2.

URL (Uniform Resource Locator) functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tools that encode and decode MIME base64 encoded data used in HTTP and
email, that encode and decode special characters from URLs, and that parse a
URL and return its components.

Variable functions

Variable functions for determining and setting types are covered in Chapter 2.

Web Distributed Data eXchange (WDDX) libraries

Tools that process the XML-like format used in the open standard WDDX
format, a standard that permits interchange of data between web-scripting
languages such as PHP, ASP, and ColdFusion. More information about the
WDDX Software Development Kit (SDK) can be found at
http://www.openwddx.org.

XSLT (eXtensible Stylesheet Language Transformations) functions

XSLT is a language for transforming XML documents from one standard XML
format to another.

YAZ functions

A library that implements the Z39.50 protocol for information retrieval. Z39.50
can be used, for example, to issue a remote search on a text database and to
return results in a standard format.

YP/NIS functions

Tools that manage network functions remotely, such as password files.

Zlib compression functions

A set of functions to read and write gzip files compressed using the algorithms
of Jean-Loup Gailly and Mark Adler.

Several of these function libraries are immature and are dynamically being improved
and changed. New libraries emerge every month. Some libraries are outdated, and
the projects that underlie them are inactive. However, for most libraries, several
successful installations and uses have been reported, and the latest details can
usually be found along with example code at the PHP web site in the annotated
manual, http://www.php.net/manual/.

We have omitted any discussion of wholly redundant libraries, those used exclusively
with Microsoft Windows, very new libraries, unstable libraries, and those libraries that
aren't used in web applications.

E.2.3.4 Third-party products

Zend Optimizer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A freely available code optimizer that improves the performance of the
intermediate code generated by the Zend scripting engine. The Zend web site is
http://www.zend.com.

DBG: PHP Debugger

A free interactive debugger for PHP that includes a code profiler that finds code
bottlenecks. Available for Microsoft Windows and Linux, and licensed under the
same license as PHP. Available from: http://dd.cron.ru/dbg/.

afterBurner

BWare have recently released this free caching tool that caches PHP
precompiled scripts in the web server for fast execution when a script is run a
second or subsequent time. The afterBurner source code is available from
http://afterburner.bware.it.

Alternative PHP Cache (APC)

An alternative free PHP script caching tool that is covered by the same license
agreement as PHP itself. The APC source is available from
http://apc.communityconnect.com.

Zend is a company held by long-term developers of the PHP script engine. Their web
site, http://www.zend.com, sells several commercial PHP-specific products:

Zend Cache

Tool that integrates with the Zend engine to better cache scripts, prevent some
scripts being cached, and reduce latency. If high-throughput of a web database
application is required, Zend Cache is a useful tool.

Zend Encoder

Tool that converts text scripts to an intermediate format that can be distributed,
offering reasonable protection of copyright and the intellectual property in
scripts.

Zend IDE

New integrated development environment for PHP that includes a customizable
editor, syntax highlighting, and a debugger.

Zend Launchpad

Tool that allows systems administrators to maintain their PHP installation
through upgrades. It also guides administrators through the PHP installation
process and assists in selecting tools

NuSphere market several products that include and support PHP through their web
site http://www.nusphere.com. NuSphere products have optional additional
email, web, and phone support. Here's a list:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NuSphere MySQL and NuSphere MySQL Advantage are commercial products
that bundle together Apache, MySQL, and PHP with installation tools and other
supplementary products. As discussed in Appendix A, a free package is
available for download.

NuSphere PHPEd Advantage is a commercial package that includes PHP,
MySQL, and Apache as well as PHPEd, a PHP integrated development
environment (IDE) for Microsoft Windows, and other supplementary products.

ActiveState offer an IDE for Microsoft Windows and Linux called ASPN Komodo.
Komodo can be used for free under the Linux operating system or for free under the
Microsoft Windows environment by students, home users, and nonprofit
organizations. A commercial license for Microsoft Windows is required for other uses.
Komodo is available from http://www.activestate.com. There are several other
IDEs for PHP available including the PHPub development environment, K PHP
Develop, tsWebEditor, PHP Coder, and BBEdit.

E.2.3.5 Open source PHP applications

The following are popular examples of open source web database applications. Most
either provide good solutions to common application requirements, or make excellent
starting points for developing components or systems. The list isn't intended to be
comprehensive but instead are representative examples of different application types.

Bookmarker

A URL bookmarking management system,
http://www.renaghan.com/pcr/bookmarker.html

Basit

Web site content management system for managing small- to medium-size web
sites, http://www.basitonline.com/en/

bplog

Web-based news and announcement system, http://bplog.blackplasma.net

dev/coin online shop

For building simple online stores, http://www.devcon.net/software/shop/

E*reminders

A system to automatically send out emails about birthdays and other events,
http://sourceforge.net/projects/e-reminders/

gcdb

A customer billing and payment management system,
http://sourceforge.net/projects/gcdb/

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://sourceforge.net/projects/gcdb/

HPE

The Humble Portal Engine that brings together content to build a news portal,
http://sourceforge.net/projects/hpe/

IPM

The Incyte Project Manager for tracking and managing projects,
http://udpviper.com/project.php?project=ipm

Les Visiteurs

A web site statistical analysis package for analyzing and producing information
about site accesses, http://www.phpinfo.net/applis/visiteurs/

Mantis

A software development bug tracking system,
http://mantisbt.sourceforge.net

Phorecast

An email, calendar, contact, and event management system,
http://phorecast.org

Phorum

A web-based bulletin board forum, http://phorum.org

php3guest

A visitor guestbook, http://www.bastian-friedrich.de/comp/guestbook/

phpDVD

A system to track your DVD collection, http://ugo.scarlata.it/?pid=phpdvd

phpMyChat

A PHP-based chat room,
http://www.phpheaven.net/projects/phpMyChat/

phpShop

Reusable components to build an online shop, http://www.phpshop.org

postNuke

A self-described rogue content management system,
http://www.postnuke.com

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

E.3 Database Tier Resources

There are many excellent general database texts available that cover the broad fields
of relational databases, E-R modeling, and SQL. Amongst the best are:

An Introduction to Database Systems, C.J. Date (Addison Wesley).

Database System Concepts, A. Silberschatz, H.F. Korth, and S. Sudarshan
(McGraw-Hill).

Fundamentals of Database Systems, R. Elmasri and S.B. Navathe (Addison
Wesley).

Database Management Systems, R. Ramakrishnan and J. Gehrke (McGraw-
Hill).

For a coverage of SQL, there are several good books, but many are out-of-print.
Currently available books include:

A Guide to the SQL Standard: A User's Guide to the Standard Database
Language SQL, C.J. Date and H. Darwen (Addison Wesley). This book isn't for
the beginner but does an excellent job of covering the standard in detail.

SQL-99 Complete, Really, P. Gulutzan and T. Pelzer (CMP Books). MySQL
supports the SQL-92 standard, but this book is an excellent and long
introduction to SQL with many worked examples.

There are many books that cover the tuning of a specific DBMS. Here's one text that
is general in its introductory coverage and devotes a chapter to each DBMS product:

Database Performance Tuning Handbook, J. Dunham (McGraw-Hill).

For MySQL, the manual.html file distributed with the installation is an excellent
resource. Books include:

MySQL and mSQL (Nutshell Series), R.J. Yarger, G. Reese, and T. King
(O'Reilly).

MySQL, P. DuBois (New Riders Publishing).

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

E.4 Security and Cryptography Resources

There are many books on Web security and cryptography. We recommend the
following books—in no particular order—which cover topics relevant to those
discussed in Chapter 9:

Web Security, L. Stein (Addison Wesley). An excellent, comprehensive book
with sufficient technical and nontechnical depth.

Web Security and Commerce, S. Garfinkel and S. Spafford (O'Reilly). A good
introductory book that explains the topics in nontechnical language.

Applied Cryptography: Protocols, Algorithms, and Source Code in C, B.
Schneier (John Wiley and Sons). Covers the field of cryptography in technical
depth.

The Code Book, S. Singh (Anchor Books). An enjoyable popular science book.

The RSA encryption web site, http://www.rsa.com.

SSL extensions and patches for Apache: http://www.apache-ssl.org,
http://www.modssl.org/, http://www.openssl.org/source/.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Colophon
Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Web Database Applications with PHP and MySQL is a
platypus. The platypus (Ornithorhynchus anatinus) of Australia and Tasmania has
been described as a living fossil. Its earliest known remains date back 100,000 years,
and it combines mammalian and reptilian features. It is aquatic, furry, warm-blooded,
and lays eggs. It sports webbed feet, a beaverlike tail, and a ducklike bill.

The preferred plural of platypus is either "platypus" or "platypuses," and a baby
platypus has been referred to as a "platapup."

The platypus was first described by Dr. George Shaw, a British scientist. He thought
the animal was a hoax and took a pair of scissors to the pelt, expecting to find stitches
attaching appendages to skin.

The platypus is an air-breathing mammal that spends most of its day resting in an
underground burrow. However, it feeds only in the water and is rarely observed on
land. The platypus hunts mostly at night for such food as shrimp, worms, and aquatic
insects. Because the animal doesn't need to hear or see its intended food, a platypus
protects its eyes and ears by automatically closing them underwater and relies on its
bill to locate prey. While diving, the platypus temporarily stores food in special cheek
pouches. When the animal returns to the surface to breathe, the food is ground up
between rough pads located inside the bill.

A female platypus produces a clutch of one to three eggs in late winter or spring. The
mother is believed to incubate them between her lower belly and curled-up tail for
about 10 days as she rests in an underground nest made of vegetation collected from
the water. She doesn't have nipples; her milk is instead secreted from two patches of
skin midway along her belly. It's believed that a platypup feeds by slurping up milk
with sweeps of its stubby bill. When juveniles enter the water at about four months,
they are nearly as long as an adult.

The platypus is the only Australian mammal known to be venomous. Adult males
have a pointed spur located above the heel of each hind leg that can inject poison
produced by a gland in the thigh. Platypus venom isn't considered life-threatening to
humans. However, spurring is painful, because platypus spurs are sharp and can be
driven in with great force; the poison itself triggers severe pain in the affected limb.

The platypus is officially classified as "common but vulnerable" in Australia. As a
species, it isn't currently considered endangered. However, platypus populations are
believed to have declined or disappeared, particularly in urban and agricultural
settings; the specific underlying reasons for this decline is unknown.

Mary Anne Weeks Mayo was the production editor and copyeditor for Web Database
Applications with PHP and MySQL. Rachel Wheeler, Colleen Gorman, Emily Quill,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Applications with PHP and MySQL. Rachel Wheeler, Colleen Gorman, Emily Quill,
and Jane Ellin provided quality control. Leanne Soylemez and Phil Dangler provided
production assistance. Brenda Miller wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie
Freedman. The cover image is an original engraving from Johnson's Natural History.
Emma Colby produced the cover layout with QuarkXPress 4.1 using Adobe's ITC
Garamond font.

Melanie Wang designed the interior layout, based on a series design by David Futato.
Mihaela Maier converted the files from Microsoft Word to FrameMaker 5.5.6 using
tools created by Mike Sierra. The text font is Linotype Birka; the heading font is
Adobe Myriad Condensed; and the code font is LucasFont's The Sans Mono
Condensed. The illustrations that appear in the book were produced by Robert
Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop
6. The tip and warning icons were drawn by Christopher Bing. This colophon was
compiled by Mary Anne Weeks Mayo.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

 $aCounter->increment()

 $HTTP_POST_VARS

 break element

<form>

 for client entry

 for database writes , 2nd

 for login page

 prefilling data and

 processing data and

 validating data and

 <form> validation function

 <option selected> element

 .php suffix, debugging and

 @ operator prefixing function calls

 @ symbol

A

 absolute value

 Access (Microsoft)

 addCase()

 AddSlashes()

 AddType directive, debugging and

 aggregation

 alert()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ALTER TABLE statement

 alternative patterns

 anchors

 Apache server , 2nd

installing

 to use SSL

 using for HTTP authentication

 Apache Software Foundation

 application logic in middle tier

 developing with PHP , 2nd

 for order receipts

 shipping.3 script and

 stored procedures and

 applications interface

 applications-layer protocols

 argument types

 arguments

 arithmetic operators

 array functions

 array mssql_fetch_row()

 array mysql_fetch_array()

 array mysql_fetch_row()

 array pg_fetch_row()

 array pointers

 array()

 array_map()

 array_reverse()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 array_search()

 array_walk()

 arrays

 creating

 maximum/minimum values and

 sorting

 splitting a string into

 arsort()/asort()

 assign()

 assignment operator, vs. equality operator

 assignments

 associative arrays , 2nd

 sorting

 asymmetric encryption techniques

 at (@) symbol in email addresses , 2nd

 attribute names

 attributes

 KEY clause and

 authenticated()

 authenticateUser() , 2nd

 authentication , 2nd

for customers/users

 example of

 how it works

 script for

 using a database for

 web database applications and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 authorization, script for

 automated housekeeping

 automatic type conversion

 auxiliary tables, locking with

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

 $aCounter->increment()

 $HTTP_POST_VARS

 break element

<form>

 for client entry

 for database writes , 2nd

 for login page

 prefilling data and

 processing data and

 validating data and

 <form> validation function

 <option selected> element

 .php suffix, debugging and

 @ operator prefixing function calls

 @ symbol

A

 absolute value

 Access (Microsoft)

 addCase()

 AddSlashes()

 AddType directive, debugging and

 aggregation

 alert()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ALTER TABLE statement

 alternative patterns

 anchors

 Apache server , 2nd

installing

 to use SSL

 using for HTTP authentication

 Apache Software Foundation

 application logic in middle tier

 developing with PHP , 2nd

 for order receipts

 shipping.3 script and

 stored procedures and

 applications interface

 applications-layer protocols

 argument types

 arguments

 arithmetic operators

 array functions

 array mssql_fetch_row()

 array mysql_fetch_array()

 array mysql_fetch_row()

 array pg_fetch_row()

 array pointers

 array()

 array_map()

 array_reverse()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 array_search()

 array_walk()

 arrays

 creating

 maximum/minimum values and

 sorting

 splitting a string into

 arsort()/asort()

 assign()

 assignment operator, vs. equality operator

 assignments

 associative arrays , 2nd

 sorting

 asymmetric encryption techniques

 at (@) symbol in email addresses , 2nd

 attribute names

 attributes

 KEY clause and

 authenticated()

 authenticateUser() , 2nd

 authentication , 2nd

for customers/users

 example of

 how it works

 script for

 using a database for

 web database applications and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 authorization, script for

 automated housekeeping

 automatic type conversion

 auxiliary tables, locking with

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

B

 BDB table type

 bold()

 reusing

 bookmarks, restrictions on

 Boolean close()

 Boolean destroy()

 Boolean gc()

 Boolean mail ()

 Boolean open()

 Boolean session_destroy()

 Boolean session_is_registered()

 Boolean session_register()

 Boolean session_start()

 Boolean values

 Boolean variables

 Boolean write()

 BottleCounter()

 branch statements

 browse()

 implementing

 producing page numbers from

 search1.script and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

browsers

 authentication and

 interacting with using JavaScript

 redirection and , 2nd

 which in use by users

 browsing , 2nd

 search.1 script for

 bulk loading of data

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

C

 caching responses

 callback functions

 calling pages

 cart.1 script (winestore home page) , 2nd

 cart.2 script (displaying shopping cart) , 2nd

 cart.3 script (adding items to shopping cart)

 cart.4 script (emptying shopping cart)

 cart.5 script (browser redirection) , 2nd

 cart.6 script (updating quantities in shopping cart) , 2nd

 cartesian product

 Cascading Style Sheets (CSS), templates and

 case study

 case, changing

 caseCount()

 casting operators

 ceil()

 certificates

 creating for ApacheSSL

 challenge method

 character lists

 characters

escaping

 special characters and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 newline

 charAt()

 checkdate() , 2nd

 checkdnsrr()

 cipher suites

 classes

 clean() , 2nd

 preprocessing user data and

 session variables and

 updating shopping cart quantities and

 client entry <form>

 script for

 client tier , 2nd

 managing state in

 resources for further reading

 validation in

 client-server architecture

 client-side validation

 performance and , 2nd

 clients, thick vs. thin , 2nd

 cmp_length()

 combined scripts

 command interpreter for MySQL

 comments

 commit and rollback processing

 compare()

 comparison operators

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 concat()

 concurrency

 concurrent access

 conditional expressions

 conditional statements

 connection handles

 consoles

 constants

 constraints

 containsblanks()

 control characters

 control flow functions

 cookies

 not setting for session management

 turning off

 count() , 2nd

 CREATE DATABASE statement , 2nd

 CREATE TABLE statement , 2nd

creating

 arrays

 databases

 formatted output

 objects

 PHP scripts

tables

 with visual appeal

 winestore application with SQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cron tables

 crond daemon

 crypt() , 2nd

 salt string to

 using password() instead of

 cryptography

 resources for further reading

 SSL protocol and

 CSS (Cascading Style Sheets), templates and

 current()

 customer.1 script (validation)

 customer.2 script (data entry)

 customer.3 script (receipt)

customers

 authenticating

managing

 validation script for

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

D

data

inserting

 INSERT INTO ... SELECT statement and

 outputting with echo/print statements

 passing for queries

 tainted

 web security for

 working with

 writing to databases , 2nd

 Data Definition Language (DDL)

 data entry, script for

 Data Manipulation Language (DML)

 data versioning

 data-access module

 database deletes , 2nd

 database inserts

 sample script for

 database management system

 database recovery

 database tier , 2nd

 managing sessions in

 resources for further reading

 storing session variables in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 database updates , 2nd

 sample script for

 database writes

 database-driven querying

 databases , 2nd , 3rd

 creating

 displaying structure of with SHOW command

 inserting uploaded files into

 migrating data and

 non-MySQL, accessing

 vs. spreadsheets

 terminology for

 using for authentication

 writing to

 datatypes

 date and time

 dates, validating

 SQL functions for

 date() , 2nd

 db.inc include file , 2nd

 clean() in

 DBMS (database management system) , 2nd , 3rd

 migrating data and

 DBMS (database management system)

 components of

 modifying

 reasons for using

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DDL (Data Definition Language)

 deadlock problem

debugging

 equality operator vs. assignment operator and

 flush() and

 PHP scripts

 print_r()/var_dump() for

 decode()

DELETE statement

 limitations of

 vs. DROP statement

 WHERE clause and

 deletes

deleting

 data

 indexes

 users

 DES encryption method

 die()

 digital certificates

 dirty read problem , 2nd

 displayCart()

 displayWines()

 displayWinesList()

 DISTINCT clause , 2nd

 DML (Data Manipulation Language)

 do...while loop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 doublevalue()

 downloads

 Apache server , 2nd

 ApacheSSL

 mod_ssl

 MySQL

 OpenSSL

PHP

 sample scripts for

 DROP DATABASE statement

 DROP INDEX statement

 DROP TABLE statement

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

E

 each() , 2nd

 echo statement

email addresses

 @ symbol in , 2nd

 validating

 email receipts , 2nd

 shipping.1 script and

 embedded links

 caution with

 passing data with

 empty() , 2nd

 encode()

 encryption , 2nd

 functions for

 resources for further reading

 end tags

 end()

 end-loop statements

 entity-relationship modeling

 equality operator, vs. assignment operator

 ER modeling , 2nd

 for winestore application

 ereg()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ereg()

 dates, validating and

 extracting values and

 numbers, validating and

 eregi()

 email addresses, validating and

error handling

 custom error handlers for

 for MySQL functions

error messages

 displaying

 improving

 error reporting

 error.inc include file , 2nd

 error_log()

 errorHandler()

 EscapeShellCmd()

 escaping characters , 2nd

 special characters and

 events

 exec()

 explode()

 exponential functions

 expressions

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

F

 fieldError() , 2nd

 files, uploading and inserting into databases

 filesize()

 float functions

 floating-point numbers

 floats

 floor()

 flush()

 fopen()

 for loop

 foreach loop

 using arrays with

 formatted output, creating

formatting

 dates

 strings

 fread()

 front-page panel

 functions (for other databases)

 functions (PHP)

 for accessing sessions

 array

 for database modifications

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 exponential

 float

 integer

 logarithmic

for MySQL

 functions to avoid

 passing variables to

 regular expression

 reusing

 support

 user-defined

 functions (SQL)

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

G

 garbage collection

 session handlers for

 Gemini table type

 GET attribute, cookies and

 getCustomerID()

 gethostbyname()

 getmxrr()

 getrandmax()

 global statement/global variables

 gmdate()

 gmmktime()

 GRANT statement

 GROUP BY clause

 grouping output

 groups

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

H

 handles

 HAVING clause

 header()

 browser redirection and

 credentials and

 debugging and

 insertion script and

 starting sessions and

 heading() , 2nd

 heterogeneous arrays

 hexadecimal system

 hijacking

 home page for the winestore application , 2nd

 housekeeping

 HTML (Hypertext Markup Language)

 embedded links and

 templates and

 W3C validator for

 HTML <form> environment

 HTML <pre> formatted text tag , 2nd

 HTML <table> environment , 2nd

 HTML receipts , 2nd

 shipping.2 script and , 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 HTTP (Hypertext Transfer Protocol) , 2nd , 3rd

 HTTP authentication

 PHP and

 problems with

 HTTP redirection

 HTTP requests , 2nd

 HTTP responses

 HTTP servers , 2nd

 Hypertext Markup Language

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

I

 IBM, SQL and

 identifier attributes

 identifiers

 if...else statement

 implode()

 in_array()

 include directive

 caution with

 using

 include files

 incorrect summary problem

 index files

 indexes

 deleting/working with

 inheritance

 initial statements

 InnoDB table type

 INSERT DELAYED feature

 INSERT INTO ... SELECT statement

 INSERT INTO statement

 inserts

 installation guide for software used with this book

 int mssql_close()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int mssql_num_fields()

 int mssql_select_db()

 int mysql_affected_rows()

 int mysql_change_user()

 int mysql_close()

 int mysql_create_db()

 int mysql_data_seek()

 int mysql_drop_db()

 int mysql_free_result()

 int mysql_insert_id()

 int mysql_num_fields()

 int mysql_num_rows()

 int mysql_select_db ()

 int OCIExecute()

 int OCIFetch()

 int OCILogoff()

 int OCINumCols()

 int odbc_close()

 int odbc_fetch_row()

 int odbc_num_fields()

 int pg_close()

 int pg_num_fields()

 integers , 2nd

 converting to/from strings

 functions for

 rounding

 interactive validation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 intval()

 IP addresses

 limits placed on

 session hijacking and

 is_array()

 is_uploaded_file()

 isset() , 2nd

 debugging and

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

J

JavaScript

 tips and tricks for

 validating <form> data with

join queries

 with more than two tables

 querying MySQL with

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

K

 key exchange

 key()

 keys

 sorting on

 krsort()/ksort()

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

L

length

 of email addresses, checking

 of strings

 of URLs , 2nd

 length()

 library functions

 LIMIT operator , 2nd

 links, embedded

 Linux operating system, installing software and , 2nd

 list() , 2nd

 locate()

 LOCK TABLES statement

 locking paradigms

 locking tables

 locks

 logarithmic functions

 logged_on_page()

login

 required for users

 script for

 login <form>

 login_page() , 2nd

 loginButtons()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 logout script

 loop conditions

 loops

 changing behavior of

 lost update problem

 lower()

 ltrim() , 2nd

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

M

 mail() , 2nd

 for order confirmation receipt

 mathematical functions

 mathematical library

 max()

 MD5 hashing algorithm

 memory, performance and

 metacharacters

 microseconds

 Microsoft Access

 Microsoft SQL server

 microtime() , 2nd

 middle tier , 2nd

 components of

 resources for further reading

 validation in

 MIME (Multipurpose Internet Mail Extensions)

 min()

 mixed OCIResult()

 mixed read()

 mixed types

 mktime()

 mod_ssl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 modifiers

 mouse roll-overs

 mouse rollovers

 mssql_query()

 mssql_select_db()

 multidimensional arrays

 MULTIPLE attribute

 multiple queries

 Multipurpose Internet Mail Extensions (MIME)

 MyISAM table

 MySQL , 2nd , 3rd

 command interpreter for

 connecting to

functions for

 functions to avoid

 installing/configuring

 limitations of

 LOCK TABLES /UNLOCK TABLES statements in

 manual for , 2nd

 modifying

querying

 with SELECT statement

 table-locking paradigm in

 techniques for fine-tuning

 working with

 mysql_affected_rows() , 2nd

 mysql_close() , 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 mysql_connect() , 2nd

 error handling and

 mysql_data_seek()

 mysql_errno()

 mysql_error() , 2nd

 mysql_errorno()

 mysql_fetch_array() , 2nd , 3rd

 second or subsequent queries and

 tricks to using

 mysql_fetch_field() , 2nd

 mysql_fetch_object() , 2nd

 mysql_fetch_row()

 mysql_insert_id() , 2nd

 mysql_list_tables()

 mysql_num_fields()

 mysql_num_rows() , 2nd

 error handling and

 mysql_unbuffered_query() and

 using instead of int mysql_affected_rows()

 mysql_pconnect() , 2nd

 error handling and

 mysql_query()

 error handling and

 second or subsequent queries and

 mysql_select_db()

 mysql_tablename()

 mysql_unbuffered_query()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 mysql_unbuffered_query()

 error handling and

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

N

 natural joins

 nested queries

 not supported in MySQL

 newline characters

 next()

 nl2br()

 normalization/normalized databases

 not equals operator

 numbered arrays

 numbers

 random

 systems of

 validating

 numeric assignments

 numeric attributes

 NuSphere

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

O

 object mysql_fetch_field()

 object mysql_fetch_object()

 objects

 OCIExecute() , 2nd

 OCIFetch()

 OCILogon()

 OCIParse()

 OCIResult()

 octal system

 ODBC functions

 odbc_connect()

 odbc_exec()

 one-component querying , 2nd

 Open DataBase Connectivity functions

OpenSSL

 certificates and

 downloading/installing

 operator precedence

 operators

 optional characters

 Oracle 7/8

 ORDER BY clause , 2nd

 order.1 script (logon) , 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 order.2 script (logout)

 order.3 script (finalizing orders) , 2nd

 ordering wines

 receipts for , 2nd , 3rd , 4th

output

 debugging and

 with echo/print statements

 formatting

 sorting/grouping

 variable substitution and

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

P

 padded strings

 page numbers/page links

 panel (front-page panel)

 parameters

 for changing session management behavior

 password() , 2nd

performance

 client-side validation and , 2nd

 locking tables and

 MySQL and

 server-side validation and

 sessions and

 synchronization problems and

 user-defined functions and

 permissions

 persistent connections , 2nd

 personalizing web sites

 pg_connect()

 pg_exec()

 PHP scripting language , 2nd , 3rd

 arrays and

 benefits for writing web-enabled scripts and

 branch statements and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 conditional statements and

 functions)

 HTTP authentication and

 initializing variables and

 installing

 loops and

 objects and

 online manual for

 regular expressions and

 scripting environment of

 session management and , 2nd

 strings and

 using to access non-MySQL databases

PHP scripts

 for authentication

 creating

 debugging

 example of

 for login <form>

 for logout

 managing HTTP authentication with

 of examples for the winestore

 reusing functions and

 PHP Triad for Windows

 PHP\: Hypertext Preprocessor

 $PHPSESSID/PHPSESSID

 ports

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 POST attribute, cookies and

 post-validation error finding

 PostgreSQL , 2nd

 powers

 precedence of operators

 prev()

 primary keys , 2nd

 print statement

 print_r() , 2nd

 printf()

 private keys

 privileges

 protocols

 applications-layer

 SSL , 2nd

 TCP/IP

 proxy caches

 pseudo-random numbers

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

Q

 query evaluator

 query results

querying

 automated, for housekeeping

database-driven

 five steps to

 INSERT INTO ... SELECT statement and

 with join queries

 multiple queries and

 one-component , 2nd

 with SELECT statement

 table aliases for

 techniques of

 two-component

 user-driven , 2nd

 quick start guide for MySQL

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

R

 rand()

 random numbers

 rawurlencode() , 2nd

 RDBMS (relational database management system) , 2nd

 read locks

 read-lock queue , 2nd

 receipts for orders placed , 2nd , 3rd , 4th

 records

 recovery

 redirection , 2nd

 references

 regular expression functions

 regular expressions

 metacharacters as

 relational database management system

 relational databases , 2nd

 accessing

 planning/designing

 relational model

 reload problem

 repeating characters

 requests, HTTP and

 require directive

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 reset()

 resource mssql_connect()

 resource mssql_query()

 resource mysql_connect()

 resource mysql_pconnect()

 resource mysql_query()

 resource mysql_unbuffered_query()

 resource OCILogon()

 resource OCIParse()

 resource odbc_connect()

 resource odbc_exec()

 resource pg_connect()

 resource pg_exec()

 resources for further reading

 MySQL manual

 software installation and configuration

 responses, HTTP and

result sets

 displaying

 limiting

 results (query results)

 return types

 return()

 REVOKE statement

 roll-over feature

 rollover feature

 root user

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 round()

 rows

 rsort()

 rtrim() , 2nd

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

S

 salt string , 2nd , 3rd

 scope

 script tags, debugging and

 scripting languages , 2nd

 engine for

 scripts

 adding multiple queries to

 combined

 for customer management

 for the winestore application , 2nd , 3rd

 search.1 script (browsing wines) , 2nd

 searching

 Secure Socket Layer protocol

 security , 2nd , 3rd

 importance of

 resources for further reading

 sessions and

 select lists

 SELECT statement

 selectDistinct() , 2nd

 browsing and

 client entry <form> and

 semicolon ending statements, debugging and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 send_confirmation_email()

 Sequel

 serializing values

 server variables

 server-side validation

 performance and

 session cookies

 session handlers

 registering

 session hijacking

 session IDs (session identifiers) , 2nd

 session management , 2nd

 configuring

 database tier and

 security and

 session time-outs

 session variables , 2nd

 authorization script for

 saving last-entered values as

 storing in database tier

 using

 session-based applications, building

 session.use_cookies parameter

 session_destroy() , 2nd

 session_id() , 2nd

 session_is_registered()

 session_register()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 session_set_save_handler()

 session_start()

 session_unregister()

 session_unset()

 sessionClose()

 sessionOpen()

 sessionRead()

 sessions

 ending

 PHP functions for accessing

 reasons for using/not using

 starting

 sessionWrite()

 set_error_handler() , 2nd

 setcookie() , 2nd

 debugging and

 setting/unsetting variables

 settype()

 setupQuery()

 shipping wines

 shipping.1 script (email receipt) , 2nd

 shipping.2 script (HTML receipt)

 shipping.3 script (order receipt)

 shopping cart

 adding items to

 converting items in to orders , 2nd

 displaying contents of , 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 emptying , 2nd

 housekeeping for

 updating quantities in , 2nd

 short-circuit evaluation property

 SHOW command

 show_HTML_receipt()

 showCart()

 showerror() , 2nd , 3rd

 showLogin()

 showMessage() , 2nd

 showPanel()

 showPricing() , 2nd

 showVarieties() , 2nd , 3rd

 browsing and

 vs. showPricing()

 showWines()

 Smarty PHP template engine

 sort()

sorting

 arrays

 output

 space()

 split()

 spreadsheets, vs. databases

 sprintf()

 SQL (Structured Query Language) , 2nd , 3rd

 components of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 converting E/R model to

 queries and

 winestore application, creating with

 working with MySQL and

 SQL interpreter

 SQL server (Microsoft)

 srand() , 2nd

 SSL protocol

 installing Apache to use

start/end tags

 include statement and

 omitting

 starvation problem

 state

 building applications to maintain

 stateless applications, building

 stored procedures

 str_pad()

 str_replace()

 strcasecmp()

 strcmp() , 2nd , 3rd

 strftime()

 string assignments

 string clean()

 string comparison operators/functions

 string crypt()

 string getCustomerID()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 string literals , 2nd

 string mysql_tablename()

 string session_id()

 string showWine()

 strings

 comparing

 converting to timestamp , 2nd

 converting to/from integers

 splitting into an array

 stristr()

 strlen()

 strncasecmp()

 strncmp()

 strpos() , 2nd

 strrchr()

 strrpos()

 strstr()

 strtotime() , 2nd

 strtr()

 Structured Query Language

 strval()

 subject string

 subsecond times

 substr() , 2nd

 substr_replace()

 substring()

 substrings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 substrings

 replacing , 2nd

 superuser

 support functions

 swapping memory

 switch statement

 synchronization, problems with caused by sessions

 system requirements for the winestore application

 system()

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

T

 table aliases , 2nd

tables

creating

 with visual appeal

 displaying details of

 locking

 temporary

 working with

 tainted data

 TCP/IP protocol

 HTTP and

 templates

 temporary tables

 terminology for databases

 testing variables

text files

 bulk loading data from

 vs. databases

 thesame()

 thick clients , 2nd

 thin clients

 threads

 three-tier architectures

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 three-tier architectures

 reasons for using

 time

 time-outs , 2nd

 time string

 time() , 2nd

 timestamp

 tracking

 transaction management

 transactions

 commit/rollback and

 trigger_error()

 triggers

 trigonometry functions

 trim() , 2nd

 trimming whitespace

 two-component querying

 two-phase locking

 type conversion

 type-casting

 types

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

U

 uasort()

 unary not operator

 Unix cron tables

 Unix timestamp

 unix_timestamp()

 UNLOCK TABLES statement

 unrepeatable read problem , 2nd

 unset()

 Update Quantities button

 UPDATE statement

 limitations of

 privileges and

 WHERE clause and

 update()

 updateDiscount()

 updatePassword()

 updates

 updating data

 upper()

 URL rewrite feature

 URLs

 Apache server , 2nd

 ApacheSSL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

embedded

 passing data with

 mod_ssl

 MySQL

OpenSSL

 documentation for

 passing data with

PHP

 manual for

 PHP Triad for Windows

 PostgreSQL

 Smarty PHP template engine

 this book

 winestore application

 XTemplate class library

 user agents

 user input

 querying with

 security and

 user tracking

 user-driven querying

users

 adding/deleting

authenticating

 customer authentication and

 authorizing access for

 customer management and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 element comparisons defined by

 functions defined by

 login requirement for

 multiple, issues affecting

 reload problem and

 session handlers defined by

 which web browser used by

usort()

 comparing strings and

 sorting arrays and

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

V

 validation , 2nd

 client-side

 for dates , 2nd

 for email addresses

 for numbers

 server-side

 validation scripts

 for customers

 validator for HTML

 var_dump() , 2nd

 variable substitution

 variables

 assignment and

 content/type of, examining

 debugging and

 initializing with PHP

 passing to functions

 scope and

 verify()

 views

 not supported in MySQL

 void loginButtons()

 void selectDistinct ()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 void showCart()

 void showLogin() , 2nd

 void showMessage()

 void showPricing()

 void showVarieties()

 volumeDiscount()

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

W

 W3C validator for HTML

 Web (the)

 protocols and

 web browsers

web database applications

 authentication and

 building

 case study illustrating

 components of

 locking tables and

 web pages, reload problem and

 web scripting languages , 2nd

 web servers

 web sites, personalizing

 web spiders

 WHERE clause

 join queries and

 while loop

 whitespace

 wildcards

 window.close()

 window.open()

 window.print()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 windows.history.go(-1)

 winestore application

 components of

 creating with SQL

 customer authentication for

 customer management for

 customer validation for

database for

 loading

 ER modeling for

 front-page panel for

 home page for

 ordering and shipping wines from , 2nd

 regions, adding to

 relations in

 sample PHP scripts for, downloading/installing

 scripts for , 2nd , 3rd

 sessions, adding to

 shopping cart for

 system requirements for

 wines, adding to

 wizards

 write-lock queue , 2nd

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

X

 XTemplate class library

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Web Database Applications with PHP & MySQL

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W]
[X][Z]

Z

 Zend engine , 2nd

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

