This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| |

Publisher: O'Reilly

First Edition March 2002
ISBN: 0-596-00041-3, 582 pages

s ViEw

Web Database Applications with PHP and MySQL offers web developers a mixture of theoretical and
practical information on creating web database applications. Using PHP and MySQL, two open source
technologies that are often combined to develop web applications, the book offers detailed information on
designing relational databases and on web application architecture, both of which will be useful to readers
who have never dealt with these issues before. The book also introduces Hugh and Dave's Online Wine
Store, a complete (but fictional) online retail site implemented using PHP and MySQL.

| |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

2. Validati S | Cli
2.1 Validati | E R inq for Web Datal Applicati
755 _Side Validati

2.3 Client-Side Validati ith JavaScriof

8. Sessions

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Web Datal Applicati ith PHP & MySQI
Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway
North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business,
or sales promotional use. Online editions are also available for most titles

(http://safari.oreilly.com). For more information contact our
corporate/institutional sales department: 800-998-9938 or

corporate@oreilly.com.

The O'Reilly logo is a registered trademark of O'Reilly & Associates, Inc.
Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations
appear in this book, and O'Reilly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial
caps. The association between the image of a platypus and the topic of
web database applications with PHP and MySQL is a trademark of
O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the
publisher and the author assume no responsibility for errors or omissions,
or for damages resulting from the use of the information contained herein.

R [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

Preface

Web database applications integrate databases and the Web. Well-known web
destinations such as online auction sites, retail stores, news sites, discussion forums,
and personalized home pages are all examples of web database applications. The
popularity of these applications stems from their accessibility and usability: thousands
of users can access the same data at the same time without the need to install

additional software on their machines.
[+ Fravisui]| m

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

What This Book Is About

This book is for developers who want to build database applications that are
integrated with the Web. It presents the principles and techniques of developing
small- to medium-scale web database applications that store, manage, and retrieve
data, as well as the basic techniques for securing an application. The architecture we
describe is a successful framework for applications that can run on modest hardware
and process more than a million hits per day from users.

An important feature of this book is our ongoing case study, Hugh and Dave's Online
Wines. It's a complete but fictional online retail store that allows users to browse and
search a database of wines, add items to a shopping cart, manage their membership,
and purchase wines. Searching, browsing, storing user data, validating user input,
managing user transactions, and security are each the subject of a chapter, and each
topic is illustrated with examples from the case study. The completed winestore
scripts are presented and briefly discussed at the end of the book.

We use open source software. Our database management system (DBMS) is
MySQL, a system known for its suitability to applications that require speed but low
resource overheads. Our scripting language is PHP, which is best known for its
function libraries that interact with more than 15 relational database systems, the web
environment, and many other services. We use PHP to develop the application logic
that brings together the Web and the relational database management system
(RDBMS). Apache is our web server of choice.

T

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

What You Need to Know

This book is about understanding and developing application logic that brings
databases and the Web together. We introduce database systems over the course of
the book, but our discussions don't replace a book or class dedicated to relational
database theory, or a book about a specific relational database system such as
MySQL. Likewise, we assume you are already familiar with the Web. We introduce
but don't delve deeply into the three key web protocols, HTML, HTTP, and TCP/IP.

We also assume you can program in a third-generation programming language such
as C, C++, Java, Perl, FORTRAN, or Visual Basic. Our introduction to the PHP web
scripting language doesn't assume you are familiar with web scripting or are an expert
programmer, but we do assume you understand the basic HTML constructs and are
familiar with the popular web browsers. If you can author an HTML document with a
text editor that containsa <form> and a <table> element, you have sufficient HTML
skills to use this book. It is the principles of structure in the markup process that are
important, not the attractiveness or usability of the presentation in the web browser.
We introduce advanced HTML concepts as required, but an HTML guide such as
O'Reilly's HTML and XHTML: The Definitive Guide, by Chuck Musciano and William
Kennedy, is a useful resource for understanding and building web database
applications. You may also find O'Reilly's Programming PHP, by Rasmus Lerdorf and
Kevin Tatroe useful as well.

You don't need a detailed understanding of relational databases to use this book, but
a working knowledge is helpful. We present the relational database theory needed for
developing simple applications, and we cover many other basic concepts, including
how to tell when a database is the method of choice to store data, the architecture of
a DBMS, the database query language SQL, and a case study that models system
requirements and converts the model to a database design. This book isn't a
substitute for the many good resources on database theory, however, it's enough to
begin developing the underlying databases for many web database applications.

We briefly introduce web servers and networking in Chapter 1 and provide additional
material in Appendix B. Both web servers and networking are important to a web
database application but aren't the focus of this book. We present enough information
to set up a web server and to understand how it fits in the architecture of a web
database application. For many applications, this is sufficient. Likewise, we present
sufficient detail so that you will understand what networking and network protocol
issues impact web database application design.

) [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

[rawus Poaxr v

How This Book Is Organized

There are 13 chapters and 5 appendixes in this book. Chapter 1 to Chapter 3
introduce web database applications, PHP, MySQL, and SQL.:

Chapter 1

Discusses the three-tier architecture commonly used in web database

applications and in those that we discuss in this book. We introduce each of the
three tiers and the features of each, and we introduce the software tools that we

use. We also briefly introduce web protocols. The chapter concludes with an
introduction to our case study example, Hugh and Dave's Online Wines. We
discuss the components of the winestore, the system requirements, and where
in the book the techniques to develop each component are covered.

Chapter 2

Introduces the PHP scripting language. It covers programming in PHP and
discusses the basic programming constructs, variables, types, functions,
techniques, and common sources of bugs. We include many short code
examples to illustrate how to program with PHP.

Chapter 3

Introduces the MySQL DBMS and how to interact with it using the database
query language SQL. Using examples from the online winestore, we introduce
the SQL commands for creating, deleting, and updating data and databases.
We also present a longer, example-driven section on querying the online
winestore. The chapter concludes with discussion of advanced topics, including
MySQL database tuning and configuration.

Chapter 4 to Chapter 9 cover the principles and practice of developing web
database application logic.

Chapter 4

Introduces the basics of connecting to the MySQL DBMS with PHP. We explain
the querying process used in most interactions with the DBMS and present
examples that use most of the PHP MySQL library functions. We also show how
results from database queries can be formatted as HTML for delivery in a web
browser. The chapter is supported by the online winestore case study example,
which shows how to build a moderately complex querying module.

Chapter 5

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

Continues the principles and practice of querying web databases. Here we
focus on user-driven querying, in which the user provides parameters to the
querying process. We show how data is encoded, sent in requests from a web
browser to a web server, and decoded for processing in PHP. We discuss the
security implications in processing user data and show steps to secure
interactive querying systems. Our discussion is supported by a user-driven
querying example with results that can be browsed page by page.

Chapter 6

Covers writing data to web databases. There are several reasons why writing
data is different from reading it. For example, reloading or printing a page from a
web browser can cause data to be written to a database more than once.
Multiple users accessing the same database introduces other problems, such
as data unexpectedly being changed by one user while it's being read by
another. We discuss how to solve problems related to the nature of the Web
and multiple users. We illustrate the principles with an example that adds and
edits customer details in the online winestore.

Chapter 7

This chapter is related to Chapter 6 and presents the principles and
techniques for user-input validation. We introduce validation models and
reporting methods that work in web database applications and show how these
are implemented using PHP and supported by client-side, browser-based
JavaScript.

Chapter 8

Covers the principles of adding session management to web database
applications. Session management allows the interactions between a user and
the application to be related so that, for example, a user can log in and log out
of an application and be guided through a series of steps in a process. We show
how PHP manages sessions and illustrate the techniques with a case study of
managing error feedback to users who are joining as customers of the
winestore.

Chapter 9

Presents topics in web security. We show how PHP can be used for basic
authentication, how databases can manage many users, and how
communications can be secured with the network-level secure sockets layer.
Our case study is the login and logout process for the online winestore. This
extends our discussion of session management in Chapter 8.

Chapter 10 to Chapter 13 present and outline the completed winestore case study.
The outlines aren't comprehensive: we assume you have completed Chapter 4 to

Chapter 9 and understand the principles of developing web database applications.
We recommend that you view, edit, and use the winestore PHP scripts while reading

Chapter 10 through Chapter 13.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Chapter 10

Presents the code for customer management in the winestore, as well as the
general-purpose functions that are used throughout the application. The code
presented is based on the examples developed throughout Chapter 4 to
Chapter 8. We present the scripts for collecting, validating, and modifying
customer details. We also include the code for the user login and logout
processes based on the material presented in Chapter 9.

Chapter 11

Presents the code for the shopping cart at the winestore. The shopping cart is
stored in a database, and each user's cart is tracked using the session
techniques from Chapter 8. The cart module allows a user to view her cart,
add items to the cart, update item quantities, delete items, and empty the cart.

Chapter 12

Presents the code for the ordering and shipping modules of the winestore. The
ordering process shows how the complex database-processing techniques

discussed in Chapter 3 and Chapter 6 are used to convert a shopping cart
into a customer order. We also show how email confirmations of the order are

sent to the user, and an order confirmation is presented as an HTML page.

Chapter 13

Concludes the case study examples and presents related web database topics.
We present the complete searching and browsing winestore module based on

the techniques discussed in Chapter 5. We also discuss automating queries
and using templates to separate script code from HTML markup.

There are five appendixes in this book:
Appendix A
A concise guide to installing the Apache web server, PHP, and MySQL under

the Linux operating system; includes resource pointers to more detailed
installation guides for Linux and other operating systems.

Appendix B
Builds on Chapter 1 and describes the workings of the Web in greater detail.
Appendix C
Contains a case study that models the system requirements for the winestore
using entity-relationship database modeling. It shows how this model can be

converted to a design. It also details the SQL commands used to create the
winestore database.

Appendix D

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

An extension of Chapter 8, this appendix shows how the default PHP method
for session handling can be moved to the more scalable underlying database
tier.

Appendix E

Lists useful resources, including web sites and books containing more
information on the topics presented throughout this book.

I EEEm B

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

How to Use This Book

This book is designed as a tutorial-style introduction to web database applications.

If you haven't installed the Apache web server, the PHP scripting engine, or the
MySQL database management system, begin with Appendix A. Appendix A lists
possible methods for obtaining the software and includes instructions for those who
wish to install from source code. Appendix A also shows how the examples used in
this book can be downloaded and installed locally. We recommend obtaining the code
and databases used in this book, as they will help you understand the concepts as
they are presented. The database configuration steps are included at the beginning of

Chapter 3.

Each chapter covers a different topic. Chapter 1 through Chapter 3 can be read
independently. Chapter 1 introduces web database applications and the case study
application. We recommend reading Chapter 1 first. Chapter 2 and Chapter 3 are

designed as introductions to PHP and SQL, respectively; both can be used as
references when reading the later chapters.

Chapter 4 through Chapter 9 are a major section with a tutorial style that follows
through the principles and practice of web database applications. Chapter 4,
Chapter 5, and Chapter 6 begin with basic principles and components. Chapter 7,

Chapter 8, and Chapter 9 contain more sophisticated examples that rely on
concepts from the earlier chapters. These chapters are designed to be read

sequentially. By the conclusion of Chapter 9, you should have mastered the
principles of developing web database applications.

Chapter 10 to Chapter 13 present and briefly discuss the completed scripts

developed for the online winestore case study. The scripts show how the techniques
from Chapter 4 to Chapter 9 are applied in practice and, as such, are most useful
after mastering the content of the earlier chapters. The material in these later
chapters is also particularly useful when the example application has been
downloaded and installed on a local server, allowing the scripts to be modified and
tested as the chapters are read.

Appendix B and Appendix C are also in a tutorial style. We recommend Appendix

B if you are interested in or are unfamiliar with the web environment and its
underlying protocols. Appendix C is a brief introduction to entity-relationship
modeling for databases and shows the steps we took in designing the winestore

database. We recommend reading Appendix C after completing Chapter 3, and
only if a detailed understanding of the winestore database is desired.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Conventions Used in This Book
The following conventions are used in this book:
Italic

Used for program names, URLs, and database entities, and for new terms when
they are defined

Constant width

Used for code examples, functions, statements, and attributes, and to show the
output of commands

Constant width italic

Used to indicate variables within commands and functions

e This icon designates a note, which is an important aside to the
s ‘ nearby text.

This icon designates a warning relating to the nearby text.

I [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/webdbapps/
To comment or ask technical questions about this book, send email to:
bool . a il

For more information about books, conferences, Resource Centers, and the O'Reilly
Network, see the O'Reilly web site at:

http://www.oreilly.com
The authors can be reached at:

hugh@computer.org
dave@simdb.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

Web Site and Code Examples

Code examples from this book, data used to create the online winestore database,
and the completed winestore application can be found at this book's web site,

http://www.oreilly.com/catalog/webdbapps/ or at the authors' web site,
http://www.webdatabasebook.com.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

Acknowledgments

We thank our technical reviewers, Justin Zobel, Harry Williams, S.M.M. (Saied)
Tahaghoghi, and Rasmus Lerdorf, for their expertise and diligence in helping to
improve this book. We also thank our editor, Lorrie LeJeune, and her editorial
assistant, Sarmonica Jones. We acknowledge the support of our employer, RMIT
University; Hugh thanks the School of Computer Science and Information
Technology, and David thanks the Multimedia Database Systems group. We also
thank our colleagues, who throughout this project have provided ideas, suggestions,
and help. In particular, we thank Abhijit Chattaraj for his help with the MySQL
implementation of session support, and Derryn Grabowski and Jakub Korab for their
help with an initial prototype of the winestore application.

Last, but most importantly, we thank our wives, Selina Williams and Louise Excell.
Very little of this book would exist without Selina's support of Hugh's hectic schedule;
he's now looking forward to supporting her through the birth of their first child. Louise
has been especially patient with David throughout this project, and looks forward to
his support in bringing up their second child, William. David also thanks his daughter
Beth; the wisdom of her advice in dealing with a troublesome PC was far beyond her
three years: "now, just press one key at a time."

[« erwvious Lorest v |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

e
Chapter 1. Database Applications and the Web

With the growth of the Web over the past decade, there has been a similar growth in
services that are accessible over the Web. Many new services are web sites that are
driven from data stored in databases. Examples of web database applications include
news services that provide access to large data repositories, e-commerce
applications such as online stores, and business-to-business (B2B) support products.

Database applications have been around for over 30 years, and many have been
deployed using network technology long before the Web existed. The point-of-service
systems used by bank tellers are obvious examples of early networked database
applications. Terminals are installed in bank branches, and access to the bank's
central database application is provided through a wide area network. These early
applications were limited to organizations that could afford the specialized terminal
equipment and, in some cases, to build and own the network infrastructure.

The Web provides cheap, ubiquitous networking. It has an existing user base with
standardized web browser software that runs on a variety of ordinary computers. For
developers, web server software is freely available that can respond to requests for
both documents and programs. Several scripting languages have been adapted or
designed to develop programs to use with web servers and web protocols.

This book is about bringing together the Web and databases. Most web database
applications do this through three layers of application logic. At the base is a
database management system (DBMS) and a database. At the top is the client web
browser used as an interface to the application. Between the two lies most of the
application logic, usually developed with a web server-side scripting language that
can interact with the DBMS, and can decode and produce HTML used for
presentation in the client web browser.

We begin by discussing the three-tier architecture model used in many web database
applications. We then introduce the nature of the Web and its underlying protocols
and then discuss each of the three tiers and their components in detail. Hugh and
Dave's Online Wines, our case study application, is introduced at the end of this
chapter. We refer to it frequently throughout the course of the book and use it as a
model to illustrate the construction of a web database application.

T

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

1.1 Three-Tier Architectures

This book describes web database applications built around a three-tier architecture
model, shown in Figure 1-1. At the base of an application is the database tier,
consisting of the database management system that manages the database
containing the data users create, delete, modify, and query. Built on top of the
database tier is the complex middle tier, which contains most of the application logic
and communicates data between the other tiers. On top is the client tier, usually web
browser software that interacts with the application.

Figure 1-1. The three-tier architecture model of a web database application

The formality of describing most web database applications as three-tier architectures
hides the reality that the applications must bring together different protocols and
software. The majority of the material in this book discusses the middle tier and the
application logic that brings together the fundamentally different client and database
tiers.

When we use the term "the Web," we mean three major, distinct standards and the
tools based on these standards: the Hypertext Markup Language (HTML), the
Hypertext Transfer Protocol (HTTP), and the TCP/IP networking protocol suite. HTML
works well for structuring and presenting information using a web browser application.
TCP/IP is an effective networking protocol that transfers data between applications
over the Internet and has little impact on web database application developers. The
problem in building web database applications is interfacing traditional database
applications to the Web using HTTP. This is where the complex application logic is
needed.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

1.1.1 Hypertext Transfer Protocol

The three-tier architecture provides a conceptual framework for web database
applications. The Web itself provides the protocols and network that connect the
client and middle tiers of the application; that is, it provides the connection between
the web browser and the web server. HTTP is one component that binds together the
three-tier architecture. A detailed knowledge of HTTP isn't necessary to understand
the material in this book, but it's important to understand the problems HTTP presents
for web database applications. The HTTP protocol is used by web browsers to
request resources from web servers, and for web servers to return responses. (A
longer introduction to the underlying web protocols—including more examples of
HTTP requests and responses—can be found in Appendix B.)

HTTP allows resources to be communicated and shared over the Web. From a
network perspective, HTTP is an applications-layer protocol that is built on top of the
TCP/IP networking protocol suite. Most web servers and web browsers communicate
using the current version, HTTP/1.1. Some browsers and servers use the previous
version, HTTP/1.0, but most HTTP/1.1 software is backward-compatible with
HTTP/1.0.

HTTP communications dominate Internet network traffic. In 1997, HTTP accounted
for about 75% of all traffic..22 We speculate that this percentage is now even higher
due to the growth in the number and popularity of HTTP-based applications such as
free email services.

[1] From K. Thompson, G. J. Miller, and R. Wilder. "Wide-area internet traffic patterns and characteristics," IEEE
Network, 11(6):10-23, November/December 1997.

1.1.1.1 HTTP example

HTTP is conceptually simple: a client web browser sends a request for a resource to
a web server, and the web server sends back a response. The HTTP response
carries the resource—the HTML document, image, or output of a program—back to
the web browser as its payload. This simple request-response model is shown in

Figure 1-2.

Figure 1-2. A web browser makes a request and the web server responds with the resource

An HTTP request is a textual description of a resource and additional header
information. Consider the following example request:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

GET /index.html HTTP/1.0

From: hugh@computer.org (Hugh Williams)
User—-agent: Hugh-fake-browser/version-1.0
Accept: text/plain, text/html

This example uses a GET method to request an HTML page i ndex . html with
HTTP/1.0. In this example, three additional header lines identify the user and the web
browser and define what data types can be accepted by the browser. A request is
normally made by a web browser and may include other headers; the previous
example was created manually by typing the request into Telnet software.

An HTTP response has a response code and message, additional headers, and
usually the resource that has been requested. An example response to the request
for index.html is as follows:

HTTP/1.0 200 OK

Date: Sat, 21 Jul 2002 03:44:25 GMT

Server: Apache/1.3.20

Content-type: text/html

Content-length: 88

Last-modified: Fri, 1 Feb 2002 03:40:03 GMT

<html><head>

<title>Test Page</title></head>
<body>

<hl1>It Worked!</h1>
</body></html>

The first line of the response agrees to use HTTP/1.0 and confirms that the request
succeeded by reporting the response code 200 and the message 0Ox; another
common response is 404 Not Found. In this example, five lines of additional headers
identify the current date and time, the web server software, the data type, the length
of the response, and when the resource was last modified. After a blank line, the
resource itself follows. In this example the resource is the requested HTML
document, index.html.

1.1.1.2 State

Traditional database applications are stateful. In traditional database applications,
users log in, run related transactions, and then log out when they are finished. For
example, in a bank application, a bank teller might log in, use the application through
a series of menus as he serves customer requests, and log out when he's finished for
the day. The bank application has state: once the teller is logged in, he can interact
with the application in a structured way using menus. When the teller has logged out,
he can no longer use the application.

HTTP is stateless. Statelessness means that any interaction between a web browser

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

and a web server is independent of any other interaction. Each HTTP request from a
web browser includes the same header information, such as the security credentials
of the user, the types of pages the browser can accept, and instructions on how to
format the response. Statelessness has benefits: the most significant are the
resource savings from not having to maintain information at the web server to track a
user, and the flexibility to allow users to move between unrelated pages or resources.

Because HTTP is stateless, it is difficult to develop stateful web database
applications. What is needed is a method to maintain state in HTTP so that
information flows and structure can be imposed. A common solution is to exchange a
token between a web browser and a web server that uniquely identifies the user and
her session. Each time a browser requests a resource, it presents the token, and
each time the web server responds, it returns the token to the web browser. The
token is used by the middle-tier software to restore information about a user from her
previous request, such as which menu in the application she last accessed.
Exchanging tokens allows stateful structure such as menus, steps, and workflow
processes to be added to the application.

1.1.2 Thin Clients

Given that a web database application built with a three-tier architecture doesn't fit
naturally with HTTP, why use that model at all? The answer mostly lies in the benefits
of the thin client. Web browsers are very thin clients: little application logic is included
in the client tier. The browser simply sends HTTP requests for resources and then
displays the responses, which contain mostly HTML documents.

A three-tier model means you don't have to build, install, or configure the client tier.
Any user who has a web browser can use the web database application, usually
without needing to install additional software, be using a specific operating system, or
own a particular hardware platform. This means an application can be delivered to
any number of diverse, geographically dispersed users. The advantage is so
significant that our focus in this book is entirely on three-tier solutions with this thin-
client web browser architecture.

But what are the alternatives to a thin client? A custom-built Java applet is an
example of a thicker client that can still fit the three-tier model: the user downloads an
applet and runs more of the overall application logic on her platform. The applet still
interacts with a middle tier that, in turn, provides an interface to the database tier. The
advantage is customization: rather than using the generic browser solution, a custom
solution can eliminate many problems inherent in the statelessness, security, and
inflexibility of the Web. The applet might not even use HTTP to communicate with the
middle-tier application logic.

A thick client is also part of a traditional two-tier solution, also known as a client/server
architecture. Most traditional database applications—such as those in the bank—
have only two tiers. The client tier has most of the overall application logic, and the
server tier is the DBMS itself. The advantage is that a customized solution can be
designed to meet the exact application requirements without any compromises.
Disadvantages are the lack of hardware and operating system flexibility and the
requirement to provide software to each user.

I I e sarominhiney 1|

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

1.2 The Client Tier

The client tier in the three-tier architecture model is usually a web browser. Web
browser software processes and displays HTML resources, issues HTTP requests for
resources, and processes HTTP responses. As discussed earlier, there are
significant advantages to using a web browser as the thin-client layer, including easy
deployment and support on a wide range of platforms.

There are many browser products available, and each browser product has different
features. The two most popular windowing-based browsers are Netscape and Internet
Explorer. While we won't describe all the features of web browsers, they have a
common basic set:

¢ All web browsers are HTTP clients that send requests and display responses
from web servers (usually in a graphical environment).

 All browsers interpret pages marked up with HTML when rendering a page; that
is, they present the headings, images, hypertext links, and so on to the user.

e Some browsers display images, play movies and sounds, and render other
types of objects.

e Many browsers can run JavaScript that is embedded in HTML pages.
JavaScript is used, for example, to validate a < orm> or change how a page is
presented based on user actions.

¢ Selected web browsers can run components developed in the Java or ActiveX
programming languages. These components often provide additional animation,
tools that can't be implemented in HTML, or other, more complex features.

e Several browsers can apply Cascading Style Sheets (CSS) to HTML pages to
control the presentation of HTML elements.

There are subtle—and sometimes not so subtle—differences between the capabilities
different browsers have in rendering an HTML page. Lynx, for example, is a text-only
browser and doesn't display images or run JavaScript. MultiWeb is a browser that
renders the text on a page as sound—the spoken word—providing web access for the
vision-impaired. Many subtle but annoying differences are in the support for CSS and
the features of the latest HTML standard, HTML 4.

Web browsers are the most obvious example of a user agent, a software client that
requests resources from a web server. Other user agents include web spiders—
automated software that crawls the Web and retrieves web pages—and proxy
caches, software systems that retrieve and locally store web pages on behalf of many
other user agents.

While this book isn't a guide to writing HTML, we discuss HTML features as they are
used throughout the book. Pointers to resources that describe HTML, how to author

web pages, and the direction of web page standards are included in Appendix E. We

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

introduce JavaScript client-side scripting for validation of data entry and manipulating

the web browser in Chapter 7.

T

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

1.3 The Middle Tier

In most three-tier web database systems, the maijority of the application logic is in the
middle tier. The client tier presents data to and collects data from the user; the
database tier stores and retrieves the data. The middle tier serves most of the
remaining roles that bring together the other tiers: it drives the structure and content
of the data displayed to the user, and it processes input from the user as it is formed
into queries on the database to read or write data. It also adds state management to
the HTTP protocol. The middle-tier application logic integrates the Web with the
database management system.

In the application framework used in this book, the components of the middle tier are
a web server, a web scripting language, and the scripting language engine. A web
server processes HTTP requests and formulates responses. In the case of web
database applications, these requests are often for programs that interact with an
underlying database management system. The web server we use throughout this
book is the Apache Software Foundation's Apache HTTP server, the open source
web server used by more than 60% of Internet connected computers.2

[2] From The Netcraft Web Server Survey, http://www.netcraft.com/survey/ (April 2001).

We use the PHP scripting language as our middle-tier scripting language. PHP is an
open source project of the Apache Software Foundation and, not surprisingly, it is the
most popular Apache HTTP server add-on module, with around 40% of the Apache
HTTP servers having PHP capabilities.21 PHP is particularly suited to web database
applications because of its integration tools for the Web and database environments.
In particular, the flexibility of embedding scripts in HTML pages permits easy
integration with the client tier. The database-tier integration support is also excellent,
with more than 15 libraries available to interact with almost all popular database
management systems.

(3] From the Security Space web server survey, Apache module report,

http://www.securityspace.com/s_survey/data/index.html (April 2001).

1.3.1 Web Servers

Web servers are often referred to as HTTP servers. The term "HTTP server" is a
good summary of their function: their basic task is to listen for HTTP requests on a
network, receive HTTP requests made by user agents (usually web browsers), serve
the requests, and return HTTP responses that contain the requested resources.

There are essentially two types of request made to a web server: the first asks for a
file—often a static HTML web page or an image—to be returned, and the second
asks for a program to be run and its output to be returned to the user agent. Simple

requests for files are further discussed in Appendix B.

Requests for web scripts that access a database are examples of HTTP requests that
require a server to run a program. With the software used in this book, the HTTP
requests are for PHP script resources, which require that the PHP Zend engine be
run, a script retrieved and processed, and the script output captured.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

1.3.1.1 The Apache HTTP server, Version 1.3

Like most users of the Apache HTTP server, we call it Apache. Apache is an open-
source web server. The current release at the time of writing is 1.3.20.

The installation and configuration of Apache for most web database applications is
straightforward. A concise installation guide for the Linux operating system is
presented in Appendix A. Apache can be downloaded from

http://www.apache.org; other Apache resources are listed in Appendix E.

Apache is fast and scalable. It can handle simultaneous requests from user agents
and is designed to run under multitasking operating systems, such as Linux and 32-
bit variants of Microsoft Windows. It's also lightweight, has low per-process
requirements, can effectively handle changes in request loads, and can run fast on
even modest hardware.

Apache—at least conceptually—isn't complicated. The web server is actually several
processes, where one process coordinates the others. The coordinating process
usually runs with the permissions of the superuser or root user on a Unix machine
and doesn't serve requests itself. The other processes, which usually run as more
secure, permissionless users, notify their availability to handle requests to the
coordinating server. If too few servers are available to handle incoming requests, the
coordinating server may start new servers; if too many are free, it may kill spare
servers to save resources.

How Apache listens on the network and serves requests is controlled by its
configuration file. The server administrator controls the behavior of Apache through
more than 150 directives that affect resource requirements, response time, flexibility
in dealing with request load variability, security, how HTTP requests are handled and
logged, and most other aspects of its operation. Careful adjustment of these
parameters is important for performance, and more details of Apache configuration

can be found in the resources listed in Appendix E.

1.3.1.2 The Apache HTTP server, Version 2.0

Version 1.3 of Apache has some limitations that will be addressed in Version 2.0.
Version 2.0 is available for download, but at the time of writing remains in the beta-
testing phase. Only around 20 sites are known to be using the beta version.

The significant enhancements in Apache 2.0 are:

» Use of lighter-weight processes or threads in conjunction with the process
model on the older versions. This will most likely offer significant performance
improvement in starting new servers and reduce the overall memory
requirements of running servers.

e Better support, performance, and stability on non-Unix machines.

¢ Addition of filtering modules so that data can be modified as it is processed by
the web server.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

¢ Support for IPv6, the new version of the IP protocol in the TCP/IP networking
suite.

1.3.2 Web Scripting with PHP

PHP has emerged as a component of many medium- and large-scale web database
applications. This isn't to say that other scripting languages don't have excellent
features. However, there are many reasons that make PHP a good choice, including:

e PHP is open source, meaning it is entirely free. As such, community efforts to
maintain and improve it are unconstrained by commercial imperatives.

¢ One or more PHP scripts can be embedded into static HTML files and this
makes client-tier integration easy. On the down side, this can blend the scripts
with the presentation; however the template techniques described in Chapter
13 can solve most of these problems.

e There are over 15 libraries for native, fast access to the database tier.

 Fast execution of scripts. With the new innovations in the Zend engine for script
processing, execution is fast, and all components run within the main memory
space of PHP (in contrast to other scripting frameworks, in which components
are in distinct modules). Empirical evidence suggests that for tasks of at least
moderate complexity, PHP is faster than other popular scripting tools.

« Platform and operating-system flexibility. Apache runs on many different
platforms and under selected operating systems; PHP runs on all these and
more when integrated with other web servers.

¢ PHP is suited to complex systems development. It is a fully featured
programming language, with more than 50 function libraries.

The current version of PHP is Version 4—we call this PHP throughout most of this
book—and the current release at the time of writing is PHP 4.0.6.

PHP4 represents a complete rewrite of the underlying scripting engine used in PHP3.
The significant difference is a change in the model used to run scripts with the
scripting engine. The PHP3 scripting engine was an interpreter. Each line of code in a
script was read, parsed, and executed. If a statement in the body of a loop is
executed 100 times, the line of code is reinterpreted 100 times using PHP3. This
model is slow for complex scripts, but fast for short scripts.

The PHP4 script-processing model is different and designed for larger applications. A
script is read, parsed, and compiled into an intermediate format, and then the
intermediate code is executed by the PHP4 Zend engine script executor. This means
that each line in the script is interpreted from its raw form only once, even if it is
executed hundreds of times. Moreover, compilation allows optimization of code
segments. The result is a performance improvement in PHP4 for all but very simple
scripts.

The architecture of the PHP4 scripting environment is shown in Figure 1-3 (image

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

from Zend Technologies Inc.). As shown, PHP4 is a module of the web server
software. The PHP software itself is divided into two components: the function
libraries or modules, and the Zend engine.

Figure 1-3. The architecture of the PHP4 scripting environment

When a user agent makes a request to the web server for a PHP script, six steps
occur:

1. The web server passes the request to the Zend engine's web server interface.

2. The web server interface calls the Zend engine and passes parameters to the
engine.

3. The PHP script is retrieved from disk by the engine.
4. The script is compiled by the runtime compiler.

5. The compiled code is run by the engine's executor and may include calls to
function modules. The output of the executor is returned to the web server
interface.

6. The web server interface returns output to the web server (which, in turn,
returns the output as an HTTP response to the user agent).

How the PHP scripting engine is managed and run depends on how the PHP module
is included in the Apache web server installation process. In the instructions provided
in Appendix A, the PHP module library is statically linked with the Apache ht tpd
binary executable. This means that the PHP scripting engine is loaded into main
memory when Apache runs, making the PHP engine run faster. The drawbacks are
that Apache with a static PHP library consumes more memory than if the module is
loaded dynamically, and that the module upgrade process is less flexible.

Pointers to web resources, books, and commercial products for PHP development

are listed in Appendix E.

T

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

1.4 The Database Tier

The database tier is the base of a web database application. Understanding system
requirements, choosing database-tier software, designing databases, and building the
tier are the first steps in successful web database application development. We
discuss techniques for modeling system requirements, converting a model into a
database, and the principles of database technology in Appendix C. In this section,
we focus on the components of the database tier and introduce database software by
contrasting it with other techniques for storing data. Chapter 3 covers the standards
and software we use in more detail.

In a three-tier architecture application, the database tier manages the data. The data
management typically includes storage and retrieval of data, as well as managing
updates, allowing simultaneous, or concurrent, access by more than one middle-tier
process, providing security, ensuring the integrity of data, and providing support
services such as data backup. In many web database applications, these services are
provided by a RDBMS system, and the data stored in a relational database.

Managing relational data in the third tier requires complex RDBMS software.
Fortunately, most DBMSs are designed so that the software complexities are hidden.
To effectively use a DBMS, skills are required to design a database and formulate
commands and queries to the DBMS. For most DBMSs, the query language of choice
is SQL. An understanding of the underlying architecture of the DBMS is unimportant
to most users.

In this book, we use the MySQL RDBMS to manage data. Much like choosing a
middle-tier scripting language, there are often arguments about which DBMS is most
suited to an application. MySQL has a well-deserved reputation for speed, and it is
particularly well designed for applications where retrieval of data is more common
than updates and where small, simple updates are the general class of modifications.
These are characteristics typical of most web database applications. Also, like PHP
and Apache, MySQL is open source software. However, there are down sides to
MySQL we'll discuss later in this section.

There are other, nonrelational DBMS software choices for storing data in the
database tier. These include search engines, document management systems, and
simple gateway services such as email software. Our discussions in this book focus
on relational database technology in the database tier.

1.4.1 Database Management Systems

A database management system stores, searches, and manages data.

A database is a collection of related data. The data stored can be a few entries, or
rows, that make up a simple address book of names, addresses, and phone
numbers. In contrast, the database can also contain millions of records that describe
the catalog, purchases, orders, and payroll of a large company. The database behind
our case study, Hugh and Dave's Online Wines, is an example of a medium-sized
database that falls between these two extremes.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

A DBMS is a set of components for defining, constructing, and manipulating a
database. When we refer to a database management system, we generally mean a
relational DBMS or RDBMS. Relational databases store and manage relationships
between data—for example, customers placing orders, customer orders containing
line items, or wineries being part of a wine-growing region.

Figure 1-4 shows the simplified architecture of a typical DBMS.

Figure 1-4. The architecture of a typical DBMS

A DBMS consists of several components:
Applications interface

Libraries for communicating with the DBMS. Most DBMSs have a simple
command-line interpreter that often uses these libraries to relay requests typed
from the keyboard to the DBMS and to display responses. In a web database
application, the command-line interpreter is usually replaced by a function
library that is part of the middle-tier scripting language.

SQL interpreter

A parser that checks the syntax of incoming query statements and translates
these into an internal representation.

Query evaluator

Generates different plans for evaluating a query by considering database
statistics and properties, selects one of these plans, and translates the plan into
low-level actions that are executed.

Data access

The modules that manage access to the data stored on disk, including a
transaction manager, a recovery manager, the main-memory buffer manager,
data security manager, and the file and access method manager.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Database

The physical data itself stored in data files. The data also contains index files for
fast access to data, and database and system summary statistics primarily used
for query plan generation and optimization.

The important components for web database application developers are the database
and applications interface. For all but large-scale applications, understanding and
configuring the other components of a DBMS is usually unnecessary.

1.4.2 Why Use a DBMS?

A question that is often asked is: why use a complex DBMS to manage data? There
are several reasons that can be explained by contrasting a database with a
spreadsheet, a simple text file, or a custom-built method of storing data. A few
example situations where a DBMS should and should not be used are discussed later
in this section.

Take spreadsheets as an example. Spreadsheet worksheets are typically designed
for a specific application. If two users store names and addresses, they are likely to
organize data in a different way—depending on their needs—and develop custom
methods to move around and summarize the data. In this scheme, the program and
the data aren't independent: moving a column might mean rewriting a macro or
formula, while exchanging data between the two users' applications might be
complex. In contrast, a DBMS and a database provide data-program independence,
where the method for storing the data, the order of the stored information, and how
the data is managed on disk are independent of the software that accesses it.

Managing complex relationships is difficult in a spreadsheet or text file. For example,
consider our online winestore: if we want to store information about customers, we
might allocate a few spreadsheet columns to store each customer's residential
address. If we were to add business addresses and postal addresses, we'd need
more columns and complex processing to, for example, process a mail-out to
customers. If we want to store information about the purchases by our customers, the
spreadsheet becomes wider still, and problems start to emerge. For example, it is
difficult to determine the maximum number of columns needed to store orders and to
design a method to process these for reporting.

Spreadsheets or text files don't work well when there are associations or relationships
between stored data items. In contrast, DBMSs are designed to manage complex
relational data. DBMSs are also a complete solution: if you use a DBMS, you don't
need to design a custom spreadsheet or file solution. The methods that access the
data—most often the query language SQL—are independent of how the data is
physically stored and actually processed.

A DBMS usually permits multiuser transactions. Medium- and large-scale DBMSs
include features that control the writing of data by multiple users in a methodical way.
In contrast, a spreadsheet should be opened and written only by one user; if another
user opens the spreadsheet, she won't see any updates being made at the same time
by the first user. At best, a shared spreadsheet or text file permits very limited
concurrent access.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

An additional benefit of a DBMS is its speed. It isn't totally true to say that a database
provides faster searching of data than a spreadsheet or a custom filesystem. In many
cases, searching a spreadsheet or a special-purpose file might be perfectly
acceptable, or even faster if it is designed carefully and the volume of data is small.
However, for managing large amounts of related information, the underlying search
structures in a DBMS can permit fast searching, and if information needs are
complex, a DBMS should optimize the method of retrieving the data.

There are also other advantages of DBMSs, including data-oriented and user-
oriented security, administration software, and data recovery support. A practical
benefit is reduced application development time: the system is already built, it needs
only data and queries to access the data.

1.4.2.1 Examples of when to use a DBMS

In any of these situations, a DBMS should probably be used to manage data:
e There is more than one user who needs to access the data at the same time.

e There is at least a moderate amount of data. For example, we may need to
maintain information about a few hundred customers.

e There are relationships between the stored data items. For example, customers
may have any number of related purchase orders.

* There is more than one kind of data record. For example, there might be
information about customers, orders, inventory, and other data in an online
store.

¢ There are constraints that must be rigidly enforced on the data, such as field
lengths, field types, uniqueness of customer numbers, and so on.

* New or consolidated information must be produced from basic, related
information; that is, the data must be queried to produce reports or results.

e There is a large amount of data that must be searched quickly.

¢ Security is important. There is a need to enforce rules as to who can access the
data.

» Adding, deleting, or modifying data is a complex process.

1.4.2.2 Examples of when not to use a DBMS

There are some situations where a relational DBMS is probably unnecessary or
unsuitable. Here are some examples:

e There is one type of data item, and the data isn't searched. For example, if a log
entry is written when a user logs in and logs out, appending the entry to the end
of a simple text file may be sufficient.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

e The data-management task is trivial. In this case, the data might be coded into a
web script in the middle tier, rather than adding the overhead of a database
access each time the data is needed.

e The data requires complex analysis. For analysis, a spreadsheet package or
statistical software may be more appropriate.

1.4.3 The MySQL DBMS

MySQL is a medium-scale DBMS, with most of the features of a large-scale system
and the ability to manage very large quantities of data. Its design is ideally suited to
managing the databases that are typical of many web database applications.

The difference between MySQL and some other systems is that MySQL is missing
some querying support and has limited concurrency-handling abilities. In terms of
concurrency, tens of middle-tier processes can access a database at the same time
but not hundreds. Two querying techniques—specifically nested querying and
views—aren't supported, but support is planned for the near future in MySQL Version
4. There are other, more minor limitations that don't typically affect web development.

The limitations of MySQL usually have a very minor impact on web database
application development. However, for high-throughput systems, large numbers of
concurrent users, or applications that modify the database frequently, other DBMSs
may be considered. Our second choice would be PostgreSQL, which is known to be
slower but supports more concurrent users. More information on PostgreSQL can be

found at http://www.postgresql.org.

At the time of writing, the current version of MySQL is 3.23, and the current release is
3.23.38. MySQL resources are listed in Appendix E.

1.4.4 SQL

SQL is the standard relational database interaction language. Almost all relational
database systems, including MySQL, support SQL as the tool to create, manage,
secure, and query databases. Indeed, this is an important point about SQL.: it is much
more than just a query language,; it is a fully fledged tool for all aspects of database
management.

1.4.4.1 History

SQL has had a complicated life. It began at the IBM San Jose Research Laboratory in
the early 1970s, where it was known as Sequel; some users still call it Sequel, though
it's more correctly referred to by the three-letter acronym, SQL. After almost 16 years

of development and differing implementations, the standards organizations ANSI and

ISO published an SQL standard in 1986. IBM published a different standard one year
later!

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Since the mid-1980s, three subsequent standards have been published by ANSI and
ISO. The first, SQL-89, is the most widely, completely implemented SQL in popular
database systems. Many systems implement only some features of the next release,
SQL-2 or SQL-92, and almost no systems have implemented the features of the most
recently approved standard, SQL-99 or SQL-3.

We focus on features found in the MySQL DBMS. MySQL supports the entry-level
SQL-92 standard.

1.4.4.2 SQL components

SQL has four major parts, and we discuss two of them—the Data Definition Language
(DDL) and the Data Manipulation Language (DML)—in detail in Chapter 3. The four
major components of SQL are:

Data Definition Language

DDL is the set of SQL commands that create and delete a database, add and
remove tables, create indexes, and modify each of these. DDL commands are
generally used only during the construction of the database. Indexes are
structures for fast access and updates of data.

Data Manipulation Language

DML is the set of commands that work with a DBMS and a database. DML
commands include those to search, insert, and delete data. These commands
are the tools that interact with a database during its normal use.

Transaction management

SQL includes commands for treating a set of commands as a unit, or
transaction. Using these tools, transactions can be undone, or rolled back.

Advanced features

DML and DDL include advanced features for embedding SQL into general-
purpose programming languages (in much the same way you can see SQL
commands embedded in PHP in Chapter 4) and defining special-purpose
views of the underlying data, and granting and removing access rights to the
DBMS and databases. They also include commands for ensuring the integrity of
the system; that is, ensuring the data is correct and that relational constraints
are maintained correctly.

Transaction management and advanced features of SQL are discussed briefly in

Chapter 3 and Chapter 6, and in Appendix C. Pointers to references on SQL can

be found in Appendix E.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

1.5 Our Case Study

The principles of web database applications are illustrated in practice throughout this
book with the running example of Hugh and Dave's Online Wines. We refer to it as
the winestore throughout the book.

The winestore application has many components of a typical web database
application, including:

* Web pages populated with data from a database

e User-driven querying and browsing, in which the user provides the parameters
that limit the searching or browsing of the database

¢ Data entry and validation. HTML <o rm> widgets collect data, and JavaScript
client-side scripts and PHP server-side scripts perform validation.

» User tracking; that is, session management techniques that add state to HTTP
e User authentication and management
» Reporting

Let's take a look at the scope of the winestore and the system functional
requirements. (The process of modeling these requirements with relational database
entity-relationship (ER) modeling and converting this model to SQL statements is the
subject of Appendix C. The completed winestore ER model and the SQL statements
to create the database can be found in Chapter 3. We use the winestore
components as examples beginning in Chapter 4. Completed components of the

winestore application are discussed in Chapter 10 to Chapter 13.)
1.5.1 What Is Hugh and Dave's Online Wines?

Hugh and Dave's Online Wines is a fictional online wine retailer. In this section, we
briefly detail the aims and scope of the winestore and then discuss the system
requirements derived from these. We also introduce the technical components of the
winestore and point to the chapters in the book where these components are
discussed in detail. We conclude with a discussion of the shortcomings of the
winestore and what isn't covered in this book. The completed winestore described in
this section can be accessed via this book's web site.

The winestore is open to the public: anonymous users have limited access to the
system, and users can make purchases if they become members. The site aims to be
attractive, simple, and usable; however, since it was designed by two computer
scientists, we failed to make it attractive! It succeeds better in its technical aims: the
winestore manages over 1,000 wines, stock information, and a database of around
1,000 customers and their orders.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Any user with a web browser can access the site, browse or search for wines that are
in stock, and view the details. The details of wines include the name, year of release,
wine type, grape varieties, and, in some cases, an expert review of the wine.
Anonymous users can add selected wines to a shopping cart. Users can also be
members, and the membership application process collects details about the
customer in the same way as at most online sites.

To purchase wines, users must log in using their membership details. If a user has
just joined as a member, he is logged in automatically. After selecting wines for
purchase, the user can place an order. An order is shipped immediately and a
confirmation sent by email.

Behind the scenes, the system also allows the stock managers of the winestore to
add new shipments of wines to the database. The web site manager can also add
new wines, wineries, winery regions, and other information to the winestore. Limited
reporting features are available.

1.5.1.1 System requirements

The following requirements can typically be gathered from a scope document,
customer interviews, and so on. But, of course, this book isn't about software
engineering processes, and we present here the general requirements that form a
basis for the examples in this book. Some aspects of our requirements are simplified,
some aspects of a commercial store are omitted, and some details are real-world and
comprehensive.

The requirements listed here are an overview; a real-world commercial application
would present these facts in detailed functional and system requirements. A
production application would also have an accompanying design document
discussing the database design, screen layouts, and information flows.

Here's a summary of the functional and systems requirements:
e The online winestore is primarily aimed as an e-commerce site to sell wine.

* The system doesn't manage accounting, stock control, payroll, ordering, and
other tasks.

e Users may select wines and add them to a shopping basket. Users may
purchase the items in their shopping baskets for up to one day after the first
item is added to the basket. Users have only one shopping basket each and
may empty their basket at any time.

e Users of the site may be anonymous and can remain anonymous until they
agree to purchase the items in the shopping basket.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

e To purchase items in a shopping basket, the user must log in to the system. To
log in, a user must have an account. To get an account, a user must provide at
least his surname, first name, one address line, a city, a zip code, a country, his
birth date, an email address, and a password. The email address is used as the
user's login name. The user may also optionally provide a middle initial, a title,
two additional address lines, a state, a telephone number, and a fax number.

* When a user purchases wines, his order is archived.

» A user may receive a percentage discount on the price of an order. A discount
can be levied on a particular day, a minimum threshold quantity, or given to a
regular customer.

e An order may have a delivery charge that is levied according to the user's
location and the delivery mode. Delivery modes include sea mail, regular mail,
and express mail. An order may also have a note that is directed to the delivery
company; for example, a note might indicate to "leave the wines at the back
door of the house."

¢ Wines are classified into broad types of red, white, sparkling, sweet, and
fortified. Wines also have a name, a vintage, and a description; descriptions are
optional free-form text that are typically a review of the wine similar to that found
on the label.

* Wines are made with different grape varieties, including Chardonnay, Semillon,
Merlot, and so on. A wine can be made of any number of grape varieties, and
the order of these grape varieties is important. For example, for a wine made of
two varieties, Cabernet and Merlot, a Cabernet Merlot is different from a Merlot
Cabernet.

e Users may browse wines at the winestore by type or wine region.
¢ Wines are produced by one winery.

e Wineries have a description—which is typically a review—as well as a phone
and fax number.

* Wineries are in one region. A region is an area—for example, the Barossa
Valley in South Australia—and each region has a description and, possibly, an
image or map of the area.

¢ A shopping basket is an incomplete order that contains items. It can be
converted to a completed order after the user logs in. Each item in an order is
for a particular wine, a quantity of that wine to be purchased, and a price per
bottle. The price of the wine is always the price of the first bottle of wine added
to the shopping cart, which in turn is always the cheapest available inventory
price.

¢ The quantities of wines in the shopping basket can be updated by the user, and
items can be removed from the shopping basket.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

¢ The wines available for sale are stored in an inventory. Each inventory record
has a date added and is for a particular wine. The inventory contains a stock
guantity available at a particular per-bottle and per-case price. There can be
several inventory records for a wine, representing different shipments that
arrived at the winestore on different dates or that have a different price.

¢ The user will always be advertised prices from the cheapest inventory for each
wine. When a user adds a wine to her shopping basket, she is guaranteed this
price.

¢ A user can purchase only wines that are in stock.

¢ When a user converts his shopping basket to an order, the availability of
sufficient inventory to complete the order is checked. If insufficient wine is
available, the user is alerted, and the quantities in the shopping basket are
updated; this situation can occur if a user adds more wine to his basket than is
available.

¢ When sufficient inventory is available to complete an order, the quantity of wine
in the inventory is reduced as the order is finalized. The inventory reduced is
always the oldest inventory of that wine.

1.5.2 Components of the Winestore

This section outlines where the principles and practical techniques to develop each
component of the winestore are covered throughout this book. The completed

winestore application is the subject of Chapter 10 through Chapter 13.

1.5.2.1 Database-driven querying

In Chapter 4, we introduce the techniques to connect to a DBMS, run a moderately
complex SQL query, retrieve results, and process these results. To illustrate these
techniques, we implement the Hot New Wines panel on the front page of the
winestore. The completed panel is shown in Figure 1-5. The panel shows the
newest three wines added to the database that have been reviewed by a wine expert.
The completed shopping cart component is described in Chapter 11 and includes

the

panel code developed in Chapter 4.

Figure 1-5. The completed front page panel with the Hot New Wines panel

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

1.5.2.2 User-driven querying and browsing

Users can display selected wines stocked at the winestore by entering simple search
criteria.

The result of clicking Search after selecting wines of type "Red" in the "Margaret
River" region is shown in Figure 1-6. The results screen shows the first 12 of 38
wines that match the criteria and has links at the base of the screen to allow users to
move through the results.

Figure 1-6. Links at the bottom of the browse page allow users to move through the results set

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The techniques for collecting user input with HTML <o rm> widgets, query

formulation with user input, and results browsing are presented in Chapter 5. There
we also introduce the basics of securing a web database application by

preprocessing user input. The completed code for this module is in Chapter 13.

1.5.2.3 Data entry and saving records to a database

Chapter 6 introduces techniques to write data to a database. We illustrate the
principles of writing data by developing a simple customer membership <form> in

Chapter 6, Chapter 7, and Chapter 8. The complete implementation of the
customer membership process is discussed in Chapter 10, and the completed

<form> is shown in Figure 1-7.

Figure 1-7. The customer <form> collects and updates member information

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Writing data requires careful consideration of how other users are interacting with the
database at the same time. We introduce the theory and practice of writing to
databases in Chapter 6, as well as the PHP functions to manage and report on the
writing process.

1.5.2.4 Validation in the client and middle tiers

We continue our development of the simplified customer <form> in Chapter 7,
where we introduce validation in the client and middle tiers. Validation in both tiers is
important. Client-side validation with JavaScript lightens the web-server load in the
middle tier, is fast for the user, and has no network overhead. Server-side validation
is also important: users can bypass client-tier validation or may not have it configured
correctly, it may not be supported by the browser, and complete and complex
validation might be possible only in the middle tier.

Figure 1-8 shows a customer <o rm> validation error message produced using the
client-side JavaScript techniques discussed in Chapter 7.

Figure 1-8. A JavaScript validation error for the winestore customer <form>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

1.5.2.5 User tracking and session management

Adding state to HTTP is the subject of Chapter 8, where we introduce the PHP
session-management techniques that manage the transaction processes of a user at
the winestore. We discuss the merits of these session management techniques and

illustrate when they should and should not be used. In Appendix D, we discuss
alternatives to session management that use the database tier for state maintenance.

We illustrate PHP sessions by extending the customer <o rm> example from
Chapter 6 and Chapter 7. We show a practical example of storing and redisplaying
data when the user returns to fix data entry errors from the validation process. At the
conclusion of Chapter 8, the simple customer data entry <form> is complete. A full
implementation of the winestore customer <o rm> using the same techniques is the
subject of Chapter 10, and sessions are used throughout the code examples in

Chapter 10 through Chapter 13.
1.5.2.6 Authentication

Authentication is the identification of two communicating parties. We discuss the

principles of security and authentication in Chapter 9.We illustrate the principles with
examples from the customized customer login and logout process at the winestore.

The completed login and logout process at the winestore is discussed in Chapter
10.

1.5.2.7 The complete application

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The winestore includes several complete components that are the subjects of

Chapter 10 through Chapter 13:
« The full implementation of the shopping cart is covered in Chapter 11.

* Presentation of a finalized order, email confirmation, and delivery of a receipt

are covered in Chapter 12.
» Updating quantities in the shopping cart is discussed in Chapter 11.

¢ The full membership application process, amending of customer details, and
logging in and out are covered in Chapter 10.

e Implementing the complex ordering process that manages the inventory is

discussed in Chapter 12.

* Housekeeping, separating presentation from content, and searching are

presented in Chapter 13.

T

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

Chapter 2. PHP

In this chapter, we introduce the PHP scripting language. PHP is similar to high-level
languages such as C, Perl, Pascal, FORTRAN, and Java, and programmers who
have experience with any of these languages should have little trouble learning PHP.
This chapter serves as an introduction to PHP; it's not a programming guide. We
assume you are already familiar with programming in a high-level language.

The topics covered in this chapter include:

¢ PHP basics, including script structure, variables, supported types, constants,
expressions, and type conversions

¢ Condition and branch statements supported by PHP, including i, if...clse,
and the switch statements

¢ Looping statements

¢ Arrays and array library functions
e Strings and string library functions
* Regular expressions

e Date and time functions

e Integer and float functions

¢ How to write functions, reuse components, and determine the scope and type of
variables

¢ An introduction to PHP object-oriented programming support

e Common mistakes made by programmers new to PHP, and how to solve them

Programmers new to PHP should read Section 2.1, which describes the basic
structure of a PHP script and its relationship to HTML, and includes discussion of how
PHP handles variables and types. The two sections that follow, Section 2.2 and
Section 2.3, deal with conditional statements and looping structures and should be
familiar material. We then present a short example that puts many of the basic PHP
concepts together.

The remainder of the chapter expands on the more advanced features of PHP,
presents a reference to selected library functions, and discusses some of the
common mistakes that programmers make when learning PHP. This material can be
examined briefly, and used later as a reference while reading Chapter 4 to 13 and
while programming in PHP. However, programmers new to PHP should consider
reading the beginning of the Section 2.5 and Section 2.6 sections to understand
the way PHP supports these concepts, as there are important differences from other
languages.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

We don't attempt to cover every function and every library that are supported by PHP.
However, we provide brief descriptions of the supported libraries in Appendix E. In
later chapters, we discuss more specialized library functions that support the topics
and techniques presented here.

T

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

2.1 Introducing PHP

The current version of PHP is PHP4, which we call PHP throughout this book. The
current release at the time of writing is 4.0.6.

PHP is a recursive acronym that stands for PHP: Hypertext Preprocessor, this is in
the naming style of GNU, which stands for GNU's Not Unix and which began this odd
trend. The name isn't a particularly good description of what PHP is and what it's
commonly used for. PHP is a scripting language that's usually embedded or
combined with HTML and has many excellent libraries that provide fast, customized
access to DBMSs. It's an ideal tool for developing application logic in the middle tier
of a three-tier application.

2.1.1 PHP Basics

Example 2-1 shows the first PHP script in this book, the ubiquitous "Hello, world."
When requested by a web browser, the script is run on the web server and the

resulting HTML document sent back to the browser and rendered as shown in Figure
2-1.

Figure 2-1. The rendered output of Example 2-1 shown in the Netscape browser

Example 2-1. The ubiquitous Hello, world in PHP

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd" >
<html>
<head>
<title>Hello, world</title>
</head>
<body bgcolor="#ffffff">
<hl>
<?php
echo "Hello, world";
7>
</hl>
</body>
</html>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Example 2-1 illustrates the basic features of a PHP script. It's a mixture of HTML—
in this case it's mostly HTML—and a PHP script. The script in this example:

<?php
echo "Hello, world";
2>

simply prints the greeting, "Hello, world."

The PHP script shown in Example 2-1 is rather pointless: we could simply have
authored the HTML to include the greeting directly. Because PHP integrates so well
with HTML, using PHP to produce static strings is far less complicated and less
interesting than using other high-level languages. However, the example does
illustrate several features of PHP:

* The begin and end script tags are <>php and 2> or, more simply, just <> and >
>. The longer begin tag style <>php avoids conflicts with other processing
instructions that can be used in HTML. We use both styles in this book.

Other begin and end tag styles can also be configured, such as the HTML style
that is used with JavaScript or other embedded scripts: <script
language="PHP">and </script>

* Whitespace has no effect, except to aid readability for the developer. For
example, the script could have been written succinctly as <2>php echo
"Hello, world"; 2> with the same effect. Any mix of spaces, tabs, carriage
returns, and so on in separating statements is allowed.

* A PHP script is a series of statements, each terminated with a semicolon. Our
simple example has only one statement: echo "Hello, world";.

¢ A PHP script can be anywhere in a file and interleaved with any HTML
fragment. While Example 2-1 contains only one script, there can be any
number of PHP scripts in a file.

e When a PHP script is run, the entire script including the start and end script tags
<2php and 2> is replaced with the output of the script.

When we present a few lines of code that are sections of larger
i - ‘ scripts, we usually omit the start and end tags.

The freedom to interleave any number of scripts with HTML is one of the most
powerful features of PHP. A short example is shown in Example 2-2; a variable,
SoutputString="Hello, world",is initialized before the start of the HTML
document, and later this string variable is output twice, as part of the <t it 1<> and
<body> elements. We discuss more about variables and how to use them later in this
chapter.

Example 2-2. Embedding three scripts in a single document

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<?php S$outputString = "Hello, world"; 2>
<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd" >
<html>
<head>
<title><?php echo SoutputString; ?></title>
</head>
<body bgcolor="#ffffff">
<h1><?php echo S$outputString; ?></hl>
</body>
</html>

The flexibility to add multiple scripts to HTML can also lead to unwieldy, hard-to-
maintain code. Care should be taken in modularizing code and HTML; we discuss

how to separate code and HTML using templates in Chapter 13.
2.1.1.1 Creating PHP scripts

A PHP script can be written using plain textix! and can be created with any text editor,
such as joe, vi, nedit, emacs, or pico.

(11 while printable characters with the most significant bit are allowed, PHP scripts are usually written using characters
from the 7-bit ASCII character set.

If you save a PHP script in a file with a .php extension under the directory configured
as Apache's document root, Apache executes the script when a request is made for
the resource. Following the installation instructions given in Appendix A, the
document root is:

/usr/local/apache/htdocs/

Consider what happens when the script shown in Example 2-1 is saved in the file:

/usr/local/apache/htdocs/example.2-1.php

Apache—when configured with the PHP module—executes the script when requests
to the URL http://localhost/example.2-1.php are made, assuming the web browser is
running on the same machine as the web server.

If directory permissions don't permit creation of files in the document root, it's also
possible to work in the user home directories. If the installation instructions in
Appendix A have been followed, a directory can be created by a user beneath her
home directory and the permissions set so that the directory is readable by the web
server:

mkdir ~/public html
chmod a+rx ~/public html

The example file can then be created with the filename:

~/public html/example.2-1.php

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The file can then be retrieved with the URL http.//localhost/~user/example.2-1.php,
where user is the user login name.

2.1.1.2 Comments

Comments can be included in code using familiar styles from other high-level
programming languages. This includes the following styles:

// This is a one-line comment
This is another one-line comment style
/* This 1is how you

can create a multi-line
comment */

2.1.1.3 Outputting data with echo and print

The echo statement used in Example 2-1 and Example 2-2 is frequently used and

designed to output any type of data. The print statement can be used for the same
purpose. Consider some examples:

echo "Hello, world";

// print works just the same
print "Hello, world";

// numbers can be printed too
echo 123;

// So can the contents of variables
echo SoutputString;

The difference between print and echo is that echo can output more than one
argument:

echo "Hello, ", "world";

There is also a shortcut that can output data. The following very short script outputs
the value of the variable Stemp:

<?=Stemp; 2>
The print and echo statements are also often seen with parentheses:
echo "hello";

// 1s the same as
echo ("hello");

Parentheses make no difference to the behavior of o i nt. However, when they are
used with echo, only one output parameter can be provided.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The echo and print statements can be used for most tasks and can output any
combination of static strings, numbers, arrays, and other variable types discussed
later in this chapter. We discuss more complex output with printf in Section 2.6
later in this section.

2.1.1.4 String literals

PHP can create double- and single-quoted string literals. If double quotation marks
are needed as part of a string, the easiest approach is to switch to the single-
quotation style:

echo 'This works';
echo "just like this.";

// And here are some strings that contain quotes
echo "This string has a ': a single quote!";
echo 'This string has a ": a double quote!';

Quotation marks can be escaped like this:

echo "This string has a \": a double guote!";
echo 'This string has a \': a single guote!';

One of the convenient features of PHP is the ability to include the value of a variable
in a string literal. PHP parses double-quoted strings and replaces variable names with
the variable's value. The following example shows how:

Snumber = 45;
Svehicle = "bus";

Smessage = "This Svehicle holds Snumber people";

// prints "This bus holds 45 people"
echo Smessage;

To include backslashes and dollar signs in a double-quoted string, the escaped
sequences \ \ and \ $ can be used. The single-quoted string isn't parsed in the same
way as a double-quoted string and can print strings such as:

'a string with a \ and a $'

We discuss parsing of string literals in more detail in Section 2.6.
2.1.2 Variables

Variables in PHP are identified by a dollar sign followed by the variable name.
Variables don't need to be declared, and they have no type until they are assigned a
value. The following code fragment shows a variable $var assigned the value of an
expression, the integer 1 5. Therefore, Svar is defined as being of type integer.

Svar = 15;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Because the variable in this example is used by assigning a value to it, it's implicitly
declared. Variables in PHP are simple: when they are used, the type is implicitly
defined—or redefined—and the variable implicitly declared.

The variable type can change over the lifetime of the variable. Consider an example:

Exrn 1~ — =
2var = 15
Svr o . "

Svar = S

rah th cat";

QO ~e.
D

This fragment is acceptable in PHP. The type of svar changes from integer to string
as the variable is reassigned. Letting PHP change the type of a variable as the
context changes is very flexible and a little dangerous.

Variable names are case-sensitive in PHP, so svariable, Svariable,
SVAriable,and sVARIABLE are all different variables.

‘5 One of the most common sources of bugs in PHP is failing to

detect that more than one variable has accidentally been
created. The flexibility of PHP is a great feature but is also
dangerous. We discuss later how to set the error reporting of
PHP so that it creates warning messages sensitive to
unassigned variables being used.

2.1.3 Types

PHP has four scalar types—boolean, float, integer, and string—and two compound
types, array and object.

F

In this book, and particularly in this chapter, we present function
s prototypes that specify the types of arguments and return values.

© There are many functions that allow arguments or return values
to be of different types, which we describe as mixed.

Variables of a scalar type can contain a single value at any given time. Variables of a
compound type—array or object—are made up of multiple scalar values or other
compound values. Arrays and objects have their own sections later in this chapter.
Other aspects of variables—including global variables and scope—are discussed
later, with user-defined functions.

Boolean variables are as simple as they get: they can be assigned either ¢ rue or
false. Here are two example assignments of a Boolean variable:

$variable = false;
Stest = true;

An integer is a whole number, while a float is a number that has an exponent and a
fractional part. The number 123.01 is a float, and so is 123.0. The number 123 is an
integer. Consider the following two examples:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

// This 1is an integer
Svarl = 6;

// This is a float
Svar?2 = 6.0;

A float can also be represented using an exponential notation:

// This is a float that equals 1120
Svar3 = 1.12e3;

// This is also a float that equals 0.02
Svard = 2e-2

You've already seen examples of strings earlier, when ccho() andprint()

were introduced, and string literals are covered further in Section 2.6. Consider two
example string variables:

Svariable = "This is a string";
Stest = 'This is also a string';

2.1.4 Constants

Constants associate a name with a simple, scalar value. For example, the Boolean
values t rue and f£alse are constants associated with the values 1 and O,
respectively. It's also common to declare constants in a script. Consider this example
constant declaration:

define ("pi", 3.14159);

// This outputs 3.14159
echo pi;

Constants aren't preceded by a < character; they can't be changed once they have
been defined; they can be accessed anywhere in a script, regardless of where they
are declared; and they can only be simple, scalar values.

Constants are useful because they allow parameters internal to the script to be
grouped. When one parameter changes—for example, if you define a new maximum
number of lines per web page—you can alter this constant parameter in only one
place and not throughout the code.

2.1.5 Expressions, Operators, and Variable Assignment

We've already described simple examples of assignment, in which a variable is
assigned the value of an expression using an equals sign. Most numeric assignments
and expressions that work in other high-level languages also work in PHP. Here are
some examples:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

// Assign a value to a variable
Svar = 1;

// Sum integers to produce an integer
Svar = 4 + 7;

// Subtraction, multiplication, and division

// that might have a result that is a float or

// an integer, depending on the initial wvalue of S$var
Svar = ((Svar - 5) * 2) / 3;

// These all add 1 to Svar

Svar = Svar + 1;
Svar += 1;
Svar++;

// And these all subtract 1 from Svar

Svar = Svar - 1;
Svar -= 1;
Svar--;

// Double a value
Svar = Svar * 2;
Svar *= 2;

// Halve a value
Svar = S$var / 2;
Svar /= 2;

// These work with float types too
Svar = 123.45 * 28.2;

There are many mathematical functions available in the math library of PHP for more
complex tasks. We introduce some of these in Section 2.9.

String assignments and expressions are similar:

// Assign a string value to a variable
Svar = "test string";

// Concatenate two strings together
// to produce "test string"
Svar = "test" " string";

// Add a string to the end of another
// to produce "test string"

Svar = "test";

Svar = S$var . " string";

// Here 1is a shortcut to add a string to
// the end of another
Svar .= " test";

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

2.1.5.1 Expressions

Expressions in PHP are formulated in much the same way as other languages. An
expression is formed from literal values (integers, strings, floats, Booleans, arrays,
and objects), operators, and function calls that return values. An expression has a
value and a type; for example, the expression 4 + 7 has the value 17 and the type
integer, and the expression "< 1pie" has the value Kelpie and the type string. PHP
automatically converts types when combining values in an expression. For example,
the expression 4 + 7.0 contains an integer and a float; in this case, PHP considers
the integer as a floating-point number, and the result is a float. The type conversions
are largely straightforward; however, there are some traps, which are discussed later
in this section.

2.1.5.2 Operator precedence

The precedence of operators in an expression is similar to the precedence defined in
any other language. Multiplication and division occur before subtraction and addition,
and so on. However, reliance on evaluation order leads to unreadable, confusing
code. Rather than memorize the rules, we recommend you construct unambiguous
expressions with parentheses, because parentheses have the highest precedence in
evaluation.

For example, in the following fragment svarizble is assigned a value of 32 because
of the precedence of multiplication over addition:

Svariable = 2 + 5 * 6;
The result is much clearer if parentheses are used:

Svariable = 2 + (5 * 6);
2.1.6 Type Conversion

PHP provides several mechanisms to allow variables of one type to be considered as
another type. Variables can be explicitly converted to another type with the following
functions:

string strval (mixed variable)
integer intval (mixed variable)
float floatval (mixed wvariable)

The function settype (mixed variable, string type) can explicitly set the
type of variable to type, where type is again one of array, boolean, float, integer,
object, or string.

PHP supports type-casting in much the same way as C, to allow the type of an
expression to be changed. By placing the type name in parentheses in front of a
variable, PHP converts the value to the desired type:

(int) Svar
Cast to integer

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Oor (integer) S$var
(bool) Svar

Cast to Boolean
or (boolean) $var
(float) S$var, (double) Svar

Cast to float
or (real) Svar
(string) S$var Cast to string
(array) S$var Casttoarray
(object) Svar Cast to object

The rules for converting types are mostly common sense, but some conversions may
not appear so straightforward. Table 2-1 shows how various values of svar are
converted using the (int), (bool), (string),and (float) casting operators.

Table 2-1. Examples of type conversion in PHP using casting operators

Value of $var (int) $var (bool) $var (string) $var (float) $var
null 0 false " 0
true 1 true " 1
false 0 false " 0
0 0 false "o" 0
3.8 3 true "3.8" 3.
"o" 0 false "o" 0
"io" 10 true "io" 1
"6 feet" 6 true "6 feet" 6
"foo" 0 true "foo" 0

2.1.6.1 Automatic type conversion

Automatic type conversion occurs when two differently typed variables are combined
in an expression or when a variable is passed as an argument to a library function
that expects a different type. When a variable of one type is used as if it were another
type, PHP automatically converts the variable to a value of the required type. The
same rules are used for automatic type conversion as are demonstrated in Table 2-
1.

Some simple examples show what happens when strings are added to integers and
floats and when strings and integers are concatenated:

// S$var 1s set as an integer = 115

Svar = "100" + 15;

// $var 1s set as a float = 115.0

Svar = "100" + 15.0;

// $var 1s set as a string = "39 Steps"
Svar = 39 . " Steps";

Not all type conversions are so obvious and can be the cause of hard-to-find bugs:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

// S$var 1s set as an integer = 39
Svar = 39 + " Steps";

// S$var 1s an integer = 42
Svar = 40 + "2 blind mice";

// S$var 1s a float, but what does it mean
Svar = "test" * 4 + 3.14159;

Automatic type conversion can change the type of a variable. Consider the following

example:

Svar = "1"; // S$var is a string == "1"
Svar += 2; // $var 1is now an integer == 3
Svar /= 2; // Svar i1s now a float == 1.5
Svar *= 2; // Svar 1s still a float == 3

Care must be taken when interpreting non-Boolean values as
1'@ Boolean. Many library functions in PHP return values of different
types: 21 se if a valid result could not be determined, or a valid
result. A valid return value of 0, 0.0, "0", an empty string,
null, oran empty array is interpreted 21 s when used as a
Boolean value.

The solution is to test the type of the variable using the functions
described in the next section.

2.1.7 Examining Variable Type and Content

Because PHP is flexible with types, it provides the following functions that can check
a variable's type:

boolean 1s int (mixed variable)
boolean 1s float (mixed variable)
boolean 1s bool (mixed variable)
boolean is string(mixed variable)
boolean is array(mixed variable)
boolean is object (mixed variable)

All the functions return a Boolean value of © rue or 21 se for the variable variable,
depending on whether it matches the variable type that forms the name of the
function. For example, the following prints 1, that is, t rue:

Stest = 13.0;
echo is float(Stest); // prints 1 for true

2.1.7.1 Debugging with print_r() and var_dump()

PHP provides the print r() and var dump () functions, which print the type
and value of an expression in a human-readable form:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

print r (mixed expression)
var dump (mixed expression [, mixed expression ...])

These functions are useful for debugging a script, especially when dealing with arrays
or objects. To test the value and type of svariable at some point in the script, the
following code can be used:

Svariable = 15;
var dump ($variable);

This prints:
int (15)

While the var dump () function allows multiple variables to be tested in one call,
and provides information about the size of the variable contents, print r()
provides a more concise representation of arrays and objects. These functions can be
used on variables of any type, and we use them throughout this chapter to help
illustrate the results of our examples.

2.1.7.2 Testing, setting, and unsetting variables

During the running of a PHP script, a variable may be in an unset state or may not yet
be defined. PHP provides the i sset () function and the empty () language
construct to test the state of variables:

boolean isset (mixed wvar)
boolean empty (mixed var)

isset () testsif a variable has been set with a non-null value, while emptv ()
tests if a variable has a value. The two are different, as shown by the following code:

Svar = "test";

// prints: "Variable is Set"
if (isset(Svar)) echo "Variable is Set";

// does not print
if (empty(Svar)) echo "Variable is Empty";

A variable can be explicitly destroyed using unset ():

unset (mixed var [, mixed var [, ...]1])

After the call to unset in the following example, svar is no longer defined:
Svar = "foo";

// Later in the script
unset ($var) ;

// Does not print
if (isset (Svar)) echo "Variable is Set";

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Another way to test that a variable is empty is to force it to the Boolean type using the
(bool) cast operator discussed earlier. The example interprets the Svar variable as
type Boolean, which is equivalent to testing for | empt v (svar):

Svar = "foo";
// Both lines are printed

if ((bool) Svar) echo "Variable is not Empty";
if (lempty($var)) echo "Variable is not Empty";

Table 2-2 show the return values for i sset (Svar), empty (Svar), and
(bool) Svar when the variable svar is tested. Some of the results may be
unexpected: when svarissetto "0", empty () returns true.

Table 2-2. Expression values

State of the variable $var isset($var) empty($var) (bool)$var
Svar = null; false true false
Svar = 0; true true false
Svar = true true false true
Svar = false true true false
Svar = "0"; true true false
Svar = ""; true true false
Svar = "foo"; true false true
Svar = array() ; true true false
unset $var; false true false
)]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

2.2 Conditions and Branches

The control structures in PHP are similar in syntax to those in other high-level
programming languages.

Conditionals add control to scripts and permit branching so that different statements
are executed depending on whether expressions are t rue or false. There are two
branching statements in PHP: i ©, with the optional <1 =< clause, and swi tch,
usually with two or more czse clauses.

2.2.1 if...else Statement

The i £ statement conditionally controls execution and its use in PHP is as in any
other language. The basic format of an i © statement is to test whether a condition is
true and, if so, to execute one or more statements.

The following i © statement executes the =cho statement and outputs the string when
the conditional expression, svar is greater than 5, is ¢ rue:

if (Svar > 5)
echo "The variable is greater than 5";

The i ¢ statement executes only the one, immediately following statement.

Multiple statements can be executed as a block by encapsulating the statements
within braces. If the expression evaluates as t rue, the statements within braces are
executed. If the expression isn't - rue, none of the statements are executed. Consider
an example in which three statements are executed if the condition is ¢ rue:

if (Svar > 5)
{

echo "The variable is greater than 5.";
// So, now let's set it to 5

Svar = 5;

echo "In fact, now it is equal to 5.";

}

The i f statement can have an optional = 1 s« clause to execute a statement or block
of statements if the expression evaluates as 721 s<. Consider an example:

if (Svar > 5)
echo "Variable greater than 5";
else
echo "Variable less than or equal to 5";

It's also common for the =1 se clause to execute a block of statements in braces, as
in this example:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

if (Svar > 5)
{
echo "Variable is less than 5";
echo "---—7——--———--————————-— ;
}
else

{

echo "Variable is equal to or larger than 5";

echo "---————-">"-"--"-"--"">"—---">"-""-"""-""-"-"-"-"——- ;

}
Consecutive conditional tests can lead to examples such as:

if (Svar < 5)
echo "Value is very small";
else
if (Svar < 10)
echo "Value is small";
else
if (Svar < 20)
echo "Value is big";
else
if (Svar < 30)
echo "Value is very big";

If consecutive, cascading tests are needed, the = 1 s= 1 ¢ statement can be used. The
choice of which method to use is a matter of personal preference. This example has
the same functionality as the previous example:

if (Svar < 5)

echo "Variable is very small";
elseif (Svar < 10)

echo "Variable is small";
elseif (Svar < 20)

echo "Variable is big";
elseif (Svar < 30)

echo "Variable is very big";

2.2.2 switch Statement

The switch statement can be used as an alternative to i © to select an option from a
list of choices:

switch ($menu)
{
case 1:
echo "You picked one";
break;
case 2:
echo "You picked two";
break;
case 3:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

echo "You picked three";
break;
case 4:
echo "You picked four";
break;
default:
echo "You picked another option";

}

This example can be implemented with i £ and e1se i, butthe switch method is
usually more compact, readable, and efficient to type. The use of b re= k statements
is important: they prevent execution of statements that follow in the switch
statement and continue execution with the statement that follows the closing brace.

If break statements are omitted from a switch statement, you get a bug. If the user
chooses option 3, the script outputs not just:

"You picked three"
but also:
"You picked three. You picked four. You picked another option"

The fact that break statements are needed is sometimes considered to be a feature
but is more often a source of difficult-to-detect bugs.

2.2.3 Conditional Expressions

The most common conditional comparison is to test the equality of two expressions
with the Boolean result of - rue or £a1se. Equality is tested with the double-equal
operator, ==. Consider an example:

Svar = 1;

if (Svar == 1)
echo "Equals one!™;

If svar is equal to 1, the example evaluates as t rue and prints the message. If the
example evaluates as a1 se, nothing is printed.

Inequality can be tested with the ! = inequality operator:
Svar = 0;

if (Svar != 1)
echo "Does not equal one!";

This evaluates as rue and prints the message if svar isn't equal to 1. The operator
! = is usually referred to as the not equals operator, because the exclamation mark
character negates an equality expression.

o If the equality operator == and the assignment operator - are
@ unfamiliar beware: they are easy to inadvertently interchange.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

This is a very common bug and hard to detect.

The incorrectly formed conditional expression (svar = 1)
always evaluates as t rue, because the assignment that actually
occurs always succeeds and, therefore, is always t rue.

The error of incorrectly replacing an assignment with == is a far
less common mistake. However, it's also difficult to detect
because an incorrectly written assignment of Svar == 1; is
quietly evaluated as t rue or false with no effecton Svar.

Expressions can be combined with parentheses and with the Boolean operators « «
(and) and | | (or). For example, the following expression returns t rue and prints the
message if Svar is equal to either 3 or 7:

A

rar == 7)

m"w.
I4

if (Svar ==

3) | (S
echo "Equals r

O

w —

~J

The following expression returns t rue and prints the message if svar equals 2 and
Svar? equals 6:

if (Svar == 2) && (Svar2 == 0)
echo "The variables are equal to 2 and 6";

Interestingly, if the first part of the expression (Svar == 2) evaluates as f21se, PHP
doesn't evaluate the second part of the expression (Svar2 == 6), because the
overall expression can never be t rue; both conditions must be ¢ rue for an <« (and)
operation to be t rue. This short-circuit evaluation property has implications for
design; to speed code, write the expression most likely to evaluate as 721 s« as the
left-most expression, and ensure that computationally expensive operations are as
right-most as possible.

‘5 Never assume that expressions combined with the Boolean
operators ¢« and | | are evaluated. PHP uses short-circuit
evaluation when determining the result of a Boolean expression.

More complex expressions can be formed through combinations of the Boolean
operators and the liberal use of parentheses. For example, the following expression
evaluates as t rue and prints the message if one of the following is t rue: Svar
equals 6 and Svar2 equals 7, or svar equals 4 and svar2 equals 1.

if (((Svar == 6) && (Svar2 == 7)) ||
((Svar == 4) && ($var2 == 1)))
echo "Expression is true";

As in assignment expressions, parentheses ensure that evaluation occurs in the
required order.

Equality and inequality are the two basic comparisons, but numbers are also
compared to determine which is greater or lesser. Consider the following examples:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

// Returns true 1f Svar is less than 5
if (Svar < 5)
echo "Less than 5";

// Returns true 1f S$var is less than or equal to 5
if (Svar <= 5)
echo "Less than or equal to 5";

// Returns true if S$var is greater than 5
if ($var > 5)
echo "Larger than 5";

// Returns true if S$var 1s greater than or equal to 5
if (Svar >= 5)
echo "Equal to or larger than 5";

There is a new operator in PHP4, the is-identical operator ===. This isn't found in
other languages and returns t rue only if the expression evaluates as equal and the
arguments are of the same type. Consider an example:

// Returns true, since both are integers and equal
if (5 === 5)
echo "Same types and value";

// Returns false, since there are mixed types
// (5.0 is a float, and 5 is an integer)
if (5.0 === 5)

echo "This never prints!";

// The normal equality check would return true
if (5.0 == 5)
echo "This always prints";

s but usually not with the expected results. If strings need to be
- compared—a common requirement—use the PHP string library
function strcmp ().

J The conditional expressions described here can compare strings

The strcmp () function is a string function used in this book
and is discussed in more detail later in Section 2.6.

Any of the Boolean expressions we have discussed can be negated with an
exclamation mark !, the unary not operator. The following two expressions are
equivalent:

if (! (Svar != 1))
echo "variable is one";

if (Svar == 1)
echo "variable is one";

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

So are the following:

if (Svar < 10)
echo "less than 10";

if (! (Svar >= 10))
echo "less than 10";

Probably the most common use of the unary not operator is to check if a function call
fails, and we often use this with the database functions in later chapters.

[Crevnous Poaxr v

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

2.3 Loops

Loops in PHP have the same syntax as other high-level programming languages.

Loops add control to scripts so that statements can be repeatedly executed as long
as a conditional expression remains t rue. There are four loop statements in PHP:
while,do...while, for,and foreach. The first three are general-purpose loop
constructs, and foreach is used exclusively with arrays.

2.3.1 while

The while loop is the simplest looping structure but sometimes the least compact to
use. The whi1e loop repeats one or more statements—the loop body—as long as a
condition remains « rue. The condition is checked first, then the loop body is
executed. So, the loop never executes if the condition isn't initially t rue. Just as in
the i r statement, more than one statement can be placed in braces to form the loop
body.

The following fragment illustrates the wh i 1 e statement by printing out the integers
from 1 to 10 separated by a space character:

Scounter = 1;
while (Scounter < 11)

{
echo S$Scounter;
echo " ";
// Add one to S$Scounter
Scounter++;

}
2.3.2 do...while

The difference between while and do. . .while is the point at which the condition is
checked. In do. . .while, the condition is checked after the loop body is executed.
As long as the condition remains t rue, the loop body is repeated.

You can emulate the functionality of the wh i 1< example as follows:

Scounter = 1;
do
{

echo S$Scounter;
echo " ";
Scounter++;

} while (Scounter < 11);

The contrast between while and do. . .while can be seen in the following
example:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Scounter = 100;
do

{
echo Scounter;
echo " ";
Scounter++;
} while ($Scounter < 11);

This example outputs 100, because the body of the loop is executed once before the
condition is evaluated as f=21:se.

The do. . .while loop is the least-frequently used loop construct, probably because
executing a loop body once when a condition is £a 1 se is an unusual requirement.

2.3.3 for

The for loop is the most complicated of the loop constructs, but it also leads to the
most compact code.

Consider this fragment that implements the example used to illustrate whi 1< and
do...while:

for (Scounter=1; Scounter<ll; Scounter++)

{
echo Scounter;
echo " ";

}

The for loop statement has three parts separated by semicolons, and all parts are
optional:

Initial statements
Statements that are executed once, before the loop body is executed.
Loop conditions

The conditional expression that is evaluated before each execution of the loop
body. If the conditional expression evaluates as 7z 1 s, the loop body is not
executed.

End-loop statements
Statements that are executed each time after the loop body is executed.

The previous code fragment has the same output as our whilcand do...while
loop count-to-10 examples. Scounter=1 is an initial statement that is executed only
once, before the loop body is executed. The loop condition is Scounter<11, and this
is checked each time before the loop body is executed; when the condition is no
longer t rue—i.e., when scounter reaches 11—the loop is terminated. The end-
loop statement Scounter++ is executed each time after the loop body statements.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Our example is a typical or loop. The initial statements sets up a counter, the loop
condition checks the counter, and the end-loop statement increments the counter.
Most for loops used in PHP scripts have this format.

Conditions can be as complex as required, as in an i ¢ statement. Moreover, several
initial and end-loop statements can be separated by commas. This allows for
complexity:

for ($x=0,8y=0; $x<10&&5Sy<S$Sz; Sx++,Sy+=2)

However, complex ©or loops can lead to confusing code.
2.3.4 foreach

The foreach statement was introduced in PHP4 and provides a convenient way to
iterate through the values of an array. Like a for loop, the foreach statement
executes the loop body once for each value in an array. The following code fragment
converts an array of centimeter values to inches for each value in the array:

// Construct an array of integers
Slengths = array (0, 107, 202, 400, 475);

// Convert an array of centimeter lengths to inches
foreach (Slengths as S$Scm)
{

Sinch = (100 * Scm) / 2.45;

echo "$Scm centimeters = $inch inches\n";

}

The foreach loop is an extremely useful and convenient method of processing
arrays and is discussed in detail in Section 2.5.2.

2.3.5 Changing Loop Behavior

To break out of a loop early—before the loop condition becomes 21 se—the break
statement is useful. This example illustrates the idea:

for ($x=0; $x<100; Sx++)
{
if ($x > Sy)
break;
echo $x;

}

If << reaches 100, the loop terminates normally. However, if < is (or becomes)
greater than <, the loop is terminated early, and program execution continues after
the loop body. The break statement can be used with all loop types.

To start again from the top of the loop without completing all the statements in the
loop body, use the continue statement. Consider this example:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$x = 1;

while ($x<100)
{
echo $x;
Sx++;
if (Sx > $Sy)
continue;
echo Sy;
}

The example prints and increments <= each time the loop body is executed. If $x is
greater than < v, the loop is begun again from the top; otherwise, < is printed, and
the loop begins again normally. Like the b reak statement, cont inue can be used

with any loop type.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

2.4 A Working Example

In this section, we use the techniques described so far to develop a simple, complete
PHP script. The script doesn't process input from the user, so we leave some of the
best features of PHP as a web scripting language for discussion in later chapters.

Our example is a script that produces a web page containing the times tables. Our

aim is to output the 1-12 times tables. The first table is shown in Figure 2-2 as
rendered by a Netscape browser.

Figure 2-2. The output of the times-tables script shown rendered in a Netscape browser

To begin the development, we need to design how the output should appear and,
therefore, what HTML needs to be produced. If we use simple HTML markup, the first
12 lines of the HTML produces Example 2-3 as follows:

<html>
<head>
<title>The Times-Tables</title>
</head>
<body bgcolor="#ffffff">
<hl1>The Times Tables</hl>
<p>The 1 Times Table

1 x 1 =1

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

2 x 1 = 2

3 x 1 = 3

4 x 1 = 4
<pbr>5 x 1 =5

The script produces this output using a mixture of HTML and an embedded PHP
script.

The completed PHP script and HTML to produce the times tables are shown in
Example 2-3. The first nine lines are HTML that produces the <hezd> components
and the <h1>The Times Tables</hl> heading atthe top of the web page.
Similarly, the last two lines are HTML that finishes the document: </body> and
</html>.

Between the two HTML fragments that start and end the document is a PHP script to
produce the times-table content and its associated HTML. The script begins with the
PHP open tag <>php and finishes with the close tag - >.

Example 2-3. A script to produce the times tables

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd" >
<html>
<head>
<title>The Times-Tables</title>
</head>
<body bgcolor="#ffffff">
<h1>The Times Tables</hl>
<?php
// Go through each table
for (Stable=1; Stable<l1l3; Stable++)
{
echo "<p>The " . S$table . " Times Table\n";

// Produce 12 lines for each table
for (Scounter=1; Scounter<l3; Scounter++)

{

Sanswer = Stable * Scounter;

// Is this an even-number counter?
if (Scounter % 2 == 0)
// Yes, so print this line in bold
echo "
S$Scounter x S$Stable = "
"Sanswer";

else
// No, so print this in normal face
echo "
S$Scounter x S$Stable = Sanswer";

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

}

>
</body>
</html>

The script is designed to process each times table and, for each table, to produce a
heading and 12 lines. To do this, the script consists of two nested loops: an outer and
inner £or loop.

The outer £ or loop uses the integer variable st ab1 e, which is incremented by 1
each time the loop body is executed until st zb1e is greater than 12. The body of the
outer loop prints the heading and executes the inner loop that actually produces the
body of each times table.

The inner loop uses the integer variable scounter to generate the lines of the times
tables. Inside the loop body, the sanswer to the current line is calculated by
multiplying the current value of stzb1e by the current value of scounter.

Every second line of the tables and the times-table headings are encapsulated in the
bold tag <> and bold end tag < /b >, which produces alternating bold lines in the
resulting HTML output. After calculating the sanswer, an i © statement follows that
decides whether the line should be output in bold tags. The expression the i
statement tests uses the modulo operator = to testif scounter is an odd or even
number.

The modulo operation divides the variable scounter by 2 and returns the remainder.
So, for example, if Scounter is 6, the returned value is 0, because 6 divided by 2 is
exactly 3 with no remainder. If Scounter is 11, the returned value is 1, because 11
divided by 2 is 5 with a remainder of 1. If Scounter is even, the conditional
expression:

(Scounter % 2 == 0)

is t rue, and bold tags are printed.
2.4.1 Comments on Example 2.3

Example 2-3 is complete but isn't especially interesting. Regardless of how many
times the script is executed, the result is the same web page. In practice, you might
consider running the script once, capturing the output, and saving it to a static HTML
file. If you save the output as HTML, the user can retrieve the same page, with less
web-server load and a faster response time.

In Chapter 4, we introduce more PHP scripts that don't support input from the user.
However, the difference is that the scripts interact with the MySQL DBMS and run
SQL queries. The result is that the pages can change if the underlying data in the
database is updated. Therefore, unlike our simple example here, the scripts in
Chapter 4 may not be readily replaced with static HTML pages.

I I [Frevisus Lrant v

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

2.5 Arrays

Arrays in PHP are sophisticated and more flexible than in many other high-level
languages. An array is an ordered set of variables, in which each variable is called an
element. Technically, arrays can be either numbered or associative, which means that
the elements of an array can be accessed by a numeric index or by a textual string,
respectively.

In PHP, an array can hold scalar values—integers, Booleans, strings, or floats—or
compound values—objects and even other arrays, and can hold values of different
types. In this section, we show how arrays are constructed and introduce several
useful array functions from the PHP library.

2.5.1 Creating Arrays

PHP provides the =rray () language construct that creates arrays. The following
examples show how arrays of integers and strings can be constructed and assigned
to variables for later use:

Snumbers = array (5, 4, 3, 2, 1);
Swords = array ("Web", "Database", "Applications");

// Print the third element from the array
// of integers: 3
echo Snumbers[2];

// Print the first element from the array
// of strings: "Web"
echo Swords[0];

By default, the index for the first element in an array is 0. The values contained in an
array can be retrieved and modified using the bracket [] syntax. The following code
fragment illustrates the bracket syntax with an array of strings:

SnewArray[0] = "Potatoes";
SnewArray[l] = "Carrots";
SnewArray[2] = "Spinach";

// Oops, replace the third element
SnewArray[2] = "Tomatoes";

Numerically indexed arrays can be created to start at any index value. Often it's
convenient to start an array at index 1, as shown in the following example:

Snumbers = array(l=>"one", "two", "three", "four");

Arrays can also be sparsely populated, such as:

SoddNumbers = array(l=>"one", 3=>"three", 5=>"five");

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

An empty array can be created by assigning a variable with no parameters with
array (). Values can then be added using the bracket syntax. PHP automatically
assigns the next numeric index—the largest current index plus one—when an index
isn't supplied. Consider the following example, which creates an empty array
serrors and tests whether that array is empty at the end of the script. The first error
added with serrors] is element 0, the second is element 1, and so on:

Serrors = array()

// later in the code

Serrors|[] = "Found an error";
// ... and later still
Serrors[] = "Something went horribly wrong";

// Now test for errors
if (empty($errors))

// Phew. We can continue

echo "Phew. We can continue";
else

echo "There were errors";

2.5.1.1 Associative arrays

An associative array uses string indexes—or keys—to access values stored in the
array. An associative array can be constructed using arravy (), as shown in the
following example, which constructs an array of integers:

Sarray = array("first"=>1, "second"=>2, "third"=>3);

// Echo out the second element: prints "2"
echo $array["second"];

The same array of integers can also be created with the bracket syntax:

Sarray["first"] = 1;
Sarray["second"] = 2;
Sarray["third"] = 3;

There is little difference between using numerical or string indexes to access values.
Both can reference elements of an associative array, but this is confusing and should
be avoided in practice.

Associatively indexed arrays are particularly useful for interacting with the database

tier. Arrays are used extensively in Chapter 4, Chapter 5, and Chapter 6, and
more examples and array-specific functions are presented there.

2.5.1.2 Heterogeneous arrays

The values that can be stored in a single PHP array don't have to be of the same
type; PHP arrays can contain heterogeneous values. The following example shows

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

the heterogeneous array Smixedzag:
SmixedBag = array("cat", 42, 8.5, false);
var dump ($mixedBag) ;

The function var dump () displays the contents (with a little whitespace added for
clarity):
array (4) { > string(3) "cat"
> int (42)
=> float (8.5)
> bool (false) }

2.5.1.3 Multidimensional arrays

PHP arrays can also hold other arrays creating multidimensional arrays. Example 2-
4 shows how multidimensional arrays can be constructed.

Example 2-4. Examples of multidimensional arrays in PHP

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd" >
<html>
<head>
<title>Multi-dimensional arrays</title>
</head>
<body bgcolor="#ffffff">
<h2>A two dimensional array</h2>
<?php

// A two dimensional array using integer indexes
Splanets = array(array("Mercury", 0.39, 0.38),

array("Venus", 0.72, 0.95),
array("Earth", 1.0, 1.0),
array("Mars", 1.52, 0.53));

// prints "Earth"
print Splanets[2][0]
?>

<h2>More sophisticated multi-dimensional array</h2>
<?php

// More sophisticated multi-dimensional array
Splanets2 = array (
"Mercury"=> array ("dist"=>0.39, "dia"=>0.38),

"Venus" => array("dist"=>0.39, "dia"=>0.95),

"Earth" => array("dist"=>1.0, "dia"=>1.0,
"moons"=>array ("Moon")),

"Mars" => array ("dist"=>0.39, "dia"=>0.53,

"moons"=>array ("Phobos", "Deimos")),

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

) ;

// prints "Moon"

print Splanets2["Earth"] ["moons"][0];
>
</body>
</html>

The first array constructed in Example 2-4 is two-dimensional and is accessed using
integer indexes. The array Sp1anets contains four elements, each of which is an
array that contains three values: the planet name, the distance from the Sun, and the
planet diameter relative to the Earth.

The second array in Example 2-4 is a little more sophisticated: the array
Splanets?2 uses associative keys to identify an array that holds information about a
planet. Each planet has an array of values that are associatively indexed by the name
of the property that is stored; the array is effectively acting like a property list. For
those planets that have moons, an extra property is added that holds an array of the
moon names.

As stated in the introduction to this section, PHP arrays are very flexible. Many data
structures—such as property lists, stacks, queues, and trees—can be created using
arrays. We limit our usage of arrays to simple structures; the examination of more
complex data structures is outside the scope of this book.

2.5.2 Using foreach Loops with Arrays

As we discussed earlier, the easiest way to iterate through—or traverse—an array is
using the foreach statement.The foreach statement was specifically introduced in
PHP4 to make working with arrays easier.

The foreach statement has two forms:

foreach (array expression as $value) statement
foreach (array expression as Skey => S$value) statement

Both iterate through an array expression, executing the body of the loop for each
element in the array. The first form assigns the value from the element to a variable
identified with the = s keyword; the second form assigns both the key and the value to
a pair of variables.

The following example shows the first form in which the array expression is the
variable s1engths, and each value is assigned to the variable scm:

// Construct an array of integers
Slengths = array (0, 107, 202, 400, 475);

// Convert an array of centimeter lengths to inches
foreach ($lengths as $cm)
{

Sinch = Scm / 2.54;

echo "$Scm centimeters = S$inch inches\n";

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The example iterates through the array in the same order it was created:

0 centimeters = 0 inches

107 centimeters = 42.125984251969 inches
202 centimeters = 79.527559055118 inches
400 centimeters = 157.48031496063 inches
475 centimeters = 193.87755102041 inches

The first form of the foreach statement can also iterate through the values of an
associative array, however the second form assigns both the key and the value to
variables identified as skey => Svalue. The next example shows how the key is
assigned to sanimal, and the value is assigned to Ssound to generate verses of
"Old MacDonald":

// 01ld MacDonald
Ssounds = array("cow"=>"moo", "dog"=>"woof",
Hpigll:>'loinkll, Hduckll:>'lquackﬂ);

foreach ($sounds as $animal => S$sound)
{
echo "<p>0ld MacDbDonald had a farm EIEIO";
echo "
And on that farm he had a $animal EIEIO";
echo "
With a $sound-$sound here";
echo "
And a S$sound-$sound there";
echo "
Here a $sound, there a S$sound";
echo "
Everywhere a S$sound-$sound";

}
This prints a verse for each Sanimal/Ssound pairin the Ssounds array:

0ld MacDhonald had a farm EIEIO

And on that farm he had a cow EIEIO
With a moo-moo here

And a moo-moo there

Here a moo, there a moo

Everywhere a moo-moo

0Old MacDonald had a farm EIEIO

And on that farm he had a dog EIEIO
With a woof-woof here

And a woof-woof there

Here a woof, there a woof
Everywhere a woof-woof

When the second form of the foreach statement is used with a nonassociative
array, the index is assigned to the key variable and the value to the value variable.
The following example uses the index to number each line of output:

// Construct an array of integers
Slengths = array (0, 107, 202, 400, 475);

// Convert an array of centimeter lengths to inches
foreach (Slengths as $index => Scm)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

{
Sinch = Scm / 2.54;
Sitem Sindex + 1;
echo $index + 1 . ". S$Scm centimeters = $inch inches\n";

}

The foreach statement is used throughout Chapter 4 to Chapter 13.

2.5.3 Using Array Pointers

Along with the keys and the associated values stored in an array, PHP maintains an
internal index that points to the current element in the array. Several functions use
and update this array index to provide access to elements in the array. To illustrate
how this internal index can be used, consider the following example:

$a o array("a", "b", "C", "d", "e", "f");

echo current(Sa); // prints "a"

// Array ([1]=> a [value]=> a [0]=> 0 [key]=> 0)
print r each($a);

// Array ([1]=> b [value]l=> b [0]=> 1 [key]=> 1)
print r each($a);

// Array ([1]=> c¢ [valuel]l=> c [0]=> 2 [key]l=> 2)
print r each($Sa);

echo current(Sa); // prints "d"

The internal index is set to point at the first element when a new array is created, and
the function current () returns the value pointed to by the array's internal index.
The function each () returns an array that holds the index key and the value of the
current element, and then increments the internal index of the array to point at the
next element. The array cach () returns has four elements: two that hold the key,
accessed by the numeric index 0 and the associative key ke v; and two that hold the
value, accessed by the numeric index 1 and the associative key value.

Other functions that use the array's internal pointer are end (), next (), prev(),
reset (),and key ().

Before the foreach statement was introduced to the PHP language, a common way
to iterate through an associative array was to use a whi 1« loop withthe each ()
function to get the key/value pairs for each element and the 1ist () function to
assign these values to variables. The following example shows how such an iteration
is performed through the Ssounds array to generate verses of "Old MacDonald":

Ssounds array ("pig"=>"oink", "cow"=>"moo",
"duck"=>"quack", "dog"=>"woof");
while (list($Sanimal, S$sound) = each ($Ssounds))

{
echo "<p>0ld MacDbonald had a farm EIEIO";

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

echo "
And on that farm he had a $Sanimal EIEIO";
echo "
With a $sound-S$sound here";

echo "
And a $sound-S$sound there";

echo "
Here a $sound, there a S$sound";

echo "
Everywhere a $sound-S$sound";

}

The foreach statement is clearer and should be used in most cases. However we
include the whi1e loop example here because many existing scripts use this
structure to iterate through an associative array.

The 1ist () function isn't really a function, but a language construct that assigns
multiple variables from an array expression:

list ($varl, S$var2, ...) = array expression

1ist () appears on the left side of an assignment and an array expression appears
on the right. The argumentsto 1ist () must be variables. The first variable is
assigned the value of the first element in the array, the second variable the value from
the second element, and so on. We avoid using the 11 st () construct, because its
use leads to assumptions about the number of elements in an array. The need to use
1ist () toaccess the key/value pairs returned from cach () is avoided with the
foreach statement.

2.5.4 Basic Array Functions
In this section, we introduce selected basic PHP array library functions.
2.5.4.1 Counting elements in arrays

The count () function returns the number of elements in the array var:

integer count (mixed wvar)

The following example prints 7 as expected:

Sdays = array("Mon", "Tue", "Wed", "Thu",
”Fri”, ”Sat”, ”Sun”>;
echo count ($days); // 7

The count () function works on any variable type and returns 0 when either an
empty array or a variable that isn't set is examined. If there is any doubt, i sset ()
and is array() should be used to check the variable being considered.

2.5.4.2 Finding the maximum and minimum values in an array

The maximum and minimum values can be found from an array numbers with maz = (
) and min (), respectively:

number max (array numbers)
number min (array numbers)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If an array of integers is examined, the returned result is an integer, if an array of
floats is examined, min () and max () return a float:

Svar = array (10, 5, 37, 42, 1, -56);

echo max ($var) ; // prints 42
echo min ($var) ; // prints -56

Both min() andmax() can also be called with a list of integer or float arguments:

number max (number argl, number argZ2, number arg3, ...)
number min (number argl, number argZ2, number arg3, ...)

Both mz= () andmin () work with strings or arrays of strings, but the results may
not always be as expected.

2.5.4.3 Finding values in arrays with in_array() and array_search()

The in array () function returns t rue if an array haystack contains a specific
value needle:

boolean in array(mixed needle, array haystack [, boolean strict]

The following example searches the array of integers Ssma11primes for the integer
19:

$SsmallPrimes = array (3, 5, 7, 11, 13, 17, 19, 23, 29);

if (in array (19, S$smallPrimes))
echo "19 is a small prime number"; // Always printed

A third, optional argument can be passed that enforces a strict type check when
comparing each element with the needle. In the following example in zrravy () by
default returns « rue; however, with strict type checking, the string "1 9" doesn't
match the integer 19 held in the array and returns false:

SsmallPrimes = array(3, 5, 7, 11, 13, 17, 19, 23, 29);

if (in array("19", S$smallPrimes, true))
echo "19 is a small prime number"; // NOT printed

The array search () function—introduced with PHP 4.0.5—works the same way
asthe in array() function, except the key of the matching value needle is
returned rather than the Boolean value t rue:

mixed array search (mixed needle, array haystack [, boolean stric

However, if the value isn't found, array search () returns £z1se. The following
fragment shows how array search () works with both associative and indexed
arrays:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Smeasure = array("inch"=>1, "foot"=>12, "yard"=>36);

// prints "foot"
echo array search(1l2, Smeasure) ;

Sunits = array("inch", "centimeter", "chain", "furlong");

// prints 2
echo array search("chain", Sunits) ;

Because array search() returns a mixed result—the Boolean value tz1:se if the
value isn't found or the key of the matching element—a problem is encountered when
the first element is found. PHP's automatic type conversion treats the value 0—the
index of the first element—as 21 s< in a Boolean expression.

_5 Care must be taken with functions, such as array secarch(),

that return a result or the Boolean value =1 se to indicate when
a result can't be determined. If the return value is used as a
Boolean—in an expression or as a Boolean parameter to a
function—a valid result may be automatically converted to
false. If such a function returns 0, 0.0, "<, an empty string,
or an empty array, PHP's automatic type conversion converts the
result to £=1se when a Boolean value is required.

The correct way to test the result is to use the is-identical operator ===, as shown in
the following example:

$index = array search("inch", Sunits);
1f ($index === false)

echo "Unknown unit: inch";
else

// OK to use $index

echo "Index = S$index";

2.5.4.4 Reordering elements in arrays with array_reverse()

Often it's useful to consider an array in reverse order. The array reverse ()
function creates a new array by reversing the elements from a source array:

array array reverse (array source [, bool preserve keys])

The following example shows how to reverse an indexed array of strings:

Scount = array("zero", "one", "two", "three");
$countdown = array reverse ($count);

Setting the optional preserve _keys argument to © rue reverses the order but

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

preserves the association between the index and the elements. For a numerically
indexed array, this means that the order of the elements is reversed, but the indexes
that access the elements don't change. This might seem a bit weird, but the following
example shows what is happening:

Scount = array("zero", "one", "two", "three");
countdown = array reverse (Scount, rue) ;

$ td B ($ t, t)

print r (Scountdown) ;

This prints:
Array ([3] => three [2] => two [1l] => one [0] => zero)
2.5.5 Sorting Arrays

In the previous section we showed how to reverse the elements of an array. In this
section we show how to sort arrays. Unlike the array reverse () function that
returns a copy of the source array in the new order, the sorting functions rearrange
the elements in the source array itself. Because of this behavior, the sort functions
must be passed a variable, not an expression.

2.5.5.1 Sorting with sort() and rsort()

The simplest array-sorting functions are sort () and rsort (), which rearrange
the elements of the subject array in ascending and descending order, respectively:

sort (array subject [, integer sort flagl)
rsort (array subject [, integer sort flag])

Both functions sort the subject array based on the values of each element. The
following example shows the sort () function on an array of integers:

Snumbers = array (24, 19, 3, 16, 56, 8, 171);
sort (Snumbers) ;

foreach ($Snumbers as $n)

echo $n . ;

The output of the example prints the elements sorted by value:

38 16 19 24 56 171

Another way to examine the contents of the sorted array istouse the print = ()

function described in Section 2.1.7. The output of the statement
print r(Snumbers) shows the sorted values with the associated index:

Array ([0] => 3

[1] => 8

[2] => 16
[3] => 19
[4] => 24
[5] => 56
[6] => 171)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The following example shows the rsort () function on the same array:

Snumbers = array (24, 19, 3, 16, 56, 8, 171);
rsort (Snumbers) ;
print r ($Snumbers) ;

The output of the example shows the elements sorted in reverse order by value:

Array ([0] => 171
[1] => 56
[2] => 24

[3] => 19
[4] => 16
[5] => 8

[6] => 3)

By default, PHP sorts strings in alphabetical order and numeric values in numeric
order. An optional parameter, sort f1ag, can be passed to force the string or
numeric sorting behavior. In the following example, the PHP constant SORT STRING
sorts the numbers as if they were strings:

Snumbers = array (24, 19, 3, 16, 56, 8, 171);
sort ($Snumbers, SORT STRING) ;
print r ($Snumbers) ;

The output of the example shows the result:

Array ([0] => 16
[1] => 171
[2] => 19
[3] => 24

[4] => 3

[5] => 56
[6] => 8)

Many of the array sorting functions accepta sort 1ag parameter. Other sort flags
are SORT REGULAR to compare items in the array normally and sorT nUMERIC that
forces items to be compared numerically.

sort() and rsort () can be used on associative arrays, but the keys are lost.
The resulting array contains only the values in the sorted order. Consider the
following example:

Smap =
array("O":>"kk", "e":>"ZZ", "Z":>"hh", "a":>"rr");

sort ($map) ;
print r($map);

The print r() output shows the modified array without the key values:

Array ([0] => hh [1] => kk [2] => rr [3] => zz)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

2.5.5.2 Sorting associative arrays

It's often desirable to keep the key/value associations when sorting associative
arrays. To maintain the key/value associationthe zsort () and arsort ()
functions are used:

asort (array subject [, integer sort flag])
arsort (array subject [, integer sort flag])
Like sort () and rsort (), these functions rearrange the elements in the subject

array from lowest to highest and highest to lowest, respectively. The following
example shows a simple array sorted by asort ()

Smap =
array("O":>"kk", "e":>"ZZ", "Z":>"hh", "a":>"rr");

asort (Smap) ;
print r ($map);

The print r () function outputs the structure of the sorted array:

Array ([z] => hh
[o] => kk
[a] => rr
[e] => zz)
When zssort () and arsort () are used on nonassociative arrays, the order of

the elements is arranged in sorted order, but the indexes that access the elements
don't change. This might seem a bit weird; effectively the indexes are treated as
association keys in the resulting array. The following example shows what is
happening:

Snumbers = array (24, 19, 3, 16, 56, 8, 171);

asort ($Snumbers) ;
print r (Snumbers) ;

This outputs:

Array (

2.5.5.3 Sorting on keys

Rather than sort on element values, the ksort () and krsort () functions
rearrange elements in an array by sorting on the keys or the indexes:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

integer ksort(array subject [, integer sort flag])
integer krsort (array subject [, integer sort flag])

ksort () sorts the elements in the subject array from lowest key to highest key, and
krsort () sortsin the reverse order. The following example demonstrates the

ksort () function:
Smap =
array(lloll:>"kkll, "e":>"ZZ", "Z":>"hh", Hall:>llrr">;

ksort (Smap) ;
print r (Smap);

The sorted array smap is now:

=> rr
=> Zz2z
=> kk
=> hh)

Array (

There is little point in using ksort () on an integer-indexed array because the keys
are already in order. When krsort () is used on an indexed array, it reverses the
order of the elements.

2.5.5.4 Sorting with user-defined element comparison

The sorting functions described so far in this section sort elements in alphabetic,
numeric, or alphanumeric order. To sort elements based on user-defined criteria,
PHP provides three functions:

usort (array subject, string compare function)
uasort (array subject, string compare function)
uksort (array subject, string compare function)

usort () sorts the subject array based on the value of each element, vasortc ()
preserves the key/value associations as described earlier for the asort () function,
and uksort () rearranges the elements based on the key of each element. When
these functions sort the subject array, the user-defined compare function is called to
determine if one element is greater than, lesser than, or equal to another. The
compare function can be written to implement any sort order, but the function must
conform to the prototype:

integer my compare function (mixed a, mixed b)

We discuss how to write functions in more detail in Section 2.10. The compare
function takes two arguments, a and b, and returns -1 if ais less than b, 1 if ais
greater than b, and 0 if a and b are equal. How the function determines that one value
is less than, greater than, or equal to another depends on the requirements of sorting.
The following example shows how usort () sorts an array of strings based on the
length of each string:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

// Compare two string values based on the length
function cmp length(Sa, $b)

{
if (strlen($Sa) < strlen($b)) return -1;
if (strlen($Sa) > strlen($Sb)) return 1;

// String lengths must be equal
return 0;

}

Sanimals =
array("cow", "ox", " hippopotamus", "platypus");

usort (Sanimals, "cmp length");

print r(Sanimals) ;

The array Sanimals is printed:

Array ([0]=>0ox [l]=>cow [2]=>platypus [3]=>hippopotamus)

In this example, cnp length () is defined as the compare function, but it isn't
called directly by the script. The name of the function, "cmp length", is passed as
an argumentto usort (),and usort () uses cmp length () as partof the
sorting algorithm. User-defined functions used in this way are often referred to as
callback functions.

PHP has several library functions that allow user-defined behavior through user-
defined callback functions. The array map() and array walk () functions
allow user-defined functions to be applied to the elements of an array. We provide
another example in Appendix D where we implement user-defined session
management.

| T

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

2.6 Strings

A string of characters—a string—is probably the most commonly used data type
when developing scripts, and PHP provides a large library of string functions to help
transform, manipulate, and otherwise manage strings. We introduced PHP strings
earlier, in Section 2.1.1. Here, we examine string literals in more detail and describe
some of the useful string functions PHP provides.

2.6.1 String Literals

As already shown in previous examples, enclosing characters in single quotes or
double quotes can create a string literal. Single-quoted strings are the simplest form
of string literal; double-quoted strings are parsed to substitute variable names with the
variable values and allow characters to be encoded using escape sequences. Single-
quoted strings don't support all the escape sequences, only \ ' to include a single
quote and \ \ to include a backslash.

Tab, newline, and carriage-return characters can be included in a double-quoted
string using the escape sequences \ ©, \n, and \ r, respectively. To include a
backslash, a dollar sign, or a double quote in a double-quoted string, use the escape
sequences \\, \ 5, 0r \".

Other control characters and characters with the most significant bit set can be
included using escaped octal or hexadecimal sequences. For example, to include the
umlauted character 8, the octal sequence \ 3¢ 6 or the hexadecimal sequence \ =< f 6
are used:

//Print a string that includes a lowercase
//o with the umlaut mark
echo "See you at the G\xfé6teborg Film Festival";

PHP uses eight-bit characters in string values, so the range of characters that can be
represented is \ 000 to \ 377 in octal notation or \ <00 to \ x £ in hexadecimal
notation.

Unlike many other languages, PHP allows newline characters to be included directly
in a string literal. The following example show the variable v = r assigned with a
string that contains a newline character:

// This 1is Ok. $var contains a newline character
Svar = 'The quick brown fox
Jumps over the lazy dog';

This feature is used in later chapters to construct SQL statements that are readable in
the source code, for example:

$query = "SELECT max (order id)
FROM orders
WHERE cust id = $custID";

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Other control characters, such as tabs and carriage returns, and characters with the
most significant bit set—those in the range \ x50 to \ x £ f—can also be directly
entered into a string literal. We recommend that escape sequences be used in
practice to aid readability and portability of source files.

2.6.1.1 Variable substitution

Variable substitution provides a convenient way to output variables embedded in
string literals. When PHP parses double-quoted strings, variable names are identified
when a s character is found and the value of the variable is substituted. We have
already used examples earlier in this chapter such as:

Scm = 127;
Sinch = Scm / 2.54;

// prints "127 centimeters = 50 inches"
echo "$Scm centimeters = $inch inches";

When the name of the variable is ambiguous, braces { } can delimit the name as
shown in the following example:

Smemory = 256;

// Fails: no variable called S$memoryMbytes
Smessage = "My computer has SmemoryMbytes of RAM";

// Works: Curly braces are used delimit variable name
Smessage = "My computer has {$memory}Mbytes of RAM";

// This also works
Smessage = "My computer has ${memory}Mbytes of RAM";

Braces are also used for more complex variables, such as multidimensional arrays
and objects:

echo "Mars is {Splanets['Mars']['dia']} times the diameter of th

echo "There are {Sorder->count} green bottles ...";

Example 2-4 shows how the multidimensional array Sp1znets is assigned, and
objects and the member access operator - > are discussed in Section 2.11.

2.6.1.2 Length of a string

The length property of a string is determined with the st r1en () function, which
returns the number of eight-bit characters in the subject string:

integer strlen(string subject)
Consider an example that prints 16:

print strlen("This is a String"); // prints 16

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

2.6.2 Printing and Formatting Strings

Earlier we presented the basic method for outputting text—with echo and print—
and the functions print r() and var dump (), which can determine the
contents of variables during debugging.

PHP provides several other functions that allow more complex and controlled
formatting of strings.

2.6.2.1 Creating formatted output with sprintf() and printf()

Sometimes more complex output is required than can be produced with echo or
print. For example, a floating-point value such as 3.14159 might need to be
truncated to 3.14 as it is output. For complex formatting, the sprintf () or
printf () functions are useful:

string sprintf (string format [
integer printf (string format [

, mixed args...])
, mixed args...])

The operation of these functions is modeled on the identical C programming language
functions, and both expect a string with optional conversion specifications, followed
by variables or values as arguments to match any formatting conversions. The

difference between sprintf() andprintf () isthatthe outputof printcs()
goes directly to the output buffer PHP uses to build a HTTP response, whereas the
outputof sprintf () isreturned as a string.

Consider an example print £ statement:
printf ("Result: %.2f\n", S$variable);

The format string Result: = .2\ nis the first parameter to the pr i nt statement.
Strings like Result: are output the same as with echoorprint. The .21
component is a conversion specification:

« All conversion specifications begin with a = character.

e The indicates how the type of value should be interpreted. The £ means the
value should be interpreted as a floating-point number, for example, 3.14159 or
128.23765. Other possibilities include b, ¢, d, and s, where b means binary, c
means a single character, ¢ means integer, and s means string.

e The .2 is an optional width specifier. In this example, . 2> means two decimal
places, so the overall result of = . 2 f is that a floating-point number with two
decimal places is output. A specifier = 5 . 3 £ means that the minimum width of
the number before the decimal point should be five (by default, the output is
padded on the left with space characters and right-aligned), and three digits
should occur after the decimal point (by default, the output on the right of the
decimal point is padded on the right with zeros).

In the example, the value that is actually output using the formatting string = . 2 © is the

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

value of the second parameter to the print ¢ function—the variable svariable.

To illustrate other uses of print £, consider the examples in Example 2-5.
Example 2-5. Using printf to output formatted data

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd" >
<html>
<head>
<title>Examples of using printf()</title>
</head>
<body bgcolor="#ffffff">
<hl>Examples of using printf()</hl>
<pre>
<?php
// Outputs "3.14"
printf ("%$.2f\n", 3.14159);

// Outputs " 3.14"
printf ("%$10.2f\n", 3.14159);

// Outputs "3.1415900000"
printf ("$.10f\n", 3.14159);

// Outputs "halfofthe"
printf ("%$.9s\n", "halfofthestring"):;

// Outputs " 3.14 3.141590 3.142"
printf ("%5.2f %$f %7.3f\n", 3.14159, 3.14159, 3.14159);

// Outputs "1111011 123 123.000000 test"
printf ("$b %d %$f %$s\n", 123, 123, 123, "test");
2>
</pre>
</body>
</html>

2.6.2.2 Padding strings

A simple method to space strings is to use the st pad () function:
string str pad(string input, int length [, string padding [, int

Characters are added to the input string so that the resulting string is characters in
length. The following example shows the simplest form of st pad () that adds
spaces to the end of the input string:

// prints "PHP" followed by three spaces
echo str pad("PHP", 6);

An optional string argument padding can be supplied that is used instead of the space

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

character. By default, padding is added to the end of the string. By setting the optional
argument pad type to STR PAD LEFT Orto STR PAD BOTH, the padding is added
to the beginning of the string or to both ends. The following example shows how

str pad() can create a justified index:

Splayers =
array ("DUNCAN, king of Scotland"=>"Larry",
"MALCOLM, son of the king"=>"Curly",
"MACBETH"=>"Moe",
"MACDUFF"=>"Rafael") ;

echo "<pre>";

// Print a heading
echo str pad("Dramatis Personae", 50, " ", STR PAD BOTH) . "\n";

// Print an index line for each entry
foreach (Splayers as S$role=>Sactor)
echo str pad(Srole, 30, ".")
str pad(Sactor, 20, ".", STR _PAD LEFT) . "\n";
echo "</pre>";

The example prints:

Dramatis Personae

DUNCAN, king of Scotland...........oovien... Larry
MALCOLM, son of the king..........c.0iiie... Curly
N G 1 Moe
N I L Rafael

2.6.2.3 Changing case

The following PHP functions return a copy of the subject string with changes in the
case of the characters:

string strtolower (string subject)
string strtoupper (string subject)
string ucfirst(string subject)
string ucwords (string subject)

The following fragment shows how each operates:

print strtolower ("PHP and MySQL"); // php and mysqgl
print strtoupper ("PHP and MySQL"); // PHP AND MYSQL
print ucfirst ("now is the time"); // Now is the time
print ucwords ("now is the time"); // Now Is The Time

2.6.2.4 Trimming whitespace

PHP provides three functions that trim leading or trailing whitespace characters—null,
tab, vertical-tab, newline, carriage-return, and space characters—from strings:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

string ltrim(string subject)
string rtrim(string subject)
string trim(string subject)

The three functions return a copy of the subject string: = ~im () removes both
leading and trailing whitespace characters, 1t rim () removes leading whitespace
characters, and r-rim () removes trailing whitespace characters. The following
example shows the effect of each:

Svar = trim(" Tiger Land\n"); // "Tiger Land"
Svar = ltrim(" Tiger Land\n"); // "Tiger Land\n"
Svar = rtrim(" Tiger Land\n"); // " Tiger Land"

2.6.2.5 Rendering newline characters with

Whitespace characters generally don't have any significance in HTML, but it's often
useful to preserve newlines when a page is rendered. The n12br () function
generates a string by inserting the HTML break element <t~ />121 before all
occurrences of the newline character in the source argument:

[2] From PHP Version 4.0.5 onwards, n12br () inserts the XHTML-compliant <o+ /> markup that includes the
shorthand way of closing an empty element. Earlier versions inserted , which isn't valid XML.

string nl2br (string source)
The following example shows how n12br () works:

// A short poem
Sverse = "Isn't it funny\n";

Sverse .= "That a bear likes honey.\n";
Sverse .= "I wonder why he does?\n";
Sverse .= "Buzz, buzz, buzz.\n";

// The four lines are rendered as one
echo Sverse;

// Renders the poem on four lines in HTML as intended
echo nl2br (Sverse) ;

2.6.3 Comparing Strings

PHP provides the string comparison functions st rcmp () and strncmp () that
safely compare two strings, str1 and str2:

integer strcmp(string strl, string str2)
integer strncmp (string strl, string str2, integer length)

While the equality operator == can compare two strings, the result isn't always as
expected when the strings contain characters with the most significant bit set. Both
stremp () and strncmp () take two strings as arguments, str1 and str2, and
return O if the strings are identical, 1 if str1 is less than str2, and -1 if str1 is greater
that str2. The function st rncmp () takes a third argument length that restricts the

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

comparison to length characters. These examples show the results of various

comparisons:

print strcmp ("aardvark", "zebra"); // -1

print strcmp ("zebra", "aardvark"); // 1

print strcmp ("mouse™, "mouse"); // 0

print strncmp ("aardvark", "aardwolf", 4); // O

print strncmp ("aardvark", "aardwolf", 5); // -1

The functions st rcasecmp () and strncasecmp () are case-insensitive versions
of strecmp () and strncmp ().

The functions st rncmp (), strcasecmp (), 0f strncasecmp () can be used

as the callback function when sorting arrays with usort ().
2.6.4 Finding and Extracting Substrings

PHP provides several simple and efficient functions that can identify and extract
specific substrings of a string.

2.6.4.1 Extracting a substring from a string

The substr () function returns a substring from a source string:
string substr(string source, integer start [, integer length])

When called with two arguments, substr () returns the characters from the source
string starting from position start—counting from zero—to the end of the string. With
the optional length argument, a maximum of /length characters are returned. The

following examples show how substr () works:

Svar = "abcdefgh";

print substr ($Svar, 2); // "cdefgh"
print substr ($Svar, 2, 3); // "cde"
print substr (Svar, 4, 10); // "efgh"

If a negative start position is passed, the starting point of the returned string is
counted from the end of the source string. If the length is negative, it's treated as the
index, and the returned string ends length characters from the end of the source
string. The following examples show how negative indexes can be used:

Svar = "abcdefgh";

print substr ($var, -1); // "Th"
print substr ($var, -3); // "fgh"
print substr (S$var, -5, 2); // "de"
print substr ($var, -5, -2); // "def"

2.6.4.2 Finding the position of a substring

The st rpos () function returns the index of the first occurring substring needle in

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

the string haystack:

integer strpos(string haystack, string needle [, integer offset]

When called with two arguments, the search for the substring needle is from the start
of the string haystack at position zero. When called with three arguments, the search
occurs from the index offset into the haystack. The following examples show how

strpos () works:

Svar = "To be or not to be";
print strpos ($var, "T"); // 0
print strpos (Svar, "be"); // 3

// Start searching from the 5th character in S$var
print strpos(Svar, "be", 4); // 16

The st rrpos () function returns the index of the last occurrence of the single
character needle in the string haystack:

integer strrpos(string haystack, string needle)

Unlike st rpos (), strrpos () searches for only a single character, and only the
first character of the needle string is used. The following examples show how
strrpos () works:

Svar = "To be or not to be'";

// Prints 13: the last occurrence of "t"
print strrpos ($var, "t");

// Prints 0: Only searches for "T" which
// 1s found at position zero

print strrpos (Svar, "Tap");

// False: "z" does not occur in the subject

onlyprint strrpos ($var, "Zoo");

If the substring needle isn't found by st rpos () orstrrpos (), both functions
return £ 21 se. The is-identical operator === should be used when testing the returned

value from these functions against =1 se. If the substring needle is found at the start
of the string haystack, the index returned is zero and is interpreted as =1 s« if used
as a Boolean value.

2.6.4.3 Extracting a found portion of a string

The strstr() andstristr () functions search for the substring needle in the
string haystack and return the portion of haystack from the first occurrence of needle
to the end of haystack:

string strstr(string haystack, string needle)
string stristr(string haystack, string needle)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The strstr () search is case-sensitive; the st ristr () search isn't. If the needle
isn't found in the haystack string, both st rstr() andstristr() return false.
The following examples show how the functions work:

Svar = "To be or not to be";

print strstr ($Svar, "to"); // "to be"

print stristr(Svar, "to"); // "To be or not to be"
print stristr ($Svar, "oz"); // false

The st rrchr () function returns the portion of haystack by searching for the single
character needle; however, st rrchr () returns the portion from the last occurrence
of needle:

string strrchr(string haystack, string needle)

Unlike strstr()andstristr(),strrchr () searches for only a single
character, and only the first character of the needle string is used. The following
examples show how strrchr () works:

Svar = "To be or not to be";

// Prints: "not to be"
print strrchr (Svar, "n");

// Prints "o be": Only searches for "o" which
// 1s found at position 14
print strrchr ($Svar, "oz"):;

2.6.4.4 Extracting multiple values from a string

PHP provides the explode () and implode () functions, which convert strings to
arrays and back to strings:

array explode(string separator, string subject [, integer limit]
string implode(string glue, array pieces)

The explode () function returns an array of strings created by breaking the subject
string at each occurrence of the separator string. The optional integer limit determines
the maximum number of elements in the resulting array; when the limit is met, the last
element in the array is the remaining unbroken subject string. The implode ()
function returns a string created by joining each element in the array pieces, inserting
the string glue between each piece. The following example shows both the

implode () and explode () functions:

SguestList = "Sam Meg Sarah Ben Jess May Adam";
Sname = "Fred";

// Check if S$name is in the S$guestlList
if (strpos($SguestlList, S$name) === false)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

SguestArray = explode (" ", SguestlList);
sort ($guestArray) ;
echo "Sorry 'Sname' is not on the guest list.\n";

echo "Guest list: " . implode(", ", S$SguestArray)
}

When the string Sname isn't found in the string sguestiist using strpos (), the
fragment of code prints a message to indicate that snzme isn't contained in the list.
The message includes a sorted list of comma-separated names: cxplode ()
creates an array of guest names that is sorted and then, using implode (), is
converted back into a string with each name separated by a comma and a space. The
example prints:

Sorry 'Fred' is not on the guest list.
Guest 1list: Adam, Ben, Jess, May, Meg, Sam, Sarah

2.6.5 Replacing Characters and Substrings

PHP provides several simple functions that can replace specific substrings or
characters in a string with other strings or characters. In the next section we discuss
powerful tools for finding and replacing complex patterns of characters. The functions
described in this section, however, are more efficient than regular expressions and
are often the better choice when searching and replacing strings.

2.6.5.1 Replacing substrings

The substr replace () function replaces a substring identified by an index with a
replacement string:

string substr replace(string source, string replace, int start [

Returns a copy of the source string with the characters from the position start to the
end of the string replaced with the replace string. If the optional length is supplied,
only length characters are replaced. The following examples show how

substr replace() works:

Svar = "abcdefghij";

// prints "abcDEF";
echo substr replace($var, "DEF", 3);

// prints "abcDEFghij";
echo substr replace(Svar, "DEF", 3, 3);

// prints "abcDEFdefghij";
echo Substrireplace($var, "DEF", 3, 0);

The str replace () function returns a string created by replacing occurrences of
the string search in subject with the string replace:

mixed str replace (mixed search, mixed replace, mixed subject)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In the following example, the subject string, "o1d-age for the old", is printed with
both occurrences of o 1 d replaced with new:

Svar = "old-age for the old.";
echo str replace("old", "new", $var);
The result is:

new—-age for the new.

Since PHP Version 4.0.5, st+ replace () allows an array of search strings and a
corresponding array of replacement strings to be passed as parameters. The
following example shows how the fields in a very short form letter can be populated:

// A short form-letter for an overdue account
Sletter = "Dear #title #name, You owe us S#amount.";

// Set-up an array of three search strings that
// will be replaced in the form-letter
Sfields = array("#title", "#name", "#amount");

// An array of debtors. Each element is an array that
// holds the replacement values for the form-letter

Sdebtors = array(
array ("Mr", "Cartwright", "146.00"),
array ("Ms", "Yates", "1,662.00"),
array ("Dr", "Smith", "84.75"));

foreach ($debtors as S$debtor)
echo "<p>" . str replace(Sfields, Sdebtor, S$letter);

The output of this script is as follows:

Dear Mr Cartwright, You owe us $146.00.
Dear Ms Yates, You owe us $1,662.00.
Dear Dr Smith, You owe us $84.75.

If the array of replacement strings is shorter than the array of search strings, the
unmatched search strings are replaced with empty strings.

2.6.5.2 Translating characters and substrings

The st rtr () function translates characters or substrings in a subject string:

string strtr(string subject, string from, string to)
string strtr(string subject, array map)

When called with three arguments, st rtr () translates the characters in the subject
string that match those in the from string with the corresponding characters in the to
string. When called with two arguments, a subject string and an array map,
occurrences of the map keys in subject are replaced with the corresponding map
values.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The following example uses st rtr () to replace all lowercase vowels with the
corresponding umlauted character:

Smischief = strtr ("command.com", "aeiou", "aé&iou"):;
print Smischief; // prints command.com

When an associative array is passed as a translation map, strtr () replaces
substrings rather than characters. The following example shows how strtr () can
expand acronyms:

// Short list of acronyms used in e-mail

$Sglossary = array ("BTW"=>"by the way",
"IMHO"=>"in my humble opinion",
"IOW"=>"in other words",
"OTOH"=>"on the other hand");

// Maybe now I can understand
print strtr(SgeekMail, S$glossary);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

2.7 Regular Expressions

In this section we show how regular expressions can achieve more sophisticated
pattern matching to find, extract, and even replace complex substrings within a string.

While regular expressions provide capabilities beyond those described in the last
section, complex pattern matching isn't as efficient as simple string comparisons. The
functions described in the last section are more efficient than those that use regular
expressions and should be used if complex pattern searches aren't required.

This section starts with a brief description of the POSIX regular expression syntax.
This isn't a complete description of all the capabilities, but we do provide enough
details to create quite powerful regular expressions. The second half of the section
describes the functions that use POSIX regular expressions. Examples of regular

expressions can be found in this section and in Chapter 7.
2.7.1 Regular Expression Syntax

A regular expression follows a strict syntax to describe patterns of characters. PHP
has two sets of functions that use regular expressions: one set supports the Perl
Compatible Regular Expression (PCRE) syntax, while the other supports the POSIX
extended regular expression syntax. In this book we use the POSIX functions.

To demonstrate the syntax of regular expressions, we introduce the function ereg () :
boolean ereg(string pattern, string subject [, array var])

ereqg () returns t rue if the regular expression pattern is found in the subject string.
We discuss how the = r=g () function can extract values into the optional array
variable var later in this section.

The following trivial example shows how = req () is called to find the literal pattern
"cat"inthe subject string "raining cats and dogs'":

// prints "Found a cat"
if (ereg("cat", "raining cats and dogs"))
echo "Found 'cat'";

The regular expression "czt " matches the subject string, and the fragment prints
"Found 'cat'".

2.7.1.1 Characters and wildcards

To represent any character in a pattern, a period is used as a wildcard. The pattern

"c.." matches any three-letter string that begins with a lowercase " "; for example,
"cat", "cow", "cop", etc. To express a pattern that actually matches a period, use
the backslash character \—for example, "\ . com" matches " .com" butnot "xcom™.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The use of the backslash in a regular expression can cause confusion. To include a
backslash in a double-quoted string, you need to escape the meaning of the
backslash with a backslash. The following example shows how the regular expression
pattern "\ . com" is represented:

// Sets S$found to true
Sfound = ereg("\\.com", "www.ora.com");

It's better to avoid the confusion and use single quotes when passing a string as a
regular expression:

Sfound = ereg('\.com', "www.ora.com");
2.7.1.2 Character lists

Rather than using a wildcard that matches any character, a list of characters enclosed
in brackets can be specified within a pattern. For example, to match a three-character
string that starts with a "p ", ends with a """, and contains a vowel as the middle
letter, the expression:

ereg ("plaeioulp", Svar)

can be used. This returns t rue for any string that contains "pap", "pep", "pip",
"pop",or "pup'". A range of characters can also be specified; for example, " [0-9]"
specifies the numbers 0 through 9:

// Matches ”Al”, HA2H, HA3H, ”Bl”, X
Sfound = ereg("[ABC][123]", "Al Quality"); // true

// Matches "00" to "39"
Sfound = ereg("[0-3][0-9]", "27"); //true

A list can specify characters that aren't matches using the not operator ~ as the first
character in the brackets. The pattern " [#1231 " matches any character other than 1,
2, or 3. The following examples show more regular expressions that make use of the
not operator in lists:

// true for "pap", "pbp", "pcp", etc. but not "php"
Sfound = ereg("p["h]p", Sval);

// true if S$var does not contain
// alphanumeric characters
Sfound = ereg("["0-%9a-zA-7z]", Sval);

The ~ character can be treated as normal by placing it in a position other than the
start of the characters enclosed in the brackets. For example, " [0-9"] " matches the
characters 0 to 9 and the ~ character. The - character can be matched by placing it
at the start or the end of the list; for example, " [-123] " matches characters -, 1, 2,
or 3.

2.7.1.3 Anchors

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

A regular expression can specify that a pattern occur at the start or end of a subject
string using anchors. The ~ anchors a pattern to the start, and the ¢ character
anchors a pattern to the end of a string. For example, the expression:

WA

ereg (""php", Svar)

matches strings that start with "php " but not others. The following code shows the
operation of both:

Svar = "to be or not to be'";

Smatch = ereg(""to", $var); // true
Smatch = ereg('be$', S$var); // true
Smatch = ereg(""or", $var); // false

Both anchors can be used in one regular expression to match a whole string. The
following example illustrates this:

// Must match "Yes" exactly

Smatch = ereg('"“Yes$', "Yes"); // true
Smatch = ereg('"Yes$', "Yes sir"); // false

2.7.1.4 Optional and repeating characters

By following a character in a regular expression with a 2, *, or + operator, the pattern
matches zero or one, zero to many, or one to many occurrences of the character,
respectively.

The > operator allows zero or one occurrence of a character, so the expression:
ereg ("pe?p", Svar)

matches either "pep™ or "pp', but not the string "peep . The * operator allows zero
or many occurrences of the "o " in the expression:

ereg ("po*p", Svar)

and matches "pp", "pop", "poop", "pooop", and so on. Finally, the + operator
allows one to many occurrences of "b" in the expression:

ereg ("ab+a", Svar)
so while strings such as "aba", "abba",and "abbba" match, "aa" doesn't.

The operators 2, *, and + can also be used with a wildcard or a list of characters. The
following examples show how:

Svar = "www.rmit.edu.au";

// True for strings that start with "www"
// and end with "au"

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Smatches = ereg('*www.*aus$', S$var); // true

ShexString = "x01ff";

// True for strings that start with 'x'
// followed by at least one hexadecimal digit
Smatches = ereg('x[0-9a-fA-F]+S$', ShexString); // true

The first example matches any string that starts with "www™ and ends with "=2u"; the
pattern " . " matches a sequence of any characters, including a blank string. The
second example matches any sequence that starts with the character " <" followed
by one or more characters from the list [0-9a-fA-7].

A fixed number of occurrences can be specified in braces. for example, the pattern
[0-71 {3} " matches three-character numbers that contain the digits 0 through 7:

Svalid = ereg("[0-7]1{(3}", "075"); // true
Svalid = ereg("[0=7]{3}", "75"); // false

The braces syntax also allows the minimum and maximum occurrences of a pattern
to be specified as demonstrated in the following examples:

Sval = "58273";

// true 1if $val contains numerals from start to end
// and is between 4 and 6 characters in length
Svalid = ereg('~[0-9]1{4,6}S', Sval); // true

Sval = "5827003";
Svalid = ereg('~[0-9]1{4,6}S', Sval); // false

// Without the anchors at the start and end, the
// matching pattern "582768" is found
Sval = "582768986456245003";

Svalid = ereg("[0-9]1{4,6}", Sval); // true
2.7.1.5 Groups

Subpatterns in a regular expression can be grouped by placing parentheses around
them. This allows the optional and repeating operators to be applied to groups rather
than just a single character. For example, the expression:

ereg (" (123)+", Svar)

matches "123", "123123", "123123123", etc. Grouping characters allows
complex patterns to be expressed, as in the following example that matches a URL:

// A simple, incomplete, HTTP URL regular expression that doesn'
Spattern = '~ (http://)?[a-zA-Z]+(\.[a-zA-z]+)+S$';

Sfound = ereg(Spattern, "www.ora.com"); // true

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The regular expression assigned to spattern includes both the start and end
anchors, ~ and ¢, so the whole subject string, "www.ora.com" must match the
pattern. The start of the pattern is the optional group of characters "hctp://", as
specified by " (nttp://) 2". This doesn't match any of the subject string in the
example but doesn't rule out a match, because the "nhttp: //" pattern is optional.
Nextthe " [a-z2-7] +" pattern specifies one or more alpha characters, and this
matches "www" from the subject string. The next pattern is the group " (\ . [a-zA-
z]+) ". This pattern must start with a period—the wildcard meaning of . is escaped
with the backslash—followed by one or more alphabetic characters. The pattern in
this group is followed by the + operator, so the pattern must occur at least once in the
subject and can repeat many times. In the example, the first occurrenceis " .ora"
and the second occurrence is " . com".

Groups can also define subpatterns when creg () extracts values into an array. We
discuss the use of = reg () to extract values later in this section.

2.7.1.6 Alternative patterns

Alternatives in a pattern are specified with the | operator; for example, the pattern
"cat|bat|rat" matches "cat", "bat",or "rat". The | operator has the lowest
precedence of the regular expression operators, treating the largest surrounding
expressions as alternative patterns. To match "cat", "bat ", or "rat" another way,
the following expression can be used:

Svar = "bat";
Sfound = ereg("(cl|blr)at™, Svar); // true

Another example shows alternative beginnings to a pattern:

// match some URLS
Spattern = ' (~"ftp| http|~gopher)://"';

Sfound = ereg(Spattern, "http://www.ora.com"); // true
2.7.1.7 Escaping special characters

We've already discussed the need to escape the special meaning of characters used
as operators in a regular expression. However, when to escape the meaning depends
on how the character is used. Escaping the special meaning of a character is done
with the backslash character as with the expression "2\ + 3, which matches the string
"2+3". Ifthe + isn't escaped, the pattern matches one or many occurrences of the
character 2 followed by the character 3. Another way to write this expression is to
express the + in the list of characters as "2 [+] 3. Because + doesn't have the same
meaning in a list, it doesn't need to be escaped in that context. Using character lists in
this way can improve readability. The following examples show how escaping is used

and avoided:
// need to escape (and)
Sphone = " (03) 9429 5555";

Sfound = ereg("*\([0-9]1{2,3}\)", Sphone); // true

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

// No need to escape (*.+?)| within parentheses
Sspecial = "Special Characters are (,), *, +, 2, "
Sfound = ereg("[(*.+?)|]1", S$special); // true

// The back-slash always needs to be quoted to match
SbackSlash = 'The backslash \ character';
Sfound = ereg('~[a-zA-Z \\]1*$', S$backSlash); //true

// Don't need to escape the dot within parentheses
Sdomain = "www.ora.com";
Sfound = ereg("[.]com", S$domain); //true

Another complication arises due to the fact that a regular expression is passed as a
string to the regular expression functions. Strings in PHP can also use the backslash
character to escape quotes and to encode tabs, newlines, etc. Consider the following
example, which matches a backslash character:

// single-quoted string containing a backslash
SbackSlash = '\ backslash';

// Evaluates to true
Sfound = ereg (""\\\\ backslash\$", S$SbackSlash);

The regular expression looks quite odd: to match a backslash, the regular expression
function needs to escape the meaning of backslash, but because we are using a
double-quoted string, each of the two backslashes needs to be escaped. The last
complication is that PHP interprets the ¢ character as the beginning of a variable
name, so we need to escape that. Using a single-quoted string can help make regular
expressions easier to read and write.

2.7.1.8 Metacharacters

Metacharacters can also be used in regular expressions. For example, the tab
character is represented as \ © and the carriage-return character as \ n. There are
also shortcuts: \ d means any digit, and \ = means any whitespace. The following
example returns t rue as the tab character, \ ¢, is contained in the Ssource string:

Ssource = "fast\tfood";

Sresult = ereg('\s', S$source); // true
2.7.2 Regular Expression Functions

PHP has several functions that use POSIX regular expressions to find and extract
substrings, replace substrings, and split a string into an array. The functions to
perform these tasks come in pairs: a case-sensitive version and a case-insensitive
version. While case-sensitive regular expressions can be written, the case-insensitive
versions of these functions allow shorter regular expressions.

2.7.2.1 Finding and extracting values

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The ereqg () function, and the case-insensitive version eregi (), are defined as:
boolean ereg(string pattern, string subject [, array var])
boolean eregi(string pattern, string subject [, array var])

Both functions return « rue if the regular expression pattern is found in the subject
string. An optional array variable var can be passed as the third argument; it is
populated with the portions of subject that are matched by up to nine grouped
subexpressions in pattern. Both functions return a1 se if the pattern isn't found in the
subject.

To extract values from a string into an array, patterns can be arranged in groups
contained by parentheses in the regular expression. The following example shows
how the year, month, and day components of a date can be extracted into an array:

Sparts = array();
Svalue = "2001-09-07";
$pattern = '~ ([0-9]{4})-([0-91{2})-([0-91{2})sS";

ereg ($pattern, S$Svalue, S$parts);

// Array ([0]=> 2001-09-07 [1]=>2001 [2]=>09 [3]1=>07
print r (Sparts);

The expression:
"M([0-91{4})-([0-91{2})-([0-9]{2})8"

matches dates in the format vvvv-mmv-DD. After calling ereg (), Sparts[0] is
assigned the portion of the string that matches the whole regular expression—in this
case, the whole string 2001-09-07. The portion of the date that matches each group
in the expression is assigned to the following array elements: Sparts 1] contains
the year matched by ([0-9](4}), sparts[2] contains the month matched by
([0-91{2}),and Sparts[3] contains the day matched by " ([0-9] {2}) ".

2.7.2.2 Replacing substrings

The following functions create new strings by replacing substrings:

string ereg replace(string pattern, string replacement, string s
string eregi replace(string pattern, string replacement, string

They create a new string by replacing substrings of the source string that match the
regular expression pattern with a replacement string. These functions are similar to
the str replace () function described earlier in the Section 2.6 section, except
that the replaced substrings are identified using a regular expression. Consider the
examples:

Ssource = "The quick\tbrown\n\tfox jumps";

// prints "The quick brown fox"
echo ereg replace("[\t\n]+", "™ ", Ssource);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Ssource = "\xf6 The quick\tbrown\n\tfox jumps\x88";

// replace all non-printable characters with a space
echo ereg replace("[" —-~]4+", " ", Ssource) ;

The second example uses the regular expression " [~ -~ +" to match all characters
except those that fall between the space character and the tilde character in the
ASCII table. This represents almost all the printable 7-bit characters.

2.7.2.3 Splitting a string into an array

The following two functions split strings:

array split(string pattern, string source [, integer limit])
array spliti(string pattern, string source [, integer limit])

They split the source string into an array, breaking the string where the matching
pattern is found. These functions perform a similar task to the exp1ode () function
described earlier and as with explode (), a limit can be specified to determine the
maximum number of elements in the array.

The following simple example shows how sp1 it () can break a sentence into an
array of "words" by recognizing any sequence of nonalphabetic characters as

separators:
Ssentence = "I wonder why he does\nBuzz, buzz, buzz!";
Swords = split("["a-zA-Z]+", S$sentence);

When complex patterns aren't needed to break a string into an array, the exp1ode (
) function makes a better choice.

T

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

2.8 Date and Time Functions

There are several PHP library functions that work with dates and times. Most either
generate a Unix timestamp or format a Unix timestamp in a human-readable form.

2.8.1 Generating a Timestamp

Date and time is generally represented as a Unix timestamp: the number of seconds
since 1 January 1970 00:00:00 Greenwich Mean Time. Most systems represent a
timestamp using a signed 32-bit integer, allowing a range of dates from December 13,
1901 through January 19, 2038. While timestamps are convenient to work with in
scripts, care must be taken when manipulating timestamps to avoid integer overflow
errors. A common source of errors is to compare two timestamps in which the date
range is greater than the largest positive integer—a range just over 68 years for a
signed 32-bit integer.

_5 PHP gives unexpected results when comparing two integers that
differ by an amount greater than the largest positive integer,

typically 231-1. A safer way to compare large integers is to cast

them to floating-point numbers. The following example illustrates

this point:
$varl = -2106036000; // 16/08/1902
Svar2 = 502808400; // 24/08/1984

// Sresult is assigned false
Sresult = Svarl < Svar?2;

// S$result is assigned true as expected
Sresult = (float) Svarl < (float) Svar?2;

Even floating-point numbers can overflow. To manipulate
numbers of arbitrary precision, the BCMath library should be
considered.

2.8.1.1 Current time

PHP provides several functions that generate a Unix timestamp. The simplest:
integer time()
returns the timestamp for the current date and time, as shown in this fragment:

// prints the current timestamp: e.g., 1008553254
echo time();

2.8.1.2 Creating timestamps with mktime() and gmmktime()

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

To create a timestamp for a past or future date in the range December 13, 1901
through January 19, 2038, the mktime () and gmmktime () functions are
defined:

int mktime (int hour, int minute, int second, int month, int day,
[, int 1is dst])

int gmmktime (int hour, int minute, int second, int month, int da
[, int 1is dst])

Both create a timestamp from the supplied components; the parameters supplied to
gmmktime () representa GMT date and time, while the parameters supplied to
mktime () represent the local time. This example creates a timestamp for 9:30 A.M.
on June 18, 1998:

SaDate = mktime (9, 30, 0, 6, 18, 1998);

Both functions are reasonably tolerant of zero values, and both correctly handle
values out-of-range, allowing scripts to add a quantum of time without range
checking. If the components of a date are outside the range of dates the function is
defined for, -1 is returned. The following example shows how 30 days can be added
to a date and time:

SpaymentPeriod = 30; // Days

// generates a timestamp for 26 June 2002 by
// adding 30 days to 27 May 2002
SpaymentDue =
mktime (0, 0, 0, 5, 27 + SpaymentPeriod, 2002);

// A different approach adds the appropriate number
// of seconds to the timestamp for 27 May 2002
SpaymentDue = mktime (0, 0, 0, 5, 27, 2002)

+ (SpaymentPeriod * 24 * 3600);

Both functions allow the supplied date to be interpreted as daylight savings time by
setting the flag i s dst to 1.

The order of the arguments to these functions is unusual and easily confused. While
the mktime () and gmmktime () functions are similar to the Unix mktime ()
function, the arguments aren't in the same order.

2.8.1.3 String to timestamp

This function generates a timestamp by parsing the human-readable date and time—
between December 13, 1901 and January 19, 2038—from the string time:

integer strtotime(string time)

The function interprets several standard representations of a date, as shown here:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

// Absolute dates and times

Svar = strtotime ("25 December 2002") ;

Svar = strtotime("14/5/1955");

Svar strtotime ("Frl, 7 Sep 2001 10:28:07 -1000");

// The current time: equivalent to time()
Svar = strtotime ("now") ;

// Relative times

echo strtotime ("+1 day"):;

echo strtotime ("-2 weeks");

echo strtotime ("+2 hours 2 seconds");

Care should be taken when using st rtotime () with user-supplied dates. It's
better to limit the use of st rtotime () to cases when the string to be parsed is
under the control of the script, for example, checking a minimum age using a relative
date:

// date of birth: timestamp for 16 August, 1983
$dob = mktime (0, 0, 0, 16, 8, 1982);

// Now check that the individual is over 18
if ((float) $dob < (float)strtotime("-18 years"))
echo "Legal to drive in the state of Victoria";

Note that both timestamps are cast to floating-point numbers before comparing them
to avoid the integer overflow problem highlighted earlier. A different solution to this

problem is presented in Chapter 7.

2.8.1.4 Subsecond times

While a Unix timestamp represents a date and time accurate to the second, many
applications require times to be represented to the subsecond. PHP provides the
function:

string microtime ()

This returns a string that contains both a Unix timestamp in seconds and a
microsecond component. The returned string begins with the microsecond
component, followed by the integer timestamp:

// prints the time now in the format "usec sec"

// e.g., 0.34783800 1008553410
echo microtime ()

One common use of the function microtime () is to generate the seed for a
random-number generator:

// Generate a seed.
Sseed = (float)microtime () * 100000000;

srand (Sseed) ;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Because the microsecond component appears at the start of the string returned from
microtime (), the returned value can be converted to a float with the (f10at)
cast operator. Multiplying the float result by 100,000,000 ensures that you pass a
suitably varying integer to the seeding function sr=and (). Random-number
generation is covered in more detail in Section 2.9.

2.8.2 Formatting a Date

While the Unix timestamp is programmatically useful, it isn't a convenient display
format. The date () and gmdate () functions return a human-readable formatted
date and time:

string date(string format [, integer timestamp])
string gmdate(string format [, integer timestamp])

The format of the returned string is determined by the format argument. A
predetermined date can be formatted by passing in the optional timestamp argument.
Otherwise, both functions format the current time. The format string uses the
formatting characters listed in Table 2-3 to display various components or
characteristics of the timestamp. To include the characters from the table, the
backslash character is used. The following examples show various combinations:

// Set up a timestamp for 08:15am 24 Aug 1964
Svar = mktime (8, 15, 25, 8, 24, 1964);

// "24/08/1964"
echo date('d/m/Y', Svar):;

// "08/24/64"
echo date('m/d/y', Svar);

// "Born on Thursday 24th of August"
echo date ('\B\o\r\n \o\n 1 jS \of F", S$Svar);

Table 2-3. Formatting characters that represent various date and time components

Formattin :
charactefl Meaning
a, A "am" or "pm"; "AM" or "PM"
S Two-character English ordinal suffix: "st", "nd", "rd", "th"
d,j Day of the month: with leading zeros: "01"; without: "1"
D, I Day of the week: as three letters: "Mon"; spelled out: "Monday"
M, F Month: as three letters: "Jan"; spelled out: "January"
m, n Month: with leading zeros: "01"-"12"; without: "1"-"12"
h,g Hour, 12-hour format: with leading zeros: "09"; without: "9"
H, G Hour, 24-hour format: with leading zeros: "01"; without "1"
i Minutes:"00" to "59"
S Seconds: "00" to "59"
Y,y Year: four digits "2002"; two digits "02"
r RFC-2822 formatted date: e.g., "Tue, 29 Jan 2002 09:15:33 +1000" (added in PHP
4.0.4)
w Day of the week as number: "0" (Sunday) to "6" (Saturday)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Days in the month: "28" to "31"

Days in the year: "0" to "365"

Swatch Internet time

Leap year: "0" for normal year; "1" for leap-year

Daylight savings time: "0" for standard time; "1" for daylight savings

Difference to Greenwich Mean Time in hours: "+0200"

Time zone setting of this machine

Time zone offset in seconds: "-43200" to "43200"

CIN[H[O— [[m[~N]—~

Seconds since the epoch: 00:00:00 1/1/1970

PHP also provides the equivalent functions:

string strftime(string format [, integer timestamp])
string gmstrftime (string format [, integer timestamp])

The format string uses the same formatting character sequences as the C library
function strfcime ().

2.8.3 Validating a Date

The function checkdate () returns t rue if a given month, day, and year form a
valid Gregorian date:

boolean checkdate(integer month, integer day, integer year)

This function isn't based on a timestamp and so can accept a larger range of dates:
basically any dates in the years 1 to 32767. It automatically accounts for leap years.

// Works for a wide range of dates
$valid = checkdate (1, 1, 1066); // true
$valid = checkdate (1, 1, 2929); // true

// Correctly identify bad dates
$valid = checkdate (13, 1, 1996); // false
$valid = checkdate (4, 31, 2001); // false

// Correctly handles leap years
$valid = checkdate (2, 29, 1996); // true
$valid = checkdate (2, 29, 2001); // false

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

2.9 Integer and Float Functions

Apart from the basic operators +, -, /, *, and =, PHP provides the usual array of
mathematical library functions. In this section, we present some of the library
functions that are used with integer and float numbers.

2.9.1 Absolute Value

The absolute value of an integer or a float can be found with the =bs () function:

integer abs(integer number)
float abs(float number)

The following examples show the result of 2bs () on floats and integers:

echo abs(-1); // prints 1
echo abs (1) ; // prints 1
echo abs(-145.89) ; // prints 145.89
echo abs(145.89) ; // prints 145.89

2.9.2 Ceiling and Floor

The ceil() and f1oor () functions can return the integer value above and below
a fractional value, respectively:

float ceil (float wvalue)
float floor(float wvalue)

The return type is a float because an integer may not be able to represent the result
when a large value is passed as an argument. Consider the following examples:

echo ceil (27.3); // prints 28
echo floor(27.3); // prints 27

2.9.3 Rounding

The round () function uses 4/5 rounding rules to round up or down a value to a
given precision:

float round(float wvalue [, integer precision])

Rounding by default is to zero decimal places, but the precision can be specified with
the optional precision argument. The 4/5 rounding rules determine if a number is
rounded up or down based on the digits that are lost due to the rounding precision.
For example, 10.4 rounds down to 10, and 10.5 rounds up to 11. The following
examples show rounding at various precisions:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

echo round(10.4) ; // prints 10
echo round(10.5) ; // prints 11
echo round (2.40964, 3); // prints 2.410
echo round(567234.56, -3); // prints 567000
echo round (567234.56, -4); // prints 570000

2.9.4 Number Systems

PHP provides the following functions that convert numbers between integer decimal
and the commonly used number systems, binary, octal, and hexadecimal:

string decbin(integer number)
integer bindec (string binarystring)
string dechex (integer number)
integer hexdec (string hexstring)
string decoct (integer number)
integer octdec(string octalstring)

The decimal numbers are always treated as integers, and the numbers in the other
systems are treated as strings. When converting to decimal, care must be taken that
the source number isn't greater than the maximum value an integer can hold. Here
are some examples:

echo decbin (45) ; // prints "101101"
echo bindec ("1001011"™); // prints 75

echo dechex (45) ; // prints "2D"
echo hexdec ("5a7b") ; // prints 23163
echo decoct (45) ; // prints "55"
echo octdec ("777") ; // prints 511

2.9.5 Basic Trigonometry Functions

PHP supports the basic set of trigonometry functions and are listed in Table 2-4.

Table 2-4. Trigonometry functions supported by PHP

Function Description

float sin(float arg) Sine of 2 rg in radians

float cos(float arg) Cosine of 2 rg in radians

float tan(float arg) Tangent of =z g in radians

float asin(float arg) Arc sine of 2 rg in radians

float acos(float arg) Arc cosine of 2 rg in radians

float atan(float arg) Arc tangent of = rg in radians

Arc tangent of x/y where the sign of both arguments determines

Froat the quadrant of the result

atan2 (float vy, float x)

float pi() Returns the value 3.1415926535898

float

deg2rad(float arg)

Converts a rg degrees to radians

float

rad2deg (float argqg)

Converts a rg radians to degrees

2.9.6 Powers and Logs

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The PHP mathematical library includes the exponential and logarithmic functions
listed in Table 2-5.

Table 2-5. Exponential and logarithmic functions

Function Description
float exp(float arg) e to the power of arg
float pow(float base, number exp) Exponential expression base to the power of cxp
float sqgrt(float arqg) Square root of 2 rg
float log(float arg) Natural logarithm of 2 rg
float loglO(float arg) Base-10 logarithm of 2 rg

2.9.7 Random Number Generation

PHP provides the function rand (), which returns values from a generated
sequence of pseudo-random numbers. Well-known algorithms generate sequences
that appear to have random behavior but aren't truly random. The srand () function
seeds the algorithm and needs to be called before the first use of the rand ()
function in a script. Otherwise, the function returns the same numbers each time a
script is called. The prototypes of the functions are:

void srand(integer seed)
integer rand/()
integer rand(integer min, integer max)

The srand () function is called by passing an integer sc<d that is usually
generated from the current time. When called with no arguments, rand () returns a
random number between 0 and the value returned by getrandmax (). When
rand () is called with two arguments—the min and max values—the returned
number is a random number between min and max. Consider this example:

// Generate a seed.
Sseed = (float) microtime () * 100000000;

// Seed the pseudo-random number generator
srand (Sseed) ;

// Generate some random numbers
print rand(); // between 0 and getmaxrand()
print rand(1l, 6); // between 1 and 6 (inclusive)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

2.10 User-Defined Functions

Functions provide a way to group together related statements into a cohesive block.
For reusable code, a function saves duplicating statements and makes maintenance
of the code easier.

We've already presented many examples of function calls in this chapter. Once
written, a user-defined function is called in exactly the same way. Consider an
example of a simple user-developed function as shown in Example 2-6.

Example 2-6. A user-defined function to output bold text

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<html>
<head>
<title>Simple Function Call</title>
</head>
<body bgcolor="#ffffff">
<?php

function bold($string)
{

echo "" . S$string . "\n";
}

// First example function call (with a static string)
echo "this is not bold\n";

bold ("this is bold");

echo "this is again not bold\n";

// Second example function call (with a variable)
SmyString = "this is bold";

bold ($SmyString) ;

?>

</body></html>

The script defines the function bo1d (), which takes one parameter, st ring, and
prints that string prefixed by a bold tag and suffixed with a < /> tag. The bo1d (
) function, defined here, can be used with a string literal expression or a variable, as
shown.

Functions can also return values. For example, consider the following code fragment
that declares and uses a function heading (), which returns a string using the
return statement:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

function heading ($Stext, SheadingLevel)
{
switch (SheadingLevel)
case 1:
Sresult
break;

"<hl>" . ucwords (Stext) . "</hl>";

case 2:
Sresult
break;

"<h2>" . ucwords ($text) . "</h2>";

case 3:
Sresult
break;

"<h3>" . ucfirst (Stext) . "</h3>";

default:
Sresult

"<p>" . ucfirst(Stext) . "";

return (Sresult) ;

}

Stest = "user defined functions";
echo heading(Stest, 2);

The function takes two parameters: the text of a heading and a heading level. Based
on the value of sheadingLevel, the function builds the HTML suitable to display the
heading—changing the case of the ¢t <=t appropriately. The previous fragment
generates the string:

<h2>User Defined Functions</h2>

The variable that is returned by a r<t urn statement can optionally be placed in
parentheses: the statements return (Sresult) and return Sresult are
identical.

2.10.1 Argument Types and Return Types

The argument and return types of a function aren't declared when the function is
defined. PHP allows arguments of any type to be passed to the function, and as with
variables, the return type is determined when a result is actually returned. Consider a
simple function that divides two numbers:

function divide (Sa, $b)
{

return (Sa/S$b);
}

Sc = divide (4, 2); // assigns an integer value = 2
Sc = divide (3, 2); // assigns a float value = 1.5
Sc = divide (4.0, 2.0); // assigns a float value = 2.0

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If the types of arguments passed to the function are critical, they should be tested as
shown earlier in Section 2.1.3.

2.10.2 Variable Scope

Variables used inside a function are different from those used outside a function. The
variables used inside the function are limited to the scope of the function (there are
exceptions to this rule, which are discussed later in this section). Consider an
example that illustrates variable scope:

function doublevalue (Svar)

{
Stemp = Svar * 2;
}

Svariable = 5;
doublevalue (Svariable) ;
echo "\$temp is: Stemp";

This example outputs the string:
Stemp is:

and no value for st-emp. The scope of the variable ¢ temp is local to the function
doublevalue () and is discarded when the function returns.

The PHP script engine doesn't complain about undeclared variable being used. It just
assumes the variable is empty. However, this use of an undefined variable can be
detected using the error-reporting settings discussed later, in Section 2.12.

If you want to use a value that is local to a function elsewhere in a script, the easiest
way to do so is to return the value of the variable. This example achieves this:

function doublevalue (Svar)

{
SreturnVar = Svar * 2;
return (SreturnVar) ;

}

Svariable = 5;
Stemp = doublevalue (Svariable);
echo "\$temp is: Stemp";

The example prints:
Stemp is: 10

You could have still used the variable name <t cmp inside the function
doublevalue (). However, the Stemp inside the function is a different variable
from the ¢t emp outside the function. The general rule is that variables used

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

exclusively within functions are local to the function, regardless of whether an
identically named variable is used elsewhere. There are two exceptions to this
general rule: variables passed by reference and those declared g1 oba1 in the
function aren't local to the function.

2.10.2.1 Global variables

If you want to use the same variable everywhere in your code, including within
functions, you can do so with the g1 0ba1 statement. The g1 0ba1 statement declares
a variable within a function as being the same as the variable that is used outside of
the function. Consider this example:

function doublevalue ()

{
global Stemp;
Stemp = Stemp * 2;
}
Stemp = 5;
doublevalue () ;

echo "\$temp is: Stemp";

Because stemp is declared inside the function as g1 oba 1, the variable s+ emp used
indoublevalue () is a global variable that can be accessed outside the function.
Because the variable St emp can be seen outside the function, the script prints:

Stemp is: 10

A word of caution: avoid overuse of g1 oba1 as it makes for confusing code.

5 The g1obal variable declaration can be a trap.

In some other languages, global variables are usually declared
global outside the functions and then used in the functions.

In PHP, it's the opposite: to use a global variable inside a
function, declare the variable as g1 0ba 1 inside the function.

An alternative to using g1 oba 1 is to return more than one variable from a function by
creating and returning an array of values. A better approach is to pass parameters by
reference instead of by value. We discuss the latter approach in the next section.

2.10.3 How Variables Are Passed to Functions

By default, variables are passed to functions by value, not by reference. The following
example:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

function doublevalue ($Svar)

{

Svar = Svar * 2;

}

Svariable = 5;
doublevalue ($Svariable) ;
echo "\S$variable is: S$Svariable";

has the output:

Svariable is: 5

The parameter svariable thatis passed to the function doublevalue () isn't
changed by the function. What actually happens is that the value 5 is passed to the
function, doubled to be 10, and the result lost forever! The value is passed to the
function, not the variable itself.

2.10.3.1 Passing arguments by reference

An alternative to returning a result or using a global variable is to pass a reference to
a variable as an argument to the function. This means that any changes to the
variable within the function affect the original variable. Consider this example:

function doublevalue (&Svar)

{

Svar = Svar * 2;

}

Svariable = 5;

doublevalue ($Svariable) ;

echo "\Svariable is: Svariable";
>

This prints:
Svariable is: 10

The only difference between this example and the last one is that the parameter Svar
to the function coublevalue () is prefixed with an ampersand character: ¢ svar.
The ampersand means that a reference to the original variable is passed as the
parameter, not just the value of the variable. The result is that changes to ¢var in the
function affect the original variable svariable outside the function.

Functions that are defined with arguments that are references to variables can't be

called with literal expressions, because the function expects a variable to modify.
PHP reports an error when such a call is made.

2.10.3.2 Assigning by reference

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Referencing with the ampersand can also be used when assigning variables, which
allows the memory holding a value to be accessed from more than one variable. This
example illustrates the idea:

Sx = 10;
Sy = &S$x;
Syt+;

echo $x;
echo Sy;

Here's how it prints:

11
11

Because ¢y is a reference to ¢, any change to ¢ affects <x. In effect, they are the
same variable. So, by adding 1 to S v, you also add 1 to $x, and both are equal to 11.

The reference s can be removed with:
unset (Sy) ;

This has no effect on $x or its value.
2.10.3.3 Default argument values

PHP allows functions to be defined with default values for arguments. A default value
is simply supplied in the argument list using the = sign. Consider the modified
heading () function described earlier:

function heading($Stext, SheadingLevel = 2)

{
switch ($Slevel)
case 1:
Sresult = "<hl>" . ucwords (Stext) . "</hl>";
break;

case 2:
Sresult = "<h2>" . ucwords (Stext) . "</h2>";
break;

case 3:
Sresult = "<h3>" . ucfirst(Stext) . "</h3>";

break;

default:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Sresult = "<p>" . ucfirst(Stext) . "";

return (Sresult) ;

}

Stest = "user defined functions";
echo heading(Stest);

When calls are made to the heading () function, the second argument can be
omitted, and the default value 2 is assigned to the sheadingrLevel variable.

2.10.4 Reusing Functions with Include and Require Files

To use functions across many PHP scripts, PHP supports the inc1ude statement
and the require directive.

If you decide you wish to reuse the bo1d () function from Example 2-6 in more
than one script, you can store it in an include file. For example, you can create a file
called functions.inc and put the bo1d () function in the file:

<?php
function bold($string)
{
echo "" . S$string . "\n";
}

?>

_5 Any PHP code in an include file must be surrounded by the PHP
start and end script tags. The PHP script engine treats the
contents of include files as HTML unless script tags are used.

In a script, you can then use the inc1ude statement to provide access to the function
bold():

<html>
<head>
<title>Simple Function Call</title>
</head>
<body bgcolor="#ffffff">
<?
include "functions.inc";

// First example function call (with a static string)
echo "this 1is not bold\n";

bold("this 1is bold");

echo "this is again not bold\n";

// Second example function call (with a wvariable)

SmyString = "this is bold";
bold ($SmyString) ;
2>

</body></html>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The script works as before, but the function bo1d () can now be reused across
several scripts by including functions.inc. We use include files throughout Chapter 4
through Chapter 13.

Jé Be careful when using the inc1ude statement. Including the

same file twice or declaring a function in the script that is already
in an include file causes PHP to complain about the function
being redefined.

The include statementis treated in the same way as other statements. For
example, you can conditionally include different files using the following code
fragment:

if (Snetscape == true)

{

include "netscape.inc";

}

else

{

include "other.inc";

}

The file is included only if the inc1ude statement is executed in the script. The
braces used in this example are necessary: if they are omitted, the example doesn't
behave as expected.

If a file must always be included, the requ i re directive should be used instead of
include. The require directive is processed before the script is executed, and the
contents of the required file are always inserted in the script. This is useful for
creating reusable HTML. For example, if you want to add the same header or footer
to every page on a site—regardless of errors or other problems—rcquire makes
this easy and simple to maintain.

Consider the following HTML fragment:
<hr>
(c) 2001 Hugh E. Williams and David Lane

If you want this fragment at the base of every page, the fragment can be stored in a
file footer.inc and the directive added to the bottom of every script you develop:

require "footer.inc";

The benefit is that if you want to update the HTML footer, you need to do so in only
one file.

[ravous Lo e

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

2.11 Objects

PHP has limited support for object-oriented programming and allows programmers to
define their own classes and create object instances of those classes. We make little
use of objects in this book, and this section serves as an introduction to PHP's
support of object-oriented features. The subject of object-oriented programming is
extensive, and we don't provide a complete explanation of the subject here.

2.11.1 Classes and Objects

A class defines a compound data structure made up of member variables and a set of
functions—known as methods or member functions—that operate with the specific
structure. Example 2-7 shows how a class Counter is defined in PHP. The class
Counter contains two member variables—the integers scount and SstartPoint—
and four functions that use these member variables. Collectively, the variables and
the functions are members of the class Counter.

Example 2-7. A simple class definition of the user-defined class Counter

<?php
// A class that defines a counter.
class Counter
{
// Member Variables

var Scount = 0;
var SstartPoint = 0;
// Methods

function startCountAt ($1)
{

Sthis->count = $i;
Sthis->startPoint = $i;
}

function increment ()

{
Sthis->count++;

}

function reset ()

{
Sthis->count = $this->startPoint;

}

function showvalue ()

{

print S$this->count;

}

2>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

To use the data structures and functions defined in a class, an instance of the class—
an object—needs to be created. Like other data types—integers, strings, arrays, and
so on—objects are held by variables. However, unlike other types, objects are
created using the new operator. An object of class Counter can be created and
assigned to a variable as follows:

SaCounter = new Counter;

Once the variable s2counter is created, the member variables and functions of the
new object can be used. Members of the object, both variables and functions, are
accessed using the - > operator. Consider the following example:

echo $aCounter->count; // prints 0
SaCounter->increment () ;
echo $aCounter->count; // prints 1

// Bypass the function that updates count
SaCounter->count = 101;

In the class definition, the code that defines member functions can access the
member variables with the variable sthis as can be seen in the Counter function

implementations in Example 2-7. The variable st h i s has special meaning and acts
as a placeholder until a real object is created. For example, when the function
SaCounter->increment () is called, the variable Sthis actsas Sacounter.

By placing the code shown in Example 2-7 in the file counter.inc, the class Counter
can be used by other scripts to create new objects, as shown in Example 2-8.

Example 2-8. Creating and using objects of class Counter

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.0org/TR/html4/loose.dtd">
<html>
<head><title>Counter</title></head>
<body>
<?php
include "counter.inc";

// Create a new object of type "counter"
Stemp = new Counter;

// Set the counter to 10
Stemp->startCountAt (10) ;

// Increment the counter
Stemp->increment () ;
Stemp->increment () ;
Stemp->increment ();

// Print out the wvalue of the counter

echo "<p>Counter is now: H

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Stemp->showvalue();

// Reset the counter
Stemp->reset ();

// Print out the value of the counter
echo "<p>Counter is now: ";
Stemp->showvalue();

?>

</body></html>

Many objects of the same class can be created. For example, you can use the
following fragment to create three objects and assign them to three variables:

Sa = new Counter;
Sb new Counter;
Sc new Counter;

The variables sz->count, Sb->count, and sc->count are different. Each variable
is of type object and references an object of the class Counter, but the objects
themselves are independent.

2.11.2 Inheritance

One of the powerful concepts in object-oriented programming is inheritance.
Inheritance allows a new class to be defined by extending the capabilities of an
existing base class. PHP allows a new class to be created by extending an existing
class with the e <t ends keyword. Example 2-9 shows how the class Counter is
extended to create the new class BottleCounter that can determine the number of
cases of wine to be shipped.

Example 2-9. A new class BottleCounter is defined by extending the base class Counter

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<html>
<head><title>Bottle Counter</title></head>
<body>
<?php
include "counter.inc";

class BottleCounter extends Counter

{
// Add 12 bottles to the counter
function addCase ()

{
Sthis->count += 12;

}

// Return the number of cases to be shipped
function caseCount()

{

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

return ceil (Sthis->count / 12);

}

// A Constructor that sets the initial count
function BottleCounter (SstartCount)

{
Sthis->count = $startCount;

}
}

// Create a new object of type "BottleCounter"
// and pass the initial count of 12
Stemp = new BottleCounter (12);

// Increment the counter
Stemp->increment ()

// Add another Case
Stemp->addCase();

// Print out the wvalue of the counter: 24

echo "<p>Counter 1is now: ;
Stemp->showvalue();

// Print the number of cases

Scases = Stemp->caseCount () ;

echo "<p>The number of cases to ship: $cases";
2>
</body></html>

The new class BottleCounter doesn't add any new member variables but does add
three new member functions. The functions of the class BottleCounter use the
member variables of the base class Counter in ways appropriate to BottleCounter.
The function addcase () increments the scount variable by 12, and the function
caseCount () returns the total number of cases that need to be shipped, including
any partially filled cases.

The final function, Bott1ecCounter (), is the constructor of the class BottleCounter.
Member functions with the same name as the class are treated differently. PHP uses
these functions as constructors, and they are called when new objects of that class
type are created. A constructor function can include arguments that can be used to
initialize member variables when a new object is created. Example 2-9 showed how
a new BottleCounter object is created:

// Create a new object of type "BottleCounter"
// and pass the initial count of 12
Stemp = new BottleCounter (12);

The power of inheritance doesn't come from simply reusing code. Objects created
from the extended class can be used as if they were created from the existing base
class. This ability to use an object as if it were an instance of the base class is known
as polymorphism. You can use the class Counter as a base for other new classes,
such as a CanCounter class in which a case is 24 cans, not 12 bottles. Code that

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

uses an object of class Counter can then be used with objects of type BottleCounter
or CanCounter. Consider this example, which defines the function
volumeDiscount (), designed to return a discount factor based on a Counter
object:

// Return a discount factor based on
// the value of the Counter S$var
function volumeDiscount (Svar)
{
// use $var as a Counter
if (Svar->count > 24)
return 0.95;
else
return 1.0;

Sbottles = new BottleCounter (10);
Scans = new CanCounter (24) ;

SbottleDiscountFactor = volumeDiscount (Sbottles) ;
ScanDiscountFactor = volumeDiscount ($Scans) ;

If both the BottleCounter and CanCounter classes are defined as extensions of
Counter, the function volumeDiscount () can be called on objects of those
classes.

I I [Faevious Lrtnt v |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

[rawus Poaxr v

2.12 Common Mistakes

When switching to PHP, there are several common mistakes even experienced
programmers make. In this short section, we highlight some of these mistakes and
the basics of how to rectify them.

2.12.1 A Page That Produces Partial or No Output

One of the most common problems in debugging PHP scripts is seeing:
* No page rendered by the web browser when much more is expected
¢ A pop-up dialog box stating that the "Document Contains No Data"
e A partial page when more is expected

Most of these problems are caused not by a bug in script-programming logic, but by a
bug in the HTML produced by the script. For example, ifthe </table>, </form>, or
</ frame> closing tags are omitted, the page may not be rendered.

The HTML problem can usually be identified by viewing the HTML page source using
the web browser. With Netscape, the complete output of the erroneous example is
shown in the page-source view, and the HTML problem can hopefully be easily
identified.

For compound or hard-to-identify HTML bugs, the W3C validator at
http://validator.w3.org retrieves a page, analyzes the correctness of the HTML,
and issues a report. It's an excellent assistant for debugging and last-minute
compliance checks before delivery of an application.

If the problem still proves hard to find, consider adding calls to the c1ush () function
after ccho, print,orprintf statements. f1ush () empties the output buffer
maintained by the PHP engine, sending all currently buffered output to the web
server. The function has no effect on buffering at the web server or the web browser,
but it ensures that all data output by the script is available to the web server to be
transmitted and rendered by a browser. Remember to remove the f1ush () function
calls after debugging, because unnecessary flushing may prevent efficient buffering
of output by the PHP scripting engine.

A common problem that shouldn't be confused with those described here is not
receiving a response from the web server and getting a "no response" error message.
This problem is a symptom of the bugs described in the next section, and can be
distinguished from the problems described here by observing the web browser. Most
of the popular graphical browsers show they are waiting for a response by animating
the logo in the top-right corner. For the HTML problems described here, the page
loading process will be complete, the logo animation will have stopped, and the HTML
page source can be viewed through the web browser menus.

2.12.2 Variable Problems

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In this section, we discuss problems that cause a page never to arrive at the web
browser, or complete pages to appear with missing output from variables.

2.12.2.1 Variable naming

Making a mistake with a variable name sometimes inadvertently creates never-ending
loops. The result of a never-ending loop is that the web browser eventually times out
and alerts the user that the web server isn't responding to an HTTP request.

The following loop never ends, and no output is produced:

for (Scounter=0; Scounter<1l0; SCounter++)
myFunction();

The variable scounter is never incremented. Instead, another variable, Scounter,
is, sO scounter is always less than 10. Common bugs result from subtle changes in
variable names through changing case, omitting or including underscores, or simple

typographic errors.

Never-ending loops can also produce unexpected output. The following loop can
render thousands of greetings in a web browser in a very short time:

for (Scounter=0; S$Counter<l1l0; Scounter++)
echo "
hello";

These errors can sometimes be detected by setting the PHP error-reporting level to a
higher sensitivity. Adding the following code fragment to the top of each PHP script or
to a file included with the requi re directive reports undefined variable errors:

errorireporting(EiALL);

This forces variables to be declared by assigning a value before they can be used.
Consider the following example:

error reporting(E ALL);

for (Scounter=0; S$SCounter<1l0; Scounter++)
echo "
hello";

This produces an unending number of warning messages stating:
Warning: Undefined variable: Counter in /var/lib/apache/htdocs/w

The script keeps on running, because it's only a warning. A custom error handler can
be incorporated that stops the script when an error or warning is encountered by
usingthe sct error handler () function. We discuss error handlers in Chapter
10.

2.12.2.2 Missing output

An uninitialized variable produces no output. This seems obvious, but it can be hard

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

to identify if the problem is a subtle typographic error. Consider this example of a
change in case:

Stestvariable = "hello";
echo "The value of test 1s S$testVariable'";

This produces the string:

The value of test is

The problem can be much harder to identify by visual inspection if the variable is part
of a complex operation, such as being used as an array element index, part of
<table> output, or as a parameter to a database query.

If output appears but isn't as expected, an uninitialized variable is a possibility. The
simplest approach to detecting the error is then to check for a bug by setting
error reporting(E ALL) atthe top of the script as discussed in the last section.

The function i sset () can also control execution and debug code, because it
returns ¢ rue if the variable exists (even if it's set to NUL 1, or an empty string) and
false ifit has never been used.

Another related problem involves variable names appearing where values should.
This is usually the simple problem of an omitted dollar sign and is easy to fix. For
example:

echo "the value of test is test";
This should have been:

echo "the value of test 1s S$test";

If a dollar sign is omitted in a statement such as an assignment or conditional, the
PHP interpreter reports a specific parse error with its default error-reporting level.

A similar problem can also occur when single quotes are used instead of double
quotes, because single-quoted strings are always output directly, and the string isn't
interpreted like a double-quoted string is. For example:

echo 'the value of test 1s S$test';
This produces:

the value of test 1s Stest

It doesn't output the value of the variable stest.
2.12.3 Complaints About Headers

We have not introduced the functions header () and setcookie () inthis
chapter. Both functions can output HTTP headers that are sent by the web server
back to the web browser, and they are used frequently in web database applications.

The functions are introduced and discussed in Chapter 5, Chapter 6, Chapter 8,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

and Chapter 9.

A common problem seen in producing HTTP headers with PHP is the error message
beginning:

Warning: Cannot add header information - headers already sent...

Headers can be sent only before any HTML is output, and this includes any
whitespace at the top of the file. So, for example, if there is a blank line or single
space character before the script open tag <>php, HTML has been output—albeit not
very interesting HTML—and the call to header () or setcookie () reports this
error.

It's possible to avoid header problems by altering how PHP buffers data using the
output control library functions. These functions are outside the scope of this book.

2.12.4 Other Common Problems

The three problem categories we have outlined so far are the most infuriating and
common mistakes programmers make in PHP. We outline a few less common and
less PHP-specific problems here.

Omitting a semicolon at the end of a statement is usually easy to detect. The PHP
interpreter continues to parse the script and, when it reaches a threshold of confusion
or exceeds the maximum statement length, it reports an error one or more lines later
that indicates a semicolon has been missed. In most cases, this is easy to fix, and the
line missing the semicolon is identified in the error message.

In some cases, a missing semicolon can be as hard to identify as a missing closing
brace or a missing quotation mark. The following erroneous code is missing a closing
brace:

<?
for ($x=0; $x<100 ;Sx++)
{
for (Sy=0; $y<100; Sy++) {
echo "testl";
for(Sz=0; $z<100; S$Sz++)
echo "test2";

}

2>
The error reported is:

Parse error: parse error in bug.php on line 9

Line 9 is the last line of the script, so the nature and cause of the problem aren't
immediately clear. However, parse errors that aren't immediately obvious on the
reported line in the error message are usually on the line above, or there may be a
missing brace or quotation mark.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

It takes only a minute or so to identify the missing brace in this example, but more
complex functions can take much longer to fix. This highlights the importance of
indentation in code and also of avoiding the practice of placing opening braces at the
ends of lines. Braces should always be placed on lines of their own.

Missing open and close script tags can cause similar problems, but these are much
easier to identify. If an open script tag is missing, it's obvious because some portion
of the code—if not all—is displayed in the browser. A missing close tag usually
causes a parse error, because the PHP script engine is confused when it tries to
parse HTML and interpret it as PHP.

If script source is always displayed and never run, it's likely that Apache is
misconfigured. Specifically, it's likely that the ~adType directive for processing PHP
scripts was not uncommented in the Apache installation process; this seems to be the
default in recent RedHat Linux distributions.

Another possible cause of scripts being displayed and not run is that the PHP scripts
aren't saved in files ending with the .php suffix. This problem often occurs with legacy
PHP3 code, because PHP3 scripts usually use the .php3 suffix. The problem can be
corrected by renaming the script files so they end in the .php suffix or by adding an
additional ~ddType directive to the Apache httpd.conf file:

AddType application/x-httpd-php .php3

In some rare cases, a PHP3 script might require minor modifications to run under
PHP4.

[« Frwaus Lot v

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

Chapter 3. MySQL and SQL

In this chapter, we introduce the MySQLdatabase management system (DBMS) and
the SQL database query language for defining and manipulating databases. Using
our case study, Hugh and Dave's Online Wines, as a guide, we illustrate examples of
how to use SQL. The techniques that we discuss are used to interact with a DBMS
after a database has been designed. An introduction to relational modeling and

design can be found in Appendix C, and a more comprehensive introduction to
MySQL and SQL can be found in many of the resources that are listed in Appendix
E.

In this chapter, we cover the following topics:
A short introduction to relational databases and relational modeling

» A quick start guide to the winestore database and its full entity-relationship
model

e The MySQL command interpreter and the basic features of MySQL
¢ Using SQL to create and modify databases, tables, and indexes
* Using SQL to insert, delete, and update data

e The SQL se1rCT statement for querying, with examples of simple and
advanced queries

¢ Functions and operators in SQL and MySQL

» Advanced features, including managing indexes and keys, tuning the MySQL
DBMS, security, and the limitations of MySQL

We assume that you have already installed MySQL. If not, the guide in Appendix A
will help you. Chapter 6 covers other selected advanced database topics that arise
when writing to databases, such as supporting multiple users, transactions, and
locking in MySQL. Complete examples of SQL queries and MySQL in use in a web

database application can be found in Chapter 10 to Chapter 13.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

3.1 Database Basics

The field of databases has its own terminology. Terms such as database, table,
attribute, row, primary key, and relational model have specific meanings and are used
throughout this chapter. In this section, we present an example of a simple database
to introduce the basic components of relational databases, and we list and define

selected terms used in the chapter. More detail can be found in Appendix C.
3.1.1 Introducing Relational Databases

An example relational database is shown in Figure 3-1. This database stores data
about wineries and the wine regions they are located in. A relational database
manages data in tables, and there are two tables in this example: a winery table that
manages wineries, and a region table that manages information about wine regions.

Figure 3-1. An example relational database containing two related tables

Databases are managed by a relational database management system (RDBMS). An
RDBMS supports a database language to create and delete databases and to
manage and search data. The database language used in almost all DBMSs is SQL,
a set of statements that define and manipulate data. After creating a database, the
most common SQL statements used are TNSERT, UPDATE, DELETE, and SELECT,
which add, change, remove, and search data in a database, respectively.

A database table may have multiple columns, or attributes, each of which has a
name. For example, the winery table in Figure 3-1 has four attributes, winery 1D,
winery name, address, and region ID. A table contains the data as rows or
records, and a row contains attribute values. The winery table has five rows, one for
each winery managed by the database, and each row has a set of values. For
example, the first winery has a winery 1D value of 1, the winery name value Moss
Brothers, and an address of Smith Rd., and is situated in the region D numbered
3. Region 3 is a row in the region table and is Margaret River in Western Australia.

The relationship between wineries and regions is maintained by assigninga region
1D to each winery row. Managing relationships in this way is fundamental to relational

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

database technology, and different types of relationship can be maintained. In this
example, more than one winery can be situated in a region—three wineries in the
example are situated in the Barossa Valley—but a winery can be situated in only one
region.

Attributes have data types. For example, in the winery table, the winery 7D is an
integer, the winery name and address are strings, and the region 1D is an
integer. Data types are assigned when a database is designed.

Tables usually have a primary key, which is one or more values that uniquely identify
each row in a table. The primary key of the winery table is winery 7D, and the
primary key of the region table is region 1D. Primary keys are usually indexed to
provide fast access to rows when they are searched by the primary key value. For
example, an index is used to find the details of the region row that matches a given
region ID in a winery table row.

Figure 3-2 shows the example database modeled using entity-relationship (ER)
modeling. The winery and region tables or entities are shown as rectangles. Each
entity has attributes, and the primary key is shown underlined. The relationship
between the tables is shown as a diamond that connects the two tables, and in this
example the relationship is annotated with an M at the winery-end of the relationship.
The M indicates that there are potentially many winery rows associated with each
region. Because the relationship isn't annotated at the other end, this means that
there is only one region associated with each winery. ER modeling is discussed in

more detail in Appendix C.

Figure 3-2. An example relational model of the winery database

F 4 ! i § 1) k]
| winedy 1) | winery narme | I, regionill) | pegion name |
T I]
= | fﬁﬂ\-\. I 1 | -
e it
wAnEn ST region
Whoons i . n |_q|'_|
(" addsess) g 3
- e

3.1.2 Terminology

Database
A repository to store data.
Table

The part of a database that stores the data. A table has columns or attributes,
and the data stored in rows.

Attributes

The columns in a table. All rows in table entities have the same attributes. For
example, a customer table might have the attributes name, address, and
city. Each attribute has a data type such as string, integer, or date.

Rows

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The data entries in a table. Rows contain values for each attribute. For example,
a row in a customer table might contain the values "Matthew Richardson," "Punt
Road," and "Richmond." Rows are also known as records.

Relational model

A model that uses tables to store data and manage the relationship between
tables.

Relational database management system

A software system that manages data in a database and is based on the
relational model. DBMSs have several components described in detail in

Chapter 1.
SQL

A query language that interacts with a DBMS. SQL is a set of statements to
manage databases, tables, and data.

Constraints

Restrictions or limitations on tables and attributes. For example, a wine can be
produced only by one winery, an order for wine can't exist if it isn't associated
with a customer, having a name attribute could be mandatory for a customer.

Primary key

One or more attributes that contain values that uniquely identify each row. For
example, a customer table might have the primary key of cust 1D. The cust
1D attribute is then assigned a unique value for each customer. A primary key is
a constraint of most tables.

Index

A data structure used for fast access to rows in a table. An index is usually built
for the primary key of each table and can then be used to quickly find a
particular row. Indexes are also defined and built for other attributes when those
attributes are frequently used in queries.

Entity-relationship modeling

A technique used to describe the real-world data in terms of entities, attributes,
and relationships. This is discussed in Appendix C.

Normalized database

A correctly designed database that is created from an ER model. There are
different types or levels of normalization, and a third-normal form database is
generally regarded as being an acceptably designed relational database. We

discuss normalization in Appendix C.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

[rawus Poaxr v

3.2 Quick Start Guide

This section is a quick start guide to loading the sample winestore database and
understanding the design of the winestore database that is used in examples
throughout this book.

3.2.1 Loading the Winestore Database

A local copy of the winestore database is required to test the examples in this and
later chapters. MySQL must be installed and configured before the winestore
database can be loaded. MySQL installation instructions can be found in Appendix

A

The steps to load the winestore database are as follows:

1.

Download a copy of the winestore database from this book's web site; look for
winestore.database.tar.gz.

Uncompress the winestore database package in any directory by running:
gzip -d winestore.database.tar.gz

Untar the tape archive file by running:

tar xvf winestore.database.tar

A list of files extracted is output.

Check that MySQL is running using:

/usr/local/bin/mysgladmin -uroot -ppassword version

where password is the root user password. If MySQL isn't running, log in as the
Linux root user, and start the MySQL server using:

/usr/local/bin/safe mysgld --user=mysqgl &

Run the MySQL command-line interpreter using the username and password
created when MySQL was installed, and load the winestore data. The login
name is username, and the password is password:

/usr/local/bin/mysgl -uusername -ppassword < winestore.datab

After the loading is complete—it may take a few seconds—the database can be
tested by running a query. Type the following command on one line:

/usr/local/bin/mysqgl -uusername -ppassword -e 'USE winestore

This should produce the list of wine regions as output:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

o ———— o - o —— - +
| region id | region name | description | map \
S — - T b ERE - +
\ 1 | Goulburn Valley | NULL | NULL |
\ 2 | Rutherglen | NULL | NULL |
\ 3 | Coonawarra | NULL | NULL |
\ 4 | Upper Hunter Valley | NULL | NULL |
\ 5 | Lower Hunter Valley | NULL | NULL |
\ 6 | Barossa Valley | NULL | NULL |
| 7 | Riverland | NULL | NULL |
\ 8 | Margaret River | NULL | NULL |
| 9 | Swan Valley | NULL | NULL |
o ————— o o - +

The winestore database has now been loaded and tested.
3.2.2 The Winestore Database

To complete the introduction to the winestore database, we include in this section a
summary of the entity-relationship model of the winestore and the SQL statements
that create the winestore using the MySQL DBMS. This section is included for easy
reference.

3.2.2.1 The winestore entity-relationship model
Figure 3-3 shows the completed entity-relationship model for the online winestore

derived from the system requirements listed in Chapter 1. Appendix C includes a
description of the meaning of each shape and line type used in the figure.

Figure 3-3. The winestore ER model

The winestore model can be summarized as follows:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

htt

://www.colorpilot.com

3.2.2.

The

¢ A customer at the online winestore purchases wines by placing one or more
orders.

* Each customer has exactly one set of user details.

e Each order contains one or more items.

e Each jitem is for a specific quant ity of wine at a specific price.
e A wine is of a - ype such as "Red," "White," or "Sparkling."

* A wine has a vintage y<= r; if the same wine has two or more vintages from
different years, these are treated as two or more separate, distinct wines.

e Each wine is made by one winery.
e Each winery is located in one region.

e Each wine has one or more grape_variety entries. For example, a wine of
wine name "Archibald" might be made of the grape_variety entries
"Sauvignon" and "Cabernet." The order of the entries is important. For example,
a "Cabernet Sauvignon" is different from a "Sauvignon Cabernet."

e Each wine may have one or more inventories.

e Each inventory for a wine represents the on-hand stock of a wine that is
available at a particular cost or case cost (a case is 12 bottles of wine). If a
wine is available at two prices, there are two inventories.

2 Creating the winestore with SQL

CREATE TABLE SQL statements that build the winestore database are shown for

reference in Example 3-1.

The

statements in Example 3-1 are derived from the entity-relationship model in

Figure 3-1, and the process of converting this model to crEATE TARLE statements

is described in Appendix C. An electronic copy of the statements can be found in the
winestore.database file used to create the winestore database earlier in this section.

Example 3-1. The complete winestore DDL statements

CREATE TABLE wine (
wine id int(5) DEFAULT 'O' NOT NULL auto increment,

wine name varchar (50) DEFAULT '' NOT NULL,
winery id int (4),
type varchar (10) DEFAULT '' NOT NULL,

year int(4) DEFAULT '0O' NOT NULL,
description blob,

PRIMARY KEY (wineiid),

KEY name (wine name)

KEY winery (winery 1d)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

) ;

CREATE TABLE winery (
winery id int (4) DEFAULT '0O' NOT NULL auto increment,
winery name varchar (100) DEFAULT '' NOT NULL,
region id int (4),
description blob,
phone wvarchar(15),
fax varchar (15),
PRIMARY KEY (winery id),
KEY name (winery name)
KEY region (region_ id)

) ;

CREATE TABLE region (
region id int (4) DEFAULT 'O' NOT NULL auto increment,
region name varchar (100) DEFAULT '' NOT NULL,
description blob,
map mediumblob,
PRIMARY KEY (region id),
KEY region (region name)

) ;

CREATE TABLE customer (
cust _id int (5) NOT NULL auto_ increment,
surname varchar (50) NOT NULL,
firstname varchar (50) NOT NULL,
initial char (1),
title varchar (10),
addresslinel wvarchar (50
addressline2 wvarchar (50
addressline3 wvarchar (50
city wvarchar (20) NOT NU
state varchar (20),
zipcode varchar (5),
country varchar (20),
phone wvarchar (15),
fax varchar (15),
email wvarchar (30) NOT NULL,
birth date date (),
salary int (7),
PRIMARY KEY (Cust_id),
KEY names (surname, firstname)

) ;

) NOT NULL,
) s
)
LL,

CREATE TABLE users (
cust id int(4) DEFAULT '0O' NOT NULL,
user name varchar (50) DEFAULT '' NOT NULL,
password varchar(l15) DEFAULT '' NOT NULL,
PRIMARY KEY (user name),
KEY password (password)

) ;

CREATE TABLE grape variety (

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

variety id int(3),
variety name varchar (20),
PRIMARY KEY (variety_id),
KEY var (variety)

) ;

CREATE TABLE inventory (
wine_id int (5) DEFAULT '0O' NOT NULL,
inventory id int(3) NOT NULL,
on_hand int (5) NOT NULL,
cost float(5,2) NOT NULL,
case cost float(5,2) NOT NULL,
dateadded timestamp (12) DEFAULT NULL,
PRIMARY KEY (wine id,inventory id)

)

CREATE TABLE orders (
CuSt_id int (5) DEFAULT 'O' NOT NULL,
Order_id int (5) DEFAULT 'O' NOT NULL,
date timestamp(12),
discount float(3,1) DEFAULT '0.0"',
delivery float(4,2) DEFAULT '0.00'",
note varchar (120),
PRIMARY KEY (cust id,order no)

) 7

CREATE TABLE items (
Cust_id int (5) DEFAULT 'O' NOT NULL,
order_id int (5) DEFAULT 'O' NOT NULL,
item_id int (3) DEFAULT '1l' NOT NULL,
wine_id int (4) DEFAULT 'O' NOT NULL
gty int(3),
price float (5,2),
date timestamp(12),
PRIMARY KEY (cust id,order no,item id)
) ;

CREATE TABLE wine variety (
wine id int(5) DEFAULT 'O' NOT NULL,
variety id int(3) DEFAULT 'O' NOT NULL,
id int (1) DEFAULT 'O' NOT NULL,

PRIMARY KEY (wine id, variety id)
) ;

only for RuBoard - do not distribute or recompile

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

3.3 MySQL Command Interpreter

The MySQL command interpreter is commonly used to create databases and tables
in web database applications and to test queries. Throughout the remainder of this
chapter we discuss the SQL statements for managing a database. All these
statements can be directly entered into the command interpreter and executed. The
statements can also be included in server-side PHP scripts, as discussed in later
chapters.

Once the MySQL DBMS server is running, the command interpreter can be used. The
command interpreter can be run using the following command from the shell,
assuming you've created a user hugh with a password shhh:

% /usr/local/bin/mysqgl -uhugh -pshhh
The shell prompt is represented here as a percentage character, .
Running the command interpreter displays the output:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 36 to server version: 3.22.38

Type 'help' for help.
mysql>

The command interpreter displays a mysq1 > prompt and, after executing any
command or statement, it redisplays the prompt. For example, you might issue the
statement:

mysgl> SELECT NOW();

This statement reports the time and date by producing the following output:

fom e +
| NOwW () \
fmm e +
| 2002-01-01 13:48:07 |
fom e +

1 row in set (0.00 sec)
mysqgl>

After running a statement, the interpreter redisplays the mysq 1> prompt. We discuss
the sEL.ECT statement later in this chapter.

As with all other SQL statements, the seE1.ECT statement ends in a semicolon. Almost

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

all SQL command interpreters permit any amount of whitespace—spaces, tabs, or
carriage returns—in SQL statements, and they check syntax and execute statements
only after encountering a semicolon that is followed by a press of the Enter key. We
have used uppercase for the SQL statements throughout this book. However, any mix
of upper- and lowercase is equivalent.

On startup, the command interpreter encourages the use of the he 1o command.
Typing he1p produces a list of commands that are native to the MySQL interpreter
and that aren't part of SQL. All non-SQL commands can be entered without the
terminating semicolon, but the semicolon can be included without causing an error.

The MySQL command interpreter allows flexible entry of commands and SQL
statements:

e The up and down arrow keys allow previously entered commands and

statements to be browsed and used.

¢ The interpreter has command completion. If you type the first few characters of

a string that has previously been entered and press the Tab key, the interpreter
automatically completes the command. For example, if wines is typed and the
Tab key pressed, the command interpreter outputs winestore, assuming the

word winestore has been previously used.

If there's more than one option that begins with the characters entered, or you
wish the strings that match the characters to be displayed, press the Tab key
twice to show all matches. You can then enter additional characters to remove
any ambiguity and press the Tab key again for command completion.

Several common statements and commands are pre-stored, including most of
the SQL keywords discussed in this chapter.

To use the default text editor to create SQL statements, enter the command
edit in the interpreter. This invokes the editor defined by the =D 1TOR shell
environment variable. When the editor is exited, the MySQL command
interpreter reads, parses, and runs the file created in the editor.

When the interpreter is quit and run again later, the history of commands and
statements is kept. It is still possible to scroll up using the up arrow and to
execute commands and statements that were entered earlier.

You can run commands and SQL statements without actually launching the
MySQL command interpreter. For example, to run sELECT now () from the
Linux shell, enter the following command:

mysgl -ppassword —-e "SELECT now();"

This is particularly useful for adding SQL commands to shell or other scripts.

[rawu Poaxr e

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

3.4 Managing Databases, Tables, and Indexes

The Data Definition Language (DDL) is the set of SQL statements used to manage a
database. In this section, we use the MySQL command interpreter to create
databases and tables using the online winestore as a case study. We also discuss
the statements that delete, alter, and drop databases and tables, as well as
statements for managing indexes.

3.4.1 Creating Databases

The crEATE DATABASE statement can create a new, empty database without any
tables or data. The following statement creates a database called winestore:

mysgl> CREATE DATABASE winestore;

To work with a database, the command interpreter requires the user to be using a
database before SQL statements can be issued. Different command interpreters have
different methods for using a database and these aren't part of the SQL standard. In
the MySQL interpreter, you can issue the command:

mysgl> use winestore

For the rest of this chapter, we omit the my =1 > prompt from the command
examples.

3.4.2 Creating Tables

After issuing the use winestore command, you then usually issue commands to
create the tables in the database, as shown in Example 3-1. (You already created

the tables in the winestore database in Section 3.2 of this chapter). Let's look at one
of these tables, the customer table. The statement that created this table is shown in

Example 3-2.
Example 3-2. Creating the customer table with SQL

CREATE TABLE customer (
cust id int(5) DEFAULT 'O' NOT NULL auto increment,
surname varchar (50) NOT NULL,
firstname wvarchar (50) NOT NULL,
initial char(1l),
title varchar (10),
addresslinel wvarchar (50) NOT NULL,
addressline? wvarchar (50),
addressline3 wvarchar (50),
city varchar (20) NOT NULL,
state wvarchar (20),
zipcode wvarchar(5),
country varchar (20) DEFAULT 'Australia',

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

phone varchar(15),

fax varchar (15),

email varchar (30) NOT NULL,
salary int(7),

birth date date(),

PRIMARY KEY (Custiid),

KEY names (surname, firstname)

) ;
The crEATE TARLE statement has three parts:

e Following the crEATE TABLE statement is a free-form table name—in this case

customer.
« Following an opening bracket is a list of attribute names, types, and modifiers.

o After the attribute list is a list of keys; that is, information defining what attributes
satisfy the uniqueness constraints of a primary key and what attributes are to be
indexed for fast access.

A table name may contain any character except a forward slash / or a period, and the
name is usually the name of an entity created in the ER model. Attribute names may
contain any character, and there are many possible data types for attributes. Details

of selected commonly used types are shown in Table 3-1.

Table 3-1. Common SQL data types for attributes

Data type Comments
int (length) Integer; used for IDs, age, counters, etc.
float (length, decimals) |Floating-point number; used for currency, measurements, etc.

Updates each time the row is modified or can be manually set. A length of
14 (the default) displays an attribute containing date and time in the

timestamp (length) format YYYYMMDDHHMMSS. Length 12 displays YYMMDDHHMMSS, 8
displays YYYYMMDD, and 6 displays YYMMDD.

char (length) A space-padded, fixed-length text string.

varchar (length) An unpadded, variable-length text string with a specified maximum length.

blob An attribute that stores up to 64 KB of data.

For situations where the data stored is always much smaller or larger than the
maximum possible value, many attribute types have variants of - iny, small,
medium, and big. For example, int has variants smallint, mediumint, and
bigint.

Modifiers may be applied to attributes. Two common modifiers are NOT NUT.T.—data
can't be added without this attribute having a value—and DeF2ULT, which sets the
data to the value that follows when no data is supplied.

|dentifier attributes—an example in the customer table is the cust 14 attribute—
often have the modifier cuto increment. The auto increment modifier
automatically writes a unique number into an attribute when no value is supplied. For
example, if you insert 10 customer rows into the customer table, you can
automatically generate a cust id of 11 by inserting UL L (or zero) as the value for
cust id. Only one attribute in each table can have the auto increment modifier.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

All numeric attributes have optional zcrofi11 and unsigned modifiers. The former
left-pads a value with zeros up to the size of the attribute type. The latter allows only
positive values to be stored and roughly doubles the maximum positive value that can
be stored.

Inserting NUTL.T into a TTMESTAMP (or another date or time type) attribute stores the
current date and time. What is stored in the attribute depends on its length. For
example, if the attribute has the type T1vEsT2MP (12), both the time and date are
stored in the format YYMMDDHHMMSS. If today is January 3, 2002 and time is
10:43:23, the value stored is 020103104323.

More details on attribute types and modifiers can be found in Section 7.7 of the
manual.html file distributed with MySQL.

The final component of the crEATE TABLE statement is a specification of key
constraints and indexes that are required. In Example 3-2, we specify that the
unique identifier is the cust id attribute by adding the statement PrRIMARY KEY
(cust id).The PRIMARY KEY constraint has two restrictions: the attribute must be
defined as noT NULT, and any value inserted must be unique. It is good practice to
explicitly state a pr1MARY KEY for all tables; determining primary keys from an ER

model is discussed in Appendix C.

We also show in our example another <= definition; K&V is a synonym for TuDEX. In
this case, we have defined a KEv names (surname, firstname) to permit fast
access to data stored in the customer table by a combination of surname and
firstname values. In many cases—without yet knowing what kinds of queries will be
made on the database—it is difficult to determine what indexes should be specified.
MySQL permits up to 16 indexes to be created on any table, but unnecessary indexes
should be avoided. Each index takes additional space, and it must be updated as the
data stored in the table is inserted, deleted, and modified. We discuss index tuning in
Section 3.10.

3.4.3 Altering Tables and Indexes

Indexes can be added or removed from a table after creation. For example, to add an
index to the customer table, you can issue the following statement:

ALTER TABLE customer ADD INDEX cities (city);
To remove an index from the customer table, use the following statement:

ALTER TABLE customer DROP INDEX names;

The AL TER TABLE statement can also be used to add, remove, and alter all other
aspects of the table, such as attributes and the primary index. We don't discuss
statements for altering the database in this book; many examples can be found in
Section 7.8 of the manual.html file that is distributed with MySQL.

3.4.4 Displaying Database Structure with SHOW

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Details of databases, tables, and indexes can be displayed with the sHoOW command.
The snow command isn't part of the SQL standard and is MySQL-specific. It can be
used in several ways:

SHOW DATABASES
Lists the databases that are accessible by the MySQL DBMS.
SHOW TABLES

Shows the tables in the database once a database has been selected with the
use command.

SHOW COLUMNS FROM tablename

Shows the attributes, types of attributes, key information, whether nUT. 1. is
permitted, defaults, and other information for a table. For example:

SHOW COLUMNS FROM customer

shows the attribute information for the customer table. DESCRIRE table
produces the same output.

SHOW INDEX FROM tablename

Presents the details of all indexes on the table, including the pPrTMARY KEY. For
example:

SHOW INDEX FROM customer
shows that there are two indexes, the primary index and the names index.
SHOW STATUS

Reports details of the MySQL DBMS performance and statistics.

[rsvus Lo s

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

3.5 Inserting, Updating, and Deleting Data

The Data Manipulation Language (DML) encompasses all SQL statements used for
manipulating data. There are four statements that form the DML statement set:
SELECT, INSERT, DELETE, and UPDATE. We describe the last three statements in
this section. While st=1.ECT is also part of DML, we cover it in its own section,
Section 3.6. Longer worked examples using all the statements can be found in the
section Section 3.8.

3.5.1 Inserting Data

Having created a database and the accompanying tables and indexes, the next step
is to insert data. Inserting a row of data into a table can follow two different
approaches. We illustrate both approaches by inserting the same data for a new
customer, Dimitria Marzalla.

Consider an example of the first approach using the customer table:

INSERT INTO customer

VALUES (NULL, "Marzalla','Dimitria', 'F', "Mrs',
'171 Titshall C1','','"','St Albans', 'WA',
'7608"', "Australia', ' (618)63576028"',"'",

'"dimitria@lucaston.com','1969-11-08",35000) ;

In this approach a new row is created in the customer table, then the first value listed
—in this case, a NUL1L—is inserted into the first attribute of customer. The first
attribute of customeris cust id and—because cust id has the

auto increment modifier and this is the first row—a 1 is inserted as the cust id.
The value "Marzalla" is then inserted into the second attribute surname, "Dimitria"”
into £ i rstname, and so on. The number of values inserted must be the same as the
number of attributes in the table. To create an 1NsERT statement in this format, you
need to understand the ordering of attributes in the table.

The number inserted by an auto increment modifier can be checked with the
MySQL-specific function 1ast insert id().Inthis example, you can check
which cust id was created with the statement:

SELECT last insert id();

This statement reports:

e +
| last insert id()
e +
\ 1]
e +

1 row in set (0.00 sec)

You can see that the new row has cust id=1. To check a value, the function should

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

be called immediately after inserting a new row.

When inserting data, nonnumeric attributes must be enclosed in either single or
double quotes. If a string contains single quotation marks, the string is enclosed in
double quotation marks. For example, consider the string "Steve O'Dwyer". Likewise,
strings containing double quotation marks can be enclosed in single quotation marks.
An alternative approach is to escape the quotation character by using a backslash
character; for example, consider the string 'Steve O\'Dwyer'. Numeric attributes aren't
enclosed in quotes.

The same insertion can also be performed using a second approach. Consider this
example:

INSERT INTO customer
SET surname = 'Marzalla',

firstname = 'Dimitria',

initial='"F",

title="Mrs',

addresslinel='"'171 Titshall C1',

city='St Albans',

state="WA"'",

zipcode='7608",

country='Australia',

phone="(618)63576028",

email="'dimitria@lucaston.com',

birthdate='1969-11-08",

salary=35000;
In this approach, the attribute name is listed, followed by an assignment operator, "-",
and then the value to be assigned. This approach doesn't require the same number of
values as attributes, and it also allows arbitrary ordering of the attributes. cust id
isn't inserted, and it defaults to the next available cust id value because of the
combination of the 2uto increment and DEFAULT modifiers.

The first approach can actually be varied to function in a similar way to the second by
including parenthesized attribute names before the vA1.Urs keyword. For example,
you can create an incomplete customer row with:

INSERT INTO customer (surname,city) VALUES ('Smith', 'Sale');

Other approaches to loading data using a similar syntax are also possible. A popular
variation is to insert data into a table from another table using a query, and it's

discussed briefly in Section 3.8.3.
3.5.1.1 Bulk loading into a database

Another data insertion method is to bulk-load data from a formatted ASCII text file. A
formatted text file is usually a comma-delimited (also known as a comma-separated)
or tab-delimited file, where the values to be inserted are separated by comma or tab
characters, respectively.

The statement LoD DATA INFILE can bulk-load data from a file. This is

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

nonstandard SQL. For example, consider the following customer information that has
been exported from a legacy spreadsheet program:

0,"Marzalla","Dimitria","F", "Mrs","171 Titshall CI1™,"","","St
Albans","WA","7608","Australia", " (618)63576028","","dimitriallu
"1969-08-11","35000"

The data might be saved in the file customer.cdf. Note that the attribute values are in
the same order as the attributes in the winestore customer table; most export wizards
in spreadsheet software allow data to be reorganized as it is exported. Also, note that
the first value is 0 and, because this value will be inserted into the cust id attribute,
the auto increment feature assigns the next available cust id value; inserting 0
has the same effect as inserting NUT 1.

The file can be inserted into the customer table using the statement:

LOAD DATA INFILE 'customer.cdf' INTO TABLE customer
FIELDS TERMINATED BY ',' ENCLOSED BY '"'
LINES TERMINATED BY '\n';

If quotation marks form part of an attribute, they must be escaped using backslashes:

"RMB 123, \"The Lofty Heights\""

Spreadsheet software often automatically escapes quotation marks in strings when
data is exported.

3.5.1.2 Transferring data between databases and DBMSs

For many databases—particularly those in which legacy data is being redeployed into
a DBMS—most of the data insertion occurs as the database is created. A common
approach is to create a script that contains SQL statements that can be repeatedly
replayed; it's the approach we used to create the winestore database. This has the
advantage that the script can be run on many different DBMSs, and it makes
migration easier than with the 102D DATA TNFTLE approach.

To remove and partially rebuild the winestore database, we might author a script
containing the statements shown in Example 3-3.

Example 3-3. Script for creating and inserting winestore data

DROP DATABASE winestore;
CREATE DATABRASE winestore;
use winestore

CREATE TABLE customer (
cust id int(5) NOT NULL auto increment,
surname varchar (50) NOT NULL,
firstname wvarchar (50) NOT NULL,
initial char (1),
title varchar (10),

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

addresslinel varchar (50) NOT NULL,
addressline? wvarchar (50),
addressline3 varchar (50),

city varchar (20) NOT NULL,

state varchar (20),

zipcode varchar(5),

country wvarchar (20),

phone varchar(15),

fax wvarchar(1l5),

email wvarchar (30) NOT NULL,
birthdate date(),

salary int(7),

PRIMARY KEY (Cust_id),

KEY names (surname, firstname)

) ;

INSERT INTO customer VALUES (NULL, 'Marzalla', 'Dimitria', 'F', "Mr
Ccl',"',"','st Albans', '"WA', '7608','"Australia','(618)63576028",
com','1969-08-11",35000) ;

INSERT INTO customer VALUES (NULL, 'LaTrobe', '"Anthony', 'Y', 'Mr',
st',''",'", '"Westleigh', '"WA', '865
5','Australia', ' (618)73788578"',"'(618)73786674"', 'Anthonyl@Karumba

INSERT INTO customer VALUES (NULL, 'Fong', 'Nicholas','K', 'Mr', '99
v, '"Stormlea', "NSW', '6400"', "Australia',
'(612)85534220"','(612)85535180"', 'Nicholas@Torquay.com',
'1942-06-29',170000) ;

INSERT INTO customer VALUES (NULL,'Stribling', 'James','', 'Mr','6

'Legana', 'QLD','6377"', "Australia', '(617)66603522"'", '','"James@Mur
22',25000) ;

The script in Example 3-3, which has been saved to a file winestore.database, can
be replayed using the MySQL command and a shell redirection:

% mysql -ppassword < winestore.database

This script runs the command interpreter with the statements and commands listed in
the file winestore.database.

Data that is already managed in a MySQL database can be extracted using the utility
mysqldump:

% mysgldump -ppassword winestore > winestore.database

The statements to DrOP, CREATE, and use the database can be manually added with
an editor to permit replaying of the script. We manually added the first three lines of

Example 3-3 after using mysqldump to create the script.

To use the script to create a duplicate database, winestore2, for testing, you can
change the first three lines of Example 3-3 to:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

DROP DATABASE winestore?2;
CREATE DATABASE winestore2;

use winestore?2

3.5.2 Deleting Data

There is an important distinction between dropping and deleting in SQL. broP is used
to remove tables or databases; DET.ETE is used to remove data.

The statement:
DELETE FROM customer;

deletes all data in the customer table but doesn't remove the table. In contrast,
dropping the table removes the data and the table.

A DELETE statement with a wHERE clause can remove specific rows; WHERE clauses

are frequently used in querying, and they are explained later in Section 3.8.3.
Consider a simple example:

DELETE FROM customer WHERE custiid = 1;
This deletes the customer with cust 1d=1. Consider another example:
DELETE FROM customer WHERE surname = 'Smith';

This removes all rows for customers with the surname Smith.
3.5.3 Updating Data

Data can be updated using a similar syntax to that of the 1NsERT statement.
Consider an example:

UPDATE customer SET email = lower (email) ;

This replaces the string values of all em= 1 1 attributes with the same string in
lowercase. The function 1ocwer () is one of many functions discussed later in

Section 3.9.

The urPDATE statement is also often used with the wiERE clause. For example:
UPDATE customer SET title = 'Dr' WHERE cust id = 7;

This updates the ¢ i t 1 ¢ attribute of customer #7. Consider a second example:
UPDATE customer SET zipcode = '3001' WHERE city = 'Melbourne';

This updates the = i pcode of all rows with a i ¢ value Melbourne.

T

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

3.6 Querying with SQL SELECT

We begin this section by covering the basics of using the sr1.2CT statement. We then
introduce the wHERE clause for selecting data that matches a condition. The section
concludes with an introduction to the more advanced features of st 1.rCT statements.

3.6.1 Basic Querying

The st1L.ECT statement is used to query a database and for all output operations in
SQL. Consider an example query:

SELECT surname, firstname FROM customer;

This outputs the values of the attributes surname and i rstname from all rows, or
records, in the customer table. Assuming we previously inserted four rows when we
created the winestore database, the output from the MySQL command interpreter is:

o o +
| surname | firstname |
o ———— o ———— +
| Marzalla | Dimitria \
| LaTrobe | Anthony \
| Fong | Nicholas \
| Stribling | James |
Fo— - —— Fo— - —— +

4 rows 1in set (0.04 sec)

Any attributes of a table may be listed in a sEL.ECT statement by separating each with
a comma. If all attributes are required, the shortcut of an asterisk character (*) can
be used. Consider the statement:

SELECT * FROM region;

This outputs all the data from the table region:

o —————— e - == - +
| region id | region name | description | map \
T - T T T e—— T - +
\ 1 | Goulburn Valley | NULL | NULL |
\ 2 | Rutherglen | NULL | NULL |
\ 3 | Coonawarra | NULL | NULL |
\ 4 | Upper Hunter Valley | NULL | NULL |
o —————— e o ———— - +

4 rows 1in set (0.07 sec)

SELECT statements can also output data that isn't from a database. Consider the
following example:

SELECT curtime () ;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

This example runs a function that displays the current time:

o ———_——— +
| curtime ()
Fommm - +
| 08:41:50 |
fommm - +

1 row in set (0.02 sec)

The st1.ECT statement can even be used as a simple calculator, using the
mathematical functions described in the later section Section 3.9:

SELECT log (100)*4*pi();

This outputs:

Fmm - +

| 1og (100) *4*pi() |
- +

\ 57.870275 |
- +

1 row in set (0.19 sec)

3.6.2 WHERE Clauses

A WHERE clause is used as part of most sE1.ECT queries; it limits retrieval to those
rows that match a condition.

Consider this grape-growing region table containing the details of nine regions:

SELECT * from region;

o ———— e - o — - +
| region id | region name | description | map \
Fommm - Fm e Fommm - to—m—— +
\ 1 | Goulburn Valley | NULL | NULL |
\ 2 | Rutherglen | NULL | NULL |
\ 3 | Coonawarra | NULL | NULL |
| 4 | Upper Hunter Valley | NULL | NULL |
| 5 | Lower Hunter Valley | NULL | NULL |
| 6 | Barossa Valley | NULL | NULL |
| 7 | Riverland | NULL | NULL |
\ 8 | Margaret River | NULL | NULL |
\ 9 | Swan Valley | NULL | NULL |

It is possible to select only a few rows with a st.ECT statement by adding a wHERE
clause. For example, to show only the first three regions, you can issue the following
statement:

SELECT * FROM region
WHERE region 1d<=3;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

This outputs all attributes for only the first three region rows:

o ———— o — o — - +
| region id | region name | description | map |
ST - e fmmm - o +
\ 1 | Goulburn Valley | NULL | NULL |
\ 2 | Rutherglen | NULL | NULL |
\ 3 | Coonawarra | NULL | NULL |
o ——— o - o —— - +

3 rows in set (0.00 sec)

You can combine the attribute and row restrictions and select only the region name
and region 1id attributes for the first three regions:

SELECT region id, region name FROM region
WHERE region id <= 3;

1 | Goulburn Valley \
\ 2 | Rutherglen \
3 Coonawarra

3 rows in set (0.00 sec)

More complex wHERE clauses use the Boolean operators 2D and Or, as well as the
functions described later in Section 3.9. The Boolean operators 211D and Or have
the same function as the PHP <« and | | operators introduced in Chapter 2.

Consider an example query that uses the Boolean operators:

SELECT * FROM customer
WHERE surname='Marzalla' AND
firstname='Dimitria';

This retrieves rows that match both criteria, that is, those customers with a surname
Marzalla and a i rstname Dimitria.

Consider a more complex example:

SELECT cust 1d FROM customer
WHERE (surname='Marzalla' AND firstname LIKE 'M%')
OR email='john@lucaston.com';

This finds rows with either the surname Marzalla and a i rstname beginning with
M, or customers with the email address john@Iucaston.com. The Or operator isn't
exclusive, so an answer can have an ema i1 of john@lucaston.com, a surname of
Marzalla, and a £ i rstname beginning with M. This query, when run on the winestore
database, returns:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

tm——_— +
| cust id |
FRE— ———
| 440 |
\ 493 |
e ———— +

2 rows 1in set (0.01 sec)

SELECT queries are often sophisticated and a long wiERE clause may include many
AND and OR operators. More complex examples of queries are shown in the later

section Section 3.7.

The wHERE clause is also a common component of UPDATE and DELETE statements,
and we have shown simple examples of using wHERE with these earlier in this
chapter. Consider another example of an UPDATE with a wHERE clause:

UPDATE wine SET winery id = 298 WHERE winery id = 299;

In this case, for wines that are made by the winery with winery id=299, the
winery idischangedtowinery id=298.

The wHERE clause can be used similarly in a bELETE. Consider an example:
DELETE FROM wine WHERE winery id = 299;

This removes only selected rows based on a condition; here the wines made by the
winery with winery id=299 are deleted.

3.6.3 Sorting and Grouping Output
We will now discuss techniques to manage the order and grouping of the output.
3.6.3.1 ORDER BY

The orDER BY clause sorts the data after the query has been evaluated. Consider
an example:

SELECT surname, firstname FROM customer
WHERE title='Mr'
AND city = 'Portsea'
ORDER by surname;

This query finds all customers who have a it 1« Mr and live in Portsea. It then
presents the results sorted alphabetically by ascending surname:

fo— e ———— fommmm—————— +
| surname | firstname |
e e +
| Dalion | Anthony \
| Galti | Jim \
| Keisling | Mark \
| Leramonth | James \

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| Mellili | Derryn \
| Mockridge | James \
| Nancarral | Joshua \
| Ritterman | James \
o —————— o —————— +

Sorting can be on multiple attributes. For example:

SELECT surname, firstname, initial FROM customer
WHERE zipcode='3001"' OR
zipcode="'3000"
ORDER BY surname, firstname, initial;

This presents a list of customers in areas with zipcode="3000" or
zipcode="'3001", sorted first by ascending surname, then (for those customers
with the same surname) by i rstname, and (for those customers with the same
surname and first name), by initial. So, for example, the output may be:

o ————— o ————— t———————— +
| surname | firstname | initial |
tom——— - tom——— - R +
| Keisling | Belinda | C \
| Leramonth | Hugh | D |
| Leramonth | Joshua | H |
| Leramonth | Joshua | R

| Young | Bob | A \
o —————— o —————— t———————— +

By default, the OrRDER BY clause sorts in ascending order, or 2sC. To sort in reverse
or descending order, DrsC can be used. Consider an example:

SELECT * FROM customer
WHERE city='Melbourne'
ORDER BY surname DESC;

3.6.3.2 GROUP BY

The croupr BY clause is different from OrRDER BY because it doesn't sort the data for
output. Instead, it sorts the data early in the query process, for the purpose of
grouping or aggregation. An example shows the difference:

SELECT city, COUNT(*) FROM customer
GROUP BY city;

This query outputs a sorted list of cities and, for each city, the counT of the number of
customers who live in that city. The effect of counT (*) is to count the number of
rows per group. In this example, it doesn't matter what is counted; COUNT (surname)
has exactly the same result.

Here are the first few lines output by the query:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Alexandra
Armidale
Athlone
Bauple
Belmont
Bentley
Berala
Broadmeadows

o

= O O o) O b

=

The query aggregates or groups all the rows for each city into sets, and the
COUNT (*) operation counts the number in each set. So, for example, there are 14
customers who live in Alexandra.

The crouP BY clause can find different properties of the aggregated rows. Here's an
example:

SELECT city, MAX(salary) FROM customer
GROUP BY city;

This query first groups the rows by city and then shows the maximum salary in each
city. The first few rows of the output are as follows:

fomm - fomm - +
| city | MAX (salary) |
fo— fom - +
| Alexandra | 109000 |
| Armidale | 75000 |
| Athlone | 84000 |
| Bauple | 33000 |

The croUuP BY clause should be used only when the query is
N designed to find a characteristic of a group of rows, not the
© details of individual rows.

There are several functions that can be used in aggregation with the croup BY
clause. Five particularly useful functions are:

AVG()
Finds the average value of a numeric attribute in a set

MIN()

Finds a minimum value of a string or numeric attribute in a set

MAX()

Finds a maximum value of a string or numeric attribute in a set

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

SUM()

Finds the sum total of a numeric attribute
COUNT()

Counts the number of rows in a set

The SQL standard places a constraint on the croUP BY clause that MySQL doesn't
enforce. In the standard, all attributes that are selected (i.e., appear after the se.ECT
statement) must appear in the crouPr BY clause. Most examples in this chapter don't
meet this unnecessary constraint of the SQL standard.

3.6.3.3 HAVING

The HAVING clause permits conditional aggregation of data into groups. For example,
consider the following query:

SELECT city, count (*), max(salary)
FROM customer
GROUP BY city
HAVING count(*) > 10;

The query groups rows by c it v, but only for cities that have more than 10 resident
customers. For those groups, the city, count () of customers, and maximum
salary of a customer in that city is output. Cities with less than 10 customers are
omitted from the result set. The first few rows of the output are as follows:

o — e ————— o —— +
| city | count (*) | max(salary) |
Fom - to— - Fom - +
| Alexandra | 14 | 109000 |
| Belmont \ 11 | 71000 |
| Broadmeadows | 11 | 51000 |
| Doveton | 13 | 77000 |
| Eleker \ 11 | 97000 |
| Gray \ 12 | 77000 |

The H2vVING clause must contain an attribute or expression from the sE1.2CT clause.

-

The nAvING clause is used exclusively with the crouP BY
clause. It is slow and should never be used instead of a WHERE
clause.

Fag

3.6.3.4 DISTINCT

The p1sTINCT operator presents only one example of each row from a query.
Consider an example:

SELECT DISTINCT surname FROM customer;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

This shows one example of each different customer surname in the customer table.
This example has exactly the same effect as:

SELECT surname FROM customer GROUP BY surname;

The p1sT1NCT clause is usually slow to run, much like the crour Bv clause. We
discuss how indexes and query optimization can speed queries later in this chapter.

3.6.4 Limiting Result Sets in MySQL

An additional operator is available in MySQL that limits the size of the result sets. For
example, the following query returns only the first five rows from the wine table:

SELECT * FROM wine LIMIT 5;

This saves query evaluation time and reduces the size of the result set that must be
buffered by the DBMS. The 1.1 1T operator is MySQL-specific.

e

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

3.7 Join Queries

A join query is a querying technique that matches rows from two or more tables based
on a join condition in a wHERE clause and outputs only those rows that meet the
condition. As part of the process of converting the winestore entity-relationship model
to SQL statements, we have included the attributes required in any practical join
condition.

To understand which tables can be joined in the winestore database, and how the
joins are processed, it is helpful to have a copy of the ER model at hand.

3.7.1 Beware of the Cartesian Product

Oddly, the easiest way to introduce join queries is to discuss what not to do. Consider
this query, which we might intuitively, but wrongly, use to find all the wineries in a
region:

SELECT winery name,region name FROM winery, region;

This query produces—in part—the following results:

Victoria

Ryan Ridge Winery

Victoria \
\
\
\

\

| Macdonald Creek Premium Wines
\ Victoria
\ Victoria
\ Victoria

Davie's
Porkenberger Brook Vineyard
Rowley Hill Vineyard

The impression here is that, for example, Ryan Ridge Winery is located in the Victoria
region. This might not be the case. Why? First, you can use the techniques covered
so far in this chapter to check which region Ryan Ridge Winery is located in:

SELECT region id FROM winery
WHERE winery name='Ryan Ridge Winery';

The resultis region id=2.
Now query the region table to find the name of region id=2 using:

SELECT region name FROM region
WHERE region id=2;

The region name is South Australia. So, Ryan Ridge Winery isn't in Victoria at all!

What happened in the first attempt at a join query? The technical answer is that you
just evaluated a cartesian product; that is, you produced as output all the possible
combinations of wineries and regions. These odd results can be seen if you add an
ORDER BY clause to the original query:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

SELECT winery name, region name FROM winery, region
ORDER BY winery name, region name;

Recall that the orDER BY clause sorts the results after the query has been evaluated;
it has no effect on which rows are returned from the query. Here is the first part of the
result of the query with the orDER BV clause:

New South Wales
South Australia
Victoria

Western Australia
New South Wales
South Australia
Victoria

Western Australia

Anderson Creek Wines
Anderson Creek Wines
Anderson Creek Wines
Anderson Creek Wines
Anderson Group
Anderson Group
Anderson Group
Anderson Group

The query produces all possible combinations of the four region names and 300
wineries in the sample database! In fact, the size of the output can be accurately
calculated as the total number of rows in the first table multiplied by the total rows in
the second table. In this case, the output is 4 x 300 = 1,200 rows.

3.7.2 Elementary Natural Joins

A cartesian product isn't the join we want. Instead, we want to limit the results to only
the sensible rows, where the winery is actually located in the region. From a database
perspective, we want only rows in which the region id inthe winery table matches
the corresponding region id in the region table. This is a natural join.r1

1] 1t isn't quite true to say that the joins described here are natural joins. A true natural join doesn't require you to
specify the join condition, because "natural” implies that the system figures this out itself. So, a real natural join doesn't
need the WHERE clause; one is automatically included "behind the scenes." The joins described throughout this
chapter are actually called inner joins, but the results are identical to a those of a natural join.

Consider a revised example using a natural join:

SELECT winery name, region name
FROM winery, region
WHERE winery.region id = region.region id
ORDER BY winery name;

An ORDER BY clause has been added to sort the results by winery name but this
doesn't affect the join. This query produces—in part—the following sensible results:

| Anderson Creek Wines | Western Australia |
| Anderson Group | New South Wales |
| Beard | South Australia |
| Beard and Sons | Western Australia |
| Beard Brook | New South Wales

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Several features are shown in this first successful natural join:

e The rrOM clause contains more than one table name. In this example, sE1L.ECT
retrieves rows from the tables winery and region.

o Attributes in the wrrERE clause are specified using both the table name and
attribute name, separated by a period. This usually disambiguates uses of the
same attribute name in different tables.

So, for example, region idinthe regiontable and region id inthe winery
table are disambiguated as region.region idand winery.region id.
This procedure can also be used for clarity in queries, even if it isn't required. It
can be used in all parts of the query, not just the WHrERE clause.

e The wiERE clause includes a join clause that matches rows between the
multiple tables. In this example, the output is reduced to those rows where
wineries and regions have matching region id attributes, resulting in a list of
all wineries and which region they are located in. This is the key to joining two or
more tables to produce sensible results.

3.7.2.1 Examples

The natural join can be used in many other examples in the winestore. Consider
another example that finds all the wines made by all the wineries:

SELECT winery name, wine name, type
FROM winery, wine WHERE
wine.winery id = winery.winery id;

This query finds all wines made by wineries through a natural join of the winery and
wine tables using the winery id attribute. The result is a large table of the 1,028
wines stocked at the winestore, their types, and the relevant wineries.

You can extend this query to produce a list of wines made by a specific winery or
group of wineries. To find all wines made by wineries with a name beginning with
Borg, use:

SELECT winery name, wine name, type
FROM winery, wine WHERE
wine.winery 1id = winery.winery id AND
winery.winery name LIKE 'Borg3';

This example extends the previous example by producing not all natural join pairs of
wines and wineries, but only those for the winery or wineries beginning with Borg. The
LTKE clause is covered later, in Section 3.9.

Here are two more example join queries:

 To find the name of the region Ryan Ridge Winery is situated in:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

SELECT region.region name FROM region,winery
WHERE winery.region id=region.region id AND
winery.winery name='Ryan Ridge Winery';

e To find which winery makes Curry Hill Red:

SELECT winery.winery name FROM winery, wine
WHERE wine.winery id=winery.winery id AND
wine.wine name='Curry Hill Red';

3.7.2.2 Table aliases in SQL queries

To save typing and add additional functionality, table aliases are sometimes used in
queries. Consider an example that finds all inventory details of wine #183:

SELECT * FROM inventory i, wine w
WHERE i.wine id = 183 AND
l.wine id = w.wine 1id;

In this query, the FroM clause specifies aliases for the table names. The alias
inventory i means than the inventory table can be referred to as i elsewhere in
the query. For example, i .wine idisthesameas inventory.wine id.This
saves typing in this query.

Aliases are powerful for complex queries that need to use the same table twice but in
different ways. For example, to find any two customers with the same surname, you
can write the query:

SELECT cl.cust id, cZ.cust id FROM
customer cl, customer c2 WHERE
cl.surname = c2.surname AND

cl.cust id != c2.cust 1id;

The final clause, c1.cust id!=c2.cust id,is essential; without it, all customers
are reported as answers. This occurs because all customers are rows in tables c1
and c2 and, for example, a customer with cust id=1 in table c1 has—of course—
the same surname as the customer with cust id=1 in table c2.

3.7.2.3 Using DISTINCT in joins

The next join example uses the DT sTTNCT operator to find red wines that cost less
than $10. Wines can have more than one inventory row, and the inventory rows for
the same wine can have the same per-bottle cost. The b1 sT1NCT operator shows
each wine name and cost pair once by removing any duplicates. To find which red
wines cost less than $10, use:

SELECT DISTINCT wine name, cost
FROM wine, inventory WHERE
wine.wine id=inventory.wine id AND
inventory.cost<1l0 AND
UPPER (wine.type)='RED';

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Here are two examples that use D1sT1NCT to show only one matching answer:

¢ To find which cities customers live in:
SELECT DISTINCT city FROM customer;
¢ To find which customers have ordered wines:
SELECT DISTINCT surname, firstname FROM customer,orders

WHERE customer.cust id = orders.cust id
ORDER BY surname, firstname;

3.7.3 Joins with More than Two Tables

Queries can join more than two tables. In the next example, the query finds all details
of each item from each order by a particular customer, customer #2. The example
also illustrates how frequently the Boolean operators 21D and Or are used:

SELECT * FROM customer, orders, items WHERE

customer.cust id = orders.cust id AND
orders.order id = items.order id AND
orders.cust id = items.cust id AND
customer.cust id = 2;

In this query, the natural join is between three tables, customer, orders, and items,
and the rows selected are those in which the cust id is the same for all three
tables, the cust idis2,and the order 1id isthe same in the orders and items
tables.

If you remove the cust id=2 clause, the query outputs all items in all orders by all
customers. This is a large result set, but still a sensible one that is much smaller than
the cartesian product!

Here are two more examples that join three tables:
* To find which wines are made in the Margaret River region:

SELECT wine name FROM wine,winery,region
WHERE wine.winery id=winery.winery id AND
winery.region id=region.region id AND
region.region name='Margaret River';

e To find which region contains the winery that makes the Red River Red wine:

SELECT region name FROM wine,winery,region
WHERE wine.winery id=winery.winery id AND
winery.region id=region.region id AND
wine.wine name='Red River Red';

Extending to four or more tables generalizes the approach further. To find the details
of customers who have purchased wines from Buonopane Wines, use:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

SELECT DISTINCT Customer.custiid, customer.surname, customer.fir
FROM customer, winery, wine, items
WHERE customer.cust id=items.cust id AND
items.wine i1d=wine.wine 1id AND
wine.winery id=winery.winery 1d AND
winery.winery name='Buonopane Wines'
ORDER BY customer.surname, customer.firstname;

This last query is the most complex so far and contains a four-step process. The
easiest way to understand a query is usually to start with the wrrrE clause and work
toward the sEL.ECT clause:

1. The wHERE clause restricts the winery rows to those that bear the name
Buonopane Wines.

2. The resultant winery rows—there is probably only one winery called Buonopane
Wines—are joined with wine to find all wines made by Buonopane Wines.

3. The wines made by Buonopane Wines are joined with the items that have been
purchased.

4. The purchases of Buonopane Wines are joined with the customer rows of the
customers who have purchased the wine. You can leave out the orders table,
because the items table contains a cust id for the join; if you need the order
number, the discount applied, or another orders attribute, the orders table needs
to be included in the query.

5. The result is the details of customers who have purchased Buonopane Wines.
DISTINCT is used to show each customer only once. ORDER BY sorts the
customer rows into telephone directory order.

Designing a query like this is a step-by-step process. We began by testing a query to
find the winery 1id of wineries with the name Buonopane Wines. Then, after testing
the query and checking the result, we progressively added additional tables to the
FrROM clause and join conditions. Finally, we added the OrRDER BY clause.

The next example uses three tables but queries the complex many-to-many
relationship in the winestore that exists between the wines and grape_variety tables
via the wine_variety table. As outlined in the system requirements in Chapter 1, a
wine can have one or more grape varieties and these are listed in a specific order
(e.g., Cabernet, then Sauvignon). From the other perspective, a grape variety such as
Cabernet can be in hundreds of different wines. The relationship is managed by
creating an intermediate table between grape variety and wine called wine_variety.

Here is the example query that joins all three tables. To find what grape varieties are
in wine #1004, use:

SELECT variety FROM grape variety, wine variety, wine
WHERE wine.wine id=wine variety.wine id AND
wine variety.variety id=grape variety.variety id AND
wine.wine 1d=1004
ORDER BY wine variety.id;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The result of the query is:

fom - +
| variety \
fom - +
| Cabernet |
| Sauvignon |
Fom - —— +

2 rows 1n set (0.00 sec)

The join condition is the same as any three-table query. The only significant
difference is the oOrDER BY clause that presents the results in the same order they
were added to the wine_variety table (assuming the first variety gets 10-1, the
second 1D=2, and so on).

We've now covered as much complex querying in SQL as we need to in this chapter.
If you'd like to learn more, see the pointers to resources included in Appendix E.
SQL examples in web database applications can be found throughout Chapter 4 to

Chapter 13.
[ravous Poaxr v

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

3.8 Modifying the Database

In this section, we consider simple examples of writing data to databases. Multiple
users writing data, how to manage locking of databases, and more complex
transactions with the MySQL DBMS are discussed in Chapter 6.

3.8.1 Adding a New Wine to the Winestore

To illustrate a write transaction with the winestore database, consider an example of
inserting a new wine. This process can be performed with the MySQL command-line
interpreter. Only one user is interacting with the DBMS in this example.

Let's suppose that 24 bottles of a new wine, a Curry Hill Cabernet Merlot 1996 made
by De Morton Hill wineries, have arrived, and you wish to add a row to the database
for the new wine.

The addition has several steps, the first of which is an 1nsERT TnTO statement to
create the basic row for the wine in the wine table:

INSERT INTO wine
SET wine name='Curry Hill"',
type='Red',
year=199¢,
description='A beautiful mature wine. Smooth to taste
Ideal with red meat.';

This creates a new row and sets the basic attributes. The wine idis set to the next
available value because of the auto increment and DEFAULT modifiers. The
remaining attributes to insert require further querying and then subsequent updates.

The second step is to set the winery id for the new wine. We need to search for
the De Morton Hill winery to identify the winery id:

SELECT winery id FROM winery
WHERE winery name='De Morton Hill';

The result returned is:

fo— - +
| winery id |
T BEVE -
| 221 |
fom - ———— +

1 row 1in set (0.00 sec)

We can now update the new wine row to set the winery id=221. However, which
row to update? An easy way to find the wine id of the new wine row is to use the
built-in function 125t insert id().As discussed in the earlier section Section
3.5, this function returns the number created by the most recent cuto increment
modifier:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

SELECT last insert id();

This returns the wine 1id of the inserted row:

e ittt +
| last insert id()
R _—————- _—— +
\ 1029 |
o — +

1 row 1n set (0.00 sec)

You can now issue the UrPDATE statement:

UPDATE wine SET winery id = 221
WHERE wine id = 1029;

The third step is to set the variety information for the new wine. We need the
variety id values for Cabernet and Merlot. These can be found with a simple

query:

SELECT * FROM grape variety;

In part, the following results are produced:

e ——— e ——— +
| variety id | wvariety |
R ———— - +
| 1 | Riesling \
| 2 | Chardonnay |
| 3 | Sauvignon |
| 4 | Blanc |
| 5 | Semillon |
\ © | Pinot \
\ 7 | Gris \
\ 8 | Verdelho \
| 9 | Grenache |
\ 10 | Noir \
\ 11 | Cabernet \
\ 12 | Shiraz \
\ 13 | Merlot \

Cabernethasa varicety id=11andMerlota variety i1d=13.We can now insert
two rows into the wine_variety table. Because Cabernet is the first variety, set its
1D=1, and 1D=2 for Merlot:

INSERT INTO wine variety

SET wine i1d=1029, variety id=11, id=1;
INSERT INTO wine variety

SET wine 1d=1029, variety 1d=13, 1id=2;

The final step is to insert the first inventory row into the inventory table for this wine.
There are 24 bottles, with a per-bottle price of $14.95 and per-case price of $171.99:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

INSERT INTO inventory VALUES (1029, 1, 24, 14.95, 171.99);

We've now completed the process of inserting rows into other tables in the winestore
is similar. Adding data to the winery, region, inventory, and orders tables follows the
same approach. Insertion of rows into the customer and grape_variety tables is
simpler because there are no attributes that require lookups in other tables.

3.8.2 Buying a Bottle of Wine from the Winestore

In this example, we consider the steps required to buy a bottle of wine. Again,
assume that there is only one user reading or writing data with the DBMS. The
complete process—implemented as part of the winestore web database application—

is described in Chapter 12.

To motivate this example, consider a customer, Dimitria Marzalla, who has added two
bottles of the new De Morton Wines Curry Hill Cabernet Merlot 1996 to her shopping
cart and now wishes to purchase the wines.

Before showing you how the purchase is finalized, let's examine the information
recorded in the user shopping cart and what we know about the user.

First, we know that cust id=1 is the ID for this customer and that the wine being
purchased has wine id=1029. This associated information has been previously
determined in the process of collecting data for the purchase in the online winestore.

Second, we need to consider how the shopping cart is managed in the winestore. We
use the orders and items tables to manage the shopping cart for each user. When a
user adds the first item to her shopping cart, a new row is created in the orders table
with a dummy cust id=-1 and the next available crder id for this dummy
customer. We use a dummy customer number because customers don't need to log
in to add wine to their shopping carts, and because finalized orders are distinguished
by having the cust id of a customer who is a member.

For this example, assume that the shopping cart has order 1d=354, and the
dummy customeris cust id=-1.Also assume that the row in the items table that
represents the wine in the shopping carthas a cust id=-1,anorder id=354,an
item id=l,awine 1d=1029,aquantity oty=2, and the price information for the
wine. The price is $14.95 per bottle.

Before finalizing an order, we need to determine if there are two bottles of the wine
available. A wine can be added to the shopping cart if there is any stock available, but
this doesn't necessarily mean that there is more than one bottle left or that another
user has not purchased the wine in the meantime. If there is sufficient wine available
to finalize an order, we reduce the on-hand stock by two bottles. Checking if there are
two bottles available can be done with the following query:

SELECT SUM(on hand)
FROM inventory
WHERE wine 1d=1029;

A GrOUP BY wine id is unnecessary in this case because only one wine is selected.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Assuming there are more than two bottles available, we need to reduce the on-hand
stock, beginning with the oldest inventory; this was one of the system requirements
defined in Chapter 1. There are several ways to find the oldest inventory and the
wine per-bottle price. A simple technique is to inspect the inventories:

SELECT inventory id,cost,on hand
FROM inventory
WHERE wine 1d=1029
ORDER BY date added;

The oldest (and only) inventory id=1, and there is an on-hand stock of 24 bottles.
We then reduce the on-hand stock by two:

UPDATE inventory
SET on hand = on hand - 2
WHERE wine 1d=1029 AND inventory id=1l;

If the on-hand stock in an inventory row is reduced to zero—which isn't so in this case
—we then remove that row:

DELETE FROM inventory
WHERE wine id = 1029 AND inventory id=1l;

Other possibilities may also occur, such as having to manipulate two inventories
because the oldest inventory has only one bottle left. These possibilities are

discussed in further detail in Chapter 12.

Having reserved two bottles of the wine for shipping, we can finalize the order for the
customer. To do so, we need to store the details of the shopping cart entries in the
orders and items tables. As discussed previously, by tracking the shopping cart of this
user we know it has the order id=354 for the dummy cust id=-1. We also need
to know how many previous orders this customer has made:

SELECT max (order 1d) FROM orders WHERE customer id=1;

If you find the customer previously made two orders, you update the shopping cart
order row so that it is now the third order for this customer. Use this statement:

UPDATE orders SET cust id = 1,
order id = 3,
date = NULL,
delivery = 7.95,
discount = 0
WHERE cust id = -1 AND order id = 354;

The shopping cart entry is now a customer order. d=te=NULL sets the date attribute
to be the current system time and date. The delivery cost is $7.95, and there is no
discount on the order.

To complete the order, we also update the related items row in the shopping cart,
which contains the two bottles of wine. Use the following UrDATE statement:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

UPDATE items SET cust id = 1,
order id = 3,
date = NULL

WHERE custiid = -1 AND
order id = 354 AND
item 1id = 1;

There is no need to update the wine id, price,or gty (quantity).

We can now confirm to the customer the purchase of two bottles of Curry Hill and ship
the order.

This isn't quite the whole picture of purchasing wines or updating the database. In
Chapter 6, we return to similar examples and discuss the implications and problems
of many users interacting with the database at the same time.

3.8.3 INSERTing with a SELECT Statement

We'll now show how insertion and querying can be closely tied together with an
INSERT INTO ... SELECT statement. This is useful for copying data and, if
needed, modifying the data as it is copied.

Consider an example to create a permanent record of the total sales to each
customer up to this month, let's say it's April. First, create a simple table to store the
customer and sales details:

CREATE TABLE salesuntilapril

(

cust id int(5) NOT NULL,
surname varchar (50),
firstname wvarchar (50),
totalsales float(5,2),
PRIMARY KEY (Custiid)

) ;

Now issue a combined TNSERT TNTO ... SELECT statementto populate the new
table with the customer details and the total sales:

INSERT INTO salesuntilapril
(cust id, surname, firstname, totalsales)
SELECT customer.cust id, surname, firstname, SUM(price)
FROM customer, items
WHERE customer.cust id = items.cust id
GROUP BY items.cust id;

The four attributes listed in the sE1.rCT statement are mapped to the four attributes
listed in the TNSERT TNTO statement. For example, the customer . cust idinthe
SELECT line is mapped into cust id in the salesuntilapril table.

A query on the new table shows part of the results:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

SELECT * from salesuntilapril;

o ———— o ————— o —————— e ——————— +
| cust id | surname | firstname | totalsales |
TR e tmmm e o +
\ 2 | LaTrobe | Anthony \ 566.42 |
\ 3 | Fong | Nicholas \ 821.78 |
\ 4 | Stribling | James \ 181.69 |
\ 5 | Choo | Richard \ 534.99 |
\ 6 | Eggelston | Perry \ 657.37 |
\ 7 | Mellaseca | Kym \ 1216.88 |
There are two sensible limitations of the 1nsErT INTO ... SELECT statement:

first, the query can't contain an OrRDER BV, and second, the rroM clause can't
contain the target table of the TnsERT TNTO.

[Cravous Poaxr v

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

3.9 Functions

Functions and operators can be used in SQL statements. This section lists these
functions and operators and provides examples. A full list of functions with examples
is available in Section 7.4 of the manual.html file distributed with MySQL.

3.9.1 Arithmetic and comparison operators

Table 3-2 shows examples of the basic arithmetic and comparison operators in
sELECT statements. The basic arithmetic operators are , +, /, and -, as well as the
parentheses () to control the order of evaluation of an expression.

Table 3-2. Using the arithmetic and comparison operators

Statement Output

SELECT 8+3*2; 14

SELECT (8+3)*2; 22

SELECT 2=2; 1

SELECT 1!=2; 1

SELECT 2<=2; 1

SELECT 3<=2; 0

The comparison operators include =, | =, <, >, <=, and >=. Four examples are shown

in Table 3-2. If an expression evaluates as « rue, the output is 1; if an expression
evaluates as 7= 1se, the output is 0. To test for equality, a single equals sign is used;
this contrasts with PHP, where the double equals (==) is used for equality tests, and
a single equals sign is used for assignment.

To test whether two items are equal, the ! = operator is provided. Less-than-or-equal-
to is represented by <-, and greater-than-or-equal-to is represented by >-.
Parentheses can explicitly express the evaluation order.

3.9.1.1 String-comparison operators and functions

Table 3-3 shows examples of the MySQL string-comparison operators and
functions. Many of the MySQL string functions shown here are similar to PHP
functions, which were introduced in Chapter 2.

Table 3-3. Using string comparison functions and operators

Statement Output
SELECT 'Apple' LIKE 'A%'; 1
SELECT 'Apple' LIKE 'App%'; 1
SELECT 'Apple' LIKE 'A%1%'; 1
SELECT concat('con','cat'); 'concat'
SELECT length ('Apple'); 5
SELECT locate('pp', "Apple'); 2
SELECT substring('Apple',2,3); 'ppl!
SELECT ltrim(' Apple'); 'Apple’
SELECT rtrim('Apple ") 'Apple’

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

SELECT trim (' Apple ') 'Apple’
SELECT space (3); ! !
SELECT strcmp('a','a'); 0
SELECT strcmp('a','b'"); -1
SELECT strcmp('b','a'); 1
SELECT lower ('Apple'); 'apple'
SELECT upper ('Apple'); 'APPLE"
The string functions work as follows:

¢ The string-comparison function 1. 7x% is useful. The = character represents any
number of unspecified characters, are generally known as wildcards. So, for
example, the comparison of the string "2pple’ LTKE 'A% is1 (true), asis
the comparison of '2pple’ LIKE 'App>'. The underscore character can be
used to match a single unspecified, wildcard character; for example, '2pple’
LIKE 'Appl 'is true, while 'Appl' LIKE 'Appl 'is false.

e concat () joins or concatenates two strings together, so the result of calling
concat () with two string parameters is a single string consisting of the
parameters.

e length () returns the length of the string in characters.

e locate () returns the location of the first string parameter in the second string
parameter. If the string doesn't occur, the result is 0.

e substring() returns part of the string passed as the first parameter. The
string that is returned begins at the offset supplied as the second parameter and
is of the length supplied as the third parameter.

e ltrim() removes any left-padding space characters from the string
parameter and returns the left-trimmed string.

e rtrim()removes any right-padding space characters from the string
parameter and returns the right-trimmed string.

e trim() performs the function of both 1t+im() and rtrim();thatis, any
leading or trailing spaces are removed, and the trimmed string is returned.

e space () returns a string consisting of spaces of the length of the integer
parameter.

e strcmp () compares two string parameters. If they are identical, it returns 0. If
the first string is alphabetically less than the second, it returns a negative
number. If the first string is alphabetically greater than the second, it returns a
positive number. Uppercase characters are less than lowercase characters.

e lower () converts the string parameter to lowercase and returns the
lowercase string.

e upper () converts the string parameter to uppercase and returns the
uppercase string.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

While not detailed in Table 3-3, regular expressions can be used through the
function regexp (). For more on regular expressions in PHP, see Chapter 2.

3.9.1.2 Mathematical functions

We make little use of the mathematical functions provided by MySQL in this book.

However, Table 3-4 shows selected MySQL mathematical functions and their
output.

Table 3-4. Using the MySQL mathematical functions
Statement Output

SELECT abs (-33);

SELECT abs (33);

SELECT mod (10, 3);

SELECT 10 % 3;

SELECT floor(3.14159);
SELECT ceiling(3.14159);
SELECT round(3.14159);
SELECT 1log(100);

SELECT 1ogl0(100);
SELECT pow(2,3);

SELECT sqgrt(36); 6
SELECT sin(pi()); 0.000000
SELECT cos(pi()); -1.000000
SELECT tan(pi()); -0.000000
SELECT rand () ; 0.8536
SELECT truncate(3.14159, 3); 3.141
SELECT format (12345.23,0); 12,345
SELECT format (12345.23, 1); 12,345.2

Wl w

.605170

(ool HNCN TSN NOUSH WIS\ NOSH ol Henl OV WOV

Several of the functions in Table 3-4 require some explanation:

e The abs () operator returns the absolute value of a number; that is, it removes
the negative sign from negative numbers.

e The modulo operator—which has two identical variants, © and mod () —
divides the first number by the second number and outputs the remainder.

eThe f1oor() andceiling() functions are complementary: f1oor ()
returns the largest integer not greater than the parameter; cei1ing () returns
the smallest integer not less than the parameter.

e The round () function rounds to the nearest integer.

¢ Both the natural logarithm, 10 (), and base-10 logarithm, 10510 (), are
available.

e The pow () function raises the first number to the power of the second.

e sgrt () takes the square root of the parameter.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

3.9.1

¢ The trigonometry functions sin(), cos(),and tan () take values
expressed in radians as parameters. The complementary arc sin, arc cos, and
arc tan are available as asin(),acos(),and atan().

e The rand () function returns a pseudorandom number in the range 0 to 1.
e The truncate () function removes decimal places without rounding.

e The format () function isn't really a mathematical function but is instead used
for returning numbers in a predefined format. The first parameter is the number,
and the second parameter is the number of decimal places to return. The first
parameter is rounded so that, for example, 123.56 formatted to one decimal
place is 123.6. This function is seldom used in web database applications,
because formatting is usually performed in PHP scripts.

.3 Date and time functions

Table 3-5 shows sample uses of selected time and date functions available in
MySQL. The date =add () function can be used to add and subtract times and
dates; more details can be found in Section 7.4.11 of the manual.html file distributed

with MySQL.

Table 3-5. Using the date and time functions

Statement Output

SELECT dayofweek ('2000-05-03"); 3
SELECT dayname ('2000-05-03") ; Wednesday
SELECT monthname ('2000-05-03") ; May
SELECT week ('2000-05-03"); 18
SELECT date add("2000-05-03", INTERVAL 1 DAY); 2000-05-04
SELECT curdate () 2002-01-01
SELECT curtime () ; 11:27:20
SELECT now(); 2002-01-01 11:27:20
3.9.1.4 Miscellaneous operators and functions

Miscellaneous operators and functions are shown in Table 3-6.

Table 3-6. Miscellaneous operators and functions

Statement Output
Control flow functions
SELECT if (1<0,"yes","no") no
Encryption functions
SELECT password('secret') 428567£408994404
SELECT encode ('secret', 'shhh') iU~
SELECT decode('"|i "~','shhh') secret
Other functions
SELECT database () winestore
SELECT user() dimitria@localhost
The conditional function i © outputs the first string if the expression is t rue and the

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

second ifitis f21se. This can be used in complex ways. For example, it could be
used in an UPDATE statement for intelligent changes to an attribute:

UPDATE customer SET country =
if(trim(country)="", "Australia',country):;

In this case, the SQL statement replaces blank count rv attributes with Australia and
leaves already filled count ry attributes unaltered.

Authentication and securing data using password (), encode (), and decode (
) are discussed in Chapter 9. The functions datzbase () and user () provide
the names of the current database and user.

[ravous Lo e

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

3.10 More on SQL and MySQL

In this section we discuss miscellaneous tools and techniques for using SQL and
MySQL. We introduce:

¢ Choosing keys and indexes for fast searching
¢ Elementary database-tuning techniques
¢ Adding and deleting users of a DBMS, and changing user permissions

« Limitations of MySQL
3.10.1 Keys, Primary Keys, and Indexes

As discussed earlier in our introduction to SQL, each table should have a Pr1VMARY
Krv definition as part of the creATE TARLE statement. A primary key is an attribute
—or set of attributes—that uniquely identifies a row in a table. Storing two rows with
the same primary key isn't permitted and, indeed, an attempt to T sERT duplicate
primary keys produces an error.

In MySQL, the attribute values of the primary key are stored in an index to allow fast
access to a row. The default MySQL index type is fast for queries that find a specific
row, a range of rows, for joins between tables, grouping data, ordering data, and
finding minimum and maximum values. Indexes don't provide any speed
improvement for retrieving all the rows in a table or for other query types.

Indexes are also useful for fast access to rows by values other than those that are
associated with attributes in the primary key. For example, in the customer table, you
might define an index by adding the clause:

KEY namecity (surname, firstname,city)

to the crEATE TABLE statement. After you define this index, some queries that select
a particular customer through a wrrRE clause can use it. Consider an example:

SELECT * FROM customer

WHERE surname = 'Marzalla' AND
firstname = 'Dimitria' AND
city = 'St Albans';

This query can use the new index to locate—in at most a few disk accesses—the row
that matches the search criteria. Without the index, the DBMS must scan all the rows
in the customer table and compare each row to the wrHERE clause. This might be quite
slow and certainly requires significantly more disk accesses than the index-based
approach (assuming the table has more than a few rows).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

A particular feature of DBMSs is that they develop a query evaluation strategy and
optimize it without any interaction from the user or programmer. If an index is
available, and it makes sense to use it in the context of a query, the DBMS does this
automatically. All you need to do is identify which queries are common, and make an
index available for those common queries by adding the ¥t v clause to the crEATE
TABLE statement or using AT TER TABLE on an existing table.

Careful index design is important. The namec ity index we have defined can also
speed queries other than those that supply a complete surname, firstname, and
city. For example, consider a query:

SELECT * FROM customer
WHERE surname = 'LaTrobe' AND
firstname = 'Anthony';

This query can also use the index nameci t v, because the index permits access to
rows in sorted order first by surname, then £irstname, and then city. With this
sorting, all "LaTrobe, Anthony" index entries are clustered together in the index.
Indeed, the index can also be used for the query:

SELECT * FROM customer
WHERE surname LIKE 'Mar$%';

Again, all surnames beginning with "Mar" are clustered together in the index.
However, the index can't be used for a query such as:

SELECT * FROM customer
WHERE firstname = 'Dimitria' AND
city = 'St Albans';

The index can't be used because the leftmost attribute named in the index, surname,
isn't part of the WHERE clause. In this case, all rows in the customer table must be
scanned and the query is much slower (again assuming there are more than a few
rows in the customer table, and assuming there is no other index).

F

: Careful choice of the order of attributes in a K=y clause is
i s ‘ important. For an index to be usable in a query, the leftmost
- attribute must appear in a WHERE clause.

There are other cases in which an index can't be used, such as when a query
contains an Or that isn't on an indexed attribute:

SELECT * FROM customer
WHERE surname = 'Marzalla' OR
email = 'dimitria@lucaston.com';

Again, the customer table must be completely scanned, because the second
condition, email="dimitria@lucaston.com', requires all rows to be retrieved as
there is no index available on the attribute cm= 1 1. Also, the case where the ored
attribute isn't the leftmost attribute in an index requires a complete scan of the
customer table. The following example requires a complete scan:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

SELECT * FROM customer
WHERE firstname = 'Dimitria' OR
surname = 'Marzalla';

If all the attributes in the index are used in all the queries, to optimize index size, the
leftmost attribute in the <= v clause should be the attribute with the highest number of
duplicate entries.

Because indexes speed up queries, why not create indexes on all the attributes you
can possibly search on? The answer is that while indexes are fast for searching, they
consume space and require updates each time rows are added or deleted, or key
attributes are changed. So, if a database is largely static, additional indexes have low
overheads, but if a database changes frequently, each additional index slows the
update process significantly. In either case, indexes consume additional space, and
unnecessary indexes should be avoided.

One way to reduce the size of an index and speed updates is to create an index on a
prefix of an attribute. Our namec ity index uses considerable space: for each row in
the customer table, an index entry is up to 120 characters in length because it is
created from the combined values of the surname, firstname,and city
attributes.2! To reduce space, you can define the index as:

[2] This isn't the space actually required by an index entry, because the data is compressed for storage. However,
even with compression, the fewer characters indexed, the more compact the representation, the more space saved,
and—depending on the usability of the index—the faster searching and updates are.

KEY namecity (surname (10), firstname(3),city(2));

This uses only the first 10 characters of surname, 3 of £irstname, and the first 2
characters of i t y to distinguish index entries. This is quite reasonable, because 10
characters from a surname distinguishes between most surnames, and the addition of
a few characters from a first name and the prefix of their city should be sufficient to
uniquely identify almost all customers. Having a smaller index with less information
can also mean that queries are actually faster, because more index information can
be retrieved from disk per second, and disk retrieval speed is almost always the
bottleneck in query performance.

The space saving is significant with a reduced index. A new index entry requires only
15 characters, a saving of up to 105 characters, so index insertions, deletions, and
modifications are now likely to be much faster. Note that for T=xT and 2105 attribute
types, a prefix must be taken when indexing, because indexing the entire attribute is
impractical and isn't permitted by the MySQL DBMS.

3.10.2 Tuning the Database System

Careful index design is one technique that improves the speed of a DBMS and can
reduce the resource requirements of a database. However, comprehensive database
tuning is a complex topic that fills many books. We include in this section only a few
additional practical ideas to begin to improve the performance of a database system.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

As discussed previously, accessing a hard disk is slow and is usually the bottleneck
in DBMS performance. More specifically, disk seeking—moving the disk head to get
information from another location of the disk—is the slowest component of disk
access. Therefore, most techniques described in this section are also techniques that
improve performance by minimizing disk space requirements.=!

Here

(31 Reducing disk space requirements improves both disk seek and read performance. Disk read performance is
improved because less data is required to be transferred, while seek performance is improved because the disk head
has to move less on average when randomly accessing a smaller file than when accessing a larger file.

are some ways to improve DBMS performance:

Carefully choose attribute types and lengths. Where possible, use small variants
such as sMALLINT or MEDTUMINT rather than the regular choice 11T. When
using fixed-length attributes, such as cii2r, specify a length that is as short as
practical.

Use fixed-length attributes; that is, try to avoid types such as VARCHAR or BLOE.
While fixed-length text attributes may waste space, scanning fixed-length rows
in a query is much faster than scanning variable-length rows.

Design indexes with care. As discussed in the last section, keep the primary key
index as small as possible, create only indexes that are needed, and use
prefixes of attributes where possible. Ensure that the leftmost attribute in the
index is the most frequently used in queries and, if all attributes are used, make
sure the leftmost attribute is the one with the highest number of duplicate
entries.

Create a statistics table if aggregate functions such as counT () or suM ()
are frequently used in queries on large tables. A statistics table stores only one
row that is manually updated with the aggregate values of another table. For
example, if the statistics table maintains the count of rows in a large customer
table, each time a row is inserted or deleted in the customer table, the count is
updated in the statistics table. For large tables, this is often faster than
calculating aggregate functions with the slow built-in functions that require
complete processing of all rows.

If large numbers of rows are deleted from a table, or a table containing variable-
length attributes is frequently modified, disk space may be wasted. MySQL
doesn't usually remove deleted or modified data; it only marks the location as
being no longer in use. Wasted space can affect access speed.

To reorganize a table—by copying data to a temporary location and back again
—MySQL provides the opTTMTI7ZE TABLE command, which should be used
periodically. For example:

OPTIMIZE TABLE customer;

The opT1MI ZzE command should be run when the DBMS is offline for
scheduled maintenance. The command is nonstandard SQL.

It is possible to create different table types for specific tasks. The default in
MySQL is the vy 1 s2M type, and all the tables described so far are this table

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

type. For small, temporary, frequently used lookup tables, a different type, the
heap table type, can be used. There are other types, and we briefly discuss
alternatives in Chapter 6. More details are provided in Section 9.4 of the
MySQL user manual.

 Section 10.7 of the MySQL manual includes other excellent ideas for simple
performance improvement.

Another aspect of database tuning is optimizing the performance of the DBMS itself.
Included with the MySQL installation is the mysqladmin tool for database
administration. Details of the system setup can be found by running the following
command from a Linux shell:

$ mysgladmin -ppassword variables

This shows, in part, the following selected system parameters:

join buffer current value: 131072
key buffer current value: 8388600
net buffer length current value: 16384
record buffer current value: 131072
sort buffer current value: 2097144
table cache current value: 64

The important parameters are those that impact disk use. MySQL has several main-
memory buffer parameters that control how much data is kept in memory for
processing. These include:

e The record buffer for scanning all rows in a table

eThe sort buffer for ORDER BY and GROUP BY operations
e The key buffer for storing indexes in main memory

e The join buffer forjoins that don't use indexes

In general, the larger these buffers, the more data from disk is cached or stored in
memory and the fewer disk accesses are required. However, if the sum of these
parameters is near to exceeding the size of the memory installed in the server, the
underlying operating system will start to swap data between disk and memory, and
the DBMS will be slow. In any case, careful experimentation based on the application
is likely to improve DBMS performance.

Section 10.2.3 of the MySQL manual suggests parameter settings when starting the
MySQL server. First, for machines with at least 64 MB of memory, large tables in the
DBMS, and a moderate number of users, use:

safe mysqgld -O key buffer=16M -O table cache=128 \
-0 sort buffer=4M -0 record buffer=1IM &

Second, if there is less than 64 MB of memory available, and there are many users,
try the following:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

safe mysgld -0 key buffer=512k -0 sort buffer=100k \
-0 record buffer=100k &

The following setting might be appropriate for the winestore, because many users are
expected, the queries are largely index-based, and the database is small:

safe mysgld -0 key buffer=512k -0 sort buffer=16k \
-0 table cache=32 -0 record buffer=8k
-0 net buffer=1K &

Even more conservative settings might also be acceptable.

There are two other parameters we have not discussed. The table cache
parameter manages the maximum number of open tables per user connection, while
the net buffer parameter sets the minimum size of the network query buffer in
which incoming queries are kept before they are executed.

The mysqladmin utility can report the status of the DBMS:
3 mysgladmin -ppassword status
The output has the following format:

Uptime: 5721024 Threads: 14 Questions: 7874982
Slow queries: 6 Opens: 115136 Flush tables: 1
Open tables: 62

This gives a brief point-in-time summary of the DBMS status and can help find more
about the number of user connections, queries, and table use. Similar output can be
generated by running the commands stow sTATUS and sHow VARTIABLES through
the MySQL command interpreter.

Information about query performance can be gained with the benchmark ()
function, which can be used iteratively for tuning when altering table design or DBMS
system parameters. The following statement illustrates benchmarking:

SELECT benchmark (10000, COUNT (*))
FROM items;

This statement reports the time taken to evaluate 10,000 calls to counT () on the
items table.

3.10.3 Adding and Deleting Users

We have not yet discussed adding and deleting users from the MySQL DBMS. Our
rationale in leaving this topic until this final section is that DBMS users aren't as
important in a web database application as in other applications. Because access to
the database and DBMS is generally controlled in the application logic of the middle
tier, usually only one or two DBMS users are needed.

A user, hugh, who has full control over all aspects of the DBMS and can access the
DBMS from the machine that hosts the DBMS, can be created with the statement:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

GRANT ALL PRIVILEGES ON *.* TO hugh@localhost
IDENTIFIED BY 'password' WITH GRANT OPTION;

Allowing access over a network can be added with:

GRANT ALL PRIVILEGES ON *.* TO hugh@"S$"
IDENTIFIED BY 'password' WITH GRANT OPTION;

There is no need to allow network access for a web database application if the
middle-tier components—the web server and scripting engine—are installed on the
same machine as the DBMS.

This user can then connect to the database from the shell with the command:

s mysgl -ppassword —-uhugh
The user information is stored in the mysql database in the user table, which can be
explored with:

USE mysqgl;
SELECT * FROM user;

The mysql database and the user table can be managed in the same way as any
other database. For example, you can update the password of the new user with the
UPDATE statement:

UPDATE user
SET password=password ('newpwd")
WHERE user='hugh';

Note the use of the password () function we described earlier to encrypt the
password for storage in the user table.

3.10.3.1 Permissions

Users can be added to the system with an TnsErRT 1NTO the user table in the mysql/
database or, as previously illustrated, you can use the crRANT statement. Moreover,
privileges can be adjusted with an UrPDATE, added with GRANT, or removed with
REVOKE.

Consider the following example:

GRANT SELECT, INSERT,UPDATE, DELETE, CREATE, DROP
ON winestore.*
TO dave@localhost
IDENTIFIED BY 'password';

This adds a new user dave and allows him to use only the SQL statements listed in
the winestore database. The parameter winestore. * means all tables within the
winestore database.

Privileges can be removed with the r=vOKE statement. For example:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

REVOKE DROP, CREATE ON winestore.* FROM dave@localhost;

If the privilege or privileges are to be revoked for all databases in the DBMS, not just
a single database, winestore. * can be replaced with * . *.

The following privileges can be used in GRANT and REVOKE statements:

ALL PRIVILEGES, FILE, RELOAD, ALTER, INDEX, SELECT,
CREATE, INSERT, SHUTDOWN, DELETE, PROCESS, UPDATE,
DROP, REFERENCES, USAGE

3.10.4 Limitations of MySQL

The most significant limitation of MySQL is that it doesn't support nested queries.
However, support is planned in MySQL Version 4. Nested queries are those that
contain another query. Consider an example nested query to find the wines that have
inventory stock:

SELECT DISTINCT wine id FROM wine
WHERE wine id IN
(SELECT wine 1d from inventory);

The query returns the wine id values from the wine table that are found in the
inventory table. Nested queries use the 111, NOT TN, EXTSTS, and NOT EXTSTS
operators.

In many cases, a nested query can be rewritten as a join query. For example, to find
the wines that are in stock, you can use the following join query:

SELECT DISTINCT wine.wine id FROM wine, inventory
WHERE wine.wine id = inventory.wine id;

However, some nested queries can't be rewritten as join queries; for difficult queries,
temporary tables are often a useful workaround.

A limitation of DE.ETE and UPDATE is that only one table can be specified in the
FrROM clause. This problem is particular to MySQL and related to the lack of support
for nested queries. This limitation can make modifications of data difficult. For
example, it prevents data being deleted or updated using the properties of another
table. A solution involves data being copied to a temporary table using a combined
INsERT and sELECT statement that joins together data from more than one table.
Then, the data can be deleted or updated in the temporary table and then transferred
back to the original table. Another approach, using the concat () string function, is
discussed in Section 1.4.4.1 in the MySQL manual.

To avoid UPDATE and DELETE problems, consider adding additional attributes to
tables at design time. For example, in the winestore we added a DATE attribute to the
items table so that shopping-cart items can be removed easily if they aren't
purchased within one day. Removing rows from the items table based on the DATE in
the orders table is difficult without support for nested queries.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

MySQL doesn't support stored procedures or triggers. Stored procedures are queries
that are compiled and stored in the DBMS. They are then invoked by the middle-tier
application logic, with the benefit that the query is parsed only once and there is less
communication overhead between the middle and database tiers. Triggers are similar
to stored procedures but are invoked by the DBMS when a condition is met. Stored-
procedure support is planned for MySQL, but trigger support isn't.

Views aren't supported in MySQL. Views consolidate read-only access to several
tables based on a join condition. For example, a view might allow a user to browse
the sales made up to April without the need to create a temporary table, as we did in
the example in Section 3.8. View support is planned for the future.

Limitations that we don't discuss here include the lack of support for foreign keys and
cursors. More detail on the limitations of MySQL can be found in Section 1.4 of the
manual distributed with MySQL.

[ravous Poaxr v

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

Chapter 4. Querying Web Databases

This chapter is the first of six that introduce practical web database application

development. In Chapter 1, we introduced our case-study application, Hugh and
Dave's Online Wines. We use the winestore here to illustrate the basic principles and
practice of building commonly used web database components.

In this chapter, we introduce the basics of connecting to the MySQL DBMS with PHP.
We detail the key MySQL functions used to connect, query databases, and retrieve
result sets, and we present the five-step process for dynamically serving data from a
database. Queries that are driven by user input into an HTML <o rm> or through

clicking on hypertext links are the subject of Chapter 5.
We introduce the following techniques in this chapter:

 Using the five-step web database querying approach to develop database-
driven queries

e Coding a simple solution to produce HTML <pre> preformatted text
¢ Using the MySQLL library functions for querying databases

e Handling MySQL DBMS errors

e Producing formatted output with the HTML <t ab1e> environment

¢ Using include files to modularize database code

¢ Adding multiple queries to a script and consolidating the results into one HTML
presentation environment

* Performing simple calculations on database data

» Developing basic database-driven scripts incrementally and producing modular
code encapsulated in functions

Our case study in this chapter is the front-page panel from the winestore that shows
customers the Hot New Wines available at the winestore. The front page of the
winestore is shown in Figure 4-1, and the panel is the section of the page that
contains the list of the three newest wines that have been added to the database and
reviewed by a wine expert.

Figure 4-1. The front page of the winestore, showing the front page panel

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

We begin by introducing the basic principles of web database querying. Our first
examples use a simple approach to presenting result sets using the HTML <pre>
preformatted text tag. We then build on this approach and introduce result
presentation with the <t ab 1> environment. The panel itself is a complex case study,
and we follow its development as natural join queries are introduced, conditional
presentation of results included, and the HTML <t zb1<> environment used for more
attractive presentation. We focus on iterative development, starting simply and
progressively adding new functionality. The complete code for the front page of the

winestore application is presented in Chapter 11.

For completeness, we conclude this chapter with a brief overview of how other
DBMSs can be accessed and manipulated with PHP.

[ravous Poaxr v

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

4.1 Connecting to a MySQL Database

Chapter 1 introduced the three tiers of a web database application. In this chapter,
we begin to bring the tiers together by developing application logic in the middle tier.
We show the PHP scripting techniques to query the database tier and render HTML
in a client-tier web browser.

In this section, we present the basics of connecting to and querying the winestore
database using a simple query. The output is also simple: we use the HTML <pre>
tag to reproduce the results in the same format in which they are returned from the
database. The focus of this section is the DBMS interaction, not the presentation.
Presentation is the subject of much of the remainder of this chapter.

4.1.1 Opening and Using a Database Connection

In Chapter 3, we introduced the MySQL command interpreter. In PHP, there is no
consolidated interface. Instead, a set of library functions are provided for executing
SQL statements, as well as for managing result sets returned from queries, error
handling, and setting efficiency options. We overview these functions here and show
how they can be combined to access the MySQL DBMS.

Connecting to and querying a MySQL DBMS with PHP is a five-step process.
Example 4-1 shows a script that connects to the MySQL DBMS, uses the winestore
database, issues a query to select all the records from the wine table, and reports the
results as preformatted HTML text. The example illustrates six of the key functions for
connecting to and querying a MySQL database with PHP. Each function is prefixed
with the string mysql . We explain the function of this script in detail in this section.

Example 4-1. Connecting to a MySQL database with PHP

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<html>
<head>
<title>Wines</title>
</head>
<body><pre>
<?php
// (1) Open the database connection and use the winestore
// database
Sconnection = mysqgl connect ("localhost","fred", "shhh");

mysqgl select db("winestore", Sconnection) ;

// (2) Run the query on the winestore through the
// ~connection
$result = mysgl query ("SELECT * FROM

wine", S$connection);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

2>

// (3) While there are still rows 1in the result set,
// fetch the current row into the array S$row
while ($row = mysqgl fetch row(Sresult))

// (4) Print out each element in S$row, that 1is,
// print the values of the attributes
for ($i=0; $i<mysgl num fields (Sresult); S$i++)

echo Srow[$i] . ;

// Print a carriage return to neaten the output
echo "\n";

// (5) Close the database connection
mysqliclose($connection>;

</pre>
</body>
</html>

The five steps of querying a database are numbered in the comments in Example 4-
1, and they are as follows:

1.

Connect to the DBMS and use a database. Open a connection to the MySQL
DBMS using mysqgl connect (). There are three parameters: the hostname
of the DBMS server to use, a username, and a password. Once you connect,
you can select a database to use through the connection with the

mysgl select db() function. In this example, we select the winestore
database.

Let's assume here that MySQL is installed on the same server as the scripting
engine and therefore, we can use 1ocalhost as the hosthame.

The function mysgl connect () returns a connection handle. A handle is a
value that can be used to access the information associated with the
connection. As discussed in Step 2, running a query also returns a handle that
can access results.

To test this example—and all other examples in this book that connect to the
MySQL DBMS—replace the username fred and the password shhh with those
you selected when MySQL was installed following the instructions in Appendix
A. This should be the same username and password used throughout Chapter
3.

Run the query. Let's run the query on the winestore database using

mysgl query (). The function takes two parameters: the SQL query itself
and the DBMS connection to use. The connection parameter is the value
returned from the connection in the first step. The function mysal query ()
returns a result set handle resource; that is, a value that can retrieve the output
—the result set—of the query in Step 3.

3. Retrieve a row of results. The function mysql fetch row() retrieves one

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

row of the result set, taking only the result set handle from the second step as
the parameter. Each row is stored in an array s row, and the attribute values in
the array are extracted in Step 4. A whi 1< loop is used to retrieve rows until
there are no more rows to fetch. The function mysgl fetch row() returns
false when no more data is available.

Process the attribute values. For each retrieved row, a o loop is used to print
with an echo statement each of the attributes in the current row. Use
mysgl num fields () is used to return the number of attributes in the row;
that is, the number of elements in the array. For the wine table, there are six
attributes in each row: wine id, wine name, type, year,winery id,and
description.

The function mysgl num fields () takes as a parameter the result handle
from Step 2 and, in this example, returns 6 each time it is called. The data itself
is stored as elements of the array < row returned in Step 3. The element

srow[0] is the value of the first attribute (the wine id), Srow[1] isthe value
of the second attribute (the wine name), and so on.

The script prints each row on a line, separating each attribute with a single
space character. Each line is terminated with a carriage return using ccho "\n"
and Steps 3 and 4 are repeated.

Close the DBMS connection using mysgl close (), with the connection to be
closed as the parameter.

The first 10 wine rows produced by the script in Example 4-1 are shown in
Example 4-2. The results are shown marked up as HTML.

Example 4-2. Marked-up HTML output from the code shown in Example 4-1

<!DOCTYPE HTML PUBLIC

"-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">

<html>

<head>
<title>Wines</title>

</head>

<body><pre>

O ~J oy U W N

Archibald Sparkling 1997 1
Pattendon Fortified 1975 1
Lombardi Sweet 1985 2
Tonkin Sparkling 1984 2
Titshall White 1986 2
Serrong Red 1995 2
Mettaxus White 1996 2
Titshall Sweet 1987 3

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

9 Serrong Fortified 1981 3
10 Chester White 1999 3

</pre>
</body>
</html>

Other functions can be used to manipulate the database—in particular, to process
result sets differently—and we discuss these later in this chapter. However, the basic
principles and practice are shown in the six functions we have used. These key
functions are described in more detail in the next section.

4.1.2 Essential Functions for Accessing MySQL with PHP

resource mysql_connect([string host], [string username], [string password])

Establishes a connection to the MySQL DBMS. The function returns a
connection resource handle on success that can be used to access databases
through subsequent commands. Returns £ =1 s< on failure (error handling is
discussed later in this section).

The command has three optional parameters, all of which—host, username,
and password—are used in practice. The first permits not only the hostname,
but also an optional port number; the default port for MySQL is 3306 (ports are
discussed in more detail in Appendix B). However, when the DBMS runs on
the same machine as the PHP scripting engine and the web server—and you
have set up a database user that can access the DBMS from the local machine
—the first parameter need only be 1ocalhost.

In Example 4-1, the function call:

mysqgl connect ("localhost", "fred", "shhh")

connects to the MySQL DBMS on the local machine with the username fred and
a password of shhh. As discussed in the last section, you should replace these
with the username and password values you chose in Appendix A and used in
Chapter 3. If the connection is successful, the returned result is a connection
resource handle that should be stored in a variable for use as a parameter to
other MySQL functions.

This function needs to be called only once in a script, assuming you don't close
the connection (see mysqgl close (), laterin this section). Indeed,
subsequent calls to the function in the same script with the same parameters—
the same host, username, and password triple—don't return a new connection.
They return the same connection handle returned from the first successful call
to the function.

int mysql_select_db (string database, [resource connection])

Uses the specified database ona connection. In Example 4-1, the
database winestore is used on the connection returned from mysgl connect (
) . If the second parameter is omitted, the last connection opened is assumed,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

or an attempt is made to open a connection with mysgl connect () and no
parameters. We caution against omitting the connect i on parameter.

resource mysql_query(string SOL command, [resource connection))

Runs the SQL statement 507 command. In practice, the second argument isn't
optional and should be a connection handle returned from a call to

mysgl connect (). Thefunction mysgl query () returns a resource—a
result handle that can fetch the result set—on success, and 721 se on failure.

In Example 4-1, the function call:

$result=mysqgl query("SELECT * FROM wine", Sconnection)

runs the SQL query sen.ECcT * FrROM wine through the previously established
DBMS connection resource sconnection. The return value is assigned to
Sresult, aresult resource handle that is used as a parameter to

mysgl fetch row() toretrieve the data.

r— The query string passed to mysgl query () or

- mysgl unbuffered guery () doesn't need to be

" terminated with a semicolon; the latter function is discussed
later in this section.

If the second parameter to mysal query () is omitted, PHP tries to use any
open connection to the MySQL DBMS. If no connections are open, a call to
mysgl connect () with no parameters is issued. In practice, the second
parameter should be supplied.

array mysql_fetch_row(resource result set)

Fetches the result set data one row at a time by using as a parameter the result
handle result set that was returned from an earlier mysql query ()
function call. The results are returned as an array, and the elements of the array
can then be processed with a loop statement. The function returns ©21se when
Nno more rows are available.

In Example 4-1, a while loop repeatedly calls the function and fetches rows
into the array variable S row until there are no more rows available.

int mysql_num_fields(resource result set)

Returns the number of attributes associated with a result set handle
result set. The result set handle is returned from a prior call to

mysql query().

This function is used in Example 4-1 to determine how many elements to
process with the 7o r loop that prints the value of each attribute. In practice, the
function might be called only once per query and the returned result assigned to
a variable that can be used in the for loop. This is possible since all rows in a

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

result set have the same number of attributes. Avoiding repeated calls to DBMS
functions where possible is likely to improve performance.

The array function count () can also be used to count the number of
elements in an array.

int mysql_close([resource connection])

Closes a MySQL connection that was opened with mysgl connect (). The
connection parameter is optional. If it is omitted, the most recently opened
connection is closed.

As we discuss later, this function doesn't really need to be called to close a

connection opened with mysgl connect (), because all connections are
closed when a script terminates. Also, this function has no effect on persistent
connections opened with mysgl pconnect () ; these connections stay open

until they are unused for a specified period. We discuss persistent connections
in the next section.

The functions we have described are a contrasting approach for DBMS access to the
consolidated interface of the MySQL command line interpreter. mysg1 connect ()
and mysgl close () perform equivalent functions to running and quitting the
interpreter. The mysgl select db() function provides the use database
command, and mysgl query () permits an SQL statement to be executed. The
mysgl fetch row() andmysgl num fields () functions manually retrieve a
result set that's automatically output by the interpreter.

4.1.3 More MySQL Functions in PHP

Web database applications can be developed that use only the six functions we have
described. However, in many cases, additional functionality is required. For example,
database tables sometimes need to be created, information about database table
structure needs to be used in reporting or querying, and it is desirable to retrieve
specific rows in a result set without processing the complete dataset.

Additional functions for interacting with a MySQL DBMS using PHP are the subject of
this section. We have omitted functions that are used to report on insertions,
deletions, and updates. These are discussed in Chapter 6.

4.1.3.1 Frequently used functions

int mysql_data_seek(resource result set,int row)

This function retrieves only some results from a query. It allows retrieval from a
result set to begin at a row other than the first row. For example, executing the
function fora result set with a row parameter of 10, and then issuing a
mysgl fetch row(),mysgl fetch array(),oOr

mysgl fetch object (), retrieves the tenth row of the result set.

This function can reduce communications between the database and middle
tiers in an application.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The parameter result set is the result resource handle returned from
mysgl query (). The function returns ¢ rue on success and false on
failure.

array mysql_fetch_array(resource result set,[int result type))

This function is an extended version of mysgl fetch row() thatreturns
results into an associative array, permitting access to values in the array by their
table attribute names.

Consider an example query on the wine table using the mysgl query ()
function:

$result=mysqgl query ("SELECT * FROM wine", S$connection)
A row can then be retrieved into the array < row using:
srow=mysql fetch array(Sresult)

After retrieving the row, elements of the array < row can be accessed by their
attribute names in the wine table. For example, echo Srow["wine name"]
prints the value of the wine name attribute from the retrieved row. Attributes
can also be accessed by their element numbers. For example, echo Srow[1]
also works.

There are three tricks to using mysgl fetch array():

e Even though an attribute might be referenced as customer . name in the
sELECT statement, it must be referenced as Srow ["name™] in the
associative array; this is a good reason to design databases so that
attribute names are unique across tables. If attribute names are not
unique, aliases can be used in the sE1.ECT statement; we discuss this
later in this chapter.

e Aggregates fetched with mysql fetch array()—for example,
SUM (cost)—are associatively referenced as Srow ["SUM (cost) "],

e NULT values are ignored when creating the returned array. This has no
effect on associative access to the array but can change the numbering of
the array elements for numeric access.

The second parameter to mysqgl fetch array(), result type, controls
whether associative access, numeric access, or both are possible on the
returned array. Because the defaultis vvso1. BoTH, there is no reason to
supply or change the parameter.

object mysql_fetch_object(resource result set,[int result type])

This function is another alternative for returning results from a query. It returns
an object that contains one row of results associated with the resuit set
handle, permitting access to values in an object by their table attribute names.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

For example, after a query to se1.ECcT * from wine, a row can be retrieved
into the object sobject using:

$object =mysqgl fetch object ($Sresult)

The attributes can then be accessed in sobject by their attribute names. For
example:

echo $Sobject->wine name

prints the value of the wine name attribute from the retrieved row. Attributes
can also be accessed by their element numbers. For example, ccho
Sobject->1 also works.

The second parameter to mysqgl fetch object () controls whether
associative access, numeric access, or both are possible on the returned array.
The defaultis Mysorn BOTH, but MysOL Assoc and MYsQOL NUM can also be
specified.

int mysql_free_result(resource result set)

This function frees the resources associated with a result set handle. This
process happens when a script terminates, so the function need be called only if
repeated querying is performed in one script and MySQL memory use is a
concern.

int mysql_num_rows(resource result set)

This function returns the number of rows associated with the resulc set
query result resource handle. This function works only for sET.ECT queries;
queries that modify a database should use mysgl affected rows (), which

is discussed in Chapter 6.

If the number of rows in a table is required but not the data itself, it is more
efficient to run an SQL query of the form SELECT count (*) FROM table
and retrieve the result, rather than running se1.ECcT * FrROM table and then
using mysgl num rows () to determine the number of rows in the table.

resource mysql_pconnect([string host:port], [string user], [string password])

This function is a performance-oriented alternative to mysql connect () that
reuses open connections to the MySQL DBMS. The p inmysgl pconnect ()
stands for persistent, meaning that a connection to the DBMS stays open after a
script terminates. Open connections are maintained as a pool that is available to
PHP. When acallto mysgl pconnect () is made, a pooled connection is
used in preference to creating a new connection. Using pooled connections
saves the costs of opening and closing connections.

i Whether persistency is faster in practice depends on the
o server configuration and the application. However, in
: general, for web database applications with many users

=

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Funning on a server with plehfy of main memory,'
persistency is likely to improve performance.

This function need be called only once in a script. Subsequent calls to

mysgl pconnect () inany script—with the same parameters—check the
connection pool for an available connection. If no connections are available, a
new connection is opened.

The function takes the same parameters and returns the same results as its
non-persistent sibling mysgl connect (). It returns a connection resource
handle on success that can access databases through subsequent commands;
it returns £21se on failure. The command has the same three optional
parameters as mysqgl connect ().

~=— A connection opened with mysgl pconnect () can'tbe

- closed with mysgl close (). It stays open until unused for
" a period of time. The timeout is a MySQL DBMS parameter
—not a PHP parameter—and is set by default to five
seconds; it can be adjusted with a command-line option to
the MySQL DBMS script safe mysqgld. For example, to set
the timeout to 10 seconds:

safe mysgld --set-variable connect timeout=10

resource mysql_unbuffered_query(string query, [resource connection])

This function is available only in PHP 4.0.6 or later. The function executes a
query without retrieving and buffering the result set. This is useful for queries
that return large result sets or that are slow to execute. The advantage is that no
resources are required to store a large result set, and the function returns
before the SQL query is complete. In contrast, the function mysgl query ()
doesn't return until the query is complete and the results have been buffered for
subsequent retrieval.

The disadvantage of mysgl unbuffered query() isthat
mysgl num rows () can't be called for the result resource handle, because
the number of rows returned from the query isn't known.

The function is otherwise identical to mysql query().
4.1.3.2 Other functions

int mysqgl_change_user(string user, string password, [string database,
[resource connection]])

Changes the logged-in MySQL user to another use r, using that user's
password for an optionally specified database and connection. If omitted,
the current database and most recently opened connection are assumed.
Returns 721 se on failure and, if it does fail, the previous, successful connection

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

stays current.

int mysql_create_db(string db, [resource connection])

Creates a database named b using the connect ion resource returned from a
mysgl connect () function call or the last-opened connection if the
parameter is omitted.

int mysql_drop_db(string db, [resource connection])

Drops a database named b using the connection resource returned from a
mysgl connect () function call or the last-opened connection if the
parameter is omitted.

object mysql_fetch_field(resource result set,[int attribute number])

Returns as an object the metadata for each attribute associated with a
result set resource returned from a query function call. An optional
attribute number can be specified to retrieve the metadata associated with
a specific attribute. However, repeated calls process the attributes one by one.

The properties of the o ect returned by the function are:
name

The attribute name
table

The name of the table that the attribute belongs to
max_length

The maximum length of the attribute
not_null

Set to 1 if the attribute can't be nULL
primary_key

Set to 1 if the attribute forms part of a primary key
unique_key

Set to 1 if the attribute is a unique key
multiple_key

Set to 1 if the attribute is a nonunique key
numeric

Set to 1 if the attribute is a numeric type

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

blob

Set to 1 if the attribute is a .05 type
type

The type of the attribute
unsigned

Set to 1 if the attribute is an unsigned numeric type
zerofill

Set to 1 if the numeric column is zero-filled

Example 4-3 is a script that uses the mysql fetch field () function to
emulate most of the behavior of the sHow corLuMNs or DESCRIBE commands
discussed in Chapter 3. The code uses the same five-step query process
discussed earlier, with the exception that mysgl fetch field() isusedin
place of mysgl fetch row().Sample output for the table wine is shown in
Example 4-4. The same result could have been achieved by executing
DESCRIBE WINE on the winestore database using mysgl query () and
retrieving the results with mysgl fetch object ().

This function also has other uses. For example, it can be used in validation—the
subject of Chapter 7—to check whether the data entered by a user is longer
than the maximum length of the database attribute. Indeed, a script can be
developed that automatically performs basic validation based on the table
structure.

Example 4-3. Using mysql_fetch_field() to describe the structure of a table

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<html>
<head>
<title>Wine Table Structure</title>
</head>
<body><pre>
<?php
// Open a connection to the DBMS
Sconnection = mysqgl connect ("localhost","fred", "shhh");

mysqgl select db("winestore", Sconnection);

// Run a query on the wine table in the

// winestore database to retrieve one row

$result = mysgl query ("SELECT * FROM wine LIMIT 1",
Sconnection) ;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

// Output a header, with headers spaced by padding
print str pad("Field", 20)

str pad("Type", 14)

str pad("Null", ©6)

str pad("Key", 5)

str pad("Extra", 12) . "\n";

// for each of the attributes in the result set
for ($i=0;$i<mysqgl num fields ($result);$i++)

{
// Get the meta-data for the attribute

$info = mysgl fetch field (Sresult);

// Print the attribute name
print str pad($info->name, 20);

// Print the data type
print str pad($info->type, 6);

// Print a " (", the field length, and a ")" e.qg.
print str pad(" (" . S$info->max length . ")", 8)

// Print out YES i1f attribute can be NULL

if (Sinfo->not null != 1)
print " YES ";

else
print " "

// Print out selected index information

if (Sinfo->primary key == 1)
print " PRI ";

elseif ($info->multiple key == 1)
print " MUL ";

elseif ($info->unique key == 1)

print " UNI ";

// If zero-filled, print this
if (Sinfo->zerofill)
print " Zero filled";

// Start a new line
print "\n";

}

// Close the database connection
mysgl close (Sconnection);

2>

</pre>

</body>

</html>

Example 4-4. HTML output of the DESCRIBE WINE emulation script in Example 4-1

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">

<html>
<head>

<title>Wine Table Structure</title>
</head>
<body><pre>
Field Type Null Key Extra
wine id int (1) PRI
wine name string (9) MUL
type string (9)
year int (4)
winery id int (1) MUL
description blob (0) YES
</pre>
</body>
</html>

resource mysql_list_tables(string database, [resource connection])

Returns a result set resource handle that can be used as input to

mysgl tablename () to listthe names of tables in a database accessed
through a connection. Ifthe connection is omitted, the last-opened
connection is assumed.

string mysql_tablename(resource result,int table number)

Used in combination with mysg1 1ist tables() to produce a list of tables
in a database. Returns the name of the table indexed by the numeric value
table number using a result resource returned from the
mysgl list tables() function.

The number of tables in a database can be determined by calling
mysgl num rows () withthe result resource handle returned from
mysgl list tables() as a parameter.

4.1.3.3 Functions to avoid

Several MySQL functions shouldn't be used in practice:

e The functions of mysql fetch field() are also available in the non-object-
based alternatives mysqgl fetch length(),mysgl field flags(),
mysgl field name(),mysqgl field len(),mysgl field table(
),andmysgl field type();as these functions are almost a complete
subsetof mysgl fetch field(), we don'tdescribe them here.

e The function mysql result () is a slower alternative to fetching and
processing a row with mysgl fetch row() Ofrmysgl fetch array()
and shouldn't be used in practice.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

enmysgl fetch assoc() fetches arow of results as an associative array only,

providing half the functionality of mysgl fetch array (). The other half—
fetching into an array accessed by numeric index—is provided by
mysgl fetch row().Sincemysgl fetch array() provides both sets

of functionality—or can provide the same functionality by passing through
MYSOL AssOC as the second parameter—it should be used instead.

enmysgl field seek() can seek to a specific field for a subsequent call to
mysgl fetch field(), butthisis redundant because the field number can
be supplied directly to mysgl fetch field() asthe optional second
parameter.

enysgl db query() combines the functionality of mysgl select db()
and mysgl guery (). This function has been deprecated in recent releases
of PHP.

4.1.4 Error Handling of MySQL Database Functions

Database functions can fail. There are several possible classes of failure, ranging
from critical—the DBMS is inaccessible or a fixed parameter is incorrect to
recoverable, such as a password being entered incorrectly by the user.

The PHP interface functions to MySQL support two error-handling functions for
detecting and reporting errors:

int mysql_errno(resource connection)
Returns the error number of the last error on the connect ion resource
string mysql_error(resource connection)

Returns a descriptive string of the last error on the connection resource

Example 4-5 shows the script illustrated earlier in Example 4-1 with additional

error handling. We have deliberately included an error where the name of the
database winestore is misspelled as "winestor". The error handler is a function,
showerror (), that—with the database name error—prints a phrase in the format:

Error 1049 : Unknown database 'winestor'

The error message shows both the numeric output of mysgl errorno() andthe
string output of mysg1 error(). The die () function outputs the message and
then gracefully ends the script.

‘5 The functions my=gl query () and
mysgl unbuffered query() return £alse only on failure;

that is, when a query is incorrectly formed and can't be executed.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

A query that executes but returns no results still returns a result
resource handle. However, a subsequent call to
mysgl num rows () reports no rows in the result set.

The mysgl connect() andmysgl pconnect () functions
don't set either the error number or error string on failure and so
must be handled manually. This custom handling can be
implemented with a die () function call and an appropriate text

message, as in Example 4-5.

Example 4-5. Querying a database with error handling

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">

<html>

<head>

<title>Wines</title>

</head>

<body><pre>

<?php

function showerror ()
{

die ("Error mysgl errno () . " ¢ " . mysgl error(

// (1) Open the database connection
if (! (Sconnection = @ mysgl connect ("localhost",
"fred", "shhh")))
die ("Could not connect");

// NOTE : 'winestore' is deliberately misspelt to

// cause an error

if (! (mysgl select db("winestor", Sconnection)))
showerror () ;

// (2) Run the query on the winestore through the
// connection
if (! (Sresult = @ mysgl query ("SELECT * FROM wine",
Sconnection)))
showerror () ;

// (3) While there are still rows 1in the result set,
// fetch the current row into the array S$Srow
while (Srow = mysqgl fetch row(Sresult))
{
// (4) Print out each element in S$row, that 1is,
// print the values of the attributes
for ($i=0; $i<mysgl num fields (Sresult); Si++)
echo Srow[$i] . " ";

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

// Print a carriage return to neaten the output
echo "\n";
}
// (5) Close the database connection
if (!mysgl close(Sconnection))
showerror (),
>
</pre>
</body>
</html>

The MySQL error-handling functions should be used with the ¢ operator that
suppresses default output of error messages by the PHP script engine. Omitting the «©
operator produces messages that contain both the custom error message and the
default error message produced by PHP. Consider an example where the string
localhost is misspelled, and the @ operator is omitted:

if (! (Sconnection = mysqgl connect ("localhos",
"fred", :"Shhh")))
die ("Could not connect");

This fragment outputs the following error message that includes both the PHP error
and the custom error message:

Warning: MySQL Connection Failed: Unknown MySQL Server
Host 'localhos' (0) in Example 4-5.php on line 42

Could not connect

Don't forget to add an © operator as the prefix to any function call
«: | thatis handled manually with a custom error handler. The ¢

* operator prevents PHP from issuing its own internal error
message.

[Crevnous Poaxr v

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

4.2 Formatting Results

So far in this chapter we have shown the basic techniques for connecting to and
querying a MySQL DBMS using PHP. In this section, we extend this to produce
results with embedded HTML that have both better structure and presentation.

Let's consider an example that presents results in an HTML <tzb1 <> environment.
Example 4-6 shows a script to query the winestore database and present the details
of wines. Previously, in Example 4-5, the details of wines were displayed by
wrapping the output in HTML <pre> tags. The script in Example 4-6 uses the
function displayiines () to present the results as an HTML <tzb1e>. The main
body of the script has a similar structure to previous examples, with the exceptions
that the query is stored in a variable, and the username, password, and the
showerror () function are stored in separate files and included in the script with
the include directive. We introduced the inc1ude directive in Chapter 2 and
discuss it in more detail later in this section.

The displaywines () function first outputs a <t =b1e> tag, followed by a table row
<t r> tag with six <th> header tags and descriptions matching the six attributes of
the wine table. We could have output these using mysgl fetch field() to
return the attribute names rather than hardcoding the heading names. However, in
most cases, the headers are hardcoded because attribute names are less meaningful
to users than manually constructed textual descriptions.

Example 4-6. Producing simple <table> output with MySQL

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<html>
<head>
<title>Wines</title>
</head>
<body>
<?php
include 'error.inc';
include 'db.inc';

// Show the wines in an HTML <table>
function displayWines (Sresult)

{
echo "<hl>Our Wines</hl>\n";

// Start a table, with column headers

echo "\n<table>\n<tr>\n"
"\n\t<th>Wine ID</th>"
"\n\t<th>Wine Name</th>"
"\n\t<th>Type</th>"

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

"\n\t<th>Year</th>"
"\n\t<th>Winery ID</th>"
"\n\t<th>Description</th>"
"\n</tr>";

// Until there are no rows in the result set,
// fetch a row into the S$Srow array and
while (Srow = @ mysqgl fetch row(Sresult))
{
// ... start a TABLE row
echo "\n<tr>";

// ... and print out each of the attributes

// in that row as a separate TD (Table Data).

foreach (Srow as S$data)
echo "\n\t<td> $data </td>";

// Finish the row
echo "\n</tr>";
}

// Then, finish the table
echo "\n</table>\n";
}

Squery = "SELECT * FROM wine";

// Connect to the MySQL server
if (! ($connection = @ mysgl connect (Shostname,
Susername,
Spassword)))
die ("Cannot connect");

if (! (mysgl select db("winestore", S$Sconnection)))
showerror () ;

// Run the query on the connection

if (! (Sresult = @ mysgl query (Squery, $connection)))

showerror ()

// Display the results
displayWines (Sresult) ;

// Close the connection
if (! (mysgl close(Sconnection)))
showerror () ;
>
</body>
</html>

After producing the HTML <tab1e> opentag,the displaywines () function
retrieves the rows in the result set, showing each row as a separate <t2b1e> row
using the <t r> tag. Each attribute value for each wine—where the attributes match
the headings—is displayed within the row as <t zb1e> data using the <t d> tag.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Carriage returns and tab characters are used to lay out the HTML for readability; this
has no effect on the presentation of the rendering of the document by a web browser,
but it makes the HTML much more readable if the user views the HTML source.

The results of using a <t ab1e> environment instead of <pre> tags are more
structured and more visually pleasing. The output in a Netscape browser is shown in

Figure 4-2, along with a window showing part of the HTML source generated by the
script.

Figure 4-2. Presenting wines from the winestore in an HTML <table> environment

4.2.1 Using Include Files in Practice

Example 4-7 and Example 4-8 show the two files included with the i nc1ude
directive in Example 4-6. As discussed in Chapter 2, the inc1ude directive allows

common functions in other files to be accessible from within the body of a script
without directly adding the functions to the code.

Example 4-7. The db.inc include file

<?
ShostName = "localhost";
SdatabaseName = "winestore";
Susername = "fred";
Spassword = "shhh";

2>

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Example 4-8. The error.inc include file

<?
function showerror ()
{
die ("Error " . mysqgl errno() . " ¢ " . mysgl error()) ;

}

2>

Both include files are added to all code developed for the winestore and allow easy
adjustment of the database server name, database name, and DBMS username and
password. The flexibility to adjust these parameters in a central location allows testing
of the system on a backup or remote copy of the data, by changing the database
name or hostname in one file. This approach also allows the use of different
username and password combinations with different privileges, for testing purposes.

We have chosen to name our include files with the .inc extension. This presents a
minor security problem. If the user requests the include file, the source of the include
file is shown in the browser. This may expose the username and password for the
DBMS, the source code, the database structure, and other details that should be
secure.

There are three ways to address this problem. First, you can store the include files
outside the document tree of the Apache web server installation. For example, store
the include files in the directory /usr/local/include/php and use the complete path in
the include directive. Second, you can use the extension .php instead of .inc. In this
case, the include file is processed by the PHP script engine and produces no output
because it contains no main body. Third, you can configure Apache so that files with
the extension .inc are forbidden to be retrieved.

All three approaches to securing include files work effectively in practice. Using the
extension .php for include files is the simplest solution but has the disadvantage that
includes files can't be easily distinguished from other files. In the online winestore, we
have configured Apache to disallow retrieval of files with the extension .inc.

T

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

4.3 Case Study: The Front-Page Panel

In this section, we show how to engineer a front-page panel—we call this the panel.
The completed panel was shown in Figure 4-1. We use the techniques discussed so
far in this chapter to present more attractive HTML <t ab1 <> formatted results, to
process multiple query results, and to customize the output based on the data
retrieved. No significant new concepts are introduced in the case study.

The panel case study is a progressive development of a script to display the details of
new wines. We show the following details in the panel:

« Information about the three wines most recently added to the database,
including the vintage year, the winery, the wine name, and the varieties

e The review written by a wine writer

e How much a bottle costs, how much a case of a dozen bottles costs, and any
per-bottle discount users receive if they purchase a case

To achieve the outcome of a functional and attractive panel, you need to query the
wine, winery, inventory, grape_variety, and wine_variety tables. You also need to use
the structure of the HTML <t z2b1e> environment to achieve distinct presentation of
the three components—the details, the review, and the price—of each newly added
wine. Last, you need some mathematics to calculate any savings for buying a case
and present these savings to the user.

The panel component developed in this chapter is the basis of the front page of our
online winestore. However, shopping cart features that are not discussed in detail
here have been added to the production version shown in Figure 4-1. The finalized
code that includes the shopping-cart functionality is discussed further in Chapter 5,
and the completed code is presented in Chapter 11.

In engineering the panel, we use the following techniques:

¢ Querying with the MySQL proprietary 1.1 1T modifier

« Using SQL table aliases in querying

¢ Using the HTML <t ab1e> environment as a presentation tool

¢ Producing consolidated HTML output from multiple SQL queries

¢ Presenting data based on calculations

e Using MySQL functions—especially mysql fetch array()—in practice
Script development is an iterative process of adding features. It is almost always
easier to start with the skeleton of a component and progressively add functionality to

achieve the final goal. The Web is particularly good for this: a click on the Refresh or
Reload buttons in a web browser tests a script, without the need for compilation or

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

processing of other components of the system. Moreover, PHP is good at reporting
errors to the browser, and the HTML output can easily be viewed. In most browsers,
right-clicking on the HTML document in the web browser window offers the option to
view the HTML source.

4.3.1 Step 1: Producing Visually Appealing Tables

Example 4-9 shows a script that is the first step in producing the panel. Not
surprisingly, the script combines the same querying process described earlier with an
HTML <tab1e> environment to wrap the output. The output is more attractive than in

previous examples and the output in a Netscape browser is shown in Figure 4-3.

Figure 4-3. The first step in producing a front-page panel that shows more attractive
presentation

The basis of the script is a moderately complex SQL query that uses table aliases
and the 1.1 1T operator:

SELECT wi.winery name,
i.cost,

i.case cost,

w.year,

w.wine name,

w.description

FROM wine w, winery wi, inventory 1
WHERE w.description != ""

AND w.winery id = wi.winery 1id

AND w.wine id = i.wine 1id

ORDER BY i.date added DESC LIMIT 3;

The table aliases allow the query to be written concisely. For example, the inventory
table can be referenced throughout the query by the single character i.

The query returns one row for each inventory of a wine. If a wine has multiple
inventories, the wine appears multiple times. The query also outputs the wine's
winery name, the vintage attribute year, the wine name, and a descriptive review,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

description. The WHERE clause ensures that only reviewed wines—those with a
description thatisn't empty—are returned. The wHERE clause also implements a
natural join with the wine table using the primary keys of the winery and inventory
tables.

The orDER BY clause in the SQL query uses the Drsc modifier. The date added
isn't an attribute of the wine, it is a value from the latest-added inventory, and the
LIMIT 3 ensures only the three latest-added inventories are retrieved.

The include files error.inc and db.inc are included in the script, as discussed in the
last section.

Example 4-9. A script to display the three newest wines added to the winestore

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.0org/TR/html4/loose.dtd">

<html>

<head>

<title>Hugh and Dave's Online Wines</title>
</head>
<body bgcolor="white">

<hl>New Wines</hl>
Here are three top new wines we have in stock

<?php
include 'db.inc';
include 'error.inc';

$query = "SELECT wi.winery name,
i.cost,
i.case cost,
w.year,
w.wine name,
w.description
FROM wine w, winery wi, inventory 1
WHERE w.description != \"\"
AND w.winery id = wi.winery id
AND w.wine id = i.wine id
ORDER BY i.date added DESC LIMIT 3";

// Open a connection to the DBMS
if (! (Sconnection = @ mysqgl connect (ShostName,
Susername,
Spassword)))
die ("Could not connect to database");

if (!mysgl select db(S$databaseName, Sconnection))
showerror ()

// Run the query created above on the database through
// the connection

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

if (! (Sresult = @ mysgl query (Squery, $connection)))
showerror () ;

echo "\n<table border=\"0\">";

// Process the three new wines
while (Srow = @ mysqgl fetch array(Sresult))
{
// Print a heading for the wine
echo "\n<tr>\n\t<td bgcolor=\"maroon\">"
""
Srow["year"] "o
$row["winery name"]
$row["wine name"] . " " .
"</td>\n</tr>";

// Print the wine review

echo "\n<tr>\n\t<td bgcolor=\"silver\">"
"Review: "
Srow["description"]
"</td>\n</tr>";

// Print the pricing information

echo "\n<tr>\n\t<td bgcolor=\"gray\">"
"Our price: "
Srow["cost"]
o, $row["case_cost"] . " a dozen)"
"</td>\n</tr>";

// Blank row for presentation
echo "\n<tr>\n\t<td></td>\n</tr>";

echo "\n</table>\n";

if (!mysgl close(Sconnection))
showerror ()
>
</body>
</html>

Besides the moderately complex SQL query, Example 4-9 is only slightly more
sophisticated than the examples in previous sections. The code to produce the
<table>isn't complex butis a little less readable because:

¢ The information for each wine is represented over three table rows using three
<tr> tags.

« Different background colors for the single <t d> element are set in each table
row <t r>; the colors are maroon, silver, and gray.

¢ The color attribute of the tag is set to white for the heading of each
wine.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

e The bold tag is used for pricing information.
* A blank row between wines is used for spacing in the presentation.

emysgl fetch array() isused to retrieve rows. This has the advantage that
the elements of the s row array can be referenced by attribute name. The
resultant code is more readable and more query-independent than if
mysgl fetch row() isused.

Manipulating presentation by using structure is, unfortunately, part of working with
HTML.

4.3.1.1 Limitations of Step 1

This code is an incomplete solution to the aims we described in the introduction to the
case study. Three particular limitations are:

¢ The varieties of the wines are not shown. For example, you can't tell that the
first-listed Binns Hill Vineyard Morfooney is a Cabernet Sauvignon variety.

* The user expects that the dozen price represents a per-bottle saving over
purchasing bottles in smaller quantities. However, the front panel doesn't show
the saving, and the user needs a calculator to decide whether a dozen bottles is
worth the discount.

¢ The first-listed wine appears twice. There are two inventory entries for the same
wine, and the query has returned two rows for that same wine, with the only
difference being the prices.

Another explanation for a double appearance could be that there are two wines
with the same review and year, but with different grape_varieties. This is very
unlikely and isn't the case here.

We improve the panel progressively in the next section to address these limitations,
while also adding new features.

4.3.2 Step 2: Adding Varieties to the Panel

To add varieties to the panel, you need two SQL queries in a single script. This next
step adds an additional query to find the varieties of a wine, and the consolidated
varieties are presented together with the vintage, winery, and wine name.

The second addition to the panel in this step is the calculation and conditional display
of results. We introduce a new feature to the panel that calculates the savings in
buying a dozen bottles and shows the user the per-bottle saving of buying a case of
wine, but only when there is such a saving. We don't deal with the situation where a
case costs more than 12 single purchases.

The script showing these two new concepts is in Example 4-10. The script improves
on Example 4-9 by removing the first two limitations identified in the last section.

The output of Example 4-10 is shown in Figure 4-4.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 4-4. Adding wine varieties and discounts to the panel

Example 4-10. An improved display with varieties and the dozen-bottle discount

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">

<html>

<head>

<title>Hugh and Dave's Online Wines</title>
</head>
<body bgcolor="white">

<hl>New Wines</hl>
Here are three top new wines we have in stock

<?php
include 'db.inc';
include 'error.inc';

// Print out the varieties for a winelID
function showVarieties (Sconnection, S$SwinelID)
{

// Find the varieties of the current wine,

// and order them by id

Squery = "SELECT gv.variety

FROM grape variety gv,
wine variety wv, wine w

WHERE w.wine id = wv.wine_ id
AND wv.variety id = gv.variety id
AND w.wine id = SwineID

ORDER BY wv.id";

// Run the query
if (! (Sresult = @ mysgl query($query, S$Sconnection)))
showerror ();

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

// Retrieve the varieties

while (Srow = @ mysqgl fetch array(Sresult))
// ... and print each one
echo " " . Srow["variety"];

$query = "SELECT wi.winery name,
i.cost,
.case _cost,
.year,
.wine name,
.description,
w.wine id
FROM wine w, winery wi, inventory 1
WHERE w.description != \"\"
AND w.winery id = wi.winery id
AND w.wine id = i.wine id
ORDER BY i.date added DESC LIMIT 3";

5 = = B K

// Open a connection to the DBMS
if (! (S$connection = @ mysgl connect (ShostName,
Susername,
Spassword)))
die ("Could not connect to database");

if (!mysgl select db(S$databaseName, Sconnection))
showerror ();

// Run the query created above on the database through

// the connection

if (! ($result = @ mysgl gquery ($Squery, $connection)))
showerror () ;

echo "\n<table border=\"0\">";
// Process the three new wines
while (Srow = @ mysqgl fetch array(Sresult))
{
// Print a heading for the wine
echo "\n<tr>\n\t<td bgcolor=\"maroon\">"
""
Srow["year"] . " "
Srow["winery name"]
$row["wine name"] . " ";

A\ A\

// Print the varieties for this wine
showVarieties (Sconnection, Srow["wine id"]);

echo "</td>\n</tr>";

// Print the wine review
echo "\n<tr>\n\t<td bgcolor=\"silver\">"

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

"Review: "
Srow["description"]
"</td>\n</tr>";

// Print the pricing information

echo "\n<tr>\n\t<td bgcolor=\"gray\">"
"Our price: "
Srow["cost"]
L L $row[”caseicost”] . " a dozen)";

// Calculate the saving for 12 or more bottle
$dozen saving = Srow["cost"] - (Srow["case cost"]/12);

// If there's a saving, show what it is
if ($dozen saving > 0)
printf (" Save %.2f per bottle when
buying a dozen\n", $dozen saving);

echo "</td>\n</tr>";

// Blank row for presentation
echo "\n<tr>\n\t<td></td>\n</tr>";
}

echo "\n</table>\n";

if (!mysgl close($connection))
showerror ()
>
</body>
</html>

4.3.2.1 Adding a second or subsequent query

Often one query isn't enough to gather all the information required for a report or
component in a web database application. The panel is a good example: it is difficult
to formulate a single query that can retrieve the wine details (wine name, year, and
description),the winery name, the inventory data (cost and case cost), and
the varieties (from the wine_variety and grape_variety tables).

It is possible to write a single query, but the query needs post-processing to remove
duplicate information before presentation. A natural join of wine, winery, inventory,
wine_variety, and grape_variety produces one row per variety of each wine. So, for
example, a Cabernet Merlot variety wine is two rows in the output, one row for
Cabernet and one row for Merlot. The post-processing involves c