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Preface
During the eight years since the publication of the first edition of Computer Graphics for Java Programmers, the programming
language Java has increasingly become the language of choice in many industrial and business domains. Hence the skills for
developing computer graphics applications using Java have been highly in demand but are surprisingly lacking in the computer
science curricula. Meanwhile, for the past five years the second author has been teaching Computer Graphics at his current
university using the first edition of this textbook, and felt that there was a need to update the book. We therefore decided to jointly
write this second edition.

This edition continues the main theme of the first edition, that is, graphics programming in Java, with plenty of source code
available to the reader. The new edition has, however, been updated as follows:

1. The contents of some chapters have been updated, as a result of the authors' years of classroom experience
and recent feedback from our students.

2. An instructor's manual has been created to include lecture slides and answers to exercise questions.

3. Chapter 8 has been replaced by a new chapter covering the topic of fractals.

4. A beta version of a companion software package has been added, which demonstrates the working of different
algorithms and concepts introduced in the book.

5. More illustrative examples have been included in several chapters and various minor errors in the first edition
have been corrected.

Over the past few years, Java has evolved into more powerful programming environments. The most notable development related
to computer graphics is its support for 3D graphics. Many application examples illustrated in this book could be readily
implemented using Java 3D without any understanding of the internal working of the implementation, which we consider
undesirable for computer science students. We therefore believe that this textbook continues to serve as an indispensable
introduction to the foundation of computer graphics, on which many application program interfaces (APIs) and graphics libraries
could be developed, and more importantly, how they are developed.

As in the first edition, the example programs can again be downloaded from the Internet at:
http://home.planet.nl/~ammeraal

or at:
http://www.utdallas.edu/~kzhang/BookCG/

In writing this second edition, several people need to be acknowledged for their direct or indirect contributions. We would first like
to thank the UT-Dallas graduate students Bill Fahle, Andy Restrepo, Janis Schubert, and Subramanya Suresh, who contributed to
different parts of the demonstration software. In particular, we appreciate the great effort of Janis Schubert in developing and
integrating different parts of the software while striving to maintain the same look and feel of the user interfaces. Finally, we thank
Jonathan Shipley of John Wiley and Sons for his enthusiastic support and assistance in publishing this edition.

Leen Ammeraal, The Netherlands
l.ammeraal@hccnet.nl

Kang Zhang, USA
kzhang@utdallas.edu
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Chapter 1: Elementary Concepts

This book is primarily about graphics programming and mathematics. Rather than discussing general graphics subjects for
end users or how to use graphics software, we will deal with more fundamental subjects, required for graphics programming.
In this chapter, we will first understand and appreciate the nature of discreteness of displayed graphics on computer screens.
We will then see that x- and y- coordinates need not necessarily be pixel numbers, also known as device coordinates. In
many applications logical coordinates are more convenient, provided we can convert them to device coordinates. Especially
with input from a mouse, we also need the inverse conversion, as we will see at the end of this chapter.

1.1 LINES, COORDINATES AND PIXELS
The most convenient way of specifying a line segment on a computer screen is by providing the coordinates of its two endpoints.
In mathematics, coordinates are real numbers, but primitive line-drawing routines may require these to be integers. This is the
case, for example, in the Java language, which we will use in this book. The Java Abstract Windows Toolkit (AWT) provides the
class Graphics containing the method drawLine, which we use as follows to draw the line segment connecting A and B:
g.drawLine(xA, yA, xB, yB);

The graphics context g in front of the method is normally supplied as a parameter of the paint method we are using, and the four
arguments of drawLine are integers, ranging from zero to some maximum value. The above call to drawLine produces exactly the
same line as this one:
g.drawLine(xB, yB, xA, yA);

We will now use statements such as the above one in a complete Java program. Fortunately, you need not type these programs
yourself, since they are available from the Internet, as specified in the Preface. It will also be necessary to install the Java
Development Kit (JDK), which you can also download, using the following Web page:
http://java.sun.com/

If you are not yet familiar with Java, you should consult other books, such as some mentioned in the Bibliography, besides this
one.

The following program draws the largest possible rectangle in a canvas. The color red is used to distinguish this rectangle from the
frame border:
// RedRect.java: The largest possible rectangle in red.
import java.awt.*;
import java.awt.event.*;

public class RedRect extends Frame
{  public static void main(String[] args){new RedRect();}

   RedRect()
   { super("RedRect");
     addWindowListener(new WindowAdapter()
     {public void windowClosing(WindowEvent e){System.exit(0);}});
    setSize (200, 100);
    add("Center", new CvRedRect());
    show();

 }

}

class CvRedRect extends Canvas
{ public void paint(Graphics g)
  { Dimension d = getSize();
    int maxX = d.width - 1, maxY = d.height - 1;
    g.drawString("d.width ="+d.width, 10, 30);
    g.drawString("d.height = " + d.height, 10, 60);
    g.setColor(Color.red);
    g.drawRect(0, 0, maxX, maxY);
  }
}

The call to drawRect almost at the end of this program has the same effect as these four lines:
g.drawLine(0, 0, maxX, 0);        // Top edge
g.drawLine(maxX, 0, maxX, maxY);  // Right edge
g.drawLine(maxX, maxY, 0, maxY);  // Bottom edge
g.drawLine(0, maxY, 0, 0);        // Left edge

The program contains two classes:
RedRect: The class for the frame, also used to close the application.

CvRedRect: The class for the canvas, in which we display graphics output.

However, after compiling the program by entering the command
javac RedRect.java
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javac RedRect.java

we notice that three class files have been generated: RedRect.class, CvRe- dRect.class and RedRect$1.class. The third one is
referred to as an anonymous class since it has no name in the program. It is produced by the two program lines
addWindowListener(new WindowAdapter()
   {public void windowClosing(WindowEvent e){System.exit(0);}});

which enable the user of the program to terminate it in the normal way. We could have written the same program code as
addWindowListener
( new WindowAdapter()
  {  public void windowClosing(WindowEvent e)
    {  System.exit(0);
    }
  }
);

to show more clearly the structure of this fragment. The argument of the method addWindowListener must be an object of a class
that implements the interface WindowListener. This implies that this class must define seven methods, one of which is
windowClosing. The base class WindowAdapter defines these seven methods as do-nothing functions. In the above fragment, the
argument of addWindowListener denotes an object of an anonymous subclass of WindowAdapter. In this subclass we override
the method windowClosing. A further discussion of this compact program code for event handling can be found in Appendix B.

The RedRect constructor shows that the frame size is set to 200 × 100. If we do not modify this size (by dragging a corner or an
edge of the window), the canvas size is somewhat less. After compilation, we run the program by typing the command
java RedRect

which produces the output shown in Figure 1.1.

 
Figure 1.1: Largest possible rectangle and canvas dimensions

The blank area in a frame, which we use for graphics output, is referred to as a client rectangle in Microsoft Windows
programming. We will consistently use a canvas for it, which is a subclass, such as CvRedRect in program RedRect.java,of the
AWT class Canvas. If, instead, we displayed the output directly in the frame, we would have a problem with the coordinate
system: its origin would be in the top-left corner of the frame; in other words, the x-coordinates increase from left to right and y-
coordinates from top to bottom. Although there is a method getInsets to obtain the widths of all four borders of a frame so that we
could compute the dimensions of the client rectangle ourselves, we prefer to use a canvas.

The tiny screen elements that we can assign a color are called pixels (short for picture elements), and the integer x-and y-values
used for them are referred to as device coordinates. Although there are 200 pixels on a horizontal line in the entire frame, only
192 of these lie on the canvas, the remaining 8 being used for the left and right borders. On a vertical line, there are 100 pixels for
the whole frame, but only 73 for the canvas. Apparently, the remaining 27 pixels are used for the title bar and for the top and
bottom borders. Since these numbers may differ in different Java implementations and the user can change the window size, it is
desirable that our program can determine the canvas dimensions. We do this by using the getSize method of the class
Component, which is a superclass of Canvas. The following program lines in the paint method show how we obtain the canvas
dimensions and how we interpret them:
Dimension d = getSize();
int maxX = d.width - 1, maxY = d.height - 1;

The getSize method of Component (a superclass of Canvas) supplies us with the numbers of pixels on horizontal and vertical
lines of the canvas. Since we begin counting at zero, the highest pixel numbers, maxX and maxY, on these lines are one less than
these numbers of pixels. Remember that this is similar with arrays in Java and C. For example, if we write
int[] a = new int[8];

the highest possible index value is 7, not 8. Figure 1.2 illustrates this for a very small canvas, which is only 8 pixels wide and 4
high, showing a much-enlarged screen grid structure. It also shows that the line connecting the points (0, 0) and (7, 3) is
approximated by a set of eight pixels.
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Figure 1.2: Pixels as coordinates in an 8 × 4 canvas (with maxX = 7 and maxY = 3)

The big dots approximating the line denote pixels that are set to the foreground color. By default, this foreground color is black,
while the background color is white. These eight pixels are made black as a result of this call:
g.drawLine (0, 0, 7, 3);

In the program RedRect.java, we used the following call to the drawRect method (instead of four calls to drawLine):
g.drawRect(0, 0, maxX, maxY);

In general, the call
g.drawRect(x, y, w, h);

draws a rectangle with (x, y) as its top-left and (x + w, y + h) as its bottom-right corners. In other words, the third and fourth
arguments of the drawRect method specify the width and height, rather than the bottom-right corner, of the rectangle to be drawn.
Note that this rectangle is w + 1 pixels wide and h + 1 pixels high. The smallest possible square, consisting of 2 × 2 pixels, is
drawn by this call
g.drawRect(x, y, 1, 1);

To put only one pixel on the screen, we cannot use drawRect, because nothing at all appears if we try to set the third and fourth
arguments of this method to zero. Curiously enough, Java does not provide a special method for this purpose, so we have to use
this call:
g.drawLine(x, y, x, y);

Note that the call
g.drawLine(xA, y, xB, y);

draws a horizontal line consisting of | xB −  xA |+1 pixels.
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1.2 THE BOUNDARIES OF FILLED REGIONS
In mathematics, lines are continuous and have no thickness, but they are discrete and at least one pixel thick in our graphics
output. This difference in the interpretation of the notion of lines may not cause any problems if the pixels are very small in
comparison with what we are drawing. However, we should be aware that there may be such problems in special cases, as Figure
1.3(a) illustrates. Suppose that we have to draw a filled square ABCD of, say, 4×4 pixels, consisting of the bottom-right triangle
ABC and the upper-left triangle ACD, which we want to paint in dark gray and light gray, respectively, without drawing any lines.
Strangely enough, it is not clear how this can be done: if we make the diagonal AC light gray, triangle ABC contains fewer pixels
than triangle ACD; if we make it dark gray, it is the other way round.

 
Figure 1.3: Small filled regions

A much easier but still non-trivial problem, illustrated by Figure 1.3(b), is filling the squares of a checker-board with, say, dark and
light gray squares instead of black and white ones. Unlike squares in mathematics, those on the computer screen deserve special
attention with regard to the edges belonging or not belonging to the filled regions. We have seen that the call
g.drawRect(x, y, w, h);

draws a rectangle with corners (x, y) and (x + w, y + h). The method fillRect, on the other hand, fills a slightly smaller rectangle.
The call
g.fillRect(x, y, w, h);

assigns the current foreground color to a rectangle consisting of w × h pixels. This rectangle has (x, y) as its top-left and (x + w −
1, y + h −  1) as its bottom-right corner. To obtain a generalization of Figure 1.3(b), the following method, checker, draws an n × n
checker board, with (x, y) as its top-left corner and with dark gray and light gray squares, each consisting of w × w pixels. The
bottom-left square will always be dark gray because for this square we have i = 0 and j = n −  1, so that i + n −  j = 1:
void checker(Graphics g, int x, int y, int n, int w)
{  for (int i=0; i<n; i++)
      for (int j=0; j<n; j++)
      {  g.setColor((i + n - j) % 2 == 0?
            Color.lightGray : Color.darkGray);
         g.fillRect(x + i * w, y + j * w, w, w);
      }

}

If we wanted to draw only the edges of each square, also in dark gray and light gray, we would have to replace the above call to
fillRect with
g.drawRect(x + i * w, y + j * w, w - 1, w - 1);

in which the last two arguments are w −  1 instead of w.
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1.3 LOGICAL COORDINATES
1.3.1 The Direction of the Y-axis

As Figure 1.2 shows, the origin of the device-coordinate systems lies at the top-left corner of the canvas, so that the positive y-
axis points downward. This is reasonable for text output, where we start at the top and increase y as we go to the next line of text.
However, this direction of the y-axis is different from normal mathematical practice and therefore often inconvenient in graphics
applications. For example, in a discussion about a line with a positive slope, we expect to go upward when we move along this line
from left to right. Fortunately, we can arrange for the positive y direction to be reversed by performing this simple transformation:

1.3.2 Continuous vs. Discrete Coordinates

Instead of the discrete (integer) coordinates we are using at the lower, device-oriented level, we want to use continuous (floating-
point) coordinates at the higher, problem-oriented level. Other usual terms are device and logical coordinates, respectively.
Writing conversion routines to compute device coordinates from the corresponding logical ones and vice versa is a bit tricky. We
must be aware that there are two solutions to this problem, even in the simple case in which increasing a logical coordinate by one
results in increasing the device coordinate also by one. We want to write the following methods:

iX(x), iY(y): the device coordinates of the point with logical coordinates x and y;

fx(x), fy(y): the logical coordinates of the point with device coordinates x and y.

With regard to x-coordinates, the first solution is based on rounding:
int iX(float x){return Math.round(x);}
float fx(int x){return (float)x;}

For example, with this solution we have

The second solution is based on truncating:
int iX(float x){return (int)x;}           // Not used in
float fx(int x){return (float)x + 0.5F;}  // this book.

With these conversion functions, we would have

With both solutions, the difference between any value x and fx(iX(x)) is not greater than 0.5. We will use the first solution
throughout this book, since it is the better one if logical coordinates frequently happen to be integer values. In these cases the
practice of truncating floating-point numbers will often lead to worse results than we would have with rounding.

Besides the above methods iX and fx (based on the first solution) for x-coordinates, we need similar methods for y-coordinates,
taking into account the opposite directions of the two y-axes. At the bottom of the canvas the device y-coordinate is maxY while
the logical y-coordinate is 0, which may explain the two expressions of the form maxY −  …  in the following methods:
int iX(float x){return Math.round(x);}
int iY(float y){return maxY - Math.round(y);}
float fx(int x){return (float)x;}
float fy(int y){return (float)(maxY - y);}

Figure 1.4 shows a fragment of a canvas, based on maxY = 16.
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Figure 1.4: Logical and device coordinates, based on ymax = 16

The pixels are denoted as black dots, each placed in the center of a square of dashed lines. In this discussion and elsewhere in
this book, let us write x and y for logical and X and Y for device coordinates. (Since it is customary in Java to use lower-case
letters at the beginning of variable names, we will not write X and Y in program text.) In Figure 1.4, the device-coordinates (X,
Y)are placed between parentheses near each dot. For example, the pixel with device coordinates (8, 2), at the upper-right corner
of this canvas fragment, has logical coordinates (8.0, 14.0). We have
iX (8.0) = Math.round (8.0) = 8
iY (14.0) = 16 - Math.round (14.0) = 2
fx (8) = (float)8 = 8.0
fy (2) = (float) (16 - 2) = 14.0

The dashed square around this dot denotes all points (x, y) satisfying

All these points are converted to the pixel (8, 2) by our methods iX and iY.

Let us demonstrate this way of converting floating-point logical coordinates to integer device coordinates in a program that begins
by drawing an equilateral triangle ABC, with the side AB at the bottom and the point C at the top. Then, using

we compute the new points A′ , B′ and C′ near A, B and C and lying on the sides AB, BC and CA, respectively, writing

xA1 = p * xA + q * xB;
yA1 = p * yA + q * yB;
xB1 = p * xB + q * xC;
yB1 = p * yB + q * yC;
xC1 = p * xC + q * xA;
yC1 = p * yC + q * yA;

We then draw the triangle A′ B′ C′, which is slightly smaller than ABC and turned a little counter-clockwise. Applying the same
principle to triangle A′ B′ C′ to obtain a third triangle, A′′ B′′ C′′, and so on, until 50 triangles have been drawn, the result will be
as shown in Figure 1.5.

 
Figure 1.5: Triangles drawn inside each other

If we change the dimensions of the window, new equilateral triangles appear, again in the center of the canvas and with
dimensions proportional to the size of this canvas. Without floating-point logical coordinates and with a y-axis pointing downward,
this program would have been less easy to write:
// Triangles.java: This program draws 50 triangles inside each other.
import java.awt.*;
import java.awt.event.*;
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import java.awt.event.*;
public class Triangles extends Frame
{  public static void main(String[] args){new Triangles();}

   Triangles()
   {  super("Triangles: 50 triangles inside each other");
      addWindowListener(new WindowAdapter()
         {public void windowClosing(WindowEvent e){System.exit(0);}});
      setSize (600, 400);
      add("Center", new CvTriangles());
      show();

   }
}

class CvTriangles extends Canvas
{  int maxX, maxY, minMaxXY, xCenter, yCenter;

   void initgr()
   {  Dimension d = getSize();
      maxX = d.width - 1; maxY = d.height - 1;
      minMaxXY = Math.min(maxX, maxY);
      xCenter = maxX/2; yCenter = maxY/2;
   }
   int iX(float x){return Math.round(x);}
   int iY(float y){return maxY - Math.round(y);}

   public void paint(Graphics g)
   { initgr();
     float side = 0.95F * minMaxXY, sideHalf = 0.5F * side,
        h = sideHalf * (float)Math.sqrt (3),
        xA, yA, xB, yB, xC, yC,
        xA1, yA1, xB1, yB1, xC1, yC1, p, q;
     q = 0.05F;
     p = 1 - q;
     xA = xCenter - sideHalf;
     yA = yCenter - 0.5F * h;
     xB = xCenter + sideHalf;
     yB = yA;
     xC = xCenter;
     yC = yCenter + 0.5F * h;
     for (int i=0; i<50; i++)
     { g.drawLine(iX(xA), iY(yA), iX(xB), iY(yB));
       g.drawLine(iX(xB), iY(yB), iX(xC), iY(yC));
       g.drawLine(iX(xC), iY(yC), iX(xA), iY(yA));
       xA1 = p * xA + q * xB;
       yA1 = p * yA + q * yB;
       xB1 = p * xB + q * xC;
       yB1 = p * yB + q * yC;
       xC1 = p * xC + q * xA;
       yC1 = p * yC + q * yA;
       xA = xA1; xB = xB1; xC = xC1;
       yA = yA1; yB = yB1; yC = yC1;
   }
  }
}

In the canvas class CvTriangles there is a method initgr. Together with the other program lines that precede the paint method in
this class, initgr may also be useful in other programs.

It is important to notice that, on each triangle edge, the computed floating-point coordinates, not the integer device coordinates
derived from them, are used for further computations. This principle, which applies to many graphics applications, can be depicted
as follows:

which is in contrast to the following scheme, which we should avoid. Here int device coordinates containing rounding-off errors are
used not only for graphics output but also for further computations, so that such errors will accumulate:

In summary, we compare and contrast the logical and device coordinate systems in the following table, in terms of (1) the
convention used in the text, but not in Java programs, of this book; (2) the data types of the programming language; (3) the
coordinate value domain; and (4) the direction of the positive y-axis:

 Open table as spreadsheet
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 Open table as spreadsheet

Coordinate system Convention Data type Value domain Positive y-axis

logical lower-case letters float continuous upward

device upper-case letters integer discrete downward
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1.4 ANISOTROPIC AND ISOTROPIC MAPPING MODES
1.4.1 Mapping a Continuous Interval to a Sequence of Integers

Suppose we want to map an interval of real logical coordinates, such as

to the set of integer device coordinates {0, 1, 2, …  ,9}. Unfortunately, the method
int iX(float x){return Math.round(x);}

used in the previous section is not suitable for this purpose because for any x greater than 9.5 (and not greater than 10) it returns
10, which does not belong to the allowed sequence 0, 1, … , 9. In particular, it gives
ix (10.0) = 10

while we want
ix (10.0) = 9

This suggests that in an improved method iX we should use a multiplication factor of 0.9. We can also come to this conclusion by
realizing that there are only nine small intervals between ten pixels labeled 0, 1, … , 9, as Figure 1.6 illustrates. If we define the
pixel width (= pixelWidth) as the distance between two successive pixels on a horizontal line, the above interval 0 ≤  x ≤  10 of
logical coordinates (being real numbers) corresponds to 9 × pixelWidth. So in this example we have:

 
Figure 1.6: Pixels lying 10/9 logical units apart

In general, if a horizontal line of our window consists of n pixels, numbered 0, 1, … , maxX (where maxX = n −  1), and the
corresponding (continuous) interval of logical coordinates is 0 ≤  x ≤  rWidth, we can use the following method:
int iX(float x){return Math.round(x/pixelWidth);}

where pixelWidth is computed beforehand as follows:
maxX = n - 1;
pixelWidth = rWidth/maxX;

In the above example the integer n is equal to the interval length rWidth, but it is often desirable to use logical coordinates x and y
satisfying

where rWidth and rHeight are real numbers, such as 10.0 and 7.5, respectively, which are quite different from the numbers of
pixels that lie on horizontal and vertical lines. It will then be important to distinguish between isotropic and anisotropic mapping
modes, as we will discuss in a moment.

As for the simpler method
int iX(float x){return Math.round(x);}

of the previous section, this can be regarded as a special case of the improved method we have just seen, provided we use
pixelWidth = 1, that is rWidth = maxX,or rWidth = n −  1. For example, if the drawing rectangle is 100 pixels wide, so that n = 100
and we can use the pixels 0, 1, 2, … , 99 = maxX on a horizontal line, this simpler method iX works correctly if it is applied to
logical x-coordinates satisfying

The point to be noticed is that, due to the value pixelWidth = 1, the logical width is 99.0 here although the number of available
pixels is 100.
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1.4.2 Anisotropic Mapping Mode

The term anisotropic mapping mode implies that the scale factors for x and y are not necessarily equal, as the following code
fragment shows:
Dimension d = getSize();
maxX = d.width - 1; maxY = d.height - 1;
pixelWidth  = rWidth/maxX;
pixelHeight = rHeight/maxY;
...
int iX(float x){return Math.round(x/pixelWidth);}
int iY(float y){return maxY - Math.round(y/pixelHeight);}
float fx(int x){return x * pixelWidth;}
float fy(int y){return (maxY - y) * pixelHeight;}

We will use this in a demonstration program. Regardless of the window dimensions, the largest possible rectangle in this window
has the logical dimensions 10.0 × 7.5. After clicking on a point of the canvas, the logical coordinates are shown, as Figure 1.7
illustrates.

 
Figure 1.7: Logical coordinates with anisotropic mapping mode

Since there are no gaps between this largest possible rectangle and the window edges, we can only see this rectangle with some
difficulty in Figure 1.7. In contrast, the screen will show this rectangle very clearly because we will make it red instead of black.
Although the window dimensions in Figure 1.7 have been altered by the user, the logical canvas dimensions are still 10.0 × 7.5.
The text displayed in the window shows the coordinates of the point near the upper-right corner of the rectangle, as the cross-hair
cursor indicates. If the user clicks exactly on that corner, the coordinate values 10.0 and 7.5 are displayed. This demonstration
program is listed below.
// Anisotr.java: The anisotropic mapping mode.

import java.awt.*;
import java.awt.event.*;

public class Anisotr extends Frame
{  public static void main(String[] args){new Anisotr();}

   Anisotr()
   { super("Anisotropic mapping mode");
     addWindowListener(new WindowAdapter()
       {public void windowClosing(WindowEvent e){System.exit(0);}});
     setSize (400, 300);
     add("Center", new CvAnisotr());
     setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));
     show();
  }

}

class CvAnisotr extends Canvas
{ int maxX, maxY;
  float pixelWidth, pixelHeight,
      rWidth = 10.0F,
      rHeight = 7.5F,
      xP = -1, yP;

  CvAnisotr()
  { addMouseListener(new MouseAdapter()
    { public void mousePressed(MouseEvent evt)
      { xP = fx(evt.getX()); yP = fy(evt.getY());
        repaint();
      }
    });
}
void initgr()
{ Dimension d = getSize();
  maxX = d.width - 1; maxY = d.height - 1;
  pixelWidth = rWidth/maxX; pixelHeight = rHeight/maxY;
}

int iX(float x){return Math.round(x/pixelWidth);}
int iY(float y){return maxY - Math.round(y/pixelHeight);}
float fx(int x){return x * pixelWidth;}
float fy(int y){return (maxY - y) * pixelHeight;}

public void paint(Graphics g)
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public void paint(Graphics g)
{ initgr();
    int left = iX (0), right = iX(rWidth),
      bottom = iY (0), top = iY(rHeight);
    if (xP >= 0) g.drawString(
       "Logical coordinates of selected point: "
       + xP + " " + yP, 20, 100);
    g.setColor(Color.red);
    g.drawLine(left, bottom, right, bottom);
    g.drawLine(right, bottom, right, top);
    g.drawLine(right, top, left, top);
    g.drawLine(left, top, left, bottom);
  }
}

With the anisotropic mapping mode, the actual length of a vertical unit can be different from that of a horizontal unit. This is the
case in Figure 1.7: although the rectangle is 10 units wide and 7.5 units high, its real height is less than 0.75 of its width. In
particular, the anisotropic mapping mode is not suitable for drawing squares, circles and other shapes that require equal units in
the horizontal and vertical directions.

1.4.3 Isotropic Mapping Mode

We can arrange for horizontal and vertical units to be equal in terms of their real size by using the same scale factor for x and y.
Let us use the term drawing rectangle for the rectangle with dimensions rWidth and rHeight, in which we normally draw graphical
output. Since these logical dimensions are constant, so is their ratio, which is not the case with that of the canvas dimensions. It
follows that, with the isotropic mapping mode, the drawing rectangle will in general not be identical with the canvas. Depending on
the current window size, either the top and bottom or the left and right edges of the drawing rectangle lie on those of the canvas.

Since it is normally desirable for a drawing to appear in the center of the canvas, it is often convenient with the isotropic mapping
mode to place the origin of the logical coordinate system at that center. This implies that we will use the following logical-
coordinate intervals:

Our methods iX and iY will map each logical coordinate pair (x, y) to a pair (X, Y) of device coordinates, where

To obtain the same scale factor for x and y, we compute rWidth/maxX and rHeight/maxY and take the larger of these two values;
this maximum value, pixelSize, is then used in the methods iX and iY, as this fragment shows:
Dimension d = getSize();
int maxX = d.width - 1, maxY = d.height - 1;
pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
centerX = maxX/2; centerY = maxY/2;
...
int iX(float x){return Math.round(centerX + x/pixelSize);}
int iY(float y){return Math.round(centerY - y/pixelSize);}
float fx(int x){return (x - centerX) * pixelSize;}
float fy(int y){return (centerY - y) * pixelSize;}

We will use this code in a program that draws a square, two corners of which touch either the midpoints of the horizontal canvas
edges or those of the vertical ones. It also displays the coordinates of a point on which the user clicks, as the left window of Figure
1.8 shows.

 
Figure 1.8: Windows after changing their sizes

In this illustration, we pay special attention to the corners of the drawn square that touch the boundaries of the drawing rectangle.
These corners do not lie on the window frame, but they lie just inside it. For the square on the left we have:

Figure 1.8, left logical coordinate y device coordinate iY(y)

top corner +rHeight/2 0
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bottom corner − rHeight/2 maxY

 Open table as spreadsheet

By contrast, for the square that has been drawn in the narrow window on the right, it is the corners on the left and the right that lie
just within the frame:

Figure 1.8, right logical coordinate x device coordinate iX(x)

left corner − rWidth/2 0

right corner +rWidth/2 maxX

 Open table as spreadsheet

The following program uses a drawing rectangle with logical dimensions rWidth = rHeight = 10.0. If we replaced this value 10.0
with any other positive constant, the output would be the same.
// Isotrop.java: The isotropic mapping mode.
//    Origin of logical coordinate system in canvas
//    center; positive y-axis upward.
//    Square (turned 45 degrees) just fits into canvas.
//    Mouse click displays logical coordinates of
//    selected point.
import java.awt.*;
import java.awt.event.*;

public class Isotrop extends Frame
{  public static void main(String[] args){new Isotrop();}

   Isotrop()
   { super("Isotropic mapping mode");
     addWindowListener(new WindowAdapter()
        {public void windowClosing(WindowEvent e){System.exit(0);}});
     setSize (400, 300);
     add("Center", new CvIsotrop());
     setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));
     show();
   }
}

class CvIsotrop extends Canvas
{ int centerX, centerY;
 float pixelSize, rWidth = 10.0F, rHeight = 10.0F, xP = 1000000, yP;

  CvIsotrop()
  { addMouseListener(new MouseAdapter()
    {  public void mousePressed(MouseEvent evt)
       {  xP = fx(evt.getX()); yP = fy(evt.getY());
          repaint();
       }
    });
  }

void initgr()
{  Dimension d = getSize();
   int maxX = d.width - 1, maxY = d.height - 1;
   pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
   centerX = maxX/2; centerY = maxY/2;
  }

  int iX(float x){return Math.round(centerX + x/pixelSize);}
  int iY(float y){return Math.round(centerY - y/pixelSize);}
  float fx(int x){return (x - centerX) * pixelSize;}
  float fy(int y){return (centerY - y) * pixelSize;}

  public void paint(Graphics g)
  { initgr();
    int left = iX(-rWidth/2), right = iX(rWidth/2),
        bottom = iY(-rHeight/2), top = iY(rHeight/2),
        xMiddle = iX (0), yMiddle = iY (0);
    g.drawLine(xMiddle, bottom, right, yMiddle);
    g.drawLine(right,yMiddle, xMiddle, top);
    g.drawLine(xMiddle, top, left, yMiddle);
    g.drawLine(left, yMiddle, xMiddle, bottom);
    if (xP != 1000000)
       g.drawString(
       "Logical coordinates of selected point: "
       + xP + " " + yP, 20, 100);
  }
}
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1.5 DEFINING A POLYGON BY USING THE MOUSE
We will use the conversion methods of the previous program in a more interesting application, which enables the user to define a
polygon by clicking on points to indicate the positions of the vertices. Figure 1.9 shows such a polygon, just after the user has
defined successive vertices, ending at the first one on the left, which is marked with a tiny rectangle.

 
Figure 1.9: Polygon defined by a user

The large rectangle surrounding the polygon is the drawing rectangle: only vertices inside this rectangle are guaranteed to appear
again if the user changes the dimensions of the window. The very wide window of Figure 1.9 was obtained by dragging one of its
corners. After the polygon was drawn, the dimensions of the window were again changed, to obtain Figure 1.10. It is also possible
to change these dimensions during the process of drawing the polygon. We now summarize the requirements for this application
program:

The first vertex is drawn as a tiny rectangle.

If a later vertex is inside the tiny rectangle, the drawing of one polygon is complete.

Only vertices in the drawing rectangle are drawn.

The drawing rectangle (see Figures 1.9 and 1.10) is either as high or as wide as the window, yet maintaining its
height/width ratio regardless of the window shape.

When the user changes the shape of the window, the size of the drawn polygon changes in the same way as that of
the drawing rectangle, as does the surrounding white space of the polygon.
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Figure 1.10: Polygon still in the center of the window after resizing the window

We will use the isotropic mapping mode to implement this program, and use a data structure called vertex vector to store the
vertices of the polygon to be drawn. We then design the program with the following algorithmic steps:

1. Activate the mouse;

2. When the left mouse button is pressed

2.1  Get x- and y-coordinates at where the mouse is clicked;

 
2.2  If it is the first vertex

Then empty vertex vector;

Else If the vertex is inside the tiny rectangle (i.e. last vertex)

Then finish the current polygon;

Else store this vertex in vertex vector (i.e. not last vertex);

3. Draw all vertices in vertex vector.

The last step to draw all the polygon vertices can be detailed as follows:
1. Obtain the dimensions of the drawing rectangle based on logical coordinates;

2. Draw the drawing rectangle;

3. Get the first vertex from vertex vector;

4. Draw a tiny rectangle at the vertex location;

5. Draw a line between every two consecutive vertices stored in vertex vector.

In both Figures 1.9 and 1.10 the drawing rectangle has a width of 10 and a height of 7.5 logical units, as the following program
shows:
// DefPoly.java: Drawing a polygon.
// Uses: CvDefPoly (discussed below).
import java.awt.*;
import java.awt.event.*;

public class DefPoly extends Frame
{  public static void main(String[] args){new DefPoly();}

   DefPoly()
   {  super("Define polygon vertices by clicking");
      addWindowListener(new WindowAdapter()
         {public void windowClosing(WindowEvent e){System.exit(0);}});
      setSize (500, 300);
      add("Center", new CvDefPoly());
      setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));
      show();
   }
}

The class CvDefPoly, used in this program, is listed below. We define this class in a separate file, CvDefPoly.java, so that it is
easier to use elsewhere, as we will see in Section 2.13:
// CvDefPoly.java: To be used in other program files.
//   A class that enables the user to define
//   a polygon by clicking the mouse.
// Uses: Point2D (discussed below).

import java.awt.*;
import java.awt.event.*;
import java.util.*;

class CvDefPoly extends Canvas
{  Vector v = new Vector();
   float x0, y0, rWidth = 10.0F, rHeight = 7.5F, pixelSize;
   boolean ready = true;
   int centerX, centerY;

   CvDefPoly()
   { addMouseListener(new MouseAdapter()
     {  public void mousePressed(MouseEvent evt)
        { float xA = fx(evt.getX()), yA = fy(evt.getY());
          if (ready)
        { v.removeAllElements();
          x0 = xA; y0 = yA;
          ready = false;
        }
        float dx = xA - x0, dy = yA - y0;
        if (v.size()>0&&
           dx * dx + dy * dy <4 * pixelSize * pixelSize)
           ready = true;
        else
           v.addElement(new Point2D(xA, yA));
        repaint();
     }
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     }
  });
}

void initgr()
{  Dimension d = getSize();
   int maxX = d.width - 1, maxY = d.height - 1;
   pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
   centerX = maxX/2; centerY = maxY/2;
}

int iX(float x){return Math.round(centerX + x/pixelSize);}
int iY(float y){return Math.round(centerY - y/pixelSize);}
float fx(int x){return (x - centerX) * pixelSize;}
float fy(int y){return (centerY - y) * pixelSize;}

public void paint(Graphics g)
{  initgr();
   int left = iX(-rWidth/2), right = iX(rWidth/2),
       bottom = iY(-rHeight/2), top = iY(rHeight/2);
   g.drawRect(left, top, right - left, bottom - top);
   int n = v.size();
   if (n == 0) return;
   Point2D a = (Point2D)(v.elementAt (0) );
   // Show tiny rectangle around first vertex:
   g.drawRect(iX(a.x)-2, iY(a.y)-2, 4, 4);
   for (int i=1; i<=n; i++)
   { if (i == n && !ready) break;
     Point2D b = (Point2D)(v.elementAt(i % n));
     g.drawLine(iX(a.x), iY(a.y), iX(b.x), iY(b.y));
   a=b;
   }
 }
}

The class Point2D, used in the above file, will also be useful in other programs, so that we define this in another separate file,
Point2D.java:
// Point2D.java: Class for points in logical coordinates.
class Point2D
{ float x, y;
  Point2D(float x, float y){this.x = x; this.y = y;}
}

After a complete polygon has been shown (which is the case when the user has revisited the first vertex), the user can once again
click a point. The polygon then disappears and that point will then be the first vertex of a new polygon.

Note that the comment line
// Uses: CvDefPoly (discussed below).

occurring in the file DefPoly.java, indicates that the file CvDefPoly.java should be available in the current directory. Since the
comment line
// Uses: Point2D (discussed below).

occurs in the file CvDefPoly.java, the program DefPoly.java also requires the class Point2D. Comments such as those above are
very helpful if different directories are used, for example, one for each chapter. However, since class names are unique
throughout this book, it is possible to place all program files in the same directory. In this way, each required class will be
available.

EXERCISES

1.1 How many pixels are put on the screen by each of the following calls?
g.drawLine (10, 20, 100, 50);
g.drawRect (10, 10, 8, 5);
g.fillRect (10, 10, 8, 5);

1.2 Replace the triangles of program Triangles.java with squares and draw a great many of them,
arranged in a chessboard, as shown in Figure 1.11.
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Figure 1.11: A chessboard of squares

As usual, this chessboard consists of n × n normal squares (with horizontal and vertical edges),
where n = 8. Each of these actually consists of k squares of different sizes, with k = 10. Finally,
the value q = 0.2 (and p = 1 −  q = 0.8) was used to divide each edge into two parts with ratio p : q
(see also program Triangles.java in Section 1.3), but the interesting pattern of Figure 1.11 was
obtained by reversing the roles of p and q in half of the n × n ‘normal’ squares, which is similar to
the black and white squares of a normal chessboard. Your program should accept the values n, k
and q as program arguments.

1.3 Draw a set of concentric pairs of squares, each consisting of a square with horizontal and vertical
edges and one rotated through 45°. Except for the outermost square, the vertices of each square
are the midpoints of the edges of its immediately surrounding square, as Figure 1.12 shows. It is
required that all lines are exactly straight, and that vertices of smaller squares lie exactly on the
edges of larger ones.

 
Figure 1.12: Concentric squares

1.4 Write a program that draws a pattern of hexagons, as shown in Figure 1.13. The vertices of a
(regular) hexagon lie on its so-called circumscribed circle. The user must be able to specify the
radius of this circle by clicking a point near the upper-left corner of the drawing rectangle. Then
the distance between that point and that corner is to be used as the radius of the circle just
mentioned. There must be as many hexagons of the specified size as possible and the margins
on the left and the right must be equal. The same applies to the upper and lower margins, as
Figure 1.13 shows.

 
Figure 1.13: Hexagons
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1.5 Write a class Lines containing a static method dashedLine to draw dashed lines, in such a way
that we can write
Lines.dashedLine(g, xA, yA, xB, yB, dashLength);

where g is a variable of type Graphics, xA, yA, xB, yB are the device coordinates of the endpoints
A and B, and dashLength is the desired length (in device coordinates) of a single dash. There
should be a dash, not a gap, at each endpoint of a dashed line. Figure 1.14 shows eight dashed
lines drawn in this way, with dashLength =20.

 
Figure 1.14: Dashed lines

Answers

1.1 Numbers of pixels:
g.drawLine (10, 20, 100, 50); // 100 - 10 + 1 = 91 pixels
g.drawRect (10, 10, 8, 5);    // 2 * 8 + 2 * 5 = 26 pixels
g.fillRect (10, 10, 8, 5);    // 8 * 5 = 40 pixels

1.2 Program to draw many squares:
// ManySq.java: This program drawsnxnsets, each
//   consisting of k squares, arranged as on a chessboard.
//   Each edge is divided into two parts with ratio
//   (1 - q)  : q. The values of n, k and q are program
              arguments.

import java.awt.*;
import java.awt.event.*;

public class ManySq extends Frame
{  public static void main(String[] args)
   {  if (args.length != 3)
      {  System.out.println("Supply n, k and q as arguments");
         System.exit(1);
      }
      int n = Integer.valueOf(args[0]).intValue(),
          k = Integer.valueOf(args[1]).intValue();
      float q = Float.valueOf(args[2]).floatValue();
      new ManySq(n, k, q);
    }
    ManySq(int n, int k, float q)
    {  super("ManySq: Many squares");
       addWindowListener(new WindowAdapter()
        {public void windowClosing(
                WindowEvent e){System.exit(0);}});
       add("Center", new CvManySq(n, k, q));
       setSize (600, 400);
       show();
    }
  }

  class CvManySq extends Canvas
  {  int centerX, centerY, n, k;
     float p0, q0;

     CvManySq(int nn, int kk, float qq){n=nn; k=kk; q0=qq; p0 =
                    1-q0;}

     int iX(float x){return Math.round(centerX + x);}
     int iY(float y){return Math.round(centerY - y);}

     public void paint(Graphics g)
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     public void paint(Graphics g)
     {  Dimension d = getSize();
        int maxX = d.width - 1, maxY = d.height - 1,
           minMaxXY = Math.min(maxX, maxY);
        centerX = maxX/2; centerY = maxY/2;

        float r = 0.45F * minMaxXY / n;
        for (int x=0; x<n; x++)
        for (int y=0; y<n; y++)
        {  float xCnew = (2 * x - n + 1) * r,
                 yCnew = (2 * y - n + 1) * r,
              xA, yA, xB, yB, xC, yC, xD, yD,
              xA1, yA1, xB1, yB1, xC1, yC1, xD1, yD1, p=p0, q=q0;
           if (x % 2 + y % 2 == 1){p = q0; q = p0;}
           xA = xD = xCnew - r; xB = xC = xCnew + r;
           yA = yB = yCnew - r; yC = yD = yCnew + r;
           for (int i=0; i<k; i++)
           {  g.drawLine(iX(xA), iY(yA), iX(xB), iY(yB));
              g.drawLine(iX(xB), iY(yB), iX(xC), iY(yC));
              g.drawLine(iX(xC), iY(yC), iX(xD), iY(yD));
              g.drawLine(iX(xD), iY(yD), iX(xA), iY(yA));
              xA1 = p * xA+q * xB; yA1 = p * yA+q * yB;
              xB1 = p * xB+q * xC; yB1 = p * yB+q * yC;
              xC1 = p * xC+q * xD; yC1 = p * yC+q * yD;
              xD1 = p * xD+q * xA; yD1 = p * yD+q * yA;
              xA = xA1; xB = xB1; xC = xC1; xD = xD1;
              yA = yA1; yB = yB1; yC = yC1; yD = yD1;
           }
        }
    }
}

1.3 To draw all edges as exactly straight lines and to make the vertices of inner squares lie exactly on the
edges of their surrounding squares, use device coordinates, starting with a pair of very small squares (⋄
and □ ), and making the squares of each next pair exactly twice as large as those of the preceding pair.

1.4 The radius r of the circumscribed circles for the hexagons is supplied by the user. Based on this radius r,
the following fragment (in which the variable names are self-explanatory) may be helpful:
int iX(float x){return Math.round(centerX + x/pixelSize);}
int iY(float y){return Math.round(centerY - y/pixelSize);}

void drawLine(Graphics g, float xA, float yA, float xB, float yB)
{  g.drawLine(iX(xA), iY(yA), iX(xB), iY(yB));
}
...

float halfr = r/2, horpitch = 1.5F * r,
  w = r * (float)Math.sqrt (3),h=w/2, marginleft,
                marginbottom;
int nhor = (int)Math.floor((rWidth - 2 * r) / horpitch) + 1,
    nvert = (int)Math.floor(rHeight/w);
marginleft = -rWidth/2 + 0.5F * (rWidth - halfr - nhor *
              horpitch);
marginbottom = -rHeight/2 + 0.5F * (rHeight - nvert * w);
for (int i=0; i<nhor; i++)
{  float x = marginleft + r + i * horpitch,
    y0 = marginbottom + (1 + i % 2)* h; // center of lowest
              hexagon
    int m = nvert - i % 2;
// There will be nvert hexagons in each column for i = 0, 2,4,
              ...
// while there will be nvert - 1 in each column for i = 1, 3, 5,
              ...
// Special case: if nvert = 1 and nhor > 1, then x is increased
              by
// horpitch/2 because otherwise there will be an empty column on
              the
// right.
   if (nvert == 1 && nhor > 1)
      x += horpitch/2;
   for (int j=0; j<m; j++)
   {  float y = y0+j*w;
      drawLine(g, x + halfr,y+h,x-halfr,y+h);
      drawLine(g, x - halfr, y + h, x - r, y);
      drawLine(g, x - r, y, x - halfr, y - h);
      ...

1.5 We begin by computing the length

where
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Since there should be a dash, not a gap, at each endpoint, and we use gap widths that are about equal to
dashLength,weusetheequality

to compute n, the number of dashes. Writing h1 = u1//(2n −  1) and h2 = u2/ (2n −  1), and denoting the
dashes by i = 0, 1, … , n −  1, we draw dash i as a straight line with endpoints (xA + 2ih1, yA + 2ih2) and ((xA
+ (2i + 1)h1, yA + (2i + 1)h2).
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Chapter 2: Applied Geometry

Before we proceed with specific computer-graphics subjects, we will discuss some mathematics, which we will often use in
this book. You can skip the first four sections of this chapter if you are very familiar with vectors and determinants. After this
general part, we will deal with some useful algorithms needed for the exercises at the end of this chapter and for the topics in
the remaining chapters. For example, in Chapters 6 and 7 we will deal with polygons that are faces of 3D solid objects. Since
polygons in general are difficult to handle, we will divide them into triangles, as we will discuss in the last section of this
chapter.

2.1 VECTORS
We begin with the mathematical notion of a vector, which should not be confused with the standard class Vector, available in Java
to store an arbitrary number of objects. Recall that we have used this Vector class in Section 1.5 to store polygon vertices.

A vector is a directed line segment, characterized by its length and its direction only. Figure 2.1 shows two representations of the
same vector a = PQ = b = RS. Thus a vector is not altered by a translation.

 
Figure 2.1: Two equal vectors

The sum c of the vectors a and b, written

can be obtained as the diagonal of a parallelogram, with a, b and c starting at the same point, as shown in Figure 2.2.

 
Figure 2.2: Vector addition

The length of a vector a is denoted by |a|. A vector with zero length is the zero vector, written as 0. The notation − a is used for the
vector that has length |a| and whose direction is opposite to that of a. For any vector a and real number c, the vector ca has length
|c||a|.If a = 0 or c = 0, then ca = 0;otherwise ca has the direction of a if c > 0 and the opposite direction if c < 0. For any vectors u,
v, w and real numbers c, k, we have
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Figure 2.3 shows three unit vectors i, j and k in a three-dimensional space. They are mutually perpendicular and have length 1.
Their directions are the positive directions of the coordinate axes. We say that i, j and k form a triple of orthogonal unit vectors.
The coordinate system is right-handed, which means that if a rotation of i in the direction of j through 90° corresponds to turning a
right-handed screw, then k has the direction in which the screw advances.

 
Figure 2.3: Right-handed coordinate system

We often choose the origin O of the coordinate system as the initial point of all vectors. Any vector v can be written as a linear
combination of the unit vectors i, j,and k:

The real numbers x, y and z are the coordinates of the endpoint P of vector v = OP. We often write this vector v as

The numbers x, y, z are sometimes called the elements or components of vector v.

The possibility of writing a vector as a sequence of coordinates, such as (x, y, z) for three-dimensional space, has led to the use of
this term for sequences in general. This explains the name Vector for a standard Java class. The only aspect this Vector class has
in common with the mathematical notion of vector is that both are related to sequences.
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2.2 INNER PRODUCT
The inner product or dot product of two vectors a and b is a real number, written as a · b and defined as

where γ  is the angle between a and b. It follows from the first equation that a · b is also zero if γ  = 90°. Applying this definition to
the unit vectors i, j and k, we find

Setting b = a in Equation (2.1), we have a · a =|a|2, so

Some important properties of inner products are

The inner product of two vectors u = [u1 u2 u3] and v = [v1 v2 v3] can be computed as

We can prove this by developing the right-hand side of the following equality as the sum of nine inner products and then applying
Equation (2.2):
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2.3 DETERMINANTS
Before proceeding with vector products, we will pay some attention to determinants. Suppose we want to solve the following
system of two linear equations for x and y:

We can then multiply the first equation by b2, the second by − b1, and add them, finding

Then we can multiply the first equation by − a2, the second by a1, and add again, obtaining

If a1b2 −  a2b1 is not zero, we can divide and find

The denominator in these expressions is often written in the form

and then called a determinant. Thus

Using determinants, we can write the solution of Equation (2.3) as

where

Note that Di is obtained by replacing the ith column of D with the right-hand side of Equation (2.3) (i = 1 or 2). This method of
solving a system of linear equations is called Cramer's rule. It is not restricted to systems of two equations (although it would be
very expensive in terms of computer time to apply the method to large systems). Determinants with n rows and n columns are said
to be of the nth order. We define determinants of third order by using the equation

where each so-called minor determinant Mij is the 2 × 2 determinant that we obtain by deleting the ith row and the jth column of D.
Determinants of higher order are defined similarly.

Determinants are very useful in linear algebra and analytical geometry. They have many interesting properties, some of which are
listed below:

1. The value of a determinant remains the same if its rows are written as columns in the same order. For example:

2. If any two rows (or columns) are interchanged, the value of the determinant is multiplied by − 1. For example:
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3. If any row or column is multiplied by a factor, the value of the determinant is multiplied by this factor. For
example:

4. If a row is altered by adding any constant multiple of any other row to it, the value of the determinant remains
unaltered. This operation may also be applied to columns. For example:

5. If a row (or a column) is a linear combination of some other rows (or columns), the value of the determinant is
zero. For example:

In many cases, determinant equations expressing geometrical properties are elegant and easy to remember. For example, the
equation of the line in R2 through the two points P1(x1, y1) and P2(x2, y2) can be written

This can be understood by observing, first, that Equation (2.5) is a special notation for a linear equation in x and y, and
consequently represents a straight line in R2, and second, that the coordinates of both P1 and P2 satisfy this equation, for if we
write them in the first row, we have two identical rows. Similarly, the plane in R3 through three points P1(x1, y1, z1), P2(x2, y2, z2),
P3(x3, y3, z3) has the equation

which is much easier to remember than one written in the conventional way.
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2.4 VECTOR PRODUCT
The vector product or cross product of two vectors a and b is written

and is a vector v with the following properties. If a = cb for some scalar c,then v = 0. Otherwise the length of v is equal to

where γ  is the angle between a and b, and the direction of v is perpendicular to both a and b and is such that a, b and v, in that
order, form a right-handed triple. This means that if a is rotated through an angle γ  < 180° in the direction of b, then v has the
direction of the advancement of a right-handed screw if turned in the same way. Note that the length |v| is equal to the area of a
parallelogram of which the vectors a and b can act as edges, as Figure 2.4 shows.

 
Figure 2.4: Vector product a × b

The following properties of vector products follow from this definition:

In general, a × (b × c) ≠  (a × b) × c. If we apply our definition of vector product to the unit vectors i, j, k (see Figure 2.3), we have

Using these vector products in the expansion of

we obtain

which can be written as

We rewrite this in a form that is very easy to remember:

This is a mnemonic aid rather than a true determinant, since the elements of the first row are vectors instead of numbers.

If a and b are neighboring sides of a parallelogram, as shown in Figure 2.4, the area of this parallelogram is the length of vector a
× b. This follows from our definition of vector product, according to which |a × b|=|a||b| sin γ  is the length of vector a × b.
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2.5 THE ORIENTATION OF THREE POINTS
We will now deal with a subject that will be very useful in Chapters 6 and 7. Suppose that we are given an ordered triple (A, B, C)
of three points in the xy-plane and we want to know their orientation; in other words, we want to know whether we turn counter-
clockwise or clockwise when visiting these points in the given order. Figure 2.5 shows the possibilities, which we also refer to as
positive and negative orientation, respectively.

 
Figure 2.5: Counter-clockwise and clockwise orientation of A, B, C

There is a third possibility, namely that the points A, B and C lie on a straight line. We will consider the orientation to be zero in
this case. If we plot the points on paper, we see immediately which of these three cases applies, but we now want a means to find
the orientation by computation, using only the coordinates xA, yA, xB, yB, xC, yC.

Let us define the two vectors a = CA and b = CB, as shown in Figure 2.6. Clearly, the orientation of the original points A, B and C
is positive if we can turn the vector a counter-clockwise through a positive angle less than 180° to obtain the direction of the vector
b. Since vectors are only determined by their directions and lengths, we may let them start at the origin O instead of at point C, as
Figure 2.6 shows. Although this orientation problem is essentially two-dimensional, and can be solved using only 2D concepts, as
we will see in a moment, it is convenient to use 3D space. As usual, the unit vectors i, j and k have the directions of the positive x-
, y-and z-axes. In Figure 2.6, we imagine the vector k, like i and j starting at O, and pointing towards us. Denoting the endpoints of
the translated vectors a and b,starting at O, by(a1, a2,0) and (b1, b2, 0), we have

 
Figure 2.6: Using vectors a and b instead of triangle edges CA and CB

and

This expresses the fact that a × b is a vector perpendicular to the xy-plane and either in the same direction as

or in the opposite direction, depending on the sign of a1b2 −  a2b1. If this expression is positive, the relationship between a and b
is similar to that of i and j:we can turn a counter-clockwise through an angle less than 180° to obtain the direction of b, in the
same way as we can do this with i to obtain j. In general, we have
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2.5.1 An Alternative, Two-dimensional Solution

It would be unsatisfactory if we were unable to solve the above orientation problem by using only two-dimensional concepts. To
provide such an alternative solution, we use the angles α  between vector a and the positive x-axis and β  between b and this axis
(see Figure 2.6). Then the orientation we are interested in depends upon the angle β  −  α . If this angle lies between 0 and π , the
orientation is clearly positive, but it is negative if this angle lies between π  and 2π  (or between −π  and 0). We can express this by
saying that the orientation in question depends on the value of sin(β  −  α ) rather than on the angle β  −  α  itself. More specifically,
the orientation has the same sign as

Since the denominator in this expression is the product of two vector lengths, it is positive, so that we have again found that the
orientation of A, B and C and a1b2 −  a2b1 have the same sign. Due to unfamiliarity with the above trigonometric formula, some
readers may find the former, more visual 3D approach easier to remember.

2.5.2 A Useful Java Method

The method area2 in the following fragment is based on the results we have found. This method takes three arguments of class
Point2D, discussed at the end of Chapter 1. We will use the class Tools2D for several static methods, to be used as two-
dimensional tools (see also Section 2.13). Note that, in accordance with Java convention, we use lower-case variable names a, b,
c for the points A, B and C:
class Tools2D
{   static float area2(Point2D a, Point2D b, Point2D c)
    {  return (a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x);
    }
    ... // See Section 2.13
}

As we will see in Section 2.7, this method computes the area of the triangle ABC multiplied by 2, or, if A, B and C are clockwise,
by − 2. If we are interested only in the orientation of the points A, B and C, each of type Point2D, we can write:
if (Tools2D.area2(a, b, c) > 0)
{  ... // A, B and C counter-clockwise
}
else
{ ...
  // A, B and C clockwise (unless the area2 method return 0;
  // in that case A, B and C lie on the same line).
}
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2.6 POLYGONS
A polygon is a sequence P0, P1, … , Pn− 1 of vertices, where n ≥ 3, with associated edges P0P1, P1P2, … , Pn− 2Pn− 1, Pn− 1, P0. In
this book we will restrict ourselves to simple polygons, of which non-adjacent edges do not intersect. Figure 2.7 shows two simple
and two non-simple polygons, for all of which n = 5.

 
Figure 2.7: Two simple and two non-simple polygons

Besides non-simple polygons, such as those in Figure 2.7(c) and (d), we usually also ignore polygons in which three successive
vertices lie on the same line. A vertex of a polygon is said to be convex if the interior angle between the two edges meeting at that
vertex is less than 180°. If all vertices of a polygon are convex, the polygon itself is said to be convex, as is the case with Figure
2.7(a). Non-convex vertices are referred to as reflex. If a polygon has at least one reflex vertex, the polygon is said to be concave.
Figure 2.7(b) shows a concave polygon because the vertex in the middle is reflex. All triangles are convex, and each polygon has
at least three convex vertices.

If we are given the vertices P0, P1, … , Pn− 1 of a polygon, it may be desirable to determine whether this vertex sequence is
counter-clockwise. If we know that the second vertex, P1, is convex, we can simply write
if (Tools2D.area2(p[0], p[1], p[2]) > 0)
   ... // Counter-clockwise
else
   ... // Clockwise

The problem is more interesting if no information about any convex vertex is available. We then have to detect such a vertex. This
is an easy task, since any vertex whose x-or y-coordinate is extreme is convex. For example, we can use a vertex whose x-
coordinate is not greater than that of any other vertex. If we do not want to exclude the case of three successive vertices lying on
the same line, we must pay special attention to the case of three such vertices having the minimum x-coordinate. Therefore,
among all vertices with an x-coordinate equal to this minimum value, we choose the lowest one, that is, the one with the least y-
coordinate. The following method is based on this idea:
static boolean ccw(Point2D[] p)
{  int n = p.length,k=0;
   for (int i=1; i<n; i++)
      if (p[i].x <= p[k].x && (p[i].x < p[k].x || p[i].y < p[k].y))
         k=i;
   // p[k] is a convex vertex.
   int prev = k - 1, next = k + 1;
   if (prev = = -1) prev = n - 1;
   if (next == n) next = 0;
   return Tools2D.area2(p[prev], p[k], p[next]) > 0;
}

We should be aware that one very strange situation is still possible: all n vertices may lie on the same line. In that case, the
method ccw will return the value false.

We will use this method in Section 2.13, in which program PolyTria.java will divide a user-entered polygon into triangles.
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2.7 THE AREA OF A POLYGON
As we have seen in Figure 2.4, the cross product a × b is a vector whose length is equal to the area of a parallelogram of which a
and b are two edges. Since this parallelogram is the sum of two triangles of equal area, it follows that for Figure 2.6 we have

Note that this is valid only if A, B and C are labeled counter-clockwise; if this is not necessarily the case, we have to use the
absolute value of a1b2 −  a2b1.

Since a1 = xA −  xC, a2 = yA −  yC, b1 = xB −  xC, b2 = yB −  yC, we can also write

After working this out, we find that we can replace this with

Although the latter expression seems hardly an improvement, it is useful to prepare for a more general one, which we can use to
compute the area of any polygon, convex or concave, which has the vertices P0P1, P1P2, …  , Pn− 2Pn− 1, Pn− 1, labeled counter-
clockwise:

where (xi, yi) are the coordinates of Pi and Pn is the same vertex as P0. As you can see, our last formula for the area of a triangle
is a special case of this general one, in which the area of a polygon is expressed directly in terms of the coordinates of its vertices.
A complete proof of this formula is beyond the scope of this book.

2.7.1 Java Code

As we have seen in Section 2.6, we use the method area2 to determine the orientation of three points A, B and C. Recall that the
digit 2 in the name area2 indicates that we have to divide the return value by 2 to obtain the area of triangle ABC, that is, if A, B
and C are counter-clockwise; otherwise, we have to take the absolute value |area2(A, B, C)/2|.

The same applies to the following method area2, whose return value divided by 2 gives the area, possibly preceded by a minus
sign, of a polygon.
static float area2(Point2D[] pol)
{  int n = pol.length,
       j = n - 1;
   float a = 0;

   for (int i=0; i<n; i++)
   {  // i and j denote neighbor vertices
      // with i one step ahead of j
      a + = pol[j].x * pol[i].y - pol[j].y * pol[i].x; j=i;
   }
   return a;
}

Note that this second area2 method provides another means of deciding the orientation of a polygon vertex sequence: this
orientation is counter-clockwise if area2 returns a positive value and clockwise if it returns a negative one. However, the method
ccw discussed in Section 2.6 is faster, especially if n is large, because for most vertices it will only perform the comparison
p[i].x <= p[k].x

while area2 performs some more time-consuming arithmetic operations for each vertex.

We could add this second method area2totheclass Tools2D, but you will not find it in our final version of this class in Section 2.13
because we will never use it in this book; since we will use Tools2D several times, we prefer to omit superfluous methods for
economic reasons.
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2.8 POINT-IN-TRIANGLE TEST
Determining the orientation of three points as we have just been discussing is useful in a test to see if a given point P lies within a
triangle ABC. As Figure 2.8 shows, this is the case if the orientation of the triangles ABP, BCP and CAP is the same as that of
triangle ABC.

 
Figure 2.8: Orientation used to test if P lies within triangle ABC

Let us assume that we know that the orientation of ABC is counter-clockwise. We can then call the following method to test if P
lies within triangle ABC (or on an edge of it):
static boolean insideTriangle(Point2D a, Point2D b, Point2D c,
   Point2D p) // ABC is assumed to be counter-clockwise
{ return
     Tools2D.area2(a, b, p) >= 0 &&
     Tools2D.area2(b, c, p) >= 0 &&
     Tools2D.area2(c, a, p) >= 0;

}

In this form, the method insideTriangle also returns the value true if P lies on an edge of the triangle ABC. If this is not desired, we
should replace >= 0with > 0. The above form is the one we will need in Chapters 6 and 7, in which we will use this method to
triangulate complicated polygonal faces of 3D objects.

Incidentally, with a floating-point value x, we might consider replacing a test of the form x >= 0with x >=− epsilon and x > 0with x >
epsilon,where epsilon is some small positive value, such as 10−6. In this way a very small rounding-off error (less than epsilon) in
the value of x will not affect the result of the test. This is not done here because the above method insideTriangle works well for
our applications.

2.8.1 An Alternative Method insideTriangle

The above method insideTriangle is reasonably efficient, especially if point P does not lie within the triangle ABC. In such cases
the chances are that not all three calls to area2 are executed because the first or the second of the three tests fails. However, it
should be mentioned that there is an entirely different way of solving the problem in question, as we will see in Exercise 3.5. The
corresponding alternative method insideTriangle (listed in Appendix F), is slightly faster than the one above if a single triangle ABC
is to be used for several points P. It is also more general in that it does not rely on ABC being counter-clockwise. We will not
discuss this alternative method here because it is easier to understand after the discussion of matrix multiplication and inverse
matrices in Chapter 3. To avoid confusion we will normally use the insideTriangle version discussed in this section and occurring
in the file Tools2D.java, even in cases where the one in Exercise 3.5 might be slightly faster.
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2.9 POINT-IN-POLYGON TEST
The notion of orientation is also useful when we need to determine whether a given point P lies within a polygon. It will then be
convenient if a method is available which accepts both the polygon in question and point P as arguments, and returns true if P lies
inside and false if it lies outside the polygon. If P lies on a polygon edge, we do not care: in that case the method may return true
or false. The method we will discuss is based on the idea of drawing a horizontal half-line, which starts at P and extends only to
the right. The number of intersections of this horizontal half-line with polygon edges is odd if P lies within the polygon and even if P
lies outside it. Imagine that we move to the right, starting at point P. Then our state changes from inside to outside and vice versa
each time we cross a polygon edge. The total number of changes is therefore odd if P lies within the polygon and even if it lies
outside the polygon. It is not necessary to visit all intersections strictly from left to right; the only thing we want to know is whether
there are an odd or an even number of intersections on a horizontal line through P and to the right of P. However, we must be
careful with some special cases, as shown in Figure 2.9.

 
Figure 2.9: Polygon and half-line starting at P

We simply ignore horizontal polygon edges, even if they have the same y- coordinate as P, as is the case with edge 4–5 in this
example. If a vertex occurring as a ‘local maximum or minimum’ happens to have the same y- coordinate as P, as is the cases
with vertices 8 and 12 in this example, it is essential that this is either ignored or counted twice. We can realize this by using the
edge from vertex i to vertex i + 1 only if

This implies that the lower endpoint of a non-horizontal edge is regarded as part of the segment, but the upper endpoint is not. For
example, in Figure 2.9, vertex8(with y8 = yP) is not counted at all because it is the upper endpoint of both edge 7–8 and edge 8–9.
By contrast, vertex 12 (with y12 = yP) is the lower endpoint of the edges 11–12 and 12–13 and thus counted twice. Therefore, in
this example, we count the intersections of the half-line through P with the seven edges 2–3, 3–4, 5–6, 6–7, 10–11, 11–12, 12–13
and with no others.

Since we are considering only a half-line, we must impose another restriction on the set of edges satisfying the above test,
selecting only those whose point of intersection with the half-line lies to the right of P. One way of doing this is by using the
method area2 to determine the orientation of a sequence of three points. For example, this orientation is counter-clockwise for the
triangle 2-3-P in Figure 2.9, which implies that P lies to the left of edge 2–3. It is also counter-clockwise for the triangle 7-6-P. In
both cases, the lower endpoint of an edge, its upper endpoint and point P, in that order, are counter-clockwise. The following
method is based on these principles:
static boolean insidePolygon(Point2D p, Point2D[] pol)
{  int n = pol.length, j = n - 1;
   boolean b = false;
   float x = p.x, y = p.y;
   for (int i=0; i<n; i++)
   { if (pol[j].y <= y && y < pol[i].y &&
         Tools2D.area2(pol[j], pol[i], p) > 0 ||
         pol[i].y <= y && y < pol[j].y &&
         Tools2D.area2(pol[i], pol[j], p) > 0) b = !b;
     j = i;

    }
    return b;
}

This static method, like some others in this chapter, might be added to the class Tools2D (see Section 2.13).

2.9.1 The contains Method of the Java Class Polygon

There is a standard class Polygon, which has a member named contains to perform about the same task as the above method
insidePolygon. However, it is based on integer coordinates.

For example, to test if a point P(xP, yP) lies within the triangle with vertices A(20, 15), B(100, 30) and C(80, 150), we can use the
following fragment:
int[] x = {20, 100, 80}, y = {15, 30, 150}; // A, B, C
Polygon p = new Polygon(x, y, 3);
if (p.contains(xP, yP)) ... // P lies within triangle ABC.
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if (p.contains(xP, yP)) ... // P lies within triangle ABC.

If P lies exactly on a polygon edge, the value returned by this method contains of the class Polygon can be true or false.
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2.10 POINT-ON-LINE TEST
Testing whether a point P lies on a given line is very simple if this line is given as an equation, say,

Then all we need to do is to test whether the coordinates of P satisfy this equation. Due to inexact computations, such a test may
fail when it should succeed. It may therefore be wise to be slightly more tolerant, so that we might write
if (Math.abs(a * p.x + b * p.y - h) < eps) // P on the line

where eps is some small positive value, such as 10−5.

If the line is not given by an equation but by two points A and B on it, we can use the above test after deriving an equation for the
line, as discussed in Section 2.3, writing

which gives the following coefficients for Equation (2.7):

Instead, we can benefit from the area2 method, which we are now familiar with. After all, if and only if P lies on the line through A
and B, the triangle ABP is degenerated and has a zero area. We can therefore write
if (Math.abs(Tools2D.area2(a, b, p)) < eps) // P on line AB

Again, if we simply test whether the computed area is equal to zero, such a test might fail when it should succeed, due to
rounding-off errors.

2.10.1 Testing Whether a Point Lies on a Line Segment

If three points A, B and P are given, we may want to determine whether P lies on the closed line segment AB. The adjective
closed here means that we include the endpoints A and B, so that the question is to be answered affirmatively if P lies between A
and B or coincides with one of these points. We assume that A and B are different points, which implies that xA ≠  xB or yA ≠  yB. If
xA ≠  xB we test whether xP lies between xA and xB; if not, we test whether yP lies between yA and yB, where in both cases the
word between includes the points A and B themselves. This test is sufficient if it is given that P lies on the infinite line AB. If that is
not given, we also have to perform the above test, which is done in the following method:
static boolean onSegment(Point2D a, Point2D b, Point2D p)
{  double dx = b.x - a.x, dy = b.y - a.y,
      eps = 0.001 * (dx * dx + dy * dy);
   return
      (a.x != b.x &&
      (a.x <= p.x && p.x <= b.x || b.x <= p.x && p.x <= a.x)
      || a.x == b.x &&
      (a.y <= p.y && p.y <= b.y || b.y <= p.y && p.y <= a.y))
      && Math.abs(Tools2D.area2(a, b, p)) < eps;
}

The expression following return relies on the operator && having higher precedence than ||. Since both operators && and ||
evaluate the second operand only if this is necessary, this test is more efficient than it looks. For example, if xA ≠  xB
thetestonthelineoftheform(a.y <= … ) is not evaluated at all. The positive constant eps in the above code has been chosen in such
a way that the area of triangle ABP is compared with a fraction of another area, for which the square of side AB is used. In this
way, the compared areas depend in the same way on both the length of AB and the unit of length that is used.

Instead of testing if P lies on the segment AB, we may want to apply a similar test to the projection P′ of P on AB, as Figure 2.10
shows.

 
Figure 2.10: Projection P′ of P on line AB between A and B
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We can solve this problem by computing the dot product of the vectors AB and AP. This dot product AB · AP is equal to 0 if P′ ≡
A(P′ coincides with A) and it is equal to AB · AB = AB2 if P′ ≡  B. For any value of this dot product between these two values, P
lies between A and B. We can write this as follows in a program, where len2 corresponds to AB · AB, inprod corresponds to AB ·
AP,and eps is some small positive value, as discussed for the above method onSegment:
// Does P' (P projected on AB) lie on the closed segment AB?
static boolean projOnSegment(Point2D a, Point2D b, Point2D p)
{ double dx = b.x - a.x, dy = b.y - a.y,
      eps = 0.001 * (dx * dx + dy * dy),
      len2 = dx * dx + dy * dy,
      inprod = dx * (p.x - a.x) + dy * (p.y - a.y);
   return inprod > -eps && inprod < len2 + eps;
}

To determine whether P′ lies on the open segment AB (not including A and B), we replace the return statement with
return inprod > eps && inprod < len2 - eps;
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2.11 DISTANCE BETWEEN A POINT AND A LINE
We can find the distance between a point P and a line l in different ways, depending on the way the line is specified. If two points
A and B of the line are given, we can find the distance between a point P and the (infinite) line l through A and B by using the first
of the two methods area2 defined in Section 2.7:

This follows from the fact that the absolute value of area2(A, B, P) denotes the area of the parallelogram of which A, B and P are
three vertices, as shown in Figure 2.11(a). This area is also equal to the product of the parallelogram's base AB and its height d.
We can therefore compute d in the above way.

 
Figure 2.11: Distance between point P and line l

If the line l is given as an equation, we assume this to be in the form

where

If the latter condition is not satisfied, we only have to divide a, b and h by the above square root. We can then write the above
equation of line l as the dot product

where

The normal vector n is perpendicular to line l and has length 1. For any vector x, starting at O, the dot product x · n is the
projection of vector x on n. This also applies if the endpoint of x lies on line l, as shown in Figure 2.11(b); in this case we have x ·
n = h. We find the desired distance between point P and line l by projecting OP also on n and computing the difference of the two
projections:

Although Figure 2.11(b) applies to the case h > 0, this equation is also valid if h is negative or zero, or if O lies between line l and
the line through P parallel to l. Both OP · n and h are scale factors for the same vector n. The absolute value of the algebraic
difference of these two scale factors is the desired distance between P and l. We will refer to this algebraic difference OP · n −  h
= axP + byP −  h as a signed distance in the next section.
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2.12 PROJECTION OF A POINT ON A LINE
Suppose that again a line l and a point P (not on l) are given and that we want to compute the projection P′ of P on l (see Figure
2.10). This point P′ has three interesting properties:

1. P′ is the point on l that is closest to P.

2. The length of PP′ is the distance between P and l (computed in the previous section).

3. PP′ and l are perpendicular.

As in the previous section, we discuss two solutions: one for a line l given by two points A and B, and the other for l given as the
equation x · n = h.

With given points A and B on line l, the situation is as shown in Figure 2.10. Recall that in Section 2.10 we discussed the method
projOnSegment to test if the projection P′ of P on the line through A and B lies between A and B. In that method, we did not
actually compute the position of P′. We will now do this (see Figure 2.10), first by introducing the vector u of length 1 and direction
AB:

Then the length of the projection AP′ of AP is equal to

which we use to compute

Doing this straightforwardly would require a square-root operation in the computation of the distance between A and B, used in the
computation of u. Fortunately, we can avoid this by rewriting the last equation, using the two preceding ones:

The advantage of the last form is that the square of the segment length AB is easier to compute than that length itself. The
following method, which returns the projection P′ of P on AB, demonstrates this:
// Compute P' (P projected on AB):
static Point2D projection(Point2D a, Point2D b, Point2D p)
{  float vx = b.x - a.x, vy = b.y - a.y, len2 = vx * vx + vy * vy,
      inprod = vx * (p.x - a.x) + vy * (p.y - a.y);
   return new Point2D(a.x + inprod * vx/len2,
                      a.y + inprod * vy/len2);
}

So much for a line given by two points A and B.

Let us now turn to a line l given by its equation, which we again write as

where

and

Using the ‘signed distance’

as introduced at the end of the previous section and illustrated by Figure 2.11, we can write the following vector equation to
compute the desired projection P′ of P on l:

This should make the following method clear:
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// Compute P', the projection of P on line l given as
// ax + by = h, where a * a + b * b = 1
static Point2D projection(float a, float b, float h,
   Point2D p)
{  floatd = p.x * a + p.y * b-h;
   return new Point2D(p.x - d * a, p.y - d * b);
}

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


2.13 TRIANGULATION OF POLYGONS
In many graphics applications, such as those to be discussed in Chapters 6 and 7, it is desirable to divide a polygon into triangles.
This triangulation problem can be solved in many ways. We will discuss a comparatively simple algorithm. It accepts a polygon in
the form of an array of Point2D elements (see Section 1.5), containing the polygon vertices in counter-clockwise order. The
triangulate method that we will discuss takes such an array as an argument. To store the resulting triangles, it also takes a second
argument, an array with elements of type Triangle, which is defined as follows:
// Triangle.java: Class to store a triangle;
//    vertices in logical coordinates.
// Uses: Point2D (Section 1.5).

class Triangle
{  Point2D a, b, c;
   Triangle(Point2D a, Point2D b, Point2D c)
   { this.a = a; this.b = b; this.c = c;
   }
}

If the given polygon has n vertices, this triangle array should have length n −  2. The algorithm works as follows. Traversing the
vertices of the polygon in counter-clockwise order, for every three successive vertices P, Q and R of which Q is a convex vertex
(with an angle less than 180°), we cut the triangle PQR off the polygon if this triangle does not contain any of the other polygon
vertices. For example, starting with polygon ABCDE in Figure 2.12, we cannot cut triangle ABC, because this contains vertex D.
Nor is triangle CDE a good candidate, because D is not a convex vertex. There are no such problems with triangle BCD, so that
we will cut this off the polygon, reducing the polygon ABCDE to the simpler one ABDE.

 
Figure 2.12: Cutting off a triangle

For this purpose we use the static method triangulate, which, along with some others already discussed, is listed in the class
Tools2D below:
// Tools2D.java: Class to be used in other program files.
// Uses: Point2D (Section 1.5) and Triangle (discussed above).

class Tools2D
{  static float area2(Point2D a, Point2D b, Point2D c)
   { return (a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x);
   }

   static boolean insideTriangle(Point2D a, Point2D b, Point2D c,
      Point2D p) // ABC is assumed to be counter-clockwise
   { return
       Tools2D.area2(a, b, p) >= 0 &&
       Tools2D.area2(b, c, p) >= 0 &&
       Tools2D.area2(c, a, p) >= 0;
   }

   static void triangulate(Point2D[] p, Triangle[] tr)
   {  // p contains all n polygon vertices in CCW order.
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   {  // p contains all n polygon vertices in CCW order.
      // The resulting triangles will be stored in array tr.
      // This array tr must have length n - 2.
      int n = p.length, j = n - 1, iA=0, iB, iC;
      int[] next = new int[n];
      for (int i=0; i<n; i++)
      {  next[j] = i;
         j = i;
      }
      for (int k=0; k<n-2; k++)
      {  // Find a suitable triangle, consisting of two edges
         // and an internal diagonal:
         Point2D a, b, c;
         boolean triaFound = false;
         int count = 0;
         while (!triaFound && ++count < n)
         {  iB = next[iA]; iC = next[iB];
            a = p[iA]; b = p[iB]; c = p[iC];
            if (Tools2D.area2(a, b, c) >= 0)
            {  // Edges AB and BC; diagonal AC.
               // Test to see if no other polygon vertex
               // lies within triangle ABC:
               j = next[iC];
               while (j != iA && !insideTriangle(a, b, c, p[j]))
                  j = next[j];
               if (j == iA)
               {  // Triangle ABC contains no other vertex:
                  tr[k] = new Triangle(a, b, c);
                  next[iA] = iC;
                  triaFound = true;
               }
            }
            iA = next[iA];
         }
         if (count == n)
         {  System.out.println("Not a simple polygon" +
              " or vertex sequence not counter-clockwise.");
            System.exit(1);
         }
      }
   }

   static float distance2(Point2D p, Point2D q)
   {  float dx = p.x - q.x,
         dy = p.y - q.y;
   return dx * dx + dy * dy;
   }
}

In Appendix D we will use the method distance2, shown at the end of this class; it simply computes the square of the distance of
two points P and Q. If we only want to compare two distances, we may as well compare their squares to save the rather costly
operation of computing the square roots.

The program below enables the user to define a polygon, in the same way as wedidwithprogram DefPoly.java in Section 1.5, but
this time the polygon will be divided into triangles, which appear in different colors. This program, PolyTria.java, uses the above
classes Triangle and Tools2D,as well as the class CvDefPoly, which occurs in program DefPoly.java of Section 1.5. In our
subclass, CvPolyTria, we apply the method ccw, discussed in Section 2.6, to the given polygon to examine the orientation of its
vertex sequence. If this happens to be clockwise, we put the vertices in reverse order in the array P,sothat the vertex sequence
will be counter-clockwise in this array, which we can then safely pass on to the triangulate method:
// PolyTria.java: Drawing a polygon and dividing it into triangles.
// Uses: CvDefPoly, Point2D (Section 1.5),
//       Triangle, Tools2D (discussed above).

import java.awt.*;
import java.awt.event.*;
import java.util.*;
public class PolyTria extends Frame
{  public static void main(String[] args){new PolyTria();}

   PolyTria()
   {  super("Define polygon vertices by clicking");
      addWindowListener(new WindowAdapter()
         {public void windowClosing(WindowEvent e){System.exit(0);}});
      setSize (500, 300);
      add("Center", new CvPolyTria());

   setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));
         show();
   }
}
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}
class CvPolyTria extends CvDefPoly // see Section 1.5
{  public void paint(Graphics g)
   { int n = v.size();
   if (n > 3 && ready)
   {  Point2D[] p = new Point2D[n];
      for (int i=0; i<n; i++) p[i] = (Point2D)v.elementAt(i);
      // If not counter-clockwise, reverse the order:
      if (!ccw(p))
         for (int i=0; i<n; i++)
             p[i] = (Point2D)v.elementAt(n - i - 1);
      int ntr = n - 2;
      Triangle[] tr = new Triangle[ntr];
      Tools2D.triangulate(p, tr);
      initgr();

      for (int j=0; j<ntr; j++)
      {  g.setColor(new Color(rand(), rand(), rand()));
         int[] x = new int[3], y = new int[3];
         x[0] = iX(tr[j].a.x); y[0] = iY(tr[j].a.y);
         x[1] = iX(tr[j].b.x); y[1] = iY(tr[j].b.y);
         x[2] = iX(tr[j].c.x); y[2] = iY(tr[j].c.y);
         g.fillPolygon(x, y, 3);
      }
   }
   g.setColor(Color.black);
   super.paint(g);
}

int rand(){return (int)(Math.random() * 256);}

static boolean ccw(Point2D[] p)
  {  int n = p.length, k = 0;
     for (int i=1; i<n; i++)
        if (p[i].x <= p[k].x && (p[i].x < p[k].x || p[i].y < p[k].y))
          k = i;
    // p[k] is a convex vertex.
    int prev = k - 1, next = k + 1;
    if (prev == -1) prev = n - 1;
    if (next == n) next = 0;
    return Tools2D.area2(p[prev], p[k], p[next]) > 0;
  }
}

The canvas class CvPolyTria is a subclass of CvDefPoly so that the construction of a polygon with vertices specified by the user is
done in the same way as in Section 1.5. In this subclass, we call the method triangulate to construct the array tr of triangles.
These are then displayed in colors generated with a random number generator, so that we can clearly distinguish them. The result
on the screen is much better than Figure 2.13, because the latter shows only shades of gray instead of the real colors.

 
Figure 2.13: Triangulation of a polygon

EXERCISES

2.1 Write a program that draws a square ABCD. The points A and B are arbitrarily specified by the
user by clicking the mouse button. The orientation of the points A, B, C and D should be counter-
clockwise.

2.2 Write a program that, for four points A, B, C and P,

draws a triangle formed by ABC and a small cross showing the position of P; and

displays a line of text indicating which of the following three cases applies: P lies
(a) inside ABC, (b) outside ABC, or (c) on an edge of ABC.

The user will specify the four points by clicking.

2.3 The same as Exercise 2.2, but, instead of displaying a line of text, the program computes the
distances from P to the (infinite) lines AB, BC and CA, and draws the shortest possible line that
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distances from P to the (infinite) lines AB, BC and CA, and draws the shortest possible line that
connects P with the nearest of those three lines.

2.4 Write a program that computes the intersection point of two (infinite) lines AB and CD. The user
will specify the points A, B, C and D by clicking. Draw a small circle around the intersection point.
If the two lines AB and CD do not have a unique intersection point (because they are parallel or
coinciding), display a line of text indicating this.

2.5 Write a program that constructs the bisector of the angle ABC (which divides the angle at B into
two equal angles). After the user has specified the points A, B and C by clicking, the program
should compute the intersection point D of this bisector with the opposite side AC, and draw both
triangle ABC and bisector BD.

2.6 Write a program that draws the circumscribed circle (also known as the circumcircle) of a given
triangle ABC; this circle passes through the points A, B and C. These points will be specified by
the user by clicking the mouse button. Remember, the three perpendicular bisectors of the three
edges of a triangle all pass through one point, the circumcenter, which is the center of the
circumscribed circle.

2.7 Write a program that, for three given points P, Q and R specified by the user, draws a circular
arc, starting at P, passing through Q and ending at R (see also Exercise 2.6).

2.8 Construct a fillet to replace a sharp corner with a rounded one, as illustrated by the solid lines
and the arc in Figure 2.14. The four points A, B, C and D are specified by the user by clicking.
Point D may or may not lie on AB; if it does not, it is projected onto AB, giving D′, as Figure 2.14
illustrates. The arc starts at point D′.

 
Figure 2.14: Fillet

2.9 Construct the inscribed circle (or incircle) of a given triangle ABC. The center of this circle lies on
the point of intersection of the (internal) bisectors of the three angles A, B and C. Draw also the
three excircles, which, like the incircle, are tangent to the sides of the triangle, as shown in Fig.
2.15. The centers of the excircles lie on the points of intersection of the external bisectors of the
angles A, B and C.
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Figure 2.15: Incircle and excircles of triangle ABC

2.10 Write a program that draws a tree of Pythagoras as shown in Figure 2.16. Two vertices A and B,
the basis of the tree, are specified by the user by clicking. Then both a square ABCD and an
isosceles, right-angled triangle DCE, with right angle E, are constructed. The orientation of both
ABCD and DCE is counter-clockwise. Finally, the points D and E form the basis of another tree
of Pythagoras, and so do the points E and C. Use a recursive method, which does nothing at all
if the two supplied basis points are closer together than some limit.

 
Figure 2.16: Tree of Pythagoras

Answers

2.1 After rotating the vector v = (v1, v2) through 90° counter-clockwise, we obtain the vector (− v2, v1). Setting
v = (v1, v2) = (xB −  xA, yB −  yA), we can therefore find the points D and C by adding (− v2, v1) to the
coordinates of A and B, respectively.

2.2 To determine the position of P relative to the triangle ABC, we first test whether P lies on one of the three
sides of the triangle, using the method onSegment, discussed in Section 2.10. If this is not the case, we
test whether P lies inside ABC, using the method insideTriangle of Section 2.8. To do this properly, we
need to know the orientation of A, B and C, for which we can use the method ccw of Section 2.6. If this
orientation is clockwise, we use C, B and A, in that order, as the first three arguments of insideTriangle,
so that the orientation of these arguments is counter- clockwise, as required. If P lies neither on a triangle
side nor inside the triangle, it lies outside it.

2.3 Section 2.11 shows how to compute the distance between a point and a line. We perform this
computation three times to determine which of the three triangle sides AB, BC and CA (or rather the
infinite lines through these sides) lies closest to point P. We then use the method projection of Section
2.12 to compute the projection P′ of P on the triangle side in question (or on an extension of it). We draw
both the triangle and the line segment PP′. If the projection point P′ lies on an extension of a side, we
also connect this point to the side (AB, BC or CA), to indicate clearly which of the three lines has been
used. For example, if P′ lies on an extension of BC (not between B and C), we can draw P′B.

2.4 Using the vector AB = u = (u1, u2) = (xB −  xA, yB −  yA) and the parameter λ , we can represent the line
through A and B by the following vector form:

Similarly, with CD = v = (v1, v2) = (xD −  xC, yD −  yC) and parameter μ , the line through C and D is
represented by
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We find the intersection point S by solving

for λ  (rewriting this vector equation as a system of two linear equations, using the x-and y- coordinates of
A and C as well as u1, u2, v1 and v2). We then use the value of λ  computed in this way to find

When deriving the desired value of λ , we will have to perform a division by the expression u2v1 −  u1v2
(which is a determinant). If this determinant is zero, the lines AB and CD do not have a unique
intersection point because these lines are parallel or coincide. Since the points A, B, C and D are
obtained by clicking and there are (very small) rounding-off errors, we had better replace the condition

with this one:

where epsilon is some very small positive value. To make this independent of the units of length and in
view of the way the determinant is computed, a reasonable value is

2.5 To construct the bisector of angle B, we can compute the two vectors u = BA/|BA| and v = BC/|BC|. We
can view these vectors as arrows starting at B and pointing to A and C, respectively. Since both u and v
have length 1, the sum vector

can then be regarded as another arrow starting at B but lying on the desired bisector, so that, with
parameter α , the vector form

denotes the bisector of angle B. The intersection point D of this bisector and triangle side AC can then be
found in the same way as in Exercise 2.4.

2.6 Using AB=u=(u1, u2)=(xB −  xA, yB −  yA) and v =(v1, v2) = (− u2, u1), we can write the following vector
form for the perpendicular bisector of AB:

To find the circumcenter D of triangle ABC, write a similar vector form, say,

for the perpendicular bisector of BC. You can then find the intersection of these two lines by solving the
vector equation

for λ  (or μ ). Then the circumcenter D is found as the point of intersection by using this value λ  in Equation
(F.1). After computing the radius r =|AD|, and using the methods iX and iY to convert real logical
coordinates into integer device coordinates, you can draw the circle through A, B and C by writing:
int xLeft = iX(xD - r), xRight = iX(xD + r),
    yTop = iY(yD + r), yBottom = iY(yD - r);
g.drawOval(xLeft, yTop, xRight - xLeft, yBottom - yTop);

2.7 Compute the center C and the radius r of the circle through P, Q and R (see Exercise 2.6). Although there
is a method drawArc in Java, this is not suitable for our present purpose because it requires angles to be
specified (in degrees) as integers; especially if r is large, this may cause too large rounding-off errors with
regard to both endpoints of the arc. We therefore simply use a great many straight line segments. We
can do this by using Point2D objects for C, P, Q and R (see Section 1.5). Taking the orientation of P, Q
and R into account by means of the method area2ofclass Tools2D (see Section 2.13), we can write:
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double alpha = Math.atan2(P.y - C.y, P.x - C.x),
       beta  = Math.atan2(R.y - C.y, R.x - C.x);
if (Tools2D.area2(P, Q, R) > 0)
   arcCcw(g, C, r, alpha, beta);
else
   arcCcw(g, C, r, beta, alpha);

The method arcCcw, used here, is listed below. Working counter- clockwise, it draws the arc with start
and end angles alpha and beta and belonging to the circle with center C and radius r:
void arcCcw(Graphics g, Point2D C, double r,
   double alpha, double beta)
{  double pi2=2* Math.PI, delta = beta - alpha;
   // Reduce delta to the interval [0, 2pi):
   delta = (delta + pi2) % pi2;
   int X0=0, Y0=0,                     // Arc length = r * delta
      n = (int)Math.ceil(r * delta / 0.02); // 0.02 = rWidth/500
   double theta = delta / n;
   for (int i=0; i<=n; i++)
   {  double phi = alpha + i * theta,
         x = C.x + r * Math.cos(phi),
         y = C.y + r * Math.sin(phi);
      int X = iX((float)x), Y = iY((float)y );
      if (i > 0) g.drawLine(X0, Y0, X, Y);
      X0 = X; Y0 = Y;
   }
}

2.8 We can use the first of the two methods projection of Section 2.12 to find the projection D' of D on AB.
Since the center M of the circular arc lies on the bisector of the angle ABC, we compute the unit vectors u
= BA/|BA| and v = BC/|BC| and w = (u + v)/|u + v|,whichstart at B and point to A, C and M, respectively.
We now have to find a scale factor λ , so that BM = λ  w. Since the cosine of the angle D′ BM is equal to w
· v and using μ  =|BD′|, we can compute λ  = µ/(w · v). We then find the endpoint E of the arc on BC and
the center M as follows: E = B + μv, M = B + λw. Obviously, the radius of the arc is r =|MD′|. We can now
compute the start and end angles α  and β  and draw the arc by choosing between two calls to the method
arcCcw, depending on the orientation of the points A, B and C (see Exercise 2.7).

2.9 Refer to Exercise 2.8 for bisectors of angles and to Exercise 2.1 for the intersection of two lines. This will
provide you with the centers of the four circles. You can use the radius of each circle as the distance of its
center to one of its tangents. Recall that we have discussed the distance of points to lines in Section 2.11.

2.10 Use vector AB = (u1, u2) to find the points D = A + (− u2, u1), C = D + (u1, u2)and E = D + 0.5 {(u1, u2) +
(− u2, u1)}.
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Chapter 3: Geometrical Transformations

To understand perspective projection, which we will discuss in Chapter 5, we need to be familiar with 3D rotations. These
and other transformations will be discussed in this chapter. They are closely related to matrix multiplication, which is the
subject we start with.

3.1 MATRIX MULTIPLICATION
A matrix (plural matrices) is a rectangular array of numbers enclosed in brackets (or parentheses). For example,

is a 2 × 4 matrix: it consists of two rows and four columns. If a matrix consists of only one row, we call it a row matrix or row
vector. In the same way, we use the term column matrix or column vector for a matrix that has only one column.

If A and B are matrices and the number of columns of A is equal to the number of rows of B, we can compute the matrix product
AB. This product is another matrix, which has as many rows as A and as many columns as B. We will discuss this in detail for a
particular case with regard to the dimensions of A and B: we will use a 2 × 3matrix A and a 3 × 4 matrix B. Then the product C =
AB exists and is a 2 × 4 matrix. It will be clear that the matrix product AB can be computed for A and B of other dimensions in a
similar way, provided the number of columns of A is equal to the number of rows of B.

Writing

and similar expressions for both the matrix B and the product matrix C = AB, we have

Each element cij (found in row i and column j of the product matrix C) is equal to the dot product of the ith row of A and the jth
column of B. For example, to find c23, we need the numbers a21, a22 and a23 in the second row of A and b13, b23 and b33 in the
third column of B. Using these two sequences as vectors, we can compute their dot product, finding

In general, the elements of the above matrix C are computed as follows:
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3.2 LINEAR TRANSFORMATIONS
A transformation T is a mapping

such that each vector v (in the vector space we are dealing with) is assigned its unique image v′. Let us begin with the xy-plane
and associate with each vector v the point P, such that

Then the transformation T is also a mapping

for each point P in the xy-plane, where OP′ = v′.

A transformation is said to be linear if the following is true for any two vectors v and w and for any real number λ :

By using λ  = 0 in the last equation, we find that, for any linear transformation, we have

We can write any linear transformation as a matrix multiplication. For example, consider the following linear transformation:

We can write this as the matrix product

or as the following:

The notation of (3.1) is normally used in standard mathematics textbooks; in computer graphics and other applications in which
transformations are combined, the notation of (3.2) is also popular because it avoids a source of mistakes, as we will see in a
moment. We will therefore adopt this notation, using row vectors.

It is interesting to note that, in (3.2), the rows of the 2 × 2 transformation matrix are the images of the unit vectors (1, 0) and (0, 1),
respectively, while these images are the columns in (3.1). You can easily verify this by substituting [1 0] and [0 1] for [x y] in (3.2),
as the bold matrix elements below illustrate:

This principle also applies to other linear transformations. It provides us with a convenient way of finding the transformation
matrices.
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3.2.1 Rotation

To rotate all points in the xy-plane about O through the angle φ , we can now easily write the transformation matrix, using the rule
we have just been discussing. We simply find the images of the unit vectors (1, 0) and (0, 1). As we know from elementary
trigonometry, rotating the points P(1, 0) and Q(0, 1) about O through the angle φ  gives P′(cos φ ,sin φ ) and Q′(−  sin φ , cos φ ). It
follows that (cos φ ,sin φ ) and (−  sin φ , cos φ ) are the desired images of the unit vectors (1, 0) and (0, 1), as Figure 3.1 illustrates.

 
Figure 3.1: Rotation of unit vectors

Then all we need to do is to write these two images as the rows of our rotation matrix:

3.2.2 A Programming Example

To see rotation in action, let us rotate an arrow about the origin O. Before this rotation, the arrow is vertical, points upward and can
be found to the right of O. We will rotate this angle through 120° about the origin O, which is the center of the canvas. Figure 3.2
shows the coordinate axes (intersecting at O) and the arrow before and after the rotation.

 
Figure 3.2: Arrow before and after rotation through 120° about the origin

If we change the dimensions of the window, the origin remains in the center and the sizes of the arrows and of the circle on which
they lie change accordingly, while this circle remains a circle. Recall that we also placed the origin at the center of the canvas in
the Isotrop.java program in Section 1.4, when dealing with the isotropic mapping mode. The following program also uses this
mapping mode and contains the same methods iX and iY for the conversion from logical to device coordinates:
// Arrow.java: Arrow rotated through 120 degrees about the logical
//             origin O, which is the center of the canvas.
import java.awt.*;
import java.awt.event.*;

public class Arrow extends Frame
{  public static void main(String[] args){new Arrow();}

   Arrow()
   {  super("Arrow rotated through 120 degrees about origin");
      addWindowListener(new WindowAdapter()
         {public void windowClosing(WindowEvent e){System.exit(0);}});
      setSize (400, 300);
      add("Center", new CvArrow());
      show();
   }
}
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}
class CvArrow extends Canvas
{  int centerX, centerY, currentX, currentY;
   float pixelSize, rWidth = 100.0F, rHeight = 100.0F;

   void initgr()
   {  Dimension d = getSize();
      int maxX = d.width - 1, maxY = d.height - 1;
      pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
      centerX = maxX/2; centerY = maxY/2;
   }

   int iX(float x){return Math.round(centerX + x/pixelSize);}
   int iY(float y){return Math.round(centerY - y/pixelSize);}

   void moveTo(float x, float y)
   {  currentX = iX(x); currentY = iY(y);
   }

   void lineTo(Graphics g, float x, float y)
   {  int x1 = iX(x), y1 = iY(y);
      g.drawLine(currentX, currentY, x1, y1);
      currentX = x1; currentY = y1;
   }

   void drawArrow(Graphics g, float[]x, float[]y)
   {  moveTo(x[0], y[0]);
      lineTo(g, x[1], y[1]);
      lineTo(g, x[2], y[2]);
      lineTo(g, x[3], y[3]);
      lineTo(g, x[1], y[1]);
   }

   public void paint(Graphics g)
   { float r = 40.0F;
     float[] x = {r, r, r-2, r+2},
             y = {-7, 7, 0, 0};
     initgr();
   // Show coordinate axes:
   moveTo (30, 0); lineTo(g, 0, 0); lineTo(g, 0, 30);
   // Show initial arrow:
   drawArrow(g, x, y);
   float phi = (float)(2 * Math.PI / 3),
      c = (float)Math.cos(phi), s = (float)Math.sin(phi),
        r11 = c, r12 = s, r21 = -s, r22 = c;
    for (int j=0; j<4; j++)
    {  float xNew = x[j] * r11 + y[j] * r21,
             yNew = x[j] * r12 + y[j] * r22;
       x[j] = xNew; y[j] = yNew;
    }
    // Arrow after rotation:
    drawArrow(g, x, y);
  }
}

The logical coordinates of the four relevant points of the arrow are stored in the arrays x and y, and the variables r11, r12, r21 and
r22 denote the elements of the rotation matrix. When programming rotations, we should be careful with two points. First, with a
constant angle φ , we should compute cos φ  and sin φ  only once, even though they occur twice in the rotation matrix. Second, a
serious and frequently occurring error is modifying x[j] too early, that is, while we still need the old value for the computation of y[j],
as the following, incorrect fragment shows:
x[j] = x[j] * r11 + y[j] * r21; // ???
y[j] = x[j] * r12 + y[j] * r22;

There is no such problem if we use temporary variables xNew and yNew (although only the former is really required), as is done in
the program.

3.2.3 Scaling

Suppose that we want to perform scaling with scale factors sx for x and sy for y and with point O remaining at the same place; the
latter is also expressed by referring to O as a fixed point or by a scaling with reference to O. This can obviously be written as

which can also be written as a very simple matrix multiplication:

There are some important special cases:

sx = sy =− 1 gives a reflection about O;
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sx = 1, sy =− 1 gives a reflection about the x-axis;

sx =− 1, sy = 1 gives a reflection about the y-axis.

3.2.4 Shearing

Consider the linear transformation given by

Since the images of the unit vectors appear as the rows of the transformation matrix, we can write this transformation, known as
shearing,as

or

This set of equations expresses that each point (x, y) moves a distance ay to the right, which has the effect of shearing along the
x-axis, as illustrated in Figure 3.3. We can use this transformation to turn regular characters into italic ones; for example, L
becomes L.

 
Figure 3.3: Shearing effects (dashed lines) on a square object (solid lines)

Shearing along the y-axis, also depicted in Figure 3.3, can be similarly expressed as

or
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3.3 TRANSLATIONS
Shifting all points in the xy-plane a constant distance in a fixed direction is referred to as a translation. This is another
transformation, which we can write as:

We refer to the number pair (a, b) as the shift vector,or translation vector. Although this transformation is a very simple one, it is
not linear, as we can easily see by the fact that the image of the origin (0, 0) is (a, b), while this can only be the origin itself with
linear transformations. Consequently, we cannot obtain the image (x′, y′) by multiplying (x, y) by a 2 × 2 transformation matrix T,
which prevents us from combining such a matrix with other transformation matrices to obtain composite transformations.
Fortunately, there is a solution to this problem as described in the following section.
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3.4 HOMOGENEOUS COORDINATES
To express all the transformations introduced so far as matrix multiplications in order to combine various transformation effects,
we add one more dimension. As illustrated in Figure 3.4, the extra dimension W makes any point P = (x, y) of normal coordinates
have a whole family of homogeneous coordinate representations (wx, wy, w) for any value of w except 0. For example, (3, 6, 1),
(0.3, 0.6, 0.1), (6, 12, 2), (12, 24, 4) and so on, represent the same point in two-dimensional space. Similarly, 4-tuples of
coordinates represent points in three-dimensional space. When a point is mapped onto the W = 1 plane, in the form (x, y, 1), it is
said to be homogenized. In the above example, point (3, 6, 1) is homogenized, and the numbers 3, 6 and 1 are homogeneous
coordinates. In general, to convert a point from normal coordinates to homogeneous coordinates, add a new dimension to the
right with value 1. To convert a point from homogeneous coordinates to normal coordinates, divide all the dimension values by the
rightmost dimension value, and then discard the rightmost dimension.

 
Figure 3.4: A homogeneous coordinate system with the plane W = 1

Having introduced homogeneous coordinates, we are able to describe a translation by a matrix multiplication using a 3 × 3 instead
of a 2 × 2 matrix. Using a shift vector (a, b), we can write the translation of Section 3.3 as the following matrix product:

Since we cannot multiply a 3 × 3 by a 2 × 2 matrix, we will also add a row and a column to linear transformation matrices if we
want to combine these with translations (and possibly with other non-linear transformations). These additional rows and columns
simply consist of zeros followed by a one at the end. For example, we can use the following equation instead of 3.3 (in Section
3.2) for a rotation about O through the angle φ :
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3.5 INVERSE TRANSFORMATIONS AND MATRIX INVERSION
A linear transformation may or may not be reversible. For example, if we perform a rotation about the origin through an angle φ
and follow this by another rotation, also about the origin but through the angle −φ ,thesetwo transformations cancel each other
out. Let us denote the rotation matrix of Equation (3.3) (in Section 3.2) by R. It follows that the inverse rotation, through the angle
−φ  instead of φ , is described by the equation

where

The second equality in this equation is based on

Matrix R−1 is referred to as the inverse of matrix R. In general, if a matrix A has an inverse, this is written A−1 and we have

where I is the identity matrix, consisting of zero elements except for the main diagonal, which contains elements one. For
example, in the case of a rotation through φ , followed by one through −φ , we have

The identity matrix clearly maps each point to itself, that is,

Not all linear transformations are reversible. For example, the one that projects each point onto the x-axis is not. This
transformation is described by

which we can also write as

The 2 × 2 matrix in this equation has no inverse. This corresponds to the impossibility of reversing the linear transformation in
question: since any two point P1(x, y1) and P2(x, y2) have the same image P′(x, 0), it is impossible to find a unique point P of
which P′ is the image.

A (square) matrix has an inverse if and only if its determinant is non-zero. Recall that we have discussed determinants in Section
2.3. For example, the determinant

is equal to cos φ  × cos φ  −  (−  sin φ  × sin φ ) = cos2 φ  + sin2 φ  = 1. Since this value is non-zero for any angle φ , the
corresponding matrix
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has an inverse.

Exercise 3.4 shows how to compute the inverse of any 2 × 2 matrix that has a non-zero determinant. A useful application of this
follows in Exercise 3.5.
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3.6 ROTATION ABOUT AN ARBITRARY POINT
So far we have only performed rotations about the origin O. A rotation about any point other than O is not a linear transformation,
since it does not map the origin onto itself. It can nevertheless be described by a matrix multiplication, provided we use
homogeneous coordinates. A rotation about the point C(xC, yC) through the angle φ  can be performed in three steps:

1. A translation from C to O, described by [x′ y′ 1] = [x y 1]T−1, where

2. A rotation about O through the angle φ  described by [x′ y′ 1] = [x y 1] RO, where

3. A translation from O to C, described by [x′ y′ 1] = [x y 1]T, where

Note that we deliberately use the notations T−1 and T, since these two matrices are each other's inverse. This is understandable,
since the operations of translating from C to O and then back from O to C cancel each other out.

The purpose of listing the above three matrices is that we can combine them by forming their product. Therefore, the desired
rotation about point C through the angle φ  can be described by

where

3.6.1 An Application

To see this general type of rotation in action, we will now discuss a program which rotates an arrow through 30° about a point
selected by the user. Initially, one arrow, pointing vertically upward, appears in the center of the canvas. As soon as the user clicks
a mouse button, a second arrow appears. This is the image of the first one, resulting from a rotation through an angle of 30° about
the cursor position. This position is displayed as a crosshair cursor in Figure 3.5.
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Figure 3.5: Arrow before and after rotation through 30° about a point selected by the user

This action can be done repeatedly, in such a way that the most recently rotated arrow is again rotated when the user clicks, and
this last rotation is performed about the most recently selected point. Since the rotation is counter-clockwise, the new arrow would
have appeared below the old one in Figure 3.5 if the user had selected a point to the right instead of to the left of the first arrow.
Program ArrowPt.java shows how this rotation is computed.
// ArrowPt.java: Arrow rotated through 30 degrees
//    about a point selected by the user.
import java.awt.*;
import java.awt.event.*;

public class ArrowPt extends Frame
{  public static void main(String[] args){new ArrowPt();}
   ArrowPt()
   {  super("Arrow rotated about arbitrary point");
      addWindowListener(new WindowAdapter()
         {public void windowClosing(WindowEvent e){System.exit(0);}});
      setSize (400, 300);
      add("Center", new CvArrowPt());
      setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));
      show();
   }
}

class CvArrowPt extends Canvas
{  int centerX, centerY, currentX, currentY;
   float pixelSize, xP = 1e9F, yP,
      rWidth = 100.0F, rHeight = 100.0F;
   float[] x = {0, 0, -2, 2}, y = {-7, 7, 0, 0};

   CvArrowPt()
   {  addMouseListener(new MouseAdapter()
      {  public void mousePressed(MouseEvent evt)
         {  xP = fx(evt.getX()); yP = fy(evt.getY());
            repaint();
         }
      });
    }
    void initgr()
    {  Dimension d = getSize();
    int maxX = d.width - 1, maxY = d.height - 1;
    pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
    centerX = maxX/2; centerY = maxY/2;
    }

    int iX(float x){return Math.round(centerX + x/pixelSize);}
    int iY(float y){return Math.round(centerY - y/pixelSize);}

    float fx(int x){return (x - centerX) * pixelSize;}
    float fy(int y){return (centerY - y) * pixelSize;}

    void moveTo(float x, float y)
    { currentX = iX(x); currentY = iY(y);
    }
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    }
    void lineTo(Graphics g, float x, float y)
    {  int x1 = iX(x), y1 = iY(y);
       g.drawLine(currentX, currentY, x1, y1);
       currentX = x1; currentY = y1;
    }

    void drawArrow(Graphics g, float[]x, float[]y)
    {  moveTo(x[0], y[0]);
       lineTo(g, x[1], y[1]);
       lineTo(g, x[2], y[2]);
       lineTo(g, x[3], y[3]);
       lineTo(g, x[1], y[1]);
    }

    public void paint(Graphics g)
    { initgr();
      // Show initial arrow:
      drawArrow(g, x, y);
      if (xP > 1e8F) return;
      float phi = (float)(Math.PI / 6),
         c = (float)Math.cos(phi), s = (float)Math.sin(phi),
         r11 = c, r12 = s,
         r21 = -s, r22 = c,
         r31 = -xP * c + yP * s + xP, r32 = -xP * s - yP * c + yP;
      for (int j=0; j<4; j++)
      {  float xNew = x[j] * r11 + y[j] * r21 + r31,
               yNew = x[j] * r12 + y[j] * r22 + r32;
         x[j] = xNew; y[j] = yNew;
      }
      // Arrow after rotation:
      drawArrow(g, x, y);
  }
}

In contrast to program Arrow.java of Section 3.2, this new program ArrowPt. java uses the 3 × 3 rotation matrix displayed in
Equation (3.6), as you can see in the fragment
float xNew = x[j] * r11 + y[j] * r21 + r31,
      yNew = x[j] * r12 + y[j] * r22 + r32;

The matrix elements r31 and r32 of the third row of the matrix depend on the point (xP, yP), selected by the user and acting as the
center C(xC, yC) in our previous discussion. As in program Isotrop.java of Section 1.4, the device coordinates of the selected point
P are converted to logical coordinates by the methods fx and fy.
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3.7 CHANGING THE COORDINATE SYSTEM
In the preceding sections, we have used a fixed coordinate system and applied transformations to points given by their
coordinates for that system, using certain computations. We can use exactly the same computations for a different purpose,
leaving the points unchanged but changing the coordinate system. It is important to bear in mind that the direction in which the
coordinate system moves is opposite to that of the point movement. We can see this very clearly in the case of a translation. In
Figure 3.6(a) we have a normal translation with any point P(x, y) mapped to its image P′ (x′, y′), where

 
Figure 3.6: (a) Translation; (b) change of coordinates

which can be written in matrix form as shown in Equation (3.4) (in Section 3.4). In Figure 3.6(b) we do not map the point P to
another point but we express the position of this point in the x′y′-coordinate system, while coordinates x and y are given. As you
can see, a translation upward and to the right in (a), corresponds with a movement of the coordinate system downward and to the
left in (b): these two directions are exactly each other's opposite. It follows that the inverse translation matrix would have applied if,
in (b), we had moved the axes in the same direction as that of the point translation. The same principle applies to other
transformations, such as rotations, for which the inverse of the transformation matrix exists. We will use this principle in the next
section.
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3.8 ROTATIONS ABOUT 3D COORDINATE AXES
Let us use a right-handed three-dimensional coordinate system, with the positive x-axis pointing toward us, the y-axis pointing to
the right and the z-axis pointing upward, as shown in Figure 3.7.

 
Figure 3.7: Rotations about coordinate axes

This figure also shows what we mean by rotations about the axes. A rotation about the z-axis through a given angle implies a
rotation of all points in the xy-plane through that angle. For example, if this angle is 90°, the image of all points of the positive x-
axis will be those of the positive y-axis. In the same way, a rotation about the x-axis implies a similar rotation of the yz-plane and a
rotation about the y-axis implies a similar rotation of the zx-plane. Note that we deliberately write zx in that order: when we are
dealing with the x-, y-and z-axes in a cyclic way, x follows z. It is important to remember this when we have to write down the
transformation matrices for the rotations about the x-, y-and z-axis through the angle φ :

These matrices are easy to construct. Matrix Rz is derived in a trivial way from the well-known 2 × 2 rotation matrix of Equation
(3.3) (in Section 3.2). If you check this carefully, you will not find the other two matrices difficult. First, there is a 1 on the main
diagonal in the position that corresponds to the axis of rotation (1 for x, 2 for y and3for z). The other elements in the same row or
column as this matrix element 1 are equal to 0. Second, we use the elements of the 2 × 2 matrix just mentioned for the remaining
elements of the 3 × 3 matrices, beginning just to the right and below the element 1, if that is possible; if not, we remember that x
follows z. For example, in Ry, the first element, cos φ , of this imaginary 2 × 2 matrix is placed in row 3 and column 3 because the
element 1 has been placed in row 2 and column 2. Then, since we cannot place sin φ  to the right of this element cos φ  as we
would like, we place it instead in column 1 of the same third row. In the same way, we cannot place −  sin φ  below cos φ , as it
occurs in Equation (3.3), so instead we put it in the first row of the same third column, and so on.

We should remember that the above matrices should be applied to row vectors. For example, using the above matrix Rx, we write

to obtain the image (x′, y′, z′) of point (x, y, z) when the latter is subjected to a rotation about the x-axis through an angle φ .
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3.9 ROTATION ABOUT AN ARBITRARY AXIS
To prepare for a three-dimensional rotation about an arbitrary axis, let us first perform such a rotation about an axis through the
origin O. Actually, the rotation will take place about a vector, so that we can define its orientation, as illustrated by Figure 3.8.

 
Figure 3.8: Rotation about a vector starting at O

If a point is rotated about the vector v through a positive angle α , this rotation will be such that it corresponds to a movement in
the direction of the vector in the same way as turning a (right-handed) screw corresponds to its forward movement.

Instead of its Cartesian coordinates (v1, v2, v3), we will use the angles θ  and φ  to specify the direction of the vector v. The length
of this vector is irrelevant to our present purpose. As you can see in Figure 3.8, θ  is the angle between the positive x-axis and the
projection of v in the xy-plane and φ  is the angle between the positive z-axis and the vector v. If v1, v2 and v3 are given and we
want to find θ  and φ , we can compute them in Java in the following way, writing theta for θ  and phi for φ :
theta = Math.atan2(v2, v1);
phi = Math.atan2(Math.sqrt(v1 * v1 + v2 * v2), v3);

We will now derive a rather complicated 3 × 3 rotation matrix, which describes the rotation about the vector v through an angle α .
First, we will change the coordinate system such that v will lie on the positive z-axis. This can be done in two steps:

1. A rotation of the coordinate system about the z-axis, such that the horizontal component of v lies on the new x-
axis.

2. A rotation of the coordinate system about the new y-axis though the angle φ .

As discussed at the end of the previous section, coordinate transformations require the inverses of the matrices that we would use
for normal rotations of points. Referring to Section 3.8, we now have to use the following matrices R−1z and R−1y for the above
steps 1 and 2, respectively:

To combine these two coordinate transformations, we have to use the product of these two matrices. Before doing this matrix
multiplication, let us first find the matrices of some more operations that are required.

Now that the new positive z-axis has the same direction as the vector v,the desired rotation about v through the angle α  is also a
rotation about the z-axis through that angle, so that, expressed in the new coordinates, we have the following rotation matrix:
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Although this may seem to be the final operation, we must bear in mind that we want to express the image point P′ of an original
point P in terms of the original coordinate system. This implies that the first two of the above three transformations are to be
followed by their inverse transformations, in reverse order. Therefore, in this order, we have to use the following two matrices after
the three above:

The resulting matrix R, to be used in the equation

to perform a rotation about v through the angle α , can now be found as follows:

where the matrix elements rij are rather complicated expressions in φ , θ  and α . Before discussing how to compute these, let us
first turn to the original problem, which was the same as the above, except that we want to use any point A(a1, a2, a3) as the start
point of vector v. We can do this by performing, in this order:

a translation that shifts the point A to the origin O;

the desired rotation using the above matrix R;

the inverse of the translation just mentioned.

As discussed in Sections 3.4 and 3.6, we need to use homogeneous coordinates in order to describe translations by matrix
multiplications. Since we use 3 × 3 matrices for linear transformations in three-dimensional space, we have to use 4 × 4 matrices
in connection with these homogenous coordinates. Based on the coordinates a1, a2 and a3 of the point A on the axis of rotation,
the following matrix describes the translation from A to O:

After this translation, we perform the rotation about the vector v, which starts at point A, using the above matrix R, which we write
as R* after adding an additional row and column in the usual way:

Finally, we use a translation from O back to A:
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Writing RGEN for the desired general (4 × 4) rotation matrix, we have

Since RGEN is a 4 × 4 matrix, we use it as follows:

3.9.1 Implementation

Since we are now dealing with points in three-dimensional space, let us begin by defining the following class to represent such
points:
// Point3D.java: Representation of a point in 3D space.
class Point3D
{  float x, y, z;
   Point3D(double x, double y, double z)
   {  this.x = (float)x;
      this.y = (float)y;
      this.z = (float)z;
   }
}

As we normally have a great many points that are to be rotated, it is worth-while to compute the matrix RGEN beforehand.
Although this could be done numerically, it is also possible to make our program slightly faster by doing this symbolically, that is,
by expressing all matrix elements rij of RGEN in six constant values for the rotation: the angles φ , θ  and α  and the coordinates a1,
a2 and a3 of point A on the axis of rotation. Instead of writing these matrix elements here in the usual mathematical formulas
(which would be quite complicated), we may as well immediately present the resulting Java code. This has been done in the class
Rotate3D below.

The actual rotation is performed by the rotate method, which is called as many times as there are relevant points (usually the
vertices of polyhedra). Prior to this, the method initRotate is called only once, to build the above matrix RGEN. There are actually
two methods initRotate, of which we can choose one as we like. The first accepts two points A and B to specify the directed axis
of rotation AB and computes the angles θ  and φ . The second accepts these two angles themselves instead of point B:
// Rota3D.java: Class used in other program files
//    for rotations about an arbitrary axis.
// Uses: Point3D (discussed above).
class Rota3D
{  static double r11, r12, r13, r21, r22, r23,
                 r31, r32, r33, r41, r42, r43;

/* The method initRotate computes the general rotation matrix

            | r11 r12 r13 0 |
        R = | r21 r22 r23 0 |
            | r31 r32 r33 0 |
            | r41 r42 r43 1 |

   to be used as [x1 y1 z1 1] = [x y z 1] R
   by the method 'rotate'.
   Point (x1, y1, z1) is the image of (x, y, z).
   The rotation takes place about the directed axis
   AB and through the angle alpha.
*/
   static void initRotate(Point3D a, Point3D b,
      double alpha)
   {  double v1 = b.x - a.x,
             v2 = b.y - a.y,
             v3 = b.z - a.z,
         theta = Math.atan2(v2, v1),
         phi = Math.atan2(Math.sqrt(v1 * v1 + v2 * v2), v3);
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         phi = Math.atan2(Math.sqrt(v1 * v1 + v2 * v2), v3);
         initRotate(a, theta, phi, alpha);
   }

   static void initRotate(Point3D a, double theta,
      double phi, double alpha)
   {  double cosAlpha, sinAlpha, cosPhi, sinPhi,
      cosTheta, sinTheta, cosPhi2, sinPhi2,
      cosTheta2, sinTheta2, pi, c,
      a1 = a.x, a2 = a.y, a3 = a.z;
      cosPhi = Math.cos(phi); sinPhi = Math.sin(phi);
      cosPhi2 = cosPhi * cosPhi; sinPhi2 = sinPhi * sinPhi;
      cosTheta = Math.cos(theta);
      sinTheta = Math.sin(theta);
      cosTheta2 = cosTheta * cosTheta;
      sinTheta2 = sinTheta * sinTheta;
      cosAlpha = Math.cos(alpha);
      sinAlpha = Math.sin(alpha);
      c = 1.0 - cosAlpha;
      r11 = cosTheta2 * (cosAlpha * cosPhi2 + sinPhi2)
            + cosAlpha * sinTheta2;
      r12 = sinAlpha * cosPhi+c* sinPhi2 * cosTheta * sinTheta;
      r13 = sinPhi * (cosPhi * cosTheta*c- sinAlpha * sinTheta);
      r21 = sinPhi2 * cosTheta * sinTheta*c-sinAlpha * cosPhi;
      r22 = sinTheta2 * (cosAlpha * cosPhi2 + sinPhi2)
            + cosAlpha * cosTheta2;
      r23 = sinPhi * (cosPhi * sinTheta*c+ sinAlpha * cosTheta);
      r31 = sinPhi * (cosPhi * cosTheta*c+ sinAlpha * sinTheta);
      r32 = sinPhi * (cosPhi * sinTheta*c- sinAlpha * cosTheta);
      r33 = cosAlpha * sinPhi2 + cosPhi2;
      r41 = a1 - a1 * r11 - a2 * r21 - a3 * r31;
      r42 = a2 - a1 * r12 - a2 * r22 - a3 * r32;
      r43 = a3 - a1 * r13 - a2 * r23 - a3 * r33;
   }

   static Point3D rotate(Point3D p)
   { return new Point3D(
        p.x * r11 + p.y * r21 + p.z * r31 + r41,
        p.x * r12 + p.y * r22 + p.z * r32 + r42,
        p.x * r13 + p.y * r23 + p.z * r33 + r43);
   }
}

Note that the actual rotation of points is done very efficiently in the method rotate at the end of this class. This is important
because it will be called for each relevant point of the object to be rotated. Remember, the more time-consuming method
initRotate is called only once.

Let us now see this class Rota3D in action. Although it can be used for any rotation axis and any angle of rotation, it is used here
only in a very simple way so that we can easily check the result, even without graphics output. As Figure 3.9 shows, we have
chosen the axis AB parallel to the diagonals 0–2 and 4–6 of the cube. The cube has a height 1 and point A has coordinates (0, 0,
2).

 
Figure 3.9: Rotation of a cube about the axis AB
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The following program uses the above classes Point3D and Rota3D to perform the rotation shown in Figure 3.9:
// Rota3DTest.java: Rotating a cube about an axis
//    parallel to a diagonal of its top plane.
//    Uses: Point3D, Rota3D (discussed above).
public class Rota3DTest
{  public static void main(String[] args)
   {  Point3D a = new Point3D (0, 0, 1),b=newPoint3D (1, 1, 1);
      double alpha = Math.PI;
      // Specify AB as directed axis of rotation
      // and alpha as the rotation angle:
      Rota3D.initRotate(a, b, alpha);
      // Vertices of a cube; 0, 1, 2, 3 at the bottom,
      // 4, 5, 6, 7 at the top. Vertex 0 at the origin O:
      Point3D[] v = {
         new Point3D (0, 0, 0), new Point3D (1, 0, 0),
         new Point3D (1, 1, 0), new Point3D (0, 1, 0),
         new Point3D (0, 0, 1), new Point3D (1, 0, 1),
         new Point3D (1, 1, 1), new Point3D (0, 1, 1)};
      System.out.println(
         "Cube rotated through 180 degrees about line AB,");
      System.out.println(
         "where A = (0, 0, 1) and B = (1, 1, 1) ");
      System.out.println("Vertices of cube:");
      System.out.println(
         "    Before rotation    After rotation");
      for (int i=0; i<8; i++)
      {  Point3D p = v[i];
         // Compute P1, the result of rotating P:
         Point3D p1 = Rota3D.rotate(p);
         System.out.println(i + ": " +
            p.x + " " +p.y + " " + p.z + "     "+
            f(p1.x) + "" + f(p1.y) + " " + f(p1.z));
      }

   }

   static double f(double x){return Math.abs(x) < 1e-10 ? 0.0 : x;}
}

Since we have not yet discussed how to produce perspective views, we produce only text output in this program, as listed below:
Cube rotated through 180 degrees about line AB,
where A = (0, 0, 2) and B = (1, 1, 2)
Vertices of cube:
    Before rotation   After rotation
0:  0.0 0.0 0.0       0.0 0.0 4.0
1:  1.0 0.0 0.0       0.0 1.0 4.0
2:  1.0 1.0 0.0       1.0 1.0 4.0
3:  0.0 1.0 0.0       1.0 0.0 4.0
4:  0.0 0.0 1.0       0.0 0.0 3.0
5:  1.0 0.0 1.0       0.0 1.0 3.0
6:  1.0 1.0 1.0       1.0 1.0 3.0
7:  0.0 1.0 1.0       1.0 0.0 3.0

EXERCISES

3.1 In Section 3.2 we discussed scaling with reference to the origin O, that is, with O as a fixed point. It is
also possible to use a different fixed point, say C(xC, yC), but, for such a scaling in two-dimensional
space, we need a 3 × 3matrix M (and homogenous coordinates), writing

Using scale factors sx and sy for x and y again, find this matrix M. Hint: You can perform a translation
from C to O, followed by a scaling as discussed in Section 3.2, but described by a 3 × 3 matrix,
followed by a translation back from O to C. Alternatively, you can start with the following system of
equations, which shows very clearly what actually happens:

3.2 Describe scaling in three-dimensional space with reference to a point C and three scale factors sx, sy
and sz. Find the 4 × 4 matrix (similar to matrix M of Exercise 3.1) for this transformation.

3.3 How can you apply shearing with reference to a point other than O (such that this point will remain at
the same place)? Write a program that draws a square and an approximate circle, both before and
after shearing, setting the constant a used at the end of Section 3.2 equal to 0.5. Apply shearing to
these two figures with reference to their centers; in other words, the center of the square will remain
at the same place and so will the center of the circle.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


3.4 (This exercise prepares for the next one.) If the determinant D = a11a22 −  a12a21 of the matrix

is non-zero, then the matrix

is the inverse of A, that is, AA−1 = A−1A = . Prove
this.

3.5 Our way of testing whether a given point P lies in a triangle ABC, discussed in Section 2.8, resulted
in the method inside Triangle, which assumes that A, B and C are counter-clockwise. Develop a
different method for the same purpose, based on the vectors a = (a1, a2) = CA and b = (b1, b2) = CB
(see Figure 2.6 in Section 2.5). Let us write

or, in the form of a matrix product,

Since we saw in Exercise 3.4 how to compute the inverse of a 2 × 2 matrix, we can now compute λ
and μ  as follows:

The point P lies in triangle ABC (or on one of its edges) if and only if λ  ≥  0, μ  ≥  0and λ  + μ  ≤  1.
Write the class TriaTest, which we can use as follows:
Point2D a, b, c, p;
TriaTest tt = new TriaTest(a, b, c);
if (tt.area2() != 0 && tt.insideTriangle(p)) ...
   // Point P within triangle ABC.

As in Section 2.5, the method area2 returns twice the area of triangle ABC, preceded by a minus
sign if ABC is clockwise. This return value is also equal to the determinant of the 2 × 2 matrix in
Equation (3.7).We must not call the TriaTest method insideTriangle if this determinant is zero, since
in that case the inverse matrix of Equation (3.8) does not exist (see Exercise 3.4).

Answers

3.1 

3.2 Similar to Exercise 3.1.

3.3 For shearing a set of points with reference to point C, we replace the shearing equations at the end of
Section 3.2 with the similar ones
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which reduces to x′ = x + a(y −  yC), y ′ = y.

The sharing operation will transform the circle into an ellipse with a non-horizontal axis, so that we cannot
use the Java method drawOval. Therefore, for some large value of n, we approximate a circle with center
C(xC, yC) and radius r by computing the following n points (xi, yi) of this circle:

where θ  = 2 π / n and i = 0, 1, … , n −  1. Instead of immediately connecting these points by straight lines,
which would produce the circle, we first subject each xi to the above shearing formula.

3.4 Just compute the product AA − 1 to obtain the identity matrix I. For example, the upper-left element of this
product is equal to the inner product of the first row of A and the first column of A− 1, which is a11(a22/D) +
a12(− a21/D) = D/D = 1.

3.5 If there are many points for which we have to check whether they lie within a single triangle (or on an edge
of it), the method insideTriangle of the following class is more efficient than the one discussed in Section
2.8, since most of the work is done here by the constructor, which need be called only once for that
triangle:
class TriaTest
{  private Point2D C;
   private double a1, a2, b1, b2, c1, c2, d1, d2, det;

   TriaTest(Point2D A, Point2D B, Point2D C)
   {  this.C = C;
      a1 = A.x - C.x; a2 = A.y - C.y;
      b1 = B.x - C.x; b2 = B.y - C.y;
      det= a1 * b2 - b1 * a2;
      if (det != 0)
      {  c1 = b2/det; c2 = -a2/det;
         d1 = -b1/det; d2 = a1/det;
      }
   }

   double area2(){return det;}

   boolean insideTriangle(Point2D P)
   {  double p1 = P.x - C.x, p2 = P.y - C.y,
         lambda, mu;
      return (lambda = p1 * c1 + p2 * d1) >= 0 &&
          (mu = p1 * c2 + p2 * d2) >= 0 &&
          lambda + mu <= 1;
   }
}

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Chapter 4: Some Classic Algorithms

Although programming is a very creative activity, often requiring entirely new (little) problems to be solved, we can
sometimes benefit from well-known algorithms, published by others and usually providing more efficient or more elegant
solutions than those we would have been able to invent ourselves. This is no different in computer graphics. This chapter is
about some well-known graphics algorithms for (a) computing the coordinates of pixels that comprise lines and circles, (b)
clipping lines and polygons, and (c) drawing smooth curves. These are the most primitive operations in computer graphics
and should be executed as fast as possible. Therefore, the algorithms in this chapter ought to be optimized to avoid time-
consuming executions, such as multiplication, division, and calculations on floating point numbers.

4.1 BRESENHAM'S ALGORITHM FOR LINE DRAWING
We will now discuss how to draw lines by placing pixels on the screen. Although, in Java, we can simply use the method drawLine
without bothering about pixels, it would be unsatisfactory if we had no idea how this method works. We will be using integer
coordinates, but when discussing the slope of a line it would be very inconvenient if we had to use a y-axis pointing downward, as
is the case with the Java device coordinate system. Therefore, in accordance with mathematical usage, the positive y-axis will
point upward in our discussion.

Unfortunately, Java lacks a method with the sole purpose of putting a pixel on the screen, so that we define the following, rather
strange method to achieve this:
void putPixel(Graphics g, int x, int y)
{  g.drawLine(x, y, x, y);
}

We will now develop a drawLine method of the form
void drawLine(Graphics g, int xP, int yP, int xQ, int yQ)
{ ...
}

which only uses the above putPixel method for the actual graphics output.

Figure 4.1 shows a line segment with endpoints P(1, 1) and Q(12, 5), as well as the pixels that we have to compute to
approximate this line.

 
Figure 4.1: Grid points approximating a line segment

To draw the line of Figure 4.1, we then write
drawLine(g, 1, 1, 12, 5);

Let us first solve the problem for situations such as Figure 4.1, in which point Q lies to the right and not lower than point P. More
precisely, we will be dealing with the special case

where the last condition expresses that the angle of inclination of line PQ is not greater than 45°. We then want to find exactly one
integer y for each of the integers

Except for the first and the last (which are given as yP and yQ) the most straightforward way of computing these y-coordinates is
by using the slope
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so that, for each of the given integer x-coordinates, we can find the desired integer y-coordinate by rounding the value

to the nearest integer. Since two such successive x-coordinates differ by 1, the corresponding difference of two successive values
of yexact is equal to m. Figure 4.2 shows this interpretation of m, as well as that of the ‘error’

 
Figure 4.2: Slope m and error d

Since d is the error we make by rounding yexact to the nearest integer, we can require d to satisfy the following condition:

The following first version of the desired drawLine method is based on this observation:
void drawLine1(Graphics g, int xP, int yP, int xQ, int yQ)
{  int x = xP, y = yP;
   float d = 0, m = (float)(yQ - yP)/(float)(xQ - xP);
   for (;;)
   {  putPixel(g, x, y);
      if (x == xQ) break;
      x++;
      d + = m;
      if (d >= 0.5){y++; d--;}
   }
}

This version is easy to understand if we pay attention to Figure 4.2. Since the first call to putPixel applies to point P, we begin with
the error d = 0. In each step of the loop, x is increased by 1. Assuming for the moment that y will not change, it follows from
Equation (4.3) that the growth of d will be the same as that of yexact, which explains why d is increased by m. We then check the
validity of this assumption in the following if-statement. If d is no longer less than 0.5, this violates Equation (4.4), so that we apply
a correction, consisting of increasing y and decreasing d by 1. The latter action makes Equation (4.4) valid again. By doing these
two actions at the same time, Equation (4.3) also remains valid.

We use drawLine1 as a basis for writing a faster version, which no longer uses type float. This is possible because the slope
variable m represents a rational number, that is, an integer numerator divided by an integer denominator, as Equation (4.2) shows.
Since the other float variable, d, starts with the value zero and is altered only by adding m and − 1 to it, it is also a rational number.
In view of both the denominator xQ −  xP of these rational numbers and the constant 0.5 used in the if-statement, we will apply the
scaling factor

to m, to d and to this constant 0.5, introducing the int variables M and D instead of the float variables m and d. We will also use Δ x
instead of the constant 0.5.

These new values M, D and x are c times as large as m, d and 0.5, respectively:
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In this way we obtain the following integer version, which is very similar to the previous one and equivalent to it but faster. In
accordance with the Java naming conventions for variables, we write m and d again instead of M and D, and dx instead of Δ x:
void drawLine2(Graphics g, int xP, int yP, int xQ, int yQ)
{  int x = xP, y = yP, d = 0, dx = xQ - xP, c = 2 * dx,
      m = 2 * (yQ - yP);
   for (;;)
   {  putPixel(g, x, y);
      if (x == xQ) break;
      x++;
      d += m;
      if (d >= dx){y++; d -= c;}
   }
}

Having dealt with this special case, with points P and Q satisfying Equation (4.1), we now turn to the general problem, without any
restrictions with regard to the relative positions of P and Q. To solve this, we have several symmetric cases to consider. As long
as

we can again use x as the independent variable, that is, we can increase or decrease this variable by one in each step of the loop.
In the opposite case, with lines that have an angle of inclination greater than 45°, we have to interchange the roles of x and y to
prevent the selected pixels from lying too far apart. All this is realized in the general line-drawing method drawLine below. We can
easily verify that this version plots exactly the same points approximating line PQ as version drawLine2 if the coordinates of P and
Q satisfy Equation (4.1).
void drawLine(Graphics g, int xP, int yP, int xQ, int yQ)
{  int x = xP, y = yP, d = 0, dx = xQ - xP, dy = yQ - yP,
      c, m, xInc = 1, yInc = 1;
   if (dx < 0){xInc = -1; dx = -dx;}
   if (dy < 0){yInc = -1; dy = -dy;}
   if (dy <= dx)
   {  c = 2 * dx; m = 2 * dy;
     if (xInc < 0) dx++;
     for (;;)
     {  putPixel(g, x, y);
        if (x == xQ) break;
        x += xInc;
        d += m;
        if (d >= dx){y += yInc; d -= c;}
     }
   }
   else
   {  c = 2 * dy; m = 2 * dx;
      if (yInc < 0) dy++;
      for (;;)
      {  putPixel(g, x, y);
         if (y == yQ) break;
         y += yInc;
         d += m;
         if (d >= dy){x += xInc; d -= c;}
   }
 }
}

Just before executing one of the above two for-statements, an if-statement is executed in the cases that x or y decreases instead
of increases, which is required to guarantee that drawing PQ always plots exactly the same points as drawing QP.

The idea of drawing sloping lines by means of only integer variables was first realized by Bresenham; his name is therefore
associated with this algorithm.

The above drawLine method is very easy to use if we are dealing with the floating-point logical-coordinate system used so far. For
example, in Section 4.5, there will be a program ClipPoly.java, in which the following method occurs:
void drawLine(Graphics g, float xP, float yP, float xQ, float yQ)
{  g.drawLine(iX(xP), iY(yP), iX(xQ), iY(yQ));
}

Here our own method drawLine calls the Java method drawLine of the class Graphics. If, instead, we want to use our own method
drawLine with four int arguments, listed above, we can replace the last three program lines with
void drawLine(Graphics g, float xP, float yP, float xQ, float yQ)
{  drawLine(g, iX(xP), iY(yP), iX(xQ), iY(yQ)); // int coordinates
}

provided that we also add the method putPixel, listed at the beginning of this section. This may at first be confusing because there
are now two drawLine methods of our own. As the comment after the above call to drawLine indicates, the Java compiler will
select our Bresenham method drawLine because there is an argument g, followed by four arguments of type int. It is also
interesting to note that the direction of the positive y-axis in our discussion causes no practical problem.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


4.2 DOUBLING THE LINE-DRAWING SPEED
As one of the primitive graphics operations, line drawing should be performed as rapidly as possible. In fact, graphics hardware is
typically benchmarked by the speed in which it generates lines. Bresenham's line algorithm is simple and efficient in generating
lines. The algorithm works incrementally by computing the position of the next pixel to be drawn. Hence it iterates as many times
as the number of pixels in the line it generates. The double-step line-drawing algorithm by Rokne, Wyvill, and Wu (1990) aims at
reducing the number of iterations by half, by computing the positions of the next two pixels.

Let us again start with the lines within the slope range of [0, 1] and consider the general case of any slopes later (as Exercise 4.2).
For a line PQ, starting from P, we increment the x-coordinate by two pixels instead of one as in Bresenham's algorithm. All the
possible positions of the two pixels in the above slope range form four patterns, expressed in a 2×2 mesh illustrated in Figure 4.3.
It has been mathematically proven that patterns 1 and 4 would never occur on the same line, implying that a line would possibly
involve patterns 1, 2 and 3, or patterns 2, 3 and 4, depending the slope of the line. The lines within the slope range of [0, 1/2)
involve patterns 1, 2 and 3, and lines within the slope range of (1/2, 1] involve patterns 2, 3 and 4. At the exact slope of 1/2, the
line involves either pattern 2 or 3, not 1 or 4.

 
Figure 4.3: Four double-step patterns when 0 ≤  slope ≤  1

Figure 4.4 shows four sloping lines, all passing through the same point at a distance d above the point A. By approximating this
common point of the four lines we make an error d = yexact− y, which should not be greater than 0.5.

 
Figure 4.4: Choice of patterns based on initial error d and slope m

Since the slope of a line is equal to m,the exact y-coordinate of that line is equal to d + m at its point of intersection with BD, and d
+ 2m at its point of intersection with CF, as indicated in Figure 4.4 for the lowest of the four lines. With these two points of
intersection lying closer to BC than to DE, it is clear that this lowest sloping line should be approximated by the points A, B, C, that
is, by pattern 1 of Figure 4.3. Thus we have

If d + 2m < 0.5, we use pattern 1(ABC)

Otherwise, we use point E instead of C if E is the best approximation of the point where the sloping line intersects CF, that is, if
0.5 ≤  d + 2m ≤  1.5. However, we should now also pay attention to the point where the sloping line intersects BD. Comparing d +
m with 0.5 determines whether B or D should be taken. More precisely,

if 0.5 ≤  d + 2m < 1.5(so that point E is to be used), we choose B or D as follows:

if d + m < 0.5, we use pattern 2(ABE)

if d + m ≥  0.5, we use pattern 3(ADE)

Finally, there is this remaining case:
if d + 2m ≥  1.5, we use pattern 4(ADF).

As in the previous section when discussing Bresenham's algorithm, we begin with a preliminary method that still uses floating-
point variables to make it easier to understand, so it is not yet optimized for speed. This version also works for lines drawn from
right to left, that is, when xQ < xP, as well as for lines with negative slope. However, the absolute value of the slope should not be
greater than 1. So doubleStep1 applies only to endpoints P and Q that satisfy the following conditions:

It is wise to begin with the simplest case
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xP < xQ

0 ≤  yQ −  yP ≤  xQ −  xP

when you read the following code for the first time:
void doubleStep1(Graphics g, int xP, int yP, int xQ, int yQ)
{  int dx, dy, x, y, yInc;
   if (xP >= xQ)
   {  if (xP == xQ) // Not allowed because we divide by dx (= xQ - xP)
         return;
      // xP > xQ, so swap the points P and Q
      int t;
      t = xP; xP = xQ; xQ = t;
      t = yP; yP = yQ; yQ = t;
   }
   // Now xP < xQ
   if (yQ >= yP){yInc = 1; dy = yQ - yP;} // Normal case, yP < yQ
   else            {yInc = -1; dy = yP - yQ;}
   dx = xQ - xP;     // dx > 0, dy > 0
   float d = 0,                   // Error d = yexact - y
         m = (float)dy/(float)dx; //  m <= 1, m = | slope |
   putPixel(g, xP, yP);
   y = yP;
   for (x=xP; x<xQ-1;)
   {  if (d + 2 * m < 0.5) // Pattern 1:
      {  putPixel(g, ++x, y);
         putPixel(g, ++x, y);
         d += 2 * m; // Error increases by 2m, since y remains
                     // unchanged and yexact increases by 2m
      }
      else
      if (d + 2 * m < 1.5) // Pattern 2 or 3
      {  if (d + m < 0.5) // Pattern 2
         {  putPixel(g, ++x, y);
            putPixel(g, ++x, y += yInc);
            d += 2 * m - 1; // Because of ++y, the error is now
                            // 1 less than with pattern 1
         }
         else  // Pattern 3
         {  putPixel(g, ++x, y += yInc);
            putPixel(g, ++x, y);
            d += 2 * m - 1;  // Same as pattern 2
         }
       }
       else // Pattern 4:
       {  putPixel(g, ++x, y += yInc);
          putPixel(g, ++x, y += yInc);
          d += 2 * m - 2;  // Because of y += 2, the error is now
                           // 2 less than with pattern 1
       }
    }
    if (x < xQ)  // x = xQ - 1
       putPixel(g, xQ, yQ);
}

Before the above for-loop is entered, there is a call to putPixel for x = xP. The loop terminates as soon as the test

fails. This test is executed for the following values of x:

If it succeeds, putPixel is called for the next two values of x, not for the value of x used in the test. There are two cases to
consider. If xQ −  xP is even, the test still succeeds when x = xQ −  2, and putPixel is executed for both x = xQ −  1 and x = xQ, after
which we are done and the next test, with x = xQ, fails. On the other hand, if xQ −  xP is odd, the test succeeds when x = xQ −  3,
and putPixel is called for both x = xQ −  2and x = xQ −  1, after which the test fails with x = xQ −  1. Then, after loop termination, the
remaining call to putPixel is executed in the following if-statement:
if (x < xQ)
   putPixel(g, xQ, yQ);

We will now derive a fast, integer version from the above method doubleStep1. Let us use the notation

so that slope m = Δ y/Δ x. We now want to introduce an int variable v, in such a way that the test
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reduces to

To achieve this, we start writing (4.5) as d + 2m −  0.5 < 0 and, since this inequality contains the two fractions m = Δ y/Δ x and 0.5,
we multiply both sides of it by 2Δ x, obtaining

Therefore, instead of the floating-point error variable d = yexact −  y, we will use the integer variable v, which relates to d as follows:

We can now replace the test (4.5) with the more efficient one (4.6). It follows from (4.7) that increasing d by 2m is equivalent to
increasing v by 2Δ x × 2m, which is equal to 4Δ y. This explains both the test v < 0 and adding dy4 to v in the for-loop below. These
operations on the variable v are marked by comments of the form //Equivalent to … , as are some others, which are left to the
reader to verify.
void doubleStep2(Graphics g, int xP, int yP, int xQ, int yQ)
{  int dx, dy, x, y, yInc;
   if (xP >= xQ)
   {  if (xP == xQ) // Not allowed because we divide by (dx = xQ - xP)
         return;
      int t;        // xP > xQ, so swap the points P and Q
      t = xP; xP = xQ; xQ = t;
      t = yP; yP = yQ; yQ = t;
   }
   // Now xP < xQ
   if (yQ >= yP){yInc = 1; dy = yQ - yP;}
   else         {yInc = -1; dy = yP - yQ;}
   dx = xQ - xP;
   int dy4 = dy * 4, v = dy4 - dx, dx2 = 2 * dx, dy2 = 2 * dy,
       dy4Minusdx2 = dy4 - dx2, dy4Minusdx4 = dy4Minusdx2 - dx2;
   putPixel(g, xP, yP);
   y = yP;
   for (x=xP; x<xQ-1;)
   {  if (v < 0)                    // Equivalent to d + 2 * m < 0.5
      {  putPixel(g, ++x, y);          // Pattern 1
         putPixel(g, ++x, y);
         v += dy4;                     // Equivalent to d += 2 * m
      }
      else
         if (v < dx2)               // Equivalent to d + 2 * m < 1.5
         {  // Pattern 2 or 3
            if (v < dy2)            // Equivalent to d + m < 0.5
            {  putPixel(g, ++x, y);    // Pattern 2
               putPixel(g, ++x, y += yInc);
               v += dy4Minusdx2;       // Equivalent to d + = 2 * m - 1
            }
            else
            {  putPixel(g, ++x, y += yInc); // Pattern 3
               putPixel(g, ++x, y);
               v += dy4Minusdx2;          // Equivalent to d + = 2 * m - 1
            }
         }
         else
         {  putPixel(g, ++x, y += yInc); // Pattern 4
            putPixel(g, ++x, y += yInc);
            v += dy4Minusdx4;            // Equivalent to d += 2 * m - 2
         }
       }
       if (x < xQ)
          putPixel(g, xQ, yQ);
}

Remember, the above method doubleStep2 works only if |yQ −  yP|≤ |xQ −  xP|. In Exercise 4.2 the reader is asked to generalize
the method to work for any line.

Like Bresenham's line algorithm, the above double-step algorithm computes on integers only. For long lines, it outperforms
Bresenham's algorithm by a factor of almost two. One can further optimize the algorithm to achieve another factor of two of speed-
up by taking advantage of the symmetry around the midpoint of the given line. We leave this as an exercise for interested readers.
The double-step algorithm can in fact be generalized to draw circles, which will be left for readers to explore by consulting the
papers by Wu and Rokne (1987) and Rokne, Wyvill, and Wu (1990) listed in the Bibliography. Adapting Bresenham's algorithm for
circles will be the topic of the next section.
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4.3 CIRCLES
In this section we will ignore the normal way of drawing a circle in Java by a call of the form
g.drawOval(xC - r, yC - r, 2 * r, 2 * r);

since it is our goal to construct such a circle, with center C(xC, yC) and radius r ourselves, where the coordinates of C and the
radius are given as integers.

If speed is not a critical factor, we can apply the method drawLine to a great many neighboring points (x, y), computed as

where

for some large value of n.

Instead of the above two ways of drawing a circle, we will develop a method of the form
void drawCircle(Graphics g, int xC, int yC, int r)
{  ...
}

which uses only the method putPixel of the previous section as a graphics ‘primitive’, and which is an implementation of
Bresenham's algorithm for circles. The circle drawn in this way will be exactly same as that produced by the above call to
drawOval. In both cases, x will range from xC −  r to xC + r, including these two values, so that 2r + 1 different values of x will be
used.

As in the previous sections, we begin with a simple case: we use the origin of the coordinate system as the center of the circle,
and, dividing the circle into eight arcs of equal length, we restrict ourselves to one of these, the arc PQ. The points P(0, r) and
Q(r/√ 2, r/√ 2) are shown in Figure 4.5.

 
Figure 4.5: Arc PQ in sector O of a circle with origin O and radius r

The equation of this circle is

Figure 4.6 shows the situation, including the grid of pixels, for the case r = 8. Beginning at the top at point P, with x = 0 and y = r,
we will use a loop in which we increase x by 1 in each step; as in the previous section, we need some test to decide whether we
can leave y unchanged. If not, we have to decrease y by 1.
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Figure 4.6: Pixels that approximate the arc PQ

Since, just after increasing x by 1, we have to choose between (x, y) and (x, y −  1), we could simply compute both

to see which lies closer to r2. Note that this can be done by using only integer arithmetic, so that in principle our problem is solved.
To make our algorithm faster, we will avoid computing the squares x2 and y2, by introducing the three new, non-negative integer
variables u, v and E denoting the differences between two successive squares and the ‘error’:

Initially, we have x = 0 and y = r, so that u = 1, v = 2r −  1 and E = 0. In each step in the loop, we increase x by 1, as previously
discussed. Since, according to Equation (4.9), this will increase the value of x2 by u, we also have to increase E by u to satisfy
Equation (4.11). We can also see from Equation (4.9) that increasing x by 1 implies that we have to increase u by 2. We now have
to decide whether or not to decrease y by 1. If we do, Equation (4.10) indicates that the square y2 decreases by v, so that
according to Equation (4.11) E also has to decrease by v. Since we want the absolute value of the error E to be as small as
possible, the test we are looking for can be written

We will decrease y by 1 if and only if this test succeeds. It is interesting that we can write the condition (4.12) in a simpler form, by
first replacing it with the equivalent test

which can be simplified to

Since v is positive, we can simplify this further to

On the basis of the above discussion, we can now write the following method to draw the arc PQ (in which we write e instead of
E):
void arc8(Graphics g, int r)
{  int x = 0, y = r, u = 1, v = 2 * r - 1, e = 0;
   while (x <= y)
   {  putPixel(g, x, y);
      x++; e += u; u += 2;
      if (v < 2 * e){y--; e -= v; v -= 2;}
   }
}

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


}

Equations (4.10) and (4.11) show that in the case of decreasing y by 1, we have to decrease E by v and v by 2, as implemented in
the if-statement. Note the symmetry between the three actions (related to y) in the if-statement and those (related to x) in the
preceding program line.

The method arc8 is the basis for our final method, drawCircle, listed below. Besides drawing a full circle, it is also more general
than arc8 in that it allows an arbitrary point C to be specified as the center of the circle. The comments in this method indicate
directions of the compass. For example, NNE stands for north-north-east, which we use to refer to the arc between the north and
the north-east directions (see Figure 4.5). As usual, we think of the y-axis pointing upward, so that y = r corresponds to north:

void drawCircle(Graphics g, int xC, int yC, int r)
{  int x = 0, y = r, u = 1, v = 2 * r - 1, e = 0;
   while (x < y)
   {  putPixel(g, xC + x, yC + y); // NNE
      putPixel(g, xC + y, yC - x); // ESE
      putPixel(g, xC - x, yC - y); // SSW
      putPixel(g, xC - y, yC + x); // WNW
      x++; e += u; u += 2;
      if (v < 2 * e){y--; e -= v; v -= 2;}
      if (x > y) break;
      putPixel(g, xC + y, yC + x); // ENE
      putPixel(g, xC + x, yC - y); // SSE
      putPixel(g, xC - y, yC - x); // WSW
      putPixel(g, xC - x, yC + y); // NNW
   }
}

This version has been programmed in such a way that putPixel will not visit the same pixel more than once. This is important if we
want to use the XOR paint mode, writing
g.setXORMode(Color.white);

before the call to drawCircle. Setting the paint mode in this way implies that black pixels are made white and vice versa, so that we
can remove a circle in the same way as we draw it. It is then essential that a single call to drawCircle does not put the same pixel
twice on the screen, for then it would be erased the second time. To prevent pixels from being used twice, the eight calls to
putPixel in the loop are divided into two groups of four: those in the first group draw the arcs 0, 2, 4 and 6 (see Figure 4.5), which
include the starting points (0, r), (r,0), (0, − r) and (− r, 0). The arcs 1, 3, 5 and 7 of the second group do not include these starting
points because these calls to putPixel take place after x has been increased. As for the endpoint of each arc, we take care (a) that
x is not greater than y for any call to putPixel, and (b) that the situation x = y is covered by at most one of these two groups of
putPixel calls. This situation will occur, for example, if r = 6; in this case the following eight points (relative to the center of the
circle) are selected in this order, as far as the north-east quadrant of the circle (NNE and ENE) is concerned: (0, 6), (6, 1), (1, 6),
(6, 2), (2, 6), (5, 3), (3, 5), (4, 4). In this situation the test after while terminates the loop. In contrast, the situation x = y will not
occur if r = 8, since in this case the eleven points (0, 8), (8, 1), (1, 8), (8, 2), (2, 8), (7, 3), (3, 7), (7, 4), (4, 7), (6, 5), (5, 6) are
chosen, in that order. The loop now terminates because the break-statement in the middle of it is executed.
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4.4 COHEN–SUTHERLAND LINE CLIPPING
In this section we will discuss how to draw line segments only as far as they lie within a given rectangle. For example, given a
point P inside and a point Q outside a rectangle. It is then our task to draw only the line segment PI, where I is the point of
intersection of PQ and the rectangle, as shown in Figure 4.7. The rectangle is given by the four numbers xmin, xmax, ymin and
ymax. These four values and the coordinates of P and Q are floating-point logical coordinates, as usual.

 
Figure 4.7: Line segment PQ to be clipped

Since PQ intersects the upper edge of the rectangle in I, we have

As the triangles PAI and PBQ are similar, we can write

After replacing yI with ymax and multiplying both sides of this equation by ymax −  yP, we easily obtain

so that we can draw the desired line segment PI.

This easy way of computing the coordinates of point I is based on several facts that apply to Figure 4.7, but that must not be relied
on in a general algorithm. For example, if Q lies farther to the right, it may not be immediately clear whether the point of
intersection lies on the upper edge y = ymax or on the right edge x = xmax. In general, there are many more cases to consider. The
logical decisions needed to find out which actions to take make line clipping an interesting topic from an algorithmic point of view.
The Cohen–Sutherland algorithm solves this problem in an elegant and efficient way. We will express this algorithm in Java.

The four lines x = xmin, x = xmax, y = ymin, y = ymax divide the xy-plane into nine regions. With any point P(x, y) we associate a
four-bit code

identifying that region, as Figure 4.8 shows.

 
Figure 4.8: Code values

For any point (x, y), the above four-bit code is defined as follows:
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b3 = 1 if and only if x < xmin

b2 = 1 if and only if x > xmax

b1 = 1 if and only if y < ymin

b0 = 1 if and only if y > ymax

Based on this code, the Cohen–Sutherland algorithm replaces the endpoints P and Q of a line segment, if they lie outside the
rectangle, with points of intersection of PQ and the rectangle, that is, if there are such points of intersection. This is done in a few
steps. For example, in Figure 4.8, the following steps are taken:

1. Since P lies to the left of the left rectangle edge, it is replaced with P′ (on x = xmin), so that only P′Q remains to
be dealt with.

2. Since P′ lies below the lower rectangle edge, it is replaced with P′′ (on y = ymin), so that P′′Q remains to be
dealt with.

3. Since Q lies to the right of the right rectangle edge, it is replaced with Q′ (on x = xmax), so that P′′Q′ remains to
be dealt with.

4. Line segment P′′Q′ is drawn.

Steps 1, 2 and 3 are done in a loop, which can terminate in two ways:

If the four-bit codes of P (or P′ or P′′, which we again refer to as P in the program) and of Q are equal to zero; the
(new) line segment PQ is then drawn.

If the two four-bit codes contain a 1-bit in the same position; this implies that P and Q are on the same side of a
rectangle edge, so that nothing has to be drawn.

The method clipLine in the following program shows this in greater detail:
// ClipLine.java: Cohen-Sutherland line clipping.
import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class ClipLine extends Frame
{   public static void main(String[] args){new ClipLine();}

      ClipLine()
      {  super("Click on two opposite corners of a rectangle");
         addWindowListener(new WindowAdapter()
            {public void windowClosing(WindowEvent e){System.exit(0);}});
         setSize (500, 300);
         add("Center", new CvClipLine());

         setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));
         show();
      }
}

class CvClipLine extends Canvas
{   float xmin, xmax, ymin, ymax,
      rWidth = 10.0F, rHeight = 7.5F, pixelSize;
      int maxX, maxY, centerX, centerY, np=0;

      CvClipLine()
      {   addMouseListener(new MouseAdapter()
      {   public void mousePressed(MouseEvent evt)
       {   float x = fx(evt.getX()), y = fy(evt.getY());
          if (np == 2) np = 0;
          if (np == 0){xmin = x; ymin = y;}
          else
          {   xmax = x; ymax = y;
             if (xmax < xmin)
             {     float t = xmax; xmax = xmin; xmin = t;
             }
             if (ymax < ymin)
             {     float t = ymax; ymax = ymin; ymin = t;
             }
          }
          np++;
          repaint();
        }
      });
}

void initgr()
{   Dimension d = getSize();
      maxX = d.width - 1; maxY = d.height - 1;
      pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
      centerX = maxX/2; centerY = maxY/2;
}

int iX(float x){return Math.round(centerX + x/pixelSize);}
int iY(float y){return Math.round(centerY - y/pixelSize);}
float fx(int x){return (x - centerX) * pixelSize;}
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float fx(int x){return (x - centerX) * pixelSize;}
float fy(int y){return (centerY - y) * pixelSize;}

void drawLine(Graphics g, float xP, float yP,
      float xQ, float yQ)
{      g.drawLine(iX(xP), iY(yP), iX(xQ), iY(yQ));
}

int clipCode(float x, float y)
{   return
       (x < xmin ? 8 : 0)  | (x > xmax  ? 4 : 0) |
       (y < ymin ? 2 : 0)  | (y > ymax  ? 1 : 0);
}

void clipLine(Graphics g,
      float xP, float yP, float xQ, float yQ,
      float xmin, float ymin, float xmax, float ymax)
{   int cP = clipCode(xP, yP), cQ = clipCode(xQ, yQ);
      float dx, dy;
      while ((cP  |  cQ) != 0)
      {   if ((cP & cQ) != 0) return;
        dx = xQ - xP; dy = yQ - yP;
        if (cP != 0)
        {   if ((cP & 8) == 8){yP += (xmin-xP) * dy / dx; xP = xmin;}
           else
           if ((cP & 4) == 4){yP += (xmax-xP) * dy / dx; xP = xmax;}
           else
           if ((cP & 2) == 2){xP += (ymin-yP) * dx / dy; yP = ymin;}
           else
           if ((cP & 1) == 1){xP += (ymax-yP) * dx / dy; yP = ymax;}
           cP = clipCode(xP, yP);
        }
        else
        if (cQ != 0)
        {   if ((cQ & 8) == 8){yQ += (xmin-xQ) * dy / dx; xQ = xmin;}
           else
           if ((cQ & 4) == 4){yQ += (xmax-xQ) * dy / dx; xQ = xmax;}
           else
           if ((cQ & 2) == 2){xQ += (ymin-yQ) * dx / dy; yQ = ymin;}
           else
           if ((cQ & 1) == 1){xQ += (ymax-yQ) * dx / dy; yQ = ymax;}
           cQ = clipCode(xQ, yQ);
        }
      }
        drawLine(g, xP, yP, xQ, yQ);
}
public void paint(Graphics g)
{   initgr();
      if (np == 1)
      {   // Draw horizontal and vertical lines through
        // first defined point:
        drawLine(g, fx (0), ymin, fx(maxX), ymin);
        drawLine(g, xmin, fy (0), xmin, fy(maxY));
     } else
      if (np == 2)
      {     // Draw rectangle:
        drawLine(g, xmin, ymin, xmax, ymin);
        drawLine(g, xmax, ymin, xmax, ymax);
        drawLine(g, xmax, ymax, xmin, ymax);
         drawLine(g, xmin, ymax, xmin, ymin);

         // Draw 20 concentric regular pentagons, as
         // far as they lie within the rectangle:
         float rMax = Math.min(rWidth, rHeight)/2,
            deltaR = rMax/20, dPhi = (float)(0.4 * Math.PI);

         for (int j=1; j<=20; j++)
         {   float r = j *  deltaR;
            // Draw a pentagon:
            float xA, yA, xB = r, yB = 0;

            for (int i=1; i<=5; i++)
            {   float phi = i * dPhi;
              xA = xB; yA = yB;
              xB = (float)(r * Math.cos(phi));
              yB = (float)(r * Math.sin(phi));
              clipLine(g, xA, yA, xB, yB, xmin, ymin, xmax, ymax);
            }
         }
      }
   }
}

The program draws 20 concentric (regular) pentagons, as far as these lie within a rectangle, which the user can define by clicking
on any two opposite corners. When he or she clicks for the third time, the situation is the same as at the beginning: the screen is
cleared and a new rectangle can be defined, in which again parts of 20 pentagons appear, and so on. As usual, if the user
changes the window dimensions, the size of the result is changed accordingly. Figure 4.9 shows the situation just after the
pentagons are drawn.
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Figure 4.9: Demonstration of program ClipLine.java

If we look at the while-loop in the method clipLine, it seems that this code is somewhat inefficient because of the divisions dy/dx
and dx/dy inside that loop while dx and dy are not changed in it. However, we should bear in mind that dx or dy may be zero. The
if-statements in the loop guarantee that no division by dx or dy will be performed if that variable is zero. Besides, this loop is
different from most other program loops in that the inner part is usually executed only once or not at all, and rarely more than
once.
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4.5 SUTHERLAND–HODGMAN POLYGON CLIPPING
In contrast to line clipping, discussed in the previous section, we will now deal with polygon clipping, which is different in that it
converts one polygon into another within a given rectangle, as Figures 4.10 and 4.11 illustrate.

 
Figure 4.10: Nine polygon vertices defined; final edge not yet drawn

 
Figure 4.11: Polygon completed and clipped

The program that we will discuss draws a fixed rectangle and enables the user to specify the vertices of a polygon by clicking, in
the same way as discussed in Section 1.5. As long as the first vertex, in Figure 4.10 on the left, is not selected for the second
time, successive vertices are connected by polygon edges. As soon as the first vertex is selected again, the polygon is clipped, as
Figure 4.11 shows. Some vertices of the original polygon do not belong to the clipped one. On the other hand, the latter polygon
has some new vertices, which are all points of intersection of the edges of the original polygon and those of the rectangle. In
general, the number of vertices of the clipped polygon can be greater than, equal to or less than that of the original one. In Figure
4.11 there are five new polygon edges, which are part of the rectangle edges.

The program that produced Figure 4.11 is based on the Sutherland–Hodgman algorithm, which first clips all polygon edges
against one rectangle edge, or rather, the infinite line through such an edge. This results in a new polygon, which is then clipped
against the next rectangle edge, and so on. Figure 4.12 shows a rectangle and a polygon, ABCDEF. Starting at vertex A, we find
that AB intersects the line x = xmax in point I, which will be a new vertex of the clipped polygon. The same applies to point J, the
point of intersection of DE with the same vertical rectangle edge.
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Figure 4.12: The Sutherland–Hodgman algorithm

Let us refer to the original polygon as the input polygon and the new one as the output polygon. We represent each polygon by a
sequence of successive vertices. Let us start with the right rectangle edge and treat it as an infinite clipping line, which can be
expressed as x = xmax, and see how to clip the polygon against this line. In general, when working on one clipping line, we ignore
all other rectangle edges. Initially, the output polygon is empty. When following all successive polygon edges such as AB, we
focus on the endpoint, B, and decide as follows which points will belong to the output polygon:

If A and B lie on different sides of the clipping line, the point of intersection, I, is added to the output polygon.
Regardless of this being the case, B is added to the output polygon if and only if it lies on the same side of the
clipping line as the rectangle.

Starting with the directed edge AB in Figure 4.12, point I is the first to be added to the output polygon. Vertex B is not added
because it is not on the same side of the clipping line as the rectangle, and the same applies to the endpoints of the following
directed edges, BC and CD. When dealing with edge DE, we first add J and then E to the output polygon since they are both on
the same side of the clipping line as the rectangle. The endpoints of the next two edges, EF and FA, lie on the same side of the
clipping line as the rectangle and are therefore added to the output polygon. In this way we obtain the vertices I, J, E, F and A, in
that order. We then use this output polygon as the input polygon to clip against the top rectangle edge. Using the same method as
described above on the right edge, we obtain the vertices I, J, K, L, F and A, which forms the output polygon IJKLFA. Although in
this example IJKLFA is the desired clipped polygon, it will in general be necessary to use the output polygon as input for working
with another rectangle edge. The program below shows an implementation in Java:
    // ClipPoly.java: Clipping a polygon.
    // Uses: Point2D (Section 1.5).
    import java.awt.*;
    import java.awt.event.*;
    import java.util.*;
    public class ClipPoly extends Frame
    {  public static void main(String[] args){new ClipPoly();}

       ClipPoly()
       {  super("Define polygon vertices by clicking");
          addWindowListener(new WindowAdapter()
             {public void windowClosing(WindowEvent e)
                    {System.exit(0);}});
          setSize (500, 300);
          add("Center", new CvClipPoly());

          setCursor(Cursor.getPredefinedCursor
                         (Cursor.CROSSHAIR_CURSOR));
          show();
          }
    }

    class CvClipPoly extends Canvas
    {   Poly poly = null;
        float rWidth = 10.0F, rHeight = 7.5F, pixelSize;
        int x0, y0, centerX, centerY;
        boolean ready = true;

        CvClipPoly()
        {   addMouseListener(new MouseAdapter()
            {  public void mousePressed(MouseEvent evt)
               {  int x = evt.getX(), y = evt.getY();
                  if (ready)
                  {   poly = new Poly();
                      x0 = x; y0 = y;
                      ready = false;
                  }
                  if (poly.size() > 0 &&
                     Math.abs(x - x0) < 3 && Math.abs(y - y0) < 3)
                     ready = true;
                  else
                     poly.addVertex(new Point2D(fx(x), fy(y)));
                  repaint();
              }
            });
        }
    void initgr()
    {  Dimension d = getSize();
       int maxX = d.width - 1, maxY = d.height - 1;
       pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
       centerX = maxX/2; centerY = maxY/2;
    }

    int iX(float x){return Math.round(centerX + x/pixelSize);}
    int iY(float y){return Math.round(centerY - y/pixelSize);}
    float fx(int x){return (x - centerX) * pixelSize;}
    float fy(int y){return (centerY - y) * pixelSize;}

    void drawLine(Graphics g, float xP, float yP, float xQ,
                    float yQ)
    {   g.drawLine(iX(xP), iY(yP), iX(xQ), iY(yQ));
    }
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    void drawPoly(Graphics g, Poly poly)
    {  int n = poly.size();
       if (n == 0) return;
       Point2D a = poly.vertexAt(n - 1);
       for (int i=0; i<n; i++)
       {   Point2D b = poly.vertexAt(i);
           drawLine(g, a.x, a.y, b.x, b.y);
           a = b;
       }
      }

    public void paint(Graphics g)
    {   initgr();
        float xmin = -rWidth/3, xmax = rWidth/3,
              ymin = -rHeight/3, ymax = rHeight/3;
        // Draw clipping rectangle:
        g.setColor(Color.blue);
        drawLine(g, xmin, ymin, xmax, ymin);
        drawLine(g, xmax, ymin, xmax, ymax);
        drawLine(g, xmax, ymax, xmin, ymax);
        drawLine(g, xmin, ymax, xmin, ymin);
        g.setColor(Color.black);
        if (poly == null) return;
        int n = poly.size();
        if (n == 0) return;
        Point2D a = poly.vertexAt (0);
        if (!ready)
        {  // Show tiny rectangle around first vertex:
           g.drawRect(iX(a.x)-2, iY(a.y)-2, 4, 4);
           // Draw incomplete polygon:
           for (int i=1; i<n; i++)
           {   Point2D b = poly.vertexAt(i);
               drawLine(g, a.x, a.y, b.x, b.y);
               a = b;
           }
        }  else
        {  poly.clip(xmin, ymin, xmax, ymax);
           drawPoly(g, poly);
        }
       }
    }
    class Poly
    {  Vector v = new Vector();
       void addVertex(Point2D p){v.addElement(p);}
       int size(){return v.size();}

       Point2D vertexAt(int i)
       {  return (Point2D)v.elementAt(i);
       }

       void clip(float xmin, float ymin, float xmax, float ymax)
       {  // Sutherland-Hodgman polygon clipping:
          Poly poly1 = new Poly();
          int n;
          Point2D a, b;
          boolean aIns, bIns; // whether A or B is on the same
                              //         side as the rectangle

          // Clip against x == xmax:
          if ((n = size()) == 0) return;
          b = vertexAt(n-1);
          for (int i=0; i<n; i++)
          {   a = b; b = vertexAt(i);
              aIns = a.x <= xmax; bIns = b.x <= xmax;
              if (aIns != bIns)
                 poly1.addVertex(new Point2D(xmax, a.y +
                 (b.y - a.y) * (xmax - a.x)/(b.x - a.x)));
              if (bIns) poly1.addVertex(b);
          }
          v = poly1.v; poly1 = new Poly();

          // Clip against x == xmin:
          if ((n = size()) == 0) return;
          b = vertexAt(n-1);
          for (int i=0; i<n; i++)
          {   a = b; b = vertexAt(i);
              aIns = a.x >= xmin; bIns = b.x >= xmin;
              if (aIns != bIns)
                 poly1.addVertex(new Point2D(xmin, a.y +
                 (b.y - a.y) * (xmin - a.x)/(b.x - a.x)));
              if (bIns) poly1.addVertex(b);
          }
          v = poly1.v; poly1 = new Poly();

          // Clip against y == ymax:
          if ((n = size()) == 0) return;
          b = vertexAt(n-1);
          for (int i=0; i<n; i++)
          {   a = b; b = vertexAt(i);
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          {   a = b; b = vertexAt(i);
              aIns = a.y <= ymax; bIns = b.y <= ymax;
              if (aIns != bIns)
                 poly1.addVertex(new Point2D(a.x +
                 (b.x - a.x) * (ymax - a.y)/(b.y - a.y), ymax));
              if (bIns) poly1.addVertex(b);
          }
          v = poly1.v; poly1 = new Poly();

          // Clip against y == ymin:
          if ((n = size()) == 0) return;
          b = vertexAt(n-1);
          for (int i=0; i<n; i++)
          {   a = b; b = vertexAt(i);
              aIns = a.y >= ymin;
              bIns = b.y >= ymin;
              if (aIns != bIns)
                 poly1.addVertex(new Point2D(a.x +
                 (b.x - a.x) * (ymin - a.y)/(b.y - a.y), ymin));
              if (bIns) poly1.addVertex(b);
          }
          v = poly1.v; poly1 = new Poly();
         }
    }

The Sutherland–Hodgman algorithm can be adapted for clipping regions other than rectangles and for three-dimensional
applications.
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4.6 BÉZIER CURVES
There are many algorithms for constructing curves. A particularly elegant and practical one is based on specifying four points that
completely determine a curve segment: two endpoints and two control points. Curves constructed in this way are referred to as
(cubic) Bézier curves. In Figure 4.13, we have the endpoints P0 and P3, the control points P1 and P2, and the curve constructed
on the basis of these four points.

 
Figure 4.13: Bézier curve based on four points

Writing a method to draw this curve is surprisingly easy, provided we use recursion. As Figure 4.14 shows, we compute six
midpoints, namely:

A, the midpoint of P0P1

B, the midpoint of P2P3

C, the midpoint of P1P2

A1, the midpoint of AC

B1, the midpoint of BC

C1, the midpoint of A1B1

 
Figure 4.14: Constructing points for two smaller curve segments

After this, we can divide the original task of drawing the Bézier curve P0P3 (with control points P1 and P2) into two simpler tasks:

drawing the Bézier curve P0C1, with control points A and A1

drawing the Bézier curve C1P3, with control points B1 and B

All this needs to be done only if the original points P0 and P3 are further apart than some small distance, say, ∊ . Otherwise, we
simply draw the straight line P0P3. Since we are using pixels on a raster, we can also base the test just mentioned on device
coordinates: we will simply draw a straight line from P0 to P3 if and only if the corresponding pixels are neighbors or identical,
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coordinates: we will simply draw a straight line from P0 to P3 if and only if the corresponding pixels are neighbors or identical,
writing
if (Math.abs(x0 - x3) <= 1 && Math.abs(y0 - y3) <= 1)
      g.drawLine(x0, y0, x3, y3);
else ...

The recursive method bezier in the following program shows an implementation of this algorithm. The program expects the user to
specify the four points P0, P1,P2 and P3, in that order, by clicking the mouse. After the fourth point, P3, has been specified, the
curve is drawn. Any new mouse clicking is interpreted as the first point, P0, of a new curve; the previous curve simply disappears
and another curve can be constructed in the same way as the first one, and so on.
// Bezier.java: Bezier curve segments.
// Uses: Point2D (Section 1.5).

import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class Bezier extends Frame
{  public static void main(String[] args){new Bezier();}

      Bezier()
      {   super("Define endpoints and control points of curve segment");
          addWindowListener(new WindowAdapter()
             {public void windowClosing(WindowEvent e){System.exit(0);}});
          setSize (500, 300);
          add("Center", new CvBezier());

          setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));
          show();
      }
}

class CvBezier extends Canvas
{  Point2D[] p = new Point2D[4];
   int np = 0, centerX, centerY;
   float rWidth = 10.0F, rHeight = 7.5F, eps = rWidth/100F, pixelSize;

   CvBezier()
   {  addMouseListener(new MouseAdapter()
      {  public void mousePressed(MouseEvent evt)
         {  float x = fx(evt.getX()), y = fy(evt.getY());
            if (np == 4) np = 0;
            p[np++] = new Point2D(x, y);
            repaint();
         }
      });
   }

   void initgr()
   {  Dimension d = getSize();
      int maxX = d.width - 1, maxY = d.height - 1;
      pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
      centerX = maxX/2; centerY = maxY/2;
   }

   int iX(float x){return Math.round(centerX + x/pixelSize);}
   int iY(float y){return Math.round(centerY - y/pixelSize);}
   float fx(int x){return (x - centerX) * pixelSize;}
   float fy(int y){return (centerY - y) * pixelSize;}
   Point2D middle(Point2D a, Point2D b)
   {  return new Point2D((a.x + b.x)/2, (a.y + b.y)/2);
   }
   void bezier(Graphics g, Point2D p0, Point2D p1,
      Point2D p2, Point2D p3)
   {  int x0 = iX(p0.x), y0 = iY(p0.y),
          x3 = iX(p3.x), y3 = iY(p3.y);
      if (Math.abs(x0 - x3) <= 1 && Math.abs(y0 - y3) <= 1)
         g.drawLine(x0, y0, x3, y3);
      else
      {  Point2D a = middle(p0, p1), b = middle(p3, p2),
             c = middle(p1, p2), a1 = middle(a, c),
             b1 = middle(b, c), c1 = middle(a1, b1);
         bezier(g, p0, a, a1, c1);
         bezier(g, c1, b1, b, p3);
      }
   }

   public void paint(Graphics g)
   {  initgr();
      int left = iX(-rWidth/2), right = iX(rWidth/2),
          bottom = iY(-rHeight/2), top = iY(rHeight/2);
      g.drawRect(left, top, right - left, bottom - top);

      for (int i=0; i<np; i++)
      {   // Show tiny rectangle around point:
          g.drawRect(iX(p[i].x)-2, iY(p[i].y)-2, 4, 4);
          if (i > 0)
              // Draw line p[i-1]p[i]:
              g.drawLine(iX(p[i-1].x), iY(p[i-1].y),
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              g.drawLine(iX(p[i-1].x), iY(p[i-1].y),
                         iX(p[i].x), iY(p[i].y));
      }
      if (np == 4) bezier(g, p[0], p[1], p[2], p[3]);
   }
}

Since this program uses the isotropic mapping mode with logical coordinate ranges 0–10.0 for x and 0–7.5 for y, we should only
use a rectangle whose height is 75 % of its width. As in Sections 1.4 and 1.5, we place this rectangle at the center of the screen
and make it as large as possible. It is shown in Figure 4.15; if the four points for the curve are chosen within this rectangle, they
will be visible regardless of how the size of the window is changed by the user. The same applies to the curve, which is
automatically scaled, in the same way as we did in Sections 1.4 and 1.5.

 
Figure 4.15: A constructed Bézier curve

This way of constructing a Bézier curve may look like magic. To understand what is going on, we must be familiar with the notion
of parametric representation, which, in 2D, we can write as

where t is a parameter, which we may think of as time. Variable t ranges from 0 to 1: as if we move from P0 to P3 with constant
velocity, starting at t = 0 and finishing at t = 1. At time t = 0.5 we are half-way. With cubic Bézier curves, both f(t)and g(t) are third
degree polynomials in t.

Before we proceed, let us pay some attention to expressions such as

to compute the midpoint A of line segment P0P1. The points in such expressions actually denote vectors, which enables us to
form their sum and to multiply them by a scalar. Without this shorthand notation, we would have to write

which would be rather awkward. Let us write each Pi as the column vector

(where we have taken the liberty of mixing mathematical and programming notations). In the same way, we combine the above
functions f(t)and g(t),

writing

Then the cubic Bézier curve is defined as follows:

Substituting 0 and 1 for t, we find B(0) = P0 and B(1) = P3. Before discussing the relation between this definition and the recursive
midpoint construction, let us see this definition in action. It enables us to replace the recursive method bezier with the following
non-recursive one:
void bezier1(Graphics g, Point2D[] p)
{  int n = 200;
   float dt = 1.0F/n, x = p[0].x, y = p[0].y, x0, y0;
   for (int i=1; i<=n; i++)
   {   float t = i * dt, u = 1 - t,
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   {   float t = i * dt, u = 1 - t,
          tuTriple  = 3 * t * u,
          c0 = u * u * u,
          c1 = tuTriple * u,
          c2 = tuTriple * t,
          c3 = t * t * t;
       x0 = x; y0 = y;
       x = c0*p[0].x + c1*p[1].x + c2*p[2].x + c3*p[3].x;
       y = c0*p[0].y + c1*p[1].y + c2*p[2].y + c3*p[3].y;
       g.drawLine(iX(x0), iY(y0), iX(x), iY(y));
   }
}

This method produces the same curve as that produced by bezier,provided we also replace the call to bezier with this one:
bezier1(g, P);

We will discuss a more efficient non-recursive method, bezier2, equivalent to bezier1, at the end of this section.

Since B(t) denotes the position at time t, the derivative B′(t) of this function (which is also a column vector depending on t) can be
regarded as the velocity. After some algebraic manipulation and differentiating, we find

which gives

These two results are velocity vectors at the starting point P0 and the endpoint P3. They show that the direction we move at on
these points is along the vectors P0P1 and P2P3, as Figure 4.16 illustrates.

 
Figure 4.16: Velocity at the points P0 and P3

We have been discussing two entirely different ways to construct a curve between the points P0 and P3, and, without an
experiment, it is not clear that these curves are identical. For the time being, we will distinguish between the two curves and refer
to them as

the midpoint curve, constructed by a recursive process of computing mid-points, and implemented in the method
bezier;

the analytical curve, given by Equation (4.13) and implemented in the method bezier1.

Although both methods are based on the four points P0,P1,P2 and P3, the ways we compute hundreds of curve points (to connect
them by tiny straight lines) are very different. It would be unsatisfactory if it remained a mystery why these curves are identical. Let
us therefore briefly discuss a way to prove this fact.

Using the function B(t) of Equation (4.13), we find

Since point C1 in Figure 4.14 was used to divide the whole midpoint curve into two smaller curves, we might suspect that C1 and
B(0.5) are two different expressions for the same point. We verify this by expressing C1 in terms of the four given points, using
Figure 4.14. Because C1 is the midpoint of A1B1 and both A1 and B1 are also midpoints, and so on, we find
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which is indeed the expression that we found for B(0.5). This proves that point C1, which obviously belongs to the midpoint curve,
also lies on the analytical curve. Besides P0 and P3, there is now only one point, C1, which we have proved lies on both curves, so
it seems we are still far away from the proof that these curves are identical. However, we can now apply the same argument
recursively, which would enable us to find as many points that lie on both curves as we like. Restricting ourselves to the first half of
each curve, we focus on the points P0, A, A1 and C1, which we can again use to construct both midpoint and analytical curves.
For the latter we use the following equation, which is similar to Equation (4.13):

It is then obvious that b(0) = P0, b(1) = C1 and b(0.5) is identical with a midpoint (between P0 and C1) used in the recursive
process, in the same way as B(0.5) is identical with the midpoint C1. There is one remaining difficulty: is the analytical curve given
by Equation (4.18) really the same as the first part of that given by Equation (4.13)? We will show that this is indeed the case.
Using u = 2t (since u = 1and t = 0.5 at point C1) we have

To verify this, note that, according to Equation (4.18), we have

Using Equations (4.15), (4.16) and (4.17), we can write the last expression as

Rearranging this formula, we find that it is equal to the expression for B(t)in Equation (4.13), which is what we had to prove.

4.6.1 Building Smooth Curves from Curve Segments

Suppose that we want to combine two Bézier curve segments, one based on the four points P0, P1, P2, P3 and the other on
Q0,Q1,Q2 and Q3, in such a way that the endpoint P3 of the first segment coincides with the starting point Q0 of the second. Then
the combined curve will be smoothest if the final velocity B′(1) (see Figure 4.16) of the first segment is equal to the initial velocity
B′(0) of the second. This will be the case if the point P3(= Q0) lies exactly at the middle of the line segment P2Q1. The high degree
of smoothness obtained in this way is referred to as second-order continuity. It implies not only that the two segments have the
same tangent at their common point P3 = Q0, but also that the curvature is continuous at this point. By contrast, we have first-
order continuity if P3 lies on the line segment P2Q1 but not at the middle of it. In this case, although the curve looks reasonably
smooth because both segments have the same tangent in the common point P3 = Q0, there is a discontinuity in the curvature at
this point.

4.6.2 Matrix Notation

It will be clear that we can write Equation (4.13) as follows:

Since the row vector in this matrix product is equal to

we can also write it as the product of a simpler row vector, [t3 t2 t 1], and a 4 × 4 matrix, obtaining the following result for the Bézier
curve:

As we know, any matrix product ABC of three matrices is equal to both (AB)C and A(BC). If we do the first matrix multiplication
first, as in (AB)C, Equation (4.20) reduces to Equation (4.19). On the other hand, if we do the second first, as in A(BC), we obtain
the following result:
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This is interesting because it provides us with a very efficient way of drawing a Bézier curve segment, as the following improved
method shows:

void bezier2(Graphics g, Point2D[] p)
{  int n = 200;
   float dt = 1.0F/n,
   cx3 = -p[0].x  + 3 * (p[1].x - p[2].x) + p[3].x,
   cy3 = -p[0].y  + 3 * (p[1].y - p[2].y) + p[3].y,
   cx2 = 3 *  (p[0].x - 2 * p[1].x + p[2].x),
   cy2 = 3 *  (p[0].y - 2 * p[1].y + p[2].y),
   cx1 = 3 * (p[1].x - p[0].x),
   cy1 = 3 * (p[1].y - p[0].y),
   cx0 = p[0].x,
   cy0 = p[0].y,
   x = p[0].x, y = p[0].y, x0, y0;
   for (int i=1; i<=n; i++)
   {   float t = i * dt;
       x0 = x; y0 = y;
       x = ((cx3 * t + cx2) * t +    cx1) * t + cx0;
       y = ((cy3 * t + cy2) * t +    cy1) * t + cy0;
       g.drawLine(iX(x0), iY(y0), iX(x), iY(y));
   }
}

The above computation of x and y is an application of Horner's rule, according to which we can efficiently compute polynomials by
using the right-hand rather than the left-hand side of the following equation:

Although bezier2 does not look simpler than bezier1, it is much more efficient because of the reduced number of arithmetic
operations in the for-loop. With a large number of steps, such as n = 200 in these versions of bezier1 and bezier2, it is the number
of operations inside the loop that counts, not the preparatory actions that precede the loop.

4.6.3 3D Curves

Although the curves discussed here are two-dimensional, three-dimensional curves can be generated in the same way. We simply
add a z-component to B(t) and to the control points, and compute this in the same way as the x-and y-components are computed.
The possibility of generating curves that do not lie in a plane is related to the degree of the polynomials we have been discussing.
If the four given points do not lie in the same plane, the generated cubic curve segment does not either. By contrast, quadratic
curves are determined by only three points, which uniquely define a plane (unless they are collinear); the quadratic curve through
those three points lies in that plane. In other words, polynomial curves can be non-planar only if they are at least of degree 3.
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4.7 B-SPLINE CURVE FITTING
Besides the techniques discussed in the previous section, there are other ways of generating curves x = f (t), y = g(t), where f and
g are polynomials in t of degree 3. A popular one, known as B-splines, has the characteristic that the generated curve will normally
not pass through the given points. We will refer to all these points as control points. A single segment of such a curve, based on
four control points A, B, C and D, looks rather disappointing in that it seems to be related only to B and C. This is shown in Figure
4.17, in which, from left to right, the points A, B, C and D are again marked with tiny squares.

 
Figure 4.17: Single B-spline segment, based on four points

However, a strong point in favor of B-splines is that this technique makes it easy to draw a very smooth curve consisting of many
curve segments. To avoid confusion, note that each curve segment consists of many straight-line segments. For example, Figure
4.17 shows one curve segment which consists of 50 line segments. Since four control points are required for a single curve
segment, we have

in this case. This equation also applies if there are several curve segments. At first sight, Figure 4.18 seems to violate this rule,
since there are five curve segments, and it looks as if there are only six control points. However, two of these were used twice.
This curve was constructed by clicking first on the lower-left vertex (= point 0), followed by clicking on the upper-left one (= point
1), then the upper-right one (= point 2), and so on, following the polygon clockwise. Altogether,the eight control points 0, 1, 2, 3, 4,
5, 0, 1 were selected, in that order. If after this, a key on the keyboard is pressed, only the curve is redrawn, not the control points
and the lines that connect them.

 
Figure 4.18: B-spline curve consisting of five curve segments

If we had clicked on yet another control point (point 2, at the top, right), we would have had a closed curve. In general, to produce
a closed curve, there must be three overlapping vertices, that is, two overlapping polygon edges. As you can see in Figure 4.18,
the curve is very smooth indeed: we have second-order continuity, as discussed in the previous section. Recall that this implies
that even the curvature is continuous in the points where two adjacent curve segments meet. As the part of the curve near the
lower-right corner shows, we can make the distance between a curve and the given points very small by supplying several points
close together.

The mathematics of B-splines can be expressed by the following matrix equation, similar to Equation (4.20):

If we have n control points P0, P1, … , Pn− 1 (n ≥  4) then, strictly speaking, Equation (4.21) applies only to the first curve segment.
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If we have n control points P0, P1, … , Pn− 1 (n ≥  4) then, strictly speaking, Equation (4.21) applies only to the first curve segment.
For the second, we have to replace the points P0, P1, P2 and P3 in the column vector with P1, P2, P3 and P4, and so on. As with
Bézier curves, the variable t ranges from 0 to 1 for each curve segment. Multiplying the above 4 × 4 matrix by the column vector
that follows it, we obtain

or

The following program is based on this equation. The user can click any number of points, which are used as the points P0, P1,
… , Pn− 1. The first curve segment appears immediately after the fourth control point, P3, has been defined, and each additional
control point causes a new curve segment to appear. To show only the curve, the user can press any key, which also terminates
the input process. After this, we can generate another curve by clicking again. The old curve then disappears. Figures 4.17 and
4.18 have been produced by this program:
// Bspline.java: B-spline curve fitting.
// Uses: Point2D (Section 1.5).

import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class Bspline extends Frame
{  public static void main(String[] args){new Bspline();}

   Bspline()
   {  super("Define points; press any key after the final one");
      addWindowListener(new WindowAdapter()
         {public void windowClosing(WindowEvent e){System.exit(0);}});
      setSize (500, 300);
      add("Center", new CvBspline());

      setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));
      show();
   }
}

class CvBspline extends Canvas
{   Vector V = new Vector();
    int np = 0, centerX, centerY;
    float rWidth = 10.0F, rHeight = 7.5F, eps = rWidth/100F, pixelSize;
    boolean ready = false;

    CvBspline()
    {  addMouseListener(new MouseAdapter()
       {  public void mousePressed(MouseEvent evt)
          {  float x = fx(evt.getX()), y = fy(evt.getY());
             if (ready)
             {  V.removeAllElements();
                np = 0;
                ready = false;
             }
             V.addElement(new Point2D(x, y));
             np++;
             repaint();
          }
       });

       addKeyListener(new KeyAdapter()
       {  public void keyTyped(KeyEvent evt)
          {  evt.getKeyChar();
             if (np >= 4) ready = true;
             repaint();
          }
       });
    }

    void initgr()
    {  Dimension d = getSize();
       int maxX = d.width - 1, maxY = d.height - 1;
       pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
       centerX = maxX/2; centerY = maxY/2;
    }
    int iX(float x){return Math.round(centerX + x/pixelSize);}
    int iY(float y){return Math.round(centerY - y/pixelSize);}
    float fx(int x){return (x - centerX) * pixelSize;}
    float fy(int y){return (centerY - y) * pixelSize;}
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    void bspline(Graphics g, Point2D[] p)
    {  int m = 50, n = p.length;
       float xA, yA, xB, yB, xC, yC, xD, yD,

       a0, a1, a2, a3, b0, b1, b2, b3, x=0, y=0, x0, y0;
    boolean first = true;
       for (int i=1; i<n-2; i++)
       {   xA=p[i-1].x; xB=p[i].x; xC=p[i+1].x; xD=p[i+2].x;
           yA=p[i-1].y; yB=p[i].y; yC=p[i+1].y; yD=p[i+2].y;
           a3=(-xA+3*(xB-xC)+xD)/6; b3=(-yA+3*(yB-yC)+yD)/6;
           a2=(xA-2*xB+xC)/2;     b2=(yA-2*yB+yC)/2;
           a1=(xC-xA)/2;          b1=(yC-yA)/2;
           a0=(xA+4*xB+xC)/6;     b0=(yA+4*yB+yC)/6;
           for (int j=0; j<=m; j++)
           {  x0 = x;
              y0 = y;
              float t = (float)j/(float)m;
              x = ((a3*t+a2)*t+a1)*t+a0;
              y = ((b3*t+b2)*t+b1)*t+b0;
              if (first) first = false;
              else
                 g.drawLine(iX(x0), iY(y0), iX(x), iY(y));
            }
       }
    }

    public void paint(Graphics g)
    {  initgr();
       int left = iX(-rWidth/2), right = iX(rWidth/2),
           bottom = iY(-rHeight/2), top = iY(rHeight/2);
       g.drawRect(left, top, right - left, bottom - top);
       Point2D[] p = new Point2D[np];
       V.copyInto(p);
       if (!ready)
       {   for (int i=0; i<np; i++)
           {   // Show tiny rectangle around point:
               g.drawRect(iX(p[i].x)-2, iY(p[i].y)-2, 4, 4);
               if (i > 0)
                   // Draw line p[i-1]p[i]:
                   g.drawLine(iX(p[i-1].x), iY(p[i-1].y),
                         iX(p[i].x), iY(p[i].y));
           }
       }
       if (np >= 4) bspline(g, p);
    }
}

To see why B-splines are so smooth, you should differentiate B(t)twiceand verify that, for any curve segment other than the final
one, the values of B(1), B′(1) and B′′(1) at the endpoints of these segments are equal to the values B(0), B′(0) and B′′(0) at the
start point of the next curve segment. For example, for the continuity of the curve itself we find

for the first curve segment, based on P0, P1, P2 and P3, while we can immediately see that we obtain exactly this value if we
compute B(0) for the second curve segment, based on P1, P2, P3 and P4.

EXERCISES

4.1 Replace the drawLine method based on Bresenham's algorithm and listed near the end of
Section 4.1 with an even faster version that benefits from the symmetry of the two halves of the
line. For example, with endpoints P and Q satisfying Equation (4.1), and using the integer value
xMid halfway between xP and xQ, we can let the variable x run from xP to xMid and also use a
variable x2, which at the same time runs backward from xQ to xMid. In each iteration of the loop, x
is increased by 1 and x2 is decreased by 1. Note that there will be either one point or two points in
the middle of the line, depending on the number of pixels to be plotted being odd or even. Be sure
that no pixel of the line is omitted and that no pixel is put twice on the screen. To test the latter,
you can use XOR mode so that writing the same pixel twice would have the same effect as
omitting a pixel.

4.2 Generalize the method doubleStep2 (of Section 4.2), to make it work for any lines.

4.3 Since normal pixels are very small, they do not show very clearly which of them are selected by
Bresenham's algorithms. Use a grid to simulate a screen with a very low resolution. Demonstrate
both the method drawLine (with g as its first argument) of Section 4.1 and the method drawCircle
of Section 4.3. Only the gridpoints of your grid are to be used as the centers of ‘superpixels’. The
method putPixel is to draw a small circle with such a center and the distance dGrid of two
neighboring gridpoints as its diameter. Do not change the methods drawLine and drawCircle that
we have developed, but use dGrid,just mentioned, in a method putPixel that is very different from
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we have developed, but use dGrid,just mentioned, in a method putPixel that is very different from
the one shown at the beginning of Section 4.1. Figure 4.19 shows a grid (with dGrid = 10) and
both a line and a circle drawn in this way. As in Figure 4.1, the line shown here has the endpoints
P(1, 1) and Q(12, 5) but this time the positive y-axis points downward and the origin is the upper-
left corner of the drawing rectangle. The circle has radius r = 8, and is approximated by the same
pixels as shown in Figure 4.6 for one eighth of this circle. The line and circle were produced by
the following calls to the methods drawLine and drawCircle of Sections 4.1 and 4.3 (but with a
different method putPixel):
drawLine(g, 1, 1, 12, 5); // g, xP, yP, xQ, yQ
drawCircle(g, 23, 10, 8); // g, xC, yC, r

 
Figure 4.19: Bresenham algorithms for a line and for a circle (see also Figures 4.1 and
4.6)

4.4 In the Bezier.java program we constructed only one curve segment, using the points P0, P1, P2
and P3. Extend this program to enable the user to draw very smooth curves consisting of more
than one segment. After the first segment has been drawn, the second one is based on these
points Q0,Q1,Q2 and Q3 (similar to P0, P1, P2 and P3):

Q0 is identical with P3; clicking on P3 acts as a signal that we want to start another
curve segment.

Q1 is not specified by the user, but is automatically constructed by reflecting P2
about P3; in other words, P3 (= Q0) will be the midpoint of P2Q1. This principle will
make the curve very smooth.

Q2 and Q3 are defined in the usual way, that is, by clicking on these points.

It should also be possible to specify a third curve segment by starting at Q3, and so on. When the
curve (consisting of an arbitrary number of segments) is completed, the user clicks on a point
other than the final one of the last segment. This will be the starting point (similar to P0) of an
entirely new curve (to be drawn in addition to the previous one), unless, after this, the user clicks
on this new point once again: this clicking twice on the same point will be the signal that the
drawing is ready. As soon as a curve is completed, it is to be drawn without displaying any straight
lines connecting control points and without any little squares marking these points.

4.5 Extend the program Bspline.java of Section 4.7. Supply a grid, with visible gridpoints lying, say, 10
pixels apart, horizontally and vertically. Any control point specified by the user using the mouse
should be pulled to the nearest gridpoint. This makes it easier for the user to specify two or more
points that lie on the same horizontal or vertical line. Apart from using a grid, your program will
also be different from Bspline.java in that it must be able to store several B-spline curves instead
of only one. The following characters are to be interpreted as commands:

+ Increase the distance between gridpoints by one.

− Decrease the distance between gridpoints by one.

n After this command, start with a new curve, retaining the previous ones.

d Delete the last curve.

g Change the visibility status of gridpoints (visible/invisible).

c Show only the curves, without any control points or lines connecting these.

4.6 Implement a restricted version of Bresenham's line-drawing algorithm as a demonstration. The
purpose of the exercise is to visualize how this algorithm works by showing its stepwise execution
on an exaggerated screen area as a 10 × 10 grid. Draw the grid on the left half of the drawing
space and the main body of method drawLine2 (listed in Section 4.1) on the right half with text
font size of 14. At the bottom of the drawing space, add both a button labeled Step and a small
space for displaying the values of the program variables dx, c, m, d, x and y. When the user clicks
on two intersection points P and Q, satisfying Equations (4.1), on the grid, a thin line is drawn and
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on two intersection points P and Q, satisfying Equations (4.1), on the grid, a thin line is drawn and
the initial values of the program variables d and m are displayed. Just after the definition of point
Q, the call to putPixel is highlighted (by coloring or boxing the statement), indicating that this
program line is next to be executed. Then whenever the user clicks on Step, the highlighted
program line is executed, the next program line in the right half is highlighted, and the values of d,
x and y are updated. Each time putPixel is executed, a filled circle is drawn on the appropriate
grid intersection (representing a pixel on the line).

Answers

4.1 Adapt the Java program for Bresenham's algorithm by drawing pixels from both of the endpoints towards
the middle of the line. Either calculate where the middle point is beforehand or check on-the-fly (that is,
within the loop) when the two pixels merge in the middle. There may be one or two middle points
depending on whether the line consists of an odd or even number of pixels. If there is only one, it is a good
idea to draw this pixel after exiting the loop. Check if your solution also works correctly for very short lines,
consisting of one or two pixels. You solution should be very general in that it works for any two endpoints P
and Q.

4.2 You should add a second for-loop in which the roles of x and y are interchanged. For example, the calls to
putPixel should have ++y as their third argument instead of ++x as their second. If |yQ −  yP|≤ |xQ −  xP|,
the first loop should be executed; otherwise the second.

4.3 The following program produces only Figure 4.19. You should extend it, enabling the user to specify the
two endpoints of a line segment and both the center and the radius of a circle.
// Bresenham.java: Bresenham algorithms for lines and circles
//                 demonstrated by using superpixels.
import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class Bresenham extends Frame
{  public static void main(String[] args){new Bresenham();}

   Bresenham()
   {  super("Bresenham");
      addWindowListener(new WindowAdapter()
       {public void windowClosing(WindowEvent e)
               {System.exit(0);}});
       setSize (340, 230);
       add("Center", new CvBresenham());
       show();
   }
}
class CvBresenham extends Canvas
{  float rWidth = 10.0F, rHeight = 7.5F, pixelSize;
   int centerX, centerY, dGrid = 10, maxX, maxY;

   void initgr()
   {  Dimension d;
      d = getSize();
      maxX = d.width - 1;
      maxY = d.height - 1;
      pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
      centerX = maxX/2; centerY = maxY/2;
   }
      int iX(float x){return Math.round(centerX + x/pixelSize);}
      int iY(float y){return Math.round(centerY - y/pixelSize);}

      void putPixel(Graphics g, int x, int y)
      {  int x1 = x * dGrid, y1 = y * dGrid, h = dGrid/2;
         g.drawOval(x1 - h, y1 - h, dGrid, dGrid);
      }

      void drawLine(Graphics g, int xP, int yP, int xQ, int yQ)
      {  int x = xP, y = yP, D = 0, HX = xQ - xP, HY = yQ - yP,
            c, M, xInc = 1, yInc = 1;
         if (HX < 0){xInc = -1; HX = -HX;}
         if (HY < 0){yInc = -1; HY = -HY;}
         if (HY <= HX)
         {  c = 2 * HX; M = 2 * HY;
            for (;;)
            {  putPixel(g, x, y);
               if (x == xQ) break;
               x += xInc;
               D += M;
               if (D > HX){y += yInc; D -= c;}
            }
         }
         else
         {  c = 2 * HY; M = 2 * HX;
            for (;;)
            {  putPixel(g, x, y);
               if (y == yQ) break;
               y += yInc;
               D += M;
               if (D > HY){x += xInc; D -= c;}
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               if (D > HY){x += xInc; D -= c;}
            }
         }
}

void drawCircle(Graphics g, int xC, int yC, int r)
{  int x = 0, y = r, u = 1, v = 2 * r - 1, E = 0;
   while (x < y)
   {  putPixel(g, xC + x, yC + y); // NNE
      putPixel(g, xC + y, yC - x); // ESE
      putPixel(g, xC - x, yC - y); // SSW
      putPixel(g, xC - y, yC + x); // WNW
      x++; E += u; u += 2;
      if (v < 2 * E){y--; E -= v; v -= 2;}
      if (x > y) break;
      putPixel(g, xC + y, yC + x); // ENE
      putPixel(g, xC + x, yC - y); // SSE
      putPixel(g, xC - y, yC - x); // WSW
      putPixel(g, xC - x, yC + y); // NNW
     }
   }

   void showGrid(Graphics g)
   {  for (int x=dGrid; x<=maxX; x+=dGrid)
         for (int y=dGrid; y<=maxY; y+=dGrid)
            g.drawLine(x, y, x, y);
   }

   public void paint(Graphics g)
   {  initgr();
      showGrid(g);
      drawLine(g, 1, 1, 12, 5);
      drawCircle(g, 23, 10, 8);
   }
}

4.4 Since an unknown number of curve segments are to be dealt with, we can use the Java concept of Vector,
as we have also done in Section 1.5 and elsewhere to store Point2D objects representing the vertices of a
polygon. In this case it makes sense to define a class CurveSegment andtousea Vector of CurveSegment
objects, as this fragment shows:
class CurveSegment
{  Point2D[] P;
   CurveSegment(Point2D[] P){this.P = P;}
   ...
}
Writing

Vector curves = new Vector();

and using the array P, declared as
Point2D[] P = new Point2D[4];

containing the most recent four points, as we did in program Bezier.java in Section 4.6, we can add a new
curve segment to curves by writing
curves.addElement(new CurveSegment(P));

The object curves can store several curves, each consisting of some consecutive elements.

4.5 In program Bspline.java of Section 4.7, pressing a key is interpreted as a signal to terminate the process of
extending the curve. Insert the line
char ch = evt.getKeyChar();

in the method keyTyped so that you can use the character ch to differentiate between different characters
entered by the user and to use them as commands.

Use a Vector element for each array representing a curve. Recall that we have used the statement
V.copyInto(P);

in the paint method of program Bspline.java, to copy the Vector object V into the array P. Using a different
Vector object, say, curves, we can now add the array P to curves. The deletion of the last curve, as
required by the d command, is then implemented as
curves.setSize(curves.size()-1);

4.6 Represent the grid on the screen by drawing ten equidistant horizontal lines that intersect ten equidistant
vertical lines. If the user clicks on (or near) a point of intersection of these lines, transform the device
coordinates to gridpoint coordinates, ranging from 0 through 9, and use these gridpoint coordinates to
select P and Q. Draw the line PQ after Q has been defined. On the right of all these horizontal and vertical
lines, display the strings

below each other, where the array algorithm is defined and initialized as follows:
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String[] algorithm = {
   "int x=xP,y=yP,d=0,dx=xQ-xP,c=2*dx,", // 0
   "    m=2*(yQ-yP);",                   // 1
   "for (;;)",                           // 2
   "{ putPixel(g, x, y);",               // 3
   " if (x == xQ) break;",               // 4
   " x++; d += m;",                      // 5
   " if (d > dx){y++; d -= c;}",      // 6
   "}"};                                 // 7

As soon as the user has defined point Q, the line stored as algorithm[3] should be highlighted, indicating
that the call to putPixel is about to be executed. You can realize this by using a variable, say i, indicating
which of the above eight program lines (if any) should be displayed in red (or equal to, say, − 1 if all
program lines are to appear in black). All lines algorithm[j] with j ≠  i are displayed in black. You can use a
switch statement to test the value of i in a method stepPressed. For example, you can write a fragment of
the following form in the constructor of your canvas class:
addMouseListener(new MouseAdapter()
{  public void mousePressed(MouseEvent evt)
   {  // When the mouse is clicked, determine where
      // it is on the screen and do the appropriate
      // action, if any.
      int xClick = 0, yClick = 0;
      // Get the coordinates
      xClick = evt.getX();
      yClick = evt.getY();
      // Check to see if STEP button was pressed
      if (xClick, yClick lies within the rectangle representing
                                                 the Step button)
         stepPressed();
      else
      if (xClick, yClick) lies within grid area
      {  ...
      }
      repaint();
   }
});

In the switch statement just mentioned, you should execute actions defined in the program line (stored in
the algorithm array) that was previously highlighted and update the variable i mentioned above. Your
method paint will use this variable i to display the correct program line in red and the others in black.
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Chapter 5: Perspective

We now turn to the exciting subject of 3D graphics. As soon as we know how to compute the perspective image of a single
point, we can easily produce more interesting images. To obtain the perspective image of a straight line, we simply connect
the images of its endpoints, using the fact that the image of a straight line is also a straight line. In this chapter, the
computation of the perspective image of a point is done in two steps: a viewing transformation followed by a perspective
transformation.

5.1 INTRODUCTION
In Figure 5.1 a two-dimensional representation of a cube is shown along with some auxiliary lines. Although AB is a horizontal
edge, it is not a horizontal line in the picture. Lines that in 3D space are horizontal and parallel meet in the picture in a so-called
vanishing point. All these vanishing points lie on the same line, which is called the horizon. The horizon and vanishing points refer
to the 2D image space, not to the 3D object space. For many centuries these concepts have been used by artists to draw realistic
images of three-dimensional objects. This way of representing three-dimensional objects is usually referred to as perspective.

 
Figure 5.1: Vanishing points on the horizon

The invention of photography offered a new (and easier) way of producing images in perspective. There is a strong analogy
between a camera used in photography and the human eye. Our eye is a very sophisticated instrument of which a camera is an
imitation. In the following discussion the word eye may be replaced with camera if we want to emphasize that a two-dimensional
hard copy is desired.

It is obvious that the image will depend upon the position of the eye. An important aspect is the distance between the eye and the
object, since the effect of perspective will be inversely proportional to this distance. If the eye is close to the object, the effect of
perspective is strong, as shown in Figure 5.2(a). Here we can very clearly see that in the image the extensions of parallel line
segments meet.

 
Figure 5.2: (a) Eye nearby; (b) eye far away

Besides the classical and the photographic method, there is a way of producing perspective images which is based on analytical
geometry. Let us write X and Y for 2D and x, y and z for 3D coordinates.

If we want to produce a drawing in perspective, we are given a great many points P(x, y, z) of the object and we want their images
P′(X, Y) in the picture.

Thus all we need is a mapping from the world coordinates (x, y, z) of a point P to the screen coordinates (X, Y) of its central
projection P′. We imagine a screen between the object and the eye E. For every point P of the object the line PE intersects the
screen at point P′. It is convenient to perform this mapping in two stages. The first is called a viewing transformation; point P is left
at its place, but we change from world coordinates to so-called eye coordinates. The second stage is called a perspective
transformation. This is a proper transformation from P to P′, combined with a transition from the three-dimensional eye
coordinates to the two-dimensional screen coordinates:
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5.2 THE VIEWING TRANSFORMATION
To perform the viewing transformation we must be given not only an object but also a viewpoint E. Let us require that the world-
coordinate system be right-handed. It is convenient if its origin O lies more or less centrally in the object; we then view the object
from E to O. We will assume this to be the case; in practice this might require a coordinate transformation consisting of decreasing
the original world coordinates by the coordinates of the central object point. We will include this very simple coordinate
transformation in our program, without writing it down in mathematical notation.

Let the viewpoint E be given by its spherical coordinates ρ (= rho), θ (= theta), ϕϕ (= phi), relative to the world-coordinate system.
Thus its world- coordinates are

as shown in Figure 5.3.

 
Figure 5.3: Spherical coordinates of viewpoint E

The direction of vector EO(=−OE) is said to be the viewing direction. From our eye at E we can only see points within some cone
whose axis is EO and whose apex is E. If the Cartesian coordinates xE, yE, zE of viewpoint E were given, we could derive the
spherical coordinates from them as follows:
rho = Math.sqrt(xE * xE + yE * yE + zE * zE);
theta = Math.atan2(yE, xE);
phi = Math.acos(zE/rho);

Our final objective will be to compute the screen coordinates X, Y,where we have an X-axis and a Y-axis, lying in a screen
between E and O and perpendicular to the viewing direction EO. This is why the eye-coordinate system will have its xe-axis and
ye-axis perpendicular to EO, leaving the ze-axis in the direction of OE. The origin of the eye-coordinate system is viewpoint E, as
shown in Figure 5.4. Viewing from E to O, we find the positive xe-axis pointing to the right and the positive ye-axis upwards. These
directions will enable us later to establish screen axes in the same directions. We could have used a positive ze-axis pointing from
E to O; on the one hand this is attractive because it makes the ze-coordinates of all object points positive, but, on the other hand,
it would have required a left-handed eye-coordinate system. In this book we will use a right-handed eye-coordinate system (as
shown in Figure 5.4) to avoid confusion with regard to the use of the cross product, taking the minus sign of ze-coordinates into
the bargain.
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Figure 5.4: Eye-coordinate system

The viewing transformation can be written as a matrix multiplication, for which we need the 4 × 4 viewing matrix V:

To find V, we imagine this transformation to be composed of three elementary ones, for which the matrices can easily be written
down. Matrix V will be the product of these three matrices. Each of the three transformations is in fact a change of coordinates
and has therefore a matrix which is the inverse of the matrix for an equivalent point transformation.

1. Moving the origin from O to E

We perform a translation of the coordinate system such that viewpoint E becomes the new origin. The matrix for
this change of coordinates is

(Do not confuse xE, yE, zE, the world coordinates of viewpoint E, with xe, ye, ze, the eye coordinates of any
point.) The new coordinate system is shown in Figure 5.5.

 
Figure 5.5: Situation before rotation about the z-axis

2. Rotating the coordinate system about the z-axis

Starting with Figure 5.5 we rotate the coordinate system about the z-axis through the angle θ  + 90°, so the new
x-axis points to the right and is perpendicular to the vertical plane through E and O. The matrix for this change of
coordinates is the same as that for a rotation of points through the angle − (θ  + 90°), which equals − θ  – 90°. We
obtain the 4 × 4 matrix Rz for this rotation by including a 2 × 2 matrix, as discussed in Section 3.2, and adding
the third and fourth columns and rows of a 4 × 4 unit matrix:
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If you find the simplifications

difficult, it will be helpful to plot the two angles of this formula in a unit circle for some value of θ , as Figure 5.6
illustrates.

 
Figure 5.6: Relating the sine and cosine of − θ  – 90° to those of θ

After applying the above matrix Rz, the new position of the x-, y- and z-axes is as shown in Figure 5.7.

 
Figure 5.7: Situation before rotation about x -axis

3. Rotating the coordinate system about the x-axis

Since the z-axis is to have the direction OE, we now rotate the coordinate system about the x-axis through the angle ϕ . The
dashed line near the positive z-axis in Figure 5.7 indicates the new y-axis after this rotation. A rotation about the x-axis is said to
be positive if the y-axis goes towards the z-axis (through an angle of 90°). It corresponds to the turning of a normal, right-handed
screw which moves forward in the direction of the positive x-axis. However, since we are performing a coordinate transformation
instead of rotating points, we have to use −ϕ  instead of ϕ  as the angle of rotation, so that we obtain the following rotation matrix:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


After this final rotation, we have obtained the eye-coordinate system with xe-, ye-and ze-axes, which we have already seen in
Figure 5.4. Multiplying the above matrices T, Rz and Rx, we obtain the desired viewing matrix:

Recall that we use this matrix in Equation (5.2), to compute the eye coordinates xe, ye and ze from the given world coordinates xw,
yw and zw.

The viewing transformation described above is to be followed by the perspective transformation to be discussed in the next
section. However, we could also use the eye coordinates xe and ye, simply ignoring ze. In that case we have a so-called
orthographic projection. Every point P of the object is then projected into a point P′ by drawing a line from P, perpendicular to the
plane through the x-axis and the y-axis. It can also be regarded as the perspective image we obtain if the viewpoint is infinitely far
away. An example of such a picture is the cube in Figure 5.2(b). Parallel lines remain parallel in pictures obtained by orthographic
projection. Such pictures are very often used in practice because with conventional methods they are easier to draw than real
perspective images.

On the other hand, bringing some perspective into the picture will make it much more realistic. Our viewing transformation will
therefore be followed by the perspective transformation, which will involve surprisingly little computation.
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5.3 THE PERSPECTIVE TRANSFORMATION
You might have the impression that we are only half-way, and that in this section we will need as much mathematics as in Section
5.2. However, most of the work has already been done. Since we will not use world coordinates in this section, there will be no
confusion if we denote eye coordinates simply by (x, y, z) instead of (xe, ye, ze).

In Figure 5.8 we have chosen a point Q, whose eye coordinates are (0, 0, − d) for some positive value d.

 
Figure 5.8: Screen and eye coordinates

Our screen will be the plane z = − d, that is, the plane through Q and perpendicular to the z-axis. Then the screen-coordinate
system has Q as its origin, and its X-and Y-axes are parallel to the x-and y-axes. For every object point P, the image point P′ is
the intersection of line PE and the screen. To keep Figure 5.8 simple, we consider a point P whose y-coordinate is zero. However,
the following equations to compute its screen coordinate X are also valid for other y-coordinates. In Figure 5.8 the triangles EPR
and EP′Q are similar. Hence

so we have

(Recall that z-coordinates of object points are negative, so that − z is a positive value.) In other words,

In the same way we can derive

At the beginning of Section 5.2 we chose the origin O of the world-coordinate system to be a central point of the object. The origin
Q of the screen-coordinate system will be central in the image because the z-axis of the eye-coordinate system is a line through E
and O, which intersects the screen at Q. We must bear in mind that Equations (5.7) and (5.8) can be used in this form only if the
origin Q of the screen coordinate system (with X-and Y-axes) lies in the center of the screen. If this origin lies instead in the lower-
left corner of the screen and the screen has width w and height h, we have to add w/2 and h/2 to the Equations (5.7) and (5.8),
respectively.

We still have to specify the distance d between viewpoint E and the screen. Roughly speaking, we have

which follows from the similarity of the triangles EP′1P′2 and EP1P2 in Figure 5.9. Thus we have
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Figure 5.9: Image size and object size

This equation should be applied to both the horizontal and the vertical directions. It should be interpreted only as a means to
obtain an indication about an appropriate value for d, for the three-dimensional object may have a complicated shape, and it may
not be clear how its size is to be measured. We then use a rough estimation of the object size, such as the maximum of its length,
width and height. The image size in Equation (5.9) should be taken somewhat smaller than the screen.
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5.4 A CUBE IN PERSPECTIVE
We will now discuss a complete Java program, which draws a perspective representation of a cube, as shown in Figure 5.10.
Such representations, with all edges visible, are called wire-frame models.

 
Figure 5.10: Output of program CubePers.java

To specify this cube in a program, we assign numbers to its vertices, as shown in Figure 5.11. The center of the cube coincides
with the origin O and its edges have length 2, which implies that the x-, y- and z-coordinates of its eight vertices are equal to +1or
− 1.

 
Figure 5.11: Vertex numbers and coordinate axes

The following program produces the wire-frame model of Figure 5.10. We store the world, eye and screen coordinates for each of
the eight vertices of the cube in the class Obj:
// CubePers.java: A cube in perspective.
// Uses: Point2D (Section 1.5), Point3D (Section 3.9).
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// Uses: Point2D (Section 1.5), Point3D (Section 3.9).
import java.awt.*;
import java.awt.event.*;

public class CubePers extends Frame
{   public static void main(String[] args){new CubePers();}

      CubePers()
      {   super("A cube in perspective");
      addWindowListener(new WindowAdapter()
         {public void windowClosing(WindowEvent e){System.exit(0);}});
      setLayout(new BorderLayout());
      add("Center", new CvCubePers());
      Dimension dim = getToolkit().getScreenSize();
      setSize(dim.width/2, dim.height/2);
      setLocation(dim.width/4, dim.height/4);
      show();
   }
}

class CvCubePers extends Canvas
{   int centerX, centerY;
    Obj obj = new Obj();

    int iX(float x){return Math.round(centerX + x);}
    int iY(float y){return Math.round(centerY - y);}

    void line(Graphics g, int i, int j)
    {  Point2D p = obj.vScr[i], q = obj.vScr[j];
       g.drawLine(iX(p.x), iY(p.y), iX(q.x), iY(q.y));
    }

    public void paint(Graphics g)
    {  Dimension dim = getSize();
       int maxX = dim.width - 1, maxY = dim.height - 1,
           minMaxXY = Math.min(maxX, maxY);
       centerX = maxX/2; centerY = maxY/2;
       obj.d = obj.rho * minMaxXY / obj.objSize;
       obj.eyeAndScreen();
       // Horizontal edges at the bottom:
       line(g, 0, 1); line(g, 1, 2); line(g, 2, 3); line(g, 3, 0);
       // Horizontal edges at the top:
       line(g, 4, 5); line(g, 5, 6); line(g, 6, 7); line(g, 7, 4);
       // Vertical edges:
       line(g, 0, 4); line(g, 1, 5); line(g, 2, 6); line(g, 3, 7);
   }
}

class Obj // Contains 3D object data
{  float rho, theta=0.3F, phi=1.3F, d, objSize,
         v11, v12, v13, v21, v22, v23, v32, v33, v43;
                    // Elements of viewing matrix V
   Point3D[] w;     // World coordinates
   Point2D[] vScr;   // Screen coordinates
   Obj()
   {  w = new Point3D[8];
      vScr = new Point2D[8];
      // Bottom surface:
      w[0] = new Point3D( 1, -1, -1);
      w[1] = new Point3D( 1,   1, -1);
      w[2] = new Point3D(-1,   1, -1);
      w[3] = new Point3D(-1, -1, -1);
      // Top surface:
      w[4] = new Point3D( 1, -1,   1);
      w[5] = new Point3D( 1,   1,   1);
      w[6] = new Point3D(-1,   1,   1);
      w[7] = new Point3D(-1, -1,   1);
      objSize = (float)Math.sqrt (12F);
         // = sqrt(2  * 2 + 2 * 2 + 2 * 2)
         // = distance between two opposite vertices.
      rho = 5 *  objSize; // For reasonable perspective effect
   }

   void initPersp()
   {  float costh = (float)Math.cos(theta),
            sinth = (float)Math.sin(theta),
            cosph = (float)Math.cos(phi),
            sinph = (float)Math.sin(phi);
      v11 = -sinth; v12 = -cosph * costh; v13 = sinph * costh;
      v21 = costh;  v22 = -cosph * sinth; v23 = sinph * sinth;
                    v32 = sinph;          v33 = cosph;
                                          v43 = -rho;
      }

      void eyeAndScreen()
      {  initPersp();
         for (int i=0; i<8; i++)
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         for (int i=0; i<8; i++)
      {  Point3D p = w[i];
         float x = v11 * p.x + v21 * p.y,
               y = v12 * p.x + v22 * p.y + v32 * p.z,
               z = v13 * p.x + v23 * p.y + v33 * p.z + v43;
         vScr[i] = new Point2D(-d * x/z, -d * y/z);
      }
   }
}

As discussed in Section 5.3 (see point Q in Figure 5.8), the perspective transformation is simplest if we use a coordinate system
with the origin in the center of the screen and with a y-axis pointing upward. To convert such (floating-point) coordinates to device
coordinates of type int, we again use the methods iX and iY. As usual, these are based on the values of the fields centerX,
centerY and maxY, which are computed in the paint method before this method uses iX and iY.

The paint method also computes the screen distance d (stored in obj), using Equation (5.9). After calling the Obj method
eyeAndScreen to compute eye and screen coordinates, we use our method line to draw all 12 cube edges.

In the class Obj, the arrays w and vScr contain the world and the screen coordinates, respectively, of the cube vertices. Recall
that we use the matrix multiplication of Equation (5.2) to compute the eye coordinates from the given world coordinates stored in
w. We then use these eye coordinates to compute the screen coordinates for the array vScr. Figure 5.11 is helpful in specifying
the coordinate values in the array w and the vertex numbers in calls to the line method.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


5.5 SOME USEFUL CLASSES
To avoid duplication of code, we now present some classes (Input, Obj3D, Tria, Polygon3D, Canvas3D and Fr3D) that we will
frequently use later.

5.5.1 Input: A Class for File Input Operations

The first class we will discuss is Input. It is not really specific for computer graphics, but useful for any programming task that
involves reading data from a textfile in a simple way. We will use it to read data for 3D objects, specified in a particular format.
There is an Input constructor that accepts the name of an input file as an argument, as well as a constructor without any
arguments to read data from the keyboard. To demonstrate how easy it is to use this class, let us suppose we are given a textfile
containing only numbers and we want to write a program to read this file and compute the sum of these numbers. For example,
this textfile, say, example.txt, may have the following contents:
2.5    6
200    100

Then the desired program is shown below:
// Sum.java: Demonstrating the class Input by computing the sum
//   of all numbers in the textfile example.txt (which contains
//   only numbers and whitespace characters).
public class Sum
{  public static void main(String[] args)
   {  float x, s=0;
      Input inp = new Input("example.txt");
      for (;;)
      { x = inp.readFloat();
        if (inp.fails())
           break;
        s + = x;
      }
      System.out.println("The computed sum is " + s);
    }
}

After compiling and executing this program in a directory that also contains the files Input.java and example.txt, the following
output line is displayed:
The computed sum is 308.5

This example demonstrates the use of the Input constructor and of the methods readFloat and fails. The complete class Input,
listed below, shows that it contains some other useful methods as well:
// Input.java: A class to read numbers and characters from textfiles.
// Methods of this class, available for other program files:
//   Input(fileName) (constructor; open input file)
//   Input()         (constructor; prepare for input from keyboard)
//   readInt()       (read an integer)
//   readFloat()     (read a float number)
//   readChar()      (read a character)
//   readString()    (read a string between double quotes)
//   skipRest()      (skip all remaining characters of current line)
//   fails()         (input operation failed)
//   eof()           (failure because of end of file)
//   clear()         (reset error flag)
//   close()         (close input file)
//   pushBack(ch)    (push character ch back into the input stream)
import java.io.*;

class Input
{  private PushbackInputStream pbis;
   private boolean ok = true;
   private boolean eoFile = false;

   Input(){pbis = new PushbackInputStream(System.in);}

   Input(String fileName)
   {  try
      {   InputStream is = new FileInputStream(fileName);
          pbis = new PushbackInputStream(is);
      }
      catch(IOException ioe){ok = false;}
   }

   int readInt()
   {  boolean neg = false;
      char ch;
      do {ch = readChar();}while (Character.isWhitespace(ch));
      if (ch == '-'){neg = true; ch = readChar();}
      if (!Character.isDigit(ch))
      {  pushBack(ch);
         ok = false;
         return 0;
      }
      int x = ch - '0';
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      int x = ch - '0';
      for (;;)
      {  ch = readChar();
         if (!Character.isDigit(ch)){pushBack(ch); break;}
         x = 10 * x + (ch -  '0');
      }
      return (neg ? -x : x);
    }
float readFloat()
{  char ch;
   int nDec = -1;
   boolean neg = false;
   do
   {  ch = readChar();
   }   while (Character.isWhitespace(ch));
   if (ch == '-'){neg = true; ch = readChar();}
   if (ch == '.'){nDec = 1; ch = readChar();}
   if (!Character.isDigit(ch)){ok = false; pushBack(ch); return 0;}
   float x = ch - '0';
   for (;;)
   {  ch = readChar();
      if (Character.isDigit(ch))
      {  x = 10 * x + (ch - '0');
         if (nDec >= 0) nDec++;
      }
      else
      if (ch == '.' && nDec == -1) nDec = 0;
      else break;
   }
   while (nDec > 0){x *= 0.1; nDec--;}
   if (ch == 'e'  ||   ch == 'E')
   {  int exp = readInt();
      if (!fails())
      {   while (exp < 0){x *= 0.1; exp++;}
          while (exp > 0){x *= 10; exp--;}
      }
   }
   else pushBack(ch);
   return (neg ? -x : x);
}

char readChar()
{  int ch=0;
   try
   {   ch = pbis.read();
       if (ch == -1) {eoFile = true; ok = false;}
   }
   catch(IOException ioe){ok = false;}
   return (char)ch;
}

   String readString()    // Read first string between quotes (").
   {  String str = " ";
      char ch;
      do ch = readChar(); while (!(eof()  || ch == '"'));
                                                   // Initial quote
      for (;;)
      {   ch = readChar();
         if (eof()  ||   ch == '"') // Final quote (end of string)
            break;
         str += ch;
      }
      return str;
   }

   void skipRest()   // Skip rest of line
   {  char ch;
      do ch = readChar(); while (!(eof()  || ch == '\n'));
   }

   boolean fails(){return !ok;}
   boolean eof(){return eoFile;}
   void clear(){ok = true;}

   void close()
   {  if (pbis != null)
      try {pbis.close();}catch(IOException ioe){ok = false;}
   }

   void pushBack(char ch)
   {  try {pbis.unread(ch);}catch(IOException ioe){}
   }
}

Using a call to readChar immediately after readInt or readFloat causes the character immediately after the number to be read. To
realize this, we use the standard Java class PushbackInputStream, which enables us to push back, or ‘unread’ the last character
that we have read and that does not belong to the number we are reading.

After an attempt to read a number by using readInt or readFloat,wecancall the fails method to check whether that attempt was
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After an attempt to read a number by using readInt or readFloat,wecancall the fails method to check whether that attempt was
successful. If fails returns true, a non-numeric character, such as a period in the second part of our input files, may have been
read. It is then still possible to read that character by using readChar.The clear method resets the error flag, so that we can
resume input, using fails again. The method fails also returns true if an input operation fails because the end of the file is
encountered during a call to one of the methods readInt, readFloat and readChar. In that case, the eof method also returns true.
We can use the method readString to read a string surrounded by double quotes (”), as we will do in Chapter 8. To skip all
remaining characters of the current input line, we use the method skipRest.

5.5.2 Obj3D: A Class to Store 3D Objects

Let us now discuss the way the above class Input is used in the method readObject of the class Obj3D. Suppose we have an
input file such as the one shown below:
1    0    0    0
2    0  100.5  0
3    0    0  1.5e2
Faces:
1 2 3.
3 2 1.

We will often use files of this type, which will be described in more detail in the next chapter. This example defines a 3D object
that has only three vertices, with numbers 1, 2 and 3. The x-, y- and z-coordinates are given after each of these vertex numbers.
The object has two faces, which are the two sides of the triangle with these three vertices. The first line following the word Faces
indicates the side where we view the vertices 1, 2 and 3, in that order, counter-clockwise, while the last line denotes the other
side. Obviously, which of these two triangle sides we can see depends on the point of view.

A simplified version of the Obj3D method readObject is shown below. It shows how the class Input can be used to read data files
such as the one shown above. In this fragment three dots (… ) denote code that is not relevant in this discussion because it does
not perform any input operations:
private boolean readObject(Input inp)
{  for (;;)
   { int i = inp.readInt();
     if (inp.fails()){inp.clear(); break;}
     ...
     float x = inp.readFloat(),
           y = inp.readFloat(),
           z = inp.readFloat();
     addVertex(i, x, y, z);
   }
   ...
   do   // Skip the line "Faces:"
   {  ch = inp.readChar(); count++;
   }  while (!inp.eof() && ch != '\n');
   ...
   // Build polygon list:
   for (;;)
   {  Vector vnrs = new Vector();
      for (;;)
      {  int i = inp.readInt();
         if (inp.fails()){inp.clear(); break;}
         ...
         vnrs.addElement(new Integer(i));
      }
      ch = inp.readChar();
      if (ch != '.') break;
      // Ignore input lines with only one vertex number:
      if (vnrs.size() >= 2)
         polyList.addElement(new Polygon3D(vnrs));
   }
   inp.close();
   return true;
}

The above fragment is a simplified version of the method readObject of the class Obj3D, which we will now discuss in more detail.
We will use this class to store all data of 3D objects, along with their 2D representations, in such a way that this data is easy to
use in our programs. We store three representations of vertices:

‘Vector’ w of Point3D elements: world coordinates

Array e of Point3D elements: eye coordinates

Array vScr of Point2D elements: screen coordinates

Recall the classes Point2D and Point3D discussed in Sections 1.5 and 3.9. Since we read the world coordinates from an input file
without knowing in advance how many vertices there will be, we use a Java Vector for them. This is different with the eye and
screen coordinates. Since we compute these ourselves after we have read the world coordinates of all vertices, we know the size
of the arrays e and vScr, so that we can allocate memory for them. We use the vertex numbers to indicate the positions in w,
e,and vScr. In other words, with an input line of the form

we can find these world coordinates x, y and z of vertex i in the Point3D object
(Point3D)w.elementAt(i)

We use the Obj3D method eyeAndScreen to compute the corresponding eye coordinates and store them in the Point3D object
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e[i]

This method also computes the corresponding screen coordinates and stores them in the Point2D object
vScr[i]

It follows that w.size(), e.length and vScr.length will be one higher than the highest vertex number that is in use.

We will use the accessor methods getE() and getVScr() for access to the arrays e and vScr. The Vector object w will not be used
at all outside the class Obj3D.

Another useful method of Obj3D is planeCoeff. For each face (or polygon) of the object, it computes the coefficients a, b, c and h
of the equation

which describes the plane where this face lies. Using the first three vertices A, B and C of a polygon, we compute the normal
vector n = (a, b, c) of the plane as the vector product AB × AC (see Section 2.4), scaled such that

Using the inner product (see Section 2.2) of n and a vector x = EP for any point P in the plane, we can write (5.10) as

in which h is positive if the sequence A, B and C is clockwise, that is, if ABC is a back face. On the other hand, if ABC is not a
back face, h is negative and the sequence A, B and C is counter-clockwise. Recall that the positive z-axis (in the eye-coordinate
system) points towards us, as is more or less the case with the normal vector n of a visible face. However, the vector x points
away from us, which implies that the inner product n · x = h will be negative for a visible face and positive for a back face. The
absolute value of h is the distance between the eye E and the plane in question (see Exercise 7.1). We will use the coefficients a,
b, c and h on several occasions. In the class Obj3D, the method planeCoeff computes these coefficients, after which they are
stored in Polygon3D objects, as we will see shortly. This method planeCoeff also computes the maximum and minimum values of
an inner product used to determine which color is to be assigned to each face, as we will discuss in Section 7.2.

Since the file Obj3D.java is considerably larger than the program files we have seen so far, it is not listed here but you can find it
in Appendix C. Here is a summary of all methods of this class that we can use outside it:
boolean read(String fName) // Reads a 3D object file, if possible.
Vector getPolyList()       // Returns polyList, the list of faces.
String getFName()          // File name of current object.
Point3D[] getE()           // Eye coordinates e of vertices.
Point2D[] getVScr()        // Screen coordinates vScr of vertices.
Point2D getImgCenter()     // Center of image in screen coordinates.
float getRho()             // Rho, the viewing distance.
float getD()               // d, scaling factor, also screen distance.
float eyeAndScreen         // Computes eye and screen coordinates and
                           // returns maximum screen-coordinate range.
void planeCoeff()          // Computes the coefficients a, b, c, h
                           // for all faces.
boolean vp(Canvas cv, float dTheta, float dPhi, float fRho)
                           // Changes the viewpoint.
int colorCode(double a, double b, double c)
                           // Computes the color code of a face.

We will discuss the method colorCode in detail in Section 7.2. The public Obj3D method read calls the private method readObject,
discussed above, as the following fragment shows:
boolean read(String fName)
{  Input inp = new Input(fName);
   ...
   return readObject(inp); // Read from inp into obj
}

As we have seen in the simplified version of readObject, this method starts by repeatedly reading four numbers, i, x, y and z, and
calls the method addVertex, which keeps track of the minimum and maximum values of x, y and z. The loop in which the four
numbers are read terminates when an attempt to read a vertex number i fails because of the word Faces. The minimum and
maximum coordinate values just mentioned are required for a call to the private method shiftToOrigin, which reduces all world
coordinates such that the origin of the coordinate center will coincide with the center of the bounding box of the object.

After skipping the rest of the line on which we encounter the word Faces,we enter a loop to read vertex-number sequences
representing polygons. Vertex numbers in these sequences may be preceded by a minus sign, as we will discuss in Chapter 6, so
that the vertex numbers are actually the absolute values of the integers that we read.

Since we will often refer to the class Obj3D, let us have a look at a simplified version of it:
// Obj3D.java: A 3D object and its 2D representation.
// Uses: Point2D (Section 1.5), Point3D (Section 3.9),
//       Polygon3D, Input (Section 5.5).
...
class Obj3D
{  ...
   private Vector w = new Vector();        // World coordinates
   private Point3D[] e;                    // Eye coordinates
   private Point2D[] vScr;                 // Screen coordinates
   private Vector polyList = new Vector(); // Polygon3D objects
   ...
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   ...
   private void addVertex(int i, float x, float y, float z)
   {  ...
   }
   ...
}

Recall that the complete version is listed in Appendix C.

5.5.3 Tria: A Class to Store Triangles by Their Vertex Numbers

We will often store large sets of triangles, the vertices of which have numbers in the same way as letters normally used in
geometry. Since several triangles may share some vertices, it would not be efficient to store the coordinates of each vertex
separately for every triangle. For example, suppose in 3D space we have a triangle with vertices 1, 2 and 3 and another with
vertices 1, 4 and 2. It will then be efficient to set up a table with the x-, y- and z-coordinates of the four vertices 1, 2, 3 and 4, and
denote the triangles only by their vertex numbers. The following class represents triangles in this way:
// Tria.java: Triangle represented by its vertex numbers.
class Tria
{  int iA, iB, iC;
   Tria(int i, int j, int k){iA = i; iB = j; iC = k;}
}

If there had been no 3D programs in this book other than that for wireframe models, as discussed in Section 5.6, it would not have
been necessary to store polygons, let alone triangles. We could then have restricted ourselves to the edges of 3D objects, that is,
to line segments. We will nevertheless store the polygonal faces of the objects even in this chapter, to prepare for some more
interesting programs where hidden lines or faces are not displayed.

5.5.4 Polygon3D: A Class to Store 3D Polygons

Almost at the end of the Obj3D method readObject you may have noticed the following statement:
polyList.addElement(new Polygon3D(vnrs));

Here a new Polygon3D object is created to store the vertex numbers of a polygon. This object is then added to the Vector object
polyList, a private variable of the class Obj3D.Theclass Polygon3D contains a number of methods that we will not use in this
chapter. These are related to triangles resulting from polygons and will be useful in the next two chapters, in which we will be
dealing with algorithms to eliminate hidden lines and faces. Thanks to the above class Tria, the coordinates of the vertices of each
triangle are not duplicated. Since they are stored in arrays that are data members of the Obj3D class, we only need to store the
numbers iA, iB and iC of the vertices here. Although, in Section 2.13, we have already used a method triangulate to divide a
polygon into triangles, we will need a slightly different one that represents vertices by numbers referring to the Obj3D class. This
special method for triangulation is part of the class Polygon3D, listed below:
// Polygon3D.java: Polygon in 3D, represented by vertex numbers
//                 referring to coordinates stored in an Obj3D object.
import java.util.*;
class Polygon3D
{  private int[] nrs;
   private double a, b, c, h;
   private Tria[] t;
   Polygon3D(Vector vnrs)
   {  int n = vnrs.size();
      nrs = new int[n];
      for (int i=0; i<n; i++)
         nrs[i] = ((Integer)vnrs.elementAt(i)).intValue();
   }

   int[] getNrs(){return nrs;}
   double getA(){return a;}
   double getB(){return b;}
   double getC(){return c;}
   double getH(){return h;}
   void setAbch(double a, double b, double c, double h)
   {  this.a = a; this.b = b; this.c = c; this.h = h;
   }
   Tria[] getT(){return t;}

   void triangulate(Obj3D obj)
   // Successive vertex numbers (CCW) in vector nrs.
   // Resulting triangles will be put in array t.
   { int n = nrs.length;          // n > 2 is required
     int[] next = new int[n];
     t = new Tria[n - 2];
     Point2D[] vScr = obj.getVScr();
     int iA=0, iB, iC; intj=n-1;
     for (int i=0; i<n; i++){next[j] = i; j = i;}
     for (int k=0; k<n-2; k++)
     {   // Find a suitable triangle, consisting of two edges
        // and an internal diagonal:
        Point2D a, b, c;
        boolean found = false;
        int count = 0, nA = -1, nB = 0, nC = 0, nj;
        while (!found && ++count < n)
        {  iB = next[iA]; iC = next[iB];
           nA = Math.abs(nrs[iA]); a = vScr[nA];
           nB = Math.abs(nrs[iB]); b = vScr[nB];
           nC = Math.abs(nrs[iC]); c = vScr[nC];
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           nC = Math.abs(nrs[iC]); c = vScr[nC];
           if (Tools2D.area2(a, b, c) >= 0)
           {  // Edges AB and BC; diagonal AC.
              // Test to see if no vertex (other than A,
              // B, C) lies within triangle ABC:
              j = next[iC]; nj = Math.abs(nrs[j]);
              while (j != iA &&
                    (nj == nA  ||   nj == nB  ||   nj == nC  ||
                    !Tools2D.insideTriangle(a, b, c, vScr[nj])))
                 {  j = next[j]; nj = Math.abs(nrs[j]);
                 }
              if (j == iA)
              {   // Triangle found:
                t[k] = new Tria(nA, nB, nC);
                next[iA] = iC;
                found = true;
              }
           }
           iA = next[iA];
        }
        if (count == n)
        {   // Degenerated polygon, possibly with all
           // vertices on one line.
            if (nA >= 0) t[k] = new Tria(nA, nB, nC);
            else
            { System.out.println("Nonsimple polygon");
              System.exit(1);
            }
         }
      }
   }
}

The vertex numbers of the given polygon are available in the array nrs, while those of each resulting triangle are stored in an
element of the array t.Themost difficult part of this class is the method triangulate, which is the 3D equivalent of the Tools2D
method with the same name, discussed in Section 2.13 and not used in this chapter.

5.5.5 Canvas3D: An Abstract Class to Adapt the Java Class Canvas

The canvas classes we will be using will contain the methods getObj and setObj, to retrieve and store a reference to an Obj3D
object. In view of a separate frame class, Fr3D, we need to define the following abstract class:

// Canvas3D.java: Abstract class.
import java.awt.*;

abstract class Canvas3D extends Canvas
{  abstract Obj3D getObj();
   abstract void setObj(Obj3D obj);
}

Remember, abstract classes are only useful to create subclasses, not to define objects. Any (non-abstract) subclass of Canvas3D
is simply a subclass of the standard class Canvas, except that it is guaranteed to define the methods getObj and setObj. For
example, in the next section we will discuss a class CvWireframe of which the first line reads
class CvWireframe extends Canvas3D

By writing here Canvas3D instead of Canvas, we are obliged to define the methods getObj and setObj in this CvWireframe class,
and in return we are allowed to call these two methods for any object of class CvWireframe. We will clarify the use of the abstract
class Canvas3D further at the end of this section.

5.5.6 Fr3D: A Frame Class for 3D Programs

The class Fr3D will be used in four non-trivial 3D programs of this book, Wireframe.java (Section 5.6), HLines.java (Chapter 6),
Painter.java (Section 7.3) and ZBuf.java (Section 7.4). Since these programs will have the same menus, it makes sense to let
them share the file Fr3D.java, listed below, in which much of the code is related to these menus. The Java compiler accepts the
calls cv.getObj() and cv.setObj(obj) in this file because, as Canvas3D is an abstract class, the actual type of cv can only be a
subclass of it. As we have just seen, this implies that this subclass will define the methods getObj and setObj:
// Fr3D.java: Frame class to deal with menu commands and other
//    user actions.
import java.awt.*;
import java.awt.event.*;
import java.util.*;

class Fr3D extends Frame implements ActionListener
{  protected MenuItem open, exit, eyeUp, eyeDown, eyeLeft, eyeRight,
      incrDist, decrDist;
   protected String sDir;
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   protected String sDir;
protected Canvas3D cv;
protected Menu mF, mV;

Fr3D(String argFileName, Canvas3D cv, String textTitle)
{ super(textTitle);
  addWindowListener(new WindowAdapter()
     {public void windowClosing(WindowEvent e){System.exit(0);}});
  this.cv = cv;
  MenuBar mBar = new MenuBar();
  setMenuBar(mBar);
  mF = new Menu("File");
  mV = new Menu("View");
  mBar.add(mF); mBar.add(mV);

  open = new MenuItem("Open",
     new MenuShortcut(KeyEvent.VK_O));
  eyeDown = new MenuItem("Viewpoint Down",
     new MenuShortcut(KeyEvent.VK_DOWN));
  eyeUp = new MenuItem("Viewpoint Up",
     new MenuShortcut(KeyEvent.VK_UP));
  eyeLeft = new MenuItem("Viewpoint to Left",
     new MenuShortcut(KeyEvent.VK_LEFT));
  eyeRight = new MenuItem("Viewpoint to Right",
     new MenuShortcut(KeyEvent.VK_RIGHT));

  incrDist = new MenuItem("Increase viewing distance",
     new MenuShortcut(KeyEvent.VK_INSERT));
  decrDist = new MenuItem("Decrease viewing distance",
     new MenuShortcut(KeyEvent.VK_DELETE));
  exit = new MenuItem("Exit",
     new MenuShortcut(KeyEvent.VK_Q));
  mF.add(open); mF.add(exit);
  mV.add(eyeDown); mV.add(eyeUp);
  mV.add(eyeLeft); mV.add(eyeRight);
  mV.add(incrDist); mV.add(decrDist);
  open.addActionListener(this);
  exit.addActionListener(this);
  eyeDown.addActionListener(this);
  eyeUp.addActionListener(this);
  eyeLeft.addActionListener(this);
  eyeRight.addActionListener(this);
  incrDist.addActionListener(this);
  decrDist.addActionListener(this);
  add("Center", cv);
  Dimension dim = getToolkit().getScreenSize();
  setSize(dim.width/2, dim.height/2);
  setLocation(dim.width/4, dim.height/4);
  if (argFileName != null)
  {  Obj3D obj = new Obj3D();
     if (obj.read(argFileName)){cv.setObj(obj); cv.repaint();}
  }
  cv.setBackground(new Color (180, 180, 255) );
  show();
}

void vp(float dTheta, float dPhi, float fRho) // Viewpoint
{  Obj3D obj = cv.getObj();
   if (obj == null  ||   !obj.vp(cv, dTheta, dPhi, fRho))
      Toolkit.getDefaultToolkit().beep();
}

public void actionPerformed(ActionEvent ae)
{  if (ae.getSource() instanceof MenuItem)
   {  MenuItem mi = (MenuItem)ae.getSource();
      if (mi == open)
      {  FileDialog fDia = new FileDialog(Fr3D.this,
         "Open", FileDialog.LOAD);
         fDia.setDirectory(sDir);
         fDia.setFile("*.dat");
         fDia.show();
         String sDir1 = fDia.getDirectory();
         String sFile = fDia.getFile();
         String fName = sDir1 + sFile;
         Obj3D obj = new Obj3D();
         if (obj.read(fName))
         {  sDir = sDir1;
            cv.setObj(obj);
            cv.repaint();
         }
      }
      else
      if (mi == exit) System.exit(0); else
      if (mi == eyeDown) vp(0, .1F, 1); else
      if (mi == eyeUp) vp(0, -.1F, 1); else
      if (mi == eyeLeft) vp(-.1F, 0, 1); else
      if (mi == eyeRight) vp(.1F, 0, 1); else
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      if (mi == eyeRight) vp(.1F, 0, 1); else
      if (mi == incrDist) vp (0, 0, 2); else
      if (mi == decrDist) vp(0, 0, .5F);
    }
  }
}

Notice the use of the abstract class Canvas3D in the line
Fr3D(String argFileName, Canvas3D cv, String textTitle)

almost at the beginning of class Fr3D. We cannot replace Canvas3D with Canvas here because the compiler would not accept
the statement
cv.setObj(obj);

in the if-statement near the end of the Fr3D constructor. After all, setObj is not a method of the standard Java class Canvas.
Since, in the next section we will actually be using the class CvWireframe,ofwhich setObj is really a method, it is tempting to write
CvWireframe instead of Canvas3D. This would indeed work, but then we would not be able to use the class Fr3D also in
programs with canvas classes other than CvWireframe, as we will do in Chapters 6 and 7. We now see that the abstract class
Canvas3D is very useful. It is general enough to be used in several of our programs and yet less general than the standard
Canvas class in that it ‘promises’ an implementation of the methods setObj and getObj. We will discuss some aspects of the class
Fr3D in Chapter 7 when using it.
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5.6 A GENERAL PROGRAM FOR WIRE-FRAME MODELS
It is now time to see the classes of the previous section in action. A relatively simple way of displaying 3D objects, bounded by
polygons, is by drawing all the edges of these polygons, as we did for a cube in Section 5.4. The classes we have just seen
enable us to write a general program Wireframe.java,which reads input files through a menu command Open and enables the
user to view the object from any reasonable viewpoint, by using either menu commands or the keyboard. The comment lists all
classes that Wireframe.java directly or indirectly uses.
// Wireframe.java: Perspective drawing using an input file that lists
//    vertices and faces.
// Uses: Point2D (Section 1.5),
//       Triangle, Tools2D (Section 2.13),
//       Point3D (Section 3.9),
//       Input, Obj3D, Tria, Polygon3D, Canvas3D, Fr3D (Section 5.5),
//       CvWireframe (Section 5.6).
import java.awt.*;

public class Wireframe extends Frame
{  public static void main(String[] args)
   {  new Fr3D(args.length  > 0 ? args[0] : null, new CvWireframe(),
        "Wire-frame model");
   }
}

This rather simple program file accepts an optional program argument, which may be supplied to specify the name of the input
file. This is what the first argument, a conditional expression, of the Fr3D constructor is about. The second argument of this
constructor generates an object of class CvWireframe, which does almost all the work. Finally, the third argument specifies the
text, Wire-frame model, that we want to appear in the title bar of the window. The class CvWireframe is listed below:
// CvWireframe.java: Canvas class for class Wireframe.
import java.awt.*;
import java.util.*;

class CvWireframe extends Canvas3D
{  private int maxX, maxY, centerX, centerY;
   private Obj3D obj;
   private Point2D imgCenter;

   Obj3D getObj(){return obj;}
   void setObj(Obj3D obj){this.obj = obj;}
   int iX(float x){return Math.round(centerX + x - imgCenter.x);}
   int iY(float y){return Math.round(centerY - y + imgCenter.y);}

   public void paint(Graphics g)
   {  if (obj == null) return;
      Vector polyList = obj.getPolyList();
      if (polyList == null) return;
      int nFaces = polyList.size();
      if (nFaces == 0) return;
      Dimension dim = getSize();
      maxX = dim.width - 1; maxY = dim.height - 1;
      centerX = maxX/2; centerY = maxY/2;
      // ze-axis towards eye, so ze-coordinates of
      // object points are all negative.
      // obj is a java object that contains all data:
      // - Vector w       (world coordinates)
      // - Array e        (eye coordinates)
      // - Array vScr     (screen coordinates)
      // - Vector polyList (Polygon3D objects)

      // Every Polygon3D value contains:
      // - Array 'nrs' for vertex numbers
      // - Values a, b, c, h for the plane ax+by+cz=h.
      // (- Array t (with nrs.length-2 elements of type Tria))

      obj.eyeAndScreen(dim);
            // Computation of eye and screen coordinates.

      imgCenter = obj.getImgCenter();
      obj.planeCoeff();    // Compute a, b, c and h.
      Point3D[] e = obj.getE();
      Point2D[] vScr = obj.getVScr();

      g.setColor(Color.black);

      for (int j=0; j<nFaces; j++)
      {  Polygon3D pol = (Polygon3D)(polyList.elementAt(j));
         int nrs[] = pol.getNrs();
         if (nrs.length < 3)
            continue;
         for (int iA=0; iA<nrs.length; iA++)
         {  int iB = (iA + 1) % nrs.length;
            int na = Math.abs(nrs[iA]), nb = Math.abs(nrs[iB]);
            // abs in view of minus signs discussed in Section 6.4.
            Point2D a = vScr[na], b = vScr[nb];
            g.drawLine(iX(a.x), iY(a.y), iX(b.x), iY(b.y));
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            g.drawLine(iX(a.x), iY(a.y), iX(b.x), iY(b.y));
         }
      }
   }
}

Thanks to the other classes discussed in the previous section, this program file is rather small. However, due to the object-
oriented character of Java, the flow of control of the whole program may not be immediately clear. In particular, you may wonder
how starting the program leads to reading a 3D object file and displaying the desired image. Let us begin with the main method in
the file Wireframe.java.Here an Fr3D object is created by calling its constructor, and a CvWireframe object is created at the same
time in the second argument of this constructor call. As we have seen in the previous section, the first line of class Fr3D reads
class Fr3D extends Frame implements ActionListener

which indicates that this class contains a method actionPerformed. This method is called when a menu command is given. In
particular, the Open command in the File menu triggers the execution of a fragment that causes a standard dialog box for ‘Open
file’ to appear, as you can see in the method actionPerformed at the end of Section 5.5. This fragment contains the following:
Obj3D obj = new Obj3D();
if (obj.read(fName))
{  sDir = sDir1;
   cv.setObj(obj);
   cv.repaint();
}

Here we see that the Obj3D method read is called, with the file name supplied by the user as an argument, so that this method
can read any 3D object provided by the user. We also find here a call to setObj, a method defined in the above class CvWireframe
as
void setObj(Obj3D obj){this.obj = obj;}

As a result, the CvWireframe class gets access to the Obj3D object that contains all data for the real 3D object. The above if-
statement also contains a call to the standard Java Canvas method repaint, which calls the method paint of our CvWireframe
class. The actual computation and display of the image are done in this method paint, although much of the computation work is
delegated to methods of other classes. An example of this is the statement
obj.eyeAndScreen(dim);

which calls the Obj3D method eyeAndScreen to compute the eye and screen coordinates of the object.

5.6.1 A Demonstration

It is now time to see the program Wireframe.java in action. For example, let us use the object with vertices 1, 2, … , 6, shown in
Figure 5.12.
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Figure 5.12: Object and vertex numbers

With dimensions 1, 3 and 5 for the thickness, the width and the height, respectively, the following data file specifies this object:
1  1 0 0
2  1 3 0
3  0 3 0
4  0 0 0
5  1 0 5
6  0 0 5
Faces:
1 2 5.
3 4 6.
2 3 6 5.
1 5 6 4.
1 4 3 2.

When running program Wireframe.java and opening the above input file, a window as shown in Figure 5.13 appears.

 
Figure 5.13: Default view of object

By moving the point of view, using the Viewpoint to Right command from the View menu or its shortcut Ctrl+Arrow right a number
of times, we obtain a different view of the same object, as shown in Figure 5.14.

 
Figure 5.14: Same object viewed from the back

Note that the program chooses a default viewing distance which is quite reasonable. If desired we can increase or decrease this
distance using two commands from the View menu.

EXERCISES

5.1 Modify program CubePers.java of Section 5.4 in such a way that, with the given viewpoint, only
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the visible edges are drawn as solid black lines; draw the other, invisible lines in a different color,
or, as usually in mechanical engineering, as dashed lines (see Exercise 1.5).

5.2 Use a fillPolygon method to display only the top, right and front faces of Figure 5.10 as filled
polygons of different colors.

5.3 To prepare for Exercise 5.5, extend program CubePers.java of Section 5.4 so that two cubes
beside each other are generated.

5.4 Use the class Rota3D of Section 3.9 to apply animation with double buffering to the cube of
Section 5.4, using a rotation about some line, say, 0–6 (see Figure 5.11) through some small
angle. If you are unfamiliar with animation in Java or with the Java class Image, required for
double buffering, you will find the program Anim.java in Appendix F helpful.

5.5 As Exercise 5.4, but the rotation is to be applied to the two cubes of Exercise 5.3. Use different
axes of rotation and increase the rotation angles for the two cubes by different amounts, so that
the cubes seem to rotate independently of each other, with different speeds. Figure 5.15 shows a
snapshot of the two cubes, each rotating about one of its vertical edges.

Answers

5.1 As Figure 5.11 shows, nine cube edges are visible and three are invisible. In the paint method of program
CubePers.java, replace the calls to the method line with this fragment:
// Visible edges:
line(g, 0, 1); line(g, 1, 5); line(g, 5, 4); line(g, 4, 0);
line(g, 1, 2); line(g, 2, 6); line(g, 6, 7); line(g, 7, 4);
line(g, 5, 6);

// Invisible edges:
g.setColor(Color.blue);
line(g, 0, 3); line(g, 3, 2); line(g, 3, 7);

If you did Exercise 1.5 and have a class Lines, containing the method dashedLine, available, you may be
able to replace the last two of the above lines with
dash(g, 0, 3); dash(g, 3, 2); dash(g, 3, 7);

while adding the following method to the class CvCubePers:
void dash(Graphics g, int i, int j)
{  Point2D P = obj.vScr[i], Q = obj.vScr[j];
   Lines.dashedLine(g, iX(P.x), iY(P.y), iX(Q.x), iY(Q.y), 8);
}

Figure F.1 shows the result of this solution with dashed lines.

 
Figure F.1: Dashed lines representing invisible edges

5.2 There are two fillPolygon methods: one taking a Polygon object as an argument and the other taking two
arrays x and y instead. In either case, do not forget to convert logical to device coordinates, using the
methods iX and iY.Use setColor, with different colors before each of the three calls to fillPolygon.

5.3 To replace Figure 5.11, begin by sketching two cubes, say, one on either side of the xz-plane, and by
assigning the numbers 0–7 to the vertices of the first and 8–15 to those of second cube. With this sketch,
and using arrays w and vScr with length 16 instead of 8, you can easily update the program as requested.
Remember to increase the value of objSize,which is used to compute both the object distance ρ  and the
screen distance d.

5.4 The following program demonstrates the principle of animation (with double buffering) for a simple case: a
line segment is rotated about one of its endpoints, which is the center of the canvas. Every 20 ms, the
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line segment is rotated about one of its endpoints, which is the center of the canvas. Every 20 ms, the
angle α  is increased by 0.01 radians and the line from the origin O (in the center of the canvas) to point (r
cos α , r sin α ) is drawn. The effect is that of a running clock with only one hand:
// Anim.java: Animation with double buffering.
import java.awt.*;
import java.awt.event.*;
public class Anim extends Frame
{  public static void main(String[] args){new Anim();}

   Anim()
   {  super("Animation (double buffering)");
      addWindowListener(new WindowAdapter()
       {public void windowClosing(WindowEvent e)
               {System.exit(0);}});
      add("Center", new CvAnim());
      Dimension dim = getToolkit().getScreenSize();
      setSize(dim.width/2, dim.height/2);
      setLocation(dim.width/4, dim.height/4);
      show();
   }
}
class CvAnim extends Canvas
   implements Runnable
{  float rWidth = 10.0F, rHeight = 10.0F, xC, yC, pixelSize;
   int centerX, centerY, w, h;
   Dimension d;
   Image image;
   Graphics gImage;

   float alpha = 0;
   Thread thr = new Thread(this);

   public void run()
   {  try
      { for (;;)
        {  alpha += 0.01;
           repaint();
           Thread.sleep (20);
        }
      }
      catch (InterruptedException e){}
   }

   CvAnim(){thr.start();}

   void initgr()
   {  d = getSize();
      int maxX = d.width - 1, maxY = d.height - 1;
      pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
      centerX = maxX/2; centerY = maxY/2;
      xC = rWidth/2; yC = rHeight/2;
   }

   int iX(float x){return Math.round(centerX + x/pixelSize);}
   int iY(float y){return Math.round(centerY - y/pixelSize);}
   public void update(Graphics g){paint(g);}
   public void paint(Graphics g)
   {  initgr();
      if (w != d.width || h != d.height)
      {   w = d.width; h = d.height;
          image = createImage(w, h);
          gImage = image.getGraphics();
      }
      float r = 0.8F * Math.min(xC, yC),
         x = r * (float)Math.cos(alpha),
         y = r * (float)Math.sin(alpha);
      gImage.clearRect (0, 0, w, h);
      // Every 20 ms, the following line is drawn.
      // Each time, its endpoint (x, y) is a
      // different point on a circle:
         gImage.drawLine(iX (0), iY (0), iX(x), iY(y));
         g.drawImage(image, 0, 0, null);
    }
}

5.5 The following program produces two rotating cubes, illustrated by Figure 5.15. Remember, this program
works only if the class file Rota3D. class (see Section 3.9) is available in the current directory:
// CubRot2.java: Two rotating cubes with double buffering.
//   Uses: Point2D (Section 1.5),
//         Point3D, Rota3D (Section 3.9)
import java.awt.*;
import java.awt.event.*;

public class CubRot2 extends Frame
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public class CubRot2 extends Frame
{  public static void main(String[] args){new CubRot2();}

   CubRot2()
   {  super("Rotating cubes (double buffering)");
      addWindowListener(new WindowAdapter()
       {public void windowClosing(WindowEvent e)
               {System.exit(0);}});
      add("Center", new CvCubRot2());
      Dimension dim = getToolkit().getScreenSize();
      setSize(3 * dim.width/4, dim.height/2);
      setLocation(dim.width/8, dim.height/4);
      show();
   }
}

class CvCubRot2 extends Canvas
   implements Runnable
{  int centerX, centerY, w, h;
   Obj2 obj = new Obj2();
   Image image;
   Graphics gImage;

   double alpha = 0;
   Thread thr = new Thread(this);

   public void run()
{  try
   {  for (;;)
      {  alpha += 0.01;
         repaint();
         Thread.sleep (20);
      }
   }
   catch (InterruptedException e){}
}

CvCubRot2(){thr.start();}
public void update(Graphics g){paint(g);}

int iX(float x){return Math.round(centerX + x);}
int iY(float y){return Math.round(centerY - y);}

void line(int i, int j)
{  Point2D P = obj.vScr[i], Q = obj.vScr[j];
   gImage.drawLine(iX(P.x), iY(P.y), iX(Q.x), iY(Q.y));
}
public void paint(Graphics g)
{  Dimension dim = getSize();
   int maxX = dim.width - 1, maxY = dim.height - 1;
   centerX = maxX/2; centerY = maxY/2;
   int minMaxXY = Math.min(maxX, maxY);
   obj.d = obj.rho * minMaxXY / obj.objSize;
   obj.rotateCube(alpha);
   obj.eyeAndScreen();
   if (w != dim.width || h != dim.height)
   {  w = dim.width; h = dim.height;
      image = createImage(w, h);
      gImage = image.getGraphics();
   }
   gImage.clearRect (0, 0, w, h);
   // Horizontal edges at the bottom:
   line (0, 1); line (1, 2); line (2, 3); line (3, 0);
   // Horizontal edges at the top:
   line (4, 5); line (5, 6); line (6, 7); line (7, 4);
   // Vertical edges:
   line (0, 4); line (1, 5); line (2, 6); line (3, 7);
   // Same for second cube:
   line (8, 9); line (9, 10); line (10, 11); line (11, 8);
   // Horizontal edges at the top:
      line (12, 13); line (13, 14); line (14, 15); line (15, 12);
      // Vertical edges:
      line (8, 12); line (9, 13); line (10, 14); line (11, 15);
      g.drawImage(image, 0, 0, null);
   }
}

class Obj2 // Contains 3D object data for two cubes
{   float rho, theta=0F, phi=1.3F, d;
    Point3D[] s, w; // World coordinates
    Point2D[] vScr; // Screen coordinates
    float v11, v12, v13, v21, v22, v23,
      v32, v33, v43, // Elements of viewing matrix V.
      xe, ye, ze, objSize = 8;

    Obj2()
    {  s = new Point3D[16]; // Start situation
       w = new Point3D[16]; // After rotation
       vScr = new Point2D[16];
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       vScr = new Point2D[16];
       // Bottom surface:
       s[0] = new Point3D( 1, -3, -1);
       s[1] = new Point3D( 1, -1, -1);
       s[2] = new Point3D(-1, -1, -1);
       s[3] = new Point3D(-1, -3, -1);
       // Top surface:
       s[4] = new Point3D( 1, -3, 1);
       s[5] = new Point3D( 1, -1, 1);
       s[6] = new Point3D(-1, -1, 1);
       s[7] = new Point3D(-1, -3, 1);
       // Bottom surface:
       s[8] = new Point3D( 1, 1, -1);
       s[9] = new Point3D( 1, 3, -1);
       s[10] = new Point3D(-1, 3, -1);
       s[11] = new Point3D(-1, 1, -1);
       // Top surface:
       s[12] = new Point3D( 1, 1, 1);
       s[13] = new Point3D( 1, 3, 1);
       s[14] = new Point3D(-1, 3, 1);
       s[15] = new Point3D(-1, 1, 1);
       rho = 15; // For reasonable perspective effect
   }

void rotateCube(double alpha)
   {   Rota3D.initRotate(s[0], s[4], alpha);
       for (int i=0; i<8; i++)
          w[i] = Rota3D.rotate(s[i]);
       Rota3D.initRotate(s[13], s[9], 2 * alpha);
       for (int i=8; i<16; i++)
          w[i] = Rota3D.rotate(s[i]);
   }

   void initPersp()
   {  float costh = (float)Math.cos(theta),
            sinth = (float)Math.sin(theta),
            cosph = (float)Math.cos(phi),
            sinph = (float)Math.sin(phi);
      v11 = -sinth;
      v12 = -cosph * costh;
      v13 = sinph * costh;
      v21 = costh;
      v22 = -cosph * sinth;
      v23 = sinph * sinth;
      v32 = sinph;
      v33 = cosph;
      v43 = -rho;
   }

   void eyeAndScreen()
   {  initPersp();
      for (int i=0; i<16; i++)
      {  Point3D P = w[i];
         float x = v11 * P.x + v21 * P.y;
         float y = v12 * P.x + v22 * P.y + v32 * P.z;
         float z = v13 * P.x + v23 * P.y + v33 * P.z + v43;
         Point3D Pe = new Point3D(x, y, z);
         vScr[i] = new
            Point2D(-d * Pe.x/Pe.z, -d * Pe.y/Pe.z);
       }
    }
}

 
Figure 5.15: Snapshot of two cubes rotating about vertical axes
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Chapter 6: Hidden-Line Elimination

Traditionally, engineers who want to display three- dimensional objects use line drawings, with black lines on white paper.
Although line drawings might look rather dull compared with colored representations of such objects, there are many
technical applications for which they are desired. We will now produce exactly the set of line segments that appear in the
final result, so we will not put any pixels on the screen that we overwrite later, as we will do in Chapter 7. An advantage of
this approach is that this set can also be used for output on a printer or a plotter. Since each of these line segments will be
specified only by its endpoints, the possibly limited resolution of our computer screen does not affect the representation of
the lines on the printer or plotter; in other words, these lines are of high quality. By using HP-GL (short for Hewlett-Packard
Graphics Language) as our file format, we will be able to import the files we produce in text processors such as Microsoft
Word. Still better, we can use drawing programs such as CorelDraw to read these files and then enhance the graphics
results, for example, by adding text and changing the line type and thickness, before we import them into our documents. In
this book, most line drawings of 3D objects have been produced in this way.

6.1 LINE SEGMENTS AND TRIANGLES
Although the faces of the objects we are dealing with can be polygons with any number of vertices, we will triangulate these
polygons and use the resulting triangles instead. Suppose we are given a set of line segments PQ and a set of triangles ABC in
terms of the eye and screen coordinates of all points P, Q, A, B and C. It will then be our task to draw each line segment PQ as far
as none of the triangles ABC obscures them. A line segment (or line, for short) may be completely visible, completely invisible or
partly visible. For example, in Figure 6.1, line 1 is completely visible because it lies in front of the triangle on the left and is
unrelated to the other two triangles. In contrast, line 2 lies behind the triangle in the middle and is therefore completely invisible.
Finally, lines 3 and 4 are not completely visible, but some parts of them are.

 
Figure 6.1: Triangles and line segments

There is another important case: since the edges of the triangles are also line segments, it will frequently occur that a line
segment is an edge of the triangle under consideration. Such line segments are to be considered visible, as far as that triangle is
concerned. For example, consider the letter L in Figure 6.2. Here the only line segment that is partly visible and partly invisible is
the line 7–8, which intersects the face 1-2-10-9-6-5, or rather one of the triangles (6-10-9, for example) of which this face consists.
In the image, the line 7–8 intersects the edge 6–9 of that triangle in point I, which divides this line into the visible part 8-I and the
invisible one I-7.
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Figure 6.2: A non-convex polyhedron
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6.2 TESTS FOR VISIBILITY
On the basis of the given faces of the object, we build a set of triangles and a set of line segments. Then for each line segment
PQ, we call a method lineSegment, which has the task to draw any parts of PQ that are visible. This method is recursive and can
be represented in the flowchart in Figure 6.3, where the numbered tests performed in different steps will be individually discussed
in this section and the boxes with double edges denote recursive calls.

 
Figure 6.3: Flowchart for lineSegment method

This flowchart is equivalent to the following pseudocode, in which I and J are points (between P and Q) of line segment PQ. On
the screen we view I and J as intersecting points of PQ with edges of triangle ABC:
    void lineSegment(line PQ, set s of triangles)
    { In set s, try to find a triangle ABC that obscures PQ (or part of it) 
    If no such triangle found,
        Draw PQ
    Else
    { If triangle ABC leaves part PI of PQ visible
        lineSegment(PI, the remaining triangles of s); // Recursive call
      If triangle ABC leaves JQ of PQ visible
        lineSegment(JQ, the remaining triangles of s); // Recursive call
    }
  }

According to both the flowchart and this pseudocode, the loop that searches the set of triangles terminates as soon as a triangle
ABC is found that obscures PQ.

If ABC obscures PQ completely, no other action is required. If ABC obscures PQ partly, the parts that are possibly visible are dealt
with recursively, using the remaining triangles. Note that in these cases the remaining triangles of the current loop are not applied
to the whole line segment PQ anymore. The line PQ is drawn only if none of the triangles obscures it, that is, after the loop is
completed.
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To make the above algorithm as fast as we can, we should be careful with the order in which we perform several tests when we
are looking for a triangle that obscures PQ. Tests that take little computing time and are likely to succeed are good candidates for
being performed as soon as possible. Sometimes these aspects are contradictory. For example, in the sequence of tests that we
will be discussing, the second is not very likely to succeed but it nevertheless deserves its position in this sequence because it is
very inexpensive. The inner part of the loop that searches the set of triangles is discussed in greater detail below. Since we have
to be careful with small numerical errors due to the finite precision of floating-point computations, we sometimes use small positive
real numbers ɛ  = eps as tolerances, as these examples show:

Mathematical expression Implementation in program

x ≤  a x<a+eps

x < b x<b-eps

y ≥  c y>c-eps

y > d y>d+eps

In the second column, it does not make any significant difference if we replace < with <=,and > with >=. We should take some
care in choosing the value of eps, since this should preferably be related to the magnitude of the numbers we are comparing. You
can find details of such tolerance values ɛ  in the program file HLines.java, but they are omitted in the discussion below for the
sake of clarity.

6.2.1 Test 1 (2D; Figure 6.4)

 
Figure 6.4: Test 1: both P and Q on the left of A, B and C

If neither P nor Q lies to the right of the leftmost one of the three vertices A, B and C (of triangle t) the triangle does not obscure
PQ. This type of test is known as a minimax test: we compare the maximum of all x-coordinates of PQ with the minimum of all
those of triangle t. Loosely speaking, we have now covered the case that PQ lies completely to the left of triangle t. In the same
way, we deal with PQ lying completely to the right of t. Similar tests are performed for the minimum and maximum y-coordinates.

6.2.2 Test 2 (3D; Figure 6.5)

 
Figure 6.5: Test 2: PQ identical with AB

If PQ (in 3D space) is identical with one of the edges of triangle t, this triangle does not obscure PQ. This test is done very
efficiently by using the vertex numbers of P, Q, A, B and C. As we will see in a moment, in recursive calls, P or Q may be a
computed point, which has no vertex number. It is therefore not always possible to perform this test.

6.2.3 Test 3 (3D; Figure 6.6)
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Figure 6.6: Test 3: P and Q nearer than A, B and C

If neither P nor Q is further away than the nearest of the three vertices A, B and C of triangle t, this triangle does not obscure PQ.
This is a minimax test, like Test 1, but this time applied to the z-coordinates. Since the positive z-axis points to the left in Figure
6.6, the greater the z-coordinate of a point, the nearer this point is. Therefore, triangle ABC does not obscure PQ if the minimum
of zP and zQ is greater than or equal to the maximum of zA, zB and zC.

6.2.4 Test 4 (2D; Figure 6.7)

 
Figure 6.7: Test 4: P and Q on a side of AB different from that of C

If, on the screen, the points P and Q lie on one side of the line AB while the third triangle vertex C lies on the other, triangle ABC
does not obscure PQ.

The lines BC and CA are dealt with similarly. This test is likely to succeed, but we perform it only after the previous three tests
because it is rather expensive. Since the vertices A, B and C are counter-clockwise, the points P and C are on different sides of
AB if and only if the point sequence ABP is clockwise. As we have seen in Section 2.5, this implies that we can use the static
method area2 of class Tools2D.With Point2D objects AScr, BScr, CScr for the points A, B and C, the left-hand side in the
comparison
Tools2D.area2(AScr, BScr, PScr) <= 0

is equal to twice the area of triangle ABP, preceded by a minus sign if (and only if) the sequence ABP is clockwise. This value is
negative if P and C lie on different sides of AB, and it is zero if A, B and P lie on a straight line. If this comparison succeeds and
the same applies to
Tools2D.area2(AScr, BScr, QScr) <= 0

then the whole line PQ and point C lie on different sides of the line AB, so that triangle ABC does not obscure line segment PQ.
After this test for the triangle edge AB, we use similar tests for edges BC and CA.

Note that P and Q can both lie outside triangle ABC, while PQ intersects this triangle. This explains the above test, which at first
may look quite complicated. Unfortunately, the current test does not cover all cases in which PQ lies outside triangle ABC, as you
can see in Figure 6.8.

 
Figure 6.8: Test 5: triangle ABC on one side of PQ

6.2.5 Test 5 (2D; Figure 6.8)

Triangle ABC does not obscure PQ if the points A, B and C lie on the same side of the infinite line through P and Q. We determine
if this is the case using a test that is similar to the previous one:

where PQA, obtained as
double PQA = Tools2D.area2(PScr, QScr, AScr);

denotes twice the area of triangle PQA, preceded by a minus sign if the point sequence P, Q, A is clockwise. The variables PQB
and PQC have similar meanings.
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6.2.6 Test 6 (3D; Figure 6.9)

If neither P nor Q lies behind the plane through A, B and C, triangle ABC does not obscure PQ. This test deals with those line
segments PQ for which Test 3 failed because the further one of the points P and Q does not lie nearer than the nearest of A, B, C,
while P and Q nevertheless lie on the same side of the (infinite) plane ABC as the viewpoint E. Figure 6.9 illustrates this situation.

 
Figure 6.9: Test 6: neither P nor Q behind plane ABC

We now benefit from the fact that we have stored the normal vector n = (a, b, c) of plane ABC and the distance h between E and
this plane. The equation of this plane is

We compute

to perform the following test, illustrated by Figure 6.9:

Since n, when starting at E, points away from the plane, the values of hP, hQ, like that of h, are negative, so that this test is
equivalent to the following:

6.2.7 Test 7 (2D; Figure 6.10)

 
Figure 6.10: Test 7: PQ behind triangle ABC

If (on the screen) neither P nor Q lies outside the triangle ABC, and the previous tests were indecisive, PQ lies behind this triangle
and is therefore completely invisible. The Tools2D method insideTriangle, discussed in Section 2.8, makes this test easy to
program:
boolean pInside = Tools2D.insideTriangle(aScr, bScr, cScr, pScr);
boolean qInside = Tools2D.insideTriangle(aScr, bScr, cScr, qScr);
if (pInside && qInside) return;

The partial results of this test, stored in the boolean variables pInside and qInside, will be useful in Tests 8 and 9 in the case that
this test fails.

6.2.8 Test 8 (3D; Figure 6.11)
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Figure 6.11: Test 8: P nearer than plane ABC

If P is nearer than the plane of triangle ABC and, on the screen, P lies inside triangle ABC, this triangle does not obscure PQ. The
same is true for Q.

This test relies on the fact that no line segment PQ intersects any triangle. This test is easy to perform since the variables hP and
hQ, computed in Test 6, and pInside and qInside, computed in Test 7, are now available. Using also the abbreviations pNear for
hP > h and qNear for hQ > h, we conclude that triangle ABC does not obscure PQ if the following is true:
pNear && pInside || qNear && qInside

6.2.9 Test 9 (3D; Figure 6.12)

 
Figure 6.12: Test 9: I and J in front of plane ABC

Although it might seem that, after Test 8, all cases with PQ not being obscured have been dealt with, this is not the case, as
Figure 6.12 illustrates. In this example, Q lies behind the plane ABC, and, on the screen, PQ intersects ABC in the points I and J,
but PQ is nevertheless completely visible (as far as triangle ABC is concerned). This is because both points of intersection, I and
J, lie in front of (that is, nearer than) triangle ABC. We take three steps to deal with this situation:

1. We compute (the 2D projections of) I and J on the screen.

2. We compute the z-values of I and J by linear interpolation of 1/z (see Section 7.4 and Appendix A).

3. To determine if I and J lie in front of the plane ABC, we compute how far I and J lie away in the direction towards
this plane.

We will now discuss these three steps in more detail, starting with step 1, which we deal with as a 2D problem, writing, for
example, P for what is actually the projection P′ of P on the screen.

Since we do not know in advance which of the three triangle edges AB, BC and CA may intersect PQ, we try all three by rotating
the points A, B and C. Here we deal only with AB. Suppose that, on the screen, the infinite line PQ intersects the infinite line AB in
point I, where

Then point I belongs to the line segments PQ and AB if and only if

While rotating A, B and C, we may find two points of intersection, with λ  and μ  satisfying these restrictions. We then denote the
values λ  of these points by λmin and λmax, and the corresponding points with I and J, so that we have

As for the actual computation of λ  and μ , let us use the vectors u = PQ and v = AB. It then follows from Equations (6.1) and (6.2)
that we can express point I as the left- and right-hand sides of the following equation:

Writing w = PA(= A −  P), we can replace this with
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As usual, we write u = (u1, u2) and so on, which expands this vector equation to the following set of simultaneous linear equations:

Solving this system of equations, we obtain

It goes without saying that this applies only if the denominators in these expressions are non-zero; otherwise PQ and AB are
parallel, so that there are no points of intersection.

Having found the points I and J on the screen, we turn to step 2, to compute their z-coordinates. We do this by linear interpolation
of 1/z on the segment PQ. Using the values λmin and λmax, which we have just found, and referring to Equation (6.1), we can write

Refer to the discussion in Section 7.4 and Appendix A about the reason why we should use 1/z instead of simply z in this type of
linear interpolation.

Finally, we proceed to step 3, to determine whether or not the points I and J lie in front of the plane through the points A, B and C.
Recall that the equation of this plane is

where h is negative, and that its normal vector (with length 1) is

We compute the value hI, which is similar to hP, discussed in Test 6 and illustrated by Figure 6.9, as

After computing hJ similarly, we can now test if I and J lie in front of the plane ABC (so that triangle ABC does not obscure PQ) in
the following way:

In the above discussion, we considered two distinct points I and J in which, on the screen, PQ intersects edges of triangle ABC.
As we have seen, PI and JQ were visible, as far as triangle ABC is concerned, but IJ may be obscured by triangle ABC. Actually,
there may be only one point, I or J, to deal with. If, again on the screen, P lies outside triangle ABC and Q inside it, there is only
point I to consider. In this case triangle ABC may obscure part IQ of line segment PQ. If it does, the remaining triangles are only to
be applied to PI. Similarly, if, on the screen, P lies inside and Q outside triangle ABC, this triangle may obscure part PJ of PQ,
and, if so, the remaining triangles are only to be applied to JQ.

6.2.10 Recursive Calls

If all the above tests fail, the most interesting (and time consuming) case applies: PQ is neither completely visible nor completely
hidden. Fortunately, we have just computed the points of intersection I and J, and we know that triangle ABC obscures the
segment IJ, while the other two segments, PI and QJ are visible, as far as triangle ABC is concerned. We therefore apply the
method lineSegment recursively to the latter two segments. Actually, the recursive call for PI applies only to the case that, on the
screen, P lies outside triangle ABC and λmin (see Test 9) is greater than zero. Analogously, the recursive call for QJ applies only if
Q lies outside that triangle and λmax is less than 1.

6.2.11 The Arguments of the lineSegment Method

In the paint method of the class CvHLines, we may be inclined to write the call to the method lineSegment in a very simple form,
such as
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lineSegment(g, iP, iQ);

where g is the graphics context and iP and iQ are the vertex numbers of the vertices P and Q. However, in the recursive calls just
discussed, we have two new points I and J, for which there are no vertex numbers, so that this does not work. On the other hand,
omitting the vertex numbers altogether would deprive us of Test 2 in its current efficient form, in which we determine if PQ is one
of the edges of triangle ABC. We therefore decide to supply P and Q both as Point3D objects (containing the eye coordinates of P
and Q) and as vertex numbers if this is possible; if it is not, we use − 1 instead of a vertex number. When we recursively call
lineSegment, the screen coordinates of P and Q are available. If we did not supply these as arguments, it would be necessary to
compute them inside lineSegment once again. To avoid such superfluous actions, we also supply the screen coordinates of P and
Q as arguments as Point2D objects. Finally, it would be a waste of time if the recursive calls would again be applied to all
triangles. After all, we know that PI and PJ are not obscured by the triangles that we have already dealt with. We therefore also
use the parameter iStart, indicating the start position in the array of triangles that is to be used. This explains that the method
lineSegment has as many as eight parameters, as its heading shows:

void lineSegment(Graphics g, Point3D p, Point3D q,
   Point2D PScr, Point2D QScr, int iP, int iQ, int iStart)

The complete method lineSegment can be found in class CvHLines, listed in Appendix D.
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6.3 SPECIFICATION AND REPRESENTATION OF 3D OBJECTS
From now on, we will no longer restrict ourselves to cubes, as we did in the previous chapter, but rather accept input files that
define objects bounded by polygons (which may contain holes, as we will see in Section 6.4). These input files consist of two
parts: a list of vertices, each in the form of a positive vertex number followed by three real numbers, the world coordinates of that
vertex. The second part consists of an input line of the form
Faces:

followed by sequences of vertex numbers, each sequence followed by a period (.). Each such sequence denotes a polygon of the
object. For each polygon, when viewed from outside the object, the vertex sequence must be counter-clockwise. This orientation
must also apply to the first three vertices of each sequence; in other words, the second number of each sequence must denote a
convex vertex. For example, the following input file, say, letterL.dat, describes the solid letter L of Figure 6.2:
1  20  0  0
2  20 50  0
3   0 50  0
4   0  0  0
5  20  0 10
6  20 40 10
7   0 40 10
8   0  0 10
9  20 40 80
10 20 50 80
11  0 50 80
12  0 40 80
Faces:
1 2 10 9 6  5.
3 4 8  7 12 11. 
2 3 11 10.
7 6 9 12.
4 1 5 8.
9 10 11 12.
5 6 7  8.
1 4 3  2.

The first line after Faces specifies the front face. We might have used a different vertex-number sequence for this face, such as
10 9 6 5 1 2.

However, the following sequences would be incorrect:
2 1 5 6 9 10. (invalid: clockwise)
9 6 5 1 2 10. (invalid: 6 is not a convex vertex)

Although the sequence
3 4 8 7 12 11.

seems to be clockwise, it is really counter-clockwise when the face in question is viewed from outside the object, that is, from the
back. As we will see in Section 7.1, we use this phenomenon in our programs to detect back faces.

In the first part of the input file, it is not required that the vertex numbers are consecutive and in ascending order. For example, the
following input file (defining a pyramid similar to those in Egypt) is also acceptable. It also shows that the vertex coordinates need
not be integers:
10  -1.5 -1.5 0
30   1.5 -1.5 0
20   1.5  1.5 0
12  -1.5  1.5 0
5    0    0   3
Faces:
30 20 5.
20 12 5.
12 10 5.
10 30 5.
30 10 12 20.

We will use the extension .dat for these input files.
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6.4 HOLES AND INVISIBLE LINE SEGMENTS
The above way of specifying the boundary faces of objects does not work for polygons that contain holes. For example, consider
the solid letter A of Figure 6.13, the front face of which is not a proper polygon because there is a triangular hole in it. The same
applies to the (identical) face on the back. Each vertex i of the front face is connected with vertex i + 10 of the back face (1 ≤  i ≤
10).

 
Figure 6.13: Solid letter A

We can turn the front face into a polygon by introducing a very narrow gap, say, between the vertices 7 and 10, as shown in
Figure 6.14. After doing this, we could try to specify this new polygon as
1 2 3 4 5 6 7 10 9 8 10 7.

Note that this requires the gap (7, 10) to have width zero, so that there is only one vertex (7) at the top. On the other hand, only a
real gap makes it clear that the vertex numbers (10, 9, 8) occur in that order in the above input line: just follow the vertices in
Figure 6.14, starting at vertex 1.

 
Figure 6.14: A polygon
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If we really specified the front face in the above way, the line (7, 10) would be regarded as a polygon edge and therefore appear in
our result. This is clearly undesirable. To prevent this from happening, we adopt the convention of writing a minus sign in front of
the second vertex of a pair, indicating that this pair denotes a line segment that is not to be drawn. We do this with the ordered
pairs (7, 10) and (10, 7) in the above input line, writing (7, − 10) and (10, − 7), so that we use the following input line instead of the
above one:
1 2 3 4 5 6 7 -10 9 8 10 -7.

The solid letter A of Figure 6.13 is therefore obtained by using the following input file, in which the extra minus signs occur in the
first two lines after the word Faces:
1    0 -30  0
2    0 -20  0
3    0 -16  8
4    0  16  8
5    0  20  0
6    0  30  0
7    0   0 60
8    0 -12 16
9    0  12 16
10   0   0 40
11 -10 -30  0
12 -10 -20  0
13 -10 -16  8
14 -10  16  8 
15 -10  20  0
16 -10  30  0
17 -10   0 60
18 -10 -12 16
19 -10  12 16
20 -10   0 40
Faces:
1 2 3 4 5 6 7 -10 9 8 10 -7.
11 17 -20 18 19 20 -17 16 15 14 13 12.
2 12 13 3.
3 13 14 4.
15 5 4 14.
8 9 19 18.
8 18 20 10.
19 9 10 20.
6 16 17 7.
11 1 7 17.
11 12 2 1.
15 16 6 5.

(Note that this use of minus signs applies only to vertex numbers in the second part of an input file. In the first part, minus signs
can only occur in coordinate values, where they have their usual meaning.)

Implementing this idea is very simple. For example, because of the minus sign that precedes vertex number 10 in
... 7 -10 ...

we do not store line segment (7, 10) in the data structure that will be discussed in Section 6.5. In other respects, we simply ignore
these minus signs. Therefore the set of triangles resulting from the above complete set of input data (for the solid letter A) is the
same as when there had been no minus signs in front of any vertex numbers.

Besides for holes, we can also use these minus signs for the approximation for curved surfaces, as discussed in Section E.5 of
Appendix E.
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6.5 INDIVIDUAL FACES AND LINE SEGMENTS
Although we usually draw polygons that are boundary faces of solid objects, we sometimes want to draw very thin (finite) planes,
here also called faces.

Examples are sheets of paper and a cube made of very thin material, of which the top face is removed, as shown in Figure 6.15.

 
Figure 6.15: A hollow cube

Since such faces have two visible sides, we specify each face twice: counterclockwise for the side we are currently viewing and
clockwise for the side that is currently invisible but may become visible when we change the viewpoint. For example, the front face
of the cube of Figure 6.15 is specified twice in the input file:
1 2 3 4.
4 3 2 1.

Although the user supplies polygons in input files as object faces, we deal primarily with line segments, referred to as PQ in the
previous section. Besides the polygons and the triangles resulting from them, we also store the edges of the polygons as line
segments. It is also desirable to be able to draw line segments that are not edges of polygons.

Examples of such ‘loose’, individual line segments are the axes of a 3D coordinate system. Sometimes we want to define the
edges of polygons as individual line segments, to prevent such polygons from obscuring other line segments, displaying objects
as wire-frame models. An example of this is shown in Figure 6.16. Here we have a solid pyramid fitting into a cube. Obviously, the
pyramid would not be visible if the cube was solid; we therefore prefer the latter to be displayed as a wire-frame model. To provide
an input file for this pyramid, we begin by assigning vertex numbers, as shown in Figure 6.17.
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Figure 6.16: Solid pyramid in wire-frame cube

 
Figure 6.17: Vertex numbers of pyramid and cube

These vertex numbers occur in the following input file:
1 0 0 0
2 2 0 0 
3 2 2 0
4 0 2 0
5 0 0 2
6 2 0 2
7 2 2 2
8 0 2 2
9 1 1 2
Faces:
1 4 3 2.
1 2 9.
2 3 9.
3 4 9.
4 1 9.
1 5.
2 6.
3 7.
4 8.
5 6.
6 7.
7 8.
8 5.

After the word Faces, we begin with the square bottom face and the four triangular faces of the pyramid. After this, four vertical
and four horizontal cube edges follow, each specified by its two endpoints. It follows that the word Faces in our input files should
not be taken too literally: this Faces section may include pairs of vertex numbers, which are not faces at all but line segments not
necessarily belonging to faces.

Since line segments can occur not only as edges of faces but also individually, we have to design and implement a special data
structure to store them in our program. This also provides us with the opportunity to store them only once. For example, the edge
3–9 of the pyramid of Figure 6.17 is part of the faces 2-3-9 and 3-4-9, but it would be inefficient to draw it twice. By using a special
data structure for line segments, we can ensure that this edge is stored only once.

Our data structure for line segments will be based on an array of arrays, as shown on the left in Figure 6.18.
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Figure 6.18: Internal representation of line segments

An array element connect[i] referring to an array containing the integer j implies that there is a line segment (i, j) to be drawn. By
requiring that i is less than j, we ensure that each line segment is stored only once. For example, connect[1] refers to the array
containing the integers 2, 4, 9 and 5. This indicates that the following line segments start at vertex 1 (each ending at a vertex that
has a number higher than 1): 1–2, 1–4, 1–9 and 1–5, which is in accordance with Figure 6.17. The next element, connect[2] refers
to three vertex numbers, 3, 9 and 6. Although, besides 2–3, 2–9 and 2–6, there is also a line segment 2-1 (see Figure 6.17), this
is not included here because 2 is greater than 1 and this segment has already been stored as line segment 1–2. You may wonder
why in Figure 6.18 there are only boxes that give room for at most four vertex numbers. Actually, the sizes of these boxes will
always be a multiple of some chunk size, here arbitrarily chosen as 4. In other words, if there are five line segments (i, j) with the
same i and all with i less than j, the box size would be increased from 4 to 8 and so on. Since increasing the box size requires
memory reallocation and copying, we should not choose the chunk size too small. On the other hand, the larger the chunk size,
the more memory will be wasted, since they will normally not be completely filled. To indicate how many vertex numbers are
actually stored in each box, we use another array, nConnect, as shown in Figure 6.18 on the right. For example, nConnect[1]= 4
because connect[1] refers to four vertex numbers.
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6.6 AUTOMATIC GENERATION OF OBJECT SPECIFICATION
As long as 3D objects do not have too many vertices and the vertex coordinates are easily available, it is not difficult to create 3D
specifications as input files by entering all data manually, using a text editor. This is the case, for example, with the solid letter A,
discussed in Section 6.4. If there are many vertices, which is normally the case if we approximate curved surfaces, we had better
generate 3D data files by special programs. This section explains how to automatically generate 3D specifications through an
example. The generated specification files are accepted by the programs Painter.java, ZBuf.java (for hidden-face elimination,
described in Chapter 7) and HLines.java (for hiddenline elimination, described in the next two sections). Most illustrations in this
chapter have been obtained by using HLines.java for this purpose.

Many 3D objects are bounded by curved surfaces. We can approximate these by a set of polygons. An example is a hollow
cylinder as shown in Figure 6.19 on the right. Both representations of hollow cylinders (or rather, hollow prisms) of Figure 6.19
were obtained by running the program Cylinder.java, which we will be discussing, followed by the execution of program
HLines.java.HP-GL files exported by the latter program were combined by CorelDraw, after which the result was imported into this
book. Although the object shown on the left in Figure 6.19 is a (hollow) prism, not a cylinder, we will consistently use the term
cylinder in this discussion.

 
Figure 6.19: Hollow cylinders with n = 6 (left) and n = 60 (right)

The user will be able to enter the diameters of both the (outer) cylinder and the (inner) cylindrical hole. If the latter, smaller
diameter is zero, our program will produce a solid cylinder instead of a hollow one. For simplicity, we will ignore this special case,
with only half the number of vertices, in our discussion below, but simply implement it in the program.

For some sufficiently large integer n (not less than 3), we choose n equidistant points on the outer circle (with radius R) of the top
face, and we choose n similar points on the bottom face. Then we approximate the outer cylinder by a prism whose vertices are
these 2n points. The inner circle (of the cylindrical hole) has radius r (< R). The hollow cylinder has height h. Let us use the z-axis
of our coordinate system as the cylinder axis. The cylindrical hole is approximated by rectangles in the same way as the outer
cylinder. The bottom face lies in the plane z = 0 and the top face in the plane z = h. A vertex of the bottom face lies on the positive
x-axis. Let us set h = 1. Then for given values n, R and r, the object to be drawn and its position are then completely determined.
We shall first deal with the case n = 6 and generalize this later for arbitrary n.We number the vertices as shown in Figure 6.20.

 
Figure 6.20: Vertex numbering

For each vertex i of the top face there is a vertical edge that connects it with vertex i + 6. We can specify the top face by the
following sequence:
1 2 3 4 5 6 -18 17 16 15 14 13 18 -6.

Here the pairs (6, −  18) and (18, −  6) denote an arti.cial edge, as discussed in Section 6.4. The bottom face on the right is viewed
here from the positive z-axis, but in reality only the other side is visible. The orientation of this bottom face is therefore opposite to
what we see in Figure 6.20 on the right, so that we can specify this face as
12 11 10 9 8 7 -19 20 21 22 23 24 19 -7.

Since n = 6, we have 12 = 2n, 18 = 3n and 24 = 4n, so the above sequences are special cases of

and
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Let us define

Since, in Figure 6.20, on the left, vertex 6 lies on the positive x-axis and according to geometry in Figure 6.21 (outer circle), the
Cartesian coordinates of the vertices on the top face are as follows:

 
Figure 6.21: Calculating vertex coordinates

For the bottom face we have

A program based on the above analysis can be written in any programming language. Using Java for this purpose, we can choose
between an old-fashioned, text-line oriented solution and a graphical user interface with, for example, a dialog box with text fields
and a button as shown in Figure 6.22.

 
Figure 6.22: Dialog box for (possibly hollow) cylinder

This dialog box contains a title bar, and seven so-called components:three labels (that is, static text in the gray area), three text
fields in which the user can enter data, and an OK button. Programming the layout of a dialog box in Java can be done in several
ways, none of which is particularly simple. Here we do this by using three panels:

Panel p1 at the top, or North, for both the label Number of vertices on outer circle and a text field in which this
number is to be entered.

Panel p2 in the middle, or Center, for the label Diameters D and d (cylinder is hollow if d > 0) and two text fields for
these diameters.
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Panel p3 at the bottom, or South, for the label Generate 3D object file? and an OK button.

Since there are only a few components in each panel, we can use the default FlowLayout layout manager for the placements of
these components in the panels. By contrast, the panels are placed above one another by using Border-Layout, as the above
words North, Center and South, used in the program as character strings, indicate. As in many other graphics programs in this
book, we use two classes in this program, but this time there is a dialog class instead of a canvas class. Another difference is that
we do not display the frame, but restrict the graphical output to the dialog box. (We cannot omit the frame class altogether
because the Dialog constructor requires a ‘parent frame’ as an argument.) Recall that we previously used calls to setSize,
setLocation and show in the constructor of the frame class. We simply omit these calls to prevent the frame from appearing on the
screen. Obviously, we must not omit such calls in the constructor of our dialog class, called DlgCylinder in the program. As for the
generation of the hollow cylinder itself, as discussed above, this can be found in the method genCylinder, which follows this
constructor:
// Cylinder.java: Generating an input file for a
//                (possibly hollow) cylinder.
import java.awt.*;
import java.awt.event.*;
import java.io.*;

public class Cylinder extends Frame 
{ public static void main(String[] args){new Cylinder();}
  Cylinder(){new DlgCylinder(this);}
}

class DlgCylinder extends Dialog
{  TextField tfN = new TextField (5);
   TextField tfOuterDiam = new TextField (5);
   TextField tfInnerDiam = new TextField (5);
   Button button = new Button(" OK ");
   FileWriter fw;

   DlgCylinder(Frame fr)
   { super(fr, "Cylinder (possibly hollow); height = 1", true);
     addWindowListener(new WindowAdapter()
     {  public void windowClosing(WindowEvent e)
        { dispose();
          System.exit(0);
        }
     });
     Panel p1 = new Panel(), p2 = new Panel(), p3 = new Panel();
     p1.add(new Label("Number of vertices on outer circle: "));
     p1.add(tfN);
     p2.add(new Label(
        "Diameters D and d (cylinder is hollow if d > 0): "));
     p2.add(tfOuterDiam); p2.add(tfInnerDiam);
     p3.add(new Label("Generate 3D object file?"));
     p3.add(button);
     setLayout(new BorderLayout());
     add("North", p1);
     add("Center", p2);
     add("South", p3);

     button.addActionListener(new ActionListener()
     { public void actionPerformed(ActionEvent ae)
       {  int n=0;
          float dOuter=0, dInner=0;
          try
          { n = Integer.valueOf(tfN.getText()).intValue();
            dOuter =
               Float.valueOf(tfOuterDiam.getText()).floatValue();
            dInner =
               Float.valueOf(tfInnerDiam.getText()).floatValue();
            if (dInner < 0) dInner = 0; 
            if (n < 3 || dOuter <= dInner)
               Toolkit.getDefaultToolkit().beep();
            else
            {  try
               { genCylinder(n, dOuter/2, dInner/2);
               }
               catch (IOException ioe){}
               dispose();
               System.exit(0);
            }
          }
          catch (NumberFormatException nfe)
          { Toolkit.getDefaultToolkit().beep();
          }
        }
     });
     Dimension dim = getToolkit().getScreenSize();
     setSize(3 * dim.width/4, dim.height/4);
     setLocation(dim.width/8, dim.height/8);
     show();
}

void genCylinder(int n, float rOuter, float rInner)
   throws IOException
{  int n2 = 2 * n, n3 = 3 * n, n4 = 4 * n;
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{  int n2 = 2 * n, n3 = 3 * n, n4 = 4 * n;
   fw = new FileWriter("Cylinder.dat");
   double delta=2* Math.PI / n;
   for (int i=1; i<=n; i++)
   { double alpha=i* delta,
        cosa = Math.cos(alpha), sina = Math.sin(alpha);
     for (int inner=0; inner<2; inner++)
     { double r = (inner == 0 ? rOuter : rInner);
       if (r > 0)
       for (int bottom=0; bottom<2; bottom++)
       {  int k = (2 * inner +  bottom)   * n + i;
          // Vertex numbers for i = 1:
          // Top:      1 (outer) 2n+1 (inner)
          // Bottom: n+1 (outer) 3n+1 (inner)
          wi(k); // w = write, i = int, r = real
          wr(r * cosa); wr(r * sina); // x and y
          wi(1 - bottom); // bottom: z = 0; top: z = 1
          fw.write("\r\n");
       } 
       }
     }
     fw.write("Faces:\r\n");
     // Top boundary face:
     for (int i=1; i<=n; i++) wi(i);
     if (rInner > 0)
     { wi(-n3); // Invisible edge, see Section 7.5
       for (int i=n3-1; i>=n2+1; i--) wi(i);
       wi(n3); wi(-n); // Invisible edge again.
     }
     fw.write(".\r\n");

    // Bottom boundary face:
    for (int i=n2; i>=n+1; i--) wi(i);
    if (rInner > 0)
    { wi(-(n3+1));
      for (int i=n3+2; i<=n4; i++) wi(i);
      wi(n3+1); wi(-(n+1));
    }
    fw.write(".\r\n");
    // Vertical, rectangular faces:
    for (int i=1; i<=n; i++)
    { int j = i % n + 1;
      // Outer rectangle:
      wi(j); wi(i); wi(i + n); wi(j + n); fw.write(".\r\n");
      if (rInner > 0)
      { // Inner rectangle:
        wi(i + n2); wi(j + n2); wi(j + n3); wi(i + n3);
        fw.write(".\r\n");
      }
    }
    fw.close();
}
void wi(int x)
   throws IOException
{  fw.write(" " + String.valueOf(x));
}

void wr(double x)
   throws IOException
{ if (Math.abs(x) < 1e-9) x = 0;
  fw.write(" " + String.valueOf((float)x)); 
    // float instead of double to reduce the file size
  }
}

The number 60 entered in the top text field of Figure 6.22 refers to the hollow cylinder shown in Figure 6.19 on the right. The
hollow prism shown on the left in this figure is obtained by replacing 60 with 6. In that case the following file is generated:
1 0.75 1.299038 1
7 0.75 1.299038 0
13 0.5 0.8660254 1
19 0.5 0.8660254 0
2 -0.75 1.299038 1
8 -0.75 1.299038 0
14 -0.5 0.8660254 1
20 -0.5 0.8660254 0
3 -1.5 0.0 1
9 -1.5 0.0 0
15 -1.0 0.0 1
21 -1.0 0.0 0
4 -0.75 -1.299038 1
10 -0.75 -1.299038 0
16 -0.5 -0.8660254 1
22 -0.5 -0.8660254 0
5 0.75 -1.299038 1
11 0.75 -1.299038 0
17 0.5 -0.8660254 1
23 0.5 -0.8660254 0
6 1.5 0.0 1
12 1.5 0.0 0
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12 1.5 0.0 0
18 1.0 0.0 1
24 1.0 0.0 0
Faces:
1 2 3 4 5 6 -18 17 16 15 14 13 18 -6.
12 11 10 9 8 7 -19 20 21 22 23 24 19 -7.
2 1 7 8.
13 14 20 19.
3 2 8 9.
14 15 21 20.
4 3 9 10.
15 16 22 21.
5 4 10 11. 
16 17 23 22.
6 5 11 12.
17 18 24 23.
1 6 12 7.
18 13 19 24.

Recall that we have already discussed the first two lines that follow the word Faces. More interesting examples on generating
input files for different 3D objects can be found in Appendix E.
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6.7 HIDDEN-LINE ELIMINATION WITH HP-GL OUTPUT
Besides graphics output on the screen, it is sometimes desired to produce output files containing the same results. An easy way
to realize this for line drawings is by using the file format known as HP-GL, which stands for Hewlett- Packard Graphics Language.
We will use only a very limited number of HP-GL commands:

IN: Initialize

SP: Set pen

PU: Pen up

PD: Pen down

PA: Plot absolute

We think of drawing by moving a pen, which can be either on or above a sheet of paper. These two cases are distinguished by the
commands PD and PU.The PA command is followed by a coordinate pair x, y, each as a four-digit integer in the range 0000–
9999. This coordinate pair indicates a point that the pen will move to. The origin (0000, 0000) lies in the bottom-left corner. For
example, the following HP-GL file draws a capital letter X in italic, shown in Figure 6.23:

 
Figure 6.23: Letter X in italic

IN;SP1;
PU;PA5000,2000;PD;PA5000,8000;
PU;PA3000,2000;PD;PA7000,8000;

This file format is easy to understand and it is accepted by many well-known packages, such as Microsoft Word and CorelDraw.
The latter enables us to enhance the drawing after importing the HP-GL file, as was done to add text, resulting in Figure 6.23.

We will see how to implement this in the next section.

The program HLines.java is listed in Appendix D. First, HLines.java can generate HP-GL files (Figure 6.24 illustrates a menu item
for exporting HP-GL files); second, it can display individual lines, and third, printing and photocopying the resulting images can be
done in black and white without loss of quality. On the contrary, these line drawings, obtained via HP-GL files and produced by a
printer, look better than those on the screen.
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Figure 6.24: The Export HP-GL menu item

This example also shows the use of individual line segments, as discussed in Section 6.5. The solid inside the wire-frame cube is
a dodecahedron, which is discussed in greater detail in Section E.1 of Appendix E.

The statement
cv.setHPGL(new HPGL(obj));

in the class MenuCommands (at the end of the file HLines.java) creates an object of class HPGL, and the variable hpgl of the
class CvHLines is made to refer to it. The fact that hpgl is no longer equal to null will be interpreted as an indication that an HP-GL
file is to be written. The class HPGL can be found at the end of Appendix D. The write method of this class is used in the drawLine
method of the class CvHLines, that is, if the variable hpgl is unequal to null,as discussed above. After we have written an HP-GL
file, we set hpgl equal to null again (at the end of the paint method) to avoid that every call to paint should automatically produce
HP-GL output. If this is again desired, the user must use the Export HP-GL command of the File menu once again. The class
CvHLines is defined in the file HLines.java (see Appendix D).

Figure 6.25 shows that our hidden-line algorithm can correctly render the three beams that we will use to demonstrate the Z-buffer
algorithm for hidden- face elimination. As we will see in Section 7.3, the painter's algorithm fails in this case.

 
Figure 6.25: Three beams
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6.8 IMPLEMENTATION
The program HLines.java has much in common with Wireframe.java, discussed at the end of Chapter 5. We will therefore benefit
as much as possible from the code that we have already developed in Section 5.5. Unfortunately, since we now have an extra
menu item, Export HPGL,inthe File menu, we cannot use the existing frame class Fr3D directly, but we will use an extended
version, that is, a subclass of it. The name of this subclass, Fr3DH, occurs in the main method of the following file:
// HLines.java: Perspective drawing with hidden-line elimination.
// When you compile this program, the .class or the .java files of the
// following classes should also be in your current directory:
//       CvHLines, Fr3D, Fr3DH, Polygon3D, Obj3D, Input, Canvas3D,
//       Point3D, Point2D, Triangle, Tria, Tools2D, HPGL.
import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class HLines extends Frame
{  public static void main(String[] args)
   {  new Fr3DH(args.length > 0? args[0] : null, new CvHLines(),
         "Hidden-lines algorithm");
   }
}

Notice the title Hidden-lines algorithm, which is used here as the third argument of the Fr3DH constructor, and consequently
appears in the title bar of the window shown in Figure 6.25. The implementation of the hidden-lines algorithm discussed in this
chapter can be found in the class CvHLines, of which an object is created in the second argument of the above constructor call. In
view of the extent of this class, it is not listed here but rather as the file CvHLines.java in Appendix D. In this section we will only
discuss some other aspects of the program, especially some classes occurring in the above comment lines, as far as these have
not been dealt with in Section 5.5.

The subclass Fr3DH, just mentioned, of Fr3D is defined in the following file:
// Fr3DH.java: Frame class for HLines.java.
// This class extends Fr3D to enable writing HP-GL output files.
import java.awt.*;
import java.awt.event.*;
import java.util.*;

class Fr3DH extends Fr3D
{  private MenuItem exportHPGL;
   CvHLines cv; 
   Fr3DH(String argFileName, CvHLines cv, String textTitle)
   {  super(argFileName, cv, textTitle);
      exportHPGL = new MenuItem("Export HP-GL");
      mF.add(exportHPGL);
      exportHPGL.addActionListener(this);
      this.cv = cv;
   }

   public void actionPerformed(ActionEvent ae)
   {  if (ae.getSource() instanceof MenuItem)
      {  MenuItem mi = (MenuItem)ae.getSource();
         if (mi == exportHPGL)
         {  Obj3D obj = cv.getObj();
         if (obj != null)
         {  cv.setHPGL(new HPGL(obj));
            cv.repaint();
         }
         else
            Toolkit.getDefaultToolkit().beep();
        }
        else
            super.actionPerformed(ae);
    }
  }
}

At the start of the class, the variable exportHPGL is declared to implement the additional menu item that we need. The method
actionPerformed overrides the method with the same name of the super class Fr3D. When any menu command is used, a test is
executed to see if this command is Export HPGL. If this is not the case, the method actionPerformed of the super class is called to
deal with other menu commands. If it is the case, the statement
cv.setHPGL(new HPGL(obj));

is executed, which makes a variable hpgl of the class CvHlines point to an HPGL object, generated here as an argument of
setHPGL. By making this variable hpgl unequal to null, any call of the CvHLines method drawLine will perform the desired HP-GL
output, as you can see in the following lines, copied from Appendix D.
private void drawLine(Graphics g, float x1, float y1, 
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private void drawLine(Graphics g, float x1, float y1, 
  float x2, float y2)
{ if (x1 != x2 || y1 != y2)
  { g.drawLine(iX(x1), iY(y1), iX(x2), iY(y2));
    if (hpgl != null)
    { hpgl.write("PU;PA" + hpx(x1) + "," + hpy(y1));
      hpgl.write("PD;PA" + hpx(x2) + "," + hpy(y2) + "\n");
    }
  }
}

To clarify both the use of the HPGL constructor in the above call of setHPGL and this method drawLine, we will also have a look
at the way the class HPGL is defined:
// HPGL.java: Class for export of HP-GL files.
import java.io.*;

class HPGL
{  FileWriter fw;
   HPGL(Obj3D obj)
   {  String plotFileName = "", fName = obj.getFName();
      for (int i=0; i<fName.length(); i++)
      {  char ch = fName.charAt(i);
         if (ch == '.') break;
         plotFileName += ch;
      }
      plotFileName += ".plt";
      try
      {  fw = new FileWriter(plotFileName);
         fw.write("IN;SP1;\n");
      }
      catch (IOException ioe){}
  }
  void write(String s)
  {  try {fw.write(s); fw.flush();}catch (IOException ioe){}
  }
}

Apart from the extra code to generate HP-GL output and the obvious greater complexity of the canvas class due to hidden-line
elimination, the structure of program HLines.java is very similar to Wireframe.java discussed at the end of the previous chapter.

EXERCISES

6.1 Use a normal editor or text processor to create a data file, to be used with program HLines.java,
for the object consisting of both a horizontal square and a vertical line through its center, as
shown twice in Figure 6.26. On the left the viewpoint is above the square (as it is by default),
while the situation on the right, with the viewpoint below the square, has been obtained by using
the Viewpoint Down command of the View menu (or by pressing Ctrl+↓ ).

 
Figure 6.26: Line passing through the center of a square

6.2 Hidden-line elimination works correctly for the problem in Exercise 6.1 because the vertical line
passes through edges of the triangles produced by triangulation of the square. Change the
horizontal square to a horizontal triangle and use HLines.java to display the object with the same
vertical line through the triangle. The object may not be displayed properly like those in Figure
6.26. Explain why and find a simple solution.

6.3 The same as Exercise 6.1 for Figure 6.27, which shows two very thin square rings. Again, the
object is shown twice to demonstrate that there are four potentially visible faces.
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Figure 6.27: Two thin square rings

6.4 Write a program HLinesDashed.java similar to HLines.java but instead of omitting hidden lines,
draw them as dashed lines. For example, when applied to the file letterL.dat of Section 6.3, it
produces the result of Figure 6.28 (after changing the viewpoint). An easy way of doing this is by
letting the method lineSegment in your class CvHLines- Dashed first draw the whole line PQ as a
dashed line, so these dashed lines, or parts of them, will later be overwritten by normally drawn
lines if the line segments in question happen to be visible. Note that this should happen only for
calls to lineSegment from the paint method, not for recursive calls. You can use a method
dashedLine similar to the one of Exercise 1.5. This call to dashedLine can be followed by a
fragment of the form

 
Figure 6.28: Hidden lines represented by dashed lines

if (hpgl != null)
{  hpgl.write("LT4 1;\n");
   ...
   hpgl.write("LT;\n");
}

where …  denotes two lines similar to those for HP-GL output in the method drawLine. This will
make dashed lines also appear in HP-GL output when the user uses the Export HP-GL
command. The two HP-GL commands LT shown here will switch from normally drawn to dashed
lines, and back to normal lines.

For each of Exercises 6.5–6.10, you are to write a program that generates a 3D object file in the
format discussed in Sections 6.3–6.5. You may refer to Appendix E for more relevant examples.
The files generated by your program can be read by not only the program HLines.java, but also
the programs Painter.java and ZBuf.java described in Chapter 7.

6.5 Write a program BookView.java that can generate a data file for an open book. Enable the user
to supply the number of sheets, the page width and height, and the name of the output file as
program arguments. For example, the files bookv4.dat and bookv150.dat for the books shown in
Figure 6.29 were obtained by executing the following commands:
java BookView 4 15 20 bookv4.dat
java BookView 150 15 20 bookv150.dat
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java BookView 150 15 20 bookv150.dat

Apply the program HLines.java to it to generate HP-GL files. Import these files into a text
processor or drawing program, as was done twice for Figure 6.29.

 
Figure 6.29: Two open books; number of sheets: 4 on the left and 150 on the
right

6.6 Write a program to generate a globe model of a sphere, as shown in Figure E.4 of Appendix E.
Enable the user to supply n (see Section E.2) as a program argument.

6.7 Write a program to generate a semi-sphere, as shown in Figure 6.30.

 
Figure 6.30: A semi-sphere

6.8 Generate a great many cubes that are placed beside, behind and above each other (see Figure
6.31).

 
Figure 6.31: A cube of cubes

6.9 Generate a data file for two tori (the plural of torus), as shown in Figure 6.32.
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Figure 6.32: Two tori

6.10 Write a program to generate a spiral staircase, as shown in Figure 6.33.

 
Figure 6.33: A spiral staircase

Answers

6.1 The desired input file is listed below:
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1   1-1  0
2   1 1  0
3  -1 1  0
4  -1-1  0
5  0 0   -2
6  0 0   2
Faces:
1 2 3 4.
4 3 2 1.
5 6.

6.2 Use the vertices 1, 2 and 3 as triangle vertices in the plane z = 0, such that the origin O lies inside the
triangle. Let vertex 4 be the origin and vertices 5 and 6 the same line endpoints as in the above solution
to Exercise 6.1. Then, when specifying the triangle, use the invisible lines 1–4, 2–4 and 3–4 in the same
way as the line 7–10 in Figure 6.14. In other words, define each of the two sides of the triangle as a rather
complex polygon, specified as a sequence of ten numbers by visiting, for example, the vertices 1, 2, 4, 2,
3, 4, and so on, in that order, using minus signs for invisible lines.

6.3 See Section 6.4 for holes in polygons. Figure 6.27 was obtained by using a data file of the same structure
as the above one (see Exercise 6.1), but with 16 vertices and four faces. Based on Figure F.2, the first of
these faces was specified as follows:

 
Figure F.2: One of the four faces for the square rings of Figure 6.27

6.4 A simple solution to this problem is obtained by adding some code to draw all polygon edges (visible as
well as invisible) as dashed lines. In addition to this, the visible edges are drawn as solid lines without any
modification to the hidden-line algorithm. In other words, every visible edge is drawn as coinciding solid
and dashed lines, which gives the effect of a solid line. Although HP-GL provides the command LT (Line
Type) to draw dashed lines, we obtain better results if we draw our own, computed dashes, which are
required for screen output anyway. Note that every dashed line in Figure 6.28 begins and ends with a
dash of the same length as the other ones. To implement all this, modify the program file HLines.java
(see Appendix D) as follows:

a. Disable back-face culling by deleting the following program line in the method
buildLineSet.
if (n>2&& pol.h > 0) continue;

b. Insert the following method in the class CvHLines (see also Exercise 1.5):
void dashedLine(Graphics g, float xA, float yA,
      float xB, float yB, float dashLength)
{  float u1 = xB - xA, u2 = yB - yA,
      L = (float)Math.sqrt(u1 * u1 + u2 * u2);
   int n = Math.round((L/dashLength + 1)/2);
   float h1 = u1/(2 * n - 1), h2 = u2/(2*n-1);
   for (int i=0; i<n; i++)
   {  float x1 = xA + 2 * i * h1, y1 = yA + 2 * i * h2,
            x2 = x1 + h1, y2 = y1 + h2;
      drawLine(g, x1, y1, x2, y2);
   }
}

c. Just before the call to lineSegment in the paint method, almost at the end of the
program file, insert the following line:
dashedLine(g, P.x, P.y, Q.x, Q.y, 8);

6.5 A program to generate an open book is shown below. It was executed twice (with n = 4and n = 150) to
produce the two open books of Figure 6.29. Refer to the analysis of Exercise 6.6 below for the way we
design this type of program.
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// BookView.java: Generating a data file for an open book.
import java.io.*;

public class BookView
{  public static void main(String[] args)
      throws IOException
   {  if (args.length != 4)
      {  System.out.println(
         "Supply nr of sheets, width, height and file name\n"+
         "as program arguments.");
         System.exit(1);
       }
       int n;
       float w, h;
       FileWriter fw;
       n = Integer.valueOf(args[0]).intValue();
       w = Float.valueOf(args[1]).floatValue();
       h = Float.valueOf(args[2]).floatValue();
       fw = new FileWriter(args[3]);
       int spineTop = 1, spineBottom = 2, outerTop, outerBottom;
       float theta = (float)Math.PI/(n - 1);
       float xTop = 0, xBottom = h;
       fw.write(spineTop +""+xTop+"00\r\n");
       fw.write(spineBottom +""+ xBottom + " 0 0\r\n");
       for (int i=0; i<n; i++)
       {  float phi=i* theta,
             y = w * (float)Math.cos(phi),
             z = w * (float)Math.sin(phi);
          outerTop = 2 * i + 3; outerBottom = outerTop + 1;
          fw.write(outerTop + " " + xTop + " " +
             y + " " + z + "\r\n");
          fw.write(outerBottom + " " + xBottom + " " +
             y + " " + z + "\r\n");
       }
       fw.write("Faces:\r\n");
       for (int i=0; i<n; i++)
       {  outerTop =2*i+3; outerBottom = outerTop + 1;
          fw.write(spineTop + " " + spineBottom + " "
             + outerBottom + " " + outerTop + ".\r\n");
          fw.write(spineTop + " " + outerTop + " "
             + outerBottom + " " + spineBottom + ".\r\n");
       }
       fw.close();
   }
}

6.6 Before writing the program code we have to assign numbers to vertices and find mathematical
expressions for the x-, y-and z-coordinates of these vertices. We will now discuss how this can be done
for a sphere, but the same approach applies to any program that generates 3D data files.

The model of a sphere in question has two poles; let us assign vertex number 1 to the north pole. Since it
is given that there are n horizontal slices, there will be n −  1 horizontal planes between them, each
corresponding with a horizontal circle, or line of latitude, on the sphere. There will also be 2n vertical
circles, or lines of longitude. Every vertex (other than the two poles) of our sphere model is a point of
intersection of such a horizontal and a vertical circle. As for the faces, 2 × 2n of them are triangles at the
two poles. There are n −  2 remaining horizontal slices, so that the number of remaining faces is equal to
(n −  2) · (2n) = 2n(n −  2). Each of these is a parallelogram with two horizontal edges. Altogether, there
are 4n + 2n(n −  2) = 2n2 faces, and, as we will see below, 2(n2 −  n + 1) vertices. We will use two angles,
θ  and ϕ , as shown in Figure 5.3. Using a sphere radius 1, we can express the level of the n −  1
horizontal circles by their z-coordinate

Writing δ  = π /n, we will only use horizontal circles corresponding to the following angles:

On each of these circles we have to use 2n vertices, which correspond to the angles

Thus, each pair (i, j) is associated with a vertex, so that we can devise a means of associating a vertex
number with it. Since 1 has been used for the north pole, we start with vertex number 2 on circle i = 1.
With 2n vertices on each horizontal circle, the first vertex number available for circle i = 2 will be 2n + 2,
and for circle i = 3 it will be 4n + 2, and so on. In general, on circle i, we begin with number (i −  1) · 2n +
2. Since on each circle there are 2n vertices, identified as j = 0, …  ,2n −  1, we have

As we have seen in Section 5.2, the x-, y-and z-coordinates for this vertex (i, j) is computed as x = sin ϕ
cos θ , y = sinϕ  sin θ  and z = cos ϕ ,where θ  and ϕ  depend upon i and j as shown above.
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Finally, we have to assign a vertex number to the south pole. As we already have used 1 + (n −  1) · 2n
vertex numbers, the one for the south pole will be

which is also the total number of vertices.

6.7 Analyze this problem in the same way as was done for Exercise 6.6. Here each triangle (at the south
pole) and each parallelogram is to be specified both counter-clockwise and clockwise, since either side of
the curved surface can in principle be visible. Unlike Exercise 6.6, we had better use the variable n for the
number of slices of half the sphere in this problem, so that there are 4n instead of 2n vertices on every
horizontal circle that we use, giving altogether n · 4n + 1 = 4n2 + 1 vertices.

6.8 Use program arguments for the numbers of squares in each of the three directions x, y and z. Remember,
the word Faces can occur only once in the file, so we have to specify the vertices of all cubes before we
start specifying the faces.

6.9 Let us start with a torus such as the one in Section E.3, that is, a horizontal one with O as its center, and
let the second torus be a vertical one, with its center on the positive x-axis. We will make the sizes of the
tori and their numbers of vertices identical; only their positions are different. As in Section E.3, the size of
a torus (and its shape) is completely determined by the radii R and r, where r = 1. Since the hole in each
torus must be wide enough for the other to pass through, it is required that R ≥  2r, that is, R ≥  2.

For each vertex of the first torus, there is a corresponding one on the second. As we have seen in Section
E.3 there are n2 vertices for each torus, so we can use the numbers i and i + n2 for each pair of
corresponding vertices. To obtain the second torus, we have to shift the first one a distance R towards the
positive x-axis, after which we turn it through the x-axis though 90°. (Because of this special angle, no
complicated computations are required for this rotation, so it is not worthwhile to use the class Rota3D of
Section 3.9 in this case.) Writing (x, y, z) for vertex i and (x′, y′, z′) for the corresponding vertex i + n2, we
now have x′ = x + R, y′ = -z, z′ = y.

Although, in the first part of 3D data files, we usually supply the vertices in ascending order of the vertex
numbers, this is not required. It is therefore possible to write pairs of lines of the following form in the first
part of the data file:

Similarly, in the second part of the file, we can write faces in pairs, with vertex numbers in the second
face of each pair n2 higher than those of the first of that pair. In this way, the desired program for two tori
can be obtained from Torus.java by adding only a few statements.

6.10 If necessary, you might refer to the method genCylinder in program Cylinder.java of Section 6.6 for the
cylindrical pole in the middle of the staircase. If you do, bear in mind that the situation here is simpler
because this cylinder is solid (as is the case in program Cylinder.java with rInner = 0).

You can use program Beams.java of Section E.4 to see how the steps can be constructed, or you can
use the class Rota3D (see also Exercise 5.5), provided that you also perform a translation, adding a
constant to the z-coordinates of each new step. As for the railing, recall that the data file, after the word
Faces, can contain line segments specified as two vertex numbers followed by a period, as discussed in
Section 6.5.
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Chapter 7: Hidden-Face Elimination

In the previous two chapters we have discussed the wireframe model and how to remove hidden-lines of 3D objects. For
example, a realistic looking cube is displayed by simply drawing all the visible edges of the cube. Instead, we can construct a
polygon for each of the six faces. If we display only the visible faces, we obtain a more realistic image of a cube. In Exercise
5.2 this was done by displaying only the top, right and front faces, taking the chosen viewpoint into account. Recall that we
used θ  = 0.3 and ϕ  = 1.3 (both in radians) at the beginning of class Obj in program CubePers.java. The solution of Exercise
5.2 will fail, for example, if we use θ  = − 0.3 because then the left instead of the right face of the cube (see Figure 5.10)
should be displayed as a filled polygon. In this chapter, the viewpoint will be taken care of automatically, so that the invisible
faces of a cube, also known as back faces, are omitted regardless of the chosen viewpoint. Besides, a face may be only
partly visible, which is the case, for example, if we have two cubes, with the nearer one partly hiding the farther one. The
problem of displaying only the visible portions of faces will also be solved in this chapter. Finally, instead of taking just some
colors, we will assume that there is a source of light, such as the sun, to determine the brightness or darkness of a face.
Except for Section 7.1, we will display all faces of 3D objects in shades of yellow, against a blue background.

7.1 BACK-FACE CULLING
It is not difficult to determine which faces of a cube are invisible because they are at the back. Such faces, known as back faces,
can be detected by investigating the orientation of their vertices. To begin with, we specify each face counterclockwise, when
viewed from outside the object. For example, we denote the top face of the cube of Figure 5.11 as the counter-clockwise vertex
sequence 4, 5, 6, 7, or, for example, 6, 7, 4, 5, but not 6, 5, 4, 7, for that would be clockwise. In contrast, we can specify the
bottom face of the cube as the sequence 0, 3, 2, 1, which is counter-clockwise when this face is viewed from the outside but
clockwise in our perspective image. Here we see that the orientation of the bottom face in the image is different from that in 3D
space, when the object is viewed from the outside (that is, from below). This is because this bottom face is a back face. We use
this principle to tell back faces from visible faces. The method area2, discussed in Section 2.7, will now be very useful, so that we
will again use the class Tools2D, in which this method occurs. Recall that the complete version of class Tools2D can be found in
Section 2.13.

Note that we should use screen coordinates in the test we have just been discussing. If we used the xe-and ye-coordinates
instead (ignoring the ze- coordinate; see Figure 5.4), this test about the orientation of the vertices would be equivalent to testing
whether the normal vector, perpendicular to the face in question and pointing outward, would point more or less towards us or
away from us, that is, whether that vector would have a positive or a negative ze- component. This test would be correct with
orthographic (or parallel) projection but not necessarily with central projection, which we are using. Exercise 7.1 deals with this
subject in greater detail.

This time we will use the Graphics methods setColor and fillPolygon, to display each face, if it is visible, in a color that is unique for
that face. Just before we do this (in the paint method) we test whether the face we are dealing with is visible; if it is not, it is a back
face so that we can ignore it. To demonstrate that this really works, we will modify the viewpoint (by altering the angles θ  and ϕ )
each time the user presses a mouse button:
// Backface.java: A cube in perspective with back-face culling.
// Uses: Point2D (Section 1.5), Point3D (Section 3.9),
//       Tools2D (Section 2.13).

import java.awt.*;
import java.awt.event.*;

public class Backface extends Frame
{  public static void main(String[] args){new Backface();}

   Backface()
   {  super("Press mouse button ...");
      addWindowListener(new WindowAdapter()
         {public void windowClosing(WindowEvent e){System.exit(0);}});
      add("Center", new CvBackface());
      Dimension dim = getToolkit().getScreenSize();
      setSize(dim.width/2, dim.height/2);
      setLocation(dim.width/4, dim.height/4);
      show();
   }
}

class CvBackface extends Canvas
{  int centerX, centerY;
   ObjFaces obj = new ObjFaces();
   Color[] color = {Color.blue, Color.green, Color.cyan,
                    Color.magenta, Color.red, Color.yellow};
   float dPhi = 0.1F;
   CvBackface()
   {  addMouseListener(new MouseAdapter()
      {  public void mousePressed(MouseEvent evt)
         {  obj.theta += 0.1F;
            obj.phi += dPhi;
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            obj.phi += dPhi;
            if (obj.phi > 2 || obj.phi < 0.3) dPhi = -dPhi;
            repaint();
          }
      });
   }

   int iX(float x){return Math.round(centerX + x);}
   int iY(float y){return Math.round(centerY - y);}

   public void paint(Graphics g)
   {   Dimension dim = getSize();
    int maxX = dim.width - 1, maxY = dim.height - 1,
        minMaxXY = Math.min(maxX, maxY);
    centerX = maxX/2;
    centerY = maxY/2;
    obj.d = obj.rho * minMaxXY / obj.objSize;
    obj.eyeAndScreen();
    Point2D[] p = new Point2D[4];
    for (int j=0; j<6; j++)
    {  Polygon pol = new Polygon();
       Square sq = obj.f[j];
       for (int i=0; i<4; i++)
       {  int vertexNr = sq.nr[i];
          p[i] = obj.vScr[vertexNr];
          pol.addPoint(iX(p[i].x), iY(p[i].y));
       }
       g.setColor(color[j]);
       if (Tools2D.area2(p[0], p[1], p[2]) > 0)
          g.fillPolygon(pol);
    }
  }
}

class ObjFaces // Contains 3D object data of cube faces
{  float rho, theta=0.3F, phi=1.3F, d;
   Point3D[] w;    // World coordinates
   Point3D[] e;    // Eye coordinates
                   // (e = wV where V is  a 4 x 4  matrix)
   Point2D[] vScr; // Screen coordinates
   Square[] f;     // The six (square) faces of a cube.
   float v11, v12, v13, v21, v22, v23,
      v32, v33, v43, // Elements of viewing matrix V.
      xe, ye, ze, objSize;
ObjFaces()
{  w = new Point3D[8];
   e = new Point3D[8];
   vScr = new Point2D[8];
   f = new Square[6];
   // Bottom surface:
   w[0] = new Point3D( 1, -1, -1);
   w[1] = new Point3D( 1,  1, -1);
   w[2] = new Point3D(-1,  1, -1);
   w[3] = new Point3D(-1, -1, -1);
   // Top surface:
   w[4] = new Point3D( 1, -1,   1);
   w[5] = new Point3D( 1,  1,   1);
   w[6] = new Point3D(-1,  1,   1);
   w[7] = new Point3D(-1, -1,   1);
   f[0] = new Square (0, 1, 5,  4); // Front
   f[1] = new Square (1, 2, 6,  5); // Right
   f[2] = new Square (2, 3, 7,  6); // Back
   f[3] = new Square (3, 0, 4,  7); // Left
   f[4] = new Square (4, 5, 6,  7); // Top
   f[5] = new Square (0, 3, 2,  1); // Bottom
   objSize = (float)Math.sqrt (12F);
      // distance between two opposite vertices.
   rho = 3 *  objSize; // For reasonable perspective effect
}

void initPersp()
{  float
   costh = (float)Math.cos(theta), sinth = (float)Math.sin(theta),
   cosph = (float)Math.cos(phi), sinph = (float)Math.sin(phi);
   v11 = -sinth;     v12 = -cosph * costh;     v13 = sinph * costh;
   v21 = costh;      v22 = -cosph * sinth;     v23 = sinph * sinth;
                     v32 = sinph;              v33 = cosph;
                                               v43 = -rho;
}

void eyeAndScreen()
{  initPersp();
   for (int i=0; i<8; i++)
   {  Point3D p = w[i];
      float x = v11 * p.x + v21 * p.y;
      float y = v12 * p.x + v22 * p.y + v32 * p.z;
      float z = v13 * p.x + v23 * p.y + v33 * p.z + v43;
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      float z = v13 * p.x + v23 * p.y + v33 * p.z + v43;

         Point3D Pe = e[i] = new Point3D(x, y, z);
         vScr[i] = new Point2D(-d * Pe.x/Pe.z, -d * Pe
      }
   }
}

class Square
{  int nr[];
   Square(int iA, int iB, int iC, int iD)
   {  nr = new int[4];
      nr[0] = iA; nr[1] = iB; nr[2] = iC; nr[3] = iD;
   }
}

If you do not use the Java classpath variable, you should make sure that the files Point2D.class, Point3D.class and Tools2D.class
(or the corresponding .java files) are in the same directory as this program. We now obtain images of a cube in bright colors, so
the result on the screen looks much better than Figure 7.1. Initially, the top face of the cube is visible, but after we have clicked the
mouse button several times the cube shows its bottom face, as is the case in this illustration.

 
Figure 7.1: Result of back-face culling

We will use back-face culling in the programs that follow. This technique is worthwhile because it drastically reduces the number
of polygons that may be visible and it is inexpensive compared with some more time-consuming algorithms to be discussed later
in this chapter. However, using only backface culling is not sufficient, since it does not work for non-convex solids. As Figure 6.12
illustrates, the solid letter L is not convex, since the line that connects, for example, vertices 1 and 11 does not lie completely
inside the object. In that example, the rectangle 5-6-7-8 is not a back face, but it is only partly visible.
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7.2 COLORING INDIVIDUAL FACES
Let us now decide on the color to be used for each polygon (and for all triangles of which it consists) based on its orientation in
relation to the light source. For a polygon in a plane with equation

we can obtain a color code by calling the method colorCode of the class Obj3D as follows:
int cCode = obj.colorCode(a, b, c);

(Note that we use the name colorCode both for an array and for a method.) This color code, stored in the variable cCode, will later
be used as follows:
g.setColor(new Color(cCode, cCode, 0));

Using integers in the range 0–255 for cCode, we obtain shades of yellow in this way. For a given polygon, we will associate the
values in this range with the inner product (see Section 2.2) between the following two vectors:

s = (1/√ 3)
(− 1, 1, 1):
n = (a, b, c):

vector directed from the object to the sun; normal vector, perpendicular to the polygon and pointing away
from the object (more or less towards the viewpoint E).

Note that these vectors have length 1 and are expressed in eye coordinates xe, ye and ze. The signs of the triple elements − 1, 1,
1 imply that the light comes from the left, from above and from the front, as Figure 7.2 illustrates.

 
Figure 7.2: Vector s, pointing to the sun, and normal vector n of a face

Since we know the range of the color codes, we can convert inner-product values to color codes, if we also know the range of all
possible inner products that can occur. This range

is found in the method planeCoeff of the class Obj3D simply by computing all those inner products, as soon as a, b and c are
computed.

The following method of Obj3D.java shows how an inner product n · s, discussed above, is computed and how the above values
inprodMin and inpro- dRange are used to derive a color code in the range 0–255:
int colorCode(double a, double b, double c)
{  double inprod = a * sunX + b * sunY + c * sunZ;
   return (int)Math.round(((inprod - inprodMin)/inprodRange) * 255);
}

The method colorCode needs to be called for every polygon, or face, to be colored. It is usually placed in the method paint, along
with its color code and its distance, as demonstrated in the example program of the next section.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


7.3 PAINTER'S ALGORITHM
It is an attractive idea to solve the hidden-face problem by displaying all polygons in a specific order, namely first the most distant
one, then the second furthest, and so on, finishing with the one that is closest to the viewpoint. Painters sometimes follow the
same principle, particularly when working with oil paintings. They typically start with the background and paint a new layer for
objects on the foreground later, so that the overlapped parts of objects in the background, painted previously, are covered by the
current layer and thus become invisible. This algorithm is therefore known as the painter's algorithm. It is based on the assumption
that each triangle can be assigned a ze-coordinate, which we can use to sort all triangles. One way of obtaining such a ze-
coordinate for a triangle ABC is by computing the average of the three ze-coordinates of A, B and C. However, there is a problem,
which is clarified by Figure 7.3. For each of the three beams, a large rectangle is partly obscured by another, so we cannot
satisfactorily place them (or the triangles in which these rectangles are divided) in the desired order, that is, from back to front (see
also Figures 7.8 and 7.9). Consequently, the naïve approach just suggested will fail in this case. Surprisingly enough, it gives good
results in many other cases, such as the solid letter L in Figure 6.2 and the sphere and cone in Figure 7.5. It is also very fast.

 
Figure 7.3: Beams, each of which partly obscures another

 
Figure 7.4: Program Painter.java applied to file letterL.dat
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Figure 7.5: Sphere and cone

The program Painter.java is listed below. If you compile and run this program, all classes defined in the program files
Point2D.java, Point3D.java, Obj3D.java, etc., must be available, as the comment below indicates. Recall our discussion of this
subject at the end of Chapter 1.
// Painter.java: Perspective drawing using an input file that lists
//    vertices and faces. Based on the Painter's algorithm.
// Uses: Fr3D (Section 5.5) and CvPainter (Section 7.3),
//       Point2D (Section 1.5), Point3D (Section 3.9),
//       Obj3D, Polygon3D, Tria, Fr3D, Canvas3D (Section 5.5).
import java.awt.*;

public class Painter extends Frame
{ public static void main(String[] args)
  {  new Fr3D(args.length>0? args[0] : null, new CvPainter(),
        "Painter");
  }
}

In the above Fr3D constructor call, the first argument is a conditional expression to check if the user has used the option of
specifying an input file as a program argument in the command line. (This is not required, since the user can also use the File
menu to open input files). Recall that this is similar to what we did in Sections 5.6 and 6.8. The second argument of the
constructor call just mentioned creates an object of class CvPainter, which is listed below in the separate file CvPainter.java. The
third argument specifies the window title Painter that will appear.
// CvPainter.java: Used in the file Painter.java.
import java.awt.*;
import java.util.*;

class CvPainter extends Canvas3D
{  private int maxX, maxY, centerX, centerY;
   private Obj3D obj;
   private Point2D imgCenter;

   Obj3D getObj(){return obj;}
   void setObj(Obj3D obj){this.obj = obj;}
   int iX(float x){return Math.round(centerX + x - imgCenter.x);}
   int iY(float y){return Math.round(centerY - y + imgCenter.y);}

   void sort(Tria[] tr, int[] colorCode, float[] zTr, int l, int r)
   {  int i = l, j = r,  wInt;
      float x = zTr[(i + j)/2], w;
      Tria wTria;
      do
      {  while (zTr[i] < x) i++;
         while (zTr[j] > x) j--;
         if (i < j)
         {  w = zTr[i]; zTr[i] = zTr[j]; zTr[j] = w;
            wTria = tr[i]; tr[i] = tr[j]; tr[j] = wTria;
            wInt = colorCode[i]; colorCode[i] = colorCode[j];
            colorCode[j] = wInt;
            i++; j--;
         } else
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         } else
      if (i == j) {i++; j--;}
   } while (i <= j);
   if (l < j) sort(tr, colorCode, zTr, l, j);
   if (i < r) sort(tr, colorCode, zTr, i, r);
}

public void paint(Graphics g)
{  if (obj == null) return;
   Vector polyList = obj.getPolyList();
   if (polyList == null) return;
   int nFaces = polyList.size();
   if (nFaces == 0) return;

   Dimension dim = getSize();
   maxX = dim.width - 1; maxY = dim.height - 1;
   centerX = maxX/2; centerY = maxY/2;
   // ze-axis towards eye, so ze-coordinates of
   // object points are all negative.
   // obj is a java object that contains all data:
   // - Vector w       (world coordinates)
   // - Array e        (eye coordinates)
   // - Array vScr     (screen coordinates)
   // - Vector polyList (Polygon3D objects)

   // Every Polygon3D value contains:
   // - Array 'nrs' for vertex numbers
   // - Values a, b, c, h for the plane ax+by+cz=h.
   // - Array t (with nrs.length-2 elements of type Tria)

   // Every Tria value consists of the three vertex
   // numbers iA, iB and iC.
   obj.eyeAndScreen(dim);
         // Computation of eye and screen coordinates.

   imgCenter = obj.getImgCenter();
   obj.planeCoeff();    // Compute a, b, c and h.

   // Construct an array of triangles in
   // each polygon and count the total number
   // of triangles:
   int nTria = 0;
   for (int j=0; j<nFaces; j++)
   {   Polygon3D pol = (Polygon3D)(polyList.elementAt(j));
         if (pol.getNrs().length < 3 || pol.getH()
            continue;
         pol.triangulate(obj);
         nTria += pol.getT().length;
      }
      Tria[] tr = new Tria[nTria];
      int[] colorCode = new int[nTria];
      float[] zTr = new float[nTria];
      int iTria = 0;
      Point3D[] e = obj.getE();
      Point2D[] vScr = obj.getVScr();

      for (int j=0; j<nFaces; j++)
      {  Polygon3D pol = (Polygon3D)(polyList.elementAt(j));
         if (pol.getNrs().length < 3 || pol.getH() >= 0) continue;
         int cCode =
            obj.colorCode(pol.getA(), pol.getB(), pol.getC());
         Tria[] t = pol.getT();
         for (int i=0; i< t.length; i++)
         {  Tria tri = t[i];
            tr[iTria] = tri;
            colorCode[iTria] = cCode;
            float zA = e[tri.iA].z, zB = e[tri.iB].z,
               zC = e[tri.iC].z;
            zTr[iTria++] = zA + zB + zC;
         }
      }

      sort(tr, colorCode, zTr, 0, nTria - 1);

      for (iTria=0; iTria<nTria; iTria++)
      {  Tria tri = tr[iTria];
         Point2D a = vScr[tri.iA],
                 b = vScr[tri.iB],
                 c = vScr[tri.iC];
         int cCode = colorCode[iTria];
         g.setColor(new Color(cCode, cCode, 0));
         int[] x = {iX(a.x), iX(b.x), iX(c.x)};
         int[] y = {iY(a.y), iY(b.y), iY(c.y)};
         g.fillPolygon(x, y, 3);
      }
   }
}

We use a special method, sort, to sort the triangles; it is based on the well-known and efficient quicksort algorithm, discussed in
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We use a special method, sort, to sort the triangles; it is based on the well-known and efficient quicksort algorithm, discussed in
detail in Ammeraal (1996). Before calling sort, we build three arrays:

 Open table as spreadsheet

Array element Type Contains

tr[iTria] Tria the three vertex numbers of the triangle

colorCode[iTria] int value between 0 and 255

zTr[iTria] float value representing ze-coordinate of triangle

For a given subscript value iTria, the three array elements in the first column of this table belong to the same triangle. We may
regard them as members of the same record, of which zTr is the key. During sorting, whenever two elements zTr[i]and zTr[j] are
swapped, we swap tr[i]and tr[j] as well as colorCode[i] and colorCode[j] at the same time. It seems reasonable to use the average
of the three ze-coordinates of a triangle's vertices as the ze-coordinate of that triangle, but we may as well simply use the sum
instead of the average. Recall that the positive ze-axis points towards us, so that all ze values that we use are negative: the more
negative it is, the further away the triangle is. It follows that we have to paint the triangles in increasing order of their ze-
coordinates, or, equivalently, in decreasing order of their absolute values.

As the class CvPainter in the program Painter.java shows, there is a call to colorCode in the method paint for every polygon just
before entering the loop. Within the loop, all the triangles of that polygon, their color code, and each triangle's distance, are stored
in the three arrays tr, colorCode and zTr, discussed above. After this has been done for all polygons, the triangles are sorted on
the basis of their distances stored in zTr, and then displayed in order of decreasing distance.

Next, we demonstrate the application of the painter's algorithm to some simple 3D objects, with the implementation of user
operations. As Figure 7.4 shows, we will enable the user to change the viewpoint E, characterized by its spherical coordinates.
Immediately after an input file has been opened, these coordinates have the following (default) values:

If the user gives the menu command Viewpoint Down the value of ϕ  is increased by 0.1 radians (≈ 6°). Similarly, Viewpoint Up
decreases ϕ  by 0.1 radians, while Viewpoint Left and Viewpoint Right decrease and increase θ  by 0.1 radians, respectively. The
same effects can be achieved by using one of the four arrow keys, ↓ , ↑ , ←  and → , together with the Ctrl-key, as indicated in the
menu. Figure 7.4 shows the screen when the input file letterL.dat, discussed in Section 6.3, has been read by program
Painter.java and the user has used the Viewpoint Up command four times, so that we view the object from a higher viewpoint than
in the initial situation.

The File menu, not shown in Figure 7.4, consists of the following commands:
Open   Ctrl+O
Exit   Ctrl+Q

If several input files are available, the user can switch to another object by using the Open command (or Ctrl+O), as usual. The
simplicity of our file format makes it easy to generate such files by other programs, as we will discuss in the next two sections. In
particular, mathematically well-defined solids, such as the sphere and the cone of Figure 7.5, are very suitable for this.
Incidentally, this example demonstrates that what we call a ‘three-dimensional object’ may consist of several solids. Note,
however, that the input-file format requires that all vertices, in this example of both the sphere and the cone, must be defined in
the first part of the file and all faces in the second. In other words, the line with the word Faces must occur only once in the file.
This example also shows that curved surfaces can be approximated by a great many flat faces. In this example, there are
altogether 1804 vertices and 1920 faces. Here the command Viewpoint Down has been used four times and the command
Viewpoint Right twice.

An object will normally appear with a reasonable perspective effect, but the user will be able to increase or decrease the viewing
distance by using menu commands or their shortcuts, Ctrl+Insert and Ctrl+Delete, as Figure 7.4 shows.

Although we can see only shades of gray in Figures 7.4 and 7.5, the situation looks much more interesting on the screen: the
background is light blue like the sky and all faces of the object are yellow. The source of light is far away, at the top left, so that the
upper and the left faces are bright yellow, while those on the right and on the bottom are much darker.

To start the program, we can supply the (initial) input file as a program argument, if we like. For example, if the first 3D object to
be displayed is given by the file letterL.dat, we can start the program by entering
java Painter letterL.dat

Alternatively, we can enter
java Painter

and use the Open command in the File menu (or Ctrl+O) to specify the input file letterL.dat. With both ways of starting the
program, we can switch to another object by using this Open command.

As discussed at the beginning of this section, the painter's algorithm will fail in some cases, such as the three beams of Figure
7.3. We will therefore discuss another algorithm for hidden-face elimination in the next section.
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7.4 Z-BUFFER ALGORITHM
If the images of two faces F1 and F2 overlap, we may consider two questions with regard to the correct representation of these
faces:

1. Which pixels would be used for both F1 and F2 if each face were completely visible?

2. For each of these pixels, which of the corresponding points in F1 and F2 is nearer?

The Z-buffer algorithm deals with these questions in a general and elegant way. Recall that we are using an eye-coordinate
system, with z-coordinates denoting the distance we are interested in. We consider points P in 3D space and their corresponding
projections P′ in 2D space, where we use central projection with the viewpoint E as the center of projection. In other words, each
line PE is a ray of light, intersecting the screen in P′. We are especially interested in such points P′ that are the centers of pixels.

The Z-buffer algorithm is based on a large two-dimensional array in which we store numbers that represent z-coordinates. Using
the variable dim as the current canvas dimension, we define the following array, also known as a Z-buffer,for this purpose:
private float buf[][];
buf = new float[dim.width][dim.height];

We initialize array buf with values corresponding to points that are very far away. As before, we ignore back faces. For each of the
remaining faces we compute all pixels and the z-values that correspond with these. For each pixel P′(ix, iy), we test whether the
corresponding point P in 3D space is nearer than buf [ix][iy] indicates. If it is, we put this pixel on the screen, using the color for the
face in question, computed as in the previous section, while, at the same time, updating buf [ix][iy]:
    For each face F (and its image, consisting of a set of pixels):
      For each pixel P′(ix, iy), corresponding with a 3D point P of F:
        If P is nearer than the distance stored in buf [ix][iy],
        {    set pixel P′ to the color for face F
             update buf [ix][iy] so that it refers to the distance of P
        }

In this discussion, the words distance and near refer to the z-coordinates in the eye-coordinate system. (Since we use no other 3D
coordinates here, we simply write z instead of ze here.) There are two aspects that make the implementation of the above
algorithm a bit tricky:

1. Since the z-axis points towards us, the larger z is, the shorter the distance.

2. It is necessary to use 1/z instead of z for linear interpolation.

Let us take a look at this rather surprising point 2. Suppose we are given the ze-coordinates of two points A and B in 3D space
and the central projections A′ and B′ of these points on the screen. Besides, some point P′ on the screen, lying on A′B′, is given
and we have

where xP′, and so on, are screen coordinates. We are then interested in the point P (in 3D space) of which P′ is the central
projection. Since we want to know how far away P is, our goal is to compute zP. (After this, we can also compute the 3D
coordinates xP = − xP′zP/d and yP =− yP′zP/d, using Equations (5.7) and (5.8) of Section 5.3, where we wrote X and Y instead of
x′ and y′.) Curiously enough, to compute this eye coordinate zP by interpolation, we need to use the inverse values of the z-
coordinates:

We will simply use this result here; it is discussed in more detail in Appendix A. Let us write

which we write as zPi (equal to 1/zP) in the program. Using the same convention (zAi = 1/zA, etc.) for other variables and writing
xA, yA etc. for screen coordinates, we compute the centroid D(xD, yD) along with its inverse z-value zDi for each triangle ABC as
follows:
xD = (xA + xB + xC)/3;
yD = (yA + yB + yC)/3;
zDi = (zAi + zBi + zCi)/3;

This centroid will be the basis for computing zi-values for other points of the triangle by linear interpolation. To do this, we are
interested in how much zPi increases if P moves one pixel to the right. This quantity, which we may write as ∂zi/∂x or simply as
dzdx in the program, is constant for the whole triangle.

We will use this value, as well as its counterpart dzdy = ∂zi/∂y indicating how much zPi increases if P moves one pixel upward,
that is, if the screen coordinate yP is increased by 1. It is useful to think of the triples x, y and zi (where x and y are screen
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that is, if the screen coordinate yP is increased by 1. It is useful to think of the triples x, y and zi (where x and y are screen
coordinates and zi = 1/z) as points in a plane of an imaginary 3D space. We can then denote this plane as

Writing this in the form zi = (k −  ax −  by)/c and applying partial differentiation to zi, we obtain

To find a, b and c, remember that (a, b, c) in Equation (7.1) is the normal vector of the plane of triangle ABC (in the imaginary
space we are dealing with). We define the vectors

where

Then the vector product

(see Section 2.4) is also perpendicular to triangle ABC, so that we can compute the desired values a, b and c of (7.1), (7.2) and
(7.3) as the coefficients of i,j and k, respectively, finding

So much for the computation of dzdx = ∂zi/∂x and dzdy = ∂zi/∂y, which we will use to compute zPi for each point P of triangle
ABC, as we will see below.

To prepare for traversing all relevant scan lines for triangle ABC, such as LR in Figure 7.6, we compute the y-coordinates yTop
and yBottom of the vertices at the top and the bottom of this triangle. For all pixels that comprise triangle ABC on the screen, we
have to compute the z-coordinate of the corresponding point in 3D space. In view of the enormous number of those pixels, we
should do this as efficiently as possible. Working from the bottom of the triangle to the top, when dealing with a scan line, we
traverse all its pixels from left to right. Figure 7.6 shows a situation in which all pixels of triangle ABC below the scan line LR have
already been dealt with.
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Figure 7.6: Triangle ABC and scan line LR

For each scan line at level y (yBottom ≤  y ≤  yTop), we find the points of intersection L and R with triangle ABC as follows. We
introduce the points I, J and K, which are associated with the triangle edges BC, CA and AB, respectively. Initially, we set the
program variables xI, xJ and xK to 1030, and xI1, xJ1 and xK1 to − 1030. Then, if y lies between yB and yC or is equal to one of
these values, we compute the point of intersection of the scan line with BC, and we assign the x-coordinate of this point to both xI
and xI1. In the same way we possibly update xJ, xJ 1 for C A and xK and xK1 for AB. After this, each of the variables xI, xJ and
xK is equal either to its original value 1030 or to the x-coordinate of the scan line in question with BC, CA and AB, respectively.
The same applies to the other three variables, except that these may still have a different original value, − 1030. We can now
easily find xL and xR:

So far, we have been using floating-point, logical coordinates y, xL and xR. Since we have to deal with pixels, we convert these to
the (integer) device coordinates iY, iXL and iXR as follows:
int iy = iY(y), iXL = iX(xL+0.5), iXR = iX(xR-0.5);

By adding 0.5 to xL and subtracting 0.5 from xR, we avoid clashes between neighboring triangles of different colors: the pixel
(iXR, y) belonging to triangle ABC should preferably not also occur as a pixel (iXL, y) of the right-hand neighbor of this triangle,
because it would then not be clear which color to use for this pixel. Before entering the loop for all pixels iXL, iXL + 1, … , iXR for
the scan line on level y, we compute the inverse z value zi = zLi for the pixel (iXL, y). Theoretically, this value is

In the program we modify this a little, giving a little more weight to the centroid D of the triangle:
double zi = 1.01 * zDi + (y - yD) * dzdy + (xL - xD) * dzdx;

This modification is useful in some special cases of which we will give an example at the end of this section.

Starting at the left end (iXL, y) of a scan line with the above z value zi = zLi,we could now write the loop for this scan line as
follows:
for (int x=iXL; x<=iXR; x++)
{  if (zi < buf[x][iy]) // '<' means 'nearer'
   {  g.drawLine(x, iy, x, iy);
      buf[x][iy] = (float)zi;
   }
   zi += dzdx;
}

Along a horizontal line LR, shown in Figure 7.6, we compute the inverse z- coordinate, zi. If this is less than the contents of the
array element buf [x][y], we put a pixel on the screen and update that array element.

The above test zi < buf[x][y] may at first look confusing. Since the positive z-axis of the eye-coordinate system points towards us,
we have:

the larger the z-coordinate of a point, the nearer this point is to the eye.

However, we are using inverse values zi = 1/z, so that the above is equivalent to

the smaller the zi-value of a point, the nearer it is to the eye.

A complicating factor is that we are using negative z-coordinates, but the above also applies to negative numbers. The following
example for two points P and Q will make the situation clear:

Another curious aspect of the above fragment is that putting a pixel on the screen is done here by drawing a line of only one pixel.
It is strange that Java does not supply a more elementary routine, say, putPixel, for this purpose. However, we can do much better
by delaying this ‘putPixel’ operation until we know for how many adjacent pixels it is to be used; in other words, we build horizontal
line segments in memory, storing their leftmost x values and displaying these segments if we can no longer extend it on the right.
This implies that even if there were a putPixel method, we would not use it, but rather draw horizontal line segments, consisting of
some pixels we have recently been dealing with. Instead of the above for-loop we will actually use an ‘optimized’ fragment which is
equivalent to it, as we will discuss in a moment. The program ZBuf.java is listed below.
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// ZBuf.java: Perspective drawing using an input file that
//    lists vertices and faces.
//    Z-buffer algorithm used for hidden-face elimination.
// Uses: Point2D (Section 1.5), Point3D (Section 3.9) and
//       Obj3D, Polygon3D, Tria, Fr3D, Canvas3D (Section 5.5).
import java.awt.*;

public class ZBuf extends Frame
{  public static void main(String[] args)
   {  new Fr3D(args.length > 0 ? args[0] : null, new CvZBuf(),
         "ZBuf");
   }
}

The class CvZBuf is defined in the following separate file:
// CvZBuf.java: Canvas class for ZBuf.java.
import java.awt.*;
import java.util.*;

class CvZBuf extends Canvas3D 
{  private int maxX, maxY, centerX, centerY, maxX0 = -1, maxY0 = -1;
   private float buf[][];
   private Obj3D obj;
   private Point2D imgCenter;

   int iX(float x){return Math.round(centerX + x - imgCenter.x);}
   int iY(float y){return Math.round(centerY - y + imgCenter.y);}

   Obj3D getObj(){return obj;}
   void setObj(Obj3D obj){this.obj = obj;}

   public void paint(Graphics g)
   {  if (obj == null) return;
      Vector polyList = obj.getPolyList();
      if (polyList == null) return;
      int nFaces = polyList.size();
      if (nFaces == 0) return;
      float xe, ye, ze;

      Dimension dim = getSize();
      maxX = dim.width - 1; maxY = dim.height - 1;
      centerX = maxX/2; centerY = maxY/2;
      // ze-axis towards eye, so ze-coordinates of
      // object points are all negative. Since screen
      // coordinates x and y are used to interpolate for
      // the z-direction, we have to deal with 1/z instead
      // of z. With negative z, a small value of 1/z means
      // a small value of |z| for a nearby point. We there-
      // fore begin with large buffer values 1e30:
      if (maxX != maxX0 || maxY != maxY0)
      {  buf = new float[dim.width][dim.height];
         maxX0 = maxX; maxY0 = maxY;
      }
      for (int iy=0; iy<dim.height; iy++)
         for (int ix=0; ix<dim.width; ix++)buf[ix][iy] = 1e30F;

      obj.eyeAndScreen(dim);
      imgCenter = obj.getImgCenter();
      obj.planeCoeff(); // Compute a, b, c and h.
      Point3D[] e = obj.getE();
      Point2D[] vScr = obj.getVScr();

      for (int j=0; j<nFaces; j++) 
{  Polygon3D pol = (Polygon3D)(polyList.elementAt(j));
   if (pol.getNrs().length < 3 || pol.getH() >= 0)
      continue;
   int cCode =
       obj.colorCode(pol.getA(), pol.getB(), pol.getC());
   g.setColor(new Color(cCode, cCode, 0));

   pol.triangulate(obj);

   Tria[] t = pol.getT();
   for (int i=0; i<t.length; i++)
   {  Tria tri = t[i];
      int iA = tri.iA, iB = tri.iB, iC = tri.iC;
      Point2D a = vScr[iA], b = vScr[iB], c = vScr[iC];
      double zAi = 1/e[tri.iA].z, zBi = 1/e[tri.iB].z,
          zCi = 1/e[tri.iC].z;
      // We now compute the coefficients a, b and c
      // (written here as aa, bb and cc)
      // of the imaginary plane ax + by + czi = h,
      // where zi is 1/z (and x, y and z are
      // eye coordinates. Then we compute
      // the partial derivatives dzdx and dzdy:
      double u1 = b.x - a.x, v1 = c.x - a.x,
             u2 = b.y - a.y, v2 = c.y - a.y,
             cc=u1*v2-u2*v1;
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             cc=u1*v2-u2*v1;
      if (cc <= 0) continue;
      double xA = a.x, yA = a.y,
             xB = b.x, yB = b.y,
             xC = c.x, yC = c.y,
             xD = (xA + xB + xC)/3,
             yD = (yA + yB + yC)/3,
             zDi = (zAi + zBi + zCi)/3,
             u3 = zBi - zAi, v3 = zCi - zAi,
             aa=u2*v3-u3*v2,
             bb=u3*v1-u1*v3,
             dzdx = -aa/cc, dzdy = -bb/cc,
             yBottomR = Math.min(yA, Math.min(yB, yC)),
             yTopR = Math.max(yA, Math.max(yB, yC));
      int yBottom = (int)Math.ceil(yBottomR),
             yTop = (int)Math.floor(yTopR);

      for (int y=yBottom; y<=yTop; y++)
      {  // Compute horizontal line segment (xL, xR) 
         // for coordinate y:
         double xI, xJ, xK, xI1, xJ1, xK1, xL, xR;
         xI = xJ = xK = 1e30;
         xI1 = xJ1 = xK1 = -1e30;
         if((y-yB)*(y-yC)<=0&&yB!=yC)
           xI = xI1 = xC + (y - yC)/(yB - yC) * (xB - xC);
         if((y-yC)*(y-yA)<=0&&yC!=yA)
           xJ = xJ1 = xA + (y - yA)/(yC - yA) * (xC - xA);
         if((y-yA)*(y-yB)<=0&&yA!=yB)
           xK = xK1 = xB + (y - yB)/(yA - yB) * (xA - xB);
         // xL = xR = xI;
         xL = Math.min(xI, Math.min(xJ, xK));
         xR = Math.max(xI1, Math.max(xJ1, xK1));
         int iy = iY((float)y), iXL = iX((float)(xL+0.5)),
            iXR = iX((float)(xR-0.5));
         double zi = 1.01 * zDi + (y - yD) * dzdy +
                                 (xL - xD) * dzdx;
      /*
         for (int x=iXL; x<=iXR; x++)
         {  if (zi < buf[x][iy]) // < is nearer
            {  g.drawLine(x, iy, x, iy);
               buf[x][iy] = (float)zi;
            }
            zi += dzdx;
         }
      /*
     //  The above comment fragment is optimized below:
     //  ---
         boolean leftmostValid = false;
         int xLeftmost = 0;
         for (int ix=iXL; ix<=iXR; ix++)
         {  if (zi < buf[ix][iy]) // < means nearer
            {  if (!leftmostValid)
               {  xLeftmost = ix;
                  leftmostValid = true;
               }
               buf[ix][iy] = (float)zi;
            }
            else
            if (leftmostValid)
            {  g.drawLine(xLeftmost, iy, ix-1, iy);
               leftmostValid = false;
            } 
               zi += dzdx;
            }
            if (leftmostValid)
               g.drawLine(xLeftmost, iy, iXR, iy);
         // ---
         }
       }
     }
   }
}

Almost at the end of this program, the fragment between the two lines // - is a more efficient version than the for-loop in the
comment that precedes it. In that for-loop, each line LR is drawn pixel by pixel. In the more efficient version that follows, however,
the line LR is drawn by one or more line segments depending on how much the line LR is blocked by the triangles that are nearer.
In the best case, where no triangle is in front of the line, the line is drawn by a simple call to the drawLine method. Scanning
through each horizontal line from left to right, we use a Boolean variable leftmostValid to record if we have found a leftmost point
that is not blocked by any other triangle. If so, we keep scanning and updating the Z-buffer until we encounter the first point that is
further away than the corresponding Z-buffer value, such as I in Figure 7.7. We then draw the line up to the point just before that
blocked point (I). We meanwhile set leftmostValid to false, entering the line segment, such as IJ in Figure 7.7. Continuing
scanning through until the first visible point, such as J, is found, we record J as the new leftmost point and set leftmostValid to
true. This process continues to reach R, and the last line segment, such as JR, is drawn if it is not blocked.
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Figure 7.7: Illustration of more efficient version

Figure 7.8 demonstrates that the Z-buffer algorithm can also be used in cases in which the painter's algorithm fails. The latter is
illustrated by Figure 7.9. (We have also seen these three beams in Figures 6.25 and 7.3.)

 
Figure 7.8: Z-buffer algorithm applied to three beams

 
Figure 7.9: Painter's algorithm failing

In Appendix E (Section E.5) we will develop a program that enables us to display the surfaces of functions of two variables. Files
generated by this program are also accepted by the program ZBuf.java, as Figure 7.10 demonstrates.
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Figure 7.10: Function of two variables

Here we are using faces with two sides, as discussed in Section 6.5. The way these are used here requires a correction in the
computation of zi. Recall that we have introduced the factor 1.01 in the following statement:
double zi = 1.01 * zDi + (y - yD) * dzdy + (xL - xD) * dzdx;

Without this factor, some incorrect dark pixels would appear on the boundary, also referred to as the silhouette, of the (yellow)
object and the (light blue) background. To understand this, we note that in Figure 7.11 point P lies on the boundary of the triangles
T1 and T2.

 
Figure 7.11: Point P belonging to triangles of very different colors

The nearer triangle, T1, is visible and its color is bright yellow because it lies on the upper side of the surface. Triangle T2 lies on
the lower side and would appear almost black on the screen if it were not obscured by T1. Point P, belonging to both triangles, is
used twice to determine the color of the corresponding pixel on the basis of the zi value of P. In both cases, this value is the same
or almost the same, so that it is not clear which color will be used for this pixel. To solve this problem, we use the factor 1.01
instead of 1 in the above computation of zi. Because of this, the zi value for P when taken as a point of T1 will now be slightly less
than when P is regarded as a point of T2. As a result, the light yellow color will be used for the pixel in question.

EXERCISES

7.1 The problem of back-face culling cannot generally be solved by testing whether the ze-component
of the normal vector of a face in question is positive or negative. Recall that we are using the
equation

for the plane of each face, in which n = (a, b, c) is the normal vector of that face, pointing outward.
Using also the vector x = (x, y, z), we can write the above equation as

Figure 7.12 shows the geometrical interpretation of n, x and h. For a visible face, the inner
product h is negative because n and x point in opposite directions. By contrast, h is positive for a
back face.
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Figure 7.12: Geometrical interpretation of x, n and h, where h is negative

Although in most cases c, the third component of the vector n, is positive for a visible face and
negative for a back face, there are situations in which this is not true. Give an example of such a
situation, with a detailed explanation. How does back-face culling based on the signs of h and
(incorrectly) of c relate to that based on the orientation of point sequences?

7.2 Apply animation with double buffering to a cube, as in Exercise 5.4, but use colored faces.

7.3 Apply animation to two colored cubes (see Exercises 5.5 and 7.2), but use colored faces. Even if
they partly hide each other, this problem can be solved by back-face culling, provided the farther
cube is drawn before the nearer one. This is demonstrated in Figure 7.13; here the Graphics
methods fillPolygon and drawPolygon are applied to each visible face. By drawing the edges of
such faces in black, we make sure that we can clearly distinguish the colored faces if shades of
gray are used in black-and-white reproductions, such as Figure 7.13.

 
Figure 7.13: Two rotating cubes, generated by back-face culling

7.4 In the program file Obj3D.java, the direction of the light vector (sunX, sunY, sunZ) pointing to the
source of light was arbitrarily chosen. Even without moving the object (by rotating it, for example),
we can obtain an exciting effect by using animation to change this vector, so that the source of
light rotates. Extend the program Painter.java to realize this. An easy way of doing this is by using
spherical coordinates sunTheta and sunPhi and radius 1 for a light vector of unit length, similar to
the spherical coordinates θ , ϕ  and ρ , shown in Figure 5.1, and increasing, say, sunTheta by 0.02
radians every 50 ms.

7.5 Write a 3D data file (using a text editor) for the steps shown in Figure 7.14. Apply the programs
Painter.java and ZBuf.java to it. Can you write a program to generate such data files? In such a
program, the number of steps and the dimensions should preferably be variables.
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Figure 7.14: Steps

Answers

7.1 In Figure F.3, the two outer faces on the left and right are parallel, but the corresponding inner faces are
not, as the distances 18 and 19 indicate. The latter faces, which are visible here, become invisible if we
view the object from very far away, as Figure F.4 shows.

 
Figure F.3: Object nearby: two inner faces visible

 
Figure F.4: The same object far away: two inner faces invisible

Recall that, with eye coordinates, the x-axis points to the right, the y-axis upwards and the z-axis towards
us. Let us focus on the inner face that is visible in Figure F.3 on the right but invisible in Figure F.4.
Estimating the normal vector n = (a, b, c) and the value h, as specified in the exercise and discussed in
Section 5.5, for this face, we find:

a is almost equal to − 1, because n almost points toward the negative x-axis;
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b is almost zero, but positive because we view the object slightly from above;

c is almost zero, but negative because n points a little to the back.

These values, and in particular c, are independent of the viewing distance. By contrast, the inner product h
= n · x,where x is a vector from the viewpoint E to any point of the face in question, depends on the
viewing distance. You should verify this by drawing a sketch similar to Figure 7.12 but applied to this
example. As a result, you will find that h is negative in Figure F.3 but positive in Figure F.4. This example
demonstrates that, to determine if a face is a back face, we should use the sign of h, not that of c. The
correct practice of using h for this purpose is equivalent to back-face culling based on the orientation of
three points: if this orientation on the screen is the same as when the object is viewed from outside, the
face is visible. Using c instead of h would be equivalent to using the eye coordinates x and y instead of the
screen coordinates in determining the orientation of image points. This would work correctly for most
situations, but it may result in wrongly deciding that faces are invisible, especially if the object is viewed
from nearby, as Figure F.3 illustrates. Recall that we also briefly discussed this in Section 7.1.

7.2 We can use back-face culling to decide which faces of the cube are visible. Refer to the solutions to
Exercises 5.4 and 5.5 for the implementation of animation and rotation, respectively.

7.3 In the previous exercise we could have realized the effect of a rotation about a vertical axis by changing
the angle θ  and leaving the cube unchanged. This is no longer the case here because we now want to use
two rotations. Figure 7.13 was obtained by rotating each cube about one of its vertical edges, with different
rotation speeds, the latter simply meaning that we use different angles in each step. As in the solution to
Exercise 5.5, you need to supply only one method run, in which only one infinite loop occurs.

7.4 Change the class CvPaint (in the program file Painter.java) as follows:
a. At the beginning of the class CvPaint, before {, add the line

implements Runnable

b. After {, add the following lines:
Image image;
Graphics gImage;
double sunTheta = 0;
Thread thr = new Thread(this);

c. Insert the method run, similar to the one given above for Exercise 5.4, but containing
statements to update the spherical coordinate sunTheta (see Section 5.2) and the
variables obj.sunX and obj.sunY;youcanuse a constant value for sunPhi, which makes
obj.sunZ also a constant. By using spherical coordinates, with radius ρ  = 1, the light
vector will have length 1.

d. Insert the program lines
int w, h;
CvPainter(){thr.start();}
public void update(Graphics g){paint(g);}

e. Modify the paint method, using the variables image and gImage as well as g, in about the
same way as was done in program Anim.java, listed above as help for Exercise 5.4.

7.5 For the format of the desired file see the file for Exercise 6.1. As for the program to generate 3D data files,
refer to Section 6.6 and Appendix E, if necessary.
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Chapter 8: Fractals

8.1 INTRODUCTION
There are many aspects in nature that are repeating and many cases of patterns similar at different scales. For example, when
observing a pine tree, one may notice that the shape of a branch is very similar to that of the entire tree, and the shapes of sub-
branches and the main branch are also similar. Such kind of self-similar structure that occurs at different levels of magnification
can be modeled by a branch of mathematics called Fractal geometry. The term fractal was coined by Benît Mandelbrot in 1975,
and means fractus or broken in Latin. Fractal geometry studies the properties and behavior of fractals. It describes many
situations which cannot be explained easily by classical geometry. Fractals can be used to model plants, weather, fluid flow,
geologic activity, planetary orbits, human body rhythms, socioeconomic patterns, and music, just to name a few. They have been
applied in science, technology, and computer generated art. For example, engineers use fractals to control fluid dynamics in order
to reduce process size and energy use.

A fractal, typically expressed as curves, can be generated by a computer recursively or iteratively with a repeating pattern.
Compared with human beings, computers are much better in processing long and repetitive information without complaint.
Fractals are therefore particularly suitable for computer processing. This chapter introduces the basic concepts and program
implementation of fractals. It starts with a simple type of fractal curves, then focuses on a grammar-based generic approach for
generating different types of fractal images, and finally discusses the well-known Mandelbrot set.
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8.2 KOCH CURVES
A simple example of self-similar curves is the Koch curve, discovered by the Swedish mathematician Helge von Koch in 1904. It
serves a useful introduction to the concepts of fractal curves.

In Figure 8.1, K0, K1, and K2 denote successive generations of the Koch curve. A straight line segment is called the zero-th
generation. We can construct Koch curve as follows:

Begin with a straight line and call it K0;

Divide each segment of Kn into three equal parts; and

Replace the middle part by the two sides of an equilateral triangle of the same length as the part being removed.

 
Figure 8.1: Three generations of the Koch curve

The last step ensures that every straight line segment of Kn becomes the shape of K1 in a smaller scale in Kn+ 1.

Koch curves have the following interesting characteristics:

Each segment is increased in length by a factor of 4/3. Therefore, Kn+ 1 is 4/3 as long as Kn, and Ki has the total
length of (4/3)i.

When n is getting large, the curve still appears to have the same shape and roughness.

When n becomes infinite, the curve has an infinite length, while occupying a finite region in the plane.

The Koch curve can be easily implemented using the turtle graphics method. Originated in the Logo programming language, turtle
graphics is a means of computer drawing using the concept of a turtle crawling over the drawing space with a pen attached to its
underside. The drawing is always relative to the current position and direction of the turtle. Considering each straight line of Kn−1

to be drawn as a K1 in Kn in the next generation, we can write a recursive program to draw Koch curves as in the following
pseudocode:

To draw Kn we proceed as follows:
If (n == 0) Draw a straight line;
Else
{  Draw Kn-1;
   Turn left by 60°;
   Draw Kn-1;
   Turn right by 120°;
   Draw Kn-1;
   Turn left by 60°;
   Draw Kn-1;
}

To implement the above pseudocode in a Java program, we need to keep track of the turtle's current position and direction. The
following program draws the Koch curve at the zero-th generation K0. With each mouse click, it draws a higher generation
replacing the previous generation. The program defines the origin of the coordinate system at the center of the screen. The turtle
starts pointing to the right, and locating at half of the initial length to the left of the origin, that is, (− 200, 0) for the initial length of
400. The turtle moves from the current position at (x, y) to the next position at (x1, y1) while changing its direction accordingly.
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// Koch.java: Koch curves.
import java.awt.*;
import java.awt.event.*;
public class Koch extends Frame
{  public static void main(String[] args){new Koch();}
   Koch()
   {  super("Koch. Click the mouse button to increase the level");
      addWindowListener(new WindowAdapter()
         {public void windowClosing(
                 WindowEvent e){System.exit(0);}});
      setSize (600, 500);
      add("Center", new CvKoch()); 
      show();
    }
}

class CvKoch extends Canvas
{  public float x, y;
   double dir;
   int midX, midY, level = 1;

   int iX(float x){return Math.round(midX+x);}
   int iY(float y){return Math.round(midY-y);}

   CvKoch()
   {  addMouseListener(new MouseAdapter()
      {  public void mousePressed(MouseEvent evt)
         {  level++; // each mouse click increases the level
            repaint();
         }
      });
   }
   public void paint(Graphics g)
   {  Dimension d = getSize();
      int maxX = d.width - 1, maxY = d.height - 1,
          length=3* maxX / 4;
      midX = maxX/2; midY = maxY/2;
      x = (float)(-length/2);          // Start point
      y = 0;
      dir = 0;
      drawKoch(g, length, level);
   }

   public void drawKoch(Graphics g, double len, int n)
   {  if (n==0)
      {  double dirRad, xInc, yInc;
         dirRad = dir * Math.PI/180;
         xInc = len * Math.cos(dirRad);    // x increment
         yInc = len * Math.sin(dirRad);    // y increment
         float x1=x+ (float)xInc,
               y1=y+ (float)yInc;
         g.drawLine(iX(x), iY(y), iX(x1), iY(y1));
         x = x1;
         y = y1; 
         }
         else
         {  drawKoch(g, len/=3, --n);
            dir += 60;
            drawKoch(g, len, n);
            dir-=120;
            drawKoch(g, len, n);
            dir += 60;
            drawKoch(g, len, n);
    }
  }
}

Joining three Koch curves together, we obtain the interesting Koch snowflake as shown in Figure 8.2. The length of a Koch
snowflake is 3*(4/3)i for the ith generation since the length of Ki is (4/3)i. It increases infinitely as does i. The area of the Koch
snowflake grows slowly and is indeed bounded. In fact, as i becomes very large, its shape and roughness appear to remain the
same. Koch snowflakes can be easily drawn by connecting three Koch curves using a modified version of the program above (see
Exercise 8.2).

 
Figure 8.2: Koch snowflakes of generations 3, 5 and 7
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8.3 STRING GRAMMARS
As discussed above, Koch curves are drawn through a set of commands specifically defined for Koch curves. Many interesting
curves could be drawn in a similar fashion but they would require a complete program for each different kind of curve. The
approach in the above section is apparently not general for generating different kinds of curves.

Consider again the Koch curve. The pattern of the first generation repeats itself in smaller scales at higher generations.

Such a common pattern distinguishes Koch curves from other curves. Therefore, an approach that can encode the common
pattern in a simple string of characters would be general enough to specify a variety of curves. Formally, the specification of a
common pattern is called a grammar, and the grammar-based systems for drawing fractal curves are called L-Systems (invented
by the Hungarian biologist Aristid Lindenmayer in 1968).

The string of characters defining a common pattern instructs the turtle to draw the pattern. Each character in the string serves as a
command to perform an atomic operation. Given the distance D and turning angle α  through which the turtle is supposed to move,
let us now introduce the three most common commands:

F - move forward the distance D while drawing in the current direction.

+ - turn right through the angle α .

−  - turn left through the angle α .

For example, given a string F−F++F−F and angle 60°, the turtle would draw the first generation of Koch curve K1 as shown in
Figure 8.1. It would however be tedious and error-prone to manually provide long strings for different curves. Fortunately,
computers are best at performing repeated, long and tedious tasks without making mistakes. Using the same Koch curve
example, to draw more generations, we define a string production rule

The rule means that every occurrence of F (that is, the left-hand side of ‘→ ’) should be replaced by F−F++F−F (that is, the right-
hand side). Starting from an initial string F which is called the axiom, recursively applying this production rule would produce
strings of increasing lengths. Interpreting any of the strings, the turtle would draw a corresponding generation of the Koch curve.
Let us make the axiom the zero-th generation K0 = F and the first generation K1 = F −  F ++ F−F, then K2 can be obtained by
substituting every F character in K1 by F−F++F−F, so that

By interpreting this string, the turtle would draw a curve exactly the same as K2 in Figure 8.1. This process can continue to
generate the Koch curve at any higher generation.

In summary, to draw a fractal curve, such as the Koch curve, at any generation, we need to know at least the following three
parameters:

1. The axiom from which the turtle starts.

2. The production rule for producing strings from the F character. We will call the right-hand side of this rule the F-
string, which is sufficient to represent the rule.

3. The angle at which the turtle should turn.

Denoting these parameters in a template form (axiom, F-string, angle), we call this the grammar of the curve, and we can specify
the Koch curve as (F, F−F++F−F, 60).

To define more complex and interesting curves, we introduce three more production rules, obtaining grammars of six elements
instead of three as above. We introduce an X-string, to be used to replace every occurrence of X when producing the next
generation string. Similarly, there will be a Y-string, used to replace every occurrence of Y. Their replacement process is
performed in the same fashion as for the F-string. In other words, all the three string types are treated equally during the string-
production process. The X and Y characters are, however, different from the F character as they are simply ignored by the turtle
when drawing the curve. The third new production rule, named f-string, will be discussed shortly. In the meantime, we reserve its
position, but substitute nil for it to indicate that we do not use it. It follows that there are six parameters in the extended grammar
template

The following grammars produce some more interesting curves:

Figures 8.3, 8.4 and 8.5 illustrate some selected generations of the Dragon, Hilbert and Sierpinski curves that are generated
based on their string grammars as defined above.
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Figure 8.3: Dragon curves: 1st, 2nd, 3rd, 4th, 5th and 11th generations

 
Figure 8.4: Dragon curve of 8th generation, rounded corners

 
Figure 8.5: Hilbert curve (5th generation) and Sierpinski arrowhead (7th generation)

It is remarkable that no Dragon curve intersects itself. There seems to be one such intersection in the 4th generation Dragon
curve of Figure 8.3 and many more in those of higher generations. However, that is not really the case, as demonstrated by using
rounded instead of sharp corners. Figure 8.4 illustrates this for an 8th generation Dragon curve.

It is interesting to note that all the curves we have seen so far share one common characteristic, that is, each curve reflects the
exact trace of the turtle's movement and is drawn essentially as one long and curved line. This is because the turtle always moves
forward and draws by executing the F character command.

8.3.1 Moving without drawing and f-strings

Sometimes, it is desirable to keep some of the curve components at proper distances from each other. This implies that such a
curve is not connected. We therefore need to define a forward moving action for the turtle without drawing:

f - move forward the distance D without drawing a line.

The f-string, for which we have already reserved a position (just after the F-string) indicates how each lower-case f is to be
expanded. By using an f-string other than nil, we are able to generate an image with a combination of islands and lakes as shown
in Figure 8.6, based on the following grammar:
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Figure 8.6: Second generation islands

Note that here the parameters X-string and Y-string are unused and therefore written as nil.

To summarize, we have introduced the following six parameters into our string grammar:
1. The axiom from which the turtle starts;

2. The F-string for producing strings from F that instructs the turtle to move forward while drawing;

3. The f-string for producing strings from f, that instructs the turtle to move forward without drawing;

4. The X-string for producing strings from X, that does not affect the turtle;

5. The Y-string for producing strings from Y, that does not affect the turtle; and

6. The angle at which the turtle should turn.

In principle, more parameters may be introduced if the above six parameters cannot express new types of curves. On the other
hand, a grammar does not have to use all the introduced parameters since, as we have seen, a nil can be used to represent an
unused parameter.

8.3.2 Branching

With all the curves we have seen so far, one may observe the following phenomenon. The turtle is always moving forward along a
curved line. It sometimes draws (seeing an F character) and sometimes does not draw (seeing an f character). The turtle never
turns back to where it has visited before, since it cannot remember its previous positions. This implies that the turtle is unable to
branch off from any of the previous curve positions and draw branching lines.

To make the turtle remember places that it has visited, we need to introduce the concept of the turtle's state. Let us call the turtle's
current position together with its direction the state of the turtle. In other words, a state is defined by the values of a location in the
drawing space and the angle at the location. To enhance the drawing power of string-production rules, we allow the turtle to keep
its states and return to any of them later by introducing two more character commands:

[- store the current state of the turtle

] - restore the turtle's previously stored state

These two characters, however, do not form strings of their own and thus do not require new production rules. They merely
participate in the F-, f-, X-, and Y-strings to instruct how the turtle should behave.

The most appropriate data structure to implement the store and restore operations is a stack. Upon meeting a [ character, the
turtle pushes its current state onto the stack. When encountering a ] character, the turtle pops its previous state from the stack
and starts from the previous position and direction to continues its journey. Having empowered the turtle with the capability of
returning and restarting from its previous states, we are able to draw curves with branches, such as trees defined in the following
string grammars:

These grammars were used to obtain the trees shown in Figure 8.7.
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Figure 8.7: Examples of fractal trees: Tree1 (4th generation), Tree2 (5th generation) and Tree3 (4th
generation)

If the line thickness of each branch is set in proportion to its distance from the root, and also a small fraction of randomness is
applied to the turning angle, more realistic looking trees would be produced.

Most of the figures in this section were produced by the program below, with input files to be discussed after this program:
// FractalGrammars.java
import java.awt.*;
import java.awt.event.*;

public class FractalGrammars extends Frame
{  public static void main(String[] args)
   {  if (args.length == 0)
         System.out.println("Use filename as program argument.");
      else
         new FractalGrammars(args[0]);
   }
   FractalGrammars(String fileName)
   {  super("Click left or right mouse button to change the level");
      addWindowListener(new WindowAdapter()
         {public void windowClosing(
                 WindowEvent e){System.exit(0);}});
      setSize (800, 600);
      add("Center", new CvFractalGrammars(fileName));
      show();
   }
}

class CvFractalGrammars extends Canvas
{  String fileName, axiom, strF, strf, strX, strY;
   int maxX, maxY, level = 1;
   double xLast, yLast, dir, rotation, dirStart, fxStart, fyStart,
      lengthFract, reductFact;

   void error(String str)
   {  System.out.println(str);
      System.exit(1);
   }

   CvFractalGrammars(String fileName)
   {  Input inp = new Input(fileName);
      if (inp.fails())
         error("Cannot open input file."); 
      axiom = inp.readString(); inp.skipRest();
      strF = inp.readString(); inp.skipRest();
      strf = inp.readString(); inp.skipRest();
      strX = inp.readString(); inp.skipRest();
      strY = inp.readString(); inp.skipRest();
      rotation = inp.readFloat(); inp.skipRest();
      dirStart = inp.readFloat(); inp.skipRest();
      fxStart = inp.readFloat(); inp.skipRest();
      fyStart = inp.readFloat(); inp.skipRest();
      lengthFract = inp.readFloat(); inp.skipRest();
      reductFact = inp.readFloat();
      if (inp.fails())
         error("Input file incorrect.");

      addMouseListener(new MouseAdapter()
      {  public void mousePressed(MouseEvent evt)
         {  if ((evt.getModifiers() & InputEvent.BUTTON3_MASK) != 0)
            {  level--;       // Right mouse button decreases level
               if (level < 1)
                  level = 1;
            }
            else
               level++;     // Left mouse button increases level
            repaint();
         }
      });
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}

Graphics g;
int iX(double x){return (int)Math.round(x);}
int iY(double y){return (int)Math.round(maxY-y);}

void drawTo(Graphics g, double x, double y)
{  g.drawLine(iX(xLast), iY(yLast), iX(x) ,iY(y));
   xLast = x;
   yLast = y;
}

void moveTo(Graphics g, double x, double y)
{  xLast = x;
   yLast = y;
} 
public void paint(Graphics g)
{  Dimension d = getSize();
   maxX = d.width - 1;
   maxY = d.height - 1;
   xLast = fxStart * maxX;
   yLast = fyStart * maxY;
   dir = dirStart; // Initial direction in degrees
   turtleGraphics(g, axiom, level, lengthFract * maxY);
}

public void turtleGraphics(Graphics g, String instruction,
   int depth, double len)
{  double xMark=0, yMark=0, dirMark=0;
   for (int i=0;i<instruction.length();i++)
   {  char ch = instruction.charAt(i);
      switch(ch)
      {
      case 'F': // Step forward and draw
         // Start: (xLast, yLast), direction: dir, steplength: len
         if (depth == 0)
         {  double rad = Math.PI/180 * dir, // Degrees -> radians
               dx = len * Math.cos(rad), dy = len * Math.sin(rad);
            drawTo(g, xLast + dx, yLast + dy);
         }
         else
            turtleGraphics(g, strF, depth - 1, reductFact * len);
         break;
      case 'f': // Step forward without drawing
         // Start: (xLast, yLast), direction: dir, steplength: len
         if (depth == 0)
         {  double rad = Math.PI/180 * dir, // Degrees -> radians
               dx = len * Math.cos(rad), dy = len * Math.sin(rad);
            moveTo(g, xLast + dx, yLast + dy);
         }
         else
            turtleGraphics(g, strf, depth - 1, reductFact * len);
         break;
      case 'X':
         if (depth > 0)
            turtleGraphics(g, strX, depth - 1, reductFact * len);
         break;
      case 'Y':
         if (depth > 0) 
            turtleGraphics(g, strY, depth - 1, reductFact * len);
         break;
      case '+': // Turn right
         dir -= rotation; break;
      case '-': // Turn left
         dir += rotation; break;
      case '[': // Save position and direction
         xMark = xLast; yMark = yLast; dirMark = dir; break;
      case ']': // Back to saved position and direction
         xLast = xMark; yLast = yMark; dir = dirMark; break;
      }
    }
  }
}

The most essential input data consist of the grammar, for example,

for the Dragon curve. In addition, the following five values would help in obtaining desirable results:

The direction in which the turtle starts, specified as the angle, in degrees, relative to the positive x-axis.

The distance between the left window boundary and the start point, expressed as a fraction of the window width.

The distance between the lower window boundary and the start point, expressed as a fraction of the window height.
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The length of a single line segment in the first generation, expressed as a fraction of the window height.

A factor to reduce the length in each next generation, to prevent the image from growing outside the window
boundaries.

Setting the last two values can be regarded as tuning, so they were found experimentally. We supply all these data, that is, five
strings and six real numbers, in a file, the name of which is supplied as a program argument. For example, to produce the Dragon
curve, we can enter this command to start the program:
java FractalGrammars Dragon.txt

where the file Dragon.txt is listed below, showing the grammar (X, F, X+YF +, −FX−Y, 90) followed by the five values just
discussed:
"X"      // Axiom
"F"      // strF
""       // strf 
"X+YF+"  // strX
"-FX-Y"  // strY
90       // Angle of rotation
0        // Initial direction of turtle (east)
0.5      // Start at x = 0.5 * width
0.5      // Start at y = 0.5 * height
0.6      // Initial line length is 0.6 * height
0.6      // Reduction factor for next generation

As you can see, strings are supplied between a pair of quotation marks, and comment is allowed at the end of each line. Instead
of nil, we write the empty string "". Although the initial direction of the turtle is specified as east, the first line is drawn in the
direction south. This is because of the axiom "X",which causes initially strX = "X+YF+" to be used, where X and Y are ignored. So
actually "+F+" is executed by the turtle. As we know, the initial + causes the turtle to turn right before the first line is drawn due to
F, so this line is drawn downward instead of from left to right.

The other curves were produced in a similar way. Both the grammars and the five additional parameter values, as discussed
above, for these curves are listed in the following table:

Dragon (X, F, nil, X+YF+, −FX−Y, 90) 0 0.5 0.5 0.6 0.6

Hilbert (X, F, nil,−YF+XFX+FY− ,+XF−YFY−FX+, 90) 0 0.25 0.25 0.8 0.47

Sier-
pinski

(YF, F, nil, YF+XF+Y, XF−YF−X, 60). 0 0.33 0.5 0.38 0.51

Islands (F+F+F+F, F+f −FF+F+FF+Ff +FF −  f + FF−F−FF−Ff −FFF, ffffff,
nil, nil, 90)

0 0.25 0.65 0.2 0.2

Tree1 (F, F[+F]F[-F]F, nil, nil, nil, 25.7) 90 0.5 0.05 0.7 0.34

Tree2 (X, FF, nil, F[+X]F[−X]+X, nil, 20.0) 90 0.5 0.05 0.45 0.5

Tree3 (F, FF− [−F+F+F]+[+F−F−F], nil, nil, nil, 22.5) 90 0.5 0.05 0.25 0.5

 Open table as spreadsheet

When discussing the Tree examples with branches, we suggested that a stack would be used to push and pop states, while there
seemed to be no stack structure in the program. However, there is a local variable xMark in the recursive method turtleGraphics,
and for each recursive call a version of this variable is stored on a system stack. In other words, the use of a stack is implicit in this
program.
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8.4 MANDELBROT AND JULIA SETS
The Mandelbrot set, named after Polish-born French mathematician Benît Mandelbrot, is a fractal. Recall that a fractal curve
reveals small-scale details similar to the large-scale characteristics. Although the Mandelbrot set is self- similar at different scales,
the small-scale details are not identical to the whole. Also, the Mandelbrot set is infinitely complex. Yet the process of generating it
is based on an extremely simple equation involving complex numbers. The left part of Figure 8.8 shows a view of the Mandelbrot
set. The outline is a fractal curve that can be zoomed in for ever on any part for a close-up view, as the right part of Figure 8.8
illustrates. Even parts of the image that appear quite smooth show a jagged outline consisting of many tiny copies of the
Mandelbrot set. For example, as displayed in Figure 8.8, there is a large black region like a cardioid near the center with a circle
joining its left-hand side. The region where the cardioid and the circle are joined together appears smooth. When the region is
magnified, however, the detailed structure becomes apparent and shows many fascinating details that were not visible in the
original picture. In theory, the zooming can be repeated for ever, since the border is ‘infinitely complex’.

 
Figure 8.8: Mandelbrot set and magnified detail

The Mandelbrot set is a set M of complex numbers defined in the following way:

where C is the set of all complex numbers and, for some constant c, the sequence z0, z1, …  is defined as follows:

That is, the Mandelbrot set is the set of all complex numbers which fulfill the condition described above. In other words, if the
sequence z0, z1, z2, …  does not approach infinity, then c belongs to the set. Given a value c, the system generates a sequence of
values called the orbit of the start value 0:

As soon as an element of the sequence {zn} is at a distance greater than 2 from the origin, it is certain that the sequence tends to
infinity. A proof of this goes beyond the scope of this book. If the sequence does not approach infinity and therefore remains at a
distance of at most 2 from the origin for ever, then the point c is in the Mandelbrot set. If any zn is farther than 2 from the origin,
then the point c is not in the set.

Now let us consider how to generate a Mandelbrot image. Since the Mandelbrot set is a set of complex numbers, first we have to
find these numbers that are part of the set. To do this we need a test that will determine if a given number is inside the set or
outside. The test is applied to complex numbers zn computed as zn+1 = z2n+c. The constant c does not change during the testing
process. As the number being tested, c is the point on the complex plane that will be plotted when the testing is complete. This
plotting will be done in a color that depends on the test result. For some value nMax, say 30, we start computing z1, z2, …  until
either we have computed zn for n = nMax, or we have found a point zn(n ≤  nMax) whose distance from the origin O is greater than
2. In the former case, having computed nMax elements of the sequence, none of which is farther than a distance 2 away from O,
we give up, consider the point c belonging to the Mandelbrot set, and plot it in black. In the latter case, the point zn going beyond
the distance 2, we plot the point c in a color that depends on the value of n.

Let us now briefly discuss complex arithmetic, as far as we need it here, for those who are unfamiliar with this subject. Complex
numbers are two-dimensional by nature. We may regard the complex number
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as the real number pair (x, y). It is customary to refer to x as the real part and to y as the imaginary part of z. We display z in the
usual way, with x drawn along the horizontal axis and y along the vertical axis. Addition of two complex numbers is the same as
that for vectors:

By contrast, multiplication of complex numbers is rather complicated:

It follows that for

we have

Although we do not need this for our purpose, we may as well note that by setting x = 0 and y = 1, giving 0 + 1 × i = i, we find

which explains why the symbol i is often referred to as the square root of − 1:

The distance of the complex number z = x + yi from the origin O is called the absolute value or modulus of z and is denoted as |z|.
It follows that

Remember, |z|2=x2 + y2, while z2 = (x2 −  y2) + 2xyi so, in general, |z|2 is unequal to z2. This very brief introduction to complex
numbers cannot replace a thorough treatment as found in mathematics textbooks, but it will be sufficient for our Mandelbrot
subject.

In the algorithm for Mandelbrot fractals, when computing each successive value of z, we want to know if its distance from the
origin exceeds 2. To calculate this distance, usually denoted as |z|, we add the square of its distance from the x-axis (the
horizontal real axis) to the square of its distance from the y-axis (the vertical imaginary axis) and then take the square root of the
result. The computation of the square root operation can be saved by just checking whether the sum of these squares is greater
than 4. In other words, for

we perform the test

which is expressed in terms of real numbers as

Now to compute each new value of z using zn+1 = z2n+c, let us write Re(c) and Im(c) for the real and imaginary parts of c. It then
follows from

that the real and imaginary parts of each element zn+1 are found as follows:
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As we increment n, the value of |zn|2 will either stay equal to or below 4 for ever, or eventually surpass 4. Once |zn|2 surpasses 4,
it will increase for ever. In 2 stays small, the number c being tested is part of the Mandelbrot set. In the latter case, when |zn|
number c is not part of the Mandelbrot set.

8.4.1 Implementation in Java

To display the whole Mandelbrot set image properly, we need some mapping

to convert the device coordinates (xPix, yPix) to the real and imaginary parts x and y of the complex number c = x + yi. In the
program, the variables xPix and yPix are of type int, while x and y are of type double. We will use the following ranges for the
device coordinates:

where we obtain the width w and height h of the drawing rectangle in the usual way:
w = getSize().width;
h = getSize().height;

For x and y we have

The user will be able to change these boundary variables minRe, maxRe, minIm and maxIm by dragging the left mouse button.
Their default values are minRe0 = − 2, maxRe0 = +1, minIm0 = − 1, maxIm0 = +1, which will at any time be restored when the
user clicks the right mouse button. Using the variable factor, computed in Java as
factor = Math.max((maxRe - minRe)/w, (maxIm - minIm)/h);

we can perform the above mapping from (xPix, yPix) to (x, y) by computing

For every device coordinate pair (xPix, yPix) of the window, the associated point c = x + iy in the complex plane is computed in this
way. Then, in up to nMax iterations, we determine whether this point belongs to the Mandelbrot set. If it does, we display the
original pixel (xPix, yPix) in black; otherwise, we plot this pixel in a shade of red that depends on n, the number of iterations
required to decide that the point is outside the Mandelbrot set. The expression 100 + 155 * n/nMax ensures that this color value will
not exceed its maximum value 255. If nMax is set larger than that in the program, program execution will take more time but the
quality of the image would improve. The implementation of this can by found in the paint method at the bottom of the following
program, after which we will discuss the implementation of cropping and zooming.
// MandelbrotZoom.java: Mandelbrot set, cropping and zooming in.
import java.awt.*;
import java.awt.event.*;

public class MandelbrotZoom extends Frame
{  public static void main(String[] args){new MandelbrotZoom();}
   MandelbrotZoom()
   {  super("Drag left mouse button to crop and zoom. " +
            "Click right mouse button to restore.");
      addWindowListener(new WindowAdapter()
         {public void windowClosing(
                 WindowEvent e){System.exit(0);}});
      setSize (800, 600);
      add("Center", new CvMandelbrotZoom());
      show();
   }
}
class CvMandelbrotZoom extends Canvas
{  final double minRe0 = -2.0, maxRe0 = 1.0,
                minIm0 = -1.0, maxIm0 = 1.0;
   double minRe = minRe0, maxRe = maxRe0,
                  minIm = minIm0, maxIm = maxIm0, factor, r;
   int n, xs, ys, xe, ye, w, h;

   void drawWhiteRectangle(Graphics g)
   { g.drawRect(Math.min(xs, xe), Math.min(ys, ye), 
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   { g.drawRect(Math.min(xs, xe), Math.min(ys, ye), 
                                  Math.abs(xe - xs), Math.abs(ye - ys));
}

boolean isLeftMouseButton(MouseEvent e)
{  return (e.getModifiers() & InputEvent.BUTTON3_MASK) == 0;
}

CvMandelbrotZoom()
{  addMouseListener(new MouseAdapter()
  {  public void mousePressed(MouseEvent e)
      {  if (isLeftMouseButton(e))
         { xs = xe = e.getX(); // Left button
           ys = ye = e.getY();
         }
         else
         { minRe = minRe0;     // Right button
           maxRe = maxRe0;
           minIm = minIm0;
           maxIm = maxIm0;
           repaint();
         }
       }

       public void mouseReleased(MouseEvent e)
       {  if (isLeftMouseButton(e))
          {  xe = e.getX(); // Left mouse button released
             ye = e.getY(); // Test if points are really distinct:
             if (xe != xs && ye != ys)
             { int xS = Math.min(xs, xe), xE = Math.max(xs, xe),
                   yS = Math.min(ys, ye), yE = Math.max(ys, ye),
                   w1 = xE - xS, h1 = yE - yS, a = w1 * h1,
                   h2 = (int)Math.sqrt(a/r), w2 = (int)(r * h2),
                   dx = (w2 - w1)/2, dy = (h2 - h1)/2;
               xS -= dx; xE += dx;
               yS -= dy; yE += dy; // aspect ration corrected
               maxRe = minRe + factor * xE;
               maxIm = minIm + factor * yE;
               minRe += factor * xS;
               minIm += factor * yS;
               repaint();
           }
        }
    } 
        });

        addMouseMotionListener(new MouseMotionAdapter()
        {  public void mouseDragged(MouseEvent e)
           {  if (isLeftMouseButton(e))
              {  Graphics g = getGraphics();
                 g.setXORMode(Color.black);
                 g.setColor(Color.white);
                 if (xe != xs || ye != ys)
                    drawWhiteRectangle(g); // Remove old rectangle:
                 xe = e.getX();
                 ye = e.getY();
                 drawWhiteRectangle(g);    // Draw new rectangle:
              }
            }
        });
      }

      public void paint(Graphics g)
      {  w = getSize().width;
         h = getSize().height;
         r = w/h; // Aspect ratio, used in mouseReleased
         factor = Math.max((maxRe - minRe)/w, (maxIm - minIm)/h);
         for(int yPix=0; yPix<h; ++yPix)
         {  double cIm = minIm + yPix * factor;
            for(int xPix=0; xPix<w; ++xPix)
            {  double cRe = minRe + xPix * factor,x=cRe,y=cIm;
               int nMax = 100, n;
               for (n=0; n<nMax; ++n)
               {  double x2 = x * x, y2 = y * y;
                  if (x2 + y2 > 4)
                     break;     //  Outside
                  y = 2 * x * y + cIm;
                  x = x2 - y2 + cRe;
               }
               g.setColor(n == nMax ? Color.black            // Inside
                   : new Color(100 + 155 * n / nMax, 0, 0)); // Outside
               g.drawLine(xPix, yPix, xPix, yPix);
            }
        }
    }
}

As indicated in the title bar (implemented by a call to super at the beginning of the MandelbrotZoom constructor), the user can
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As indicated in the title bar (implemented by a call to super at the beginning of the MandelbrotZoom constructor), the user can
zoom in by using the left mouse button. By dragging the mouse with the left button pressed down, a rectangle appears, as shown
in Figure 8.9, with one of its corners at the point first clicked and the opposite one denoting the current mouse position. This
process is sometimes referred to as rubber banding.

 
Figure 8.9: Cropping and zooming in

When the user releases the mouse button, the picture is cropped so that everything outside the rectangle is removed and the
contents inside are enlarged and displayed in the full window. This cropping is therefore combined with zooming in, as Figure 8.10
illustrates. The user can continue zooming in by cropping in the same way for ever. It would be awkward if there were no way of
either zooming out or returning to the original image. In program MandelbrotZoom.java the latter is possible by clicking the right
mouse button.

 
Figure 8.10: Result of cropping and zooming in

To implement this cropping rectangle, we use two opposite corner points of it. The start point (xs, ys) is where the user clicks the
mouse to start dragging, while the opposite corner is the endpoint (xe, ye). Three Java methods are involved:

mousePressed: to define both the start point (xs, ys) and initial position of the endpoint (xe, ye);

mouseDragged: to update the endpoint (xe, ye), removing the old rectangle and drawing the new one;

mouseReleased: to compute the logical boundary values minRe, maxRe, minIm and maxIm on the basis of (xs,
ys)and(xe, ye).

In mouseDragged, drawing and removing the cropping rectangle is done using the XOR mode which was briefly discussed at the
end of Section 4.3. Here we use two calls
g.setXORMode(Color.black);
g.setColor(Color.white);

after which we draw both the old and the new rectangles. In mouseReleased, some actions applied to the cropping rectangle
require explanation. As we want the zooming to be isotropic, we have to pay attention to the cropping rectangle having an aspect
ratio
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different from the aspect ratio

of the (large) drawing rectangle. For example, the cropping rectangle may be in ‘portrait’ format (with w1 < h1), while the drawing
rectangle has the ‘landscape’ characteristic (with w > h). The simplest way to deal with this case would be to cut off a portion of
the cropping rectangle at the top or the bottom. However, that would lead to a result that may be unexpected and undesirable for
the user. We will therefore replace the cropping rectangle with one that has the same center and the same area a = w1h1, but an
aspect ratio of r (mentioned above) instead of r1. The dimensions of this new rectangle will be w2 × h2 instead of w1 × h1. To find
w2 and h2 we solve

giving

Then we add the correction term Δ x = 1/2(w2 −  w1)to the x-coordinate xE of the right cropping-rectangle edge and subtract it from
the x-coordinate xS of the corresponding left edge. After performing similar operations on yS and yE, the resulting new rectangle
with top-left corner point (xS, yS) and bottom-right corner point (xE, yE) is about as large as the user-defined rectangle but in
shape similar to the large drawing rectangle. We then have to compute the corresponding coordinates in the complex plane, using
the mapping discussed earlier. Since the new logical right boundary values maxRe and maxIm should correspond to xE and yE,
we compute
maxRe = minRe + factor * xE;
maxIm = minIm + factor * yE;

Similarly, to obtain the new left boundary values, we have to add factor × xS and factor × yS to the old values minRe and minIm,
respectively, giving the slightly more cryptic statements
minRe += factor * xS;
minIm += factor * yS;

8.4.2 Julia sets

Associated with every point in the complex plane is a set somewhat similar to the Mandelbrot set called a Julia set, named after
the French mathematician Gaston Julia. To produce an image of a Julia set, we use the same iteration zn+1 =z2n + c, this time
with a constant value of c but with a starting value z0 derived from the coordinates (xPix, yPix) of the pixel displayed on the screen.
We obtain interesting Julia sets if we choose points near the boundaries of the Mandelbrot set as starting values z0. For example,
we obtained Figure 8.11 by taking c = − 0.76 + 0.084i, which in the Mandelbrot set (Figure 8.8) is the point near the top of the
circle on the left.

 
Figure 8.11: Julia set, obtained by using c = − 0.76 + 0.084i

Since the Mandelbrot set can be used to select c for the Julia set, it is said to form an index into the Julia set. Such an interesting
relationship is also evidenced by the following fact. A Julia set is either connected or disconnected. For values of z0 chosen from
within the Mandelbrot set, we obtain connected Julia sets. That is, all the black regions are connected. Conversely, those values
of z0 outside the Mandelbrot set give disconnected Julia sets. The disconnected sets are often called dust, consisting of individual
points no matter what resolution they are viewed at. If, in the program MandelbrotZoom.java,we replace the paint method with the
one below (preferably also replacing the name Mandelbrot with Julia throughout the program), and specify the dimensions w =
900 and h = 500 in the call to setSize, we obtain a program which initially produces Figure 8.11. Again, we can display all kinds of
fascinating details by cropping and zooming. Note, in this program, c is a constant and the starting value z of the sequence is
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fascinating details by cropping and zooming. Note, in this program, c is a constant and the starting value z of the sequence is
derived from the device coordinates (xPix, yPix).

public void paint(Graphics g)
{  Dimension d = getSize();
   w = getSize().width;
   h = getSize().height;
   r = w/h;
   double cRe = -0.76, cIm = 0.084;
   factor = Math.max((maxRe - minRe)/w, (maxIm - minIm)/h);
   for(int yPix=0; yPix<h; ++yPix)
   {  for(int xPix=0; xPix<w; ++xPix)
      {  double x = minRe + xPix * factor,
                y = minIm + yPix * factor;
         int nMax = 100, n;
         for (n=0; n<nMax; ++n)
         {  double x2=x*x,y2=y*y;
            if (x2 + y2 > 4)
               break;      // Outside
            y = 2 * x * y + cIm;
            x = x2 - y2 + cRe;
         }
         g.setColor(n == nMax ? Color.black             // Inside
              : new Color(100 + 155*n/nMax,0,0));       // Outside
         g.drawLine(xPix, yPix, xPix, yPix);
       }
    }
}

EXERCISES

8.1 Write a program to produce Dragon curves with rounded corners, as shown in Figure 8.4.

8.2 Write a program to connect Koch curves, as shown in Figure 8.2.

8.3 To make bush curves (trees) appear more natural and pleasing, add randomness to the angles
and lengths of the lines, and also draw lines with thickness. For example, the lower part of a tree
is thicker than its upper part.

8.4 Further to Exercise 8.3, add green leaves to the branches and make the leaves oriented toward
the same directions as the branches.

8.5 Apply the method of cropping and zooming used in Mandel- brotZoom.java to some other (non-
trivial) graphics program of your own choice.

8.6 Write a program to draw the Mandelbrot set, and when clicked on the Mandelbrot image, a Julia
set corresponding to the clicked point is drawn in a window beside the Mandelbrot window. The
clicked point in the form of z = x + yi should also be displayed in the side window.

Answers

8.1 In the program FractalGrammars.java, there is the following fragment, which draws a line from the current
point (xLast, yLast) to the new point (xLast + dx, yLast + dy), which, after the call to drawTo, will
automatically be the current point (xLast, yLast).
case 'F': // Step forward and draw
   // Start: (xLast, yLast), direction: dir, steplength: len
   if (depth == 0)
   {  double rad = Math.PI/180 * dir, // Degrees -> radians
      dx = len * Math.cos(rad), dy = len * Math.sin(rad);
      drawTo(g, xLast + dx, yLast + dy);
   }

Besides xLast and yLast, introduce the variables xCorner and yCorner, indicating the cornerpoints that we
will not really visit because of the rounded corners. Each time, instead of drawing a line as discussed
above, draw two lines. The first is one from the current point (xLast, yLast) to (xCorner + dx/4, yCorner +
dy/4) to approximate the rounded corner. After this, the point just mentioned is now automatically stored as
the new point (xLast, yLast) to enable you to used drawTo again. Then update the variables xCorner and
yCorner by increasing them by dx and dy, respectively, so they indicate the next cornerpoint. Then you
draw the second line, from the current point (xLast, yLast)to(xCorner −  dx/4, yCorner −  dy/4). Note that
this last line is half as long as the full line drawn in the above fragment, since a quarter of it at the
beginning and a quarter of it at the end are now replaced with the approximated rounded corners.

8.2 In the paint method of the program Koch.java in Section 8.2, there is only one call to drawKoch preceded
by setting dir = 0. All you have to do is add two other such calls, each preceded by assigning an
appropriate value to dir so that the turtle starts in the right direction.

8.3 You can generate a random number between 0 and 1 by calling Math. random(), and derive the thickness
of a branch from the height of that branch in the tree. A line of any thickness can be realized by using the
method fillPolygon.
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8.4 This hint is based on the program FractalGrammars.java and the string grammar Tree2 of Section 8.3. In
this example, we have

Each time the second F in this string is encountered a branch is drawn that should have a leaf at its end.
So in the switch statement you should add a fragment to draw a leaf in the case F part after the call to
drawTo, provided that the position counter i for strX is equal to 5. One way of drawing a closed figure that
approximates the shape of a leaf is to draw a sequence of filled circles (by means of drawOval) whose
centers lie on a line that has the same direction (dx, dy) as the branch in question.

8.5 Use methods iX and iY to convert logical to device coordinates and methods fx and fy for the inverse
conversions. Restricting this discussion to x-coordinates, we can use
int iX(float x)
{  return (int)(xDevCenter + (x - xLogCenter)/pixelSize);
}

float fx(int x)
{  return xLogCenter + (x - xDevCenter) * pixelSize;
}

As usual, we use d defined as
Dimension d = getSize();

Let us denote the current boundaries of the logical x-coordinates by xLeft and xRight. For example, we can
initially set these boundaries equal to those of the device coordinates, that is, to 0 and d.width(),
respectively. In the method mouseReleased, we obtain the device coordinates xs and xe for the left and
right boundaries of the cropping rectangle. We then apply the method fx to these to obtain the
corresponding logical coordinates, writing, for example,
xLeftNew = fx(xs);
xRightNew = fx(xe);

Then these new values are assigned to xLeft and xRight, and used to compute
pixelSize = Math.max((xRight - xLeft)/d.width,
                     (yTop - yBottom)/d.height);
xLogCenter = (xLeft + xRight)/2;

Let us now discuss the plausibility of these statements (rather than proving them rigorously). Normally,
mouseRelease provides us with a range (xs, xe) that is smaller than the width of the drawing rectangle.
Then after applying fx and fy, the new logical x-range (xLeft, xRight) will also decrease, and the same
applies to pixelSize. As a result of the latter, the value added to xDevCenter in the above method iX will be
larger than it was before, so that the figure will appear on a larger scale. As for panning, let us assume that
the new x-range selected by the user is on the left half of the screen. Then the new center xLogCenter of
the logical x-range will be smaller than it was before, which will increase the value computed by the
method iX. This should indeed be the case, since the part of the image displayed in the selected x-range
on the left half of the screen should be displayed in the center of the drawing rectangle, or, in other words,
it should shift to the right.

8.6 Modify the MandelbrotZoom.java program and the paint method for Julia sets. Combine the two programs
so that the latter will draw Julia sets in a side window.
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Appendix A: Linear Interpolation of 1/z
We will now discuss why, with central projection, we can use linear interpolation of 1/z, called zi in Chapter 7, and not simply z. For
example, with two points P1(x′1, y′1, zi′1) and P2(x′2, y′2, zi2), where x′1, y′1, x′2 and y′2 are logical screen coordinates, while zi1
= 1/z1 and zi2 = 1/z2, we can compute similar coordinates of the midpoint M(xM, yM, ziM) by using

In general we have

Figure A.1 shows the eye-coordinate axes x and z and the screen z = − d.For simplicity, we ignore the y-axis. Recall that the
position E of the eye is the origin of this coordinate system and that the negative z-axis points towards the center of the object.
Point P lies on line l, which has the following equation:

 
Figure A.1: Central projection of point P on screen

The ray of light PE intersects the screen in P′(x′, − d). Then all points (x, z)of this ray of light satisfy the equation

or

To compute the point of intersection of this ray of light and line l, we substitute this result in (A.1), finding

Dividing the left- and right-hand sides of this equation by z and swapping them, we obtain 1
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which shows that 1/z is a linear function of x′.

This is useful because it enables us to perform linear interpolation. This term is used to indicate that, with a linear function

and three values xA, xB and xI satisfying

we can express f (xI) in f (xA) and f (xB) in the same way as xI is expressed in xA and xB, that is,

Although this sounds very plausible, here is a proof for the sake of completeness:

As we have seen in Equation (A.2) that 1/z is a linear function of x′, it follows that we can find the z-coordinate of a point I on a line
AB in 3D space by using 1

where λ  indicates the position of the projection I′ relative to A′ and B′ :

We have used Equation (A.3) in Chapters 6 and 7 to compute the z-coordinate of an unknown 3D point that is the original of a
given 2D image point.

A different notation

In the preceding discussion we have written equations of the form

in which the variable xA′ occurs twice. We can instead use a different equation, in which each of the variables xA′ and xB′ occurs
only once, at the price of using two occurrences of the parameter λ :

An example

Using λ  = 0.5 in the above formulas, we obtain
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Figure A.2 illustrates this. The object shown in (a) is a wire-frame model of a cube, containing an extra square between the front
and back faces and passing through point I. The viewpoint indicated in (c) as Eye is used to obtain the perspective view (b). Here
the projection I is the midpoint of A′ B′, so that the first and second of the above three equations clearly apply. In 3D space, I is
not the midpoint of AB, but BI = 2AI, as (a) and (c) show. Since the negative ze-axis points from the eye to the center of the object,
the distances shown in (c) imply that

 
Figure A.2: Linear interpolation applied to inverse values

These values satisfy the third of the above three equations.
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Appendix B: A Note on Event Handling
A brief discussion of event handling in Java will be helpful to understand some related, rather cryptic program fragments in this
book.

An event listener

For some component, say, a button bt, we can write
bt.addActionListener(x);

where x is an object of a class that implements the interface ActionListener. Since this implies that there is a method
actionPerformed in this class, the above statement is in fact a means to provide the button bt with information about how to
respond to the user clicking this button. For example, the above statement might be preceded by
ButtonAction x = new ButtonAction();

with ButtonAction defined as
class ButtonAction implements ActionListener
{ public void actionPerformed(ActionEvent ae)
  { System.out.println("Button bt clicked.");
  }
}

The object x in the above example is referred to as an event listener.

Using this as an event listener

Instead of writing a special class, such as ButtonAction, for the event in question, we may as well use a class that also contains
methods that are unrelated to it, provided that this class implements the interface ActionListener. In particular, we can use the very
class in which we create the button and call the method addActionListener, writing
class MyFrame extends Frame implements ActionListener
{ MyFrame()
  { ...
    bt.addActionListener(this);
    ...
  }
  public void actionPerformed(ActionEvent ae){ ... }
  ...
}

In contrast to our previous example, this method actionPerformed has access to all fields and methods of the class (MyFrame) in
which the call to addAction-Listener occurs.

Inner classes

Instead of the previous, somewhat contrived solution, we can use a special class ButtonAction and yet have access to the fields
and methods of another class. We simply define ButtonAction in that class. For example, in the following fragment the method
actionPerformed has access to the fields and methods of MyFrame:
class MyFrame extends Frame
{ MyFrame()
  { ...
    bt.addActionListener(new ButtonClass());
    ...
  }
  class ButtonClass implements ActionListener
  { public void actionPerformed(ActionEvent ae){ ... }
  }
  ...
}

Anonymous classes

It is possible to define a class at the place where we need it, without giving it a name. For example, to create an object of such an
anonymous subclass of, say, Superclass, we canwrite
Superclass y = new Superclass(){...};

Recall that a variable of type Superclass can also refer to objects of subclasses of Superclass. In the above statement, the part
{… } can be identical to that which we would otherwise use in the more familiar form
class Subclass extends Superclass {...}
Superclass y = new Subclass();

Instead of a normal class Superclass, we can also use an interface here. This explains the following usage of an anonymous
class for event handling:
class MyFrame extends Frame
{ MyFrame()
  { ...
    bt.addActionListener(new ActionListener(){...});
    ...
  }
  ...
}
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}

Since the anonymous class, defined on the program line in the middle of this fragment, implements ActionListener, the part {… }
must contain the method actionPerformed. This very compact form is used, for example, in program Cylinder.java of Section 6.6.

Adapter classes

As you will know, an interface promises that a set of methods will be defined. For the ActionListener interface, this set consists of
only one method, action-Performed. However, many more methods have to be defined for other event interfaces, such as
WindowListener and MouseListener. For every frame, a call to addWindowListener is required to enable the user to close this
frame. Unfortunately, the interface WindowListener requires as many as seven methods to be defined, even if we are interested in
only one, windowClosing.The fragment below lists these seven methods, six of which are defined as do-nothing functions:

class MyFrame extends Frame
{ MyFrame()
  { ...
    addWindowListener(new WindowListener()
    { public void windowClosing(WindowEvent e){System.exit(0);}
      public void windowOpened(WindowEvent e){}
      public void windowIconified(WindowEvent e){}
      public void windowDeiconified(WindowEvent e){}
      public void windowClosed(WindowEvent e){}
      public void windowActivated(WindowEvent e){}
      public void windowDeactivated(WindowEvent e){}
   });
   ...
  }
  ...
}

To enable us to avoid such tedious program code, the designers of JDK1.1 have introduced a class WindowAdapter, which
implements the interface WindowListener by providing seven do-nothing methods, so we can override only those we like.
Therefore, instead of the above fragment, we will actually write
class MyFrame extends Frame
{ MyFrame()
  { ...
    addWindowListener(new WindowAdapter()
      {public void windowClosing(WindowEvent e){System.exit(0);}});
    ...
  }
  ...
}

The two lines in the middle of this fragment occur in most programs in this book. Mouse events are similar: here we can use the
class MouseAdapter, which implements the interface MouseListener. It is used, for example, in the following fragment, copied
from program Anisotr.java of Section 1.4:
CvAnisotr()
{ addMouseListener(new MouseAdapter()
  { public void mousePressed(MouseEvent evt)
    { xP = fx(evt.getX()); yP = fy(evt.getY());
        repaint();
     }
  });
}

Note that the method addMouseListener is used here for a canvas, not for aframe.
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Appendix C: File Obj3D.java
The following file is not a complete program. It is the code for a single class, Obj3D, which is discussed in Section 5.5 and used in
the programs Wire- frame.java of Chapter 5, HLines.java of Chapter 6, Painter.java of Section 7.3, and ZBuf.java of Section 7.4.
// Obj3D.java: A 3D object and its 2D representation.
// Uses: Point2D (Section 1.5), Point3D (Section 3.9),
//       Polygon3D, Input (Section 5.5).
import java.awt.*;
import java.util.*;

class Obj3D
{  private float rho, d, theta=0.30F, phi=1.3F, rhoMin, rhoMax,
      xMin, xMax, yMin, yMax, zMin, zMax, v11, v12, v13, v21,
      v22, v23, v32, v33, v43, xe, ye, ze, objSize;
   private Point2D imgCenter;
   private double sunZ = 1/Math.sqrt (3), sunY = sunZ, sunX = -sunZ,
      inprodMin = 1e30, inprodMax = -1e30, inprodRange;
   private Vector w = new Vector();         // World coordinates
   private Point3D[] e;                     // Eye coordinates
   private Point2D[] vScr;                  // Screen coordinates
   private Vector polyList = new Vector();  // Polygon3D objects 
   private String fName = " ";              // File name

   boolean read(String fName)
   {  Input inp = new Input(fName);
      if (inp.fails())return failing();
      this.fName = fName;
      xMin = yMin = zMin = +1e30F;
      xMax = yMax = zMax = -1e30F;
      return readObject(inp); // Read from inp into obj
   }

   Vector getPolyList(){return polyList;}
   String getFName(){return fName;}
   Point3D[] getE(){return e;}
   Point2D[] getVScr(){return vScr;}
   Point2D getImgCenter(){return imgCenter;}
   float getRho(){return rho;}
   float getD(){return d;}

   private boolean failing()
   {  Toolkit.getDefaultToolkit().beep();
      return false;
   }

   private boolean readObject(Input inp)
   {  for (;;)
      {  int i = inp.readInt();
         if (inp.fails()){inp.clear(); break;}
         if (i > 0)
         {  System.out.println(
               "Negative vertex number in first part of input file");
            return failing();
         }
         w.ensureCapacity(i + 1);
         float x = inp.readFloat(), y = inp.readFloat(),
               z = inp.readFloat();
         addVertex(i, x, y, z);
      }
      shiftToOrigin(); // Origin in center of object.
      char ch;
      int count = 0;
      do   // Skip the line "Faces:"
      {  ch = inp.readChar(); count++; 
      }  while (!inp.eof() && ch != '\n');
      if (count < 6 || count > 8)
      {  System.out.println("Invalid input file"); return failing();
      }
     //  Build polygon list:
     for (;;)
     {   Vector vnrs = new Vector();
         for (;;)
         {  int i = inp.readInt();
            if (inp.fails()){inp.clear(); break;}
            int absi = Math.abs(i);
            if (i == 0 || absi >= w.size() ||
               w.elementAt(absi) == null)
            {  System.out.println("Invalid vertex number: " + absi +
               " must be defined, nonzero and less than " + w.size());
               return failing();
            }
            vnrs.addElement(new Integer(i));
         }
         ch = inp.readChar();
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         ch = inp.readChar();
         if (ch != '.' && ch != '#') break;
         // Ignore input lines with only one vertex number:
         if (vnrs.size() >= 2)
            polyList.addElement(new Polygon3D(vnrs));
      }
      inp.close();
      return true;
   }

   private void addVertex(int i, float x, float y, float z)
   {  if (x < xMin) xMin = x; if (x > xMax) xMax = x;
      if (y < yMin) yMin = y; if (y > yMax) yMax = y;
      if (z < zMin) zMin = z; if (z > zMax) zMax = z;
      if (i >= w.size()) w.setSize(i + 1);
      w.setElementAt(new Point3D(x, y, z), i);
   }

   private void shiftToOrigin()
   {  float xwC = 0.5F * (xMin + xMax),
            ywC = 0.5F * (yMin + yMax),
            zwC = 0.5F * (zMin + zMax);
      int n = w.size();
      for (int i=1; i<n; i++) 
            if (w.elementAt(i) != null)
            {  ((Point3D)w.elementAt(i)).x -= xwC;
               ((Point3D)w.elementAt(i)).y -= ywC;
               ((Point3D)w.elementAt(i)).z -= zwC;
            }
         float dx = xMax - xMin, dy = yMax - yMin, dz = zMax - zMin;
         rhoMin = 0.6F * (float) Math.sqrt(dx * dx + dy * dy + dz * dz);
         rhoMax = 1000 * rhoMin;
         rho = 3 * rhoMin;
      }

      private void initPersp()
      {  float costh = (float)Math.cos(theta),
               sinth = (float)Math.sin(theta),
               cosph = (float)Math.cos(phi),
               sinph = (float)Math.sin(phi);
         v11 = -sinth; v12 = -cosph * costh; v13 = sinph * costh;
         v21 = costh;  v22 = -cosph * sinth; v23 = sinph * sinth;
                       v32 = sinph;          v33 = cosph;
                                             v43 = -rho;
      }

      float eyeAndScreen(Dimension dim)
         // Called in paint method of Canvas class
      {  initPersp();
         int n = w.size();
         e = new Point3D[n];
         vScr = new Point2D[n];
         float xScrMin=1e30F, xScrMax=-1e30F,
               yScrMin=1e30F, yScrMax=-1e30F;
         for (int i=1; i<n; i++)
         {  Point3D P = (Point3D)(w.elementAt(i));
            if (P == null)
         {  e[i] = null; vScr[i] = null;
         }
         else
         {  float x = v11 * P.x + v21 * P.y;
            float y = v12 * P.x + v22 * P.y + v32 * P.z;
            float z = v13 * P.x + v23 * P.y + v33 * P.z + v43;
            Point3D Pe = e[i] = new Point3D(x, y, z);
            float xScr = -Pe.x/Pe.z, yScr = -Pe.y/Pe.z;
            vScr[i] = new Point2D(xScr, yScr);
            if (xScr < xScrMin) xScrMin = xScr; 
            if (xScr > xScrMax) xScrMax = xScr;
            if (yScr < yScrMin) yScrMin = yScr;
            if (yScr > yScrMax) yScrMax = yScr;
         }
      }
      float rangeX = xScrMax - xScrMin, rangeY = yScrMax - yScrMin;
      d = 0.95F * Math.min(dim.width/rangeX, dim.height/rangeY);
      imgCenter = new Point2D(d * (xScrMin + xScrMax)/2,
                              d * (yScrMin + yScrMax)/2);
      for (int i=1; i<n; i++)
      {  if (vScr[i] != null){vScr[i].x *= d; vScr[i].y *= d;}
      }
      return d * Math.max(rangeX, rangeY);
      // Maximum screen-coordinate range used in CvHLines for HP-GL
   }

   void planeCoeff()
   {  int nFaces = polyList.size();

      for (int j=0; j<nFaces; j++)
      {  Polygon3D pol = (Polygon3D)(polyList.elementAt(j));
         int[] nrs = pol.getNrs();
         if (nrs.length < 3) continue;
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         if (nrs.length < 3) continue;
         int iA = Math.abs(nrs[0]), // Possibly negative
             iB = Math.abs(nrs[1]), // for HLines.
             iC = Math.abs(nrs[2]);
         Point3D A = e[iA], B = e[iB], C = e[iC];
         double
            u1 = B.x - A.x, u2 = B.y - A.y, u3 = B.z - A.z,
            v1 = C.x - A.x, v2 = C.y - A.y, v3 = C.z - A.z,
            a = u2 * v3 - u3 * v2,
            b = u3 * v1 - u1 * v3,
            c = u1 * v2 - u2 * v1,
            len = Math.sqrt(a * a + b * b + c * c), h;
            a /= len; b /= len; c /= len;
            h = a * A.x + b * A.y + c * A.z;
         pol.setAbch(a, b, c, h);
         Point2D A1 = vScr[iA], B1 = vScr[iB], C1 = vScr[iC];
         u1 = B1.x - A1.x; u2 = B1.y - A1.y;
         v1 = C1.x - A1.x; v2 = C1.y - A1.y;
         if (u1 * v2 - u2 * v1 <= 0) continue; // backface
         double inprod = a * sunX + b * sunY + c * sunZ;
         if (inprod < inprodMin) inprodMin = inprod; 
         if (inprod > inprodMax) inprodMax = inprod;
       }
       inprodRange = inprodMax - inprodMin;
     }

     boolean vp(Canvas cv, float dTheta, float dPhi, float fRho)
     {  theta += dTheta;
        phi += dPhi;
        float rhoNew = fRho * rho;
        if (rhoNew >= rhoMin && rhoNew <= rhoMax)
           rho = rhoNew;
        else
           return false;
        cv.repaint();
        return true;
    }
    int colorCode(double a, double b, double c)
    {  double inprod = a * sunX + b * sunY + c * sunZ;
       return (int)Math.round(
          ((inprod - inprodMin)/inprodRange) * 255);
    }
}
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Appendix D: Class CvHLines.java
The following class is used in program HLines.java, listed in Section 6.8:
// CvHLines.java: Used in the file HLines.java.
import java.awt.*;
import java.util.*;

class CvHLines extends Canvas3D
{  private int maxX, maxY, centerX, centerY, nTria, nVertices;
   private Obj3D obj;
   private Point2D imgCenter;
   private Tria[] tr;
   private HPGL hpgl;
   private int[] refPol;
   private int[][] connect;
   private int[] nConnect;
   private int chunkSize = 4;
   private double hLimit;
   private Vector polyList;
   private float maxScreenRange;

   Obj3D getObj(){return obj;}
   void setObj(Obj3D obj){this.obj = obj;} 
   void setHPGL(HPGL hpgl){this.hpgl = hpgl;}

   public void paint(Graphics g)
   {  if (obj == null) return;
      Vector polyList = obj.getPolyList();
      if (polyList == null) return;
      int nFaces = polyList.size();
      if (nFaces == 0) return;
      float xe, ye, ze;
      Dimension dim = getSize();
      maxX = dim.width - 1; maxY = dim.height - 1;
      centerX = maxX/2; centerY = maxY/2;
      // ze-axis towards eye, so ze-coordinates of
      // object points are all negative. Since screen
      // coordinates x and y are used to interpolate for
      // the z-direction, we have to deal with 1/z instead
      // of z. With negative z, a small value of 1/z means
      // a small value of |z| for a nearby point.

      // obj is a java object that contains all data,
      // with w, e and vScr parallel (with vertex numbers
      // as index values):
      // - Vector w (with Point3D elements)
      // - Array e (with Point3D elements)
      // - Array vScr (with Point2D elements)
      // - Vector polyList (with Polygon3D elements)

      // Every Polygon3D value contains:
      // - Array 'nrs' for vertex numbers (n elements)
      // - Values a, b, c, h for the plane ax+by+cz=h.
      // - Array t (with n-2 elements of type Tria)

      // Every Tria value consists of the three vertex
      // numbers A, B and C.
      maxScreenRange = obj.eyeAndScreen(dim);
      imgCenter = obj.getImgCenter();
      obj.planeCoeff(); // Compute a, b, c and h.

      hLimit = -1e-6 * obj.getRho();
      buildLineSet();

      // Construct an array of triangles in
      // each polygon and count the total number 
      // of triangles.
      nTria = 0;
      for (int j=0; j<nFaces; j++)
      {  Polygon3D pol = (Polygon3D)(polyList.elementAt(j));
         if (pol.getNrs().length > 2 && pol.getH() <= hLimit)
         {  pol.triangulate(obj);
            nTria += pol.getT().length;
         }
      }
      tr = new Tria[nTria]; // Triangles of all polygons
      refPol = new int[nTria]; // tr[i] belongs to refPol[i]
      int iTria = 0;

      for (int j=0; j<nFaces; j++)
      {  Polygon3D pol = (Polygon3D)(polyList.elementAt(j));
         Tria[] t = pol.getT(); // Triangles of one polygon
         if (pol.getNrs().length > 2 && pol.getH() <= hLimit)
         {  for (int i=0; i<t.length; i++)
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         {  for (int i=0; i<t.length; i++)
            {  Tria tri = t[i];
               tr[iTria] = tri;
               refPol[iTria++] = j;
            }
         }
      }
      Point3D[] e = obj.getE();
      Point2D[] vScr = obj.getVScr();
      for (int i=0; i<nVertices; i++)
      {  for (int j=0; j<nConnect[i]; j++)
         {  int jj = connect[i][j];
            lineSegment(g, e[i], e[jj], vScr[i], vScr[jj],
                 i, jj, 0);
         }
      }
      hpgl = null;
   }
   private void buildLineSet()
   {  // Build the array
      // 'connect' of int arrays, where
      // connect[i] is the array of all
      // vertex numbers j, such that connect[i][j] is
      // an edge of the 3D object.
      polyList = obj.getPolyList(); 
      nVertices = obj.getVScr().length;
      connect = new int[nVertices][];
      nConnect = new int[nVertices];
      for (int i=0; i<nVertices; i++)
      nConnect[i] = 0;
      int nFaces = polyList.size();

      for (int j=0; j<nFaces; j++)
      {  Polygon3D pol = (Polygon3D)(polyList.elementAt(j));
         int[] nrs = pol.getNrs();
         int n = nrs.length;
         if (n > 2 && pol.getH() > 0) continue;
         int ii = Math.abs(nrs[n-1]);
         for (int k=0; k<n; k++)
         { int jj = nrs[k];
           if (jj < 0)
            jj = -jj; // abs
           else
           {  int i1 = Math.min(ii, jj), j1 = Math.max(ii, jj),
                  nCon = nConnect[i1];
              // Look if j1 is already present:
              int l;
              for (l=0; l<nCon; l++) if (connect[i1][l] == j1) break;
              if (l == nCon) // Not found:
              {  if (nCon % chunkSize == 0)
                 {  int[] temp = new int[nCon + chunkSize];
                    for (l=0; l<nCon; l++) temp[l] = connect[i1][l];
                    connect[i1] = temp;
                 }
                 connect[i1][nConnect[i1]++] = j1;
              }
            }
            ii = jj;
          }
        }
    }
    int iX(float x){return Math.round(centerX + x - imgCenter.x);}
    int iY(float y){return Math.round(centerY - y + imgCenter.y);}

    private String toString(float t)
    // From screen device units (pixels) to HP-GL units (0-10000) :
    {  int i = Math.round(5000 + t * 9000/maxScreenRange); 
       String s = "";
       int n = 1000;
       for (int j=3; j>=0; j--)
       {  s += i/n;
          i %= n;
          n /= 10;
       }
       return s;
    }
    private String hpx(float x){return toString(x - imgCenter.x);}
    private String hpy(float y){return toString(y - imgCenter.y);}

    private void drawLine(Graphics g, float x1, float y1,
       float x2, float y2)
    {  if (x1 != x2 || y1 != y2)
       {  g.drawLine(iX(x1), iY(y1), iX(x2), iY(y2));
          if (hpgl != null)
          {  hpgl.write("PU;PA" + hpx(x1) + "," + hpy(y1));
             hpgl.write("PD;PA" + hpx(x2) + "," + hpy(y2) + "\n");
          }
       }
    }
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    private void lineSegment(Graphics g, Point3D p, Point3D q,
       Point2D pScr, Point2D qScr, int iP, int iQ, int iStart)
    {  double u1 = qScr.x - pScr.x, u2 = qScr.y - pScr.y;
       double minPQx = Math.min(pScr.x, qScr.x);
       double maxPQx = Math.max(pScr.x, qScr.x);
       double minPQy = Math.min(pScr.y, qScr.y);
       double maxPQy = Math.max(pScr.y, qScr.y);
       double zP = p.z, zQ = q.z;    // p and q give eye-coordinates
       double minPQz = Math.min(zP, zQ);
       Point3D[] e = obj.getE();
       Point2D[] vScr = obj.getVScr();
       for (int i=iStart; i<nTria; i++)
       {  Tria t = tr[i];
          int iA = t.iA, iB = t.iB, iC = t.iC;
          Point2D aScr = vScr[iA], bScr = vScr[iB], cScr = vScr[iC];

          // 1. Minimax test for x and y screen coordinates:
          if (maxPQx <= aScr.x && maxPQx <= bScr.x && maxPQx <= cScr.x
           || minPQx >= aScr.x && minPQx >= bScr.x && minPQx >= cScr.x 
           || maxPQy <= aScr.y && maxPQy <= bScr.y && maxPQy <= cScr.y
           || minPQy >= aScr.y && minPQy >= bScr.y && minPQy >= cScr.y)
              continue; // This triangle does not obscure PQ.

           // 2. Test if PQ is an edge of ABC:
           if ((iP == iA || iP == iB || iP == iC) &&
               (iQ == iA || iQ == iB || iQ == iC))
              continue;  // This triangle does not obscure PQ.

           // 3. Test if PQ is clearly nearer than ABC:
           double zA = e[iA].z, zB = e[iB].z, zC = e[iC].z;
           if (minPQz >= zA && minPQz >= zB && minPQz >= zC)
              continue; // This triangle does not obscure PQ.

           // 4. Do P and Q (in 2D) lie in a half plane defined
           //    by line AB, on the side other than that of C?
           //    Similar for the edges BC and CA.
           double eps = 0.1; // Relative to numbers of pixels
           if (Tools2D.area2(aScr, bScr, pScr) < eps &&
               Tools2D.area2(aScr, bScr, qScr) < eps ||
               Tools2D.area2(bScr, cScr, pScr) < eps &&
               Tools2D.area2(bScr, cScr, qScr) < eps ||
               Tools2D.area2(cScr, aScr, pScr) < eps &&
               Tools2D.area2(cScr, aScr, qScr) < eps)
              continue;   // This triangle does not obscure PQ.

           // 5. Test (2D) if A, B and C lie on the same side
           //    of the infinite line through P and Q:
           double pqa = Tools2D.area2(pScr, qScr, aScr);
           double pqb = Tools2D.area2(pScr, qScr, bScr);
           double pqc = Tools2D.area2(pScr, qScr, cScr);

           if (pqa < +eps && pqb < +eps && pqc < +eps ||
               pqa > -eps && pqb > -eps && pqc > -eps)
              continue; // This triangle does not obscure PQ.

           // 6. Test if neither P nor Q lies behind the
           //    infinite plane through A, B and C:
           int iPol = refPol[i];
           Polygon3D pol = (Polygon3D)polyList.elementAt(iPol);
           double a = pol.getA(), b = pol.getB(), c = pol.getC(),
              h = pol.getH(), eps1 = 1e-5 * Math.abs(h),
              hP = a * p.x + b * p.y + c * p.z, 
              hQ = a * q.x + b * q.y + c * q.z;
           if (hP > h - eps1 && hQ > h - eps1)
              continue; // This triangle does not obscure PQ.

           // 7. Test if both P and Q behind triangle ABC:
           boolean pInside =
              Tools2D.insideTriangle(aScr, bScr, cScr, pScr);
           boolean qInside =
              Tools2D.insideTriangle(aScr, bScr, cScr, qScr);
           if (pInside && qInside)
              return; // This triangle obscures PQ.

           // 8. If P nearer than ABC and inside, PQ visible;
           //    the same for Q:
           double h1 = h + eps1;
           if (hP > h1 && pInside || hQ > h1 && qInside)
              continue; // This triangle does not obscure PQ.

           // 9. Compute the intersections I and J of PQ
           // with ABC in 2D.
           // If, in 3D, such an intersection lies in front of
           // ABC, this triangle does not obscure PQ.
           // Otherwise, the intersections lie behind ABC and
           // this triangle obscures part of PQ:
           double lambdaMin = 1.0, lambdaMax = 0.0;
           for (int ii=0; ii<3; ii++)
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           for (int ii=0; ii<3; ii++)
           {  double v1 = bScr.x - aScr.x, v2 = bScr.y - aScr.y,
                     w1 = aScr.x - pScr.x, w2 = aScr.y - pScr.y,
                     denom = u2 * v1 - u1 * v2;
              if (denom != 0)
              {  double mu = (u1 * w2 - u2 * w1)/denom;
                 // mu = 0 gives A and mu = 1 gives B.
                 if (mu > -0.0001 && mu < 1.0001)
                 {  double lambda = (v1 * w2 - v2 * w1)/denom;
                    // lambda = PI/PQ
                    // (I is point of intersection)
                    if (lambda > -0.0001 && lambda < 1.0001)
                    {  if (pInside != qInside &&
                       lambda > 0.0001 && lambda < 0.9999)
                       {  lambdaMin = lambdaMax = lambda;
                          break;
                          // Only one point of intersection
                       } 
                    if (lambda < lambdaMin) lambdaMin = lambda;
                    if (lambda > lambdaMax) lambdaMax = lambda;
                  }
                }
              }
              Point2D temp = aScr; aScr = bScr;
              bScr = cScr; cScr = temp;

            }
            float d = obj.getD();
            if (!pInside && lambdaMin > 0.001)
            {  double iScrx = pScr.x + lambdaMin * u1,
                      iScry = pScr.y + lambdaMin * u2;
               // Back from screen to eye coordinates:
               double zI = 1/(lambdaMin/zQ + (1 - lambdaMin)/zP),
                      xI = -zI * iScrx / d, yI = -zI * iScry / d;
               if (a * xI + b * yI + c * zI > h1)
                  continue; // This triangle does not obscure PQ.

               Point2D iScr = new Point2D((float)iScrx, (float)iScry);
               if (Tools2D.distance2(iScr, pScr) >= 1.0)
                  lineSegment(g, p, new Point3D(xI, yI, zI), pScr,
                       iScr, iP, -1, i + 1);

            }
            if (!qInside && lambdaMax < 0.999)
            {  double jScrx = pScr.x + lambdaMax * u1,
                      jScry = pScr.y + lambdaMax * u2;
               double zJ =
                  1/(lambdaMax/zQ + (1 - lambdaMax)/zP),
                     xJ = -zJ * jScrx / d, yJ = -zJ * jScry / d;
               if (a * xJ + b * yJ + c * zJ > h1)
                  continue; // This triangle does not obscure PQ.
               Point2D jScr = new Point2D((float)jScrx, (float)jScry);
               if (Tools2D.distance2(jScr, qScr) >= 1.0)
                  lineSegment(g, q, new Point3D(xJ, yJ, zJ),
                     qScr, jScr, iQ, -1, i + 1);
            }
            return;
                // if no continue-statement has been executed
          }
          drawLine(g, pScr.x, pScr.y, qScr.x, qScr.y);
             // No triangle obscures PQ.
    }
}
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Appendix E: Some Applications
This appendix demonstrates how to generate data files for other interesting 3D objects by special programs, in a similar fashion to
the cylinder example in Section 6.6. The generated files are accepted by the programs HLines.java (see Chapter 6), Painter.java
and ZBuf.java (see Chapter 7).

E.1 PLATONIC SOLIDS
We will first discuss the generation of 3D files for five well-known objects. Let us begin with two definitions.

If all edges of a polygon have the same length and any two edges meeting at a vertex include the same angle, the polygon is said
to be regular. I fall bounding faces of a polyhedron are regular polygons, which are congruent (that is, which have exactly the
same shape), that polyhedron is referred to as a regular polyhedron or platonic solid. There are only five essentially different
platonic solids; their names and their numbers of faces, edges and vertices are listed below:

 Open table as spreadsheet

Platonic solid Faces Edges Vertices

Tetrahedron 4 6 4

Cube (= hexahedron) 6 12 8

Octahedron 8 12 6

Dodecahedron 12 30 20

Icosahedron 20 30 12

Note that what we call a tetrahedron, a hexahedron, and so on, should actually be referred to as regular tetrahedron, regular
hexahedron, etc., but since in this section we are only dealing with regular polyhedra, we omit the word regular here.

The above numbers of faces, edges and vertices satisfy Euler's theorem, which also applies to non-regular polyhedra:

E.1.1 Tetrahedron

An elegant way of constructing a tetrahedron is by using the diagonals of the six faces of a cube as the edges of the tetrahedron,
as Figure E.1(a) shows.

 
Figure E.1: A tetrahedron: (a) inside a cube; (b) cube omitted; (c) after rotation

Using a cube with edges of length 2 and with its center as the origin of the coordinate system, we can easily write down the
contents of the data file, say, tetra.dat, for the tetrahedron proper (without the surrounding cube):
1   1  -1  -1
2  -1   1  -1 
3   1   1   1
4  -1  -1   1
Faces:
1 2 3.
2 4 3.
1 4 2.
1 3 4.

Supplying this file to program HLines.java results in a poor representation of a tetrahedron, identical to what we obtain if we omit
the dashed line (and the vertex numbers) in Figure E.1(b). Most people would fail to recognize the result as a 3D object, unless
Figure E.1(a) was also given. The surrounding cube in the latter figure can be obtained by adding vertices 5, 6, 7 and 8 to the first
part of the above input file and twelve lines of vertex-pair numbers, for the cube edges, to the second part.

A much better representation is Figure E.1(c), in which the tetrahedron has been rotated about the edge 1–2, in such a way that
the face 1-2-3 becomes horizontal. The angle of this rotation is equal to
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As Figure E.1(a) shows, α  is the angle included by the edges P-5 and P-3 in the right-angled triangle P-5-3, where P is the point
of intersection of the lines 1–2 and 5–6. Since the cube edge 3–5 has length 2 and the line segment P-5, being half the diagonal
6-5 of the bottom plane, has the length √ 2, we have tan α  = 2/√ 2 = √ 2, which explains the above value of α .

Fortunately, we have already developed a general and useful class, Rota3D, for 3D rotations. We used it in Section 3.9 in the
program Rota3DTest.java to rotate a cube about a given axis AB through an angle of 180°. This time, vertices 1 and 2 will act as
points A and B, while rotation will take place through the angle α  we have just discussed. We will use the file tetra.dat, listed
above, as input, to derive the file tetra1.dat, describing the rotated tetrahedron, from it. Note that the classes Point3D and Rota3D,
both defined in Section 3.9, and the class Input of Section 5.5 must be available (in the form of .class files) in the current directory.
// Rota3DTetra.java: Rotating a tetrahedron that
//   has horizontal top and bottom edges, in such
//   a way that it obtains a horizontal bottom face.
//   Uses: Point3D, Rota3D (Section 3.9), Input (Section 5.5).
import java.io.*; 
     public class Rota3DTetra
     {  public static void main(String[] args)
           throws IOException
        {  // Specify AB as directed axis of rotation
           // and alpha as the rotation angle:
           Point3D A = new Point3D(1, -1, -1),
                   B = new Point3D(-1, 1, -1);
           double alpha = Math.atan(Math.sqrt (2);
           Rota3D.initRotate(A, B, alpha);
           Point3D P = new Point3D (0, 0, 0);
           Input inp = new Input("tetra.dat");
           if (inp.fails())
           {  System.out.println("Supply file tetra.dat, see Section E.1");
              System.exit(0);
           }
           FileWriter fw = new FileWriter("tetra1.dat");
           for (;;)
           {  int i = inp.readInt();
              if (inp.fails()) break;
              P.x = inp.readFloat();
              P.y = inp.readFloat();
              P.z = inp.readFloat();
              Point3D P1 = Rota3D.rotate(P);
              fw.write(i + " " + P1.x + " " +
                 P1.y + " " + P1.z + "\r\n");
           }
           inp.clear();
           // Copy the rest of file tetra.dat to tetra1.dat:
           for (;;)
           {  char ch = inp.readChar();
              if (inp.fails()) break;
              fw.write(ch);
           }
           fw.close();
     }
}

This program changes only the coordinates of the four vertices. With the above input file, tetra.dat, the resulting output file,
tetra1.dat, is listed below:
1  1.0 -1.0 -1.0
2  -1.0 1.0 -1.0
3  1.7320508 1.7320508 -1.0 
4  0.57735026 0.57735026 1.309401
Faces:
1 2 3.
2 4 3.
1 4 2.
1 3 4.

Since we now have z = − 1.0 for vertices 1, 2 and 3, we see that triangle 1-2-3 is now horizontal. This is illustrated by Figure
E.1(c), which, except for the text and the dashed edge, is the result of applying the program HLines.java to the above file
tetra1.dat.

E.1.2 Cube or hexahedron

The cube, also known as a hexahedron, is perhaps the most common 3D object because of its simplicity. With the rather unusual
vertex numbering of Figure E.1(a), this cube (with edges of length 2 and with the origin as its center) is described by the following
file:
1  1 -1 -1
2 -1  1 -1
3  1  1  1
4 -1 -1  1
5  1  1 -1
6 -1 -1 -1
7  1 -1  1
8 -1  1  1
Faces:
1  5  3  7.
5  2  8  3.
2  6  4  8.
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2  6  4  8.
6  1  7  4.
7  3  8  4.
1  6  2  5.

E.1.3 Octahedron

An octahedron has eight faces, which are equilateral triangles. One way of constructing this platonic solid is by starting with a
cube and using the principle of duality or reciprocity. The numbers of faces and vertices shown in the table:

 Open table as spreadsheet

Platonic solid Faces Edges Vertices

Cube (= hexahedron) 6 12 8

Octahedron 8 12 6

suggest that each face of a cube might be related to a vertex of an octahedron and vice versa. This is indeed the case: a cube
and an octahedron are said to be dual or reciprocal, which implies that the centers of the faces of one can be used as the vertices
of the other. Starting with a cube, we can simply use the centers of its six faces as the vertices of an octahedron. The following
data file for an octahedron is based on such a cube with edges of length 2 and with O as its center:
1  1  0  0
2  0  1  0
3 -1  0  0
4  0 -1  0
5  0  0 -1
6  0  0  1
Faces:
1 2 6.
2 3 6.
3 4 6.
4 1 6.
2 1 5.
3 2 5.
4 3 5.
1 4 5.

If we use this file as input for program HLines.java, we obtain the octahedron shown in Figure E.2 on the right. On the left we see
the way the vertices are numbered and the surrounding cube.

 
Figure E.2: Octahedron

E.1.4 Icosahedron and dodecahedron

Let us again take a look at the following numbers of faces and vertices:

 Open table as spreadsheet

Platonic solid Faces Edges Vertices

Dodecahedron 12 30 20

Icosahedron 20 30 12

Since the number of faces of one of the two polyhedra is equal to the number of vertices of the other, a dodecahedron and an
icosahedron are reciprocal polyhedra. Figure E.3 illustrates this. For example, vertex 1 of the dodecahedron has been constructed
as the center of the face 1-2-3 of the icosahedron, vertex 2 of the dodecahedron as that of face 1-3-4 of the icosahedron, and so
on. Since showing this dodecahedron in Figure E.3 in its original position would have been confusing, the dodecahedron has been
shifted to the right after its construction.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 
Figure E.3: Icosahedron and dodecahedron as reciprocal polyhedra

It follows that constructing an icosahedron is the only remaining problem: once the coordinates of its vertices are known, we can
derive the dodecahedron from it.

Both polyhedra are based on regular pentagons, as you can see in Figure E.3. In the icosahedron shown here, there are two
horizontal pentagons: 2-3-4-5-6 and 7-8-9-10-11. They have both been constructed with their vertices on (horizontal) circles with
radius 1. Curiously enough, these two horizontal pentagons lie a distance 1 apart, while the ‘north pole’ 1 and the ‘south pole’ 12
lie a distance √ 5 apart. A proof of these facts is omitted here, because it would be rather lengthy and only very loosely related to
computer graphics. Interested readers are referred to books about geometry, such as Coxeter (1961).

With O as the center of the icosahedron, we can now define the coordinates of all twelve vertices of an icosahedron as follows:

 Open table as spreadsheet

i xi yi zi

1
2, 3, 4, 5, 6

7, 8, 9, 10, 11
12

0
cos {(i −  2) × 72°}

cos {36° + (i −  7) × 72°}
0

0
sin {(i −  2) × 72°}

sin {36° + (i −  7) × 72°}
0

½√ 5
0.5

− 0.5
½√ 5

We can easily program the above formulas to obtain the numerical values of the vertex coordinate in question, as we will see
shortly. These values are listed in the following 3D data file, in which the faces of the icosahedron are displayed on five text lines,
instead of on 20 lines as generated by the program. Also, the layout of the first part of the file has been improved for the sake of
readability:
 1   0.0       0.0         1.118034
 2   1.0       0.0         0.5
 3   0.309017  0.95105654  0.5
 4  -0.809017  0.58778524  0.5
 5  -0.809017 -0.58778524  0.5
 6   0.309017 -0.95105654  0.5
 7   0.809017  0.58778524 -0.5
 8  -0.309017  0.95105654 -0.5
 9  -1.0       0.0        -0.5
10  -0.309017 -0.95105654 -0.5
11   0.809017 -0.58778524 -0.5
12   0.0       0.0        -1.118034
Faces: 
 1  2  3.  1  3  4.  1  4  5.  1  5  6.
 1  6  2.  2  7  3.  3  7  8.  3  8  4.
 4  8  9.  4  9  5.  5  9 10.  5 10  6.
 6 10 11.  6 11  2.  2 11  7. 12  8  7.
12  9  8. 12 10  9. 12 11 10. 12  7 11.

E.1.5 Dodecahedron

As mentioned above, we use the center of the first face, 1-2-3, of the icosahedron as vertex 1 of the dodecahedron. For example,
we have

The faces in the above icosahedron file are to be read line by line, so that the center of face 1-3-4 provides vertex 2 of the
dodecahedron, that of face 1-4-5 provides vertex 3, and so on. The second part of the dodecahedron file is more difficult. You can
check it by comparing both polyhedra of Figure E.3. For example, the vertices of the dodecahedron's face 1-6-7-8-2, in that order,
are the centers of face 1 (1-2-3), face 6 (2-7-3), face 7 (3-8-7), face 8 (3-8-4) and face 2 (1-3-4) of the icosahedron. In the data file
for the dodecahedron below, you can find this face 1-6-7-8-2 as the second one after the word Faces:
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 1   0.436339    0.31701884   0.7060113
 2  -0.16666667  0.51294726   0.7060113
 3  -0.53934467  0.0          0.7060113
 4  -0.16666667 -0.51294726   0.7060113
 5   0.436339   -0.31701884   0.7060113
 6   0.7060113   0.51294726   0.16666667
 7   0.26967233  0.82996607  -0.16666667
 8  -0.26967233  0.82996607   0.16666667
 9  -0.7060113   0.51294726  -0.16666667
10  -0.872678    0.0          0.16666667
11  -0.7060113  -0.51294726  -0.16666667
12  -0.26967233 -0.82996607   0.16666667
13   0.26967233 -0.82996607  -0.16666667
14   0.7060113  -0.51294726   0.16666667
15   0.872678    0.0         -0.16666667
16   0.16666667  0.51294726  -0.7060113
17  -0.436339    0.31701884  -0.7060113
18  -0.436339   -0.31701884  -0.7060113
19   0.16666667 -0.51294726  -0.7060113
20   0.53934467  0.0         -0.7060113
Faces: 
 1  2  3  4  5.  1  6  7  8  2.  2  8  9  10  3.
 3 10 11 12  4.  4 12 13 14  5.  5 14 15   6  1.
20 19 18 17 16. 20 15 14 13 19. 19 13 12  11 18.
18 11 10  9 17. 17  9  8  7 16. 16  7  6  15 20.

Since this book is about programming aspects of graphics, a Java program to generate both above files (in a slightly different
format) is listed below:
// IcoDode.java: Generating input files for
//    both an icosahedron and a dodecahedron.
//    Uses: Point3D (Section 3.9), Tria (Section 5.5).

import java.io.*;

public class IcoDode
{  public static void main(String[] args)throws IOException
   {  new Both();
   }
}

class Both
{  Point3D[] icoV;
   Tria[] icoF;

   Both()throws IOException
   {  outIcosahedron();
      outDodecahedron();
   }

   void outIcosahedron()throws IOException
   {  double zTop = 0.5 * Math.sqrt (5);
      // Vertices (icoV[1], ..., icoV[12]):
      icoV = new Point3D[13];
      icoV[1] = new Point3D(0, 0, zTop); // North pole
      double angle36 = Math.PI/5, angle72 = 2 * angle36;
      for (int i=2; i<=6; i++)
      {  double alpha = (i - 2) * angle72;
         icoV[i] = new Point3D(Math.cos(alpha),
            Math.sin(alpha), 0.5);
      }
      for (int i=7; i<=11; i++)
      {  double alpha = angle36 + (i - 7) * angle72;
         icoV[i] = new Point3D(Math.cos(alpha), 
         Math.sin(alpha), -0.5);
      }
      icoV[12] = new Point3D(0, 0, -zTop);
      // Faces (icoF[1], ..., icoF[20]):
      icoF = new Tria[21]; //
      icoF[ 1] = new Tria (1, 2, 3);
      icoF[ 2] = new Tria (1, 3, 4);
      icoF[ 3] = new Tria (1, 4, 5);
      icoF[ 4] = new Tria (1, 5, 6);
      icoF[ 5] = new Tria (1, 6, 2);
      icoF[ 6] = new Tria (2, 7, 3);
      icoF[ 7] = new Tria (3, 7, 8);
      icoF[ 8] = new Tria (3, 8, 4);
      icoF[ 9] = new Tria (4, 8, 9);
      icoF[10] = new Tria (4, 9, 5);
      icoF[11] = new Tria (5, 9, 10);
      icoF[12] = new Tria (5, 10, 6);
      icoF[13] = new Tria (6, 10, 11);
      icoF[14] = new Tria (6, 11, 2);
      icoF[15] = new Tria (2, 11, 7);

      icoF[16] = new Tria (12, 8, 7);
      icoF[17] = new Tria (12, 9, 8);
      icoF[18] = new Tria (12, 10, 9);
      icoF[19] = new Tria (12, 11, 10);
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      icoF[19] = new Tria (12, 11, 10);
      icoF[20] = new Tria (12, 7, 11);
      FileWriter fwI = new FileWriter("icosa.dat");
      for (int i=1; i<=12; i++)
      {  Point3D P = icoV[i];
         fwI.write(i +""+P.x+""+P.y+""+P.z+"\r\n");
      }
      fwI.write("Faces:\r\n");
      for (int j=1; j<=20; j++)
      {  Tria t = icoF[j];
         fwI.write(t.iA +""+t.iB+""+t.iC+".\r\n");
      }
      fwI.close();
}

   void outDodecahedron()throws IOException
   {  FileWriter fwD = new FileWriter("dodeca.dat");
      for (int j=1; j<=20; j++) writeVertexInCenter(fwD, j);
      fwD.write("Faces:\r\n"); 
      // Horizontal, at the top:
      writeFace(fwD, 1, 2, 3, 4, 5);
      // Slightly facing upward:
      writeFace(fwD, 1, 6, 7, 8, 2);
      writeFace(fwD, 2, 8, 9, 10, 3);
      writeFace(fwD, 3, 10, 11, 12, 4);
      writeFace(fwD, 4, 12, 13, 14, 5);
      writeFace(fwD, 5, 14, 15, 6, 1);
      // Horizontal, at the bottom:
      writeFace(fwD, 20, 19, 18, 17, 16);
      // Slightly facing downward:
      writeFace(fwD, 20, 15, 14, 13, 19);
      writeFace(fwD, 19, 13, 12, 11, 18);
      writeFace(fwD, 18, 11, 10, 9, 17);
      writeFace(fwD, 17, 9, 8, 7, 16);
      writeFace(fwD, 16, 7, 6, 15, 20);
      fwD.close();
    }

    void writeVertexInCenter(FileWriter fwD, int j)throws IOException
    {  Tria t = icoF[j];
       Point3D A = icoV[t.iA],B=icoV[t.iB], C = icoV[t.iC];
       float x = (float)((A.x + B.x + C.x)/3),
             y = (float)((A.y + B.y + C.y)/3),
             z = (float)((A.z + B.z + C.z)/3);
       fwD.write(j +" " + x + " " + y + " " + z + "\r\n");
    }

    void writeFace(FileWriter fwD, int a, int b, int c, int d, int e)
       throws IOException
    {  fwD.write(a +""+b+""+c+""+d+""+e+".\r\n");
    }
}

An icosahedron, as generated by this program, will be useful to generate (better) approximations of spheres, as we will see in the
next section.
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E.2 SPHERE REPRESENTATIONS
There are several ways of approximating a sphere by a polyhedron. A very popular one is the globe model with north and south
poles at the top and the bottom, horizontal circles called lines of latitude, and circles called lines of longitude in vertical planes
through the poles, as shown in Figure E.4. A program to generate such a globe should preferably be based on a single integer n,
indicating both the number of horizontal slices and half the number of lines of longitude. In other words, angles of 180°/n play an
essential role, both in horizontal and vertical planes. In Figures E.4(a) and (b) we have n = 6 and n = 30, respectively.
Programming this is left as an exercise (see Exercise 6.6).

 
Figure E.4: Approximations of a sphere: (a) n = 6;(b) n = 30

The above way of approximating a sphere has two drawbacks:
1. The faces are unequal in size and have different shapes: except for the triangles at the poles, each face is a

trapezium, whose size depends on its distance from its nearest pole.

2. These spheres have an ‘anisotropic’ appearance: which may be undesirable. For example, a view from above
looks much different from a view from the front. We may prefer all faces to look alike, so that the image should
not significantly change if we turn the sphere a little.

We will therefore discuss different models of a sphere, in such a way that we cannot easily tell the poles and the other vertices
apart.

E.2.1 Spheres based on an icosahedron

As Figure E.3 illustrates, an icosahedron and a dodecahedron are very poor approximations of a sphere. However, we can use
the former as a basis to generate a much better one. The idea is to divide each triangular face of an icosahedron into four
triangles, as shown in Figure E.5, and to use the sphere to which all vertices of the icosahedron belong. For the icosahedron we
have constructed, the center of this sphere is O and its radius is ½√ 5.

 
Figure E.5: Dividing a triangle into four smaller ones

With O as the center of the icosahedron and D, E and F as the midpoints of three triangle edges BC, CA and AB, we have to
extend the lines OD, OE and OF, such that the new vertices D, E and F (like A, B and C) lie on the sphere just mentioned.
Actually, we may as well change the lengths of all six lines OA, OB, … , OF, such that the new points A, B, … , F lie on a sphere
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Actually, we may as well change the lengths of all six lines OA, OB, … , OF, such that the new points A, B, … , F lie on a sphere
with center O and radius 1. Doing this for all 20 faces of an icosahedron, we obtain a polyhedron that has 20 × 4 = 80 triangles.
Since each of the 30 original edges gives a new vertex (its midpoint), and there were already 12 vertices, this new polyhedron has
12 + 30 = 42 vertices. It follows from Equation E.1 that it has 80 + 42 −  2 = 120 edges. Note that the four triangles of Figure E.5
are equilateral (that is, they have three edges of the same length), but this is the case only as long as the six points A, B, … , F lie
in the same plane. Consequently, the 80 faces of our new polyhedron are not equilateral triangles.

Instead of writing a program just to generate this polyhedron, we will make the program much more general. It will accept the
names of an input file and an output file. The input file can be any file (in our 3D format) for a convex polyhedron that has only
triangular faces and whose center is the origin O of the coordinate system (provided the vertex numbers 1, 2, 3, …  are used and
appear in that order in the first part of the file). In the output file we obtain a polyhedron that has four times as many (triangular)
faces as the given one, and whose vertices lie on a sphere with center O and radius 1. This will enable us to use the program
several times, starting with the file icosa.dat, generated by program IcoDode.java, and each following time to use the previous
output file as input. Using names of the form sphx.dat, where x is the number of faces, we can proceed as follows:

Figure E.6 shows the results of applying program HLines.java to these four files, of which the last three have been generated by
the program we are discussing.

 
Figure E.6: Icosahedron and three other polyhedra derived from it by program SphTria.java: (a) 20 faces (see Section E.1);
(b) 80 faces; (c) 320 faces; (d) 1280 faces

Program SphTria.java takes the names of its input and output files as program arguments. After generating the file icosa.dat by
using program IcoDode.java of Section E.1, we obtain the files for the other three sphere approximations above as follows:
java SphTria icosa.dat sph80.dat
java SphTria sph80.dat sph320.dat
java SphTria sph320.dat sph1280.dat

Like some other programs in this book, SphTria.java, listed below, uses the classes Point3D, Tria and Input, discussed in Sections
3.9 and 5.5:
// SphTria.java: Generating a 3D object file for a sphere
//    approximation consisting of triangles. In the output file there
//    are four times as many triangles as in the input file. Suitable
//    input files are icosa.dat, produced by program IcoDode.java, and
//    the output files produced by this program (SphTria.java) itself!
//    To run this program, enter, for example,
//       java SphTria icosa.dat sph80.dat.
//    Uses: Tria, Input (Section 5.5), Point3D (Section 3.9).

import java.io.*;
import java.util.*;
public class SphTria
{  public static void main(String[] args)throws IOException
   {  if (args.length < 2)
      {  System.out.println("Command:\n"
         + "java SphTria InputFile OutputFile"); 
      }
      else
         new SphTriaObj(args[0], args[1]);
    }
}

class SphTriaObj
{  Vector v = new Vector(); // Vertices
   Vector t = new Vector(); // Triangular faces
   int nV, codeRadix;
   Hashtable ht = new Hashtable();
   String inputFile, outputFile;

   SphTriaObj(String inputFile, String outputFile)throws IOException
   {  this.inputFile = inputFile;
      this.outputFile = outputFile;
      readFile();
      computeMidpoints();
      toUnitCircle();
      writeFile();
   }

   void readFile()throws IOException
   {  Input inp = new Input(inputFile);
      if (inp.fails()) error();
      v.addElement(new Integer (0) ); // Start at position 1
      for (;;)
      {  int nr = inp.readInt();
         if (inp.fails()) break;
         nV = nr;
         float x = inp.readFloat(), y = inp.readFloat(),
               z = inp.readFloat();
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               z = inp.readFloat();
         v.addElement(new Point3D(x, y, z));
      }
      inp.clear();
      codeRadix = nV + 1;
      inp.clear();
      while (inp.readChar() != '\n' && !inp.fails());
      // Rest of line 'Faces:' has now been skipped.
      for (;;)
      {  int a = inp.readInt(), b = inp.readInt(), c = inp.readInt();
         if (inp.fails()) break;
         t.addElement(new Tria(a, b, c)); 
         inp.readChar(); // Skip '.'
      }
      inp.clear();
    }

    void error()
    {  System.out.println("Problem with file input file"+inputFile);
       System.exit(1);
    }
    void computeMidpoints()
    {  for (int j=0; j<t.size(); j++)
       {  Tria tr = (Tria)t.elementAt(j);
          int a = tr.iA, b = tr.iB, c = tr.iC;
          addMidpoint(a, b); addMidpoint(b, c); addMidpoint(c, a);
       }
    }

    void addMidpoint(int p, int q)
    {  if (p<q)
       {  ht.put(new Integer(codeRadix*p+q),newInteger(++nV));
          Point3D P = (Point3D)v.elementAt(p),
                  Q = (Point3D)v.elementAt(q);
          v.addElement(new Point3D( // at position nV
          (P.x + Q.x)/2, (P.y + Q.y)/2, (P.z + Q.z)/2));
       }
    }

    int getMidpoint(int p, int q)
    {  int key = p < q ? (codeRadix*p+q): (codeRadix *q+p);
       Integer iObj = (Integer)ht.get(new Integer(key));
       return iObj.intValue();
    }
    void toUnitCircle()
    {  for (int i=1; i<=nV; i++) // nV = v.size() - 1
       {  Point3D P = (Point3D)v.elementAt(i);
          float r = (float)Math.sqrt(
             P.x * P.x + P.y * P.y + P.z * P.z);
           P.x /= r; P.y /= r; P.z /= r;
       }
    }

    void writeFile()throws IOException 
    {  FileWriter fw = new FileWriter(outputFile);
       for (int i=1; i<v.size(); i++)
       {  Point3D P = (Point3D)v.elementAt(i);
          fw.write(i + " " + P.x + " " +
             P.y + " " + P.z + "\r\n");
       }
       fw.write("Faces\r\n");
       for (int j=0; j<t.size(); j++)
       {  Tria tr = (Tria)t.elementAt(j);
          int a = tr.iA, b = tr.iB, c = tr.iC;
          int mab = getMidpoint(a, b),
              mbc = getMidpoint(b, c),
              mca = getMidpoint(c, a);
          fw.write(a + " " + mab + " " + mca + ".\r\n");
          fw.write(b + " " + mbc + " " + mab + ".\r\n");
          fw.write(c + " " + mca + " " + mbc + ".\r\n");
          fw.write(mab + " " + mbc + " " + mca + ".\r\n");
       }
       fw.close();
   }
}

Each edge of a triangle of the given polyhedron is also an edge of a neighboring triangle. Since for each triangle its vertices are
specified in counter-clockwise order, the ordered vertex number pair p, q representing an edge of one of these two triangles will
appear as q, p for the other triangle. To avoid adding the midpoint of this edge twice, we accept the pair p, q only if p is less than
q, as the test at the beginning of the method addMidpoint shows. Note that we process all given triangles twice, first, in
computeMidpoints, to add the midpoint of every edge (exactly once) to the list of vertices v, and later, in writeFaces, to construct
the new, smaller triangles. In the first of these two actions, we associate a new midpoint, say, vertex number m, with a certain
edge p, q. This must be stored in such a way that later, in writeFaces, when we encounter this edge p, q again, we can use this
pair to find this same vertex number m. We can do this efficiently and conveniently by using a hash table, writing
Hashtable ht = new Hashtable();

The pair p, q, or rather, a large integer codeRadix * p + q, where codeRadix is a large constant and p < q, is used as a key. By
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The pair p, q, or rather, a large integer codeRadix * p + q, where codeRadix is a large constant and p < q, is used as a key. By
storing the pair (key, m)in the hash table ht, we can later retrieve the midpoint vertex number m using the same key. This explains
both the statement
ht.put(new Integer(codeRadix*p+q),newInteger(++nV));

in addMidpoint (called in computeMidpoints)and
Integer iObj = (Integer)ht.get(new Integer(key));

in getMidpoint (called in writeFile).

The sphere that program SphTria.java produces obviously depends upon its input file. The file tetra.dat of Section E.1, like
iscosa.dat, describes a polyhedron consisting of equilateral triangles and has O as its center. Note that the latter is not the case
with the file tetra1.dat, obtained by the program Rota3DTetra.java because this program rotates the tetrahedron about the edge
1–2. Another polyhedron satisfying the conditions just mentioned is the octahedron, also discussed in Section E.1. This gives a
better, though rather peculiar, result. If we start with the file octa.dat, describing the octahedron shown in Figure E.7(a), we obtain

 
Figure E.7: Octahedron and three other polyhedra derived from it by program SphTria.java: (a) 8 faces (see Section E.1);
(b) 32 faces; (c) 128 faces; (d) 512 faces
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E.3 A TORUS
We will now discuss a program to construct a torus, as shown in Figure E.8. The input data of this program will consist of three
program arguments:

n, the number of small vertical circles; on each of these, n points are used as vertices to approximate the torus;

R, the radius of a large horizontal circle containing the centers of the n smaller circles;

the name of the output file.

 
Figure E.8: Torus (n = 30 and R = 2.5)

All small circles will have the same radius, r = 1. You can see the large horizontal circle (with radius R) and one of the small
vertical ones in Figure E.9. Since the smaller circles must not intersect each other, we require that

 
Figure E.9: Basic circles of a torus

A parametric representation of the large circle is

If we take α  = 0 in these equations, we obtain the center of the small vertical circle shown in Figure E.9, which has the following
parametric representation (where r = 1):

This small circle belongs to i = 0. By rotating it about the z-axis through angles α  = i δ , where i = 1, … , n −  1 and δ  = 2 π / n, we
obtain the remaining n −  1 small circles. As for the vertex numbers of the torus, we select n points on the first small circle
(corresponding to i = 0) and assign the integers 1, 2, … , n to them: the point obtained by using parameter β  = j δ  is assigned
vertex number j + 1 (j = 0, 1, … , n −  1). The next n vertices, numbered n + 1, n + 2, …  ,2n, lie on the neighboring circle,
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vertex number j + 1 (j = 0, 1, … , n −  1). The next n vertices, numbered n + 1, n + 2, …  ,2n, lie on the neighboring circle,
corresponding to i = 1, and so on. In general, we use the n2 vertex numbers i · n + j + 1(i = 0, 1, … , n −  1; j = 0, 1, … , n −  1).

We will now rotate the small vertical circle drawn in Figure E.9 about the z-axis through the angle α  = iδ . As follows from Section
3.2, this rotation can be written

In our case the basic small circle lies in the xz-plane, so that y = 0, which reduces this matrix product to

(which we could also have derived directly from Figure E.9, without using the above matrix multiplication).

As you can see in the following program, we use most of the above formulas in the inner loop, in which the variable x denotes the
x-coordinate of a point of the small circle in the xz-plane (see Figure E.9), while x1 denotes the x-coordinate of that point after
rotation through α  about the z-axis:
// Torus.java: Generating a data file for a torus. R is the radius of
//    a large horizontal circle, on which n equidistant points will be
//    the centers of small vertical circles with radius 1. The values
//    of n and R as well as the output file name are to be supplied as
//    program arguments.

import java.io.*; 
public class Torus
{  public static void main(String[] args)throws IOException
   {  if (args.length != 3)
      {  System.out.println("Supply n (> 2), R (>= 1) "
           + "and a filename as program arguments.\n");
         System.exit(1);
      }
      int n = 0;
      double R = 0;
      try
      {  n = Integer.valueOf(args[0]).intValue();
         R = Double.valueOf(args[1]).doubleValue();
         if (n<=2 || R<1)
            throw new NumberFormatException();
      }
      catch (NumberFormatException e)
      {  System.out.println("n must be an integer > 2");
         System.out.println("R must be a real number >= 1");
         System.exit(1);
      }
      new TorusObj(n, R, args[2]);
    }
}

class TorusObj
{  TorusObj(int n, double R, String fileName)throws IOException
   {  FileWriter fw = new FileWriter(fileName);
      double delta=2* Math.PI / n;
      for (int i=0; i<n; i++)
      {  double alpha=i* delta,
            cosa = Math.cos(alpha), sina = Math.sin(alpha);
         for (int j=0; j<n; j++)
         {  double beta = j * delta, x = R + Math.cos(beta);
             float x1 = (float)(cosa * x),
                   y1 = (float)(sina * x),
                   z1 = (float)Math.sin(beta);
             fw.write((i * n + j + 1) + " " +
                x1 + " " + y1 + " " + z1 + "\r\n");
         }
    }
    fw.write("Faces:\r\n");
    for (int i=0; i<n; i++) 
      { for (int j=0; j<n; j++)
        {  int i1 = (i + 1) %  n, j1 = (j + 1) % n,
               a = i  * n + j  + 1,
               b = i1 * n + j  +1,
               c = i1 * n + j1 +1,
               d = i  * n + j1 +1;
           fw.write(a + " " + b + " " + c + " " + d + ".\r\n");
        }
    }
    fw.close();
  }
}
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E.4 BEAMS IN A SPIRAL
Our next example is a spiral built from horizontal beams with length 2a (a ≥ 0.5), width 1 and height 1. The bottom of the lowest
beam lies in the xy-plane; this beam is parallel to the y-axis and its maximum x-coordinate is equal to a (see Figure E.10). Each
next beam can be obtained by lifting the previous one a distance 1, and by rotating it about the z-axis though a given angle
α .Thereare n beams. The integer n, the two real numbers a and α  (the latter in degrees) and the output file name, in that order,
are supplied as program arguments.

 
Figure E.10: Vertex numbers of first beam

The beams in Figures E.11(a), (b) and (c) have lengths (2a =) 2, 8 and 1, respectively, which implies that the beams are actually
cubes in Figure E.11(c).

 
Figure E.11: Spirals of beams

The data files for program HLines.java to produce the three spiral images of Figure E.11 were generated by running program
Beams.java three times as follows:
java Beams 4 1 90 FigE11a.dat
java Beams 18 4 20 FigE11b.dat
java Beams 18 0.5 10 FigE11c.dat

Although we could have used the class Rota3D, discussed in Section 3.9, the rotation about the z-axis is as simple as a 2D
rotation about O (see Section 3.2), so that we may as well program it directly, as is done in the nested for-loop in program
Beams.java, listed below:
// Beams.java: Generating input files for a spiral of beams. The
//    values of n, a and alpha (in degrees) as well as the output
//    file name are to be supplied as program arguments.
//    Uses: Point3D (Section 3.9).
import java.io.*;

public class Beams
{  public static void main(String[] args)throws IOException
   {  if (args.length != 4)
      {  System.out.println(
         "Supply n (> 0), a (>= 0.5), alpha (in degrees)\n" +
         "and a filename as program arguments.\n"); 
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         "and a filename as program arguments.\n"); 
         System.exit(1);
      }
      int n = 0;
      double a = 0, alphaDeg = 0;
      try
      {  n = Integer.valueOf(args[0]).intValue();
         a = Double.valueOf(args[1]).doubleValue();
         alphaDeg = Double.valueOf(args[2]).doubleValue();
         if (n <= 0 || a < 0.5)throw new NumberFormatException();
      }
      catch (NumberFormatException e)
      {  System.out.println("n must be an integer > 0");
         System.out.println("a must be a real number >= 0.5");
         System.out.println("alpha must be a real number");
         System.exit(1);
      }
      new BeamsObj(n, a, alphaDeg * Math.PI / 180, args[3]);
    }
}

class BeamsObj
{  FileWriter fw;

   BeamsObj(int n, double a, double alpha, String fileName)
      throws IOException
   {  fw = new FileWriter(fileName);
      Point3D[] P = new Point3D[9];
      double b = a - 1;
      P[1] = new Point3D(a, -a, 0);
      P[2] = new Point3D(a,  a, 0);
      P[3] = new Point3D(b,  a, 0);
      P[4] = new Point3D(b, -a, 0);
      P[5] = new Point3D(a, -a, 1);
      P[6] = new Point3D(a,  a, 1);
      P[7] = new Point3D(b,  a, 1);
      P[8] = new Point3D(b, -a, 1);
      for (int k=0; k<n; k++)
      {  // Beam k:
         double phi = k * alpha,
            cosPhi = Math.cos(phi), sinPhi = Math.sin(phi);
         int m = 8 * k;
         for (int i=1; i<=8; i++)
         {  double x = P[i].x, y = P[i].y; 
         float x1 = (float)(x * cosPhi - y * sinPhi),
               y1 = (float)(x * sinPhi + y * cosPhi),
               z1 = (float)(P[i].z + k);
         fw.write((m + i) + " " + x1 + " " + y1 + " " + z1 +
            "\r\n");
      }
    }
    fw.write("Faces:\r\n");
    for (int k=0; k<n; k++)
    {  // Beam k again:
       int m = 8 * k;
       face(m, 1, 2, 6, 5);
       face(m, 4, 8, 7, 3);
       face(m, 5, 6, 7, 8);
       face(m, 1, 4, 3, 2);
       face(m, 2, 3, 7, 6);
       face(m, 1, 5, 8, 4);
    }
    fw.close();
  }
  void face(int m, int a, int b, int c, int d)throws IOException
  {  a += m; b += m; c += m; d += m;
     fw.write(a + " " + b + " " + c + " " + d + ".\r\n");
  }
}
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E.5 FUNCTIONS OF TWO VARIABLES
Although the programs Painter.java, ZBuf.java and HLines.java were primarily intended to represent solid objects, they can also
be used for other purposes, such as displaying surfaces that correspond to functions of the form

For example, Figure E.12 shows such a surface for the function

 
Figure E.12: Surface of a function z = f (x, y) as specified by (E.2) and (E.3)

As usual, the x-axis points towards us, the y-axis points to the right and the z-axis points upwards. Note that each of the three
coordinate axes is partly visible and partly hidden. The lines on the surface connect points (x, y, z), where

Instead of dealing only with this particular function, we will discuss a very general program, based on an expression evaluator.
Using a graphical user interface (as we also did in Section 6.6), we will enable the user to enter both an expression for the
function in question and the intervals and step sizes for x and y. Such expressions are similar to what we write in our programs,
although the set of available operators and standard functions is very limited:

1. An expression consist of one or more terms, separated by + and − .

2. A term consists of one or more factors, separated by * and /.

3. A factor can be
a. a real number (such as 12.3, 4 or − 25; number representations such as 1e7 are not allowed),

b. a variable x or a variable y (and no other variables),

c. an expression, as defined in point 1, written between parentheses, such as the one occurring
in 3 * (x + y),

d. a function call of one of the following three forms (and no others):
sin(expression)

cos(expression)

pow(expression, expression).

The last three standard functions are the same as those in the Math class of Java. For example, we write pow(x, 0.5) for x0.5.
There is no special sqrt function. As usual, blank spaces are allowed in expressions.

For example, the function given by Equation E.2 can be written as the following expression:
10 * cos(pow(x*x + y*y, 0.5))/(2 + pow(x*x + y*y, 0.5))

As for the intervals and step sizes for x and y, we write, for example,
-6 (0.25) 6

indicating that the variable in question ranges from − 6 to 6, with step size 0.25. The dialog box to be used to enter expressions,
intervals and step sizes is shown in Figure E.13.
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Figure E.13: Dialog box for program Func.java

There is also a text field in which the user has to enter the name of the output file. After filling in all text fields, the user can click
the button Write file to generate the desired file. Since this does not terminate the program, there is also an Exit button. Although
the program Func.java produces only a file, such as cospow.dat in this example, we can quickly see the 3D surface in question by
executing the two programs Func.java and HLines.java at the same time. After pressing the button Write file, in the former
program, we use File |Open in the latter to see the result. If we want to change any data, such as shown in Figure E.13, we go
back to Func.java, which is still running; after doing this, we click the Write file button and switch to HLines.java again, and so on.

If the expression entered for z = f (x, y) cannot be interpreted because it is syntactically incorrect, the computer gives an audible
signal. Such a beep also occurs if an interval or a step size is incorrect; this happens, for example, if xMin is greater than xMax –
deltaX. It follows from this that error handling is not the strongest point of the program we will discuss, and neither is its speed.
However, although the given expression is not converted into more efficient intermediate code (such as postfix), it is much faster
than the hidden- line program that follows; improvements with regard to error handling and efficiency were deliberately omitted
because many readers will find the program already complex enough in its current form. After having a look at the program listed
below, we will discuss some of its internal aspects.
// Func.java: A function of two variables x and y.
import java.awt.*;
import java.awt.event.*;
import java.io.*;

public class Func extends Frame
{  public static void main(String[] args){new Func();}
   Func(){new FuncDialog(this);}
}

class FuncDialog extends Dialog
{  TextField tfFun = new TextField (50),
   tfX = new TextField (10), tfY = new TextField (10),
   tfFileName = new TextField (15);
   Button buttonWriteFile = new Button("Write file"),
          buttonExit = new Button(" Exit ");

   FuncDialog(Frame fr)
   {  super(fr, "Function of two variables", true);

      addWindowListener(new WindowAdapter()
      {  public void windowClosing(WindowEvent e)
         {  dispose();
            System.exit(0);
         }
      });

      Panel p1 = new Panel(), p2 = new Panel(), p3 = new Panel();
      p1.add(new Label("z = f(x, y) = "));
      p1.add(tfFun);
      p2.add(new Label("xMin (deltaX) xMax"));
      p2.add(tfX);
      p2.add(new Label(" yMin (deltaY) yMax"));
      p2.add(tfY);
      p3.add(new Label("Output file name: "));
      p3.add(tfFileName);
      p3.add(buttonWriteFile); 
      p3.add(buttonExit);
      setLayout(new BorderLayout());
      add("North", p1);
      add("Center", p2);
      add("South", p3);

      buttonWriteFile.addActionListener(new ActionListener()
      {  public void actionPerformed(ActionEvent ae)
         {  float xa=0, dx=0, xb=0,
                  ya=0, dy=0, yb=0;
            String sX = tfX.getText();

            xa = (new xyExpression(sX)).factor();
            sX = sX.substring(sX.indexOf('(')+1);
            dx = (new xyExpression(sX)).factor();
            sX = sX.substring(sX.indexOf(')')+1);
            xb = (new xyExpression(sX)).factor();

            String sY = tfY.getText();
            ya = (new xyExpression(sY)).factor();
            sY = sY.substring(sY.indexOf('(')+1);
            dy = (new xyExpression(sY)).factor();

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


            dy = (new xyExpression(sY)).factor();
            sY = sY.substring(sY.indexOf(')')+1);
            yb = (new xyExpression(sY)).factor();

            if (xa + dx > xb || dx <= 0||
                ya + dy > yb || dy <= 0)
            {   Toolkit.getDefaultToolkit().beep();
                return;
            }
            String s = tfFun.getText(),
               fileName = tfFileName.getText();

            xyExpression xyE = new xyExpression(s);
            try
            {  xyE.generate(xa, dx, xb, ya, dy, yb, fileName);
            }
            catch (IOException ioe){}
      }
   });
   buttonExit.addActionListener(new ActionListener()
   {  public void actionPerformed(ActionEvent ae)
      {  dispose();System.exit(0); 
      }
   });

   Dimension dim = getToolkit().getScreenSize();
   setSize(6 * dim.width/10, dim.height/4);
   setLocation(dim.width/5, dim.height/2);
   show();
  }
}
class xyExpression
{  String buf;
   float x, y, lastNum;
   char lastChar;
   int pos;
   boolean OK;

   xyExpression(String s){buf = s; OK = true;}

   void generate(float xa, float dx, float xb,
      float ya, float dy, float yb, String fileName)
      throws IOException
   {  FileWriter fw = new FileWriter(fileName);
      int nx = Math.round((xb - xa)/dx),
          ny = Math.round((yb - ya)/dy), nr = 0;
      float za = 1e30F, zb = -1e30F;
   outer:
      for (int j=0; j<=ny; j++)
      {  float y = ya + j * dy;
         for (int i=0; i<=nx; i++)
         {  float x = xa + i * dx;
            nr = j * (nx + 1) + i + 1;
            float z = eval(x, y);
            if (!OK)
            {  Toolkit.getDefaultToolkit().beep();
               break outer;

            }
            if (z < za) za = z;
            if (z > zb) zb = z;
            fw.write(nr + " " + x + " " + y + " " + z + "\r\n");
         }
      }
     // x, y and z axes:
     float dz = (zb - za)/10, 
     xa1 = Math.min(xa - 2 * dx, 0), xb1 = Math.max(xb + 2 * dx, 0),
     ya1 = Math.min(ya - 2 * dy, 0), yb1 = Math.max(yb + 2 * dy, 0),
     za1 = Math.min(za - 2 * dz, 0), zb1 = Math.max(zb + 2 * dz, 0);
     fw.write(++nr + " " + xa1 + " 0 0\r\n");
     fw.write(++nr + " " + xb1 + " 0 0\r\n");
     fw.write(++nr + " 0 " + ya1 + " 0\r\n");
     fw.write(++nr + " 0 " + yb1 + " 0\r\n");
     fw.write(++nr + " 0 0 " + za1 + "\r\n");
     fw.write(++nr + " 0 0 " + zb1 + "\r\n");
     fw.write("Faces:\r\n");
     for (int i=0; i<nx; i++)
     {  for (int j=0; j<ny; j++)
        {  int k = j * (nx + 1) + i + 1,
               m = k + nx + 1, k1 = k + 1, m1 = m + 1;
           fw.write(k + " " + -m1 + " " + k1 + ".\r\n");
           fw.write(k1 + " " + m1 + " " + -k + ".\r\n");
           fw.write(k + " " + - m1 + " " + m + ".\r\n");
           fw.write(m + " " + m1 + " " + - k + ".\r\n");
        }
     }
     int k = (nx + 1) * (ny + 1);
     fw.write(++k + " " + ++k + ".\r\n"); // x-axis
     fw.write(++k + " " + ++k + ".\r\n"); // y-axis
     fw.write(++k + " " + ++k + ".\r\n"); // z-axis
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     fw.write(++k + " " + ++k + ".\r\n"); // z-axis
     fw.close();
     System.out.println("Ready!");
   }

   boolean readChar()
   {  char ch;
      do
      {  if (pos == buf.length())return false;
         ch = buf.charAt(pos++);
      }  while (ch == ' ');
      lastChar = ch;
      return true;
   }

   boolean nextIs(char ch)
   {  char ch0 = lastChar;
      if (readChar())
      {  if (ch == lastChar) return true;
         pos--; 
      }
      lastChar = ch0;
      return false;
   }

   float eval(float x, float y)
   {  this.x = x; this.y = y;
      pos = 0;
      OK = true;
      return expression();
   }

   float expression()
   {  float x = term();
      for (;;)
      {  if (nextIs('+')) x += term(); else
         if (nextIs('-')) x -= term(); else break;
      }
      return x;
   }

   float term()
   {  float x = factor();
      for (;;)
      {  if (nextIs('*')) x *= factor(); else
         if (nextIs('/')) x /= factor(); else break;
      }
      return x;
   }

   float factor()
   {  float v = 0;
      if (!readChar()) return 0;
      if (lastChar == 'x') return x;
      if (lastChar == 'y') return y;
      if (lastChar == '(')
      {  v = expression();
         if (!nextIs(')')){OK = false; return 0;}
         return v;
      }
      char ch = lastChar;
      if (ch == 'c'     // cos(expression)
         || ch == 's'   // sin(expression) 
         || ch == 'p') //  pow(expression, expression)
       { while ((OK = readChar()) && lastChar != '(');
         if (!OK) return 0;
         float arg = expression();
         if (ch == 'p')
         {  if (!nextIs(',')){OK = false; return 0;}
            double exponent = expression();
            v = (float)Math.pow(arg, exponent);
         }
         else
            v = (float)(ch == 'c' ? Math.cos(arg) : Math.sin(arg));
         if (!nextIs(')')){OK = false; return 0;}
         return v;
       }
       pos--;
       if (number()) return lastNum;
       OK = false;
       return 0;
    }

    boolean number()
    {  float x=0;
       int nDec = -1;
       boolean neg = false;
       do
       {  if (!readChar()) return false;
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       {  if (!readChar()) return false;
          if (lastChar == '-')
          {  neg = true;
             if (!readChar()) return false;
             break;
          }
       }  while (Character.isWhitespace(lastChar));
       if (lastChar == '.')
       {  if (!readChar()) return false;
          nDec = 0;
       }
       if (!Character.isDigit(lastChar)){OK = false; return false;}
       for (;;)
       {  if (lastChar == '.' "" nDec < 0) nDec = 0; else
          if (Character.isDigit(lastChar))
          {  x = 10 * x + (lastChar - '0');
             if (nDec >= 0) nDec++;
          }  else 
          {  pos--;
             break;
          }
          if (!readChar()) break;
        }
        while (nDec > 0){x *= 0.1; nDec--;}
        lastNum = (neg ? -x : x);
        return true;
    }
}

The given expression is evaluated when the first part of the output file is generated. In the class xyExpression we find the method
generate, in which, five lines after the label outer, the following call to eval occurs:
float z = eval(x, y);

This method eval calls the method expression, who set ask is to scan an expression, stored in the array buf, and to return its
value. According to our above definition of expression, defining an expression as a sequence of terms separated by + and −
operators, the method expression calls the method term, which scans a term and returns its value, and so on. This way of parsing,
that is, analyzing expressions that satisfy a given grammar, is referred to as recursive descent. This adjective recursive will be
clear if we note that our above syntactic definition of expression and the corresponding method are recursive. An expression
cancontaina factor that again contains an expression. Accordingly, in the program, expression calls term, which calls factor, which
may again call expression. We immediately evaluate the syntactic entities we are dealing with, or, as we normally say, we interpret
the source code. Instead, we might have generated intermediate code. More information about recursive descent parsing can be
found in Ammeraal (1996).

In the program, parsing is done by using two simple methods, readChar and nextIs, as well as the variable lastChar, all belonging
to the class xyExpression:
boolean readChar()

This method scans the next character, if possible, places this in the variable lastChar and returns true. If this is not possible
because the end of the expression is encountered, it returns false. This methods skips any blank spaces.
boolean nextIs(char ch)

This method tests if the next character to be scanned is equal to the argument ch. If so, it scans this character and returns true; if
not, it leaves the scan position unaltered and returns false.

After this discussion of parsing (which is unusual in a book on computer graphics) let us now turn to the graphics aspects of this
program. It goes without saying that the vertices of a polygon, as specified in our 3D data files after the word Faces, should lie in
the same plane. This is obviously the case for rectangles (or squares) such as 7-8-12-11 in Figure E.14(a) if we regard these as
lying in the plane z = 0.

 
Figure E.14: Two triangles with an invisible common edge forming a rectangle

However, the corresponding four points on the surface may or may not lie in the same plane. We therefore prefer triangles to
rectangles in this case. Remember, the three points of a triangle always lie in the same plane. Instead of the rectangle 7-8-12-11,
we can specify the two triangles 7-8-12 and 7-12-11. However, we must pay attention to these two aspects:

1. Diagonals, such as 7–12, must not be drawn; we solve this problem by using minus signs, as discussed in
Section 6.4.

2. Each triangle has two sides; since we do not know in advance which will be visible, we have to specify both.
Recall that we have discussed this subject of ‘individual faces’ in Section 6.5.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


According to this second point, the vertices of each triangle in Figure E.14(b) will occur twice in the data file: clockwise and
counter-clockwise. Using minus signs, as discussed in the first point, we use four lines in the data file for the ‘rectangle’ k, k + 1, m
+ 1, m of Figure E.14(b), as shown below:

k − (m + 1) k + 1. (lower-right, clockwise)

k + 1 m + 1 −  k. (lower-right, counter-clockwise)

k − (m + 1) m. (upper-left, counter-clockwise)

m m + 1 − k. (upper-left, clockwise)

You can find the code that writes these four triangles to a file in the method generate.
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Appendix F: Hints and Solutions to Exercises
1.1  Numbers of pixels:

g.drawLine (10, 20, 100, 50); // 100 - 10 + 1 = 91 pixels
g.drawRect (10, 10, 8, 5);    // 2 * 8 + 2 * 5 = 26 pixels
g.fillRect (10, 10, 8, 5);    // 8 * 5 = 40 pixels

 
1.2  Program to draw many squares:

// ManySq.java: This program drawsnxnsets, each
//   consisting of k squares, arranged as on a chessboard.
//   Each edge is divided into two parts with ratio
//   (1 - q)  : q. The values of n, k and q are program
              arguments.

import java.awt.*;
import java.awt.event.*;

public class ManySq extends Frame
{  public static void main(String[] args)
   {  if (args.length != 3)
      {  System.out.println("Supply n, k and q as arguments");
         System.exit(1);
      }
      int n = Integer.valueOf(args[0]).intValue(),
          k = Integer.valueOf(args[1]).intValue();
      float q = Float.valueOf(args[2]).floatValue();
      new ManySq(n, k, q);
    }
    ManySq(int n, int k, float q)
    {  super("ManySq: Many squares");
       addWindowListener(new WindowAdapter()
        {public void windowClosing(
                WindowEvent e){System.exit(0);}});
       add("Center", new CvManySq(n, k, q));
       setSize (600, 400);
       show();
    }
  }

  class CvManySq extends Canvas
  {  int centerX, centerY, n, k;
     float p0, q0;

     CvManySq(int nn, int kk, float qq){n=nn; k=kk; q0=qq; p0 =
                    1-q0;}

     int iX(float x){return Math.round(centerX + x);}
     int iY(float y){return Math.round(centerY - y);}

     public void paint(Graphics g)
     {  Dimension d = getSize();
        int maxX = d.width - 1, maxY = d.height - 1,
           minMaxXY = Math.min(maxX, maxY);
        centerX = maxX/2; centerY = maxY/2;

        float r = 0.45F * minMaxXY / n;
        for (int x=0; x<n; x++)
        for (int y=0; y<n; y++)
        {  float xCnew = (2 * x - n + 1) * r,
                 yCnew = (2 * y - n + 1) * r,
              xA, yA, xB, yB, xC, yC, xD, yD,
              xA1, yA1, xB1, yB1, xC1, yC1, xD1, yD1, p=p0, q=q0;
           if (x % 2 + y % 2 == 1){p = q0; q = p0;}
           xA = xD = xCnew - r; xB = xC = xCnew + r;
           yA = yB = yCnew - r; yC = yD = yCnew + r;
           for (int i=0; i<k; i++)
           {  g.drawLine(iX(xA), iY(yA), iX(xB), iY(yB));
              g.drawLine(iX(xB), iY(yB), iX(xC), iY(yC));
              g.drawLine(iX(xC), iY(yC), iX(xD), iY(yD));
              g.drawLine(iX(xD), iY(yD), iX(xA), iY(yA));
              xA1 = p * xA+q * xB; yA1 = p * yA+q * yB;
              xB1 = p * xB+q * xC; yB1 = p * yB+q * yC;
              xC1 = p * xC+q * xD; yC1 = p * yC+q * yD;
              xD1 = p * xD+q * xA; yD1 = p * yD+q * yA;
              xA = xA1; xB = xB1; xC = xC1; xD = xD1;
              yA = yA1; yB = yB1; yC = yC1; yD = yD1;
           }
        }
    }
}

 
1.3  To draw all edges as exactly straight lines and to make the vertices of inner squares lie exactly on the edges of their

surrounding squares, use device coordinates, starting with a pair of very small squares (⋄  and □ ), and making the squares
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surrounding squares, use device coordinates, starting with a pair of very small squares (⋄  and □ ), and making the squares
of each next pair exactly twice as large as those of the preceding pair.

 
1.4  The radius r of the circumscribed circles for the hexagons is supplied by the user. Based on this radius r, the following

fragment (in which the variable names are self-explanatory) may be helpful:
int iX(float x){return Math.round(centerX + x/pixelSize);}
int iY(float y){return Math.round(centerY - y/pixelSize);}

void drawLine(Graphics g, float xA, float yA, float xB, float yB)
{  g.drawLine(iX(xA), iY(yA), iX(xB), iY(yB));
}
...

float halfr = r/2, horpitch = 1.5F * r,
  w = r * (float)Math.sqrt (3),h=w/2, marginleft,
                marginbottom;
int nhor = (int)Math.floor((rWidth - 2 * r) / horpitch) + 1,
    nvert = (int)Math.floor(rHeight/w);
marginleft = -rWidth/2 + 0.5F * (rWidth - halfr - nhor *
              horpitch);
marginbottom = -rHeight/2 + 0.5F * (rHeight - nvert * w);
for (int i=0; i<nhor; i++)
{  float x = marginleft + r + i * horpitch,
    y0 = marginbottom + (1 + i % 2)* h; // center of lowest
              hexagon
    int m = nvert - i % 2;
// There will be nvert hexagons in each column for i = 0, 2,4,
              ...
// while there will be nvert - 1 in each column for i = 1, 3, 5,
              ...
// Special case: if nvert = 1 and nhor > 1, then x is increased
              by
// horpitch/2 because otherwise there will be an empty column on
              the
// right.
   if (nvert == 1 && nhor > 1)
      x += horpitch/2;
   for (int j=0; j<m; j++)
   {  float y = y0+j*w;
      drawLine(g, x + halfr,y+h,x-halfr,y+h);
      drawLine(g, x - halfr, y + h, x - r, y);
      drawLine(g, x - r, y, x - halfr, y - h);
      ...

 
1.5  We begin by computing the length

where

Since there should be a dash, not a gap, at each endpoint, and we use gap widths that are about equal to dashLength, we
use the equality

to compute n, the number of dashes. Writing h1 = u1//(2n −  1) and h2 = u2/ (2n −  1), and denoting the dashes by i = 0, 1,
… , n −  1, we draw dash i as a straight line with endpoints (xA + 2ih1, yA + 2ih2) and ((xA + (2i + 1)h1, yA + (2i + 1)h2).

2.1  After rotating the vector v = (v1, v2) through 90° counter-clockwise, we obtain the vector (− v2, v1). Setting v = (v1, v2) =
(xB −  xA, yB −  yA), we can therefore find the points D and C by adding (− v2, v1) to the coordinates of A and B,
respectively.

 
2.2  To determine the position of P relative to the triangle ABC, we first test whether P lies on one of the three sides of the

triangle, using the method onSegment, discussed in Section 2.10. If this is not the case, we test whether P lies inside
ABC, using the method insideTriangle of Section 2.8. To do this properly, we need to know the orientation of A, B and C,
for which we can use the method ccw of Section 2.6. If this orientation is clockwise, we use C, B and A, in that order, as
the first three arguments of insideTriangle, so that the orientation of these arguments is counter- clockwise, as required. If
P lies neither on a triangle side nor inside the triangle, it lies outside it.

 
2.3  Section 2.11 shows how to compute the distance between a point and a line. We perform this computation three times to

determine which of the three triangle sides AB, BC and CA (or rather the infinite lines through these sides) lies closest to
point P. We then use the method projection of Section 2.12 to compute the projection P′ of P on the triangle side in
question (or on an extension of it). We draw both the triangle and the line segment PP′. If the projection point P′ lies on
an extension of a side, we also connect this point to the side (AB, BC or CA), to indicate clearly which of the three lines
has been used. For example, if P′ lies on an extension of BC (not between B and C), we can draw P′B.
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2.4  Using the vector AB = u = (u1, u2) = (xB −  xA, yB −  yA) and the parameter λ , we can represent the line through A and B

by the following vector form:

Similarly, with CD = v = (v1, v2) = (xD −  xC, yD −  yC) and parameter μ , the line through C and D is represented by

We find the intersection point S by solving

for λ  (rewriting this vector equation as a system of two linear equations, using the x-and y- coordinates of A and C as well
as u1, u2, v1 and v2). We then use the value of λ  computed in this way to find

When deriving the desired value of λ , we will have to perform a division by the expression u2v1 −  u1v2 (which is a
determinant). If this determinant is zero, the lines AB and CD do not have a unique intersection point because these lines
are parallel or coincide. Since the points A, B, C and D are obtained by clicking and there are (very small) rounding-off
errors, we had better replace the condition

with this one:

where epsilon is some very small positive value. To make this independent of the units of length and in view of the way
the determinant is computed, a reasonable value is

 
2.5  To construct the bisector of angle B, we can compute the two vectors u = BA/|BA| and v = BC/|BC|. We can view these

vectors as arrows starting at B and pointing to A and C, respectively. Since both u and v have length 1, the sum vector

can then be regarded as another arrow starting at B but lying on the desired bisector, so that, with parameter α , the
vector form

denotes the bisector of angle B. The intersection point D of this bisector and triangle side AC can then be found in the
same way as in Exercise 2.4.

 
2.6  Using AB=u=(u1, u2)=(xB −  xA, yB −  yA) and v =(v1, v2) = (− u2, u1), we can write the following vector form for the

perpendicular bisector of AB:

To find the circumcenter D of triangle ABC, write a similar vector form, say,

for the perpendicular bisector of BC. You can then find the intersection of these two lines by solving the vector equation

for λ  (or μ ). Then the circumcenter D is found as the point of intersection by using this value λ  in Equation (F.1). After
computing the radius r =|AD|, and using the methods iX and iY to convert real logical coordinates into integer device
coordinates, you can draw the circle through A, B and C by writing:

int xLeft = iX(xD - r), xRight = iX(xD + r),
    yTop = iY(yD + r), yBottom = iY(yD - r);
g.drawOval(xLeft, yTop, xRight - xLeft, yBottom - yTop);
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2.7  Compute the center C and the radius r of the circle through P, Q and R (see Exercise 2.6). Although there is a method

drawArc in Java, this is not suitable for our present purpose because it requires angles to be specified (in degrees) as
integers; especially if r is large, this may cause too large rounding-off errors with regard to both endpoints of the arc. We
therefore simply use a great many straight line segments. We can do this by using Point2D objects for C, P, Q and R (see
Section 1.5). Taking the orientation of P, Q and R into account by means of the method area2 of class Tools2D (see
Section 2.13), we can write:
double alpha = Math.atan2(P.y - C.y, P.x - C.x),
       beta  = Math.atan2(R.y - C.y, R.x - C.x);
if (Tools2D.area2(P, Q, R) > 0)
   arcCcw(g, C, r, alpha, beta);
else
   arcCcw(g, C, r, beta, alpha);

The method arcCcw, used here, is listed below. Working counter- clockwise, it draws the arc with start and end angles
alpha and beta and belonging to the circle with center C and radius r:
void arcCcw(Graphics g, Point2D C, double r,
   double alpha, double beta)
{  double pi2=2* Math.PI, delta = beta - alpha;
   // Reduce delta to the interval [0, 2pi):
   delta = (delta + pi2) % pi2;
   int X0=0, Y0=0,                     // Arc length = r * delta
      n = (int)Math.ceil(r * delta / 0.02); // 0.02 = rWidth/500
   double theta = delta / n;
   for (int i=0; i<=n; i++)
   {  double phi = alpha + i * theta,
         x = C.x + r * Math.cos(phi),
         y = C.y + r * Math.sin(phi);
      int X = iX((float)x), Y = iY((float)y );
      if (i > 0) g.drawLine(X0, Y0, X, Y);
      X0 = X; Y0 = Y;
   }
}

 
2.8  We can use the first of the two methods projection of Section 2.12 to find the projection D' of D on AB. Since the center M

of the circular arc lies on the bisector of the angle ABC, we compute the unit vectors u = BA/|BA| and v = BC/|BC| and w
= (u + v)/|u + v|, which start at B and point to A, C and M, respectively. We now have to find a scale factor λ , so that BM
= λ  w. Since the cosine of the angle D′ BM is equal to w · v and using μ  =|BD′|, we can compute λ  = µ/(w · v). We then
find the endpoint E of the arc on BC and the center M as follows: E = B + μv, M = B + λw. Obviously, the radius of the
arc is r =|MD′|. We can now compute the start and end angles α  and β  and draw the arc by choosing between two calls
to the method arcCcw, depending on the orientation of the points A, B and C (see Exercise 2.7).

 
2.9  Refer to Exercise 2.8 for bisectors of angles and to Exercise 2.1 for the intersection of two lines. This will provide you with

the centers of the four circles. You can use the radius of each circle as the distance of its center to one of its tangents.
Recall that we have discussed the distance of points to lines in Section 2.11.

 
2.10  Use vector AB = (u1, u2) to find the points D = A + (− u2, u1), C = D + (u1, u2)and E = D + 0.5 {(u1, u2) + (− u2, u1)}.

3.1  

 
3.2  Similar to Exercise 3.1.

 
3.3  For shearing a set of points with reference to point C, we replace the shearing equations at the end of Section 3.2 with the

similar ones

which reduces to x′ = x + a(y −  yC), y ′ = y.

The sharing operation will transform the circle into an ellipse with a non-horizontal axis, so that we cannot use the Java
method drawOval. Therefore, for some large value of n, we approximate a circle with center C(xC, yC) and radius r by
computing the following n points (xi, yi) of this circle:

where θ  = 2 π / n and i = 0, 1, … , n −  1. Instead of immediately connecting these points by straight lines, which would
produce the circle, we first subject each xi to the above shearing formula.

 
3.4  Just compute the product AA − 1 to obtain the identity matrix I. For example, the upper-left element of this product is equal
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3.4  Just compute the product AA − 1 to obtain the identity matrix I. For example, the upper-left element of this product is equal
to the inner product of the first row of A and the first column of A− 1, which is a11(a22/D) + a12(− a21/D) = D/D = 1.

 
3.5  If there are many points for which we have to check whether they lie within a single triangle (or on an edge of it), the

method insideTriangle of the following class is more efficient than the one discussed in Section 2.8, since most of the work
is done here by the constructor, which need be called only once for that triangle:
class TriaTest
{  private Point2D C;
   private double a1, a2, b1, b2, c1, c2, d1, d2, det;

   TriaTest(Point2D A, Point2D B, Point2D C)
   {  this.C = C;
      a1 = A.x - C.x; a2 = A.y - C.y;
      b1 = B.x - C.x; b2 = B.y - C.y;
      det= a1 * b2 - b1 * a2;
      if (det != 0)
      {  c1 = b2/det; c2 = -a2/det;
         d1 = -b1/det; d2 = a1/det;
      }
   }

   double area2(){return det;}

   boolean insideTriangle(Point2D P)
   {  double p1 = P.x - C.x, p2 = P.y - C.y,
         lambda, mu;
      return (lambda = p1 * c1 + p2 * d1) >= 0 &&
          (mu = p1 * c2 + p2 * d2) >= 0 &&
          lambda + mu <= 1;
   }
}

4.1  Adapt the Java program for Bresenham's algorithm by drawing pixels from both of the endpoints towards the middle of the
line. Either calculate where the middle point is beforehand or check on-the-fly (that is, within the loop) when the two pixels
merge in the middle. There may be one or two middle points depending on whether the line consists of an odd or even
number of pixels. If there is only one, it is a good idea to draw this pixel after exiting the loop. Check if your solution also
works correctly for very short lines, consisting of one or two pixels. You solution should be very general in that it works for
any two endpoints P and Q.

 
4.2  You should add a second for-loop in which the roles of x and y are interchanged. For example, the calls to putPixel should

have ++y as their third argument instead of ++x as their second. If |yQ −  yP|≤ |xQ −  xP|, the first loop should be executed;
otherwise the second.

 
4.3  The following program produces only Figure 4.19. You should extend it, enabling the user to specify the two endpoints of a

line segment and both the center and the radius of a circle.
// Bresenham.java: Bresenham algorithms for lines and circles
//                 demonstrated by using superpixels.
import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class Bresenham extends Frame
{  public static void main(String[] args){new Bresenham();}

   Bresenham()
   {  super("Bresenham");
      addWindowListener(new WindowAdapter()
       {public void windowClosing(WindowEvent e)
               {System.exit(0);}});
       setSize (340, 230);
       add("Center", new CvBresenham());
       show();
   }
}
class CvBresenham extends Canvas
{  float rWidth = 10.0F, rHeight = 7.5F, pixelSize;
   int centerX, centerY, dGrid = 10, maxX, maxY;

   void initgr()
   {  Dimension d;
      d = getSize();
      maxX = d.width - 1;
      maxY = d.height - 1;
      pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
      centerX = maxX/2; centerY = maxY/2;
   }
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   }
      int iX(float x){return Math.round(centerX + x/pixelSize);}
      int iY(float y){return Math.round(centerY - y/pixelSize);}

      void putPixel(Graphics g, int x, int y)
      {  int x1 = x * dGrid, y1 = y * dGrid, h = dGrid/2;
         g.drawOval(x1 - h, y1 - h, dGrid, dGrid);
      }

      void drawLine(Graphics g, int xP, int yP, int xQ, int yQ)
      {  int x = xP, y = yP, D = 0, HX = xQ - xP, HY = yQ - yP,
            c, M, xInc = 1, yInc = 1;
         if (HX < 0){xInc = -1; HX = -HX;}
         if (HY < 0){yInc = -1; HY = -HY;}
         if (HY <= HX)
         {  c = 2 * HX; M = 2 * HY;
            for (;;)
            {  putPixel(g, x, y);
               if (x == xQ) break;
               x += xInc;
               D += M;
               if (D > HX){y += yInc; D -= c;}
            }
         }
         else
         {  c = 2 * HY; M = 2 * HX;
            for (;;)
            {  putPixel(g, x, y);
               if (y == yQ) break;
               y += yInc;
               D += M;
               if (D > HY){x += xInc; D -= c;}
            }
         }
}

void drawCircle(Graphics g, int xC, int yC, int r)
{  int x = 0, y = r, u = 1, v = 2 * r - 1, E = 0;
   while (x < y)
   {  putPixel(g, xC + x, yC + y); // NNE
      putPixel(g, xC + y, yC - x); // ESE
      putPixel(g, xC - x, yC - y); // SSW
      putPixel(g, xC - y, yC + x); // WNW
      x++; E += u; u += 2;
      if (v < 2 * E){y--; E -= v; v -= 2;}
      if (x > y) break;
      putPixel(g, xC + y, yC + x); // ENE
      putPixel(g, xC + x, yC - y); // SSE
      putPixel(g, xC - y, yC - x); // WSW
      putPixel(g, xC - x, yC + y); // NNW
     }
   }

   void showGrid(Graphics g)
   {  for (int x=dGrid; x<=maxX; x+=dGrid)
         for (int y=dGrid; y<=maxY; y+=dGrid)
            g.drawLine(x, y, x, y);
   }

   public void paint(Graphics g)
   {  initgr();
      showGrid(g);
      drawLine(g, 1, 1, 12, 5);
      drawCircle(g, 23, 10, 8);
   }
}

 
4.4  Since an unknown number of curve segments are to be dealt with, we can use the Java concept of Vector, as we have

also done in Section 1.5 and elsewhere to store Point2D objects representing the vertices of a polygon. In this case it
makes sense to define a class CurveSegment andtousea Vector of CurveSegment objects, as this fragment shows:
class CurveSegment
{  Point2D[] P;
   CurveSegment(Point2D[] P){this.P = P;}
   ...
}
Writing

Vector curves = new Vector();

and using the array P, declared as

Point2D[] P = new Point2D[4];

containing the most recent four points, as we did in program Bezier.java in Section 4.6, we can add a new curve segment
to curves by writing
curves.addElement(new CurveSegment(P));

The object curves can store several curves, each consisting of some consecutive elements.
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4.5  In program Bspline.java of Section 4.7, pressing a key is interpreted as a signal to terminate the process of extending the

curve. Insert the line
char ch = evt.getKeyChar();

in the method keyTyped so that you can use the character ch to differentiate between different characters entered by the
user and to use them as commands.

Use a Vector element for each array representing a curve. Recall that we have used the statement
V.copyInto(P);

in the paint method of program Bspline.java, to copy the Vector object V into the array P. Using a different Vector object,
say, curves, we can now add the array P to curves. The deletion of the last curve, as required by the d command, is then
implemented as
curves.setSize(curves.size()-1);

 
4.6  Represent the grid on the screen by drawing ten equidistant horizontal lines that intersect ten equidistant vertical lines. If

the user clicks on (or near) a point of intersection of these lines, transform the device coordinates to gridpoint coordinates,
ranging from 0 through 9, and use these gridpoint coordinates to select P and Q. Draw the line PQ after Q has been
defined. On the right of all these horizontal and vertical lines, display the strings

below each other, where the array algorithm is defined and initialized as follows:
String[] algorithm = {
   "int x=xP,y=yP,d=0,dx=xQ-xP,c=2*dx,", // 0
   "    m=2*(yQ-yP);",                   // 1
   "for (;;)",                           // 2
   "{ putPixel(g, x, y);",               // 3
   " if (x == xQ) break;",               // 4
   " x++; d += m;",                      // 5
   " if (d > dx){y++; d -= c;}",      // 6
   "}"};                                 // 7

As soon as the user has defined point Q, the line stored as algorithm[3] should be highlighted, indicating that the call to
putPixel is about to be executed. You can realize this by using a variable, say i, indicating which of the above eight
program lines (if any) should be displayed in red (or equal to, say, − 1 if all program lines are to appear in black). All lines
algorithm[j] with j ≠  i are displayed in black. You can use a switch statement to test the value of i in a method stepPressed.
For example, you can write a fragment of the following form in the constructor of your canvas class:
addMouseListener(new MouseAdapter()
{  public void mousePressed(MouseEvent evt)
   {  // When the mouse is clicked, determine where
      // it is on the screen and do the appropriate
      // action, if any.
      int xClick = 0, yClick = 0;
      // Get the coordinates
      xClick = evt.getX();
      yClick = evt.getY();
      // Check to see if STEP button was pressed
      if (xClick, yClick lies within the rectangle representing
                                                 the Step button)
         stepPressed();
      else
      if (xClick, yClick) lies within grid area
      {  ...
      }
      repaint();
   }
});

In the switch statement just mentioned, you should execute actions defined in the program line (stored in the algorithm
array) that was previously highlighted and update the variable i mentioned above. Your method paint will use this variable i
to display the correct program line in red and the others in black.

5.1  As Figure 5.11 shows, nine cube edges are visible and three are invisible. In the paint method of program CubePers.java,
replace the calls to the method line with this fragment:

// Visible edges:
line(g, 0, 1); line(g, 1, 5); line(g, 5, 4); line(g, 4, 0);
line(g, 1, 2); line(g, 2, 6); line(g, 6, 7); line(g, 7, 4);
line(g, 5, 6);

// Invisible edges:
g.setColor(Color.blue);
line(g, 0, 3); line(g, 3, 2); line(g, 3, 7);

If you did Exercise 1.5 and have a class Lines, containing the method dashedLine, available, you may be able to replace
the last two of the above lines with
dash(g, 0, 3); dash(g, 3, 2); dash(g, 3, 7);

while adding the following method to the class CvCubePers:
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void dash(Graphics g, int i, int j)
{  Point2D P = obj.vScr[i], Q = obj.vScr[j];
   Lines.dashedLine(g, iX(P.x), iY(P.y), iX(Q.x), iY(Q.y), 8);
}

Figure F.1 shows the result of this solution with dashed lines.

 
Figure F.1: Dashed lines representing invisible edges

 
5.2  There are two fillPolygon methods: one taking a Polygon object as an argument and the other taking two arrays x and y

instead. In either case, do not forget to convert logical to device coordinates, using the methods iX and iY.Use setColor,
with different colors before each of the three calls to fillPolygon.

 
5.3  To replace Figure 5.11, begin by sketching two cubes, say, one on either side of the xz-plane, and by assigning the

numbers 0–7 to the vertices of the first and 8–15 to those of second cube. With this sketch, and using arrays w and vScr
with length 16 instead of 8, you can easily update the program as requested. Remember to increase the value of objSize,
which is used to compute both the object distance ρ  and the screen distance d.

 
5.4  The following program demonstrates the principle of animation (with double buffering) for a simple case: a line segment is

rotated about one of its endpoints, which is the center of the canvas. Every 20 ms, the angle α  is increased by 0.01
radians and the line from the origin O (in the center of the canvas) to point (r cos α , r sin α ) is drawn. The effect is that of a
running clock with only one hand:
// Anim.java: Animation with double buffering.
import java.awt.*;
import java.awt.event.*;
public class Anim extends Frame
{  public static void main(String[] args){new Anim();}

   Anim()
   {  super("Animation (double buffering)");
      addWindowListener(new WindowAdapter()
       {public void windowClosing(WindowEvent e)
               {System.exit(0);}});
      add("Center", new CvAnim());
      Dimension dim = getToolkit().getScreenSize();
      setSize(dim.width/2, dim.height/2);
      setLocation(dim.width/4, dim.height/4);
      show();
   }
}
class CvAnim extends Canvas
   implements Runnable
{  float rWidth = 10.0F, rHeight = 10.0F, xC, yC, pixelSize;
   int centerX, centerY, w, h;
   Dimension d;
   Image image;
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   Image image;
   Graphics gImage;

   float alpha = 0;
   Thread thr = new Thread(this);

   public void run()
   {  try
      { for (;;)
        {  alpha += 0.01;
           repaint();
           Thread.sleep (20);
        }
      }
      catch (InterruptedException e){}
   }

   CvAnim(){thr.start();}

   void initgr()
   {  d = getSize();
      int maxX = d.width - 1, maxY = d.height - 1;
      pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
      centerX = maxX/2; centerY = maxY/2;
      xC = rWidth/2; yC = rHeight/2;
   }

   int iX(float x){return Math.round(centerX + x/pixelSize);}
   int iY(float y){return Math.round(centerY - y/pixelSize);}
   public void update(Graphics g){paint(g);}
   public void paint(Graphics g)
   {  initgr();
      if (w != d.width || h != d.height)
      {   w = d.width; h = d.height;
          image = createImage(w, h);
          gImage = image.getGraphics();
      }
      float r = 0.8F * Math.min(xC, yC),
         x = r * (float)Math.cos(alpha),
         y = r * (float)Math.sin(alpha);
      gImage.clearRect (0, 0, w, h);
      // Every 20 ms, the following line is drawn.
      // Each time, its endpoint (x, y) is a
      // different point on a circle:
         gImage.drawLine(iX (0), iY (0), iX(x), iY(y));
         g.drawImage(image, 0, 0, null);
    }
}

 
5.5  The following program produces two rotating cubes, illustrated by Figure 5.15. Remember, this program works only if the

class file Rota3D. class (see Section 3.9) is available in the current directory:
// CubRot2.java: Two rotating cubes with double buffering.
//   Uses: Point2D (Section 1.5),
//         Point3D, Rota3D (Section 3.9)
import java.awt.*;
import java.awt.event.*;

public class CubRot2 extends Frame
{  public static void main(String[] args){new CubRot2();}

   CubRot2()
   {  super("Rotating cubes (double buffering)");
      addWindowListener(new WindowAdapter()
       {public void windowClosing(WindowEvent e)
               {System.exit(0);}});
      add("Center", new CvCubRot2());
      Dimension dim = getToolkit().getScreenSize();
      setSize(3 * dim.width/4, dim.height/2);
      setLocation(dim.width/8, dim.height/4);
      show();
   }
}

class CvCubRot2 extends Canvas
   implements Runnable
{  int centerX, centerY, w, h;
   Obj2 obj = new Obj2();
   Image image;
   Graphics gImage;

   double alpha = 0;
   Thread thr = new Thread(this);

   public void run()
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   public void run()
{  try
   {  for (;;)
      {  alpha += 0.01;
         repaint();
         Thread.sleep (20);
      }
   }
   catch (InterruptedException e){}
}

CvCubRot2(){thr.start();}
public void update(Graphics g){paint(g);}

int iX(float x){return Math.round(centerX + x);}
int iY(float y){return Math.round(centerY - y);}

void line(int i, int j)
{  Point2D P = obj.vScr[i], Q = obj.vScr[j];
   gImage.drawLine(iX(P.x), iY(P.y), iX(Q.x), iY(Q.y));
}
public void paint(Graphics g)
{  Dimension dim = getSize();
   int maxX = dim.width - 1, maxY = dim.height - 1;
   centerX = maxX/2; centerY = maxY/2;
   int minMaxXY = Math.min(maxX, maxY);
   obj.d = obj.rho * minMaxXY / obj.objSize;
   obj.rotateCube(alpha);
   obj.eyeAndScreen();
   if (w != dim.width || h != dim.height)
   {  w = dim.width; h = dim.height;
      image = createImage(w, h);
      gImage = image.getGraphics();
   }
   gImage.clearRect (0, 0, w, h);
   // Horizontal edges at the bottom:
   line (0, 1); line (1, 2); line (2, 3); line (3, 0);
   // Horizontal edges at the top:
   line (4, 5); line (5, 6); line (6, 7); line (7, 4);
   // Vertical edges:
   line (0, 4); line (1, 5); line (2, 6); line (3, 7);
   // Same for second cube:
   line (8, 9); line (9, 10); line (10, 11); line (11, 8);
   // Horizontal edges at the top:
      line (12, 13); line (13, 14); line (14, 15); line (15, 12);
      // Vertical edges:
      line (8, 12); line (9, 13); line (10, 14); line (11, 15);
      g.drawImage(image, 0, 0, null);
   }
}

class Obj2 // Contains 3D object data for two cubes
{   float rho, theta=0F, phi=1.3F, d;
    Point3D[] s, w; // World coordinates
    Point2D[] vScr; // Screen coordinates
    float v11, v12, v13, v21, v22, v23,
      v32, v33, v43, // Elements of viewing matrix V.
      xe, ye, ze, objSize = 8;

    Obj2()
    {  s = new Point3D[16]; // Start situation
       w = new Point3D[16]; // After rotation
       vScr = new Point2D[16];
       // Bottom surface:
       s[0] = new Point3D( 1, -3, -1);
       s[1] = new Point3D( 1, -1, -1);
       s[2] = new Point3D(-1, -1, -1);
       s[3] = new Point3D(-1, -3, -1);
       // Top surface:
       s[4] = new Point3D( 1, -3, 1);
       s[5] = new Point3D( 1, -1, 1);
       s[6] = new Point3D(-1, -1, 1);
       s[7] = new Point3D(-1, -3, 1);
       // Bottom surface:
       s[8] = new Point3D( 1, 1, -1);
       s[9] = new Point3D( 1, 3, -1);
       s[10] = new Point3D(-1, 3, -1);
       s[11] = new Point3D(-1, 1, -1);
       // Top surface:
       s[12] = new Point3D( 1, 1, 1);
       s[13] = new Point3D( 1, 3, 1);
       s[14] = new Point3D(-1, 3, 1);
       s[15] = new Point3D(-1, 1, 1);
       rho = 15; // For reasonable perspective effect
   }

void rotateCube(double alpha)
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void rotateCube(double alpha)
   {   Rota3D.initRotate(s[0], s[4], alpha);
       for (int i=0; i<8; i++)
          w[i] = Rota3D.rotate(s[i]);
       Rota3D.initRotate(s[13], s[9], 2 * alpha);
       for (int i=8; i<16; i++)
          w[i] = Rota3D.rotate(s[i]);
   }

   void initPersp()
   {  float costh = (float)Math.cos(theta),
            sinth = (float)Math.sin(theta),
            cosph = (float)Math.cos(phi),
            sinph = (float)Math.sin(phi);
      v11 = -sinth;
      v12 = -cosph * costh;
      v13 = sinph * costh;
      v21 = costh;
      v22 = -cosph * sinth;
      v23 = sinph * sinth;
      v32 = sinph;
      v33 = cosph;
      v43 = -rho;
   }

   void eyeAndScreen()
   {  initPersp();
      for (int i=0; i<16; i++)
      {  Point3D P = w[i];
         float x = v11 * P.x + v21 * P.y;
         float y = v12 * P.x + v22 * P.y + v32 * P.z;
         float z = v13 * P.x + v23 * P.y + v33 * P.z + v43;
         Point3D Pe = new Point3D(x, y, z);
         vScr[i] = new
            Point2D(-d * Pe.x/Pe.z, -d * Pe.y/Pe.z);
       }
    }
}

6.1  The desired input file is listed below:
1   1-1  0
2   1 1  0
3  -1 1  0
4  -1-1  0
5  0 0   -2
6  0 0   2
Faces:
1 2 3 4.
4 3 2 1.
5 6.

 
6.2  Use the vertices 1, 2 and 3 as triangle vertices in the plane z = 0, such that the origin O lies inside the triangle. Let vertex

4 be the origin and vertices 5 and 6 the same line endpoints as in the above solution to Exercise 6.1. Then, when
specifying the triangle, use the invisible lines 1–4, 2–4 and 3–4 in the same way as the line 7–10 in Figure 6.14. In other
words, define each of the two sides of the triangle as a rather complex polygon, specified as a sequence of ten numbers
by visiting, for example, the vertices 1, 2, 4, 2, 3, 4, and so on, in that order, using minus signs for invisible lines.

 
6.3  See Section 6.4 for holes in polygons. Figure 6.27 was obtained by using a data file of the same structure as the above

one (see Exercise 6.1), but with 16 vertices and four faces. Based on Figure F.2, the first of these faces was specified as
follows:

 
Figure F.2: One of the four faces for the square rings of Figure 6.27

1 2 3 -7 6 5 8 7 -3 4.
 
6.4  A simple solution to this problem is obtained by adding some code to draw all polygon edges (visible as well as invisible)
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6.4  A simple solution to this problem is obtained by adding some code to draw all polygon edges (visible as well as invisible)
as dashed lines. In addition to this, the visible edges are drawn as solid lines without any modification to the hidden-line
algorithm. In other words, every visible edge is drawn as coinciding solid and dashed lines, which gives the effect of a
solid line. Although HP-GL provides the command LT (Line Type) to draw dashed lines, we obtain better results if we
draw our own, computed dashes, which are required for screen output anyway. Note that every dashed line in Figure 6.28
begins and ends with a dash of the same length as the other ones. To implement all this, modify the program file
HLines.java (see Appendix D) as follows:

a. Disable back-face culling by deleting the following program line in the method buildLineSet.
if (n>2&& pol.h > 0) continue;

b. Insert the following method in the class CvHLines (see also Exercise 1.5):
void dashedLine(Graphics g, float xA, float yA,
      float xB, float yB, float dashLength)
{  float u1 = xB - xA, u2 = yB - yA,
      L = (float)Math.sqrt(u1 * u1 + u2 * u2);
   int n = Math.round((L/dashLength + 1)/2);
   float h1 = u1/(2 * n - 1), h2 = u2/(2*n-1);
   for (int i=0; i<n; i++)
   {  float x1 = xA + 2 * i * h1, y1 = yA + 2 * i * h2,
            x2 = x1 + h1, y2 = y1 + h2;
      drawLine(g, x1, y1, x2, y2);
   }
}

c. Just before the call to lineSegment in the paint method, almost at the end of the program file, insert the
following line:
dashedLine(g, P.x, P.y, Q.x, Q.y, 8);

 
6.5  A program to generate an open book is shown below. It was executed twice (with n = 4and n = 150) to produce the two

open books of Figure 6.29. Refer to the analysis of Exercise 6.6 below for the way we design this type of program.
// BookView.java: Generating a data file for an open book.
import java.io.*;

public class BookView
{  public static void main(String[] args)
      throws IOException
   {  if (args.length != 4)
      {  System.out.println(
         "Supply nr of sheets, width, height and file name\n"+
         "as program arguments.");
         System.exit(1);
       }
       int n;
       float w, h;
       FileWriter fw;
       n = Integer.valueOf(args[0]).intValue();
       w = Float.valueOf(args[1]).floatValue();
       h = Float.valueOf(args[2]).floatValue();
       fw = new FileWriter(args[3]);
       int spineTop = 1, spineBottom = 2, outerTop, outerBottom;
       float theta = (float)Math.PI/(n - 1);
       float xTop = 0, xBottom = h;
       fw.write(spineTop +""+xTop+"00\r\n");
       fw.write(spineBottom +""+ xBottom + " 0 0\r\n");
       for (int i=0; i<n; i++)
       {  float phi=i* theta,
             y = w * (float)Math.cos(phi),
             z = w * (float)Math.sin(phi);
          outerTop = 2 * i + 3; outerBottom = outerTop + 1;
          fw.write(outerTop + " " + xTop + " " +
             y + " " + z + "\r\n");
          fw.write(outerBottom + " " + xBottom + " " +
             y + " " + z + "\r\n");
       }
       fw.write("Faces:\r\n");
       for (int i=0; i<n; i++)
       {  outerTop =2*i+3; outerBottom = outerTop + 1;
          fw.write(spineTop + " " + spineBottom + " "
             + outerBottom + " " + outerTop + ".\r\n");
          fw.write(spineTop + " " + outerTop + " "
             + outerBottom + " " + spineBottom + ".\r\n");
       }
       fw.close();
   }
}

 
6.6  Before writing the program code we have to assign numbers to vertices and find mathematical expressions for the x-, y-

and z-coordinates of these vertices. We will now discuss how this can be done for a sphere, but the same approach
applies to any program that generates 3D data files.

The model of a sphere in question has two poles; let us assign vertex number 1 to the north pole. Since it is given that
there are n horizontal slices, there will be n −  1 horizontal planes between them, each corresponding with a horizontal
circle, or line of latitude, on the sphere. There will also be 2n vertical circles, or lines of longitude. Every vertex (other than
the two poles) of our sphere model is a point of intersection of such a horizontal and a vertical circle. As for the faces, 2 ×
2n of them are triangles at the two poles. There are n −  2 remaining horizontal slices, so that the number of remaining
faces is equal to (n −  2) · (2n) = 2n(n −  2). Each of these is a parallelogram with two horizontal edges. Altogether, there
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faces is equal to (n −  2) · (2n) = 2n(n −  2). Each of these is a parallelogram with two horizontal edges. Altogether, there
are 4n + 2n(n −  2) = 2n2 faces, and, as we will see below, 2(n2 −  n + 1) vertices. We will use two angles, θ  and ϕ , as
shown in Figure 5.3. Using a sphere radius 1, we can express the level of the n −  1 horizontal circles by their z-
coordinate

Writing δ  = π /n, we will only use horizontal circles corresponding to the following angles:

On each of these circles we have to use 2n vertices, which correspond to the angles

Thus, each pair (i, j) is associated with a vertex, so that we can devise a means of associating a vertex number with it.
Since 1 has been used for the north pole, we start with vertex number 2 on circle i = 1. With 2n vertices on each
horizontal circle, the first vertex number available for circle i = 2 will be 2n + 2, and for circle i = 3 it will be 4n + 2, and so
on. In general, on circle i, we begin with number (i −  1) · 2n + 2. Since on each circle there are 2n vertices, identified as j
= 0, …  ,2n −  1, we have

As we have seen in Section 5.2, the x-, y-and z-coordinates for this vertex (i, j) is computed as x = sin ϕ  cos θ , y = sinϕ
sin θ  and z = cos ϕ , where θ  and ϕ  depend upon i and j as shown above.

Finally, we have to assign a vertex number to the south pole. As we already have used 1 + (n −  1) · 2n vertex numbers,
the one for the south pole will be

which is also the total number of vertices.
 
6.7  Analyze this problem in the same way as was done for Exercise 6.6. Here each triangle (at the south pole) and each

parallelogram is to be specified both counter-clockwise and clockwise, since either side of the curved surface can in
principle be visible. Unlike Exercise 6.6, we had better use the variable n for the number of slices of half the sphere in this
problem, so that there are 4n instead of 2n vertices on every horizontal circle that we use, giving altogether n · 4n + 1 =
4n2 + 1 vertices.

 
6.8  Use program arguments for the numbers of squares in each of the three directions x, y and z. Remember, the word

Faces can occur only once in the file, so we have to specify the vertices of all cubes before we start specifying the faces.
 
6.9  Let us start with a torus such as the one in Section E.3, that is, a horizontal one with O as its center, and let the second

torus be a vertical one, with its center on the positive x-axis. We will make the sizes of the tori and their numbers of
vertices identical; only their positions are different. As in Section E.3, the size of a torus (and its shape) is completely
determined by the radii R and r, where r = 1. Since the hole in each torus must be wide enough for the other to pass
through, it is required that R ≥  2r, that is, R ≥  2.

For each vertex of the first torus, there is a corresponding one on the second. As we have seen in Section E.3 there are
n2 vertices for each torus, so we can use the numbers i and i + n2 for each pair of corresponding vertices. To obtain the
second torus, we have to shift the first one a distance R towards the positive x-axis, after which we turn it through the x-
axis though 90°. (Because of this special angle, no complicated computations are required for this rotation, so it is not
worthwhile to use the class Rota3D of Section 3.9 in this case.) Writing (x, y, z) for vertex i and (x′, y′, z′) for the
corresponding vertex i + n2, we now have x′ = x + R, y′ = -z, z′ = y.

Although, in the first part of 3D data files, we usually supply the vertices in ascending order of the vertex numbers, this is
not required. It is therefore possible to write pairs of lines of the following form in the first part of the data file:

Similarly, in the second part of the file, we can write faces in pairs, with vertex numbers in the second face of each pair n2

higher than those of the first of that pair. In this way, the desired program for two tori can be obtained from Torus.java by
adding only a few statements.

 
6.10  If necessary, you might refer to the method genCylinder in program Cylinder.java of Section 6.6 for the cylindrical pole in

the middle of the staircase. If you do, bear in mind that the situation here is simpler because this cylinder is solid (as is
the case in program Cylinder.java with rInner = 0).

You can use program Beams.java of Section E.4 to see how the steps can be constructed, or you can use the class
Rota3D (see also Exercise 5.5), provided that you also perform a translation, adding a constant to the z-coordinates of
each new step. As for the railing, recall that the data file, after the word Faces, can contain line segments specified as two
vertex numbers followed by a period, as discussed in Section 6.5.

7.1  In Figure F.3, the two outer faces on the left and right are parallel, but the corresponding inner faces are not, as the
distances 18 and 19 indicate. The latter faces, which are visible here, become invisible if we view the object from very far
away, as Figure F.4 shows.
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Figure F.3: Object nearby: two inner faces visible

 
Figure F.4: The same object far away: two inner faces invisible

Recall that, with eye coordinates, the x-axis points to the right, the y-axis upwards and the z-axis towards us. Let us focus
on the inner face that is visible in Figure F.3 on the right but invisible in Figure F.4. Estimating the normal vector n = (a, b,
c) and the value h, as specified in the exercise and discussed in Section 5.5, for this face, we find:

a. is almost equal to − 1, because n almost points toward the negative x-axis;

b. is almost zero, but positive because we view the object slightly from above;

c. is almost zero, but negative because n points a little to the back.

These values, and in particular c, are independent of the viewing distance. By contrast, the inner product h = n · x, where x
is a vector from the viewpoint E to any point of the face in question, depends on the viewing distance. You should verify
this by drawing a sketch similar to Figure 7.12 but applied to this example. As a result, you will find that h is negative in
Figure F.3 but positive in Figure F.4. This example demonstrates that, to determine if a face is a back face, we should use
the sign of h, not that of c. The correct practice of using h for this purpose is equivalent to back-face culling based on the
orientation of three points: if this orientation on the screen is the same as when the object is viewed from outside, the face
is visible. Using c instead of h would be equivalent to using the eye coordinates x and y instead of the screen coordinates
in determining the orientation of image points. This would work correctly for most situations, but it may result in wrongly
deciding that faces are invisible, especially if the object is viewed from nearby, as Figure F.3 illustrates. Recall that we also
briefly discussed this in Section 7.1.

 
7.2  We can use back-face culling to decide which faces of the cube are visible. Refer to the solutions to Exercises 5.4 and 5.5

for the implementation of animation and rotation, respectively.
 
7.3  In the previous exercise we could have realized the effect of a rotation about a vertical axis by changing the angle θ  and

leaving the cube unchanged. This is no longer the case here because we now want to use two rotations. Figure 7.13 was
obtained by rotating each cube about one of its vertical edges, with different rotation speeds, the latter simply meaning that
we use different angles in each step. As in the solution to Exercise 5.5, you need to supply only one method run, in which
only one infinite loop occurs.

 
7.4  Change the class CvPaint (in the program file Painter.java) as follows:

a. At the beginning of the class CvPaint, before {, add the line
implements Runnable

b. After {, add the following lines:
Image image;
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Image image;
Graphics gImage;
double sunTheta = 0;
Thread thr = new Thread(this);

c. Insert the method run, similar to the one given above for Exercise 5.4, but containing statements to
update the spherical coordinate sunTheta (see Section 5.2) and the variables obj.sunX and
obj.sunY;youcanuse a constant value for sunPhi, which makes obj.sunZ also a constant. By using
spherical coordinates, with radius ρ  = 1, the light vector will have length 1.

d. Insert the program lines
int w, h;
CvPainter(){thr.start();}
public void update(Graphics g){paint(g);}

e. Modify the paint method, using the variables image and gImage as well as g, in about the same way as
was done in program Anim.java, listed above as help for Exercise 5.4.

 
7.5  For the format of the desired file see the file for Exercise 6.1. As for the program to generate 3D data files, refer to Section

6.6 and Appendix E, if necessary.

8.1  In the program FractalGrammars.java, there is the following fragment, which draws a line from the current point (xLast,
yLast) to the new point (xLast + dx, yLast + dy), which, after the call to drawTo, will automatically be the current point
(xLast, yLast).
case 'F': // Step forward and draw
   // Start: (xLast, yLast), direction: dir, steplength: len
   if (depth == 0)
   {  double rad = Math.PI/180 * dir, // Degrees -> radians
      dx = len * Math.cos(rad), dy = len * Math.sin(rad);
      drawTo(g, xLast + dx, yLast + dy);
   }

Besides xLast and yLast, introduce the variables xCorner and yCorner, indicating the cornerpoints that we will not really
visit because of the rounded corners. Each time, instead of drawing a line as discussed above, draw two lines. The first is
one from the current point (xLast, yLast)to (xCorner + dx/4, yCorner + dy/4) to approximate the rounded corner. After this,
the point just mentioned is now automatically stored as the new point (xLast, yLast) to enable you to used drawTo again.
Then update the variables xCorner and yCorner by increasing them by dx and dy, respectively, so they indicate the next
cornerpoint. Then you draw the second line, from the current point (xLast, yLast)to(xCorner −  dx/4, yCorner −  dy/4). Note
that this last line is half as long as the full line drawn in the above fragment, since a quarter of it at the beginning and a
quarter of it at the end are now replaced with the approximated rounded corners.

 
8.2  In the paint method of the program Koch.java in Section 8.2, there is only one call to drawKoch preceded by setting dir = 0.

All you have to do is add two other such calls, each preceded by assigning an appropriate value to dir so that the turtle
starts in the right direction.

 
8.3  You can generate a random number between 0 and 1 by calling Math. random(), and derive the thickness of a branch from

the height of that branch in the tree. A line of any thickness can be realized by using the method fillPolygon.
 
8.4  This hint is based on the program FractalGrammars.java and the string grammar Tree2 of Section 8.3. In this example, we

have

Each time the second F in this string is encountered a branch is drawn that should have a leaf at its end. So in the switch
statement you should add a fragment to draw a leaf in the case F part after the call to drawTo, provided that the position
counter i for strX is equal to 5. One way of drawing a closed figure that approximates the shape of a leaf is to draw a
sequence of filled circles (by means of drawOval) whose centers lie on a line that has the same direction (dx, dy) as the
branch in question.

 
8.5  Use methods iX and iY to convert logical to device coordinates and methods fx and fy for the inverse conversions.

Restricting this discussion to x-coordinates, we can use
int iX(float x)
{  return (int)(xDevCenter + (x - xLogCenter)/pixelSize);
}

float fx(int x)
{  return xLogCenter + (x - xDevCenter) * pixelSize;
}

As usual, we use d defined as
Dimension d = getSize();

Let us denote the current boundaries of the logical x-coordinates by xLeft and xRight. For example, we can initially set
these boundaries equal to those of the device coordinates, that is, to 0 and d.width(), respectively. In the method
mouseReleased, we obtain the device coordinates xs and xe for the left and right boundaries of the cropping rectangle.
We then apply the method fx to these to obtain the corresponding logical coordinates, writing, for example,
xLeftNew = fx(xs);
xRightNew = fx(xe);

Then these new values are assigned to xLeft and xRight, and used to compute
pixelSize = Math.max((xRight - xLeft)/d.width,
                     (yTop - yBottom)/d.height);
xLogCenter = (xLeft + xRight)/2;
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xLogCenter = (xLeft + xRight)/2;

Let us now discuss the plausibility of these statements (rather than proving them rigorously). Normally, mouseRelease
provides us with a range (xs, xe) that is smaller than the width of the drawing rectangle. Then after applying fx and fy, the
new logical x-range (xLeft, xRight) will also decrease, and the same applies to pixelSize. As a result of the latter, the value
added to xDevCenter in the above method iX will be larger than it was before, so that the figure will appear on a larger
scale. As for panning, let us assume that the new x-range selected by the user is on the left half of the screen. Then the
new center xLogCenter of the logical x-range will be smaller than it was before, which will increase the value computed by
the method iX. This should indeed be the case, since the part of the image displayed in the selected x-range on the left
half of the screen should be displayed in the center of the drawing rectangle, or, in other words, it should shift to the right.

 
8.6  Modify the MandelbrotZoom.java program and the paint method for Julia sets. Combine the two programs so that the latter

will draw Julia sets in a side window.
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Colour Plates

 
Plate 1: Fillet or rounded corner, Exercise 2.8

 
Plate 2: Inscribed circle and three excircles of triangle, Exercise 2.9
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Plate 3: Tree of Pythagoras, Exercise 2.10

 
Plate 4: Demonstration of Bresenham's algorithm, Exercise 4.6

 
Plate 5: Two colored cubes, captured when rotating independently, Exercise 7.3
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Plate 6: Three beams partly hiding each other, see Sections 6.7, 7.3 and 7.4

 
Plate 7: Beams in a spiral, see Section E4, Appendix E

 
Plate 8: An open book, see Exercise 6.5
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Plate 9: Solid letter A as an object with a hole, see Section 6.4

 
Plate 10: A cube of cubes, Exercise 6.8
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Plate 11: Dodecahedron, see Section E1, Appendix E

 
Plate 12: Two tori, Exercise 6.9

 
Plate 13: A function of two variables, see Section E.5, Appendix E. The expression 10. sin(pow(x*x + y*y, 0.5))/(1 + pow(x*x
+ y*y, 0.2)) was supplied to program Func.java, with ranges and step sizes for x and y specified as
.15(0.25)15

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 
Plate 14: Tree with green leaves, Exercise 8.4

 
Plate 15: Sample output of program MandelbrotZoom.java, see Section 8.4
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Plate 16: Julia set, as discussed at the end of Section 8.4
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Preface
During the eight years since the publication of the first edition of Computer Graphics for Java Programmers, the programming
language Java has increasingly become the language of choice in many industrial and business domains. Hence the skills for
developing computer graphics applications using Java have been highly in demand but are surprisingly lacking in the computer
science curricula. Meanwhile, for the past five years the second author has been teaching Computer Graphics at his current
university using the first edition of this textbook, and felt that there was a need to update the book. We therefore decided to jointly
write this second edition.

This edition continues the main theme of the first edition, that is, graphics programming in Java, with plenty of source code
available to the reader. The new edition has, however, been updated as follows:

1. The contents of some chapters have been updated, as a result of the authors' years of classroom experience
and recent feedback from our students.

2. An instructor's manual has been created to include lecture slides and answers to exercise questions.

3. Chapter 8 has been replaced by a new chapter covering the topic of fractals.

4. A beta version of a companion software package has been added, which demonstrates the working of different
algorithms and concepts introduced in the book.

5. More illustrative examples have been included in several chapters and various minor errors in the first edition
have been corrected.

Over the past few years, Java has evolved into more powerful programming environments. The most notable development related
to computer graphics is its support for 3D graphics. Many application examples illustrated in this book could be readily
implemented using Java 3D without any understanding of the internal working of the implementation, which we consider
undesirable for computer science students. We therefore believe that this textbook continues to serve as an indispensable
introduction to the foundation of computer graphics, on which many application program interfaces (APIs) and graphics libraries
could be developed, and more importantly, how they are developed.

As in the first edition, the example programs can again be downloaded from the Internet at:
http://home.planet.nl/~ammeraal

or at:
http://www.utdallas.edu/~kzhang/BookCG/

In writing this second edition, several people need to be acknowledged for their direct or indirect contributions. We would first like
to thank the UT-Dallas graduate students Bill Fahle, Andy Restrepo, Janis Schubert, and Subramanya Suresh, who contributed to
different parts of the demonstration software. In particular, we appreciate the great effort of Janis Schubert in developing and
integrating different parts of the software while striving to maintain the same look and feel of the user interfaces. Finally, we thank
Jonathan Shipley of John Wiley and Sons for his enthusiastic support and assistance in publishing this edition.

Leen Ammeraal, The Netherlands
l.ammeraal@hccnet.nl

Kang Zhang, USA
kzhang@utdallas.edu
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Chapter 1: Elementary Concepts

This book is primarily about graphics programming and mathematics. Rather than discussing general graphics subjects for
end users or how to use graphics software, we will deal with more fundamental subjects, required for graphics programming.
In this chapter, we will first understand and appreciate the nature of discreteness of displayed graphics on computer screens.
We will then see that x- and y- coordinates need not necessarily be pixel numbers, also known as device coordinates. In
many applications logical coordinates are more convenient, provided we can convert them to device coordinates. Especially
with input from a mouse, we also need the inverse conversion, as we will see at the end of this chapter.

1.1 LINES, COORDINATES AND PIXELS
The most convenient way of specifying a line segment on a computer screen is by providing the coordinates of its two endpoints.
In mathematics, coordinates are real numbers, but primitive line-drawing routines may require these to be integers. This is the
case, for example, in the Java language, which we will use in this book. The Java Abstract Windows Toolkit (AWT) provides the
class Graphics containing the method drawLine, which we use as follows to draw the line segment connecting A and B:
g.drawLine(xA, yA, xB, yB);

The graphics context g in front of the method is normally supplied as a parameter of the paint method we are using, and the four
arguments of drawLine are integers, ranging from zero to some maximum value. The above call to drawLine produces exactly the
same line as this one:
g.drawLine(xB, yB, xA, yA);

We will now use statements such as the above one in a complete Java program. Fortunately, you need not type these programs
yourself, since they are available from the Internet, as specified in the Preface. It will also be necessary to install the Java
Development Kit (JDK), which you can also download, using the following Web page:
http://java.sun.com/

If you are not yet familiar with Java, you should consult other books, such as some mentioned in the Bibliography, besides this
one.

The following program draws the largest possible rectangle in a canvas. The color red is used to distinguish this rectangle from the
frame border:
// RedRect.java: The largest possible rectangle in red.
import java.awt.*;
import java.awt.event.*;

public class RedRect extends Frame
{  public static void main(String[] args){new RedRect();}

   RedRect()
   { super("RedRect");
     addWindowListener(new WindowAdapter()
     {public void windowClosing(WindowEvent e){System.exit(0);}});
    setSize (200, 100);
    add("Center", new CvRedRect());
    show();

 }

}

class CvRedRect extends Canvas
{ public void paint(Graphics g)
  { Dimension d = getSize();
    int maxX = d.width - 1, maxY = d.height - 1;
    g.drawString("d.width ="+d.width, 10, 30);
    g.drawString("d.height = " + d.height, 10, 60);
    g.setColor(Color.red);
    g.drawRect(0, 0, maxX, maxY);
  }
}

The call to drawRect almost at the end of this program has the same effect as these four lines:
g.drawLine(0, 0, maxX, 0);        // Top edge
g.drawLine(maxX, 0, maxX, maxY);  // Right edge
g.drawLine(maxX, maxY, 0, maxY);  // Bottom edge
g.drawLine(0, maxY, 0, 0);        // Left edge

The program contains two classes:
RedRect: The class for the frame, also used to close the application.

CvRedRect: The class for the canvas, in which we display graphics output.

However, after compiling the program by entering the command
javac RedRect.java
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javac RedRect.java

we notice that three class files have been generated: RedRect.class, CvRe- dRect.class and RedRect$1.class. The third one is
referred to as an anonymous class since it has no name in the program. It is produced by the two program lines
addWindowListener(new WindowAdapter()
   {public void windowClosing(WindowEvent e){System.exit(0);}});

which enable the user of the program to terminate it in the normal way. We could have written the same program code as
addWindowListener
( new WindowAdapter()
  {  public void windowClosing(WindowEvent e)
    {  System.exit(0);
    }
  }
);

to show more clearly the structure of this fragment. The argument of the method addWindowListener must be an object of a class
that implements the interface WindowListener. This implies that this class must define seven methods, one of which is
windowClosing. The base class WindowAdapter defines these seven methods as do-nothing functions. In the above fragment, the
argument of addWindowListener denotes an object of an anonymous subclass of WindowAdapter. In this subclass we override
the method windowClosing. A further discussion of this compact program code for event handling can be found in Appendix B.

The RedRect constructor shows that the frame size is set to 200 × 100. If we do not modify this size (by dragging a corner or an
edge of the window), the canvas size is somewhat less. After compilation, we run the program by typing the command
java RedRect

which produces the output shown in Figure 1.1.

 
Figure 1.1: Largest possible rectangle and canvas dimensions

The blank area in a frame, which we use for graphics output, is referred to as a client rectangle in Microsoft Windows
programming. We will consistently use a canvas for it, which is a subclass, such as CvRedRect in program RedRect.java,of the
AWT class Canvas. If, instead, we displayed the output directly in the frame, we would have a problem with the coordinate
system: its origin would be in the top-left corner of the frame; in other words, the x-coordinates increase from left to right and y-
coordinates from top to bottom. Although there is a method getInsets to obtain the widths of all four borders of a frame so that we
could compute the dimensions of the client rectangle ourselves, we prefer to use a canvas.

The tiny screen elements that we can assign a color are called pixels (short for picture elements), and the integer x-and y-values
used for them are referred to as device coordinates. Although there are 200 pixels on a horizontal line in the entire frame, only
192 of these lie on the canvas, the remaining 8 being used for the left and right borders. On a vertical line, there are 100 pixels for
the whole frame, but only 73 for the canvas. Apparently, the remaining 27 pixels are used for the title bar and for the top and
bottom borders. Since these numbers may differ in different Java implementations and the user can change the window size, it is
desirable that our program can determine the canvas dimensions. We do this by using the getSize method of the class
Component, which is a superclass of Canvas. The following program lines in the paint method show how we obtain the canvas
dimensions and how we interpret them:
Dimension d = getSize();
int maxX = d.width - 1, maxY = d.height - 1;

The getSize method of Component (a superclass of Canvas) supplies us with the numbers of pixels on horizontal and vertical
lines of the canvas. Since we begin counting at zero, the highest pixel numbers, maxX and maxY, on these lines are one less than
these numbers of pixels. Remember that this is similar with arrays in Java and C. For example, if we write
int[] a = new int[8];

the highest possible index value is 7, not 8. Figure 1.2 illustrates this for a very small canvas, which is only 8 pixels wide and 4
high, showing a much-enlarged screen grid structure. It also shows that the line connecting the points (0, 0) and (7, 3) is
approximated by a set of eight pixels.
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Figure 1.2: Pixels as coordinates in an 8 × 4 canvas (with maxX = 7 and maxY = 3)

The big dots approximating the line denote pixels that are set to the foreground color. By default, this foreground color is black,
while the background color is white. These eight pixels are made black as a result of this call:
g.drawLine (0, 0, 7, 3);

In the program RedRect.java, we used the following call to the drawRect method (instead of four calls to drawLine):
g.drawRect(0, 0, maxX, maxY);

In general, the call
g.drawRect(x, y, w, h);

draws a rectangle with (x, y) as its top-left and (x + w, y + h) as its bottom-right corners. In other words, the third and fourth
arguments of the drawRect method specify the width and height, rather than the bottom-right corner, of the rectangle to be drawn.
Note that this rectangle is w + 1 pixels wide and h + 1 pixels high. The smallest possible square, consisting of 2 × 2 pixels, is
drawn by this call
g.drawRect(x, y, 1, 1);

To put only one pixel on the screen, we cannot use drawRect, because nothing at all appears if we try to set the third and fourth
arguments of this method to zero. Curiously enough, Java does not provide a special method for this purpose, so we have to use
this call:
g.drawLine(x, y, x, y);

Note that the call
g.drawLine(xA, y, xB, y);

draws a horizontal line consisting of | xB −  xA |+1 pixels.
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1.2 THE BOUNDARIES OF FILLED REGIONS
In mathematics, lines are continuous and have no thickness, but they are discrete and at least one pixel thick in our graphics
output. This difference in the interpretation of the notion of lines may not cause any problems if the pixels are very small in
comparison with what we are drawing. However, we should be aware that there may be such problems in special cases, as Figure
1.3(a) illustrates. Suppose that we have to draw a filled square ABCD of, say, 4×4 pixels, consisting of the bottom-right triangle
ABC and the upper-left triangle ACD, which we want to paint in dark gray and light gray, respectively, without drawing any lines.
Strangely enough, it is not clear how this can be done: if we make the diagonal AC light gray, triangle ABC contains fewer pixels
than triangle ACD; if we make it dark gray, it is the other way round.

 
Figure 1.3: Small filled regions

A much easier but still non-trivial problem, illustrated by Figure 1.3(b), is filling the squares of a checker-board with, say, dark and
light gray squares instead of black and white ones. Unlike squares in mathematics, those on the computer screen deserve special
attention with regard to the edges belonging or not belonging to the filled regions. We have seen that the call
g.drawRect(x, y, w, h);

draws a rectangle with corners (x, y) and (x + w, y + h). The method fillRect, on the other hand, fills a slightly smaller rectangle.
The call
g.fillRect(x, y, w, h);

assigns the current foreground color to a rectangle consisting of w × h pixels. This rectangle has (x, y) as its top-left and (x + w −
1, y + h −  1) as its bottom-right corner. To obtain a generalization of Figure 1.3(b), the following method, checker, draws an n × n
checker board, with (x, y) as its top-left corner and with dark gray and light gray squares, each consisting of w × w pixels. The
bottom-left square will always be dark gray because for this square we have i = 0 and j = n −  1, so that i + n −  j = 1:
void checker(Graphics g, int x, int y, int n, int w)
{  for (int i=0; i<n; i++)
      for (int j=0; j<n; j++)
      {  g.setColor((i + n - j) % 2 == 0?
            Color.lightGray : Color.darkGray);
         g.fillRect(x + i * w, y + j * w, w, w);
      }

}

If we wanted to draw only the edges of each square, also in dark gray and light gray, we would have to replace the above call to
fillRect with
g.drawRect(x + i * w, y + j * w, w - 1, w - 1);

in which the last two arguments are w −  1 instead of w.
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1.3 LOGICAL COORDINATES
1.3.1 The Direction of the Y-axis

As Figure 1.2 shows, the origin of the device-coordinate systems lies at the top-left corner of the canvas, so that the positive y-
axis points downward. This is reasonable for text output, where we start at the top and increase y as we go to the next line of text.
However, this direction of the y-axis is different from normal mathematical practice and therefore often inconvenient in graphics
applications. For example, in a discussion about a line with a positive slope, we expect to go upward when we move along this line
from left to right. Fortunately, we can arrange for the positive y direction to be reversed by performing this simple transformation:

1.3.2 Continuous vs. Discrete Coordinates

Instead of the discrete (integer) coordinates we are using at the lower, device-oriented level, we want to use continuous (floating-
point) coordinates at the higher, problem-oriented level. Other usual terms are device and logical coordinates, respectively.
Writing conversion routines to compute device coordinates from the corresponding logical ones and vice versa is a bit tricky. We
must be aware that there are two solutions to this problem, even in the simple case in which increasing a logical coordinate by one
results in increasing the device coordinate also by one. We want to write the following methods:

iX(x), iY(y): the device coordinates of the point with logical coordinates x and y;

fx(x), fy(y): the logical coordinates of the point with device coordinates x and y.

With regard to x-coordinates, the first solution is based on rounding:
int iX(float x){return Math.round(x);}
float fx(int x){return (float)x;}

For example, with this solution we have

The second solution is based on truncating:
int iX(float x){return (int)x;}           // Not used in
float fx(int x){return (float)x + 0.5F;}  // this book.

With these conversion functions, we would have

With both solutions, the difference between any value x and fx(iX(x)) is not greater than 0.5. We will use the first solution
throughout this book, since it is the better one if logical coordinates frequently happen to be integer values. In these cases the
practice of truncating floating-point numbers will often lead to worse results than we would have with rounding.

Besides the above methods iX and fx (based on the first solution) for x-coordinates, we need similar methods for y-coordinates,
taking into account the opposite directions of the two y-axes. At the bottom of the canvas the device y-coordinate is maxY while
the logical y-coordinate is 0, which may explain the two expressions of the form maxY −  …  in the following methods:
int iX(float x){return Math.round(x);}
int iY(float y){return maxY - Math.round(y);}
float fx(int x){return (float)x;}
float fy(int y){return (float)(maxY - y);}

Figure 1.4 shows a fragment of a canvas, based on maxY = 16.
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Figure 1.4: Logical and device coordinates, based on ymax = 16

The pixels are denoted as black dots, each placed in the center of a square of dashed lines. In this discussion and elsewhere in
this book, let us write x and y for logical and X and Y for device coordinates. (Since it is customary in Java to use lower-case
letters at the beginning of variable names, we will not write X and Y in program text.) In Figure 1.4, the device-coordinates (X,
Y)are placed between parentheses near each dot. For example, the pixel with device coordinates (8, 2), at the upper-right corner
of this canvas fragment, has logical coordinates (8.0, 14.0). We have
iX (8.0) = Math.round (8.0) = 8
iY (14.0) = 16 - Math.round (14.0) = 2
fx (8) = (float)8 = 8.0
fy (2) = (float) (16 - 2) = 14.0

The dashed square around this dot denotes all points (x, y) satisfying

All these points are converted to the pixel (8, 2) by our methods iX and iY.

Let us demonstrate this way of converting floating-point logical coordinates to integer device coordinates in a program that begins
by drawing an equilateral triangle ABC, with the side AB at the bottom and the point C at the top. Then, using

we compute the new points A′ , B′ and C′ near A, B and C and lying on the sides AB, BC and CA, respectively, writing

xA1 = p * xA + q * xB;
yA1 = p * yA + q * yB;
xB1 = p * xB + q * xC;
yB1 = p * yB + q * yC;
xC1 = p * xC + q * xA;
yC1 = p * yC + q * yA;

We then draw the triangle A′ B′ C′, which is slightly smaller than ABC and turned a little counter-clockwise. Applying the same
principle to triangle A′ B′ C′ to obtain a third triangle, A′′ B′′ C′′, and so on, until 50 triangles have been drawn, the result will be
as shown in Figure 1.5.

 
Figure 1.5: Triangles drawn inside each other

If we change the dimensions of the window, new equilateral triangles appear, again in the center of the canvas and with
dimensions proportional to the size of this canvas. Without floating-point logical coordinates and with a y-axis pointing downward,
this program would have been less easy to write:
// Triangles.java: This program draws 50 triangles inside each other.
import java.awt.*;
import java.awt.event.*;
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import java.awt.event.*;
public class Triangles extends Frame
{  public static void main(String[] args){new Triangles();}

   Triangles()
   {  super("Triangles: 50 triangles inside each other");
      addWindowListener(new WindowAdapter()
         {public void windowClosing(WindowEvent e){System.exit(0);}});
      setSize (600, 400);
      add("Center", new CvTriangles());
      show();

   }
}

class CvTriangles extends Canvas
{  int maxX, maxY, minMaxXY, xCenter, yCenter;

   void initgr()
   {  Dimension d = getSize();
      maxX = d.width - 1; maxY = d.height - 1;
      minMaxXY = Math.min(maxX, maxY);
      xCenter = maxX/2; yCenter = maxY/2;
   }
   int iX(float x){return Math.round(x);}
   int iY(float y){return maxY - Math.round(y);}

   public void paint(Graphics g)
   { initgr();
     float side = 0.95F * minMaxXY, sideHalf = 0.5F * side,
        h = sideHalf * (float)Math.sqrt (3),
        xA, yA, xB, yB, xC, yC,
        xA1, yA1, xB1, yB1, xC1, yC1, p, q;
     q = 0.05F;
     p = 1 - q;
     xA = xCenter - sideHalf;
     yA = yCenter - 0.5F * h;
     xB = xCenter + sideHalf;
     yB = yA;
     xC = xCenter;
     yC = yCenter + 0.5F * h;
     for (int i=0; i<50; i++)
     { g.drawLine(iX(xA), iY(yA), iX(xB), iY(yB));
       g.drawLine(iX(xB), iY(yB), iX(xC), iY(yC));
       g.drawLine(iX(xC), iY(yC), iX(xA), iY(yA));
       xA1 = p * xA + q * xB;
       yA1 = p * yA + q * yB;
       xB1 = p * xB + q * xC;
       yB1 = p * yB + q * yC;
       xC1 = p * xC + q * xA;
       yC1 = p * yC + q * yA;
       xA = xA1; xB = xB1; xC = xC1;
       yA = yA1; yB = yB1; yC = yC1;
   }
  }
}

In the canvas class CvTriangles there is a method initgr. Together with the other program lines that precede the paint method in
this class, initgr may also be useful in other programs.

It is important to notice that, on each triangle edge, the computed floating-point coordinates, not the integer device coordinates
derived from them, are used for further computations. This principle, which applies to many graphics applications, can be depicted
as follows:

which is in contrast to the following scheme, which we should avoid. Here int device coordinates containing rounding-off errors are
used not only for graphics output but also for further computations, so that such errors will accumulate:

In summary, we compare and contrast the logical and device coordinate systems in the following table, in terms of (1) the
convention used in the text, but not in Java programs, of this book; (2) the data types of the programming language; (3) the
coordinate value domain; and (4) the direction of the positive y-axis:

 Open table as spreadsheet
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Coordinate system Convention Data type Value domain Positive y-axis

logical lower-case letters float continuous upward

device upper-case letters integer discrete downward
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1.4 ANISOTROPIC AND ISOTROPIC MAPPING MODES
1.4.1 Mapping a Continuous Interval to a Sequence of Integers

Suppose we want to map an interval of real logical coordinates, such as

to the set of integer device coordinates {0, 1, 2, …  ,9}. Unfortunately, the method
int iX(float x){return Math.round(x);}

used in the previous section is not suitable for this purpose because for any x greater than 9.5 (and not greater than 10) it returns
10, which does not belong to the allowed sequence 0, 1, … , 9. In particular, it gives
ix (10.0) = 10

while we want
ix (10.0) = 9

This suggests that in an improved method iX we should use a multiplication factor of 0.9. We can also come to this conclusion by
realizing that there are only nine small intervals between ten pixels labeled 0, 1, … , 9, as Figure 1.6 illustrates. If we define the
pixel width (= pixelWidth) as the distance between two successive pixels on a horizontal line, the above interval 0 ≤  x ≤  10 of
logical coordinates (being real numbers) corresponds to 9 × pixelWidth. So in this example we have:

 
Figure 1.6: Pixels lying 10/9 logical units apart

In general, if a horizontal line of our window consists of n pixels, numbered 0, 1, … , maxX (where maxX = n −  1), and the
corresponding (continuous) interval of logical coordinates is 0 ≤  x ≤  rWidth, we can use the following method:
int iX(float x){return Math.round(x/pixelWidth);}

where pixelWidth is computed beforehand as follows:
maxX = n - 1;
pixelWidth = rWidth/maxX;

In the above example the integer n is equal to the interval length rWidth, but it is often desirable to use logical coordinates x and y
satisfying

where rWidth and rHeight are real numbers, such as 10.0 and 7.5, respectively, which are quite different from the numbers of
pixels that lie on horizontal and vertical lines. It will then be important to distinguish between isotropic and anisotropic mapping
modes, as we will discuss in a moment.

As for the simpler method
int iX(float x){return Math.round(x);}

of the previous section, this can be regarded as a special case of the improved method we have just seen, provided we use
pixelWidth = 1, that is rWidth = maxX,or rWidth = n −  1. For example, if the drawing rectangle is 100 pixels wide, so that n = 100
and we can use the pixels 0, 1, 2, … , 99 = maxX on a horizontal line, this simpler method iX works correctly if it is applied to
logical x-coordinates satisfying

The point to be noticed is that, due to the value pixelWidth = 1, the logical width is 99.0 here although the number of available
pixels is 100.
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1.4.2 Anisotropic Mapping Mode

The term anisotropic mapping mode implies that the scale factors for x and y are not necessarily equal, as the following code
fragment shows:
Dimension d = getSize();
maxX = d.width - 1; maxY = d.height - 1;
pixelWidth  = rWidth/maxX;
pixelHeight = rHeight/maxY;
...
int iX(float x){return Math.round(x/pixelWidth);}
int iY(float y){return maxY - Math.round(y/pixelHeight);}
float fx(int x){return x * pixelWidth;}
float fy(int y){return (maxY - y) * pixelHeight;}

We will use this in a demonstration program. Regardless of the window dimensions, the largest possible rectangle in this window
has the logical dimensions 10.0 × 7.5. After clicking on a point of the canvas, the logical coordinates are shown, as Figure 1.7
illustrates.

 
Figure 1.7: Logical coordinates with anisotropic mapping mode

Since there are no gaps between this largest possible rectangle and the window edges, we can only see this rectangle with some
difficulty in Figure 1.7. In contrast, the screen will show this rectangle very clearly because we will make it red instead of black.
Although the window dimensions in Figure 1.7 have been altered by the user, the logical canvas dimensions are still 10.0 × 7.5.
The text displayed in the window shows the coordinates of the point near the upper-right corner of the rectangle, as the cross-hair
cursor indicates. If the user clicks exactly on that corner, the coordinate values 10.0 and 7.5 are displayed. This demonstration
program is listed below.
// Anisotr.java: The anisotropic mapping mode.

import java.awt.*;
import java.awt.event.*;

public class Anisotr extends Frame
{  public static void main(String[] args){new Anisotr();}

   Anisotr()
   { super("Anisotropic mapping mode");
     addWindowListener(new WindowAdapter()
       {public void windowClosing(WindowEvent e){System.exit(0);}});
     setSize (400, 300);
     add("Center", new CvAnisotr());
     setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));
     show();
  }

}

class CvAnisotr extends Canvas
{ int maxX, maxY;
  float pixelWidth, pixelHeight,
      rWidth = 10.0F,
      rHeight = 7.5F,
      xP = -1, yP;

  CvAnisotr()
  { addMouseListener(new MouseAdapter()
    { public void mousePressed(MouseEvent evt)
      { xP = fx(evt.getX()); yP = fy(evt.getY());
        repaint();
      }
    });
}
void initgr()
{ Dimension d = getSize();
  maxX = d.width - 1; maxY = d.height - 1;
  pixelWidth = rWidth/maxX; pixelHeight = rHeight/maxY;
}

int iX(float x){return Math.round(x/pixelWidth);}
int iY(float y){return maxY - Math.round(y/pixelHeight);}
float fx(int x){return x * pixelWidth;}
float fy(int y){return (maxY - y) * pixelHeight;}

public void paint(Graphics g)
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public void paint(Graphics g)
{ initgr();
    int left = iX (0), right = iX(rWidth),
      bottom = iY (0), top = iY(rHeight);
    if (xP >= 0) g.drawString(
       "Logical coordinates of selected point: "
       + xP + " " + yP, 20, 100);
    g.setColor(Color.red);
    g.drawLine(left, bottom, right, bottom);
    g.drawLine(right, bottom, right, top);
    g.drawLine(right, top, left, top);
    g.drawLine(left, top, left, bottom);
  }
}

With the anisotropic mapping mode, the actual length of a vertical unit can be different from that of a horizontal unit. This is the
case in Figure 1.7: although the rectangle is 10 units wide and 7.5 units high, its real height is less than 0.75 of its width. In
particular, the anisotropic mapping mode is not suitable for drawing squares, circles and other shapes that require equal units in
the horizontal and vertical directions.

1.4.3 Isotropic Mapping Mode

We can arrange for horizontal and vertical units to be equal in terms of their real size by using the same scale factor for x and y.
Let us use the term drawing rectangle for the rectangle with dimensions rWidth and rHeight, in which we normally draw graphical
output. Since these logical dimensions are constant, so is their ratio, which is not the case with that of the canvas dimensions. It
follows that, with the isotropic mapping mode, the drawing rectangle will in general not be identical with the canvas. Depending on
the current window size, either the top and bottom or the left and right edges of the drawing rectangle lie on those of the canvas.

Since it is normally desirable for a drawing to appear in the center of the canvas, it is often convenient with the isotropic mapping
mode to place the origin of the logical coordinate system at that center. This implies that we will use the following logical-
coordinate intervals:

Our methods iX and iY will map each logical coordinate pair (x, y) to a pair (X, Y) of device coordinates, where

To obtain the same scale factor for x and y, we compute rWidth/maxX and rHeight/maxY and take the larger of these two values;
this maximum value, pixelSize, is then used in the methods iX and iY, as this fragment shows:
Dimension d = getSize();
int maxX = d.width - 1, maxY = d.height - 1;
pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
centerX = maxX/2; centerY = maxY/2;
...
int iX(float x){return Math.round(centerX + x/pixelSize);}
int iY(float y){return Math.round(centerY - y/pixelSize);}
float fx(int x){return (x - centerX) * pixelSize;}
float fy(int y){return (centerY - y) * pixelSize;}

We will use this code in a program that draws a square, two corners of which touch either the midpoints of the horizontal canvas
edges or those of the vertical ones. It also displays the coordinates of a point on which the user clicks, as the left window of Figure
1.8 shows.

 
Figure 1.8: Windows after changing their sizes

In this illustration, we pay special attention to the corners of the drawn square that touch the boundaries of the drawing rectangle.
These corners do not lie on the window frame, but they lie just inside it. For the square on the left we have:

Figure 1.8, left logical coordinate y device coordinate iY(y)

top corner +rHeight/2 0
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bottom corner − rHeight/2 maxY

 Open table as spreadsheet

By contrast, for the square that has been drawn in the narrow window on the right, it is the corners on the left and the right that lie
just within the frame:

Figure 1.8, right logical coordinate x device coordinate iX(x)

left corner − rWidth/2 0

right corner +rWidth/2 maxX

 Open table as spreadsheet

The following program uses a drawing rectangle with logical dimensions rWidth = rHeight = 10.0. If we replaced this value 10.0
with any other positive constant, the output would be the same.
// Isotrop.java: The isotropic mapping mode.
//    Origin of logical coordinate system in canvas
//    center; positive y-axis upward.
//    Square (turned 45 degrees) just fits into canvas.
//    Mouse click displays logical coordinates of
//    selected point.
import java.awt.*;
import java.awt.event.*;

public class Isotrop extends Frame
{  public static void main(String[] args){new Isotrop();}

   Isotrop()
   { super("Isotropic mapping mode");
     addWindowListener(new WindowAdapter()
        {public void windowClosing(WindowEvent e){System.exit(0);}});
     setSize (400, 300);
     add("Center", new CvIsotrop());
     setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));
     show();
   }
}

class CvIsotrop extends Canvas
{ int centerX, centerY;
 float pixelSize, rWidth = 10.0F, rHeight = 10.0F, xP = 1000000, yP;

  CvIsotrop()
  { addMouseListener(new MouseAdapter()
    {  public void mousePressed(MouseEvent evt)
       {  xP = fx(evt.getX()); yP = fy(evt.getY());
          repaint();
       }
    });
  }

void initgr()
{  Dimension d = getSize();
   int maxX = d.width - 1, maxY = d.height - 1;
   pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
   centerX = maxX/2; centerY = maxY/2;
  }

  int iX(float x){return Math.round(centerX + x/pixelSize);}
  int iY(float y){return Math.round(centerY - y/pixelSize);}
  float fx(int x){return (x - centerX) * pixelSize;}
  float fy(int y){return (centerY - y) * pixelSize;}

  public void paint(Graphics g)
  { initgr();
    int left = iX(-rWidth/2), right = iX(rWidth/2),
        bottom = iY(-rHeight/2), top = iY(rHeight/2),
        xMiddle = iX (0), yMiddle = iY (0);
    g.drawLine(xMiddle, bottom, right, yMiddle);
    g.drawLine(right,yMiddle, xMiddle, top);
    g.drawLine(xMiddle, top, left, yMiddle);
    g.drawLine(left, yMiddle, xMiddle, bottom);
    if (xP != 1000000)
       g.drawString(
       "Logical coordinates of selected point: "
       + xP + " " + yP, 20, 100);
  }
}
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1.5 DEFINING A POLYGON BY USING THE MOUSE
We will use the conversion methods of the previous program in a more interesting application, which enables the user to define a
polygon by clicking on points to indicate the positions of the vertices. Figure 1.9 shows such a polygon, just after the user has
defined successive vertices, ending at the first one on the left, which is marked with a tiny rectangle.

 
Figure 1.9: Polygon defined by a user

The large rectangle surrounding the polygon is the drawing rectangle: only vertices inside this rectangle are guaranteed to appear
again if the user changes the dimensions of the window. The very wide window of Figure 1.9 was obtained by dragging one of its
corners. After the polygon was drawn, the dimensions of the window were again changed, to obtain Figure 1.10. It is also possible
to change these dimensions during the process of drawing the polygon. We now summarize the requirements for this application
program:

The first vertex is drawn as a tiny rectangle.

If a later vertex is inside the tiny rectangle, the drawing of one polygon is complete.

Only vertices in the drawing rectangle are drawn.

The drawing rectangle (see Figures 1.9 and 1.10) is either as high or as wide as the window, yet maintaining its
height/width ratio regardless of the window shape.

When the user changes the shape of the window, the size of the drawn polygon changes in the same way as that of
the drawing rectangle, as does the surrounding white space of the polygon.
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Figure 1.10: Polygon still in the center of the window after resizing the window

We will use the isotropic mapping mode to implement this program, and use a data structure called vertex vector to store the
vertices of the polygon to be drawn. We then design the program with the following algorithmic steps:

1. Activate the mouse;

2. When the left mouse button is pressed

2.1  Get x- and y-coordinates at where the mouse is clicked;

 
2.2  If it is the first vertex

Then empty vertex vector;

Else If the vertex is inside the tiny rectangle (i.e. last vertex)

Then finish the current polygon;

Else store this vertex in vertex vector (i.e. not last vertex);

3. Draw all vertices in vertex vector.

The last step to draw all the polygon vertices can be detailed as follows:
1. Obtain the dimensions of the drawing rectangle based on logical coordinates;

2. Draw the drawing rectangle;

3. Get the first vertex from vertex vector;

4. Draw a tiny rectangle at the vertex location;

5. Draw a line between every two consecutive vertices stored in vertex vector.

In both Figures 1.9 and 1.10 the drawing rectangle has a width of 10 and a height of 7.5 logical units, as the following program
shows:
// DefPoly.java: Drawing a polygon.
// Uses: CvDefPoly (discussed below).
import java.awt.*;
import java.awt.event.*;

public class DefPoly extends Frame
{  public static void main(String[] args){new DefPoly();}

   DefPoly()
   {  super("Define polygon vertices by clicking");
      addWindowListener(new WindowAdapter()
         {public void windowClosing(WindowEvent e){System.exit(0);}});
      setSize (500, 300);
      add("Center", new CvDefPoly());
      setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));
      show();
   }
}

The class CvDefPoly, used in this program, is listed below. We define this class in a separate file, CvDefPoly.java, so that it is
easier to use elsewhere, as we will see in Section 2.13:
// CvDefPoly.java: To be used in other program files.
//   A class that enables the user to define
//   a polygon by clicking the mouse.
// Uses: Point2D (discussed below).

import java.awt.*;
import java.awt.event.*;
import java.util.*;

class CvDefPoly extends Canvas
{  Vector v = new Vector();
   float x0, y0, rWidth = 10.0F, rHeight = 7.5F, pixelSize;
   boolean ready = true;
   int centerX, centerY;

   CvDefPoly()
   { addMouseListener(new MouseAdapter()
     {  public void mousePressed(MouseEvent evt)
        { float xA = fx(evt.getX()), yA = fy(evt.getY());
          if (ready)
        { v.removeAllElements();
          x0 = xA; y0 = yA;
          ready = false;
        }
        float dx = xA - x0, dy = yA - y0;
        if (v.size()>0&&
           dx * dx + dy * dy <4 * pixelSize * pixelSize)
           ready = true;
        else
           v.addElement(new Point2D(xA, yA));
        repaint();
     }
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     }
  });
}

void initgr()
{  Dimension d = getSize();
   int maxX = d.width - 1, maxY = d.height - 1;
   pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
   centerX = maxX/2; centerY = maxY/2;
}

int iX(float x){return Math.round(centerX + x/pixelSize);}
int iY(float y){return Math.round(centerY - y/pixelSize);}
float fx(int x){return (x - centerX) * pixelSize;}
float fy(int y){return (centerY - y) * pixelSize;}

public void paint(Graphics g)
{  initgr();
   int left = iX(-rWidth/2), right = iX(rWidth/2),
       bottom = iY(-rHeight/2), top = iY(rHeight/2);
   g.drawRect(left, top, right - left, bottom - top);
   int n = v.size();
   if (n == 0) return;
   Point2D a = (Point2D)(v.elementAt (0) );
   // Show tiny rectangle around first vertex:
   g.drawRect(iX(a.x)-2, iY(a.y)-2, 4, 4);
   for (int i=1; i<=n; i++)
   { if (i == n && !ready) break;
     Point2D b = (Point2D)(v.elementAt(i % n));
     g.drawLine(iX(a.x), iY(a.y), iX(b.x), iY(b.y));
   a=b;
   }
 }
}

The class Point2D, used in the above file, will also be useful in other programs, so that we define this in another separate file,
Point2D.java:
// Point2D.java: Class for points in logical coordinates.
class Point2D
{ float x, y;
  Point2D(float x, float y){this.x = x; this.y = y;}
}

After a complete polygon has been shown (which is the case when the user has revisited the first vertex), the user can once again
click a point. The polygon then disappears and that point will then be the first vertex of a new polygon.

Note that the comment line
// Uses: CvDefPoly (discussed below).

occurring in the file DefPoly.java, indicates that the file CvDefPoly.java should be available in the current directory. Since the
comment line
// Uses: Point2D (discussed below).

occurs in the file CvDefPoly.java, the program DefPoly.java also requires the class Point2D. Comments such as those above are
very helpful if different directories are used, for example, one for each chapter. However, since class names are unique
throughout this book, it is possible to place all program files in the same directory. In this way, each required class will be
available.

EXERCISES

1.1 How many pixels are put on the screen by each of the following calls?
g.drawLine (10, 20, 100, 50);
g.drawRect (10, 10, 8, 5);
g.fillRect (10, 10, 8, 5);

1.2 Replace the triangles of program Triangles.java with squares and draw a great many of them,
arranged in a chessboard, as shown in Figure 1.11.
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Figure 1.11: A chessboard of squares

As usual, this chessboard consists of n × n normal squares (with horizontal and vertical edges),
where n = 8. Each of these actually consists of k squares of different sizes, with k = 10. Finally,
the value q = 0.2 (and p = 1 −  q = 0.8) was used to divide each edge into two parts with ratio p : q
(see also program Triangles.java in Section 1.3), but the interesting pattern of Figure 1.11 was
obtained by reversing the roles of p and q in half of the n × n ‘normal’ squares, which is similar to
the black and white squares of a normal chessboard. Your program should accept the values n, k
and q as program arguments.

1.3 Draw a set of concentric pairs of squares, each consisting of a square with horizontal and vertical
edges and one rotated through 45°. Except for the outermost square, the vertices of each square
are the midpoints of the edges of its immediately surrounding square, as Figure 1.12 shows. It is
required that all lines are exactly straight, and that vertices of smaller squares lie exactly on the
edges of larger ones.

 
Figure 1.12: Concentric squares

1.4 Write a program that draws a pattern of hexagons, as shown in Figure 1.13. The vertices of a
(regular) hexagon lie on its so-called circumscribed circle. The user must be able to specify the
radius of this circle by clicking a point near the upper-left corner of the drawing rectangle. Then
the distance between that point and that corner is to be used as the radius of the circle just
mentioned. There must be as many hexagons of the specified size as possible and the margins
on the left and the right must be equal. The same applies to the upper and lower margins, as
Figure 1.13 shows.

 
Figure 1.13: Hexagons
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1.5 Write a class Lines containing a static method dashedLine to draw dashed lines, in such a way
that we can write
Lines.dashedLine(g, xA, yA, xB, yB, dashLength);

where g is a variable of type Graphics, xA, yA, xB, yB are the device coordinates of the endpoints
A and B, and dashLength is the desired length (in device coordinates) of a single dash. There
should be a dash, not a gap, at each endpoint of a dashed line. Figure 1.14 shows eight dashed
lines drawn in this way, with dashLength =20.

 
Figure 1.14: Dashed lines

Answers

1.1 Numbers of pixels:
g.drawLine (10, 20, 100, 50); // 100 - 10 + 1 = 91 pixels
g.drawRect (10, 10, 8, 5);    // 2 * 8 + 2 * 5 = 26 pixels
g.fillRect (10, 10, 8, 5);    // 8 * 5 = 40 pixels

1.2 Program to draw many squares:
// ManySq.java: This program drawsnxnsets, each
//   consisting of k squares, arranged as on a chessboard.
//   Each edge is divided into two parts with ratio
//   (1 - q)  : q. The values of n, k and q are program
              arguments.

import java.awt.*;
import java.awt.event.*;

public class ManySq extends Frame
{  public static void main(String[] args)
   {  if (args.length != 3)
      {  System.out.println("Supply n, k and q as arguments");
         System.exit(1);
      }
      int n = Integer.valueOf(args[0]).intValue(),
          k = Integer.valueOf(args[1]).intValue();
      float q = Float.valueOf(args[2]).floatValue();
      new ManySq(n, k, q);
    }
    ManySq(int n, int k, float q)
    {  super("ManySq: Many squares");
       addWindowListener(new WindowAdapter()
        {public void windowClosing(
                WindowEvent e){System.exit(0);}});
       add("Center", new CvManySq(n, k, q));
       setSize (600, 400);
       show();
    }
  }

  class CvManySq extends Canvas
  {  int centerX, centerY, n, k;
     float p0, q0;

     CvManySq(int nn, int kk, float qq){n=nn; k=kk; q0=qq; p0 =
                    1-q0;}

     int iX(float x){return Math.round(centerX + x);}
     int iY(float y){return Math.round(centerY - y);}

     public void paint(Graphics g)
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     public void paint(Graphics g)
     {  Dimension d = getSize();
        int maxX = d.width - 1, maxY = d.height - 1,
           minMaxXY = Math.min(maxX, maxY);
        centerX = maxX/2; centerY = maxY/2;

        float r = 0.45F * minMaxXY / n;
        for (int x=0; x<n; x++)
        for (int y=0; y<n; y++)
        {  float xCnew = (2 * x - n + 1) * r,
                 yCnew = (2 * y - n + 1) * r,
              xA, yA, xB, yB, xC, yC, xD, yD,
              xA1, yA1, xB1, yB1, xC1, yC1, xD1, yD1, p=p0, q=q0;
           if (x % 2 + y % 2 == 1){p = q0; q = p0;}
           xA = xD = xCnew - r; xB = xC = xCnew + r;
           yA = yB = yCnew - r; yC = yD = yCnew + r;
           for (int i=0; i<k; i++)
           {  g.drawLine(iX(xA), iY(yA), iX(xB), iY(yB));
              g.drawLine(iX(xB), iY(yB), iX(xC), iY(yC));
              g.drawLine(iX(xC), iY(yC), iX(xD), iY(yD));
              g.drawLine(iX(xD), iY(yD), iX(xA), iY(yA));
              xA1 = p * xA+q * xB; yA1 = p * yA+q * yB;
              xB1 = p * xB+q * xC; yB1 = p * yB+q * yC;
              xC1 = p * xC+q * xD; yC1 = p * yC+q * yD;
              xD1 = p * xD+q * xA; yD1 = p * yD+q * yA;
              xA = xA1; xB = xB1; xC = xC1; xD = xD1;
              yA = yA1; yB = yB1; yC = yC1; yD = yD1;
           }
        }
    }
}

1.3 To draw all edges as exactly straight lines and to make the vertices of inner squares lie exactly on the
edges of their surrounding squares, use device coordinates, starting with a pair of very small squares (⋄
and □ ), and making the squares of each next pair exactly twice as large as those of the preceding pair.

1.4 The radius r of the circumscribed circles for the hexagons is supplied by the user. Based on this radius r,
the following fragment (in which the variable names are self-explanatory) may be helpful:
int iX(float x){return Math.round(centerX + x/pixelSize);}
int iY(float y){return Math.round(centerY - y/pixelSize);}

void drawLine(Graphics g, float xA, float yA, float xB, float yB)
{  g.drawLine(iX(xA), iY(yA), iX(xB), iY(yB));
}
...

float halfr = r/2, horpitch = 1.5F * r,
  w = r * (float)Math.sqrt (3),h=w/2, marginleft,
                marginbottom;
int nhor = (int)Math.floor((rWidth - 2 * r) / horpitch) + 1,
    nvert = (int)Math.floor(rHeight/w);
marginleft = -rWidth/2 + 0.5F * (rWidth - halfr - nhor *
              horpitch);
marginbottom = -rHeight/2 + 0.5F * (rHeight - nvert * w);
for (int i=0; i<nhor; i++)
{  float x = marginleft + r + i * horpitch,
    y0 = marginbottom + (1 + i % 2)* h; // center of lowest
              hexagon
    int m = nvert - i % 2;
// There will be nvert hexagons in each column for i = 0, 2,4,
              ...
// while there will be nvert - 1 in each column for i = 1, 3, 5,
              ...
// Special case: if nvert = 1 and nhor > 1, then x is increased
              by
// horpitch/2 because otherwise there will be an empty column on
              the
// right.
   if (nvert == 1 && nhor > 1)
      x += horpitch/2;
   for (int j=0; j<m; j++)
   {  float y = y0+j*w;
      drawLine(g, x + halfr,y+h,x-halfr,y+h);
      drawLine(g, x - halfr, y + h, x - r, y);
      drawLine(g, x - r, y, x - halfr, y - h);
      ...

1.5 We begin by computing the length

where

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Since there should be a dash, not a gap, at each endpoint, and we use gap widths that are about equal to
dashLength,weusetheequality

to compute n, the number of dashes. Writing h1 = u1//(2n −  1) and h2 = u2/ (2n −  1), and denoting the
dashes by i = 0, 1, … , n −  1, we draw dash i as a straight line with endpoints (xA + 2ih1, yA + 2ih2) and ((xA
+ (2i + 1)h1, yA + (2i + 1)h2).
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Chapter 2: Applied Geometry

Before we proceed with specific computer-graphics subjects, we will discuss some mathematics, which we will often use in
this book. You can skip the first four sections of this chapter if you are very familiar with vectors and determinants. After this
general part, we will deal with some useful algorithms needed for the exercises at the end of this chapter and for the topics in
the remaining chapters. For example, in Chapters 6 and 7 we will deal with polygons that are faces of 3D solid objects. Since
polygons in general are difficult to handle, we will divide them into triangles, as we will discuss in the last section of this
chapter.

2.1 VECTORS
We begin with the mathematical notion of a vector, which should not be confused with the standard class Vector, available in Java
to store an arbitrary number of objects. Recall that we have used this Vector class in Section 1.5 to store polygon vertices.

A vector is a directed line segment, characterized by its length and its direction only. Figure 2.1 shows two representations of the
same vector a = PQ = b = RS. Thus a vector is not altered by a translation.

 
Figure 2.1: Two equal vectors

The sum c of the vectors a and b, written

can be obtained as the diagonal of a parallelogram, with a, b and c starting at the same point, as shown in Figure 2.2.

 
Figure 2.2: Vector addition

The length of a vector a is denoted by |a|. A vector with zero length is the zero vector, written as 0. The notation − a is used for the
vector that has length |a| and whose direction is opposite to that of a. For any vector a and real number c, the vector ca has length
|c||a|.If a = 0 or c = 0, then ca = 0;otherwise ca has the direction of a if c > 0 and the opposite direction if c < 0. For any vectors u,
v, w and real numbers c, k, we have
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Figure 2.3 shows three unit vectors i, j and k in a three-dimensional space. They are mutually perpendicular and have length 1.
Their directions are the positive directions of the coordinate axes. We say that i, j and k form a triple of orthogonal unit vectors.
The coordinate system is right-handed, which means that if a rotation of i in the direction of j through 90° corresponds to turning a
right-handed screw, then k has the direction in which the screw advances.

 
Figure 2.3: Right-handed coordinate system

We often choose the origin O of the coordinate system as the initial point of all vectors. Any vector v can be written as a linear
combination of the unit vectors i, j,and k:

The real numbers x, y and z are the coordinates of the endpoint P of vector v = OP. We often write this vector v as

The numbers x, y, z are sometimes called the elements or components of vector v.

The possibility of writing a vector as a sequence of coordinates, such as (x, y, z) for three-dimensional space, has led to the use of
this term for sequences in general. This explains the name Vector for a standard Java class. The only aspect this Vector class has
in common with the mathematical notion of vector is that both are related to sequences.
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2.2 INNER PRODUCT
The inner product or dot product of two vectors a and b is a real number, written as a · b and defined as

where γ  is the angle between a and b. It follows from the first equation that a · b is also zero if γ  = 90°. Applying this definition to
the unit vectors i, j and k, we find

Setting b = a in Equation (2.1), we have a · a =|a|2, so

Some important properties of inner products are

The inner product of two vectors u = [u1 u2 u3] and v = [v1 v2 v3] can be computed as

We can prove this by developing the right-hand side of the following equality as the sum of nine inner products and then applying
Equation (2.2):
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2.3 DETERMINANTS
Before proceeding with vector products, we will pay some attention to determinants. Suppose we want to solve the following
system of two linear equations for x and y:

We can then multiply the first equation by b2, the second by − b1, and add them, finding

Then we can multiply the first equation by − a2, the second by a1, and add again, obtaining

If a1b2 −  a2b1 is not zero, we can divide and find

The denominator in these expressions is often written in the form

and then called a determinant. Thus

Using determinants, we can write the solution of Equation (2.3) as

where

Note that Di is obtained by replacing the ith column of D with the right-hand side of Equation (2.3) (i = 1 or 2). This method of
solving a system of linear equations is called Cramer's rule. It is not restricted to systems of two equations (although it would be
very expensive in terms of computer time to apply the method to large systems). Determinants with n rows and n columns are said
to be of the nth order. We define determinants of third order by using the equation

where each so-called minor determinant Mij is the 2 × 2 determinant that we obtain by deleting the ith row and the jth column of D.
Determinants of higher order are defined similarly.

Determinants are very useful in linear algebra and analytical geometry. They have many interesting properties, some of which are
listed below:

1. The value of a determinant remains the same if its rows are written as columns in the same order. For example:

2. If any two rows (or columns) are interchanged, the value of the determinant is multiplied by − 1. For example:
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3. If any row or column is multiplied by a factor, the value of the determinant is multiplied by this factor. For
example:

4. If a row is altered by adding any constant multiple of any other row to it, the value of the determinant remains
unaltered. This operation may also be applied to columns. For example:

5. If a row (or a column) is a linear combination of some other rows (or columns), the value of the determinant is
zero. For example:

In many cases, determinant equations expressing geometrical properties are elegant and easy to remember. For example, the
equation of the line in R2 through the two points P1(x1, y1) and P2(x2, y2) can be written

This can be understood by observing, first, that Equation (2.5) is a special notation for a linear equation in x and y, and
consequently represents a straight line in R2, and second, that the coordinates of both P1 and P2 satisfy this equation, for if we
write them in the first row, we have two identical rows. Similarly, the plane in R3 through three points P1(x1, y1, z1), P2(x2, y2, z2),
P3(x3, y3, z3) has the equation

which is much easier to remember than one written in the conventional way.
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2.4 VECTOR PRODUCT
The vector product or cross product of two vectors a and b is written

and is a vector v with the following properties. If a = cb for some scalar c,then v = 0. Otherwise the length of v is equal to

where γ  is the angle between a and b, and the direction of v is perpendicular to both a and b and is such that a, b and v, in that
order, form a right-handed triple. This means that if a is rotated through an angle γ  < 180° in the direction of b, then v has the
direction of the advancement of a right-handed screw if turned in the same way. Note that the length |v| is equal to the area of a
parallelogram of which the vectors a and b can act as edges, as Figure 2.4 shows.

 
Figure 2.4: Vector product a × b

The following properties of vector products follow from this definition:

In general, a × (b × c) ≠  (a × b) × c. If we apply our definition of vector product to the unit vectors i, j, k (see Figure 2.3), we have

Using these vector products in the expansion of

we obtain

which can be written as

We rewrite this in a form that is very easy to remember:

This is a mnemonic aid rather than a true determinant, since the elements of the first row are vectors instead of numbers.

If a and b are neighboring sides of a parallelogram, as shown in Figure 2.4, the area of this parallelogram is the length of vector a
× b. This follows from our definition of vector product, according to which |a × b|=|a||b| sin γ  is the length of vector a × b.
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2.5 THE ORIENTATION OF THREE POINTS
We will now deal with a subject that will be very useful in Chapters 6 and 7. Suppose that we are given an ordered triple (A, B, C)
of three points in the xy-plane and we want to know their orientation; in other words, we want to know whether we turn counter-
clockwise or clockwise when visiting these points in the given order. Figure 2.5 shows the possibilities, which we also refer to as
positive and negative orientation, respectively.

 
Figure 2.5: Counter-clockwise and clockwise orientation of A, B, C

There is a third possibility, namely that the points A, B and C lie on a straight line. We will consider the orientation to be zero in
this case. If we plot the points on paper, we see immediately which of these three cases applies, but we now want a means to find
the orientation by computation, using only the coordinates xA, yA, xB, yB, xC, yC.

Let us define the two vectors a = CA and b = CB, as shown in Figure 2.6. Clearly, the orientation of the original points A, B and C
is positive if we can turn the vector a counter-clockwise through a positive angle less than 180° to obtain the direction of the vector
b. Since vectors are only determined by their directions and lengths, we may let them start at the origin O instead of at point C, as
Figure 2.6 shows. Although this orientation problem is essentially two-dimensional, and can be solved using only 2D concepts, as
we will see in a moment, it is convenient to use 3D space. As usual, the unit vectors i, j and k have the directions of the positive x-
, y-and z-axes. In Figure 2.6, we imagine the vector k, like i and j starting at O, and pointing towards us. Denoting the endpoints of
the translated vectors a and b,starting at O, by(a1, a2,0) and (b1, b2, 0), we have

 
Figure 2.6: Using vectors a and b instead of triangle edges CA and CB

and

This expresses the fact that a × b is a vector perpendicular to the xy-plane and either in the same direction as

or in the opposite direction, depending on the sign of a1b2 −  a2b1. If this expression is positive, the relationship between a and b
is similar to that of i and j:we can turn a counter-clockwise through an angle less than 180° to obtain the direction of b, in the
same way as we can do this with i to obtain j. In general, we have
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2.5.1 An Alternative, Two-dimensional Solution

It would be unsatisfactory if we were unable to solve the above orientation problem by using only two-dimensional concepts. To
provide such an alternative solution, we use the angles α  between vector a and the positive x-axis and β  between b and this axis
(see Figure 2.6). Then the orientation we are interested in depends upon the angle β  −  α . If this angle lies between 0 and π , the
orientation is clearly positive, but it is negative if this angle lies between π  and 2π  (or between −π  and 0). We can express this by
saying that the orientation in question depends on the value of sin(β  −  α ) rather than on the angle β  −  α  itself. More specifically,
the orientation has the same sign as

Since the denominator in this expression is the product of two vector lengths, it is positive, so that we have again found that the
orientation of A, B and C and a1b2 −  a2b1 have the same sign. Due to unfamiliarity with the above trigonometric formula, some
readers may find the former, more visual 3D approach easier to remember.

2.5.2 A Useful Java Method

The method area2 in the following fragment is based on the results we have found. This method takes three arguments of class
Point2D, discussed at the end of Chapter 1. We will use the class Tools2D for several static methods, to be used as two-
dimensional tools (see also Section 2.13). Note that, in accordance with Java convention, we use lower-case variable names a, b,
c for the points A, B and C:
class Tools2D
{   static float area2(Point2D a, Point2D b, Point2D c)
    {  return (a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x);
    }
    ... // See Section 2.13
}

As we will see in Section 2.7, this method computes the area of the triangle ABC multiplied by 2, or, if A, B and C are clockwise,
by − 2. If we are interested only in the orientation of the points A, B and C, each of type Point2D, we can write:
if (Tools2D.area2(a, b, c) > 0)
{  ... // A, B and C counter-clockwise
}
else
{ ...
  // A, B and C clockwise (unless the area2 method return 0;
  // in that case A, B and C lie on the same line).
}
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2.6 POLYGONS
A polygon is a sequence P0, P1, … , Pn− 1 of vertices, where n ≥ 3, with associated edges P0P1, P1P2, … , Pn− 2Pn− 1, Pn− 1, P0. In
this book we will restrict ourselves to simple polygons, of which non-adjacent edges do not intersect. Figure 2.7 shows two simple
and two non-simple polygons, for all of which n = 5.

 
Figure 2.7: Two simple and two non-simple polygons

Besides non-simple polygons, such as those in Figure 2.7(c) and (d), we usually also ignore polygons in which three successive
vertices lie on the same line. A vertex of a polygon is said to be convex if the interior angle between the two edges meeting at that
vertex is less than 180°. If all vertices of a polygon are convex, the polygon itself is said to be convex, as is the case with Figure
2.7(a). Non-convex vertices are referred to as reflex. If a polygon has at least one reflex vertex, the polygon is said to be concave.
Figure 2.7(b) shows a concave polygon because the vertex in the middle is reflex. All triangles are convex, and each polygon has
at least three convex vertices.

If we are given the vertices P0, P1, … , Pn− 1 of a polygon, it may be desirable to determine whether this vertex sequence is
counter-clockwise. If we know that the second vertex, P1, is convex, we can simply write
if (Tools2D.area2(p[0], p[1], p[2]) > 0)
   ... // Counter-clockwise
else
   ... // Clockwise

The problem is more interesting if no information about any convex vertex is available. We then have to detect such a vertex. This
is an easy task, since any vertex whose x-or y-coordinate is extreme is convex. For example, we can use a vertex whose x-
coordinate is not greater than that of any other vertex. If we do not want to exclude the case of three successive vertices lying on
the same line, we must pay special attention to the case of three such vertices having the minimum x-coordinate. Therefore,
among all vertices with an x-coordinate equal to this minimum value, we choose the lowest one, that is, the one with the least y-
coordinate. The following method is based on this idea:
static boolean ccw(Point2D[] p)
{  int n = p.length,k=0;
   for (int i=1; i<n; i++)
      if (p[i].x <= p[k].x && (p[i].x < p[k].x || p[i].y < p[k].y))
         k=i;
   // p[k] is a convex vertex.
   int prev = k - 1, next = k + 1;
   if (prev = = -1) prev = n - 1;
   if (next == n) next = 0;
   return Tools2D.area2(p[prev], p[k], p[next]) > 0;
}

We should be aware that one very strange situation is still possible: all n vertices may lie on the same line. In that case, the
method ccw will return the value false.

We will use this method in Section 2.13, in which program PolyTria.java will divide a user-entered polygon into triangles.
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2.7 THE AREA OF A POLYGON
As we have seen in Figure 2.4, the cross product a × b is a vector whose length is equal to the area of a parallelogram of which a
and b are two edges. Since this parallelogram is the sum of two triangles of equal area, it follows that for Figure 2.6 we have

Note that this is valid only if A, B and C are labeled counter-clockwise; if this is not necessarily the case, we have to use the
absolute value of a1b2 −  a2b1.

Since a1 = xA −  xC, a2 = yA −  yC, b1 = xB −  xC, b2 = yB −  yC, we can also write

After working this out, we find that we can replace this with

Although the latter expression seems hardly an improvement, it is useful to prepare for a more general one, which we can use to
compute the area of any polygon, convex or concave, which has the vertices P0P1, P1P2, …  , Pn− 2Pn− 1, Pn− 1, labeled counter-
clockwise:

where (xi, yi) are the coordinates of Pi and Pn is the same vertex as P0. As you can see, our last formula for the area of a triangle
is a special case of this general one, in which the area of a polygon is expressed directly in terms of the coordinates of its vertices.
A complete proof of this formula is beyond the scope of this book.

2.7.1 Java Code

As we have seen in Section 2.6, we use the method area2 to determine the orientation of three points A, B and C. Recall that the
digit 2 in the name area2 indicates that we have to divide the return value by 2 to obtain the area of triangle ABC, that is, if A, B
and C are counter-clockwise; otherwise, we have to take the absolute value |area2(A, B, C)/2|.

The same applies to the following method area2, whose return value divided by 2 gives the area, possibly preceded by a minus
sign, of a polygon.
static float area2(Point2D[] pol)
{  int n = pol.length,
       j = n - 1;
   float a = 0;

   for (int i=0; i<n; i++)
   {  // i and j denote neighbor vertices
      // with i one step ahead of j
      a + = pol[j].x * pol[i].y - pol[j].y * pol[i].x; j=i;
   }
   return a;
}

Note that this second area2 method provides another means of deciding the orientation of a polygon vertex sequence: this
orientation is counter-clockwise if area2 returns a positive value and clockwise if it returns a negative one. However, the method
ccw discussed in Section 2.6 is faster, especially if n is large, because for most vertices it will only perform the comparison
p[i].x <= p[k].x

while area2 performs some more time-consuming arithmetic operations for each vertex.

We could add this second method area2totheclass Tools2D, but you will not find it in our final version of this class in Section 2.13
because we will never use it in this book; since we will use Tools2D several times, we prefer to omit superfluous methods for
economic reasons.
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2.8 POINT-IN-TRIANGLE TEST
Determining the orientation of three points as we have just been discussing is useful in a test to see if a given point P lies within a
triangle ABC. As Figure 2.8 shows, this is the case if the orientation of the triangles ABP, BCP and CAP is the same as that of
triangle ABC.

 
Figure 2.8: Orientation used to test if P lies within triangle ABC

Let us assume that we know that the orientation of ABC is counter-clockwise. We can then call the following method to test if P
lies within triangle ABC (or on an edge of it):
static boolean insideTriangle(Point2D a, Point2D b, Point2D c,
   Point2D p) // ABC is assumed to be counter-clockwise
{ return
     Tools2D.area2(a, b, p) >= 0 &&
     Tools2D.area2(b, c, p) >= 0 &&
     Tools2D.area2(c, a, p) >= 0;

}

In this form, the method insideTriangle also returns the value true if P lies on an edge of the triangle ABC. If this is not desired, we
should replace >= 0with > 0. The above form is the one we will need in Chapters 6 and 7, in which we will use this method to
triangulate complicated polygonal faces of 3D objects.

Incidentally, with a floating-point value x, we might consider replacing a test of the form x >= 0with x >=− epsilon and x > 0with x >
epsilon,where epsilon is some small positive value, such as 10−6. In this way a very small rounding-off error (less than epsilon) in
the value of x will not affect the result of the test. This is not done here because the above method insideTriangle works well for
our applications.

2.8.1 An Alternative Method insideTriangle

The above method insideTriangle is reasonably efficient, especially if point P does not lie within the triangle ABC. In such cases
the chances are that not all three calls to area2 are executed because the first or the second of the three tests fails. However, it
should be mentioned that there is an entirely different way of solving the problem in question, as we will see in Exercise 3.5. The
corresponding alternative method insideTriangle (listed in Appendix F), is slightly faster than the one above if a single triangle ABC
is to be used for several points P. It is also more general in that it does not rely on ABC being counter-clockwise. We will not
discuss this alternative method here because it is easier to understand after the discussion of matrix multiplication and inverse
matrices in Chapter 3. To avoid confusion we will normally use the insideTriangle version discussed in this section and occurring
in the file Tools2D.java, even in cases where the one in Exercise 3.5 might be slightly faster.
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2.9 POINT-IN-POLYGON TEST
The notion of orientation is also useful when we need to determine whether a given point P lies within a polygon. It will then be
convenient if a method is available which accepts both the polygon in question and point P as arguments, and returns true if P lies
inside and false if it lies outside the polygon. If P lies on a polygon edge, we do not care: in that case the method may return true
or false. The method we will discuss is based on the idea of drawing a horizontal half-line, which starts at P and extends only to
the right. The number of intersections of this horizontal half-line with polygon edges is odd if P lies within the polygon and even if P
lies outside it. Imagine that we move to the right, starting at point P. Then our state changes from inside to outside and vice versa
each time we cross a polygon edge. The total number of changes is therefore odd if P lies within the polygon and even if it lies
outside the polygon. It is not necessary to visit all intersections strictly from left to right; the only thing we want to know is whether
there are an odd or an even number of intersections on a horizontal line through P and to the right of P. However, we must be
careful with some special cases, as shown in Figure 2.9.

 
Figure 2.9: Polygon and half-line starting at P

We simply ignore horizontal polygon edges, even if they have the same y- coordinate as P, as is the case with edge 4–5 in this
example. If a vertex occurring as a ‘local maximum or minimum’ happens to have the same y- coordinate as P, as is the cases
with vertices 8 and 12 in this example, it is essential that this is either ignored or counted twice. We can realize this by using the
edge from vertex i to vertex i + 1 only if

This implies that the lower endpoint of a non-horizontal edge is regarded as part of the segment, but the upper endpoint is not. For
example, in Figure 2.9, vertex8(with y8 = yP) is not counted at all because it is the upper endpoint of both edge 7–8 and edge 8–9.
By contrast, vertex 12 (with y12 = yP) is the lower endpoint of the edges 11–12 and 12–13 and thus counted twice. Therefore, in
this example, we count the intersections of the half-line through P with the seven edges 2–3, 3–4, 5–6, 6–7, 10–11, 11–12, 12–13
and with no others.

Since we are considering only a half-line, we must impose another restriction on the set of edges satisfying the above test,
selecting only those whose point of intersection with the half-line lies to the right of P. One way of doing this is by using the
method area2 to determine the orientation of a sequence of three points. For example, this orientation is counter-clockwise for the
triangle 2-3-P in Figure 2.9, which implies that P lies to the left of edge 2–3. It is also counter-clockwise for the triangle 7-6-P. In
both cases, the lower endpoint of an edge, its upper endpoint and point P, in that order, are counter-clockwise. The following
method is based on these principles:
static boolean insidePolygon(Point2D p, Point2D[] pol)
{  int n = pol.length, j = n - 1;
   boolean b = false;
   float x = p.x, y = p.y;
   for (int i=0; i<n; i++)
   { if (pol[j].y <= y && y < pol[i].y &&
         Tools2D.area2(pol[j], pol[i], p) > 0 ||
         pol[i].y <= y && y < pol[j].y &&
         Tools2D.area2(pol[i], pol[j], p) > 0) b = !b;
     j = i;

    }
    return b;
}

This static method, like some others in this chapter, might be added to the class Tools2D (see Section 2.13).

2.9.1 The contains Method of the Java Class Polygon

There is a standard class Polygon, which has a member named contains to perform about the same task as the above method
insidePolygon. However, it is based on integer coordinates.

For example, to test if a point P(xP, yP) lies within the triangle with vertices A(20, 15), B(100, 30) and C(80, 150), we can use the
following fragment:
int[] x = {20, 100, 80}, y = {15, 30, 150}; // A, B, C
Polygon p = new Polygon(x, y, 3);
if (p.contains(xP, yP)) ... // P lies within triangle ABC.
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if (p.contains(xP, yP)) ... // P lies within triangle ABC.

If P lies exactly on a polygon edge, the value returned by this method contains of the class Polygon can be true or false.
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2.10 POINT-ON-LINE TEST
Testing whether a point P lies on a given line is very simple if this line is given as an equation, say,

Then all we need to do is to test whether the coordinates of P satisfy this equation. Due to inexact computations, such a test may
fail when it should succeed. It may therefore be wise to be slightly more tolerant, so that we might write
if (Math.abs(a * p.x + b * p.y - h) < eps) // P on the line

where eps is some small positive value, such as 10−5.

If the line is not given by an equation but by two points A and B on it, we can use the above test after deriving an equation for the
line, as discussed in Section 2.3, writing

which gives the following coefficients for Equation (2.7):

Instead, we can benefit from the area2 method, which we are now familiar with. After all, if and only if P lies on the line through A
and B, the triangle ABP is degenerated and has a zero area. We can therefore write
if (Math.abs(Tools2D.area2(a, b, p)) < eps) // P on line AB

Again, if we simply test whether the computed area is equal to zero, such a test might fail when it should succeed, due to
rounding-off errors.

2.10.1 Testing Whether a Point Lies on a Line Segment

If three points A, B and P are given, we may want to determine whether P lies on the closed line segment AB. The adjective
closed here means that we include the endpoints A and B, so that the question is to be answered affirmatively if P lies between A
and B or coincides with one of these points. We assume that A and B are different points, which implies that xA ≠  xB or yA ≠  yB. If
xA ≠  xB we test whether xP lies between xA and xB; if not, we test whether yP lies between yA and yB, where in both cases the
word between includes the points A and B themselves. This test is sufficient if it is given that P lies on the infinite line AB. If that is
not given, we also have to perform the above test, which is done in the following method:
static boolean onSegment(Point2D a, Point2D b, Point2D p)
{  double dx = b.x - a.x, dy = b.y - a.y,
      eps = 0.001 * (dx * dx + dy * dy);
   return
      (a.x != b.x &&
      (a.x <= p.x && p.x <= b.x || b.x <= p.x && p.x <= a.x)
      || a.x == b.x &&
      (a.y <= p.y && p.y <= b.y || b.y <= p.y && p.y <= a.y))
      && Math.abs(Tools2D.area2(a, b, p)) < eps;
}

The expression following return relies on the operator && having higher precedence than ||. Since both operators && and ||
evaluate the second operand only if this is necessary, this test is more efficient than it looks. For example, if xA ≠  xB
thetestonthelineoftheform(a.y <= … ) is not evaluated at all. The positive constant eps in the above code has been chosen in such
a way that the area of triangle ABP is compared with a fraction of another area, for which the square of side AB is used. In this
way, the compared areas depend in the same way on both the length of AB and the unit of length that is used.

Instead of testing if P lies on the segment AB, we may want to apply a similar test to the projection P′ of P on AB, as Figure 2.10
shows.

 
Figure 2.10: Projection P′ of P on line AB between A and B
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We can solve this problem by computing the dot product of the vectors AB and AP. This dot product AB · AP is equal to 0 if P′ ≡
A(P′ coincides with A) and it is equal to AB · AB = AB2 if P′ ≡  B. For any value of this dot product between these two values, P
lies between A and B. We can write this as follows in a program, where len2 corresponds to AB · AB, inprod corresponds to AB ·
AP,and eps is some small positive value, as discussed for the above method onSegment:
// Does P' (P projected on AB) lie on the closed segment AB?
static boolean projOnSegment(Point2D a, Point2D b, Point2D p)
{ double dx = b.x - a.x, dy = b.y - a.y,
      eps = 0.001 * (dx * dx + dy * dy),
      len2 = dx * dx + dy * dy,
      inprod = dx * (p.x - a.x) + dy * (p.y - a.y);
   return inprod > -eps && inprod < len2 + eps;
}

To determine whether P′ lies on the open segment AB (not including A and B), we replace the return statement with
return inprod > eps && inprod < len2 - eps;
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2.11 DISTANCE BETWEEN A POINT AND A LINE
We can find the distance between a point P and a line l in different ways, depending on the way the line is specified. If two points
A and B of the line are given, we can find the distance between a point P and the (infinite) line l through A and B by using the first
of the two methods area2 defined in Section 2.7:

This follows from the fact that the absolute value of area2(A, B, P) denotes the area of the parallelogram of which A, B and P are
three vertices, as shown in Figure 2.11(a). This area is also equal to the product of the parallelogram's base AB and its height d.
We can therefore compute d in the above way.

 
Figure 2.11: Distance between point P and line l

If the line l is given as an equation, we assume this to be in the form

where

If the latter condition is not satisfied, we only have to divide a, b and h by the above square root. We can then write the above
equation of line l as the dot product

where

The normal vector n is perpendicular to line l and has length 1. For any vector x, starting at O, the dot product x · n is the
projection of vector x on n. This also applies if the endpoint of x lies on line l, as shown in Figure 2.11(b); in this case we have x ·
n = h. We find the desired distance between point P and line l by projecting OP also on n and computing the difference of the two
projections:

Although Figure 2.11(b) applies to the case h > 0, this equation is also valid if h is negative or zero, or if O lies between line l and
the line through P parallel to l. Both OP · n and h are scale factors for the same vector n. The absolute value of the algebraic
difference of these two scale factors is the desired distance between P and l. We will refer to this algebraic difference OP · n −  h
= axP + byP −  h as a signed distance in the next section.
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2.12 PROJECTION OF A POINT ON A LINE
Suppose that again a line l and a point P (not on l) are given and that we want to compute the projection P′ of P on l (see Figure
2.10). This point P′ has three interesting properties:

1. P′ is the point on l that is closest to P.

2. The length of PP′ is the distance between P and l (computed in the previous section).

3. PP′ and l are perpendicular.

As in the previous section, we discuss two solutions: one for a line l given by two points A and B, and the other for l given as the
equation x · n = h.

With given points A and B on line l, the situation is as shown in Figure 2.10. Recall that in Section 2.10 we discussed the method
projOnSegment to test if the projection P′ of P on the line through A and B lies between A and B. In that method, we did not
actually compute the position of P′. We will now do this (see Figure 2.10), first by introducing the vector u of length 1 and direction
AB:

Then the length of the projection AP′ of AP is equal to

which we use to compute

Doing this straightforwardly would require a square-root operation in the computation of the distance between A and B, used in the
computation of u. Fortunately, we can avoid this by rewriting the last equation, using the two preceding ones:

The advantage of the last form is that the square of the segment length AB is easier to compute than that length itself. The
following method, which returns the projection P′ of P on AB, demonstrates this:
// Compute P' (P projected on AB):
static Point2D projection(Point2D a, Point2D b, Point2D p)
{  float vx = b.x - a.x, vy = b.y - a.y, len2 = vx * vx + vy * vy,
      inprod = vx * (p.x - a.x) + vy * (p.y - a.y);
   return new Point2D(a.x + inprod * vx/len2,
                      a.y + inprod * vy/len2);
}

So much for a line given by two points A and B.

Let us now turn to a line l given by its equation, which we again write as

where

and

Using the ‘signed distance’

as introduced at the end of the previous section and illustrated by Figure 2.11, we can write the following vector equation to
compute the desired projection P′ of P on l:

This should make the following method clear:
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// Compute P', the projection of P on line l given as
// ax + by = h, where a * a + b * b = 1
static Point2D projection(float a, float b, float h,
   Point2D p)
{  floatd = p.x * a + p.y * b-h;
   return new Point2D(p.x - d * a, p.y - d * b);
}
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2.13 TRIANGULATION OF POLYGONS
In many graphics applications, such as those to be discussed in Chapters 6 and 7, it is desirable to divide a polygon into triangles.
This triangulation problem can be solved in many ways. We will discuss a comparatively simple algorithm. It accepts a polygon in
the form of an array of Point2D elements (see Section 1.5), containing the polygon vertices in counter-clockwise order. The
triangulate method that we will discuss takes such an array as an argument. To store the resulting triangles, it also takes a second
argument, an array with elements of type Triangle, which is defined as follows:
// Triangle.java: Class to store a triangle;
//    vertices in logical coordinates.
// Uses: Point2D (Section 1.5).

class Triangle
{  Point2D a, b, c;
   Triangle(Point2D a, Point2D b, Point2D c)
   { this.a = a; this.b = b; this.c = c;
   }
}

If the given polygon has n vertices, this triangle array should have length n −  2. The algorithm works as follows. Traversing the
vertices of the polygon in counter-clockwise order, for every three successive vertices P, Q and R of which Q is a convex vertex
(with an angle less than 180°), we cut the triangle PQR off the polygon if this triangle does not contain any of the other polygon
vertices. For example, starting with polygon ABCDE in Figure 2.12, we cannot cut triangle ABC, because this contains vertex D.
Nor is triangle CDE a good candidate, because D is not a convex vertex. There are no such problems with triangle BCD, so that
we will cut this off the polygon, reducing the polygon ABCDE to the simpler one ABDE.

 
Figure 2.12: Cutting off a triangle

For this purpose we use the static method triangulate, which, along with some others already discussed, is listed in the class
Tools2D below:
// Tools2D.java: Class to be used in other program files.
// Uses: Point2D (Section 1.5) and Triangle (discussed above).

class Tools2D
{  static float area2(Point2D a, Point2D b, Point2D c)
   { return (a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x);
   }

   static boolean insideTriangle(Point2D a, Point2D b, Point2D c,
      Point2D p) // ABC is assumed to be counter-clockwise
   { return
       Tools2D.area2(a, b, p) >= 0 &&
       Tools2D.area2(b, c, p) >= 0 &&
       Tools2D.area2(c, a, p) >= 0;
   }

   static void triangulate(Point2D[] p, Triangle[] tr)
   {  // p contains all n polygon vertices in CCW order.
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   {  // p contains all n polygon vertices in CCW order.
      // The resulting triangles will be stored in array tr.
      // This array tr must have length n - 2.
      int n = p.length, j = n - 1, iA=0, iB, iC;
      int[] next = new int[n];
      for (int i=0; i<n; i++)
      {  next[j] = i;
         j = i;
      }
      for (int k=0; k<n-2; k++)
      {  // Find a suitable triangle, consisting of two edges
         // and an internal diagonal:
         Point2D a, b, c;
         boolean triaFound = false;
         int count = 0;
         while (!triaFound && ++count < n)
         {  iB = next[iA]; iC = next[iB];
            a = p[iA]; b = p[iB]; c = p[iC];
            if (Tools2D.area2(a, b, c) >= 0)
            {  // Edges AB and BC; diagonal AC.
               // Test to see if no other polygon vertex
               // lies within triangle ABC:
               j = next[iC];
               while (j != iA && !insideTriangle(a, b, c, p[j]))
                  j = next[j];
               if (j == iA)
               {  // Triangle ABC contains no other vertex:
                  tr[k] = new Triangle(a, b, c);
                  next[iA] = iC;
                  triaFound = true;
               }
            }
            iA = next[iA];
         }
         if (count == n)
         {  System.out.println("Not a simple polygon" +
              " or vertex sequence not counter-clockwise.");
            System.exit(1);
         }
      }
   }

   static float distance2(Point2D p, Point2D q)
   {  float dx = p.x - q.x,
         dy = p.y - q.y;
   return dx * dx + dy * dy;
   }
}

In Appendix D we will use the method distance2, shown at the end of this class; it simply computes the square of the distance of
two points P and Q. If we only want to compare two distances, we may as well compare their squares to save the rather costly
operation of computing the square roots.

The program below enables the user to define a polygon, in the same way as wedidwithprogram DefPoly.java in Section 1.5, but
this time the polygon will be divided into triangles, which appear in different colors. This program, PolyTria.java, uses the above
classes Triangle and Tools2D,as well as the class CvDefPoly, which occurs in program DefPoly.java of Section 1.5. In our
subclass, CvPolyTria, we apply the method ccw, discussed in Section 2.6, to the given polygon to examine the orientation of its
vertex sequence. If this happens to be clockwise, we put the vertices in reverse order in the array P,sothat the vertex sequence
will be counter-clockwise in this array, which we can then safely pass on to the triangulate method:
// PolyTria.java: Drawing a polygon and dividing it into triangles.
// Uses: CvDefPoly, Point2D (Section 1.5),
//       Triangle, Tools2D (discussed above).

import java.awt.*;
import java.awt.event.*;
import java.util.*;
public class PolyTria extends Frame
{  public static void main(String[] args){new PolyTria();}

   PolyTria()
   {  super("Define polygon vertices by clicking");
      addWindowListener(new WindowAdapter()
         {public void windowClosing(WindowEvent e){System.exit(0);}});
      setSize (500, 300);
      add("Center", new CvPolyTria());

   setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));
         show();
   }
}
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}
class CvPolyTria extends CvDefPoly // see Section 1.5
{  public void paint(Graphics g)
   { int n = v.size();
   if (n > 3 && ready)
   {  Point2D[] p = new Point2D[n];
      for (int i=0; i<n; i++) p[i] = (Point2D)v.elementAt(i);
      // If not counter-clockwise, reverse the order:
      if (!ccw(p))
         for (int i=0; i<n; i++)
             p[i] = (Point2D)v.elementAt(n - i - 1);
      int ntr = n - 2;
      Triangle[] tr = new Triangle[ntr];
      Tools2D.triangulate(p, tr);
      initgr();

      for (int j=0; j<ntr; j++)
      {  g.setColor(new Color(rand(), rand(), rand()));
         int[] x = new int[3], y = new int[3];
         x[0] = iX(tr[j].a.x); y[0] = iY(tr[j].a.y);
         x[1] = iX(tr[j].b.x); y[1] = iY(tr[j].b.y);
         x[2] = iX(tr[j].c.x); y[2] = iY(tr[j].c.y);
         g.fillPolygon(x, y, 3);
      }
   }
   g.setColor(Color.black);
   super.paint(g);
}

int rand(){return (int)(Math.random() * 256);}

static boolean ccw(Point2D[] p)
  {  int n = p.length, k = 0;
     for (int i=1; i<n; i++)
        if (p[i].x <= p[k].x && (p[i].x < p[k].x || p[i].y < p[k].y))
          k = i;
    // p[k] is a convex vertex.
    int prev = k - 1, next = k + 1;
    if (prev == -1) prev = n - 1;
    if (next == n) next = 0;
    return Tools2D.area2(p[prev], p[k], p[next]) > 0;
  }
}

The canvas class CvPolyTria is a subclass of CvDefPoly so that the construction of a polygon with vertices specified by the user is
done in the same way as in Section 1.5. In this subclass, we call the method triangulate to construct the array tr of triangles.
These are then displayed in colors generated with a random number generator, so that we can clearly distinguish them. The result
on the screen is much better than Figure 2.13, because the latter shows only shades of gray instead of the real colors.

 
Figure 2.13: Triangulation of a polygon

EXERCISES

2.1 Write a program that draws a square ABCD. The points A and B are arbitrarily specified by the
user by clicking the mouse button. The orientation of the points A, B, C and D should be counter-
clockwise.

2.2 Write a program that, for four points A, B, C and P,

draws a triangle formed by ABC and a small cross showing the position of P; and

displays a line of text indicating which of the following three cases applies: P lies
(a) inside ABC, (b) outside ABC, or (c) on an edge of ABC.

The user will specify the four points by clicking.

2.3 The same as Exercise 2.2, but, instead of displaying a line of text, the program computes the
distances from P to the (infinite) lines AB, BC and CA, and draws the shortest possible line that
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distances from P to the (infinite) lines AB, BC and CA, and draws the shortest possible line that
connects P with the nearest of those three lines.

2.4 Write a program that computes the intersection point of two (infinite) lines AB and CD. The user
will specify the points A, B, C and D by clicking. Draw a small circle around the intersection point.
If the two lines AB and CD do not have a unique intersection point (because they are parallel or
coinciding), display a line of text indicating this.

2.5 Write a program that constructs the bisector of the angle ABC (which divides the angle at B into
two equal angles). After the user has specified the points A, B and C by clicking, the program
should compute the intersection point D of this bisector with the opposite side AC, and draw both
triangle ABC and bisector BD.

2.6 Write a program that draws the circumscribed circle (also known as the circumcircle) of a given
triangle ABC; this circle passes through the points A, B and C. These points will be specified by
the user by clicking the mouse button. Remember, the three perpendicular bisectors of the three
edges of a triangle all pass through one point, the circumcenter, which is the center of the
circumscribed circle.

2.7 Write a program that, for three given points P, Q and R specified by the user, draws a circular
arc, starting at P, passing through Q and ending at R (see also Exercise 2.6).

2.8 Construct a fillet to replace a sharp corner with a rounded one, as illustrated by the solid lines
and the arc in Figure 2.14. The four points A, B, C and D are specified by the user by clicking.
Point D may or may not lie on AB; if it does not, it is projected onto AB, giving D′, as Figure 2.14
illustrates. The arc starts at point D′.

 
Figure 2.14: Fillet

2.9 Construct the inscribed circle (or incircle) of a given triangle ABC. The center of this circle lies on
the point of intersection of the (internal) bisectors of the three angles A, B and C. Draw also the
three excircles, which, like the incircle, are tangent to the sides of the triangle, as shown in Fig.
2.15. The centers of the excircles lie on the points of intersection of the external bisectors of the
angles A, B and C.
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Figure 2.15: Incircle and excircles of triangle ABC

2.10 Write a program that draws a tree of Pythagoras as shown in Figure 2.16. Two vertices A and B,
the basis of the tree, are specified by the user by clicking. Then both a square ABCD and an
isosceles, right-angled triangle DCE, with right angle E, are constructed. The orientation of both
ABCD and DCE is counter-clockwise. Finally, the points D and E form the basis of another tree
of Pythagoras, and so do the points E and C. Use a recursive method, which does nothing at all
if the two supplied basis points are closer together than some limit.

 
Figure 2.16: Tree of Pythagoras

Answers

2.1 After rotating the vector v = (v1, v2) through 90° counter-clockwise, we obtain the vector (− v2, v1). Setting
v = (v1, v2) = (xB −  xA, yB −  yA), we can therefore find the points D and C by adding (− v2, v1) to the
coordinates of A and B, respectively.

2.2 To determine the position of P relative to the triangle ABC, we first test whether P lies on one of the three
sides of the triangle, using the method onSegment, discussed in Section 2.10. If this is not the case, we
test whether P lies inside ABC, using the method insideTriangle of Section 2.8. To do this properly, we
need to know the orientation of A, B and C, for which we can use the method ccw of Section 2.6. If this
orientation is clockwise, we use C, B and A, in that order, as the first three arguments of insideTriangle,
so that the orientation of these arguments is counter- clockwise, as required. If P lies neither on a triangle
side nor inside the triangle, it lies outside it.

2.3 Section 2.11 shows how to compute the distance between a point and a line. We perform this
computation three times to determine which of the three triangle sides AB, BC and CA (or rather the
infinite lines through these sides) lies closest to point P. We then use the method projection of Section
2.12 to compute the projection P′ of P on the triangle side in question (or on an extension of it). We draw
both the triangle and the line segment PP′. If the projection point P′ lies on an extension of a side, we
also connect this point to the side (AB, BC or CA), to indicate clearly which of the three lines has been
used. For example, if P′ lies on an extension of BC (not between B and C), we can draw P′B.

2.4 Using the vector AB = u = (u1, u2) = (xB −  xA, yB −  yA) and the parameter λ , we can represent the line
through A and B by the following vector form:

Similarly, with CD = v = (v1, v2) = (xD −  xC, yD −  yC) and parameter μ , the line through C and D is
represented by
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We find the intersection point S by solving

for λ  (rewriting this vector equation as a system of two linear equations, using the x-and y- coordinates of
A and C as well as u1, u2, v1 and v2). We then use the value of λ  computed in this way to find

When deriving the desired value of λ , we will have to perform a division by the expression u2v1 −  u1v2
(which is a determinant). If this determinant is zero, the lines AB and CD do not have a unique
intersection point because these lines are parallel or coincide. Since the points A, B, C and D are
obtained by clicking and there are (very small) rounding-off errors, we had better replace the condition

with this one:

where epsilon is some very small positive value. To make this independent of the units of length and in
view of the way the determinant is computed, a reasonable value is

2.5 To construct the bisector of angle B, we can compute the two vectors u = BA/|BA| and v = BC/|BC|. We
can view these vectors as arrows starting at B and pointing to A and C, respectively. Since both u and v
have length 1, the sum vector

can then be regarded as another arrow starting at B but lying on the desired bisector, so that, with
parameter α , the vector form

denotes the bisector of angle B. The intersection point D of this bisector and triangle side AC can then be
found in the same way as in Exercise 2.4.

2.6 Using AB=u=(u1, u2)=(xB −  xA, yB −  yA) and v =(v1, v2) = (− u2, u1), we can write the following vector
form for the perpendicular bisector of AB:

To find the circumcenter D of triangle ABC, write a similar vector form, say,

for the perpendicular bisector of BC. You can then find the intersection of these two lines by solving the
vector equation

for λ  (or μ ). Then the circumcenter D is found as the point of intersection by using this value λ  in Equation
(F.1). After computing the radius r =|AD|, and using the methods iX and iY to convert real logical
coordinates into integer device coordinates, you can draw the circle through A, B and C by writing:
int xLeft = iX(xD - r), xRight = iX(xD + r),
    yTop = iY(yD + r), yBottom = iY(yD - r);
g.drawOval(xLeft, yTop, xRight - xLeft, yBottom - yTop);

2.7 Compute the center C and the radius r of the circle through P, Q and R (see Exercise 2.6). Although there
is a method drawArc in Java, this is not suitable for our present purpose because it requires angles to be
specified (in degrees) as integers; especially if r is large, this may cause too large rounding-off errors with
regard to both endpoints of the arc. We therefore simply use a great many straight line segments. We
can do this by using Point2D objects for C, P, Q and R (see Section 1.5). Taking the orientation of P, Q
and R into account by means of the method area2ofclass Tools2D (see Section 2.13), we can write:
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double alpha = Math.atan2(P.y - C.y, P.x - C.x),
       beta  = Math.atan2(R.y - C.y, R.x - C.x);
if (Tools2D.area2(P, Q, R) > 0)
   arcCcw(g, C, r, alpha, beta);
else
   arcCcw(g, C, r, beta, alpha);

The method arcCcw, used here, is listed below. Working counter- clockwise, it draws the arc with start
and end angles alpha and beta and belonging to the circle with center C and radius r:
void arcCcw(Graphics g, Point2D C, double r,
   double alpha, double beta)
{  double pi2=2* Math.PI, delta = beta - alpha;
   // Reduce delta to the interval [0, 2pi):
   delta = (delta + pi2) % pi2;
   int X0=0, Y0=0,                     // Arc length = r * delta
      n = (int)Math.ceil(r * delta / 0.02); // 0.02 = rWidth/500
   double theta = delta / n;
   for (int i=0; i<=n; i++)
   {  double phi = alpha + i * theta,
         x = C.x + r * Math.cos(phi),
         y = C.y + r * Math.sin(phi);
      int X = iX((float)x), Y = iY((float)y );
      if (i > 0) g.drawLine(X0, Y0, X, Y);
      X0 = X; Y0 = Y;
   }
}

2.8 We can use the first of the two methods projection of Section 2.12 to find the projection D' of D on AB.
Since the center M of the circular arc lies on the bisector of the angle ABC, we compute the unit vectors u
= BA/|BA| and v = BC/|BC| and w = (u + v)/|u + v|,whichstart at B and point to A, C and M, respectively.
We now have to find a scale factor λ , so that BM = λ  w. Since the cosine of the angle D′ BM is equal to w
· v and using μ  =|BD′|, we can compute λ  = µ/(w · v). We then find the endpoint E of the arc on BC and
the center M as follows: E = B + μv, M = B + λw. Obviously, the radius of the arc is r =|MD′|. We can now
compute the start and end angles α  and β  and draw the arc by choosing between two calls to the method
arcCcw, depending on the orientation of the points A, B and C (see Exercise 2.7).

2.9 Refer to Exercise 2.8 for bisectors of angles and to Exercise 2.1 for the intersection of two lines. This will
provide you with the centers of the four circles. You can use the radius of each circle as the distance of its
center to one of its tangents. Recall that we have discussed the distance of points to lines in Section 2.11.

2.10 Use vector AB = (u1, u2) to find the points D = A + (− u2, u1), C = D + (u1, u2)and E = D + 0.5 {(u1, u2) +
(− u2, u1)}.
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Chapter 3: Geometrical Transformations

To understand perspective projection, which we will discuss in Chapter 5, we need to be familiar with 3D rotations. These
and other transformations will be discussed in this chapter. They are closely related to matrix multiplication, which is the
subject we start with.

3.1 MATRIX MULTIPLICATION
A matrix (plural matrices) is a rectangular array of numbers enclosed in brackets (or parentheses). For example,

is a 2 × 4 matrix: it consists of two rows and four columns. If a matrix consists of only one row, we call it a row matrix or row
vector. In the same way, we use the term column matrix or column vector for a matrix that has only one column.

If A and B are matrices and the number of columns of A is equal to the number of rows of B, we can compute the matrix product
AB. This product is another matrix, which has as many rows as A and as many columns as B. We will discuss this in detail for a
particular case with regard to the dimensions of A and B: we will use a 2 × 3matrix A and a 3 × 4 matrix B. Then the product C =
AB exists and is a 2 × 4 matrix. It will be clear that the matrix product AB can be computed for A and B of other dimensions in a
similar way, provided the number of columns of A is equal to the number of rows of B.

Writing

and similar expressions for both the matrix B and the product matrix C = AB, we have

Each element cij (found in row i and column j of the product matrix C) is equal to the dot product of the ith row of A and the jth
column of B. For example, to find c23, we need the numbers a21, a22 and a23 in the second row of A and b13, b23 and b33 in the
third column of B. Using these two sequences as vectors, we can compute their dot product, finding

In general, the elements of the above matrix C are computed as follows:
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3.2 LINEAR TRANSFORMATIONS
A transformation T is a mapping

such that each vector v (in the vector space we are dealing with) is assigned its unique image v′. Let us begin with the xy-plane
and associate with each vector v the point P, such that

Then the transformation T is also a mapping

for each point P in the xy-plane, where OP′ = v′.

A transformation is said to be linear if the following is true for any two vectors v and w and for any real number λ :

By using λ  = 0 in the last equation, we find that, for any linear transformation, we have

We can write any linear transformation as a matrix multiplication. For example, consider the following linear transformation:

We can write this as the matrix product

or as the following:

The notation of (3.1) is normally used in standard mathematics textbooks; in computer graphics and other applications in which
transformations are combined, the notation of (3.2) is also popular because it avoids a source of mistakes, as we will see in a
moment. We will therefore adopt this notation, using row vectors.

It is interesting to note that, in (3.2), the rows of the 2 × 2 transformation matrix are the images of the unit vectors (1, 0) and (0, 1),
respectively, while these images are the columns in (3.1). You can easily verify this by substituting [1 0] and [0 1] for [x y] in (3.2),
as the bold matrix elements below illustrate:

This principle also applies to other linear transformations. It provides us with a convenient way of finding the transformation
matrices.
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3.2.1 Rotation

To rotate all points in the xy-plane about O through the angle φ , we can now easily write the transformation matrix, using the rule
we have just been discussing. We simply find the images of the unit vectors (1, 0) and (0, 1). As we know from elementary
trigonometry, rotating the points P(1, 0) and Q(0, 1) about O through the angle φ  gives P′(cos φ ,sin φ ) and Q′(−  sin φ , cos φ ). It
follows that (cos φ ,sin φ ) and (−  sin φ , cos φ ) are the desired images of the unit vectors (1, 0) and (0, 1), as Figure 3.1 illustrates.

 
Figure 3.1: Rotation of unit vectors

Then all we need to do is to write these two images as the rows of our rotation matrix:

3.2.2 A Programming Example

To see rotation in action, let us rotate an arrow about the origin O. Before this rotation, the arrow is vertical, points upward and can
be found to the right of O. We will rotate this angle through 120° about the origin O, which is the center of the canvas. Figure 3.2
shows the coordinate axes (intersecting at O) and the arrow before and after the rotation.

 
Figure 3.2: Arrow before and after rotation through 120° about the origin

If we change the dimensions of the window, the origin remains in the center and the sizes of the arrows and of the circle on which
they lie change accordingly, while this circle remains a circle. Recall that we also placed the origin at the center of the canvas in
the Isotrop.java program in Section 1.4, when dealing with the isotropic mapping mode. The following program also uses this
mapping mode and contains the same methods iX and iY for the conversion from logical to device coordinates:
// Arrow.java: Arrow rotated through 120 degrees about the logical
//             origin O, which is the center of the canvas.
import java.awt.*;
import java.awt.event.*;

public class Arrow extends Frame
{  public static void main(String[] args){new Arrow();}

   Arrow()
   {  super("Arrow rotated through 120 degrees about origin");
      addWindowListener(new WindowAdapter()
         {public void windowClosing(WindowEvent e){System.exit(0);}});
      setSize (400, 300);
      add("Center", new CvArrow());
      show();
   }
}
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}
class CvArrow extends Canvas
{  int centerX, centerY, currentX, currentY;
   float pixelSize, rWidth = 100.0F, rHeight = 100.0F;

   void initgr()
   {  Dimension d = getSize();
      int maxX = d.width - 1, maxY = d.height - 1;
      pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
      centerX = maxX/2; centerY = maxY/2;
   }

   int iX(float x){return Math.round(centerX + x/pixelSize);}
   int iY(float y){return Math.round(centerY - y/pixelSize);}

   void moveTo(float x, float y)
   {  currentX = iX(x); currentY = iY(y);
   }

   void lineTo(Graphics g, float x, float y)
   {  int x1 = iX(x), y1 = iY(y);
      g.drawLine(currentX, currentY, x1, y1);
      currentX = x1; currentY = y1;
   }

   void drawArrow(Graphics g, float[]x, float[]y)
   {  moveTo(x[0], y[0]);
      lineTo(g, x[1], y[1]);
      lineTo(g, x[2], y[2]);
      lineTo(g, x[3], y[3]);
      lineTo(g, x[1], y[1]);
   }

   public void paint(Graphics g)
   { float r = 40.0F;
     float[] x = {r, r, r-2, r+2},
             y = {-7, 7, 0, 0};
     initgr();
   // Show coordinate axes:
   moveTo (30, 0); lineTo(g, 0, 0); lineTo(g, 0, 30);
   // Show initial arrow:
   drawArrow(g, x, y);
   float phi = (float)(2 * Math.PI / 3),
      c = (float)Math.cos(phi), s = (float)Math.sin(phi),
        r11 = c, r12 = s, r21 = -s, r22 = c;
    for (int j=0; j<4; j++)
    {  float xNew = x[j] * r11 + y[j] * r21,
             yNew = x[j] * r12 + y[j] * r22;
       x[j] = xNew; y[j] = yNew;
    }
    // Arrow after rotation:
    drawArrow(g, x, y);
  }
}

The logical coordinates of the four relevant points of the arrow are stored in the arrays x and y, and the variables r11, r12, r21 and
r22 denote the elements of the rotation matrix. When programming rotations, we should be careful with two points. First, with a
constant angle φ , we should compute cos φ  and sin φ  only once, even though they occur twice in the rotation matrix. Second, a
serious and frequently occurring error is modifying x[j] too early, that is, while we still need the old value for the computation of y[j],
as the following, incorrect fragment shows:
x[j] = x[j] * r11 + y[j] * r21; // ???
y[j] = x[j] * r12 + y[j] * r22;

There is no such problem if we use temporary variables xNew and yNew (although only the former is really required), as is done in
the program.

3.2.3 Scaling

Suppose that we want to perform scaling with scale factors sx for x and sy for y and with point O remaining at the same place; the
latter is also expressed by referring to O as a fixed point or by a scaling with reference to O. This can obviously be written as

which can also be written as a very simple matrix multiplication:

There are some important special cases:

sx = sy =− 1 gives a reflection about O;
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sx = 1, sy =− 1 gives a reflection about the x-axis;

sx =− 1, sy = 1 gives a reflection about the y-axis.

3.2.4 Shearing

Consider the linear transformation given by

Since the images of the unit vectors appear as the rows of the transformation matrix, we can write this transformation, known as
shearing,as

or

This set of equations expresses that each point (x, y) moves a distance ay to the right, which has the effect of shearing along the
x-axis, as illustrated in Figure 3.3. We can use this transformation to turn regular characters into italic ones; for example, L
becomes L.

 
Figure 3.3: Shearing effects (dashed lines) on a square object (solid lines)

Shearing along the y-axis, also depicted in Figure 3.3, can be similarly expressed as

or
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3.3 TRANSLATIONS
Shifting all points in the xy-plane a constant distance in a fixed direction is referred to as a translation. This is another
transformation, which we can write as:

We refer to the number pair (a, b) as the shift vector,or translation vector. Although this transformation is a very simple one, it is
not linear, as we can easily see by the fact that the image of the origin (0, 0) is (a, b), while this can only be the origin itself with
linear transformations. Consequently, we cannot obtain the image (x′, y′) by multiplying (x, y) by a 2 × 2 transformation matrix T,
which prevents us from combining such a matrix with other transformation matrices to obtain composite transformations.
Fortunately, there is a solution to this problem as described in the following section.
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3.4 HOMOGENEOUS COORDINATES
To express all the transformations introduced so far as matrix multiplications in order to combine various transformation effects,
we add one more dimension. As illustrated in Figure 3.4, the extra dimension W makes any point P = (x, y) of normal coordinates
have a whole family of homogeneous coordinate representations (wx, wy, w) for any value of w except 0. For example, (3, 6, 1),
(0.3, 0.6, 0.1), (6, 12, 2), (12, 24, 4) and so on, represent the same point in two-dimensional space. Similarly, 4-tuples of
coordinates represent points in three-dimensional space. When a point is mapped onto the W = 1 plane, in the form (x, y, 1), it is
said to be homogenized. In the above example, point (3, 6, 1) is homogenized, and the numbers 3, 6 and 1 are homogeneous
coordinates. In general, to convert a point from normal coordinates to homogeneous coordinates, add a new dimension to the
right with value 1. To convert a point from homogeneous coordinates to normal coordinates, divide all the dimension values by the
rightmost dimension value, and then discard the rightmost dimension.

 
Figure 3.4: A homogeneous coordinate system with the plane W = 1

Having introduced homogeneous coordinates, we are able to describe a translation by a matrix multiplication using a 3 × 3 instead
of a 2 × 2 matrix. Using a shift vector (a, b), we can write the translation of Section 3.3 as the following matrix product:

Since we cannot multiply a 3 × 3 by a 2 × 2 matrix, we will also add a row and a column to linear transformation matrices if we
want to combine these with translations (and possibly with other non-linear transformations). These additional rows and columns
simply consist of zeros followed by a one at the end. For example, we can use the following equation instead of 3.3 (in Section
3.2) for a rotation about O through the angle φ :
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3.5 INVERSE TRANSFORMATIONS AND MATRIX INVERSION
A linear transformation may or may not be reversible. For example, if we perform a rotation about the origin through an angle φ
and follow this by another rotation, also about the origin but through the angle −φ ,thesetwo transformations cancel each other
out. Let us denote the rotation matrix of Equation (3.3) (in Section 3.2) by R. It follows that the inverse rotation, through the angle
−φ  instead of φ , is described by the equation

where

The second equality in this equation is based on

Matrix R−1 is referred to as the inverse of matrix R. In general, if a matrix A has an inverse, this is written A−1 and we have

where I is the identity matrix, consisting of zero elements except for the main diagonal, which contains elements one. For
example, in the case of a rotation through φ , followed by one through −φ , we have

The identity matrix clearly maps each point to itself, that is,

Not all linear transformations are reversible. For example, the one that projects each point onto the x-axis is not. This
transformation is described by

which we can also write as

The 2 × 2 matrix in this equation has no inverse. This corresponds to the impossibility of reversing the linear transformation in
question: since any two point P1(x, y1) and P2(x, y2) have the same image P′(x, 0), it is impossible to find a unique point P of
which P′ is the image.

A (square) matrix has an inverse if and only if its determinant is non-zero. Recall that we have discussed determinants in Section
2.3. For example, the determinant

is equal to cos φ  × cos φ  −  (−  sin φ  × sin φ ) = cos2 φ  + sin2 φ  = 1. Since this value is non-zero for any angle φ , the
corresponding matrix
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has an inverse.

Exercise 3.4 shows how to compute the inverse of any 2 × 2 matrix that has a non-zero determinant. A useful application of this
follows in Exercise 3.5.
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3.6 ROTATION ABOUT AN ARBITRARY POINT
So far we have only performed rotations about the origin O. A rotation about any point other than O is not a linear transformation,
since it does not map the origin onto itself. It can nevertheless be described by a matrix multiplication, provided we use
homogeneous coordinates. A rotation about the point C(xC, yC) through the angle φ  can be performed in three steps:

1. A translation from C to O, described by [x′ y′ 1] = [x y 1]T−1, where

2. A rotation about O through the angle φ  described by [x′ y′ 1] = [x y 1] RO, where

3. A translation from O to C, described by [x′ y′ 1] = [x y 1]T, where

Note that we deliberately use the notations T−1 and T, since these two matrices are each other's inverse. This is understandable,
since the operations of translating from C to O and then back from O to C cancel each other out.

The purpose of listing the above three matrices is that we can combine them by forming their product. Therefore, the desired
rotation about point C through the angle φ  can be described by

where

3.6.1 An Application

To see this general type of rotation in action, we will now discuss a program which rotates an arrow through 30° about a point
selected by the user. Initially, one arrow, pointing vertically upward, appears in the center of the canvas. As soon as the user clicks
a mouse button, a second arrow appears. This is the image of the first one, resulting from a rotation through an angle of 30° about
the cursor position. This position is displayed as a crosshair cursor in Figure 3.5.
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Figure 3.5: Arrow before and after rotation through 30° about a point selected by the user

This action can be done repeatedly, in such a way that the most recently rotated arrow is again rotated when the user clicks, and
this last rotation is performed about the most recently selected point. Since the rotation is counter-clockwise, the new arrow would
have appeared below the old one in Figure 3.5 if the user had selected a point to the right instead of to the left of the first arrow.
Program ArrowPt.java shows how this rotation is computed.
// ArrowPt.java: Arrow rotated through 30 degrees
//    about a point selected by the user.
import java.awt.*;
import java.awt.event.*;

public class ArrowPt extends Frame
{  public static void main(String[] args){new ArrowPt();}
   ArrowPt()
   {  super("Arrow rotated about arbitrary point");
      addWindowListener(new WindowAdapter()
         {public void windowClosing(WindowEvent e){System.exit(0);}});
      setSize (400, 300);
      add("Center", new CvArrowPt());
      setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));
      show();
   }
}

class CvArrowPt extends Canvas
{  int centerX, centerY, currentX, currentY;
   float pixelSize, xP = 1e9F, yP,
      rWidth = 100.0F, rHeight = 100.0F;
   float[] x = {0, 0, -2, 2}, y = {-7, 7, 0, 0};

   CvArrowPt()
   {  addMouseListener(new MouseAdapter()
      {  public void mousePressed(MouseEvent evt)
         {  xP = fx(evt.getX()); yP = fy(evt.getY());
            repaint();
         }
      });
    }
    void initgr()
    {  Dimension d = getSize();
    int maxX = d.width - 1, maxY = d.height - 1;
    pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
    centerX = maxX/2; centerY = maxY/2;
    }

    int iX(float x){return Math.round(centerX + x/pixelSize);}
    int iY(float y){return Math.round(centerY - y/pixelSize);}

    float fx(int x){return (x - centerX) * pixelSize;}
    float fy(int y){return (centerY - y) * pixelSize;}

    void moveTo(float x, float y)
    { currentX = iX(x); currentY = iY(y);
    }
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    }
    void lineTo(Graphics g, float x, float y)
    {  int x1 = iX(x), y1 = iY(y);
       g.drawLine(currentX, currentY, x1, y1);
       currentX = x1; currentY = y1;
    }

    void drawArrow(Graphics g, float[]x, float[]y)
    {  moveTo(x[0], y[0]);
       lineTo(g, x[1], y[1]);
       lineTo(g, x[2], y[2]);
       lineTo(g, x[3], y[3]);
       lineTo(g, x[1], y[1]);
    }

    public void paint(Graphics g)
    { initgr();
      // Show initial arrow:
      drawArrow(g, x, y);
      if (xP > 1e8F) return;
      float phi = (float)(Math.PI / 6),
         c = (float)Math.cos(phi), s = (float)Math.sin(phi),
         r11 = c, r12 = s,
         r21 = -s, r22 = c,
         r31 = -xP * c + yP * s + xP, r32 = -xP * s - yP * c + yP;
      for (int j=0; j<4; j++)
      {  float xNew = x[j] * r11 + y[j] * r21 + r31,
               yNew = x[j] * r12 + y[j] * r22 + r32;
         x[j] = xNew; y[j] = yNew;
      }
      // Arrow after rotation:
      drawArrow(g, x, y);
  }
}

In contrast to program Arrow.java of Section 3.2, this new program ArrowPt. java uses the 3 × 3 rotation matrix displayed in
Equation (3.6), as you can see in the fragment
float xNew = x[j] * r11 + y[j] * r21 + r31,
      yNew = x[j] * r12 + y[j] * r22 + r32;

The matrix elements r31 and r32 of the third row of the matrix depend on the point (xP, yP), selected by the user and acting as the
center C(xC, yC) in our previous discussion. As in program Isotrop.java of Section 1.4, the device coordinates of the selected point
P are converted to logical coordinates by the methods fx and fy.
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3.7 CHANGING THE COORDINATE SYSTEM
In the preceding sections, we have used a fixed coordinate system and applied transformations to points given by their
coordinates for that system, using certain computations. We can use exactly the same computations for a different purpose,
leaving the points unchanged but changing the coordinate system. It is important to bear in mind that the direction in which the
coordinate system moves is opposite to that of the point movement. We can see this very clearly in the case of a translation. In
Figure 3.6(a) we have a normal translation with any point P(x, y) mapped to its image P′ (x′, y′), where

 
Figure 3.6: (a) Translation; (b) change of coordinates

which can be written in matrix form as shown in Equation (3.4) (in Section 3.4). In Figure 3.6(b) we do not map the point P to
another point but we express the position of this point in the x′y′-coordinate system, while coordinates x and y are given. As you
can see, a translation upward and to the right in (a), corresponds with a movement of the coordinate system downward and to the
left in (b): these two directions are exactly each other's opposite. It follows that the inverse translation matrix would have applied if,
in (b), we had moved the axes in the same direction as that of the point translation. The same principle applies to other
transformations, such as rotations, for which the inverse of the transformation matrix exists. We will use this principle in the next
section.
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3.8 ROTATIONS ABOUT 3D COORDINATE AXES
Let us use a right-handed three-dimensional coordinate system, with the positive x-axis pointing toward us, the y-axis pointing to
the right and the z-axis pointing upward, as shown in Figure 3.7.

 
Figure 3.7: Rotations about coordinate axes

This figure also shows what we mean by rotations about the axes. A rotation about the z-axis through a given angle implies a
rotation of all points in the xy-plane through that angle. For example, if this angle is 90°, the image of all points of the positive x-
axis will be those of the positive y-axis. In the same way, a rotation about the x-axis implies a similar rotation of the yz-plane and a
rotation about the y-axis implies a similar rotation of the zx-plane. Note that we deliberately write zx in that order: when we are
dealing with the x-, y-and z-axes in a cyclic way, x follows z. It is important to remember this when we have to write down the
transformation matrices for the rotations about the x-, y-and z-axis through the angle φ :

These matrices are easy to construct. Matrix Rz is derived in a trivial way from the well-known 2 × 2 rotation matrix of Equation
(3.3) (in Section 3.2). If you check this carefully, you will not find the other two matrices difficult. First, there is a 1 on the main
diagonal in the position that corresponds to the axis of rotation (1 for x, 2 for y and3for z). The other elements in the same row or
column as this matrix element 1 are equal to 0. Second, we use the elements of the 2 × 2 matrix just mentioned for the remaining
elements of the 3 × 3 matrices, beginning just to the right and below the element 1, if that is possible; if not, we remember that x
follows z. For example, in Ry, the first element, cos φ , of this imaginary 2 × 2 matrix is placed in row 3 and column 3 because the
element 1 has been placed in row 2 and column 2. Then, since we cannot place sin φ  to the right of this element cos φ  as we
would like, we place it instead in column 1 of the same third row. In the same way, we cannot place −  sin φ  below cos φ , as it
occurs in Equation (3.3), so instead we put it in the first row of the same third column, and so on.

We should remember that the above matrices should be applied to row vectors. For example, using the above matrix Rx, we write

to obtain the image (x′, y′, z′) of point (x, y, z) when the latter is subjected to a rotation about the x-axis through an angle φ .
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3.9 ROTATION ABOUT AN ARBITRARY AXIS
To prepare for a three-dimensional rotation about an arbitrary axis, let us first perform such a rotation about an axis through the
origin O. Actually, the rotation will take place about a vector, so that we can define its orientation, as illustrated by Figure 3.8.

 
Figure 3.8: Rotation about a vector starting at O

If a point is rotated about the vector v through a positive angle α , this rotation will be such that it corresponds to a movement in
the direction of the vector in the same way as turning a (right-handed) screw corresponds to its forward movement.

Instead of its Cartesian coordinates (v1, v2, v3), we will use the angles θ  and φ  to specify the direction of the vector v. The length
of this vector is irrelevant to our present purpose. As you can see in Figure 3.8, θ  is the angle between the positive x-axis and the
projection of v in the xy-plane and φ  is the angle between the positive z-axis and the vector v. If v1, v2 and v3 are given and we
want to find θ  and φ , we can compute them in Java in the following way, writing theta for θ  and phi for φ :
theta = Math.atan2(v2, v1);
phi = Math.atan2(Math.sqrt(v1 * v1 + v2 * v2), v3);

We will now derive a rather complicated 3 × 3 rotation matrix, which describes the rotation about the vector v through an angle α .
First, we will change the coordinate system such that v will lie on the positive z-axis. This can be done in two steps:

1. A rotation of the coordinate system about the z-axis, such that the horizontal component of v lies on the new x-
axis.

2. A rotation of the coordinate system about the new y-axis though the angle φ .

As discussed at the end of the previous section, coordinate transformations require the inverses of the matrices that we would use
for normal rotations of points. Referring to Section 3.8, we now have to use the following matrices R−1z and R−1y for the above
steps 1 and 2, respectively:

To combine these two coordinate transformations, we have to use the product of these two matrices. Before doing this matrix
multiplication, let us first find the matrices of some more operations that are required.

Now that the new positive z-axis has the same direction as the vector v,the desired rotation about v through the angle α  is also a
rotation about the z-axis through that angle, so that, expressed in the new coordinates, we have the following rotation matrix:
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Although this may seem to be the final operation, we must bear in mind that we want to express the image point P′ of an original
point P in terms of the original coordinate system. This implies that the first two of the above three transformations are to be
followed by their inverse transformations, in reverse order. Therefore, in this order, we have to use the following two matrices after
the three above:

The resulting matrix R, to be used in the equation

to perform a rotation about v through the angle α , can now be found as follows:

where the matrix elements rij are rather complicated expressions in φ , θ  and α . Before discussing how to compute these, let us
first turn to the original problem, which was the same as the above, except that we want to use any point A(a1, a2, a3) as the start
point of vector v. We can do this by performing, in this order:

a translation that shifts the point A to the origin O;

the desired rotation using the above matrix R;

the inverse of the translation just mentioned.

As discussed in Sections 3.4 and 3.6, we need to use homogeneous coordinates in order to describe translations by matrix
multiplications. Since we use 3 × 3 matrices for linear transformations in three-dimensional space, we have to use 4 × 4 matrices
in connection with these homogenous coordinates. Based on the coordinates a1, a2 and a3 of the point A on the axis of rotation,
the following matrix describes the translation from A to O:

After this translation, we perform the rotation about the vector v, which starts at point A, using the above matrix R, which we write
as R* after adding an additional row and column in the usual way:

Finally, we use a translation from O back to A:
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Writing RGEN for the desired general (4 × 4) rotation matrix, we have

Since RGEN is a 4 × 4 matrix, we use it as follows:

3.9.1 Implementation

Since we are now dealing with points in three-dimensional space, let us begin by defining the following class to represent such
points:
// Point3D.java: Representation of a point in 3D space.
class Point3D
{  float x, y, z;
   Point3D(double x, double y, double z)
   {  this.x = (float)x;
      this.y = (float)y;
      this.z = (float)z;
   }
}

As we normally have a great many points that are to be rotated, it is worth-while to compute the matrix RGEN beforehand.
Although this could be done numerically, it is also possible to make our program slightly faster by doing this symbolically, that is,
by expressing all matrix elements rij of RGEN in six constant values for the rotation: the angles φ , θ  and α  and the coordinates a1,
a2 and a3 of point A on the axis of rotation. Instead of writing these matrix elements here in the usual mathematical formulas
(which would be quite complicated), we may as well immediately present the resulting Java code. This has been done in the class
Rotate3D below.

The actual rotation is performed by the rotate method, which is called as many times as there are relevant points (usually the
vertices of polyhedra). Prior to this, the method initRotate is called only once, to build the above matrix RGEN. There are actually
two methods initRotate, of which we can choose one as we like. The first accepts two points A and B to specify the directed axis
of rotation AB and computes the angles θ  and φ . The second accepts these two angles themselves instead of point B:
// Rota3D.java: Class used in other program files
//    for rotations about an arbitrary axis.
// Uses: Point3D (discussed above).
class Rota3D
{  static double r11, r12, r13, r21, r22, r23,
                 r31, r32, r33, r41, r42, r43;

/* The method initRotate computes the general rotation matrix

            | r11 r12 r13 0 |
        R = | r21 r22 r23 0 |
            | r31 r32 r33 0 |
            | r41 r42 r43 1 |

   to be used as [x1 y1 z1 1] = [x y z 1] R
   by the method 'rotate'.
   Point (x1, y1, z1) is the image of (x, y, z).
   The rotation takes place about the directed axis
   AB and through the angle alpha.
*/
   static void initRotate(Point3D a, Point3D b,
      double alpha)
   {  double v1 = b.x - a.x,
             v2 = b.y - a.y,
             v3 = b.z - a.z,
         theta = Math.atan2(v2, v1),
         phi = Math.atan2(Math.sqrt(v1 * v1 + v2 * v2), v3);
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         phi = Math.atan2(Math.sqrt(v1 * v1 + v2 * v2), v3);
         initRotate(a, theta, phi, alpha);
   }

   static void initRotate(Point3D a, double theta,
      double phi, double alpha)
   {  double cosAlpha, sinAlpha, cosPhi, sinPhi,
      cosTheta, sinTheta, cosPhi2, sinPhi2,
      cosTheta2, sinTheta2, pi, c,
      a1 = a.x, a2 = a.y, a3 = a.z;
      cosPhi = Math.cos(phi); sinPhi = Math.sin(phi);
      cosPhi2 = cosPhi * cosPhi; sinPhi2 = sinPhi * sinPhi;
      cosTheta = Math.cos(theta);
      sinTheta = Math.sin(theta);
      cosTheta2 = cosTheta * cosTheta;
      sinTheta2 = sinTheta * sinTheta;
      cosAlpha = Math.cos(alpha);
      sinAlpha = Math.sin(alpha);
      c = 1.0 - cosAlpha;
      r11 = cosTheta2 * (cosAlpha * cosPhi2 + sinPhi2)
            + cosAlpha * sinTheta2;
      r12 = sinAlpha * cosPhi+c* sinPhi2 * cosTheta * sinTheta;
      r13 = sinPhi * (cosPhi * cosTheta*c- sinAlpha * sinTheta);
      r21 = sinPhi2 * cosTheta * sinTheta*c-sinAlpha * cosPhi;
      r22 = sinTheta2 * (cosAlpha * cosPhi2 + sinPhi2)
            + cosAlpha * cosTheta2;
      r23 = sinPhi * (cosPhi * sinTheta*c+ sinAlpha * cosTheta);
      r31 = sinPhi * (cosPhi * cosTheta*c+ sinAlpha * sinTheta);
      r32 = sinPhi * (cosPhi * sinTheta*c- sinAlpha * cosTheta);
      r33 = cosAlpha * sinPhi2 + cosPhi2;
      r41 = a1 - a1 * r11 - a2 * r21 - a3 * r31;
      r42 = a2 - a1 * r12 - a2 * r22 - a3 * r32;
      r43 = a3 - a1 * r13 - a2 * r23 - a3 * r33;
   }

   static Point3D rotate(Point3D p)
   { return new Point3D(
        p.x * r11 + p.y * r21 + p.z * r31 + r41,
        p.x * r12 + p.y * r22 + p.z * r32 + r42,
        p.x * r13 + p.y * r23 + p.z * r33 + r43);
   }
}

Note that the actual rotation of points is done very efficiently in the method rotate at the end of this class. This is important
because it will be called for each relevant point of the object to be rotated. Remember, the more time-consuming method
initRotate is called only once.

Let us now see this class Rota3D in action. Although it can be used for any rotation axis and any angle of rotation, it is used here
only in a very simple way so that we can easily check the result, even without graphics output. As Figure 3.9 shows, we have
chosen the axis AB parallel to the diagonals 0–2 and 4–6 of the cube. The cube has a height 1 and point A has coordinates (0, 0,
2).

 
Figure 3.9: Rotation of a cube about the axis AB
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The following program uses the above classes Point3D and Rota3D to perform the rotation shown in Figure 3.9:
// Rota3DTest.java: Rotating a cube about an axis
//    parallel to a diagonal of its top plane.
//    Uses: Point3D, Rota3D (discussed above).
public class Rota3DTest
{  public static void main(String[] args)
   {  Point3D a = new Point3D (0, 0, 1),b=newPoint3D (1, 1, 1);
      double alpha = Math.PI;
      // Specify AB as directed axis of rotation
      // and alpha as the rotation angle:
      Rota3D.initRotate(a, b, alpha);
      // Vertices of a cube; 0, 1, 2, 3 at the bottom,
      // 4, 5, 6, 7 at the top. Vertex 0 at the origin O:
      Point3D[] v = {
         new Point3D (0, 0, 0), new Point3D (1, 0, 0),
         new Point3D (1, 1, 0), new Point3D (0, 1, 0),
         new Point3D (0, 0, 1), new Point3D (1, 0, 1),
         new Point3D (1, 1, 1), new Point3D (0, 1, 1)};
      System.out.println(
         "Cube rotated through 180 degrees about line AB,");
      System.out.println(
         "where A = (0, 0, 1) and B = (1, 1, 1) ");
      System.out.println("Vertices of cube:");
      System.out.println(
         "    Before rotation    After rotation");
      for (int i=0; i<8; i++)
      {  Point3D p = v[i];
         // Compute P1, the result of rotating P:
         Point3D p1 = Rota3D.rotate(p);
         System.out.println(i + ": " +
            p.x + " " +p.y + " " + p.z + "     "+
            f(p1.x) + "" + f(p1.y) + " " + f(p1.z));
      }

   }

   static double f(double x){return Math.abs(x) < 1e-10 ? 0.0 : x;}
}

Since we have not yet discussed how to produce perspective views, we produce only text output in this program, as listed below:
Cube rotated through 180 degrees about line AB,
where A = (0, 0, 2) and B = (1, 1, 2)
Vertices of cube:
    Before rotation   After rotation
0:  0.0 0.0 0.0       0.0 0.0 4.0
1:  1.0 0.0 0.0       0.0 1.0 4.0
2:  1.0 1.0 0.0       1.0 1.0 4.0
3:  0.0 1.0 0.0       1.0 0.0 4.0
4:  0.0 0.0 1.0       0.0 0.0 3.0
5:  1.0 0.0 1.0       0.0 1.0 3.0
6:  1.0 1.0 1.0       1.0 1.0 3.0
7:  0.0 1.0 1.0       1.0 0.0 3.0

EXERCISES

3.1 In Section 3.2 we discussed scaling with reference to the origin O, that is, with O as a fixed point. It is
also possible to use a different fixed point, say C(xC, yC), but, for such a scaling in two-dimensional
space, we need a 3 × 3matrix M (and homogenous coordinates), writing

Using scale factors sx and sy for x and y again, find this matrix M. Hint: You can perform a translation
from C to O, followed by a scaling as discussed in Section 3.2, but described by a 3 × 3 matrix,
followed by a translation back from O to C. Alternatively, you can start with the following system of
equations, which shows very clearly what actually happens:

3.2 Describe scaling in three-dimensional space with reference to a point C and three scale factors sx, sy
and sz. Find the 4 × 4 matrix (similar to matrix M of Exercise 3.1) for this transformation.

3.3 How can you apply shearing with reference to a point other than O (such that this point will remain at
the same place)? Write a program that draws a square and an approximate circle, both before and
after shearing, setting the constant a used at the end of Section 3.2 equal to 0.5. Apply shearing to
these two figures with reference to their centers; in other words, the center of the square will remain
at the same place and so will the center of the circle.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


3.4 (This exercise prepares for the next one.) If the determinant D = a11a22 −  a12a21 of the matrix

is non-zero, then the matrix

is the inverse of A, that is, AA−1 = A−1A = . Prove
this.

3.5 Our way of testing whether a given point P lies in a triangle ABC, discussed in Section 2.8, resulted
in the method inside Triangle, which assumes that A, B and C are counter-clockwise. Develop a
different method for the same purpose, based on the vectors a = (a1, a2) = CA and b = (b1, b2) = CB
(see Figure 2.6 in Section 2.5). Let us write

or, in the form of a matrix product,

Since we saw in Exercise 3.4 how to compute the inverse of a 2 × 2 matrix, we can now compute λ
and μ  as follows:

The point P lies in triangle ABC (or on one of its edges) if and only if λ  ≥  0, μ  ≥  0and λ  + μ  ≤  1.
Write the class TriaTest, which we can use as follows:
Point2D a, b, c, p;
TriaTest tt = new TriaTest(a, b, c);
if (tt.area2() != 0 && tt.insideTriangle(p)) ...
   // Point P within triangle ABC.

As in Section 2.5, the method area2 returns twice the area of triangle ABC, preceded by a minus
sign if ABC is clockwise. This return value is also equal to the determinant of the 2 × 2 matrix in
Equation (3.7).We must not call the TriaTest method insideTriangle if this determinant is zero, since
in that case the inverse matrix of Equation (3.8) does not exist (see Exercise 3.4).

Answers

3.1 

3.2 Similar to Exercise 3.1.

3.3 For shearing a set of points with reference to point C, we replace the shearing equations at the end of
Section 3.2 with the similar ones
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which reduces to x′ = x + a(y −  yC), y ′ = y.

The sharing operation will transform the circle into an ellipse with a non-horizontal axis, so that we cannot
use the Java method drawOval. Therefore, for some large value of n, we approximate a circle with center
C(xC, yC) and radius r by computing the following n points (xi, yi) of this circle:

where θ  = 2 π / n and i = 0, 1, … , n −  1. Instead of immediately connecting these points by straight lines,
which would produce the circle, we first subject each xi to the above shearing formula.

3.4 Just compute the product AA − 1 to obtain the identity matrix I. For example, the upper-left element of this
product is equal to the inner product of the first row of A and the first column of A− 1, which is a11(a22/D) +
a12(− a21/D) = D/D = 1.

3.5 If there are many points for which we have to check whether they lie within a single triangle (or on an edge
of it), the method insideTriangle of the following class is more efficient than the one discussed in Section
2.8, since most of the work is done here by the constructor, which need be called only once for that
triangle:
class TriaTest
{  private Point2D C;
   private double a1, a2, b1, b2, c1, c2, d1, d2, det;

   TriaTest(Point2D A, Point2D B, Point2D C)
   {  this.C = C;
      a1 = A.x - C.x; a2 = A.y - C.y;
      b1 = B.x - C.x; b2 = B.y - C.y;
      det= a1 * b2 - b1 * a2;
      if (det != 0)
      {  c1 = b2/det; c2 = -a2/det;
         d1 = -b1/det; d2 = a1/det;
      }
   }

   double area2(){return det;}

   boolean insideTriangle(Point2D P)
   {  double p1 = P.x - C.x, p2 = P.y - C.y,
         lambda, mu;
      return (lambda = p1 * c1 + p2 * d1) >= 0 &&
          (mu = p1 * c2 + p2 * d2) >= 0 &&
          lambda + mu <= 1;
   }
}
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Chapter 4: Some Classic Algorithms

Although programming is a very creative activity, often requiring entirely new (little) problems to be solved, we can
sometimes benefit from well-known algorithms, published by others and usually providing more efficient or more elegant
solutions than those we would have been able to invent ourselves. This is no different in computer graphics. This chapter is
about some well-known graphics algorithms for (a) computing the coordinates of pixels that comprise lines and circles, (b)
clipping lines and polygons, and (c) drawing smooth curves. These are the most primitive operations in computer graphics
and should be executed as fast as possible. Therefore, the algorithms in this chapter ought to be optimized to avoid time-
consuming executions, such as multiplication, division, and calculations on floating point numbers.

4.1 BRESENHAM'S ALGORITHM FOR LINE DRAWING
We will now discuss how to draw lines by placing pixels on the screen. Although, in Java, we can simply use the method drawLine
without bothering about pixels, it would be unsatisfactory if we had no idea how this method works. We will be using integer
coordinates, but when discussing the slope of a line it would be very inconvenient if we had to use a y-axis pointing downward, as
is the case with the Java device coordinate system. Therefore, in accordance with mathematical usage, the positive y-axis will
point upward in our discussion.

Unfortunately, Java lacks a method with the sole purpose of putting a pixel on the screen, so that we define the following, rather
strange method to achieve this:
void putPixel(Graphics g, int x, int y)
{  g.drawLine(x, y, x, y);
}

We will now develop a drawLine method of the form
void drawLine(Graphics g, int xP, int yP, int xQ, int yQ)
{ ...
}

which only uses the above putPixel method for the actual graphics output.

Figure 4.1 shows a line segment with endpoints P(1, 1) and Q(12, 5), as well as the pixels that we have to compute to
approximate this line.

 
Figure 4.1: Grid points approximating a line segment

To draw the line of Figure 4.1, we then write
drawLine(g, 1, 1, 12, 5);

Let us first solve the problem for situations such as Figure 4.1, in which point Q lies to the right and not lower than point P. More
precisely, we will be dealing with the special case

where the last condition expresses that the angle of inclination of line PQ is not greater than 45°. We then want to find exactly one
integer y for each of the integers

Except for the first and the last (which are given as yP and yQ) the most straightforward way of computing these y-coordinates is
by using the slope

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


so that, for each of the given integer x-coordinates, we can find the desired integer y-coordinate by rounding the value

to the nearest integer. Since two such successive x-coordinates differ by 1, the corresponding difference of two successive values
of yexact is equal to m. Figure 4.2 shows this interpretation of m, as well as that of the ‘error’

 
Figure 4.2: Slope m and error d

Since d is the error we make by rounding yexact to the nearest integer, we can require d to satisfy the following condition:

The following first version of the desired drawLine method is based on this observation:
void drawLine1(Graphics g, int xP, int yP, int xQ, int yQ)
{  int x = xP, y = yP;
   float d = 0, m = (float)(yQ - yP)/(float)(xQ - xP);
   for (;;)
   {  putPixel(g, x, y);
      if (x == xQ) break;
      x++;
      d + = m;
      if (d >= 0.5){y++; d--;}
   }
}

This version is easy to understand if we pay attention to Figure 4.2. Since the first call to putPixel applies to point P, we begin with
the error d = 0. In each step of the loop, x is increased by 1. Assuming for the moment that y will not change, it follows from
Equation (4.3) that the growth of d will be the same as that of yexact, which explains why d is increased by m. We then check the
validity of this assumption in the following if-statement. If d is no longer less than 0.5, this violates Equation (4.4), so that we apply
a correction, consisting of increasing y and decreasing d by 1. The latter action makes Equation (4.4) valid again. By doing these
two actions at the same time, Equation (4.3) also remains valid.

We use drawLine1 as a basis for writing a faster version, which no longer uses type float. This is possible because the slope
variable m represents a rational number, that is, an integer numerator divided by an integer denominator, as Equation (4.2) shows.
Since the other float variable, d, starts with the value zero and is altered only by adding m and − 1 to it, it is also a rational number.
In view of both the denominator xQ −  xP of these rational numbers and the constant 0.5 used in the if-statement, we will apply the
scaling factor

to m, to d and to this constant 0.5, introducing the int variables M and D instead of the float variables m and d. We will also use Δ x
instead of the constant 0.5.

These new values M, D and x are c times as large as m, d and 0.5, respectively:
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In this way we obtain the following integer version, which is very similar to the previous one and equivalent to it but faster. In
accordance with the Java naming conventions for variables, we write m and d again instead of M and D, and dx instead of Δ x:
void drawLine2(Graphics g, int xP, int yP, int xQ, int yQ)
{  int x = xP, y = yP, d = 0, dx = xQ - xP, c = 2 * dx,
      m = 2 * (yQ - yP);
   for (;;)
   {  putPixel(g, x, y);
      if (x == xQ) break;
      x++;
      d += m;
      if (d >= dx){y++; d -= c;}
   }
}

Having dealt with this special case, with points P and Q satisfying Equation (4.1), we now turn to the general problem, without any
restrictions with regard to the relative positions of P and Q. To solve this, we have several symmetric cases to consider. As long
as

we can again use x as the independent variable, that is, we can increase or decrease this variable by one in each step of the loop.
In the opposite case, with lines that have an angle of inclination greater than 45°, we have to interchange the roles of x and y to
prevent the selected pixels from lying too far apart. All this is realized in the general line-drawing method drawLine below. We can
easily verify that this version plots exactly the same points approximating line PQ as version drawLine2 if the coordinates of P and
Q satisfy Equation (4.1).
void drawLine(Graphics g, int xP, int yP, int xQ, int yQ)
{  int x = xP, y = yP, d = 0, dx = xQ - xP, dy = yQ - yP,
      c, m, xInc = 1, yInc = 1;
   if (dx < 0){xInc = -1; dx = -dx;}
   if (dy < 0){yInc = -1; dy = -dy;}
   if (dy <= dx)
   {  c = 2 * dx; m = 2 * dy;
     if (xInc < 0) dx++;
     for (;;)
     {  putPixel(g, x, y);
        if (x == xQ) break;
        x += xInc;
        d += m;
        if (d >= dx){y += yInc; d -= c;}
     }
   }
   else
   {  c = 2 * dy; m = 2 * dx;
      if (yInc < 0) dy++;
      for (;;)
      {  putPixel(g, x, y);
         if (y == yQ) break;
         y += yInc;
         d += m;
         if (d >= dy){x += xInc; d -= c;}
   }
 }
}

Just before executing one of the above two for-statements, an if-statement is executed in the cases that x or y decreases instead
of increases, which is required to guarantee that drawing PQ always plots exactly the same points as drawing QP.

The idea of drawing sloping lines by means of only integer variables was first realized by Bresenham; his name is therefore
associated with this algorithm.

The above drawLine method is very easy to use if we are dealing with the floating-point logical-coordinate system used so far. For
example, in Section 4.5, there will be a program ClipPoly.java, in which the following method occurs:
void drawLine(Graphics g, float xP, float yP, float xQ, float yQ)
{  g.drawLine(iX(xP), iY(yP), iX(xQ), iY(yQ));
}

Here our own method drawLine calls the Java method drawLine of the class Graphics. If, instead, we want to use our own method
drawLine with four int arguments, listed above, we can replace the last three program lines with
void drawLine(Graphics g, float xP, float yP, float xQ, float yQ)
{  drawLine(g, iX(xP), iY(yP), iX(xQ), iY(yQ)); // int coordinates
}

provided that we also add the method putPixel, listed at the beginning of this section. This may at first be confusing because there
are now two drawLine methods of our own. As the comment after the above call to drawLine indicates, the Java compiler will
select our Bresenham method drawLine because there is an argument g, followed by four arguments of type int. It is also
interesting to note that the direction of the positive y-axis in our discussion causes no practical problem.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


4.2 DOUBLING THE LINE-DRAWING SPEED
As one of the primitive graphics operations, line drawing should be performed as rapidly as possible. In fact, graphics hardware is
typically benchmarked by the speed in which it generates lines. Bresenham's line algorithm is simple and efficient in generating
lines. The algorithm works incrementally by computing the position of the next pixel to be drawn. Hence it iterates as many times
as the number of pixels in the line it generates. The double-step line-drawing algorithm by Rokne, Wyvill, and Wu (1990) aims at
reducing the number of iterations by half, by computing the positions of the next two pixels.

Let us again start with the lines within the slope range of [0, 1] and consider the general case of any slopes later (as Exercise 4.2).
For a line PQ, starting from P, we increment the x-coordinate by two pixels instead of one as in Bresenham's algorithm. All the
possible positions of the two pixels in the above slope range form four patterns, expressed in a 2×2 mesh illustrated in Figure 4.3.
It has been mathematically proven that patterns 1 and 4 would never occur on the same line, implying that a line would possibly
involve patterns 1, 2 and 3, or patterns 2, 3 and 4, depending the slope of the line. The lines within the slope range of [0, 1/2)
involve patterns 1, 2 and 3, and lines within the slope range of (1/2, 1] involve patterns 2, 3 and 4. At the exact slope of 1/2, the
line involves either pattern 2 or 3, not 1 or 4.

 
Figure 4.3: Four double-step patterns when 0 ≤  slope ≤  1

Figure 4.4 shows four sloping lines, all passing through the same point at a distance d above the point A. By approximating this
common point of the four lines we make an error d = yexact− y, which should not be greater than 0.5.

 
Figure 4.4: Choice of patterns based on initial error d and slope m

Since the slope of a line is equal to m,the exact y-coordinate of that line is equal to d + m at its point of intersection with BD, and d
+ 2m at its point of intersection with CF, as indicated in Figure 4.4 for the lowest of the four lines. With these two points of
intersection lying closer to BC than to DE, it is clear that this lowest sloping line should be approximated by the points A, B, C, that
is, by pattern 1 of Figure 4.3. Thus we have

If d + 2m < 0.5, we use pattern 1(ABC)

Otherwise, we use point E instead of C if E is the best approximation of the point where the sloping line intersects CF, that is, if
0.5 ≤  d + 2m ≤  1.5. However, we should now also pay attention to the point where the sloping line intersects BD. Comparing d +
m with 0.5 determines whether B or D should be taken. More precisely,

if 0.5 ≤  d + 2m < 1.5(so that point E is to be used), we choose B or D as follows:

if d + m < 0.5, we use pattern 2(ABE)

if d + m ≥  0.5, we use pattern 3(ADE)

Finally, there is this remaining case:
if d + 2m ≥  1.5, we use pattern 4(ADF).

As in the previous section when discussing Bresenham's algorithm, we begin with a preliminary method that still uses floating-
point variables to make it easier to understand, so it is not yet optimized for speed. This version also works for lines drawn from
right to left, that is, when xQ < xP, as well as for lines with negative slope. However, the absolute value of the slope should not be
greater than 1. So doubleStep1 applies only to endpoints P and Q that satisfy the following conditions:

It is wise to begin with the simplest case
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xP < xQ

0 ≤  yQ −  yP ≤  xQ −  xP

when you read the following code for the first time:
void doubleStep1(Graphics g, int xP, int yP, int xQ, int yQ)
{  int dx, dy, x, y, yInc;
   if (xP >= xQ)
   {  if (xP == xQ) // Not allowed because we divide by dx (= xQ - xP)
         return;
      // xP > xQ, so swap the points P and Q
      int t;
      t = xP; xP = xQ; xQ = t;
      t = yP; yP = yQ; yQ = t;
   }
   // Now xP < xQ
   if (yQ >= yP){yInc = 1; dy = yQ - yP;} // Normal case, yP < yQ
   else            {yInc = -1; dy = yP - yQ;}
   dx = xQ - xP;     // dx > 0, dy > 0
   float d = 0,                   // Error d = yexact - y
         m = (float)dy/(float)dx; //  m <= 1, m = | slope |
   putPixel(g, xP, yP);
   y = yP;
   for (x=xP; x<xQ-1;)
   {  if (d + 2 * m < 0.5) // Pattern 1:
      {  putPixel(g, ++x, y);
         putPixel(g, ++x, y);
         d += 2 * m; // Error increases by 2m, since y remains
                     // unchanged and yexact increases by 2m
      }
      else
      if (d + 2 * m < 1.5) // Pattern 2 or 3
      {  if (d + m < 0.5) // Pattern 2
         {  putPixel(g, ++x, y);
            putPixel(g, ++x, y += yInc);
            d += 2 * m - 1; // Because of ++y, the error is now
                            // 1 less than with pattern 1
         }
         else  // Pattern 3
         {  putPixel(g, ++x, y += yInc);
            putPixel(g, ++x, y);
            d += 2 * m - 1;  // Same as pattern 2
         }
       }
       else // Pattern 4:
       {  putPixel(g, ++x, y += yInc);
          putPixel(g, ++x, y += yInc);
          d += 2 * m - 2;  // Because of y += 2, the error is now
                           // 2 less than with pattern 1
       }
    }
    if (x < xQ)  // x = xQ - 1
       putPixel(g, xQ, yQ);
}

Before the above for-loop is entered, there is a call to putPixel for x = xP. The loop terminates as soon as the test

fails. This test is executed for the following values of x:

If it succeeds, putPixel is called for the next two values of x, not for the value of x used in the test. There are two cases to
consider. If xQ −  xP is even, the test still succeeds when x = xQ −  2, and putPixel is executed for both x = xQ −  1 and x = xQ, after
which we are done and the next test, with x = xQ, fails. On the other hand, if xQ −  xP is odd, the test succeeds when x = xQ −  3,
and putPixel is called for both x = xQ −  2and x = xQ −  1, after which the test fails with x = xQ −  1. Then, after loop termination, the
remaining call to putPixel is executed in the following if-statement:
if (x < xQ)
   putPixel(g, xQ, yQ);

We will now derive a fast, integer version from the above method doubleStep1. Let us use the notation

so that slope m = Δ y/Δ x. We now want to introduce an int variable v, in such a way that the test
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reduces to

To achieve this, we start writing (4.5) as d + 2m −  0.5 < 0 and, since this inequality contains the two fractions m = Δ y/Δ x and 0.5,
we multiply both sides of it by 2Δ x, obtaining

Therefore, instead of the floating-point error variable d = yexact −  y, we will use the integer variable v, which relates to d as follows:

We can now replace the test (4.5) with the more efficient one (4.6). It follows from (4.7) that increasing d by 2m is equivalent to
increasing v by 2Δ x × 2m, which is equal to 4Δ y. This explains both the test v < 0 and adding dy4 to v in the for-loop below. These
operations on the variable v are marked by comments of the form //Equivalent to … , as are some others, which are left to the
reader to verify.
void doubleStep2(Graphics g, int xP, int yP, int xQ, int yQ)
{  int dx, dy, x, y, yInc;
   if (xP >= xQ)
   {  if (xP == xQ) // Not allowed because we divide by (dx = xQ - xP)
         return;
      int t;        // xP > xQ, so swap the points P and Q
      t = xP; xP = xQ; xQ = t;
      t = yP; yP = yQ; yQ = t;
   }
   // Now xP < xQ
   if (yQ >= yP){yInc = 1; dy = yQ - yP;}
   else         {yInc = -1; dy = yP - yQ;}
   dx = xQ - xP;
   int dy4 = dy * 4, v = dy4 - dx, dx2 = 2 * dx, dy2 = 2 * dy,
       dy4Minusdx2 = dy4 - dx2, dy4Minusdx4 = dy4Minusdx2 - dx2;
   putPixel(g, xP, yP);
   y = yP;
   for (x=xP; x<xQ-1;)
   {  if (v < 0)                    // Equivalent to d + 2 * m < 0.5
      {  putPixel(g, ++x, y);          // Pattern 1
         putPixel(g, ++x, y);
         v += dy4;                     // Equivalent to d += 2 * m
      }
      else
         if (v < dx2)               // Equivalent to d + 2 * m < 1.5
         {  // Pattern 2 or 3
            if (v < dy2)            // Equivalent to d + m < 0.5
            {  putPixel(g, ++x, y);    // Pattern 2
               putPixel(g, ++x, y += yInc);
               v += dy4Minusdx2;       // Equivalent to d + = 2 * m - 1
            }
            else
            {  putPixel(g, ++x, y += yInc); // Pattern 3
               putPixel(g, ++x, y);
               v += dy4Minusdx2;          // Equivalent to d + = 2 * m - 1
            }
         }
         else
         {  putPixel(g, ++x, y += yInc); // Pattern 4
            putPixel(g, ++x, y += yInc);
            v += dy4Minusdx4;            // Equivalent to d += 2 * m - 2
         }
       }
       if (x < xQ)
          putPixel(g, xQ, yQ);
}

Remember, the above method doubleStep2 works only if |yQ −  yP|≤ |xQ −  xP|. In Exercise 4.2 the reader is asked to generalize
the method to work for any line.

Like Bresenham's line algorithm, the above double-step algorithm computes on integers only. For long lines, it outperforms
Bresenham's algorithm by a factor of almost two. One can further optimize the algorithm to achieve another factor of two of speed-
up by taking advantage of the symmetry around the midpoint of the given line. We leave this as an exercise for interested readers.
The double-step algorithm can in fact be generalized to draw circles, which will be left for readers to explore by consulting the
papers by Wu and Rokne (1987) and Rokne, Wyvill, and Wu (1990) listed in the Bibliography. Adapting Bresenham's algorithm for
circles will be the topic of the next section.
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4.3 CIRCLES
In this section we will ignore the normal way of drawing a circle in Java by a call of the form
g.drawOval(xC - r, yC - r, 2 * r, 2 * r);

since it is our goal to construct such a circle, with center C(xC, yC) and radius r ourselves, where the coordinates of C and the
radius are given as integers.

If speed is not a critical factor, we can apply the method drawLine to a great many neighboring points (x, y), computed as

where

for some large value of n.

Instead of the above two ways of drawing a circle, we will develop a method of the form
void drawCircle(Graphics g, int xC, int yC, int r)
{  ...
}

which uses only the method putPixel of the previous section as a graphics ‘primitive’, and which is an implementation of
Bresenham's algorithm for circles. The circle drawn in this way will be exactly same as that produced by the above call to
drawOval. In both cases, x will range from xC −  r to xC + r, including these two values, so that 2r + 1 different values of x will be
used.

As in the previous sections, we begin with a simple case: we use the origin of the coordinate system as the center of the circle,
and, dividing the circle into eight arcs of equal length, we restrict ourselves to one of these, the arc PQ. The points P(0, r) and
Q(r/√ 2, r/√ 2) are shown in Figure 4.5.

 
Figure 4.5: Arc PQ in sector O of a circle with origin O and radius r

The equation of this circle is

Figure 4.6 shows the situation, including the grid of pixels, for the case r = 8. Beginning at the top at point P, with x = 0 and y = r,
we will use a loop in which we increase x by 1 in each step; as in the previous section, we need some test to decide whether we
can leave y unchanged. If not, we have to decrease y by 1.
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Figure 4.6: Pixels that approximate the arc PQ

Since, just after increasing x by 1, we have to choose between (x, y) and (x, y −  1), we could simply compute both

to see which lies closer to r2. Note that this can be done by using only integer arithmetic, so that in principle our problem is solved.
To make our algorithm faster, we will avoid computing the squares x2 and y2, by introducing the three new, non-negative integer
variables u, v and E denoting the differences between two successive squares and the ‘error’:

Initially, we have x = 0 and y = r, so that u = 1, v = 2r −  1 and E = 0. In each step in the loop, we increase x by 1, as previously
discussed. Since, according to Equation (4.9), this will increase the value of x2 by u, we also have to increase E by u to satisfy
Equation (4.11). We can also see from Equation (4.9) that increasing x by 1 implies that we have to increase u by 2. We now have
to decide whether or not to decrease y by 1. If we do, Equation (4.10) indicates that the square y2 decreases by v, so that
according to Equation (4.11) E also has to decrease by v. Since we want the absolute value of the error E to be as small as
possible, the test we are looking for can be written

We will decrease y by 1 if and only if this test succeeds. It is interesting that we can write the condition (4.12) in a simpler form, by
first replacing it with the equivalent test

which can be simplified to

Since v is positive, we can simplify this further to

On the basis of the above discussion, we can now write the following method to draw the arc PQ (in which we write e instead of
E):
void arc8(Graphics g, int r)
{  int x = 0, y = r, u = 1, v = 2 * r - 1, e = 0;
   while (x <= y)
   {  putPixel(g, x, y);
      x++; e += u; u += 2;
      if (v < 2 * e){y--; e -= v; v -= 2;}
   }
}
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}

Equations (4.10) and (4.11) show that in the case of decreasing y by 1, we have to decrease E by v and v by 2, as implemented in
the if-statement. Note the symmetry between the three actions (related to y) in the if-statement and those (related to x) in the
preceding program line.

The method arc8 is the basis for our final method, drawCircle, listed below. Besides drawing a full circle, it is also more general
than arc8 in that it allows an arbitrary point C to be specified as the center of the circle. The comments in this method indicate
directions of the compass. For example, NNE stands for north-north-east, which we use to refer to the arc between the north and
the north-east directions (see Figure 4.5). As usual, we think of the y-axis pointing upward, so that y = r corresponds to north:

void drawCircle(Graphics g, int xC, int yC, int r)
{  int x = 0, y = r, u = 1, v = 2 * r - 1, e = 0;
   while (x < y)
   {  putPixel(g, xC + x, yC + y); // NNE
      putPixel(g, xC + y, yC - x); // ESE
      putPixel(g, xC - x, yC - y); // SSW
      putPixel(g, xC - y, yC + x); // WNW
      x++; e += u; u += 2;
      if (v < 2 * e){y--; e -= v; v -= 2;}
      if (x > y) break;
      putPixel(g, xC + y, yC + x); // ENE
      putPixel(g, xC + x, yC - y); // SSE
      putPixel(g, xC - y, yC - x); // WSW
      putPixel(g, xC - x, yC + y); // NNW
   }
}

This version has been programmed in such a way that putPixel will not visit the same pixel more than once. This is important if we
want to use the XOR paint mode, writing
g.setXORMode(Color.white);

before the call to drawCircle. Setting the paint mode in this way implies that black pixels are made white and vice versa, so that we
can remove a circle in the same way as we draw it. It is then essential that a single call to drawCircle does not put the same pixel
twice on the screen, for then it would be erased the second time. To prevent pixels from being used twice, the eight calls to
putPixel in the loop are divided into two groups of four: those in the first group draw the arcs 0, 2, 4 and 6 (see Figure 4.5), which
include the starting points (0, r), (r,0), (0, − r) and (− r, 0). The arcs 1, 3, 5 and 7 of the second group do not include these starting
points because these calls to putPixel take place after x has been increased. As for the endpoint of each arc, we take care (a) that
x is not greater than y for any call to putPixel, and (b) that the situation x = y is covered by at most one of these two groups of
putPixel calls. This situation will occur, for example, if r = 6; in this case the following eight points (relative to the center of the
circle) are selected in this order, as far as the north-east quadrant of the circle (NNE and ENE) is concerned: (0, 6), (6, 1), (1, 6),
(6, 2), (2, 6), (5, 3), (3, 5), (4, 4). In this situation the test after while terminates the loop. In contrast, the situation x = y will not
occur if r = 8, since in this case the eleven points (0, 8), (8, 1), (1, 8), (8, 2), (2, 8), (7, 3), (3, 7), (7, 4), (4, 7), (6, 5), (5, 6) are
chosen, in that order. The loop now terminates because the break-statement in the middle of it is executed.
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4.4 COHEN–SUTHERLAND LINE CLIPPING
In this section we will discuss how to draw line segments only as far as they lie within a given rectangle. For example, given a
point P inside and a point Q outside a rectangle. It is then our task to draw only the line segment PI, where I is the point of
intersection of PQ and the rectangle, as shown in Figure 4.7. The rectangle is given by the four numbers xmin, xmax, ymin and
ymax. These four values and the coordinates of P and Q are floating-point logical coordinates, as usual.

 
Figure 4.7: Line segment PQ to be clipped

Since PQ intersects the upper edge of the rectangle in I, we have

As the triangles PAI and PBQ are similar, we can write

After replacing yI with ymax and multiplying both sides of this equation by ymax −  yP, we easily obtain

so that we can draw the desired line segment PI.

This easy way of computing the coordinates of point I is based on several facts that apply to Figure 4.7, but that must not be relied
on in a general algorithm. For example, if Q lies farther to the right, it may not be immediately clear whether the point of
intersection lies on the upper edge y = ymax or on the right edge x = xmax. In general, there are many more cases to consider. The
logical decisions needed to find out which actions to take make line clipping an interesting topic from an algorithmic point of view.
The Cohen–Sutherland algorithm solves this problem in an elegant and efficient way. We will express this algorithm in Java.

The four lines x = xmin, x = xmax, y = ymin, y = ymax divide the xy-plane into nine regions. With any point P(x, y) we associate a
four-bit code

identifying that region, as Figure 4.8 shows.

 
Figure 4.8: Code values

For any point (x, y), the above four-bit code is defined as follows:
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b3 = 1 if and only if x < xmin

b2 = 1 if and only if x > xmax

b1 = 1 if and only if y < ymin

b0 = 1 if and only if y > ymax

Based on this code, the Cohen–Sutherland algorithm replaces the endpoints P and Q of a line segment, if they lie outside the
rectangle, with points of intersection of PQ and the rectangle, that is, if there are such points of intersection. This is done in a few
steps. For example, in Figure 4.8, the following steps are taken:

1. Since P lies to the left of the left rectangle edge, it is replaced with P′ (on x = xmin), so that only P′Q remains to
be dealt with.

2. Since P′ lies below the lower rectangle edge, it is replaced with P′′ (on y = ymin), so that P′′Q remains to be
dealt with.

3. Since Q lies to the right of the right rectangle edge, it is replaced with Q′ (on x = xmax), so that P′′Q′ remains to
be dealt with.

4. Line segment P′′Q′ is drawn.

Steps 1, 2 and 3 are done in a loop, which can terminate in two ways:

If the four-bit codes of P (or P′ or P′′, which we again refer to as P in the program) and of Q are equal to zero; the
(new) line segment PQ is then drawn.

If the two four-bit codes contain a 1-bit in the same position; this implies that P and Q are on the same side of a
rectangle edge, so that nothing has to be drawn.

The method clipLine in the following program shows this in greater detail:
// ClipLine.java: Cohen-Sutherland line clipping.
import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class ClipLine extends Frame
{   public static void main(String[] args){new ClipLine();}

      ClipLine()
      {  super("Click on two opposite corners of a rectangle");
         addWindowListener(new WindowAdapter()
            {public void windowClosing(WindowEvent e){System.exit(0);}});
         setSize (500, 300);
         add("Center", new CvClipLine());

         setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));
         show();
      }
}

class CvClipLine extends Canvas
{   float xmin, xmax, ymin, ymax,
      rWidth = 10.0F, rHeight = 7.5F, pixelSize;
      int maxX, maxY, centerX, centerY, np=0;

      CvClipLine()
      {   addMouseListener(new MouseAdapter()
      {   public void mousePressed(MouseEvent evt)
       {   float x = fx(evt.getX()), y = fy(evt.getY());
          if (np == 2) np = 0;
          if (np == 0){xmin = x; ymin = y;}
          else
          {   xmax = x; ymax = y;
             if (xmax < xmin)
             {     float t = xmax; xmax = xmin; xmin = t;
             }
             if (ymax < ymin)
             {     float t = ymax; ymax = ymin; ymin = t;
             }
          }
          np++;
          repaint();
        }
      });
}

void initgr()
{   Dimension d = getSize();
      maxX = d.width - 1; maxY = d.height - 1;
      pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
      centerX = maxX/2; centerY = maxY/2;
}

int iX(float x){return Math.round(centerX + x/pixelSize);}
int iY(float y){return Math.round(centerY - y/pixelSize);}
float fx(int x){return (x - centerX) * pixelSize;}
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float fx(int x){return (x - centerX) * pixelSize;}
float fy(int y){return (centerY - y) * pixelSize;}

void drawLine(Graphics g, float xP, float yP,
      float xQ, float yQ)
{      g.drawLine(iX(xP), iY(yP), iX(xQ), iY(yQ));
}

int clipCode(float x, float y)
{   return
       (x < xmin ? 8 : 0)  | (x > xmax  ? 4 : 0) |
       (y < ymin ? 2 : 0)  | (y > ymax  ? 1 : 0);
}

void clipLine(Graphics g,
      float xP, float yP, float xQ, float yQ,
      float xmin, float ymin, float xmax, float ymax)
{   int cP = clipCode(xP, yP), cQ = clipCode(xQ, yQ);
      float dx, dy;
      while ((cP  |  cQ) != 0)
      {   if ((cP & cQ) != 0) return;
        dx = xQ - xP; dy = yQ - yP;
        if (cP != 0)
        {   if ((cP & 8) == 8){yP += (xmin-xP) * dy / dx; xP = xmin;}
           else
           if ((cP & 4) == 4){yP += (xmax-xP) * dy / dx; xP = xmax;}
           else
           if ((cP & 2) == 2){xP += (ymin-yP) * dx / dy; yP = ymin;}
           else
           if ((cP & 1) == 1){xP += (ymax-yP) * dx / dy; yP = ymax;}
           cP = clipCode(xP, yP);
        }
        else
        if (cQ != 0)
        {   if ((cQ & 8) == 8){yQ += (xmin-xQ) * dy / dx; xQ = xmin;}
           else
           if ((cQ & 4) == 4){yQ += (xmax-xQ) * dy / dx; xQ = xmax;}
           else
           if ((cQ & 2) == 2){xQ += (ymin-yQ) * dx / dy; yQ = ymin;}
           else
           if ((cQ & 1) == 1){xQ += (ymax-yQ) * dx / dy; yQ = ymax;}
           cQ = clipCode(xQ, yQ);
        }
      }
        drawLine(g, xP, yP, xQ, yQ);
}
public void paint(Graphics g)
{   initgr();
      if (np == 1)
      {   // Draw horizontal and vertical lines through
        // first defined point:
        drawLine(g, fx (0), ymin, fx(maxX), ymin);
        drawLine(g, xmin, fy (0), xmin, fy(maxY));
     } else
      if (np == 2)
      {     // Draw rectangle:
        drawLine(g, xmin, ymin, xmax, ymin);
        drawLine(g, xmax, ymin, xmax, ymax);
        drawLine(g, xmax, ymax, xmin, ymax);
         drawLine(g, xmin, ymax, xmin, ymin);

         // Draw 20 concentric regular pentagons, as
         // far as they lie within the rectangle:
         float rMax = Math.min(rWidth, rHeight)/2,
            deltaR = rMax/20, dPhi = (float)(0.4 * Math.PI);

         for (int j=1; j<=20; j++)
         {   float r = j *  deltaR;
            // Draw a pentagon:
            float xA, yA, xB = r, yB = 0;

            for (int i=1; i<=5; i++)
            {   float phi = i * dPhi;
              xA = xB; yA = yB;
              xB = (float)(r * Math.cos(phi));
              yB = (float)(r * Math.sin(phi));
              clipLine(g, xA, yA, xB, yB, xmin, ymin, xmax, ymax);
            }
         }
      }
   }
}

The program draws 20 concentric (regular) pentagons, as far as these lie within a rectangle, which the user can define by clicking
on any two opposite corners. When he or she clicks for the third time, the situation is the same as at the beginning: the screen is
cleared and a new rectangle can be defined, in which again parts of 20 pentagons appear, and so on. As usual, if the user
changes the window dimensions, the size of the result is changed accordingly. Figure 4.9 shows the situation just after the
pentagons are drawn.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 
Figure 4.9: Demonstration of program ClipLine.java

If we look at the while-loop in the method clipLine, it seems that this code is somewhat inefficient because of the divisions dy/dx
and dx/dy inside that loop while dx and dy are not changed in it. However, we should bear in mind that dx or dy may be zero. The
if-statements in the loop guarantee that no division by dx or dy will be performed if that variable is zero. Besides, this loop is
different from most other program loops in that the inner part is usually executed only once or not at all, and rarely more than
once.
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4.5 SUTHERLAND–HODGMAN POLYGON CLIPPING
In contrast to line clipping, discussed in the previous section, we will now deal with polygon clipping, which is different in that it
converts one polygon into another within a given rectangle, as Figures 4.10 and 4.11 illustrate.

 
Figure 4.10: Nine polygon vertices defined; final edge not yet drawn

 
Figure 4.11: Polygon completed and clipped

The program that we will discuss draws a fixed rectangle and enables the user to specify the vertices of a polygon by clicking, in
the same way as discussed in Section 1.5. As long as the first vertex, in Figure 4.10 on the left, is not selected for the second
time, successive vertices are connected by polygon edges. As soon as the first vertex is selected again, the polygon is clipped, as
Figure 4.11 shows. Some vertices of the original polygon do not belong to the clipped one. On the other hand, the latter polygon
has some new vertices, which are all points of intersection of the edges of the original polygon and those of the rectangle. In
general, the number of vertices of the clipped polygon can be greater than, equal to or less than that of the original one. In Figure
4.11 there are five new polygon edges, which are part of the rectangle edges.

The program that produced Figure 4.11 is based on the Sutherland–Hodgman algorithm, which first clips all polygon edges
against one rectangle edge, or rather, the infinite line through such an edge. This results in a new polygon, which is then clipped
against the next rectangle edge, and so on. Figure 4.12 shows a rectangle and a polygon, ABCDEF. Starting at vertex A, we find
that AB intersects the line x = xmax in point I, which will be a new vertex of the clipped polygon. The same applies to point J, the
point of intersection of DE with the same vertical rectangle edge.
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Figure 4.12: The Sutherland–Hodgman algorithm

Let us refer to the original polygon as the input polygon and the new one as the output polygon. We represent each polygon by a
sequence of successive vertices. Let us start with the right rectangle edge and treat it as an infinite clipping line, which can be
expressed as x = xmax, and see how to clip the polygon against this line. In general, when working on one clipping line, we ignore
all other rectangle edges. Initially, the output polygon is empty. When following all successive polygon edges such as AB, we
focus on the endpoint, B, and decide as follows which points will belong to the output polygon:

If A and B lie on different sides of the clipping line, the point of intersection, I, is added to the output polygon.
Regardless of this being the case, B is added to the output polygon if and only if it lies on the same side of the
clipping line as the rectangle.

Starting with the directed edge AB in Figure 4.12, point I is the first to be added to the output polygon. Vertex B is not added
because it is not on the same side of the clipping line as the rectangle, and the same applies to the endpoints of the following
directed edges, BC and CD. When dealing with edge DE, we first add J and then E to the output polygon since they are both on
the same side of the clipping line as the rectangle. The endpoints of the next two edges, EF and FA, lie on the same side of the
clipping line as the rectangle and are therefore added to the output polygon. In this way we obtain the vertices I, J, E, F and A, in
that order. We then use this output polygon as the input polygon to clip against the top rectangle edge. Using the same method as
described above on the right edge, we obtain the vertices I, J, K, L, F and A, which forms the output polygon IJKLFA. Although in
this example IJKLFA is the desired clipped polygon, it will in general be necessary to use the output polygon as input for working
with another rectangle edge. The program below shows an implementation in Java:
    // ClipPoly.java: Clipping a polygon.
    // Uses: Point2D (Section 1.5).
    import java.awt.*;
    import java.awt.event.*;
    import java.util.*;
    public class ClipPoly extends Frame
    {  public static void main(String[] args){new ClipPoly();}

       ClipPoly()
       {  super("Define polygon vertices by clicking");
          addWindowListener(new WindowAdapter()
             {public void windowClosing(WindowEvent e)
                    {System.exit(0);}});
          setSize (500, 300);
          add("Center", new CvClipPoly());

          setCursor(Cursor.getPredefinedCursor
                         (Cursor.CROSSHAIR_CURSOR));
          show();
          }
    }

    class CvClipPoly extends Canvas
    {   Poly poly = null;
        float rWidth = 10.0F, rHeight = 7.5F, pixelSize;
        int x0, y0, centerX, centerY;
        boolean ready = true;

        CvClipPoly()
        {   addMouseListener(new MouseAdapter()
            {  public void mousePressed(MouseEvent evt)
               {  int x = evt.getX(), y = evt.getY();
                  if (ready)
                  {   poly = new Poly();
                      x0 = x; y0 = y;
                      ready = false;
                  }
                  if (poly.size() > 0 &&
                     Math.abs(x - x0) < 3 && Math.abs(y - y0) < 3)
                     ready = true;
                  else
                     poly.addVertex(new Point2D(fx(x), fy(y)));
                  repaint();
              }
            });
        }
    void initgr()
    {  Dimension d = getSize();
       int maxX = d.width - 1, maxY = d.height - 1;
       pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
       centerX = maxX/2; centerY = maxY/2;
    }

    int iX(float x){return Math.round(centerX + x/pixelSize);}
    int iY(float y){return Math.round(centerY - y/pixelSize);}
    float fx(int x){return (x - centerX) * pixelSize;}
    float fy(int y){return (centerY - y) * pixelSize;}

    void drawLine(Graphics g, float xP, float yP, float xQ,
                    float yQ)
    {   g.drawLine(iX(xP), iY(yP), iX(xQ), iY(yQ));
    }

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    void drawPoly(Graphics g, Poly poly)
    {  int n = poly.size();
       if (n == 0) return;
       Point2D a = poly.vertexAt(n - 1);
       for (int i=0; i<n; i++)
       {   Point2D b = poly.vertexAt(i);
           drawLine(g, a.x, a.y, b.x, b.y);
           a = b;
       }
      }

    public void paint(Graphics g)
    {   initgr();
        float xmin = -rWidth/3, xmax = rWidth/3,
              ymin = -rHeight/3, ymax = rHeight/3;
        // Draw clipping rectangle:
        g.setColor(Color.blue);
        drawLine(g, xmin, ymin, xmax, ymin);
        drawLine(g, xmax, ymin, xmax, ymax);
        drawLine(g, xmax, ymax, xmin, ymax);
        drawLine(g, xmin, ymax, xmin, ymin);
        g.setColor(Color.black);
        if (poly == null) return;
        int n = poly.size();
        if (n == 0) return;
        Point2D a = poly.vertexAt (0);
        if (!ready)
        {  // Show tiny rectangle around first vertex:
           g.drawRect(iX(a.x)-2, iY(a.y)-2, 4, 4);
           // Draw incomplete polygon:
           for (int i=1; i<n; i++)
           {   Point2D b = poly.vertexAt(i);
               drawLine(g, a.x, a.y, b.x, b.y);
               a = b;
           }
        }  else
        {  poly.clip(xmin, ymin, xmax, ymax);
           drawPoly(g, poly);
        }
       }
    }
    class Poly
    {  Vector v = new Vector();
       void addVertex(Point2D p){v.addElement(p);}
       int size(){return v.size();}

       Point2D vertexAt(int i)
       {  return (Point2D)v.elementAt(i);
       }

       void clip(float xmin, float ymin, float xmax, float ymax)
       {  // Sutherland-Hodgman polygon clipping:
          Poly poly1 = new Poly();
          int n;
          Point2D a, b;
          boolean aIns, bIns; // whether A or B is on the same
                              //         side as the rectangle

          // Clip against x == xmax:
          if ((n = size()) == 0) return;
          b = vertexAt(n-1);
          for (int i=0; i<n; i++)
          {   a = b; b = vertexAt(i);
              aIns = a.x <= xmax; bIns = b.x <= xmax;
              if (aIns != bIns)
                 poly1.addVertex(new Point2D(xmax, a.y +
                 (b.y - a.y) * (xmax - a.x)/(b.x - a.x)));
              if (bIns) poly1.addVertex(b);
          }
          v = poly1.v; poly1 = new Poly();

          // Clip against x == xmin:
          if ((n = size()) == 0) return;
          b = vertexAt(n-1);
          for (int i=0; i<n; i++)
          {   a = b; b = vertexAt(i);
              aIns = a.x >= xmin; bIns = b.x >= xmin;
              if (aIns != bIns)
                 poly1.addVertex(new Point2D(xmin, a.y +
                 (b.y - a.y) * (xmin - a.x)/(b.x - a.x)));
              if (bIns) poly1.addVertex(b);
          }
          v = poly1.v; poly1 = new Poly();

          // Clip against y == ymax:
          if ((n = size()) == 0) return;
          b = vertexAt(n-1);
          for (int i=0; i<n; i++)
          {   a = b; b = vertexAt(i);
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          {   a = b; b = vertexAt(i);
              aIns = a.y <= ymax; bIns = b.y <= ymax;
              if (aIns != bIns)
                 poly1.addVertex(new Point2D(a.x +
                 (b.x - a.x) * (ymax - a.y)/(b.y - a.y), ymax));
              if (bIns) poly1.addVertex(b);
          }
          v = poly1.v; poly1 = new Poly();

          // Clip against y == ymin:
          if ((n = size()) == 0) return;
          b = vertexAt(n-1);
          for (int i=0; i<n; i++)
          {   a = b; b = vertexAt(i);
              aIns = a.y >= ymin;
              bIns = b.y >= ymin;
              if (aIns != bIns)
                 poly1.addVertex(new Point2D(a.x +
                 (b.x - a.x) * (ymin - a.y)/(b.y - a.y), ymin));
              if (bIns) poly1.addVertex(b);
          }
          v = poly1.v; poly1 = new Poly();
         }
    }

The Sutherland–Hodgman algorithm can be adapted for clipping regions other than rectangles and for three-dimensional
applications.
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4.6 BÉZIER CURVES
There are many algorithms for constructing curves. A particularly elegant and practical one is based on specifying four points that
completely determine a curve segment: two endpoints and two control points. Curves constructed in this way are referred to as
(cubic) Bézier curves. In Figure 4.13, we have the endpoints P0 and P3, the control points P1 and P2, and the curve constructed
on the basis of these four points.

 
Figure 4.13: Bézier curve based on four points

Writing a method to draw this curve is surprisingly easy, provided we use recursion. As Figure 4.14 shows, we compute six
midpoints, namely:

A, the midpoint of P0P1

B, the midpoint of P2P3

C, the midpoint of P1P2

A1, the midpoint of AC

B1, the midpoint of BC

C1, the midpoint of A1B1

 
Figure 4.14: Constructing points for two smaller curve segments

After this, we can divide the original task of drawing the Bézier curve P0P3 (with control points P1 and P2) into two simpler tasks:

drawing the Bézier curve P0C1, with control points A and A1

drawing the Bézier curve C1P3, with control points B1 and B

All this needs to be done only if the original points P0 and P3 are further apart than some small distance, say, ∊ . Otherwise, we
simply draw the straight line P0P3. Since we are using pixels on a raster, we can also base the test just mentioned on device
coordinates: we will simply draw a straight line from P0 to P3 if and only if the corresponding pixels are neighbors or identical,
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coordinates: we will simply draw a straight line from P0 to P3 if and only if the corresponding pixels are neighbors or identical,
writing
if (Math.abs(x0 - x3) <= 1 && Math.abs(y0 - y3) <= 1)
      g.drawLine(x0, y0, x3, y3);
else ...

The recursive method bezier in the following program shows an implementation of this algorithm. The program expects the user to
specify the four points P0, P1,P2 and P3, in that order, by clicking the mouse. After the fourth point, P3, has been specified, the
curve is drawn. Any new mouse clicking is interpreted as the first point, P0, of a new curve; the previous curve simply disappears
and another curve can be constructed in the same way as the first one, and so on.
// Bezier.java: Bezier curve segments.
// Uses: Point2D (Section 1.5).

import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class Bezier extends Frame
{  public static void main(String[] args){new Bezier();}

      Bezier()
      {   super("Define endpoints and control points of curve segment");
          addWindowListener(new WindowAdapter()
             {public void windowClosing(WindowEvent e){System.exit(0);}});
          setSize (500, 300);
          add("Center", new CvBezier());

          setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));
          show();
      }
}

class CvBezier extends Canvas
{  Point2D[] p = new Point2D[4];
   int np = 0, centerX, centerY;
   float rWidth = 10.0F, rHeight = 7.5F, eps = rWidth/100F, pixelSize;

   CvBezier()
   {  addMouseListener(new MouseAdapter()
      {  public void mousePressed(MouseEvent evt)
         {  float x = fx(evt.getX()), y = fy(evt.getY());
            if (np == 4) np = 0;
            p[np++] = new Point2D(x, y);
            repaint();
         }
      });
   }

   void initgr()
   {  Dimension d = getSize();
      int maxX = d.width - 1, maxY = d.height - 1;
      pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
      centerX = maxX/2; centerY = maxY/2;
   }

   int iX(float x){return Math.round(centerX + x/pixelSize);}
   int iY(float y){return Math.round(centerY - y/pixelSize);}
   float fx(int x){return (x - centerX) * pixelSize;}
   float fy(int y){return (centerY - y) * pixelSize;}
   Point2D middle(Point2D a, Point2D b)
   {  return new Point2D((a.x + b.x)/2, (a.y + b.y)/2);
   }
   void bezier(Graphics g, Point2D p0, Point2D p1,
      Point2D p2, Point2D p3)
   {  int x0 = iX(p0.x), y0 = iY(p0.y),
          x3 = iX(p3.x), y3 = iY(p3.y);
      if (Math.abs(x0 - x3) <= 1 && Math.abs(y0 - y3) <= 1)
         g.drawLine(x0, y0, x3, y3);
      else
      {  Point2D a = middle(p0, p1), b = middle(p3, p2),
             c = middle(p1, p2), a1 = middle(a, c),
             b1 = middle(b, c), c1 = middle(a1, b1);
         bezier(g, p0, a, a1, c1);
         bezier(g, c1, b1, b, p3);
      }
   }

   public void paint(Graphics g)
   {  initgr();
      int left = iX(-rWidth/2), right = iX(rWidth/2),
          bottom = iY(-rHeight/2), top = iY(rHeight/2);
      g.drawRect(left, top, right - left, bottom - top);

      for (int i=0; i<np; i++)
      {   // Show tiny rectangle around point:
          g.drawRect(iX(p[i].x)-2, iY(p[i].y)-2, 4, 4);
          if (i > 0)
              // Draw line p[i-1]p[i]:
              g.drawLine(iX(p[i-1].x), iY(p[i-1].y),
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              g.drawLine(iX(p[i-1].x), iY(p[i-1].y),
                         iX(p[i].x), iY(p[i].y));
      }
      if (np == 4) bezier(g, p[0], p[1], p[2], p[3]);
   }
}

Since this program uses the isotropic mapping mode with logical coordinate ranges 0–10.0 for x and 0–7.5 for y, we should only
use a rectangle whose height is 75 % of its width. As in Sections 1.4 and 1.5, we place this rectangle at the center of the screen
and make it as large as possible. It is shown in Figure 4.15; if the four points for the curve are chosen within this rectangle, they
will be visible regardless of how the size of the window is changed by the user. The same applies to the curve, which is
automatically scaled, in the same way as we did in Sections 1.4 and 1.5.

 
Figure 4.15: A constructed Bézier curve

This way of constructing a Bézier curve may look like magic. To understand what is going on, we must be familiar with the notion
of parametric representation, which, in 2D, we can write as

where t is a parameter, which we may think of as time. Variable t ranges from 0 to 1: as if we move from P0 to P3 with constant
velocity, starting at t = 0 and finishing at t = 1. At time t = 0.5 we are half-way. With cubic Bézier curves, both f(t)and g(t) are third
degree polynomials in t.

Before we proceed, let us pay some attention to expressions such as

to compute the midpoint A of line segment P0P1. The points in such expressions actually denote vectors, which enables us to
form their sum and to multiply them by a scalar. Without this shorthand notation, we would have to write

which would be rather awkward. Let us write each Pi as the column vector

(where we have taken the liberty of mixing mathematical and programming notations). In the same way, we combine the above
functions f(t)and g(t),

writing

Then the cubic Bézier curve is defined as follows:

Substituting 0 and 1 for t, we find B(0) = P0 and B(1) = P3. Before discussing the relation between this definition and the recursive
midpoint construction, let us see this definition in action. It enables us to replace the recursive method bezier with the following
non-recursive one:
void bezier1(Graphics g, Point2D[] p)
{  int n = 200;
   float dt = 1.0F/n, x = p[0].x, y = p[0].y, x0, y0;
   for (int i=1; i<=n; i++)
   {   float t = i * dt, u = 1 - t,
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   {   float t = i * dt, u = 1 - t,
          tuTriple  = 3 * t * u,
          c0 = u * u * u,
          c1 = tuTriple * u,
          c2 = tuTriple * t,
          c3 = t * t * t;
       x0 = x; y0 = y;
       x = c0*p[0].x + c1*p[1].x + c2*p[2].x + c3*p[3].x;
       y = c0*p[0].y + c1*p[1].y + c2*p[2].y + c3*p[3].y;
       g.drawLine(iX(x0), iY(y0), iX(x), iY(y));
   }
}

This method produces the same curve as that produced by bezier,provided we also replace the call to bezier with this one:
bezier1(g, P);

We will discuss a more efficient non-recursive method, bezier2, equivalent to bezier1, at the end of this section.

Since B(t) denotes the position at time t, the derivative B′(t) of this function (which is also a column vector depending on t) can be
regarded as the velocity. After some algebraic manipulation and differentiating, we find

which gives

These two results are velocity vectors at the starting point P0 and the endpoint P3. They show that the direction we move at on
these points is along the vectors P0P1 and P2P3, as Figure 4.16 illustrates.

 
Figure 4.16: Velocity at the points P0 and P3

We have been discussing two entirely different ways to construct a curve between the points P0 and P3, and, without an
experiment, it is not clear that these curves are identical. For the time being, we will distinguish between the two curves and refer
to them as

the midpoint curve, constructed by a recursive process of computing mid-points, and implemented in the method
bezier;

the analytical curve, given by Equation (4.13) and implemented in the method bezier1.

Although both methods are based on the four points P0,P1,P2 and P3, the ways we compute hundreds of curve points (to connect
them by tiny straight lines) are very different. It would be unsatisfactory if it remained a mystery why these curves are identical. Let
us therefore briefly discuss a way to prove this fact.

Using the function B(t) of Equation (4.13), we find

Since point C1 in Figure 4.14 was used to divide the whole midpoint curve into two smaller curves, we might suspect that C1 and
B(0.5) are two different expressions for the same point. We verify this by expressing C1 in terms of the four given points, using
Figure 4.14. Because C1 is the midpoint of A1B1 and both A1 and B1 are also midpoints, and so on, we find
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which is indeed the expression that we found for B(0.5). This proves that point C1, which obviously belongs to the midpoint curve,
also lies on the analytical curve. Besides P0 and P3, there is now only one point, C1, which we have proved lies on both curves, so
it seems we are still far away from the proof that these curves are identical. However, we can now apply the same argument
recursively, which would enable us to find as many points that lie on both curves as we like. Restricting ourselves to the first half of
each curve, we focus on the points P0, A, A1 and C1, which we can again use to construct both midpoint and analytical curves.
For the latter we use the following equation, which is similar to Equation (4.13):

It is then obvious that b(0) = P0, b(1) = C1 and b(0.5) is identical with a midpoint (between P0 and C1) used in the recursive
process, in the same way as B(0.5) is identical with the midpoint C1. There is one remaining difficulty: is the analytical curve given
by Equation (4.18) really the same as the first part of that given by Equation (4.13)? We will show that this is indeed the case.
Using u = 2t (since u = 1and t = 0.5 at point C1) we have

To verify this, note that, according to Equation (4.18), we have

Using Equations (4.15), (4.16) and (4.17), we can write the last expression as

Rearranging this formula, we find that it is equal to the expression for B(t)in Equation (4.13), which is what we had to prove.

4.6.1 Building Smooth Curves from Curve Segments

Suppose that we want to combine two Bézier curve segments, one based on the four points P0, P1, P2, P3 and the other on
Q0,Q1,Q2 and Q3, in such a way that the endpoint P3 of the first segment coincides with the starting point Q0 of the second. Then
the combined curve will be smoothest if the final velocity B′(1) (see Figure 4.16) of the first segment is equal to the initial velocity
B′(0) of the second. This will be the case if the point P3(= Q0) lies exactly at the middle of the line segment P2Q1. The high degree
of smoothness obtained in this way is referred to as second-order continuity. It implies not only that the two segments have the
same tangent at their common point P3 = Q0, but also that the curvature is continuous at this point. By contrast, we have first-
order continuity if P3 lies on the line segment P2Q1 but not at the middle of it. In this case, although the curve looks reasonably
smooth because both segments have the same tangent in the common point P3 = Q0, there is a discontinuity in the curvature at
this point.

4.6.2 Matrix Notation

It will be clear that we can write Equation (4.13) as follows:

Since the row vector in this matrix product is equal to

we can also write it as the product of a simpler row vector, [t3 t2 t 1], and a 4 × 4 matrix, obtaining the following result for the Bézier
curve:

As we know, any matrix product ABC of three matrices is equal to both (AB)C and A(BC). If we do the first matrix multiplication
first, as in (AB)C, Equation (4.20) reduces to Equation (4.19). On the other hand, if we do the second first, as in A(BC), we obtain
the following result:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


This is interesting because it provides us with a very efficient way of drawing a Bézier curve segment, as the following improved
method shows:

void bezier2(Graphics g, Point2D[] p)
{  int n = 200;
   float dt = 1.0F/n,
   cx3 = -p[0].x  + 3 * (p[1].x - p[2].x) + p[3].x,
   cy3 = -p[0].y  + 3 * (p[1].y - p[2].y) + p[3].y,
   cx2 = 3 *  (p[0].x - 2 * p[1].x + p[2].x),
   cy2 = 3 *  (p[0].y - 2 * p[1].y + p[2].y),
   cx1 = 3 * (p[1].x - p[0].x),
   cy1 = 3 * (p[1].y - p[0].y),
   cx0 = p[0].x,
   cy0 = p[0].y,
   x = p[0].x, y = p[0].y, x0, y0;
   for (int i=1; i<=n; i++)
   {   float t = i * dt;
       x0 = x; y0 = y;
       x = ((cx3 * t + cx2) * t +    cx1) * t + cx0;
       y = ((cy3 * t + cy2) * t +    cy1) * t + cy0;
       g.drawLine(iX(x0), iY(y0), iX(x), iY(y));
   }
}

The above computation of x and y is an application of Horner's rule, according to which we can efficiently compute polynomials by
using the right-hand rather than the left-hand side of the following equation:

Although bezier2 does not look simpler than bezier1, it is much more efficient because of the reduced number of arithmetic
operations in the for-loop. With a large number of steps, such as n = 200 in these versions of bezier1 and bezier2, it is the number
of operations inside the loop that counts, not the preparatory actions that precede the loop.

4.6.3 3D Curves

Although the curves discussed here are two-dimensional, three-dimensional curves can be generated in the same way. We simply
add a z-component to B(t) and to the control points, and compute this in the same way as the x-and y-components are computed.
The possibility of generating curves that do not lie in a plane is related to the degree of the polynomials we have been discussing.
If the four given points do not lie in the same plane, the generated cubic curve segment does not either. By contrast, quadratic
curves are determined by only three points, which uniquely define a plane (unless they are collinear); the quadratic curve through
those three points lies in that plane. In other words, polynomial curves can be non-planar only if they are at least of degree 3.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


4.7 B-SPLINE CURVE FITTING
Besides the techniques discussed in the previous section, there are other ways of generating curves x = f (t), y = g(t), where f and
g are polynomials in t of degree 3. A popular one, known as B-splines, has the characteristic that the generated curve will normally
not pass through the given points. We will refer to all these points as control points. A single segment of such a curve, based on
four control points A, B, C and D, looks rather disappointing in that it seems to be related only to B and C. This is shown in Figure
4.17, in which, from left to right, the points A, B, C and D are again marked with tiny squares.

 
Figure 4.17: Single B-spline segment, based on four points

However, a strong point in favor of B-splines is that this technique makes it easy to draw a very smooth curve consisting of many
curve segments. To avoid confusion, note that each curve segment consists of many straight-line segments. For example, Figure
4.17 shows one curve segment which consists of 50 line segments. Since four control points are required for a single curve
segment, we have

in this case. This equation also applies if there are several curve segments. At first sight, Figure 4.18 seems to violate this rule,
since there are five curve segments, and it looks as if there are only six control points. However, two of these were used twice.
This curve was constructed by clicking first on the lower-left vertex (= point 0), followed by clicking on the upper-left one (= point
1), then the upper-right one (= point 2), and so on, following the polygon clockwise. Altogether,the eight control points 0, 1, 2, 3, 4,
5, 0, 1 were selected, in that order. If after this, a key on the keyboard is pressed, only the curve is redrawn, not the control points
and the lines that connect them.

 
Figure 4.18: B-spline curve consisting of five curve segments

If we had clicked on yet another control point (point 2, at the top, right), we would have had a closed curve. In general, to produce
a closed curve, there must be three overlapping vertices, that is, two overlapping polygon edges. As you can see in Figure 4.18,
the curve is very smooth indeed: we have second-order continuity, as discussed in the previous section. Recall that this implies
that even the curvature is continuous in the points where two adjacent curve segments meet. As the part of the curve near the
lower-right corner shows, we can make the distance between a curve and the given points very small by supplying several points
close together.

The mathematics of B-splines can be expressed by the following matrix equation, similar to Equation (4.20):

If we have n control points P0, P1, … , Pn− 1 (n ≥  4) then, strictly speaking, Equation (4.21) applies only to the first curve segment.
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If we have n control points P0, P1, … , Pn− 1 (n ≥  4) then, strictly speaking, Equation (4.21) applies only to the first curve segment.
For the second, we have to replace the points P0, P1, P2 and P3 in the column vector with P1, P2, P3 and P4, and so on. As with
Bézier curves, the variable t ranges from 0 to 1 for each curve segment. Multiplying the above 4 × 4 matrix by the column vector
that follows it, we obtain

or

The following program is based on this equation. The user can click any number of points, which are used as the points P0, P1,
… , Pn− 1. The first curve segment appears immediately after the fourth control point, P3, has been defined, and each additional
control point causes a new curve segment to appear. To show only the curve, the user can press any key, which also terminates
the input process. After this, we can generate another curve by clicking again. The old curve then disappears. Figures 4.17 and
4.18 have been produced by this program:
// Bspline.java: B-spline curve fitting.
// Uses: Point2D (Section 1.5).

import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class Bspline extends Frame
{  public static void main(String[] args){new Bspline();}

   Bspline()
   {  super("Define points; press any key after the final one");
      addWindowListener(new WindowAdapter()
         {public void windowClosing(WindowEvent e){System.exit(0);}});
      setSize (500, 300);
      add("Center", new CvBspline());

      setCursor(Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR));
      show();
   }
}

class CvBspline extends Canvas
{   Vector V = new Vector();
    int np = 0, centerX, centerY;
    float rWidth = 10.0F, rHeight = 7.5F, eps = rWidth/100F, pixelSize;
    boolean ready = false;

    CvBspline()
    {  addMouseListener(new MouseAdapter()
       {  public void mousePressed(MouseEvent evt)
          {  float x = fx(evt.getX()), y = fy(evt.getY());
             if (ready)
             {  V.removeAllElements();
                np = 0;
                ready = false;
             }
             V.addElement(new Point2D(x, y));
             np++;
             repaint();
          }
       });

       addKeyListener(new KeyAdapter()
       {  public void keyTyped(KeyEvent evt)
          {  evt.getKeyChar();
             if (np >= 4) ready = true;
             repaint();
          }
       });
    }

    void initgr()
    {  Dimension d = getSize();
       int maxX = d.width - 1, maxY = d.height - 1;
       pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
       centerX = maxX/2; centerY = maxY/2;
    }
    int iX(float x){return Math.round(centerX + x/pixelSize);}
    int iY(float y){return Math.round(centerY - y/pixelSize);}
    float fx(int x){return (x - centerX) * pixelSize;}
    float fy(int y){return (centerY - y) * pixelSize;}
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    void bspline(Graphics g, Point2D[] p)
    {  int m = 50, n = p.length;
       float xA, yA, xB, yB, xC, yC, xD, yD,

       a0, a1, a2, a3, b0, b1, b2, b3, x=0, y=0, x0, y0;
    boolean first = true;
       for (int i=1; i<n-2; i++)
       {   xA=p[i-1].x; xB=p[i].x; xC=p[i+1].x; xD=p[i+2].x;
           yA=p[i-1].y; yB=p[i].y; yC=p[i+1].y; yD=p[i+2].y;
           a3=(-xA+3*(xB-xC)+xD)/6; b3=(-yA+3*(yB-yC)+yD)/6;
           a2=(xA-2*xB+xC)/2;     b2=(yA-2*yB+yC)/2;
           a1=(xC-xA)/2;          b1=(yC-yA)/2;
           a0=(xA+4*xB+xC)/6;     b0=(yA+4*yB+yC)/6;
           for (int j=0; j<=m; j++)
           {  x0 = x;
              y0 = y;
              float t = (float)j/(float)m;
              x = ((a3*t+a2)*t+a1)*t+a0;
              y = ((b3*t+b2)*t+b1)*t+b0;
              if (first) first = false;
              else
                 g.drawLine(iX(x0), iY(y0), iX(x), iY(y));
            }
       }
    }

    public void paint(Graphics g)
    {  initgr();
       int left = iX(-rWidth/2), right = iX(rWidth/2),
           bottom = iY(-rHeight/2), top = iY(rHeight/2);
       g.drawRect(left, top, right - left, bottom - top);
       Point2D[] p = new Point2D[np];
       V.copyInto(p);
       if (!ready)
       {   for (int i=0; i<np; i++)
           {   // Show tiny rectangle around point:
               g.drawRect(iX(p[i].x)-2, iY(p[i].y)-2, 4, 4);
               if (i > 0)
                   // Draw line p[i-1]p[i]:
                   g.drawLine(iX(p[i-1].x), iY(p[i-1].y),
                         iX(p[i].x), iY(p[i].y));
           }
       }
       if (np >= 4) bspline(g, p);
    }
}

To see why B-splines are so smooth, you should differentiate B(t)twiceand verify that, for any curve segment other than the final
one, the values of B(1), B′(1) and B′′(1) at the endpoints of these segments are equal to the values B(0), B′(0) and B′′(0) at the
start point of the next curve segment. For example, for the continuity of the curve itself we find

for the first curve segment, based on P0, P1, P2 and P3, while we can immediately see that we obtain exactly this value if we
compute B(0) for the second curve segment, based on P1, P2, P3 and P4.

EXERCISES

4.1 Replace the drawLine method based on Bresenham's algorithm and listed near the end of
Section 4.1 with an even faster version that benefits from the symmetry of the two halves of the
line. For example, with endpoints P and Q satisfying Equation (4.1), and using the integer value
xMid halfway between xP and xQ, we can let the variable x run from xP to xMid and also use a
variable x2, which at the same time runs backward from xQ to xMid. In each iteration of the loop, x
is increased by 1 and x2 is decreased by 1. Note that there will be either one point or two points in
the middle of the line, depending on the number of pixels to be plotted being odd or even. Be sure
that no pixel of the line is omitted and that no pixel is put twice on the screen. To test the latter,
you can use XOR mode so that writing the same pixel twice would have the same effect as
omitting a pixel.

4.2 Generalize the method doubleStep2 (of Section 4.2), to make it work for any lines.

4.3 Since normal pixels are very small, they do not show very clearly which of them are selected by
Bresenham's algorithms. Use a grid to simulate a screen with a very low resolution. Demonstrate
both the method drawLine (with g as its first argument) of Section 4.1 and the method drawCircle
of Section 4.3. Only the gridpoints of your grid are to be used as the centers of ‘superpixels’. The
method putPixel is to draw a small circle with such a center and the distance dGrid of two
neighboring gridpoints as its diameter. Do not change the methods drawLine and drawCircle that
we have developed, but use dGrid,just mentioned, in a method putPixel that is very different from
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we have developed, but use dGrid,just mentioned, in a method putPixel that is very different from
the one shown at the beginning of Section 4.1. Figure 4.19 shows a grid (with dGrid = 10) and
both a line and a circle drawn in this way. As in Figure 4.1, the line shown here has the endpoints
P(1, 1) and Q(12, 5) but this time the positive y-axis points downward and the origin is the upper-
left corner of the drawing rectangle. The circle has radius r = 8, and is approximated by the same
pixels as shown in Figure 4.6 for one eighth of this circle. The line and circle were produced by
the following calls to the methods drawLine and drawCircle of Sections 4.1 and 4.3 (but with a
different method putPixel):
drawLine(g, 1, 1, 12, 5); // g, xP, yP, xQ, yQ
drawCircle(g, 23, 10, 8); // g, xC, yC, r

 
Figure 4.19: Bresenham algorithms for a line and for a circle (see also Figures 4.1 and
4.6)

4.4 In the Bezier.java program we constructed only one curve segment, using the points P0, P1, P2
and P3. Extend this program to enable the user to draw very smooth curves consisting of more
than one segment. After the first segment has been drawn, the second one is based on these
points Q0,Q1,Q2 and Q3 (similar to P0, P1, P2 and P3):

Q0 is identical with P3; clicking on P3 acts as a signal that we want to start another
curve segment.

Q1 is not specified by the user, but is automatically constructed by reflecting P2
about P3; in other words, P3 (= Q0) will be the midpoint of P2Q1. This principle will
make the curve very smooth.

Q2 and Q3 are defined in the usual way, that is, by clicking on these points.

It should also be possible to specify a third curve segment by starting at Q3, and so on. When the
curve (consisting of an arbitrary number of segments) is completed, the user clicks on a point
other than the final one of the last segment. This will be the starting point (similar to P0) of an
entirely new curve (to be drawn in addition to the previous one), unless, after this, the user clicks
on this new point once again: this clicking twice on the same point will be the signal that the
drawing is ready. As soon as a curve is completed, it is to be drawn without displaying any straight
lines connecting control points and without any little squares marking these points.

4.5 Extend the program Bspline.java of Section 4.7. Supply a grid, with visible gridpoints lying, say, 10
pixels apart, horizontally and vertically. Any control point specified by the user using the mouse
should be pulled to the nearest gridpoint. This makes it easier for the user to specify two or more
points that lie on the same horizontal or vertical line. Apart from using a grid, your program will
also be different from Bspline.java in that it must be able to store several B-spline curves instead
of only one. The following characters are to be interpreted as commands:

+ Increase the distance between gridpoints by one.

− Decrease the distance between gridpoints by one.

n After this command, start with a new curve, retaining the previous ones.

d Delete the last curve.

g Change the visibility status of gridpoints (visible/invisible).

c Show only the curves, without any control points or lines connecting these.

4.6 Implement a restricted version of Bresenham's line-drawing algorithm as a demonstration. The
purpose of the exercise is to visualize how this algorithm works by showing its stepwise execution
on an exaggerated screen area as a 10 × 10 grid. Draw the grid on the left half of the drawing
space and the main body of method drawLine2 (listed in Section 4.1) on the right half with text
font size of 14. At the bottom of the drawing space, add both a button labeled Step and a small
space for displaying the values of the program variables dx, c, m, d, x and y. When the user clicks
on two intersection points P and Q, satisfying Equations (4.1), on the grid, a thin line is drawn and
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on two intersection points P and Q, satisfying Equations (4.1), on the grid, a thin line is drawn and
the initial values of the program variables d and m are displayed. Just after the definition of point
Q, the call to putPixel is highlighted (by coloring or boxing the statement), indicating that this
program line is next to be executed. Then whenever the user clicks on Step, the highlighted
program line is executed, the next program line in the right half is highlighted, and the values of d,
x and y are updated. Each time putPixel is executed, a filled circle is drawn on the appropriate
grid intersection (representing a pixel on the line).

Answers

4.1 Adapt the Java program for Bresenham's algorithm by drawing pixels from both of the endpoints towards
the middle of the line. Either calculate where the middle point is beforehand or check on-the-fly (that is,
within the loop) when the two pixels merge in the middle. There may be one or two middle points
depending on whether the line consists of an odd or even number of pixels. If there is only one, it is a good
idea to draw this pixel after exiting the loop. Check if your solution also works correctly for very short lines,
consisting of one or two pixels. You solution should be very general in that it works for any two endpoints P
and Q.

4.2 You should add a second for-loop in which the roles of x and y are interchanged. For example, the calls to
putPixel should have ++y as their third argument instead of ++x as their second. If |yQ −  yP|≤ |xQ −  xP|,
the first loop should be executed; otherwise the second.

4.3 The following program produces only Figure 4.19. You should extend it, enabling the user to specify the
two endpoints of a line segment and both the center and the radius of a circle.
// Bresenham.java: Bresenham algorithms for lines and circles
//                 demonstrated by using superpixels.
import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class Bresenham extends Frame
{  public static void main(String[] args){new Bresenham();}

   Bresenham()
   {  super("Bresenham");
      addWindowListener(new WindowAdapter()
       {public void windowClosing(WindowEvent e)
               {System.exit(0);}});
       setSize (340, 230);
       add("Center", new CvBresenham());
       show();
   }
}
class CvBresenham extends Canvas
{  float rWidth = 10.0F, rHeight = 7.5F, pixelSize;
   int centerX, centerY, dGrid = 10, maxX, maxY;

   void initgr()
   {  Dimension d;
      d = getSize();
      maxX = d.width - 1;
      maxY = d.height - 1;
      pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
      centerX = maxX/2; centerY = maxY/2;
   }
      int iX(float x){return Math.round(centerX + x/pixelSize);}
      int iY(float y){return Math.round(centerY - y/pixelSize);}

      void putPixel(Graphics g, int x, int y)
      {  int x1 = x * dGrid, y1 = y * dGrid, h = dGrid/2;
         g.drawOval(x1 - h, y1 - h, dGrid, dGrid);
      }

      void drawLine(Graphics g, int xP, int yP, int xQ, int yQ)
      {  int x = xP, y = yP, D = 0, HX = xQ - xP, HY = yQ - yP,
            c, M, xInc = 1, yInc = 1;
         if (HX < 0){xInc = -1; HX = -HX;}
         if (HY < 0){yInc = -1; HY = -HY;}
         if (HY <= HX)
         {  c = 2 * HX; M = 2 * HY;
            for (;;)
            {  putPixel(g, x, y);
               if (x == xQ) break;
               x += xInc;
               D += M;
               if (D > HX){y += yInc; D -= c;}
            }
         }
         else
         {  c = 2 * HY; M = 2 * HX;
            for (;;)
            {  putPixel(g, x, y);
               if (y == yQ) break;
               y += yInc;
               D += M;
               if (D > HY){x += xInc; D -= c;}

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


               if (D > HY){x += xInc; D -= c;}
            }
         }
}

void drawCircle(Graphics g, int xC, int yC, int r)
{  int x = 0, y = r, u = 1, v = 2 * r - 1, E = 0;
   while (x < y)
   {  putPixel(g, xC + x, yC + y); // NNE
      putPixel(g, xC + y, yC - x); // ESE
      putPixel(g, xC - x, yC - y); // SSW
      putPixel(g, xC - y, yC + x); // WNW
      x++; E += u; u += 2;
      if (v < 2 * E){y--; E -= v; v -= 2;}
      if (x > y) break;
      putPixel(g, xC + y, yC + x); // ENE
      putPixel(g, xC + x, yC - y); // SSE
      putPixel(g, xC - y, yC - x); // WSW
      putPixel(g, xC - x, yC + y); // NNW
     }
   }

   void showGrid(Graphics g)
   {  for (int x=dGrid; x<=maxX; x+=dGrid)
         for (int y=dGrid; y<=maxY; y+=dGrid)
            g.drawLine(x, y, x, y);
   }

   public void paint(Graphics g)
   {  initgr();
      showGrid(g);
      drawLine(g, 1, 1, 12, 5);
      drawCircle(g, 23, 10, 8);
   }
}

4.4 Since an unknown number of curve segments are to be dealt with, we can use the Java concept of Vector,
as we have also done in Section 1.5 and elsewhere to store Point2D objects representing the vertices of a
polygon. In this case it makes sense to define a class CurveSegment andtousea Vector of CurveSegment
objects, as this fragment shows:
class CurveSegment
{  Point2D[] P;
   CurveSegment(Point2D[] P){this.P = P;}
   ...
}
Writing

Vector curves = new Vector();

and using the array P, declared as
Point2D[] P = new Point2D[4];

containing the most recent four points, as we did in program Bezier.java in Section 4.6, we can add a new
curve segment to curves by writing
curves.addElement(new CurveSegment(P));

The object curves can store several curves, each consisting of some consecutive elements.

4.5 In program Bspline.java of Section 4.7, pressing a key is interpreted as a signal to terminate the process of
extending the curve. Insert the line
char ch = evt.getKeyChar();

in the method keyTyped so that you can use the character ch to differentiate between different characters
entered by the user and to use them as commands.

Use a Vector element for each array representing a curve. Recall that we have used the statement
V.copyInto(P);

in the paint method of program Bspline.java, to copy the Vector object V into the array P. Using a different
Vector object, say, curves, we can now add the array P to curves. The deletion of the last curve, as
required by the d command, is then implemented as
curves.setSize(curves.size()-1);

4.6 Represent the grid on the screen by drawing ten equidistant horizontal lines that intersect ten equidistant
vertical lines. If the user clicks on (or near) a point of intersection of these lines, transform the device
coordinates to gridpoint coordinates, ranging from 0 through 9, and use these gridpoint coordinates to
select P and Q. Draw the line PQ after Q has been defined. On the right of all these horizontal and vertical
lines, display the strings

below each other, where the array algorithm is defined and initialized as follows:
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String[] algorithm = {
   "int x=xP,y=yP,d=0,dx=xQ-xP,c=2*dx,", // 0
   "    m=2*(yQ-yP);",                   // 1
   "for (;;)",                           // 2
   "{ putPixel(g, x, y);",               // 3
   " if (x == xQ) break;",               // 4
   " x++; d += m;",                      // 5
   " if (d > dx){y++; d -= c;}",      // 6
   "}"};                                 // 7

As soon as the user has defined point Q, the line stored as algorithm[3] should be highlighted, indicating
that the call to putPixel is about to be executed. You can realize this by using a variable, say i, indicating
which of the above eight program lines (if any) should be displayed in red (or equal to, say, − 1 if all
program lines are to appear in black). All lines algorithm[j] with j ≠  i are displayed in black. You can use a
switch statement to test the value of i in a method stepPressed. For example, you can write a fragment of
the following form in the constructor of your canvas class:
addMouseListener(new MouseAdapter()
{  public void mousePressed(MouseEvent evt)
   {  // When the mouse is clicked, determine where
      // it is on the screen and do the appropriate
      // action, if any.
      int xClick = 0, yClick = 0;
      // Get the coordinates
      xClick = evt.getX();
      yClick = evt.getY();
      // Check to see if STEP button was pressed
      if (xClick, yClick lies within the rectangle representing
                                                 the Step button)
         stepPressed();
      else
      if (xClick, yClick) lies within grid area
      {  ...
      }
      repaint();
   }
});

In the switch statement just mentioned, you should execute actions defined in the program line (stored in
the algorithm array) that was previously highlighted and update the variable i mentioned above. Your
method paint will use this variable i to display the correct program line in red and the others in black.
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Chapter 5: Perspective

We now turn to the exciting subject of 3D graphics. As soon as we know how to compute the perspective image of a single
point, we can easily produce more interesting images. To obtain the perspective image of a straight line, we simply connect
the images of its endpoints, using the fact that the image of a straight line is also a straight line. In this chapter, the
computation of the perspective image of a point is done in two steps: a viewing transformation followed by a perspective
transformation.

5.1 INTRODUCTION
In Figure 5.1 a two-dimensional representation of a cube is shown along with some auxiliary lines. Although AB is a horizontal
edge, it is not a horizontal line in the picture. Lines that in 3D space are horizontal and parallel meet in the picture in a so-called
vanishing point. All these vanishing points lie on the same line, which is called the horizon. The horizon and vanishing points refer
to the 2D image space, not to the 3D object space. For many centuries these concepts have been used by artists to draw realistic
images of three-dimensional objects. This way of representing three-dimensional objects is usually referred to as perspective.

 
Figure 5.1: Vanishing points on the horizon

The invention of photography offered a new (and easier) way of producing images in perspective. There is a strong analogy
between a camera used in photography and the human eye. Our eye is a very sophisticated instrument of which a camera is an
imitation. In the following discussion the word eye may be replaced with camera if we want to emphasize that a two-dimensional
hard copy is desired.

It is obvious that the image will depend upon the position of the eye. An important aspect is the distance between the eye and the
object, since the effect of perspective will be inversely proportional to this distance. If the eye is close to the object, the effect of
perspective is strong, as shown in Figure 5.2(a). Here we can very clearly see that in the image the extensions of parallel line
segments meet.

 
Figure 5.2: (a) Eye nearby; (b) eye far away

Besides the classical and the photographic method, there is a way of producing perspective images which is based on analytical
geometry. Let us write X and Y for 2D and x, y and z for 3D coordinates.

If we want to produce a drawing in perspective, we are given a great many points P(x, y, z) of the object and we want their images
P′(X, Y) in the picture.

Thus all we need is a mapping from the world coordinates (x, y, z) of a point P to the screen coordinates (X, Y) of its central
projection P′. We imagine a screen between the object and the eye E. For every point P of the object the line PE intersects the
screen at point P′. It is convenient to perform this mapping in two stages. The first is called a viewing transformation; point P is left
at its place, but we change from world coordinates to so-called eye coordinates. The second stage is called a perspective
transformation. This is a proper transformation from P to P′, combined with a transition from the three-dimensional eye
coordinates to the two-dimensional screen coordinates:
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5.2 THE VIEWING TRANSFORMATION
To perform the viewing transformation we must be given not only an object but also a viewpoint E. Let us require that the world-
coordinate system be right-handed. It is convenient if its origin O lies more or less centrally in the object; we then view the object
from E to O. We will assume this to be the case; in practice this might require a coordinate transformation consisting of decreasing
the original world coordinates by the coordinates of the central object point. We will include this very simple coordinate
transformation in our program, without writing it down in mathematical notation.

Let the viewpoint E be given by its spherical coordinates ρ (= rho), θ (= theta), ϕϕ (= phi), relative to the world-coordinate system.
Thus its world- coordinates are

as shown in Figure 5.3.

 
Figure 5.3: Spherical coordinates of viewpoint E

The direction of vector EO(=−OE) is said to be the viewing direction. From our eye at E we can only see points within some cone
whose axis is EO and whose apex is E. If the Cartesian coordinates xE, yE, zE of viewpoint E were given, we could derive the
spherical coordinates from them as follows:
rho = Math.sqrt(xE * xE + yE * yE + zE * zE);
theta = Math.atan2(yE, xE);
phi = Math.acos(zE/rho);

Our final objective will be to compute the screen coordinates X, Y,where we have an X-axis and a Y-axis, lying in a screen
between E and O and perpendicular to the viewing direction EO. This is why the eye-coordinate system will have its xe-axis and
ye-axis perpendicular to EO, leaving the ze-axis in the direction of OE. The origin of the eye-coordinate system is viewpoint E, as
shown in Figure 5.4. Viewing from E to O, we find the positive xe-axis pointing to the right and the positive ye-axis upwards. These
directions will enable us later to establish screen axes in the same directions. We could have used a positive ze-axis pointing from
E to O; on the one hand this is attractive because it makes the ze-coordinates of all object points positive, but, on the other hand,
it would have required a left-handed eye-coordinate system. In this book we will use a right-handed eye-coordinate system (as
shown in Figure 5.4) to avoid confusion with regard to the use of the cross product, taking the minus sign of ze-coordinates into
the bargain.
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Figure 5.4: Eye-coordinate system

The viewing transformation can be written as a matrix multiplication, for which we need the 4 × 4 viewing matrix V:

To find V, we imagine this transformation to be composed of three elementary ones, for which the matrices can easily be written
down. Matrix V will be the product of these three matrices. Each of the three transformations is in fact a change of coordinates
and has therefore a matrix which is the inverse of the matrix for an equivalent point transformation.

1. Moving the origin from O to E

We perform a translation of the coordinate system such that viewpoint E becomes the new origin. The matrix for
this change of coordinates is

(Do not confuse xE, yE, zE, the world coordinates of viewpoint E, with xe, ye, ze, the eye coordinates of any
point.) The new coordinate system is shown in Figure 5.5.

 
Figure 5.5: Situation before rotation about the z-axis

2. Rotating the coordinate system about the z-axis

Starting with Figure 5.5 we rotate the coordinate system about the z-axis through the angle θ  + 90°, so the new
x-axis points to the right and is perpendicular to the vertical plane through E and O. The matrix for this change of
coordinates is the same as that for a rotation of points through the angle − (θ  + 90°), which equals − θ  – 90°. We
obtain the 4 × 4 matrix Rz for this rotation by including a 2 × 2 matrix, as discussed in Section 3.2, and adding
the third and fourth columns and rows of a 4 × 4 unit matrix:
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If you find the simplifications

difficult, it will be helpful to plot the two angles of this formula in a unit circle for some value of θ , as Figure 5.6
illustrates.

 
Figure 5.6: Relating the sine and cosine of − θ  – 90° to those of θ

After applying the above matrix Rz, the new position of the x-, y- and z-axes is as shown in Figure 5.7.

 
Figure 5.7: Situation before rotation about x -axis

3. Rotating the coordinate system about the x-axis

Since the z-axis is to have the direction OE, we now rotate the coordinate system about the x-axis through the angle ϕ . The
dashed line near the positive z-axis in Figure 5.7 indicates the new y-axis after this rotation. A rotation about the x-axis is said to
be positive if the y-axis goes towards the z-axis (through an angle of 90°). It corresponds to the turning of a normal, right-handed
screw which moves forward in the direction of the positive x-axis. However, since we are performing a coordinate transformation
instead of rotating points, we have to use −ϕ  instead of ϕ  as the angle of rotation, so that we obtain the following rotation matrix:
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After this final rotation, we have obtained the eye-coordinate system with xe-, ye-and ze-axes, which we have already seen in
Figure 5.4. Multiplying the above matrices T, Rz and Rx, we obtain the desired viewing matrix:

Recall that we use this matrix in Equation (5.2), to compute the eye coordinates xe, ye and ze from the given world coordinates xw,
yw and zw.

The viewing transformation described above is to be followed by the perspective transformation to be discussed in the next
section. However, we could also use the eye coordinates xe and ye, simply ignoring ze. In that case we have a so-called
orthographic projection. Every point P of the object is then projected into a point P′ by drawing a line from P, perpendicular to the
plane through the x-axis and the y-axis. It can also be regarded as the perspective image we obtain if the viewpoint is infinitely far
away. An example of such a picture is the cube in Figure 5.2(b). Parallel lines remain parallel in pictures obtained by orthographic
projection. Such pictures are very often used in practice because with conventional methods they are easier to draw than real
perspective images.

On the other hand, bringing some perspective into the picture will make it much more realistic. Our viewing transformation will
therefore be followed by the perspective transformation, which will involve surprisingly little computation.
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5.3 THE PERSPECTIVE TRANSFORMATION
You might have the impression that we are only half-way, and that in this section we will need as much mathematics as in Section
5.2. However, most of the work has already been done. Since we will not use world coordinates in this section, there will be no
confusion if we denote eye coordinates simply by (x, y, z) instead of (xe, ye, ze).

In Figure 5.8 we have chosen a point Q, whose eye coordinates are (0, 0, − d) for some positive value d.

 
Figure 5.8: Screen and eye coordinates

Our screen will be the plane z = − d, that is, the plane through Q and perpendicular to the z-axis. Then the screen-coordinate
system has Q as its origin, and its X-and Y-axes are parallel to the x-and y-axes. For every object point P, the image point P′ is
the intersection of line PE and the screen. To keep Figure 5.8 simple, we consider a point P whose y-coordinate is zero. However,
the following equations to compute its screen coordinate X are also valid for other y-coordinates. In Figure 5.8 the triangles EPR
and EP′Q are similar. Hence

so we have

(Recall that z-coordinates of object points are negative, so that − z is a positive value.) In other words,

In the same way we can derive

At the beginning of Section 5.2 we chose the origin O of the world-coordinate system to be a central point of the object. The origin
Q of the screen-coordinate system will be central in the image because the z-axis of the eye-coordinate system is a line through E
and O, which intersects the screen at Q. We must bear in mind that Equations (5.7) and (5.8) can be used in this form only if the
origin Q of the screen coordinate system (with X-and Y-axes) lies in the center of the screen. If this origin lies instead in the lower-
left corner of the screen and the screen has width w and height h, we have to add w/2 and h/2 to the Equations (5.7) and (5.8),
respectively.

We still have to specify the distance d between viewpoint E and the screen. Roughly speaking, we have

which follows from the similarity of the triangles EP′1P′2 and EP1P2 in Figure 5.9. Thus we have
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Figure 5.9: Image size and object size

This equation should be applied to both the horizontal and the vertical directions. It should be interpreted only as a means to
obtain an indication about an appropriate value for d, for the three-dimensional object may have a complicated shape, and it may
not be clear how its size is to be measured. We then use a rough estimation of the object size, such as the maximum of its length,
width and height. The image size in Equation (5.9) should be taken somewhat smaller than the screen.
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5.4 A CUBE IN PERSPECTIVE
We will now discuss a complete Java program, which draws a perspective representation of a cube, as shown in Figure 5.10.
Such representations, with all edges visible, are called wire-frame models.

 
Figure 5.10: Output of program CubePers.java

To specify this cube in a program, we assign numbers to its vertices, as shown in Figure 5.11. The center of the cube coincides
with the origin O and its edges have length 2, which implies that the x-, y- and z-coordinates of its eight vertices are equal to +1or
− 1.

 
Figure 5.11: Vertex numbers and coordinate axes

The following program produces the wire-frame model of Figure 5.10. We store the world, eye and screen coordinates for each of
the eight vertices of the cube in the class Obj:
// CubePers.java: A cube in perspective.
// Uses: Point2D (Section 1.5), Point3D (Section 3.9).
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// Uses: Point2D (Section 1.5), Point3D (Section 3.9).
import java.awt.*;
import java.awt.event.*;

public class CubePers extends Frame
{   public static void main(String[] args){new CubePers();}

      CubePers()
      {   super("A cube in perspective");
      addWindowListener(new WindowAdapter()
         {public void windowClosing(WindowEvent e){System.exit(0);}});
      setLayout(new BorderLayout());
      add("Center", new CvCubePers());
      Dimension dim = getToolkit().getScreenSize();
      setSize(dim.width/2, dim.height/2);
      setLocation(dim.width/4, dim.height/4);
      show();
   }
}

class CvCubePers extends Canvas
{   int centerX, centerY;
    Obj obj = new Obj();

    int iX(float x){return Math.round(centerX + x);}
    int iY(float y){return Math.round(centerY - y);}

    void line(Graphics g, int i, int j)
    {  Point2D p = obj.vScr[i], q = obj.vScr[j];
       g.drawLine(iX(p.x), iY(p.y), iX(q.x), iY(q.y));
    }

    public void paint(Graphics g)
    {  Dimension dim = getSize();
       int maxX = dim.width - 1, maxY = dim.height - 1,
           minMaxXY = Math.min(maxX, maxY);
       centerX = maxX/2; centerY = maxY/2;
       obj.d = obj.rho * minMaxXY / obj.objSize;
       obj.eyeAndScreen();
       // Horizontal edges at the bottom:
       line(g, 0, 1); line(g, 1, 2); line(g, 2, 3); line(g, 3, 0);
       // Horizontal edges at the top:
       line(g, 4, 5); line(g, 5, 6); line(g, 6, 7); line(g, 7, 4);
       // Vertical edges:
       line(g, 0, 4); line(g, 1, 5); line(g, 2, 6); line(g, 3, 7);
   }
}

class Obj // Contains 3D object data
{  float rho, theta=0.3F, phi=1.3F, d, objSize,
         v11, v12, v13, v21, v22, v23, v32, v33, v43;
                    // Elements of viewing matrix V
   Point3D[] w;     // World coordinates
   Point2D[] vScr;   // Screen coordinates
   Obj()
   {  w = new Point3D[8];
      vScr = new Point2D[8];
      // Bottom surface:
      w[0] = new Point3D( 1, -1, -1);
      w[1] = new Point3D( 1,   1, -1);
      w[2] = new Point3D(-1,   1, -1);
      w[3] = new Point3D(-1, -1, -1);
      // Top surface:
      w[4] = new Point3D( 1, -1,   1);
      w[5] = new Point3D( 1,   1,   1);
      w[6] = new Point3D(-1,   1,   1);
      w[7] = new Point3D(-1, -1,   1);
      objSize = (float)Math.sqrt (12F);
         // = sqrt(2  * 2 + 2 * 2 + 2 * 2)
         // = distance between two opposite vertices.
      rho = 5 *  objSize; // For reasonable perspective effect
   }

   void initPersp()
   {  float costh = (float)Math.cos(theta),
            sinth = (float)Math.sin(theta),
            cosph = (float)Math.cos(phi),
            sinph = (float)Math.sin(phi);
      v11 = -sinth; v12 = -cosph * costh; v13 = sinph * costh;
      v21 = costh;  v22 = -cosph * sinth; v23 = sinph * sinth;
                    v32 = sinph;          v33 = cosph;
                                          v43 = -rho;
      }

      void eyeAndScreen()
      {  initPersp();
         for (int i=0; i<8; i++)
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         for (int i=0; i<8; i++)
      {  Point3D p = w[i];
         float x = v11 * p.x + v21 * p.y,
               y = v12 * p.x + v22 * p.y + v32 * p.z,
               z = v13 * p.x + v23 * p.y + v33 * p.z + v43;
         vScr[i] = new Point2D(-d * x/z, -d * y/z);
      }
   }
}

As discussed in Section 5.3 (see point Q in Figure 5.8), the perspective transformation is simplest if we use a coordinate system
with the origin in the center of the screen and with a y-axis pointing upward. To convert such (floating-point) coordinates to device
coordinates of type int, we again use the methods iX and iY. As usual, these are based on the values of the fields centerX,
centerY and maxY, which are computed in the paint method before this method uses iX and iY.

The paint method also computes the screen distance d (stored in obj), using Equation (5.9). After calling the Obj method
eyeAndScreen to compute eye and screen coordinates, we use our method line to draw all 12 cube edges.

In the class Obj, the arrays w and vScr contain the world and the screen coordinates, respectively, of the cube vertices. Recall
that we use the matrix multiplication of Equation (5.2) to compute the eye coordinates from the given world coordinates stored in
w. We then use these eye coordinates to compute the screen coordinates for the array vScr. Figure 5.11 is helpful in specifying
the coordinate values in the array w and the vertex numbers in calls to the line method.
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5.5 SOME USEFUL CLASSES
To avoid duplication of code, we now present some classes (Input, Obj3D, Tria, Polygon3D, Canvas3D and Fr3D) that we will
frequently use later.

5.5.1 Input: A Class for File Input Operations

The first class we will discuss is Input. It is not really specific for computer graphics, but useful for any programming task that
involves reading data from a textfile in a simple way. We will use it to read data for 3D objects, specified in a particular format.
There is an Input constructor that accepts the name of an input file as an argument, as well as a constructor without any
arguments to read data from the keyboard. To demonstrate how easy it is to use this class, let us suppose we are given a textfile
containing only numbers and we want to write a program to read this file and compute the sum of these numbers. For example,
this textfile, say, example.txt, may have the following contents:
2.5    6
200    100

Then the desired program is shown below:
// Sum.java: Demonstrating the class Input by computing the sum
//   of all numbers in the textfile example.txt (which contains
//   only numbers and whitespace characters).
public class Sum
{  public static void main(String[] args)
   {  float x, s=0;
      Input inp = new Input("example.txt");
      for (;;)
      { x = inp.readFloat();
        if (inp.fails())
           break;
        s + = x;
      }
      System.out.println("The computed sum is " + s);
    }
}

After compiling and executing this program in a directory that also contains the files Input.java and example.txt, the following
output line is displayed:
The computed sum is 308.5

This example demonstrates the use of the Input constructor and of the methods readFloat and fails. The complete class Input,
listed below, shows that it contains some other useful methods as well:
// Input.java: A class to read numbers and characters from textfiles.
// Methods of this class, available for other program files:
//   Input(fileName) (constructor; open input file)
//   Input()         (constructor; prepare for input from keyboard)
//   readInt()       (read an integer)
//   readFloat()     (read a float number)
//   readChar()      (read a character)
//   readString()    (read a string between double quotes)
//   skipRest()      (skip all remaining characters of current line)
//   fails()         (input operation failed)
//   eof()           (failure because of end of file)
//   clear()         (reset error flag)
//   close()         (close input file)
//   pushBack(ch)    (push character ch back into the input stream)
import java.io.*;

class Input
{  private PushbackInputStream pbis;
   private boolean ok = true;
   private boolean eoFile = false;

   Input(){pbis = new PushbackInputStream(System.in);}

   Input(String fileName)
   {  try
      {   InputStream is = new FileInputStream(fileName);
          pbis = new PushbackInputStream(is);
      }
      catch(IOException ioe){ok = false;}
   }

   int readInt()
   {  boolean neg = false;
      char ch;
      do {ch = readChar();}while (Character.isWhitespace(ch));
      if (ch == '-'){neg = true; ch = readChar();}
      if (!Character.isDigit(ch))
      {  pushBack(ch);
         ok = false;
         return 0;
      }
      int x = ch - '0';
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      int x = ch - '0';
      for (;;)
      {  ch = readChar();
         if (!Character.isDigit(ch)){pushBack(ch); break;}
         x = 10 * x + (ch -  '0');
      }
      return (neg ? -x : x);
    }
float readFloat()
{  char ch;
   int nDec = -1;
   boolean neg = false;
   do
   {  ch = readChar();
   }   while (Character.isWhitespace(ch));
   if (ch == '-'){neg = true; ch = readChar();}
   if (ch == '.'){nDec = 1; ch = readChar();}
   if (!Character.isDigit(ch)){ok = false; pushBack(ch); return 0;}
   float x = ch - '0';
   for (;;)
   {  ch = readChar();
      if (Character.isDigit(ch))
      {  x = 10 * x + (ch - '0');
         if (nDec >= 0) nDec++;
      }
      else
      if (ch == '.' && nDec == -1) nDec = 0;
      else break;
   }
   while (nDec > 0){x *= 0.1; nDec--;}
   if (ch == 'e'  ||   ch == 'E')
   {  int exp = readInt();
      if (!fails())
      {   while (exp < 0){x *= 0.1; exp++;}
          while (exp > 0){x *= 10; exp--;}
      }
   }
   else pushBack(ch);
   return (neg ? -x : x);
}

char readChar()
{  int ch=0;
   try
   {   ch = pbis.read();
       if (ch == -1) {eoFile = true; ok = false;}
   }
   catch(IOException ioe){ok = false;}
   return (char)ch;
}

   String readString()    // Read first string between quotes (").
   {  String str = " ";
      char ch;
      do ch = readChar(); while (!(eof()  || ch == '"'));
                                                   // Initial quote
      for (;;)
      {   ch = readChar();
         if (eof()  ||   ch == '"') // Final quote (end of string)
            break;
         str += ch;
      }
      return str;
   }

   void skipRest()   // Skip rest of line
   {  char ch;
      do ch = readChar(); while (!(eof()  || ch == '\n'));
   }

   boolean fails(){return !ok;}
   boolean eof(){return eoFile;}
   void clear(){ok = true;}

   void close()
   {  if (pbis != null)
      try {pbis.close();}catch(IOException ioe){ok = false;}
   }

   void pushBack(char ch)
   {  try {pbis.unread(ch);}catch(IOException ioe){}
   }
}

Using a call to readChar immediately after readInt or readFloat causes the character immediately after the number to be read. To
realize this, we use the standard Java class PushbackInputStream, which enables us to push back, or ‘unread’ the last character
that we have read and that does not belong to the number we are reading.

After an attempt to read a number by using readInt or readFloat,wecancall the fails method to check whether that attempt was
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After an attempt to read a number by using readInt or readFloat,wecancall the fails method to check whether that attempt was
successful. If fails returns true, a non-numeric character, such as a period in the second part of our input files, may have been
read. It is then still possible to read that character by using readChar.The clear method resets the error flag, so that we can
resume input, using fails again. The method fails also returns true if an input operation fails because the end of the file is
encountered during a call to one of the methods readInt, readFloat and readChar. In that case, the eof method also returns true.
We can use the method readString to read a string surrounded by double quotes (”), as we will do in Chapter 8. To skip all
remaining characters of the current input line, we use the method skipRest.

5.5.2 Obj3D: A Class to Store 3D Objects

Let us now discuss the way the above class Input is used in the method readObject of the class Obj3D. Suppose we have an
input file such as the one shown below:
1    0    0    0
2    0  100.5  0
3    0    0  1.5e2
Faces:
1 2 3.
3 2 1.

We will often use files of this type, which will be described in more detail in the next chapter. This example defines a 3D object
that has only three vertices, with numbers 1, 2 and 3. The x-, y- and z-coordinates are given after each of these vertex numbers.
The object has two faces, which are the two sides of the triangle with these three vertices. The first line following the word Faces
indicates the side where we view the vertices 1, 2 and 3, in that order, counter-clockwise, while the last line denotes the other
side. Obviously, which of these two triangle sides we can see depends on the point of view.

A simplified version of the Obj3D method readObject is shown below. It shows how the class Input can be used to read data files
such as the one shown above. In this fragment three dots (… ) denote code that is not relevant in this discussion because it does
not perform any input operations:
private boolean readObject(Input inp)
{  for (;;)
   { int i = inp.readInt();
     if (inp.fails()){inp.clear(); break;}
     ...
     float x = inp.readFloat(),
           y = inp.readFloat(),
           z = inp.readFloat();
     addVertex(i, x, y, z);
   }
   ...
   do   // Skip the line "Faces:"
   {  ch = inp.readChar(); count++;
   }  while (!inp.eof() && ch != '\n');
   ...
   // Build polygon list:
   for (;;)
   {  Vector vnrs = new Vector();
      for (;;)
      {  int i = inp.readInt();
         if (inp.fails()){inp.clear(); break;}
         ...
         vnrs.addElement(new Integer(i));
      }
      ch = inp.readChar();
      if (ch != '.') break;
      // Ignore input lines with only one vertex number:
      if (vnrs.size() >= 2)
         polyList.addElement(new Polygon3D(vnrs));
   }
   inp.close();
   return true;
}

The above fragment is a simplified version of the method readObject of the class Obj3D, which we will now discuss in more detail.
We will use this class to store all data of 3D objects, along with their 2D representations, in such a way that this data is easy to
use in our programs. We store three representations of vertices:

‘Vector’ w of Point3D elements: world coordinates

Array e of Point3D elements: eye coordinates

Array vScr of Point2D elements: screen coordinates

Recall the classes Point2D and Point3D discussed in Sections 1.5 and 3.9. Since we read the world coordinates from an input file
without knowing in advance how many vertices there will be, we use a Java Vector for them. This is different with the eye and
screen coordinates. Since we compute these ourselves after we have read the world coordinates of all vertices, we know the size
of the arrays e and vScr, so that we can allocate memory for them. We use the vertex numbers to indicate the positions in w,
e,and vScr. In other words, with an input line of the form

we can find these world coordinates x, y and z of vertex i in the Point3D object
(Point3D)w.elementAt(i)

We use the Obj3D method eyeAndScreen to compute the corresponding eye coordinates and store them in the Point3D object
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e[i]

This method also computes the corresponding screen coordinates and stores them in the Point2D object
vScr[i]

It follows that w.size(), e.length and vScr.length will be one higher than the highest vertex number that is in use.

We will use the accessor methods getE() and getVScr() for access to the arrays e and vScr. The Vector object w will not be used
at all outside the class Obj3D.

Another useful method of Obj3D is planeCoeff. For each face (or polygon) of the object, it computes the coefficients a, b, c and h
of the equation

which describes the plane where this face lies. Using the first three vertices A, B and C of a polygon, we compute the normal
vector n = (a, b, c) of the plane as the vector product AB × AC (see Section 2.4), scaled such that

Using the inner product (see Section 2.2) of n and a vector x = EP for any point P in the plane, we can write (5.10) as

in which h is positive if the sequence A, B and C is clockwise, that is, if ABC is a back face. On the other hand, if ABC is not a
back face, h is negative and the sequence A, B and C is counter-clockwise. Recall that the positive z-axis (in the eye-coordinate
system) points towards us, as is more or less the case with the normal vector n of a visible face. However, the vector x points
away from us, which implies that the inner product n · x = h will be negative for a visible face and positive for a back face. The
absolute value of h is the distance between the eye E and the plane in question (see Exercise 7.1). We will use the coefficients a,
b, c and h on several occasions. In the class Obj3D, the method planeCoeff computes these coefficients, after which they are
stored in Polygon3D objects, as we will see shortly. This method planeCoeff also computes the maximum and minimum values of
an inner product used to determine which color is to be assigned to each face, as we will discuss in Section 7.2.

Since the file Obj3D.java is considerably larger than the program files we have seen so far, it is not listed here but you can find it
in Appendix C. Here is a summary of all methods of this class that we can use outside it:
boolean read(String fName) // Reads a 3D object file, if possible.
Vector getPolyList()       // Returns polyList, the list of faces.
String getFName()          // File name of current object.
Point3D[] getE()           // Eye coordinates e of vertices.
Point2D[] getVScr()        // Screen coordinates vScr of vertices.
Point2D getImgCenter()     // Center of image in screen coordinates.
float getRho()             // Rho, the viewing distance.
float getD()               // d, scaling factor, also screen distance.
float eyeAndScreen         // Computes eye and screen coordinates and
                           // returns maximum screen-coordinate range.
void planeCoeff()          // Computes the coefficients a, b, c, h
                           // for all faces.
boolean vp(Canvas cv, float dTheta, float dPhi, float fRho)
                           // Changes the viewpoint.
int colorCode(double a, double b, double c)
                           // Computes the color code of a face.

We will discuss the method colorCode in detail in Section 7.2. The public Obj3D method read calls the private method readObject,
discussed above, as the following fragment shows:
boolean read(String fName)
{  Input inp = new Input(fName);
   ...
   return readObject(inp); // Read from inp into obj
}

As we have seen in the simplified version of readObject, this method starts by repeatedly reading four numbers, i, x, y and z, and
calls the method addVertex, which keeps track of the minimum and maximum values of x, y and z. The loop in which the four
numbers are read terminates when an attempt to read a vertex number i fails because of the word Faces. The minimum and
maximum coordinate values just mentioned are required for a call to the private method shiftToOrigin, which reduces all world
coordinates such that the origin of the coordinate center will coincide with the center of the bounding box of the object.

After skipping the rest of the line on which we encounter the word Faces,we enter a loop to read vertex-number sequences
representing polygons. Vertex numbers in these sequences may be preceded by a minus sign, as we will discuss in Chapter 6, so
that the vertex numbers are actually the absolute values of the integers that we read.

Since we will often refer to the class Obj3D, let us have a look at a simplified version of it:
// Obj3D.java: A 3D object and its 2D representation.
// Uses: Point2D (Section 1.5), Point3D (Section 3.9),
//       Polygon3D, Input (Section 5.5).
...
class Obj3D
{  ...
   private Vector w = new Vector();        // World coordinates
   private Point3D[] e;                    // Eye coordinates
   private Point2D[] vScr;                 // Screen coordinates
   private Vector polyList = new Vector(); // Polygon3D objects
   ...
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   ...
   private void addVertex(int i, float x, float y, float z)
   {  ...
   }
   ...
}

Recall that the complete version is listed in Appendix C.

5.5.3 Tria: A Class to Store Triangles by Their Vertex Numbers

We will often store large sets of triangles, the vertices of which have numbers in the same way as letters normally used in
geometry. Since several triangles may share some vertices, it would not be efficient to store the coordinates of each vertex
separately for every triangle. For example, suppose in 3D space we have a triangle with vertices 1, 2 and 3 and another with
vertices 1, 4 and 2. It will then be efficient to set up a table with the x-, y- and z-coordinates of the four vertices 1, 2, 3 and 4, and
denote the triangles only by their vertex numbers. The following class represents triangles in this way:
// Tria.java: Triangle represented by its vertex numbers.
class Tria
{  int iA, iB, iC;
   Tria(int i, int j, int k){iA = i; iB = j; iC = k;}
}

If there had been no 3D programs in this book other than that for wireframe models, as discussed in Section 5.6, it would not have
been necessary to store polygons, let alone triangles. We could then have restricted ourselves to the edges of 3D objects, that is,
to line segments. We will nevertheless store the polygonal faces of the objects even in this chapter, to prepare for some more
interesting programs where hidden lines or faces are not displayed.

5.5.4 Polygon3D: A Class to Store 3D Polygons

Almost at the end of the Obj3D method readObject you may have noticed the following statement:
polyList.addElement(new Polygon3D(vnrs));

Here a new Polygon3D object is created to store the vertex numbers of a polygon. This object is then added to the Vector object
polyList, a private variable of the class Obj3D.Theclass Polygon3D contains a number of methods that we will not use in this
chapter. These are related to triangles resulting from polygons and will be useful in the next two chapters, in which we will be
dealing with algorithms to eliminate hidden lines and faces. Thanks to the above class Tria, the coordinates of the vertices of each
triangle are not duplicated. Since they are stored in arrays that are data members of the Obj3D class, we only need to store the
numbers iA, iB and iC of the vertices here. Although, in Section 2.13, we have already used a method triangulate to divide a
polygon into triangles, we will need a slightly different one that represents vertices by numbers referring to the Obj3D class. This
special method for triangulation is part of the class Polygon3D, listed below:
// Polygon3D.java: Polygon in 3D, represented by vertex numbers
//                 referring to coordinates stored in an Obj3D object.
import java.util.*;
class Polygon3D
{  private int[] nrs;
   private double a, b, c, h;
   private Tria[] t;
   Polygon3D(Vector vnrs)
   {  int n = vnrs.size();
      nrs = new int[n];
      for (int i=0; i<n; i++)
         nrs[i] = ((Integer)vnrs.elementAt(i)).intValue();
   }

   int[] getNrs(){return nrs;}
   double getA(){return a;}
   double getB(){return b;}
   double getC(){return c;}
   double getH(){return h;}
   void setAbch(double a, double b, double c, double h)
   {  this.a = a; this.b = b; this.c = c; this.h = h;
   }
   Tria[] getT(){return t;}

   void triangulate(Obj3D obj)
   // Successive vertex numbers (CCW) in vector nrs.
   // Resulting triangles will be put in array t.
   { int n = nrs.length;          // n > 2 is required
     int[] next = new int[n];
     t = new Tria[n - 2];
     Point2D[] vScr = obj.getVScr();
     int iA=0, iB, iC; intj=n-1;
     for (int i=0; i<n; i++){next[j] = i; j = i;}
     for (int k=0; k<n-2; k++)
     {   // Find a suitable triangle, consisting of two edges
        // and an internal diagonal:
        Point2D a, b, c;
        boolean found = false;
        int count = 0, nA = -1, nB = 0, nC = 0, nj;
        while (!found && ++count < n)
        {  iB = next[iA]; iC = next[iB];
           nA = Math.abs(nrs[iA]); a = vScr[nA];
           nB = Math.abs(nrs[iB]); b = vScr[nB];
           nC = Math.abs(nrs[iC]); c = vScr[nC];
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           nC = Math.abs(nrs[iC]); c = vScr[nC];
           if (Tools2D.area2(a, b, c) >= 0)
           {  // Edges AB and BC; diagonal AC.
              // Test to see if no vertex (other than A,
              // B, C) lies within triangle ABC:
              j = next[iC]; nj = Math.abs(nrs[j]);
              while (j != iA &&
                    (nj == nA  ||   nj == nB  ||   nj == nC  ||
                    !Tools2D.insideTriangle(a, b, c, vScr[nj])))
                 {  j = next[j]; nj = Math.abs(nrs[j]);
                 }
              if (j == iA)
              {   // Triangle found:
                t[k] = new Tria(nA, nB, nC);
                next[iA] = iC;
                found = true;
              }
           }
           iA = next[iA];
        }
        if (count == n)
        {   // Degenerated polygon, possibly with all
           // vertices on one line.
            if (nA >= 0) t[k] = new Tria(nA, nB, nC);
            else
            { System.out.println("Nonsimple polygon");
              System.exit(1);
            }
         }
      }
   }
}

The vertex numbers of the given polygon are available in the array nrs, while those of each resulting triangle are stored in an
element of the array t.Themost difficult part of this class is the method triangulate, which is the 3D equivalent of the Tools2D
method with the same name, discussed in Section 2.13 and not used in this chapter.

5.5.5 Canvas3D: An Abstract Class to Adapt the Java Class Canvas

The canvas classes we will be using will contain the methods getObj and setObj, to retrieve and store a reference to an Obj3D
object. In view of a separate frame class, Fr3D, we need to define the following abstract class:

// Canvas3D.java: Abstract class.
import java.awt.*;

abstract class Canvas3D extends Canvas
{  abstract Obj3D getObj();
   abstract void setObj(Obj3D obj);
}

Remember, abstract classes are only useful to create subclasses, not to define objects. Any (non-abstract) subclass of Canvas3D
is simply a subclass of the standard class Canvas, except that it is guaranteed to define the methods getObj and setObj. For
example, in the next section we will discuss a class CvWireframe of which the first line reads
class CvWireframe extends Canvas3D

By writing here Canvas3D instead of Canvas, we are obliged to define the methods getObj and setObj in this CvWireframe class,
and in return we are allowed to call these two methods for any object of class CvWireframe. We will clarify the use of the abstract
class Canvas3D further at the end of this section.

5.5.6 Fr3D: A Frame Class for 3D Programs

The class Fr3D will be used in four non-trivial 3D programs of this book, Wireframe.java (Section 5.6), HLines.java (Chapter 6),
Painter.java (Section 7.3) and ZBuf.java (Section 7.4). Since these programs will have the same menus, it makes sense to let
them share the file Fr3D.java, listed below, in which much of the code is related to these menus. The Java compiler accepts the
calls cv.getObj() and cv.setObj(obj) in this file because, as Canvas3D is an abstract class, the actual type of cv can only be a
subclass of it. As we have just seen, this implies that this subclass will define the methods getObj and setObj:
// Fr3D.java: Frame class to deal with menu commands and other
//    user actions.
import java.awt.*;
import java.awt.event.*;
import java.util.*;

class Fr3D extends Frame implements ActionListener
{  protected MenuItem open, exit, eyeUp, eyeDown, eyeLeft, eyeRight,
      incrDist, decrDist;
   protected String sDir;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   protected String sDir;
protected Canvas3D cv;
protected Menu mF, mV;

Fr3D(String argFileName, Canvas3D cv, String textTitle)
{ super(textTitle);
  addWindowListener(new WindowAdapter()
     {public void windowClosing(WindowEvent e){System.exit(0);}});
  this.cv = cv;
  MenuBar mBar = new MenuBar();
  setMenuBar(mBar);
  mF = new Menu("File");
  mV = new Menu("View");
  mBar.add(mF); mBar.add(mV);

  open = new MenuItem("Open",
     new MenuShortcut(KeyEvent.VK_O));
  eyeDown = new MenuItem("Viewpoint Down",
     new MenuShortcut(KeyEvent.VK_DOWN));
  eyeUp = new MenuItem("Viewpoint Up",
     new MenuShortcut(KeyEvent.VK_UP));
  eyeLeft = new MenuItem("Viewpoint to Left",
     new MenuShortcut(KeyEvent.VK_LEFT));
  eyeRight = new MenuItem("Viewpoint to Right",
     new MenuShortcut(KeyEvent.VK_RIGHT));

  incrDist = new MenuItem("Increase viewing distance",
     new MenuShortcut(KeyEvent.VK_INSERT));
  decrDist = new MenuItem("Decrease viewing distance",
     new MenuShortcut(KeyEvent.VK_DELETE));
  exit = new MenuItem("Exit",
     new MenuShortcut(KeyEvent.VK_Q));
  mF.add(open); mF.add(exit);
  mV.add(eyeDown); mV.add(eyeUp);
  mV.add(eyeLeft); mV.add(eyeRight);
  mV.add(incrDist); mV.add(decrDist);
  open.addActionListener(this);
  exit.addActionListener(this);
  eyeDown.addActionListener(this);
  eyeUp.addActionListener(this);
  eyeLeft.addActionListener(this);
  eyeRight.addActionListener(this);
  incrDist.addActionListener(this);
  decrDist.addActionListener(this);
  add("Center", cv);
  Dimension dim = getToolkit().getScreenSize();
  setSize(dim.width/2, dim.height/2);
  setLocation(dim.width/4, dim.height/4);
  if (argFileName != null)
  {  Obj3D obj = new Obj3D();
     if (obj.read(argFileName)){cv.setObj(obj); cv.repaint();}
  }
  cv.setBackground(new Color (180, 180, 255) );
  show();
}

void vp(float dTheta, float dPhi, float fRho) // Viewpoint
{  Obj3D obj = cv.getObj();
   if (obj == null  ||   !obj.vp(cv, dTheta, dPhi, fRho))
      Toolkit.getDefaultToolkit().beep();
}

public void actionPerformed(ActionEvent ae)
{  if (ae.getSource() instanceof MenuItem)
   {  MenuItem mi = (MenuItem)ae.getSource();
      if (mi == open)
      {  FileDialog fDia = new FileDialog(Fr3D.this,
         "Open", FileDialog.LOAD);
         fDia.setDirectory(sDir);
         fDia.setFile("*.dat");
         fDia.show();
         String sDir1 = fDia.getDirectory();
         String sFile = fDia.getFile();
         String fName = sDir1 + sFile;
         Obj3D obj = new Obj3D();
         if (obj.read(fName))
         {  sDir = sDir1;
            cv.setObj(obj);
            cv.repaint();
         }
      }
      else
      if (mi == exit) System.exit(0); else
      if (mi == eyeDown) vp(0, .1F, 1); else
      if (mi == eyeUp) vp(0, -.1F, 1); else
      if (mi == eyeLeft) vp(-.1F, 0, 1); else
      if (mi == eyeRight) vp(.1F, 0, 1); else
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      if (mi == eyeRight) vp(.1F, 0, 1); else
      if (mi == incrDist) vp (0, 0, 2); else
      if (mi == decrDist) vp(0, 0, .5F);
    }
  }
}

Notice the use of the abstract class Canvas3D in the line
Fr3D(String argFileName, Canvas3D cv, String textTitle)

almost at the beginning of class Fr3D. We cannot replace Canvas3D with Canvas here because the compiler would not accept
the statement
cv.setObj(obj);

in the if-statement near the end of the Fr3D constructor. After all, setObj is not a method of the standard Java class Canvas.
Since, in the next section we will actually be using the class CvWireframe,ofwhich setObj is really a method, it is tempting to write
CvWireframe instead of Canvas3D. This would indeed work, but then we would not be able to use the class Fr3D also in
programs with canvas classes other than CvWireframe, as we will do in Chapters 6 and 7. We now see that the abstract class
Canvas3D is very useful. It is general enough to be used in several of our programs and yet less general than the standard
Canvas class in that it ‘promises’ an implementation of the methods setObj and getObj. We will discuss some aspects of the class
Fr3D in Chapter 7 when using it.
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5.6 A GENERAL PROGRAM FOR WIRE-FRAME MODELS
It is now time to see the classes of the previous section in action. A relatively simple way of displaying 3D objects, bounded by
polygons, is by drawing all the edges of these polygons, as we did for a cube in Section 5.4. The classes we have just seen
enable us to write a general program Wireframe.java,which reads input files through a menu command Open and enables the
user to view the object from any reasonable viewpoint, by using either menu commands or the keyboard. The comment lists all
classes that Wireframe.java directly or indirectly uses.
// Wireframe.java: Perspective drawing using an input file that lists
//    vertices and faces.
// Uses: Point2D (Section 1.5),
//       Triangle, Tools2D (Section 2.13),
//       Point3D (Section 3.9),
//       Input, Obj3D, Tria, Polygon3D, Canvas3D, Fr3D (Section 5.5),
//       CvWireframe (Section 5.6).
import java.awt.*;

public class Wireframe extends Frame
{  public static void main(String[] args)
   {  new Fr3D(args.length  > 0 ? args[0] : null, new CvWireframe(),
        "Wire-frame model");
   }
}

This rather simple program file accepts an optional program argument, which may be supplied to specify the name of the input
file. This is what the first argument, a conditional expression, of the Fr3D constructor is about. The second argument of this
constructor generates an object of class CvWireframe, which does almost all the work. Finally, the third argument specifies the
text, Wire-frame model, that we want to appear in the title bar of the window. The class CvWireframe is listed below:
// CvWireframe.java: Canvas class for class Wireframe.
import java.awt.*;
import java.util.*;

class CvWireframe extends Canvas3D
{  private int maxX, maxY, centerX, centerY;
   private Obj3D obj;
   private Point2D imgCenter;

   Obj3D getObj(){return obj;}
   void setObj(Obj3D obj){this.obj = obj;}
   int iX(float x){return Math.round(centerX + x - imgCenter.x);}
   int iY(float y){return Math.round(centerY - y + imgCenter.y);}

   public void paint(Graphics g)
   {  if (obj == null) return;
      Vector polyList = obj.getPolyList();
      if (polyList == null) return;
      int nFaces = polyList.size();
      if (nFaces == 0) return;
      Dimension dim = getSize();
      maxX = dim.width - 1; maxY = dim.height - 1;
      centerX = maxX/2; centerY = maxY/2;
      // ze-axis towards eye, so ze-coordinates of
      // object points are all negative.
      // obj is a java object that contains all data:
      // - Vector w       (world coordinates)
      // - Array e        (eye coordinates)
      // - Array vScr     (screen coordinates)
      // - Vector polyList (Polygon3D objects)

      // Every Polygon3D value contains:
      // - Array 'nrs' for vertex numbers
      // - Values a, b, c, h for the plane ax+by+cz=h.
      // (- Array t (with nrs.length-2 elements of type Tria))

      obj.eyeAndScreen(dim);
            // Computation of eye and screen coordinates.

      imgCenter = obj.getImgCenter();
      obj.planeCoeff();    // Compute a, b, c and h.
      Point3D[] e = obj.getE();
      Point2D[] vScr = obj.getVScr();

      g.setColor(Color.black);

      for (int j=0; j<nFaces; j++)
      {  Polygon3D pol = (Polygon3D)(polyList.elementAt(j));
         int nrs[] = pol.getNrs();
         if (nrs.length < 3)
            continue;
         for (int iA=0; iA<nrs.length; iA++)
         {  int iB = (iA + 1) % nrs.length;
            int na = Math.abs(nrs[iA]), nb = Math.abs(nrs[iB]);
            // abs in view of minus signs discussed in Section 6.4.
            Point2D a = vScr[na], b = vScr[nb];
            g.drawLine(iX(a.x), iY(a.y), iX(b.x), iY(b.y));
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            g.drawLine(iX(a.x), iY(a.y), iX(b.x), iY(b.y));
         }
      }
   }
}

Thanks to the other classes discussed in the previous section, this program file is rather small. However, due to the object-
oriented character of Java, the flow of control of the whole program may not be immediately clear. In particular, you may wonder
how starting the program leads to reading a 3D object file and displaying the desired image. Let us begin with the main method in
the file Wireframe.java.Here an Fr3D object is created by calling its constructor, and a CvWireframe object is created at the same
time in the second argument of this constructor call. As we have seen in the previous section, the first line of class Fr3D reads
class Fr3D extends Frame implements ActionListener

which indicates that this class contains a method actionPerformed. This method is called when a menu command is given. In
particular, the Open command in the File menu triggers the execution of a fragment that causes a standard dialog box for ‘Open
file’ to appear, as you can see in the method actionPerformed at the end of Section 5.5. This fragment contains the following:
Obj3D obj = new Obj3D();
if (obj.read(fName))
{  sDir = sDir1;
   cv.setObj(obj);
   cv.repaint();
}

Here we see that the Obj3D method read is called, with the file name supplied by the user as an argument, so that this method
can read any 3D object provided by the user. We also find here a call to setObj, a method defined in the above class CvWireframe
as
void setObj(Obj3D obj){this.obj = obj;}

As a result, the CvWireframe class gets access to the Obj3D object that contains all data for the real 3D object. The above if-
statement also contains a call to the standard Java Canvas method repaint, which calls the method paint of our CvWireframe
class. The actual computation and display of the image are done in this method paint, although much of the computation work is
delegated to methods of other classes. An example of this is the statement
obj.eyeAndScreen(dim);

which calls the Obj3D method eyeAndScreen to compute the eye and screen coordinates of the object.

5.6.1 A Demonstration

It is now time to see the program Wireframe.java in action. For example, let us use the object with vertices 1, 2, … , 6, shown in
Figure 5.12.
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Figure 5.12: Object and vertex numbers

With dimensions 1, 3 and 5 for the thickness, the width and the height, respectively, the following data file specifies this object:
1  1 0 0
2  1 3 0
3  0 3 0
4  0 0 0
5  1 0 5
6  0 0 5
Faces:
1 2 5.
3 4 6.
2 3 6 5.
1 5 6 4.
1 4 3 2.

When running program Wireframe.java and opening the above input file, a window as shown in Figure 5.13 appears.

 
Figure 5.13: Default view of object

By moving the point of view, using the Viewpoint to Right command from the View menu or its shortcut Ctrl+Arrow right a number
of times, we obtain a different view of the same object, as shown in Figure 5.14.

 
Figure 5.14: Same object viewed from the back

Note that the program chooses a default viewing distance which is quite reasonable. If desired we can increase or decrease this
distance using two commands from the View menu.

EXERCISES

5.1 Modify program CubePers.java of Section 5.4 in such a way that, with the given viewpoint, only
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the visible edges are drawn as solid black lines; draw the other, invisible lines in a different color,
or, as usually in mechanical engineering, as dashed lines (see Exercise 1.5).

5.2 Use a fillPolygon method to display only the top, right and front faces of Figure 5.10 as filled
polygons of different colors.

5.3 To prepare for Exercise 5.5, extend program CubePers.java of Section 5.4 so that two cubes
beside each other are generated.

5.4 Use the class Rota3D of Section 3.9 to apply animation with double buffering to the cube of
Section 5.4, using a rotation about some line, say, 0–6 (see Figure 5.11) through some small
angle. If you are unfamiliar with animation in Java or with the Java class Image, required for
double buffering, you will find the program Anim.java in Appendix F helpful.

5.5 As Exercise 5.4, but the rotation is to be applied to the two cubes of Exercise 5.3. Use different
axes of rotation and increase the rotation angles for the two cubes by different amounts, so that
the cubes seem to rotate independently of each other, with different speeds. Figure 5.15 shows a
snapshot of the two cubes, each rotating about one of its vertical edges.

Answers

5.1 As Figure 5.11 shows, nine cube edges are visible and three are invisible. In the paint method of program
CubePers.java, replace the calls to the method line with this fragment:
// Visible edges:
line(g, 0, 1); line(g, 1, 5); line(g, 5, 4); line(g, 4, 0);
line(g, 1, 2); line(g, 2, 6); line(g, 6, 7); line(g, 7, 4);
line(g, 5, 6);

// Invisible edges:
g.setColor(Color.blue);
line(g, 0, 3); line(g, 3, 2); line(g, 3, 7);

If you did Exercise 1.5 and have a class Lines, containing the method dashedLine, available, you may be
able to replace the last two of the above lines with
dash(g, 0, 3); dash(g, 3, 2); dash(g, 3, 7);

while adding the following method to the class CvCubePers:
void dash(Graphics g, int i, int j)
{  Point2D P = obj.vScr[i], Q = obj.vScr[j];
   Lines.dashedLine(g, iX(P.x), iY(P.y), iX(Q.x), iY(Q.y), 8);
}

Figure F.1 shows the result of this solution with dashed lines.

 
Figure F.1: Dashed lines representing invisible edges

5.2 There are two fillPolygon methods: one taking a Polygon object as an argument and the other taking two
arrays x and y instead. In either case, do not forget to convert logical to device coordinates, using the
methods iX and iY.Use setColor, with different colors before each of the three calls to fillPolygon.

5.3 To replace Figure 5.11, begin by sketching two cubes, say, one on either side of the xz-plane, and by
assigning the numbers 0–7 to the vertices of the first and 8–15 to those of second cube. With this sketch,
and using arrays w and vScr with length 16 instead of 8, you can easily update the program as requested.
Remember to increase the value of objSize,which is used to compute both the object distance ρ  and the
screen distance d.

5.4 The following program demonstrates the principle of animation (with double buffering) for a simple case: a
line segment is rotated about one of its endpoints, which is the center of the canvas. Every 20 ms, the
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line segment is rotated about one of its endpoints, which is the center of the canvas. Every 20 ms, the
angle α  is increased by 0.01 radians and the line from the origin O (in the center of the canvas) to point (r
cos α , r sin α ) is drawn. The effect is that of a running clock with only one hand:
// Anim.java: Animation with double buffering.
import java.awt.*;
import java.awt.event.*;
public class Anim extends Frame
{  public static void main(String[] args){new Anim();}

   Anim()
   {  super("Animation (double buffering)");
      addWindowListener(new WindowAdapter()
       {public void windowClosing(WindowEvent e)
               {System.exit(0);}});
      add("Center", new CvAnim());
      Dimension dim = getToolkit().getScreenSize();
      setSize(dim.width/2, dim.height/2);
      setLocation(dim.width/4, dim.height/4);
      show();
   }
}
class CvAnim extends Canvas
   implements Runnable
{  float rWidth = 10.0F, rHeight = 10.0F, xC, yC, pixelSize;
   int centerX, centerY, w, h;
   Dimension d;
   Image image;
   Graphics gImage;

   float alpha = 0;
   Thread thr = new Thread(this);

   public void run()
   {  try
      { for (;;)
        {  alpha += 0.01;
           repaint();
           Thread.sleep (20);
        }
      }
      catch (InterruptedException e){}
   }

   CvAnim(){thr.start();}

   void initgr()
   {  d = getSize();
      int maxX = d.width - 1, maxY = d.height - 1;
      pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
      centerX = maxX/2; centerY = maxY/2;
      xC = rWidth/2; yC = rHeight/2;
   }

   int iX(float x){return Math.round(centerX + x/pixelSize);}
   int iY(float y){return Math.round(centerY - y/pixelSize);}
   public void update(Graphics g){paint(g);}
   public void paint(Graphics g)
   {  initgr();
      if (w != d.width || h != d.height)
      {   w = d.width; h = d.height;
          image = createImage(w, h);
          gImage = image.getGraphics();
      }
      float r = 0.8F * Math.min(xC, yC),
         x = r * (float)Math.cos(alpha),
         y = r * (float)Math.sin(alpha);
      gImage.clearRect (0, 0, w, h);
      // Every 20 ms, the following line is drawn.
      // Each time, its endpoint (x, y) is a
      // different point on a circle:
         gImage.drawLine(iX (0), iY (0), iX(x), iY(y));
         g.drawImage(image, 0, 0, null);
    }
}

5.5 The following program produces two rotating cubes, illustrated by Figure 5.15. Remember, this program
works only if the class file Rota3D. class (see Section 3.9) is available in the current directory:
// CubRot2.java: Two rotating cubes with double buffering.
//   Uses: Point2D (Section 1.5),
//         Point3D, Rota3D (Section 3.9)
import java.awt.*;
import java.awt.event.*;

public class CubRot2 extends Frame
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public class CubRot2 extends Frame
{  public static void main(String[] args){new CubRot2();}

   CubRot2()
   {  super("Rotating cubes (double buffering)");
      addWindowListener(new WindowAdapter()
       {public void windowClosing(WindowEvent e)
               {System.exit(0);}});
      add("Center", new CvCubRot2());
      Dimension dim = getToolkit().getScreenSize();
      setSize(3 * dim.width/4, dim.height/2);
      setLocation(dim.width/8, dim.height/4);
      show();
   }
}

class CvCubRot2 extends Canvas
   implements Runnable
{  int centerX, centerY, w, h;
   Obj2 obj = new Obj2();
   Image image;
   Graphics gImage;

   double alpha = 0;
   Thread thr = new Thread(this);

   public void run()
{  try
   {  for (;;)
      {  alpha += 0.01;
         repaint();
         Thread.sleep (20);
      }
   }
   catch (InterruptedException e){}
}

CvCubRot2(){thr.start();}
public void update(Graphics g){paint(g);}

int iX(float x){return Math.round(centerX + x);}
int iY(float y){return Math.round(centerY - y);}

void line(int i, int j)
{  Point2D P = obj.vScr[i], Q = obj.vScr[j];
   gImage.drawLine(iX(P.x), iY(P.y), iX(Q.x), iY(Q.y));
}
public void paint(Graphics g)
{  Dimension dim = getSize();
   int maxX = dim.width - 1, maxY = dim.height - 1;
   centerX = maxX/2; centerY = maxY/2;
   int minMaxXY = Math.min(maxX, maxY);
   obj.d = obj.rho * minMaxXY / obj.objSize;
   obj.rotateCube(alpha);
   obj.eyeAndScreen();
   if (w != dim.width || h != dim.height)
   {  w = dim.width; h = dim.height;
      image = createImage(w, h);
      gImage = image.getGraphics();
   }
   gImage.clearRect (0, 0, w, h);
   // Horizontal edges at the bottom:
   line (0, 1); line (1, 2); line (2, 3); line (3, 0);
   // Horizontal edges at the top:
   line (4, 5); line (5, 6); line (6, 7); line (7, 4);
   // Vertical edges:
   line (0, 4); line (1, 5); line (2, 6); line (3, 7);
   // Same for second cube:
   line (8, 9); line (9, 10); line (10, 11); line (11, 8);
   // Horizontal edges at the top:
      line (12, 13); line (13, 14); line (14, 15); line (15, 12);
      // Vertical edges:
      line (8, 12); line (9, 13); line (10, 14); line (11, 15);
      g.drawImage(image, 0, 0, null);
   }
}

class Obj2 // Contains 3D object data for two cubes
{   float rho, theta=0F, phi=1.3F, d;
    Point3D[] s, w; // World coordinates
    Point2D[] vScr; // Screen coordinates
    float v11, v12, v13, v21, v22, v23,
      v32, v33, v43, // Elements of viewing matrix V.
      xe, ye, ze, objSize = 8;

    Obj2()
    {  s = new Point3D[16]; // Start situation
       w = new Point3D[16]; // After rotation
       vScr = new Point2D[16];
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       vScr = new Point2D[16];
       // Bottom surface:
       s[0] = new Point3D( 1, -3, -1);
       s[1] = new Point3D( 1, -1, -1);
       s[2] = new Point3D(-1, -1, -1);
       s[3] = new Point3D(-1, -3, -1);
       // Top surface:
       s[4] = new Point3D( 1, -3, 1);
       s[5] = new Point3D( 1, -1, 1);
       s[6] = new Point3D(-1, -1, 1);
       s[7] = new Point3D(-1, -3, 1);
       // Bottom surface:
       s[8] = new Point3D( 1, 1, -1);
       s[9] = new Point3D( 1, 3, -1);
       s[10] = new Point3D(-1, 3, -1);
       s[11] = new Point3D(-1, 1, -1);
       // Top surface:
       s[12] = new Point3D( 1, 1, 1);
       s[13] = new Point3D( 1, 3, 1);
       s[14] = new Point3D(-1, 3, 1);
       s[15] = new Point3D(-1, 1, 1);
       rho = 15; // For reasonable perspective effect
   }

void rotateCube(double alpha)
   {   Rota3D.initRotate(s[0], s[4], alpha);
       for (int i=0; i<8; i++)
          w[i] = Rota3D.rotate(s[i]);
       Rota3D.initRotate(s[13], s[9], 2 * alpha);
       for (int i=8; i<16; i++)
          w[i] = Rota3D.rotate(s[i]);
   }

   void initPersp()
   {  float costh = (float)Math.cos(theta),
            sinth = (float)Math.sin(theta),
            cosph = (float)Math.cos(phi),
            sinph = (float)Math.sin(phi);
      v11 = -sinth;
      v12 = -cosph * costh;
      v13 = sinph * costh;
      v21 = costh;
      v22 = -cosph * sinth;
      v23 = sinph * sinth;
      v32 = sinph;
      v33 = cosph;
      v43 = -rho;
   }

   void eyeAndScreen()
   {  initPersp();
      for (int i=0; i<16; i++)
      {  Point3D P = w[i];
         float x = v11 * P.x + v21 * P.y;
         float y = v12 * P.x + v22 * P.y + v32 * P.z;
         float z = v13 * P.x + v23 * P.y + v33 * P.z + v43;
         Point3D Pe = new Point3D(x, y, z);
         vScr[i] = new
            Point2D(-d * Pe.x/Pe.z, -d * Pe.y/Pe.z);
       }
    }
}

 
Figure 5.15: Snapshot of two cubes rotating about vertical axes
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Chapter 6: Hidden-Line Elimination

Traditionally, engineers who want to display three- dimensional objects use line drawings, with black lines on white paper.
Although line drawings might look rather dull compared with colored representations of such objects, there are many
technical applications for which they are desired. We will now produce exactly the set of line segments that appear in the
final result, so we will not put any pixels on the screen that we overwrite later, as we will do in Chapter 7. An advantage of
this approach is that this set can also be used for output on a printer or a plotter. Since each of these line segments will be
specified only by its endpoints, the possibly limited resolution of our computer screen does not affect the representation of
the lines on the printer or plotter; in other words, these lines are of high quality. By using HP-GL (short for Hewlett-Packard
Graphics Language) as our file format, we will be able to import the files we produce in text processors such as Microsoft
Word. Still better, we can use drawing programs such as CorelDraw to read these files and then enhance the graphics
results, for example, by adding text and changing the line type and thickness, before we import them into our documents. In
this book, most line drawings of 3D objects have been produced in this way.

6.1 LINE SEGMENTS AND TRIANGLES
Although the faces of the objects we are dealing with can be polygons with any number of vertices, we will triangulate these
polygons and use the resulting triangles instead. Suppose we are given a set of line segments PQ and a set of triangles ABC in
terms of the eye and screen coordinates of all points P, Q, A, B and C. It will then be our task to draw each line segment PQ as far
as none of the triangles ABC obscures them. A line segment (or line, for short) may be completely visible, completely invisible or
partly visible. For example, in Figure 6.1, line 1 is completely visible because it lies in front of the triangle on the left and is
unrelated to the other two triangles. In contrast, line 2 lies behind the triangle in the middle and is therefore completely invisible.
Finally, lines 3 and 4 are not completely visible, but some parts of them are.

 
Figure 6.1: Triangles and line segments

There is another important case: since the edges of the triangles are also line segments, it will frequently occur that a line
segment is an edge of the triangle under consideration. Such line segments are to be considered visible, as far as that triangle is
concerned. For example, consider the letter L in Figure 6.2. Here the only line segment that is partly visible and partly invisible is
the line 7–8, which intersects the face 1-2-10-9-6-5, or rather one of the triangles (6-10-9, for example) of which this face consists.
In the image, the line 7–8 intersects the edge 6–9 of that triangle in point I, which divides this line into the visible part 8-I and the
invisible one I-7.
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Figure 6.2: A non-convex polyhedron
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6.2 TESTS FOR VISIBILITY
On the basis of the given faces of the object, we build a set of triangles and a set of line segments. Then for each line segment
PQ, we call a method lineSegment, which has the task to draw any parts of PQ that are visible. This method is recursive and can
be represented in the flowchart in Figure 6.3, where the numbered tests performed in different steps will be individually discussed
in this section and the boxes with double edges denote recursive calls.

 
Figure 6.3: Flowchart for lineSegment method

This flowchart is equivalent to the following pseudocode, in which I and J are points (between P and Q) of line segment PQ. On
the screen we view I and J as intersecting points of PQ with edges of triangle ABC:
    void lineSegment(line PQ, set s of triangles)
    { In set s, try to find a triangle ABC that obscures PQ (or part of it) 
    If no such triangle found,
        Draw PQ
    Else
    { If triangle ABC leaves part PI of PQ visible
        lineSegment(PI, the remaining triangles of s); // Recursive call
      If triangle ABC leaves JQ of PQ visible
        lineSegment(JQ, the remaining triangles of s); // Recursive call
    }
  }

According to both the flowchart and this pseudocode, the loop that searches the set of triangles terminates as soon as a triangle
ABC is found that obscures PQ.

If ABC obscures PQ completely, no other action is required. If ABC obscures PQ partly, the parts that are possibly visible are dealt
with recursively, using the remaining triangles. Note that in these cases the remaining triangles of the current loop are not applied
to the whole line segment PQ anymore. The line PQ is drawn only if none of the triangles obscures it, that is, after the loop is
completed.
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To make the above algorithm as fast as we can, we should be careful with the order in which we perform several tests when we
are looking for a triangle that obscures PQ. Tests that take little computing time and are likely to succeed are good candidates for
being performed as soon as possible. Sometimes these aspects are contradictory. For example, in the sequence of tests that we
will be discussing, the second is not very likely to succeed but it nevertheless deserves its position in this sequence because it is
very inexpensive. The inner part of the loop that searches the set of triangles is discussed in greater detail below. Since we have
to be careful with small numerical errors due to the finite precision of floating-point computations, we sometimes use small positive
real numbers ɛ  = eps as tolerances, as these examples show:

Mathematical expression Implementation in program

x ≤  a x<a+eps

x < b x<b-eps

y ≥  c y>c-eps

y > d y>d+eps

In the second column, it does not make any significant difference if we replace < with <=,and > with >=. We should take some
care in choosing the value of eps, since this should preferably be related to the magnitude of the numbers we are comparing. You
can find details of such tolerance values ɛ  in the program file HLines.java, but they are omitted in the discussion below for the
sake of clarity.

6.2.1 Test 1 (2D; Figure 6.4)

 
Figure 6.4: Test 1: both P and Q on the left of A, B and C

If neither P nor Q lies to the right of the leftmost one of the three vertices A, B and C (of triangle t) the triangle does not obscure
PQ. This type of test is known as a minimax test: we compare the maximum of all x-coordinates of PQ with the minimum of all
those of triangle t. Loosely speaking, we have now covered the case that PQ lies completely to the left of triangle t. In the same
way, we deal with PQ lying completely to the right of t. Similar tests are performed for the minimum and maximum y-coordinates.

6.2.2 Test 2 (3D; Figure 6.5)

 
Figure 6.5: Test 2: PQ identical with AB

If PQ (in 3D space) is identical with one of the edges of triangle t, this triangle does not obscure PQ. This test is done very
efficiently by using the vertex numbers of P, Q, A, B and C. As we will see in a moment, in recursive calls, P or Q may be a
computed point, which has no vertex number. It is therefore not always possible to perform this test.

6.2.3 Test 3 (3D; Figure 6.6)
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Figure 6.6: Test 3: P and Q nearer than A, B and C

If neither P nor Q is further away than the nearest of the three vertices A, B and C of triangle t, this triangle does not obscure PQ.
This is a minimax test, like Test 1, but this time applied to the z-coordinates. Since the positive z-axis points to the left in Figure
6.6, the greater the z-coordinate of a point, the nearer this point is. Therefore, triangle ABC does not obscure PQ if the minimum
of zP and zQ is greater than or equal to the maximum of zA, zB and zC.

6.2.4 Test 4 (2D; Figure 6.7)

 
Figure 6.7: Test 4: P and Q on a side of AB different from that of C

If, on the screen, the points P and Q lie on one side of the line AB while the third triangle vertex C lies on the other, triangle ABC
does not obscure PQ.

The lines BC and CA are dealt with similarly. This test is likely to succeed, but we perform it only after the previous three tests
because it is rather expensive. Since the vertices A, B and C are counter-clockwise, the points P and C are on different sides of
AB if and only if the point sequence ABP is clockwise. As we have seen in Section 2.5, this implies that we can use the static
method area2 of class Tools2D.With Point2D objects AScr, BScr, CScr for the points A, B and C, the left-hand side in the
comparison
Tools2D.area2(AScr, BScr, PScr) <= 0

is equal to twice the area of triangle ABP, preceded by a minus sign if (and only if) the sequence ABP is clockwise. This value is
negative if P and C lie on different sides of AB, and it is zero if A, B and P lie on a straight line. If this comparison succeeds and
the same applies to
Tools2D.area2(AScr, BScr, QScr) <= 0

then the whole line PQ and point C lie on different sides of the line AB, so that triangle ABC does not obscure line segment PQ.
After this test for the triangle edge AB, we use similar tests for edges BC and CA.

Note that P and Q can both lie outside triangle ABC, while PQ intersects this triangle. This explains the above test, which at first
may look quite complicated. Unfortunately, the current test does not cover all cases in which PQ lies outside triangle ABC, as you
can see in Figure 6.8.

 
Figure 6.8: Test 5: triangle ABC on one side of PQ

6.2.5 Test 5 (2D; Figure 6.8)

Triangle ABC does not obscure PQ if the points A, B and C lie on the same side of the infinite line through P and Q. We determine
if this is the case using a test that is similar to the previous one:

where PQA, obtained as
double PQA = Tools2D.area2(PScr, QScr, AScr);

denotes twice the area of triangle PQA, preceded by a minus sign if the point sequence P, Q, A is clockwise. The variables PQB
and PQC have similar meanings.
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6.2.6 Test 6 (3D; Figure 6.9)

If neither P nor Q lies behind the plane through A, B and C, triangle ABC does not obscure PQ. This test deals with those line
segments PQ for which Test 3 failed because the further one of the points P and Q does not lie nearer than the nearest of A, B, C,
while P and Q nevertheless lie on the same side of the (infinite) plane ABC as the viewpoint E. Figure 6.9 illustrates this situation.

 
Figure 6.9: Test 6: neither P nor Q behind plane ABC

We now benefit from the fact that we have stored the normal vector n = (a, b, c) of plane ABC and the distance h between E and
this plane. The equation of this plane is

We compute

to perform the following test, illustrated by Figure 6.9:

Since n, when starting at E, points away from the plane, the values of hP, hQ, like that of h, are negative, so that this test is
equivalent to the following:

6.2.7 Test 7 (2D; Figure 6.10)

 
Figure 6.10: Test 7: PQ behind triangle ABC

If (on the screen) neither P nor Q lies outside the triangle ABC, and the previous tests were indecisive, PQ lies behind this triangle
and is therefore completely invisible. The Tools2D method insideTriangle, discussed in Section 2.8, makes this test easy to
program:
boolean pInside = Tools2D.insideTriangle(aScr, bScr, cScr, pScr);
boolean qInside = Tools2D.insideTriangle(aScr, bScr, cScr, qScr);
if (pInside && qInside) return;

The partial results of this test, stored in the boolean variables pInside and qInside, will be useful in Tests 8 and 9 in the case that
this test fails.

6.2.8 Test 8 (3D; Figure 6.11)
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Figure 6.11: Test 8: P nearer than plane ABC

If P is nearer than the plane of triangle ABC and, on the screen, P lies inside triangle ABC, this triangle does not obscure PQ. The
same is true for Q.

This test relies on the fact that no line segment PQ intersects any triangle. This test is easy to perform since the variables hP and
hQ, computed in Test 6, and pInside and qInside, computed in Test 7, are now available. Using also the abbreviations pNear for
hP > h and qNear for hQ > h, we conclude that triangle ABC does not obscure PQ if the following is true:
pNear && pInside || qNear && qInside

6.2.9 Test 9 (3D; Figure 6.12)

 
Figure 6.12: Test 9: I and J in front of plane ABC

Although it might seem that, after Test 8, all cases with PQ not being obscured have been dealt with, this is not the case, as
Figure 6.12 illustrates. In this example, Q lies behind the plane ABC, and, on the screen, PQ intersects ABC in the points I and J,
but PQ is nevertheless completely visible (as far as triangle ABC is concerned). This is because both points of intersection, I and
J, lie in front of (that is, nearer than) triangle ABC. We take three steps to deal with this situation:

1. We compute (the 2D projections of) I and J on the screen.

2. We compute the z-values of I and J by linear interpolation of 1/z (see Section 7.4 and Appendix A).

3. To determine if I and J lie in front of the plane ABC, we compute how far I and J lie away in the direction towards
this plane.

We will now discuss these three steps in more detail, starting with step 1, which we deal with as a 2D problem, writing, for
example, P for what is actually the projection P′ of P on the screen.

Since we do not know in advance which of the three triangle edges AB, BC and CA may intersect PQ, we try all three by rotating
the points A, B and C. Here we deal only with AB. Suppose that, on the screen, the infinite line PQ intersects the infinite line AB in
point I, where

Then point I belongs to the line segments PQ and AB if and only if

While rotating A, B and C, we may find two points of intersection, with λ  and μ  satisfying these restrictions. We then denote the
values λ  of these points by λmin and λmax, and the corresponding points with I and J, so that we have

As for the actual computation of λ  and μ , let us use the vectors u = PQ and v = AB. It then follows from Equations (6.1) and (6.2)
that we can express point I as the left- and right-hand sides of the following equation:

Writing w = PA(= A −  P), we can replace this with
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As usual, we write u = (u1, u2) and so on, which expands this vector equation to the following set of simultaneous linear equations:

Solving this system of equations, we obtain

It goes without saying that this applies only if the denominators in these expressions are non-zero; otherwise PQ and AB are
parallel, so that there are no points of intersection.

Having found the points I and J on the screen, we turn to step 2, to compute their z-coordinates. We do this by linear interpolation
of 1/z on the segment PQ. Using the values λmin and λmax, which we have just found, and referring to Equation (6.1), we can write

Refer to the discussion in Section 7.4 and Appendix A about the reason why we should use 1/z instead of simply z in this type of
linear interpolation.

Finally, we proceed to step 3, to determine whether or not the points I and J lie in front of the plane through the points A, B and C.
Recall that the equation of this plane is

where h is negative, and that its normal vector (with length 1) is

We compute the value hI, which is similar to hP, discussed in Test 6 and illustrated by Figure 6.9, as

After computing hJ similarly, we can now test if I and J lie in front of the plane ABC (so that triangle ABC does not obscure PQ) in
the following way:

In the above discussion, we considered two distinct points I and J in which, on the screen, PQ intersects edges of triangle ABC.
As we have seen, PI and JQ were visible, as far as triangle ABC is concerned, but IJ may be obscured by triangle ABC. Actually,
there may be only one point, I or J, to deal with. If, again on the screen, P lies outside triangle ABC and Q inside it, there is only
point I to consider. In this case triangle ABC may obscure part IQ of line segment PQ. If it does, the remaining triangles are only to
be applied to PI. Similarly, if, on the screen, P lies inside and Q outside triangle ABC, this triangle may obscure part PJ of PQ,
and, if so, the remaining triangles are only to be applied to JQ.

6.2.10 Recursive Calls

If all the above tests fail, the most interesting (and time consuming) case applies: PQ is neither completely visible nor completely
hidden. Fortunately, we have just computed the points of intersection I and J, and we know that triangle ABC obscures the
segment IJ, while the other two segments, PI and QJ are visible, as far as triangle ABC is concerned. We therefore apply the
method lineSegment recursively to the latter two segments. Actually, the recursive call for PI applies only to the case that, on the
screen, P lies outside triangle ABC and λmin (see Test 9) is greater than zero. Analogously, the recursive call for QJ applies only if
Q lies outside that triangle and λmax is less than 1.

6.2.11 The Arguments of the lineSegment Method

In the paint method of the class CvHLines, we may be inclined to write the call to the method lineSegment in a very simple form,
such as
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lineSegment(g, iP, iQ);

where g is the graphics context and iP and iQ are the vertex numbers of the vertices P and Q. However, in the recursive calls just
discussed, we have two new points I and J, for which there are no vertex numbers, so that this does not work. On the other hand,
omitting the vertex numbers altogether would deprive us of Test 2 in its current efficient form, in which we determine if PQ is one
of the edges of triangle ABC. We therefore decide to supply P and Q both as Point3D objects (containing the eye coordinates of P
and Q) and as vertex numbers if this is possible; if it is not, we use − 1 instead of a vertex number. When we recursively call
lineSegment, the screen coordinates of P and Q are available. If we did not supply these as arguments, it would be necessary to
compute them inside lineSegment once again. To avoid such superfluous actions, we also supply the screen coordinates of P and
Q as arguments as Point2D objects. Finally, it would be a waste of time if the recursive calls would again be applied to all
triangles. After all, we know that PI and PJ are not obscured by the triangles that we have already dealt with. We therefore also
use the parameter iStart, indicating the start position in the array of triangles that is to be used. This explains that the method
lineSegment has as many as eight parameters, as its heading shows:

void lineSegment(Graphics g, Point3D p, Point3D q,
   Point2D PScr, Point2D QScr, int iP, int iQ, int iStart)

The complete method lineSegment can be found in class CvHLines, listed in Appendix D.
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6.3 SPECIFICATION AND REPRESENTATION OF 3D OBJECTS
From now on, we will no longer restrict ourselves to cubes, as we did in the previous chapter, but rather accept input files that
define objects bounded by polygons (which may contain holes, as we will see in Section 6.4). These input files consist of two
parts: a list of vertices, each in the form of a positive vertex number followed by three real numbers, the world coordinates of that
vertex. The second part consists of an input line of the form
Faces:

followed by sequences of vertex numbers, each sequence followed by a period (.). Each such sequence denotes a polygon of the
object. For each polygon, when viewed from outside the object, the vertex sequence must be counter-clockwise. This orientation
must also apply to the first three vertices of each sequence; in other words, the second number of each sequence must denote a
convex vertex. For example, the following input file, say, letterL.dat, describes the solid letter L of Figure 6.2:
1  20  0  0
2  20 50  0
3   0 50  0
4   0  0  0
5  20  0 10
6  20 40 10
7   0 40 10
8   0  0 10
9  20 40 80
10 20 50 80
11  0 50 80
12  0 40 80
Faces:
1 2 10 9 6  5.
3 4 8  7 12 11. 
2 3 11 10.
7 6 9 12.
4 1 5 8.
9 10 11 12.
5 6 7  8.
1 4 3  2.

The first line after Faces specifies the front face. We might have used a different vertex-number sequence for this face, such as
10 9 6 5 1 2.

However, the following sequences would be incorrect:
2 1 5 6 9 10. (invalid: clockwise)
9 6 5 1 2 10. (invalid: 6 is not a convex vertex)

Although the sequence
3 4 8 7 12 11.

seems to be clockwise, it is really counter-clockwise when the face in question is viewed from outside the object, that is, from the
back. As we will see in Section 7.1, we use this phenomenon in our programs to detect back faces.

In the first part of the input file, it is not required that the vertex numbers are consecutive and in ascending order. For example, the
following input file (defining a pyramid similar to those in Egypt) is also acceptable. It also shows that the vertex coordinates need
not be integers:
10  -1.5 -1.5 0
30   1.5 -1.5 0
20   1.5  1.5 0
12  -1.5  1.5 0
5    0    0   3
Faces:
30 20 5.
20 12 5.
12 10 5.
10 30 5.
30 10 12 20.

We will use the extension .dat for these input files.
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6.4 HOLES AND INVISIBLE LINE SEGMENTS
The above way of specifying the boundary faces of objects does not work for polygons that contain holes. For example, consider
the solid letter A of Figure 6.13, the front face of which is not a proper polygon because there is a triangular hole in it. The same
applies to the (identical) face on the back. Each vertex i of the front face is connected with vertex i + 10 of the back face (1 ≤  i ≤
10).

 
Figure 6.13: Solid letter A

We can turn the front face into a polygon by introducing a very narrow gap, say, between the vertices 7 and 10, as shown in
Figure 6.14. After doing this, we could try to specify this new polygon as
1 2 3 4 5 6 7 10 9 8 10 7.

Note that this requires the gap (7, 10) to have width zero, so that there is only one vertex (7) at the top. On the other hand, only a
real gap makes it clear that the vertex numbers (10, 9, 8) occur in that order in the above input line: just follow the vertices in
Figure 6.14, starting at vertex 1.

 
Figure 6.14: A polygon
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If we really specified the front face in the above way, the line (7, 10) would be regarded as a polygon edge and therefore appear in
our result. This is clearly undesirable. To prevent this from happening, we adopt the convention of writing a minus sign in front of
the second vertex of a pair, indicating that this pair denotes a line segment that is not to be drawn. We do this with the ordered
pairs (7, 10) and (10, 7) in the above input line, writing (7, − 10) and (10, − 7), so that we use the following input line instead of the
above one:
1 2 3 4 5 6 7 -10 9 8 10 -7.

The solid letter A of Figure 6.13 is therefore obtained by using the following input file, in which the extra minus signs occur in the
first two lines after the word Faces:
1    0 -30  0
2    0 -20  0
3    0 -16  8
4    0  16  8
5    0  20  0
6    0  30  0
7    0   0 60
8    0 -12 16
9    0  12 16
10   0   0 40
11 -10 -30  0
12 -10 -20  0
13 -10 -16  8
14 -10  16  8 
15 -10  20  0
16 -10  30  0
17 -10   0 60
18 -10 -12 16
19 -10  12 16
20 -10   0 40
Faces:
1 2 3 4 5 6 7 -10 9 8 10 -7.
11 17 -20 18 19 20 -17 16 15 14 13 12.
2 12 13 3.
3 13 14 4.
15 5 4 14.
8 9 19 18.
8 18 20 10.
19 9 10 20.
6 16 17 7.
11 1 7 17.
11 12 2 1.
15 16 6 5.

(Note that this use of minus signs applies only to vertex numbers in the second part of an input file. In the first part, minus signs
can only occur in coordinate values, where they have their usual meaning.)

Implementing this idea is very simple. For example, because of the minus sign that precedes vertex number 10 in
... 7 -10 ...

we do not store line segment (7, 10) in the data structure that will be discussed in Section 6.5. In other respects, we simply ignore
these minus signs. Therefore the set of triangles resulting from the above complete set of input data (for the solid letter A) is the
same as when there had been no minus signs in front of any vertex numbers.

Besides for holes, we can also use these minus signs for the approximation for curved surfaces, as discussed in Section E.5 of
Appendix E.
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6.5 INDIVIDUAL FACES AND LINE SEGMENTS
Although we usually draw polygons that are boundary faces of solid objects, we sometimes want to draw very thin (finite) planes,
here also called faces.

Examples are sheets of paper and a cube made of very thin material, of which the top face is removed, as shown in Figure 6.15.

 
Figure 6.15: A hollow cube

Since such faces have two visible sides, we specify each face twice: counterclockwise for the side we are currently viewing and
clockwise for the side that is currently invisible but may become visible when we change the viewpoint. For example, the front face
of the cube of Figure 6.15 is specified twice in the input file:
1 2 3 4.
4 3 2 1.

Although the user supplies polygons in input files as object faces, we deal primarily with line segments, referred to as PQ in the
previous section. Besides the polygons and the triangles resulting from them, we also store the edges of the polygons as line
segments. It is also desirable to be able to draw line segments that are not edges of polygons.

Examples of such ‘loose’, individual line segments are the axes of a 3D coordinate system. Sometimes we want to define the
edges of polygons as individual line segments, to prevent such polygons from obscuring other line segments, displaying objects
as wire-frame models. An example of this is shown in Figure 6.16. Here we have a solid pyramid fitting into a cube. Obviously, the
pyramid would not be visible if the cube was solid; we therefore prefer the latter to be displayed as a wire-frame model. To provide
an input file for this pyramid, we begin by assigning vertex numbers, as shown in Figure 6.17.
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Figure 6.16: Solid pyramid in wire-frame cube

 
Figure 6.17: Vertex numbers of pyramid and cube

These vertex numbers occur in the following input file:
1 0 0 0
2 2 0 0 
3 2 2 0
4 0 2 0
5 0 0 2
6 2 0 2
7 2 2 2
8 0 2 2
9 1 1 2
Faces:
1 4 3 2.
1 2 9.
2 3 9.
3 4 9.
4 1 9.
1 5.
2 6.
3 7.
4 8.
5 6.
6 7.
7 8.
8 5.

After the word Faces, we begin with the square bottom face and the four triangular faces of the pyramid. After this, four vertical
and four horizontal cube edges follow, each specified by its two endpoints. It follows that the word Faces in our input files should
not be taken too literally: this Faces section may include pairs of vertex numbers, which are not faces at all but line segments not
necessarily belonging to faces.

Since line segments can occur not only as edges of faces but also individually, we have to design and implement a special data
structure to store them in our program. This also provides us with the opportunity to store them only once. For example, the edge
3–9 of the pyramid of Figure 6.17 is part of the faces 2-3-9 and 3-4-9, but it would be inefficient to draw it twice. By using a special
data structure for line segments, we can ensure that this edge is stored only once.

Our data structure for line segments will be based on an array of arrays, as shown on the left in Figure 6.18.
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Figure 6.18: Internal representation of line segments

An array element connect[i] referring to an array containing the integer j implies that there is a line segment (i, j) to be drawn. By
requiring that i is less than j, we ensure that each line segment is stored only once. For example, connect[1] refers to the array
containing the integers 2, 4, 9 and 5. This indicates that the following line segments start at vertex 1 (each ending at a vertex that
has a number higher than 1): 1–2, 1–4, 1–9 and 1–5, which is in accordance with Figure 6.17. The next element, connect[2] refers
to three vertex numbers, 3, 9 and 6. Although, besides 2–3, 2–9 and 2–6, there is also a line segment 2-1 (see Figure 6.17), this
is not included here because 2 is greater than 1 and this segment has already been stored as line segment 1–2. You may wonder
why in Figure 6.18 there are only boxes that give room for at most four vertex numbers. Actually, the sizes of these boxes will
always be a multiple of some chunk size, here arbitrarily chosen as 4. In other words, if there are five line segments (i, j) with the
same i and all with i less than j, the box size would be increased from 4 to 8 and so on. Since increasing the box size requires
memory reallocation and copying, we should not choose the chunk size too small. On the other hand, the larger the chunk size,
the more memory will be wasted, since they will normally not be completely filled. To indicate how many vertex numbers are
actually stored in each box, we use another array, nConnect, as shown in Figure 6.18 on the right. For example, nConnect[1]= 4
because connect[1] refers to four vertex numbers.
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6.6 AUTOMATIC GENERATION OF OBJECT SPECIFICATION
As long as 3D objects do not have too many vertices and the vertex coordinates are easily available, it is not difficult to create 3D
specifications as input files by entering all data manually, using a text editor. This is the case, for example, with the solid letter A,
discussed in Section 6.4. If there are many vertices, which is normally the case if we approximate curved surfaces, we had better
generate 3D data files by special programs. This section explains how to automatically generate 3D specifications through an
example. The generated specification files are accepted by the programs Painter.java, ZBuf.java (for hidden-face elimination,
described in Chapter 7) and HLines.java (for hiddenline elimination, described in the next two sections). Most illustrations in this
chapter have been obtained by using HLines.java for this purpose.

Many 3D objects are bounded by curved surfaces. We can approximate these by a set of polygons. An example is a hollow
cylinder as shown in Figure 6.19 on the right. Both representations of hollow cylinders (or rather, hollow prisms) of Figure 6.19
were obtained by running the program Cylinder.java, which we will be discussing, followed by the execution of program
HLines.java.HP-GL files exported by the latter program were combined by CorelDraw, after which the result was imported into this
book. Although the object shown on the left in Figure 6.19 is a (hollow) prism, not a cylinder, we will consistently use the term
cylinder in this discussion.

 
Figure 6.19: Hollow cylinders with n = 6 (left) and n = 60 (right)

The user will be able to enter the diameters of both the (outer) cylinder and the (inner) cylindrical hole. If the latter, smaller
diameter is zero, our program will produce a solid cylinder instead of a hollow one. For simplicity, we will ignore this special case,
with only half the number of vertices, in our discussion below, but simply implement it in the program.

For some sufficiently large integer n (not less than 3), we choose n equidistant points on the outer circle (with radius R) of the top
face, and we choose n similar points on the bottom face. Then we approximate the outer cylinder by a prism whose vertices are
these 2n points. The inner circle (of the cylindrical hole) has radius r (< R). The hollow cylinder has height h. Let us use the z-axis
of our coordinate system as the cylinder axis. The cylindrical hole is approximated by rectangles in the same way as the outer
cylinder. The bottom face lies in the plane z = 0 and the top face in the plane z = h. A vertex of the bottom face lies on the positive
x-axis. Let us set h = 1. Then for given values n, R and r, the object to be drawn and its position are then completely determined.
We shall first deal with the case n = 6 and generalize this later for arbitrary n.We number the vertices as shown in Figure 6.20.

 
Figure 6.20: Vertex numbering

For each vertex i of the top face there is a vertical edge that connects it with vertex i + 6. We can specify the top face by the
following sequence:
1 2 3 4 5 6 -18 17 16 15 14 13 18 -6.

Here the pairs (6, −  18) and (18, −  6) denote an arti.cial edge, as discussed in Section 6.4. The bottom face on the right is viewed
here from the positive z-axis, but in reality only the other side is visible. The orientation of this bottom face is therefore opposite to
what we see in Figure 6.20 on the right, so that we can specify this face as
12 11 10 9 8 7 -19 20 21 22 23 24 19 -7.

Since n = 6, we have 12 = 2n, 18 = 3n and 24 = 4n, so the above sequences are special cases of

and
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Let us define

Since, in Figure 6.20, on the left, vertex 6 lies on the positive x-axis and according to geometry in Figure 6.21 (outer circle), the
Cartesian coordinates of the vertices on the top face are as follows:

 
Figure 6.21: Calculating vertex coordinates

For the bottom face we have

A program based on the above analysis can be written in any programming language. Using Java for this purpose, we can choose
between an old-fashioned, text-line oriented solution and a graphical user interface with, for example, a dialog box with text fields
and a button as shown in Figure 6.22.

 
Figure 6.22: Dialog box for (possibly hollow) cylinder

This dialog box contains a title bar, and seven so-called components:three labels (that is, static text in the gray area), three text
fields in which the user can enter data, and an OK button. Programming the layout of a dialog box in Java can be done in several
ways, none of which is particularly simple. Here we do this by using three panels:

Panel p1 at the top, or North, for both the label Number of vertices on outer circle and a text field in which this
number is to be entered.

Panel p2 in the middle, or Center, for the label Diameters D and d (cylinder is hollow if d > 0) and two text fields for
these diameters.
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Panel p3 at the bottom, or South, for the label Generate 3D object file? and an OK button.

Since there are only a few components in each panel, we can use the default FlowLayout layout manager for the placements of
these components in the panels. By contrast, the panels are placed above one another by using Border-Layout, as the above
words North, Center and South, used in the program as character strings, indicate. As in many other graphics programs in this
book, we use two classes in this program, but this time there is a dialog class instead of a canvas class. Another difference is that
we do not display the frame, but restrict the graphical output to the dialog box. (We cannot omit the frame class altogether
because the Dialog constructor requires a ‘parent frame’ as an argument.) Recall that we previously used calls to setSize,
setLocation and show in the constructor of the frame class. We simply omit these calls to prevent the frame from appearing on the
screen. Obviously, we must not omit such calls in the constructor of our dialog class, called DlgCylinder in the program. As for the
generation of the hollow cylinder itself, as discussed above, this can be found in the method genCylinder, which follows this
constructor:
// Cylinder.java: Generating an input file for a
//                (possibly hollow) cylinder.
import java.awt.*;
import java.awt.event.*;
import java.io.*;

public class Cylinder extends Frame 
{ public static void main(String[] args){new Cylinder();}
  Cylinder(){new DlgCylinder(this);}
}

class DlgCylinder extends Dialog
{  TextField tfN = new TextField (5);
   TextField tfOuterDiam = new TextField (5);
   TextField tfInnerDiam = new TextField (5);
   Button button = new Button(" OK ");
   FileWriter fw;

   DlgCylinder(Frame fr)
   { super(fr, "Cylinder (possibly hollow); height = 1", true);
     addWindowListener(new WindowAdapter()
     {  public void windowClosing(WindowEvent e)
        { dispose();
          System.exit(0);
        }
     });
     Panel p1 = new Panel(), p2 = new Panel(), p3 = new Panel();
     p1.add(new Label("Number of vertices on outer circle: "));
     p1.add(tfN);
     p2.add(new Label(
        "Diameters D and d (cylinder is hollow if d > 0): "));
     p2.add(tfOuterDiam); p2.add(tfInnerDiam);
     p3.add(new Label("Generate 3D object file?"));
     p3.add(button);
     setLayout(new BorderLayout());
     add("North", p1);
     add("Center", p2);
     add("South", p3);

     button.addActionListener(new ActionListener()
     { public void actionPerformed(ActionEvent ae)
       {  int n=0;
          float dOuter=0, dInner=0;
          try
          { n = Integer.valueOf(tfN.getText()).intValue();
            dOuter =
               Float.valueOf(tfOuterDiam.getText()).floatValue();
            dInner =
               Float.valueOf(tfInnerDiam.getText()).floatValue();
            if (dInner < 0) dInner = 0; 
            if (n < 3 || dOuter <= dInner)
               Toolkit.getDefaultToolkit().beep();
            else
            {  try
               { genCylinder(n, dOuter/2, dInner/2);
               }
               catch (IOException ioe){}
               dispose();
               System.exit(0);
            }
          }
          catch (NumberFormatException nfe)
          { Toolkit.getDefaultToolkit().beep();
          }
        }
     });
     Dimension dim = getToolkit().getScreenSize();
     setSize(3 * dim.width/4, dim.height/4);
     setLocation(dim.width/8, dim.height/8);
     show();
}

void genCylinder(int n, float rOuter, float rInner)
   throws IOException
{  int n2 = 2 * n, n3 = 3 * n, n4 = 4 * n;
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{  int n2 = 2 * n, n3 = 3 * n, n4 = 4 * n;
   fw = new FileWriter("Cylinder.dat");
   double delta=2* Math.PI / n;
   for (int i=1; i<=n; i++)
   { double alpha=i* delta,
        cosa = Math.cos(alpha), sina = Math.sin(alpha);
     for (int inner=0; inner<2; inner++)
     { double r = (inner == 0 ? rOuter : rInner);
       if (r > 0)
       for (int bottom=0; bottom<2; bottom++)
       {  int k = (2 * inner +  bottom)   * n + i;
          // Vertex numbers for i = 1:
          // Top:      1 (outer) 2n+1 (inner)
          // Bottom: n+1 (outer) 3n+1 (inner)
          wi(k); // w = write, i = int, r = real
          wr(r * cosa); wr(r * sina); // x and y
          wi(1 - bottom); // bottom: z = 0; top: z = 1
          fw.write("\r\n");
       } 
       }
     }
     fw.write("Faces:\r\n");
     // Top boundary face:
     for (int i=1; i<=n; i++) wi(i);
     if (rInner > 0)
     { wi(-n3); // Invisible edge, see Section 7.5
       for (int i=n3-1; i>=n2+1; i--) wi(i);
       wi(n3); wi(-n); // Invisible edge again.
     }
     fw.write(".\r\n");

    // Bottom boundary face:
    for (int i=n2; i>=n+1; i--) wi(i);
    if (rInner > 0)
    { wi(-(n3+1));
      for (int i=n3+2; i<=n4; i++) wi(i);
      wi(n3+1); wi(-(n+1));
    }
    fw.write(".\r\n");
    // Vertical, rectangular faces:
    for (int i=1; i<=n; i++)
    { int j = i % n + 1;
      // Outer rectangle:
      wi(j); wi(i); wi(i + n); wi(j + n); fw.write(".\r\n");
      if (rInner > 0)
      { // Inner rectangle:
        wi(i + n2); wi(j + n2); wi(j + n3); wi(i + n3);
        fw.write(".\r\n");
      }
    }
    fw.close();
}
void wi(int x)
   throws IOException
{  fw.write(" " + String.valueOf(x));
}

void wr(double x)
   throws IOException
{ if (Math.abs(x) < 1e-9) x = 0;
  fw.write(" " + String.valueOf((float)x)); 
    // float instead of double to reduce the file size
  }
}

The number 60 entered in the top text field of Figure 6.22 refers to the hollow cylinder shown in Figure 6.19 on the right. The
hollow prism shown on the left in this figure is obtained by replacing 60 with 6. In that case the following file is generated:
1 0.75 1.299038 1
7 0.75 1.299038 0
13 0.5 0.8660254 1
19 0.5 0.8660254 0
2 -0.75 1.299038 1
8 -0.75 1.299038 0
14 -0.5 0.8660254 1
20 -0.5 0.8660254 0
3 -1.5 0.0 1
9 -1.5 0.0 0
15 -1.0 0.0 1
21 -1.0 0.0 0
4 -0.75 -1.299038 1
10 -0.75 -1.299038 0
16 -0.5 -0.8660254 1
22 -0.5 -0.8660254 0
5 0.75 -1.299038 1
11 0.75 -1.299038 0
17 0.5 -0.8660254 1
23 0.5 -0.8660254 0
6 1.5 0.0 1
12 1.5 0.0 0
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12 1.5 0.0 0
18 1.0 0.0 1
24 1.0 0.0 0
Faces:
1 2 3 4 5 6 -18 17 16 15 14 13 18 -6.
12 11 10 9 8 7 -19 20 21 22 23 24 19 -7.
2 1 7 8.
13 14 20 19.
3 2 8 9.
14 15 21 20.
4 3 9 10.
15 16 22 21.
5 4 10 11. 
16 17 23 22.
6 5 11 12.
17 18 24 23.
1 6 12 7.
18 13 19 24.

Recall that we have already discussed the first two lines that follow the word Faces. More interesting examples on generating
input files for different 3D objects can be found in Appendix E.
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6.7 HIDDEN-LINE ELIMINATION WITH HP-GL OUTPUT
Besides graphics output on the screen, it is sometimes desired to produce output files containing the same results. An easy way
to realize this for line drawings is by using the file format known as HP-GL, which stands for Hewlett- Packard Graphics Language.
We will use only a very limited number of HP-GL commands:

IN: Initialize

SP: Set pen

PU: Pen up

PD: Pen down

PA: Plot absolute

We think of drawing by moving a pen, which can be either on or above a sheet of paper. These two cases are distinguished by the
commands PD and PU.The PA command is followed by a coordinate pair x, y, each as a four-digit integer in the range 0000–
9999. This coordinate pair indicates a point that the pen will move to. The origin (0000, 0000) lies in the bottom-left corner. For
example, the following HP-GL file draws a capital letter X in italic, shown in Figure 6.23:

 
Figure 6.23: Letter X in italic

IN;SP1;
PU;PA5000,2000;PD;PA5000,8000;
PU;PA3000,2000;PD;PA7000,8000;

This file format is easy to understand and it is accepted by many well-known packages, such as Microsoft Word and CorelDraw.
The latter enables us to enhance the drawing after importing the HP-GL file, as was done to add text, resulting in Figure 6.23.

We will see how to implement this in the next section.

The program HLines.java is listed in Appendix D. First, HLines.java can generate HP-GL files (Figure 6.24 illustrates a menu item
for exporting HP-GL files); second, it can display individual lines, and third, printing and photocopying the resulting images can be
done in black and white without loss of quality. On the contrary, these line drawings, obtained via HP-GL files and produced by a
printer, look better than those on the screen.
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Figure 6.24: The Export HP-GL menu item

This example also shows the use of individual line segments, as discussed in Section 6.5. The solid inside the wire-frame cube is
a dodecahedron, which is discussed in greater detail in Section E.1 of Appendix E.

The statement
cv.setHPGL(new HPGL(obj));

in the class MenuCommands (at the end of the file HLines.java) creates an object of class HPGL, and the variable hpgl of the
class CvHLines is made to refer to it. The fact that hpgl is no longer equal to null will be interpreted as an indication that an HP-GL
file is to be written. The class HPGL can be found at the end of Appendix D. The write method of this class is used in the drawLine
method of the class CvHLines, that is, if the variable hpgl is unequal to null,as discussed above. After we have written an HP-GL
file, we set hpgl equal to null again (at the end of the paint method) to avoid that every call to paint should automatically produce
HP-GL output. If this is again desired, the user must use the Export HP-GL command of the File menu once again. The class
CvHLines is defined in the file HLines.java (see Appendix D).

Figure 6.25 shows that our hidden-line algorithm can correctly render the three beams that we will use to demonstrate the Z-buffer
algorithm for hidden- face elimination. As we will see in Section 7.3, the painter's algorithm fails in this case.

 
Figure 6.25: Three beams
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6.8 IMPLEMENTATION
The program HLines.java has much in common with Wireframe.java, discussed at the end of Chapter 5. We will therefore benefit
as much as possible from the code that we have already developed in Section 5.5. Unfortunately, since we now have an extra
menu item, Export HPGL,inthe File menu, we cannot use the existing frame class Fr3D directly, but we will use an extended
version, that is, a subclass of it. The name of this subclass, Fr3DH, occurs in the main method of the following file:
// HLines.java: Perspective drawing with hidden-line elimination.
// When you compile this program, the .class or the .java files of the
// following classes should also be in your current directory:
//       CvHLines, Fr3D, Fr3DH, Polygon3D, Obj3D, Input, Canvas3D,
//       Point3D, Point2D, Triangle, Tria, Tools2D, HPGL.
import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class HLines extends Frame
{  public static void main(String[] args)
   {  new Fr3DH(args.length > 0? args[0] : null, new CvHLines(),
         "Hidden-lines algorithm");
   }
}

Notice the title Hidden-lines algorithm, which is used here as the third argument of the Fr3DH constructor, and consequently
appears in the title bar of the window shown in Figure 6.25. The implementation of the hidden-lines algorithm discussed in this
chapter can be found in the class CvHLines, of which an object is created in the second argument of the above constructor call. In
view of the extent of this class, it is not listed here but rather as the file CvHLines.java in Appendix D. In this section we will only
discuss some other aspects of the program, especially some classes occurring in the above comment lines, as far as these have
not been dealt with in Section 5.5.

The subclass Fr3DH, just mentioned, of Fr3D is defined in the following file:
// Fr3DH.java: Frame class for HLines.java.
// This class extends Fr3D to enable writing HP-GL output files.
import java.awt.*;
import java.awt.event.*;
import java.util.*;

class Fr3DH extends Fr3D
{  private MenuItem exportHPGL;
   CvHLines cv; 
   Fr3DH(String argFileName, CvHLines cv, String textTitle)
   {  super(argFileName, cv, textTitle);
      exportHPGL = new MenuItem("Export HP-GL");
      mF.add(exportHPGL);
      exportHPGL.addActionListener(this);
      this.cv = cv;
   }

   public void actionPerformed(ActionEvent ae)
   {  if (ae.getSource() instanceof MenuItem)
      {  MenuItem mi = (MenuItem)ae.getSource();
         if (mi == exportHPGL)
         {  Obj3D obj = cv.getObj();
         if (obj != null)
         {  cv.setHPGL(new HPGL(obj));
            cv.repaint();
         }
         else
            Toolkit.getDefaultToolkit().beep();
        }
        else
            super.actionPerformed(ae);
    }
  }
}

At the start of the class, the variable exportHPGL is declared to implement the additional menu item that we need. The method
actionPerformed overrides the method with the same name of the super class Fr3D. When any menu command is used, a test is
executed to see if this command is Export HPGL. If this is not the case, the method actionPerformed of the super class is called to
deal with other menu commands. If it is the case, the statement
cv.setHPGL(new HPGL(obj));

is executed, which makes a variable hpgl of the class CvHlines point to an HPGL object, generated here as an argument of
setHPGL. By making this variable hpgl unequal to null, any call of the CvHLines method drawLine will perform the desired HP-GL
output, as you can see in the following lines, copied from Appendix D.
private void drawLine(Graphics g, float x1, float y1, 
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private void drawLine(Graphics g, float x1, float y1, 
  float x2, float y2)
{ if (x1 != x2 || y1 != y2)
  { g.drawLine(iX(x1), iY(y1), iX(x2), iY(y2));
    if (hpgl != null)
    { hpgl.write("PU;PA" + hpx(x1) + "," + hpy(y1));
      hpgl.write("PD;PA" + hpx(x2) + "," + hpy(y2) + "\n");
    }
  }
}

To clarify both the use of the HPGL constructor in the above call of setHPGL and this method drawLine, we will also have a look
at the way the class HPGL is defined:
// HPGL.java: Class for export of HP-GL files.
import java.io.*;

class HPGL
{  FileWriter fw;
   HPGL(Obj3D obj)
   {  String plotFileName = "", fName = obj.getFName();
      for (int i=0; i<fName.length(); i++)
      {  char ch = fName.charAt(i);
         if (ch == '.') break;
         plotFileName += ch;
      }
      plotFileName += ".plt";
      try
      {  fw = new FileWriter(plotFileName);
         fw.write("IN;SP1;\n");
      }
      catch (IOException ioe){}
  }
  void write(String s)
  {  try {fw.write(s); fw.flush();}catch (IOException ioe){}
  }
}

Apart from the extra code to generate HP-GL output and the obvious greater complexity of the canvas class due to hidden-line
elimination, the structure of program HLines.java is very similar to Wireframe.java discussed at the end of the previous chapter.

EXERCISES

6.1 Use a normal editor or text processor to create a data file, to be used with program HLines.java,
for the object consisting of both a horizontal square and a vertical line through its center, as
shown twice in Figure 6.26. On the left the viewpoint is above the square (as it is by default),
while the situation on the right, with the viewpoint below the square, has been obtained by using
the Viewpoint Down command of the View menu (or by pressing Ctrl+↓ ).

 
Figure 6.26: Line passing through the center of a square

6.2 Hidden-line elimination works correctly for the problem in Exercise 6.1 because the vertical line
passes through edges of the triangles produced by triangulation of the square. Change the
horizontal square to a horizontal triangle and use HLines.java to display the object with the same
vertical line through the triangle. The object may not be displayed properly like those in Figure
6.26. Explain why and find a simple solution.

6.3 The same as Exercise 6.1 for Figure 6.27, which shows two very thin square rings. Again, the
object is shown twice to demonstrate that there are four potentially visible faces.
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Figure 6.27: Two thin square rings

6.4 Write a program HLinesDashed.java similar to HLines.java but instead of omitting hidden lines,
draw them as dashed lines. For example, when applied to the file letterL.dat of Section 6.3, it
produces the result of Figure 6.28 (after changing the viewpoint). An easy way of doing this is by
letting the method lineSegment in your class CvHLines- Dashed first draw the whole line PQ as a
dashed line, so these dashed lines, or parts of them, will later be overwritten by normally drawn
lines if the line segments in question happen to be visible. Note that this should happen only for
calls to lineSegment from the paint method, not for recursive calls. You can use a method
dashedLine similar to the one of Exercise 1.5. This call to dashedLine can be followed by a
fragment of the form

 
Figure 6.28: Hidden lines represented by dashed lines

if (hpgl != null)
{  hpgl.write("LT4 1;\n");
   ...
   hpgl.write("LT;\n");
}

where …  denotes two lines similar to those for HP-GL output in the method drawLine. This will
make dashed lines also appear in HP-GL output when the user uses the Export HP-GL
command. The two HP-GL commands LT shown here will switch from normally drawn to dashed
lines, and back to normal lines.

For each of Exercises 6.5–6.10, you are to write a program that generates a 3D object file in the
format discussed in Sections 6.3–6.5. You may refer to Appendix E for more relevant examples.
The files generated by your program can be read by not only the program HLines.java, but also
the programs Painter.java and ZBuf.java described in Chapter 7.

6.5 Write a program BookView.java that can generate a data file for an open book. Enable the user
to supply the number of sheets, the page width and height, and the name of the output file as
program arguments. For example, the files bookv4.dat and bookv150.dat for the books shown in
Figure 6.29 were obtained by executing the following commands:
java BookView 4 15 20 bookv4.dat
java BookView 150 15 20 bookv150.dat
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java BookView 150 15 20 bookv150.dat

Apply the program HLines.java to it to generate HP-GL files. Import these files into a text
processor or drawing program, as was done twice for Figure 6.29.

 
Figure 6.29: Two open books; number of sheets: 4 on the left and 150 on the
right

6.6 Write a program to generate a globe model of a sphere, as shown in Figure E.4 of Appendix E.
Enable the user to supply n (see Section E.2) as a program argument.

6.7 Write a program to generate a semi-sphere, as shown in Figure 6.30.

 
Figure 6.30: A semi-sphere

6.8 Generate a great many cubes that are placed beside, behind and above each other (see Figure
6.31).

 
Figure 6.31: A cube of cubes

6.9 Generate a data file for two tori (the plural of torus), as shown in Figure 6.32.
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Figure 6.32: Two tori

6.10 Write a program to generate a spiral staircase, as shown in Figure 6.33.

 
Figure 6.33: A spiral staircase

Answers

6.1 The desired input file is listed below:
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1   1-1  0
2   1 1  0
3  -1 1  0
4  -1-1  0
5  0 0   -2
6  0 0   2
Faces:
1 2 3 4.
4 3 2 1.
5 6.

6.2 Use the vertices 1, 2 and 3 as triangle vertices in the plane z = 0, such that the origin O lies inside the
triangle. Let vertex 4 be the origin and vertices 5 and 6 the same line endpoints as in the above solution
to Exercise 6.1. Then, when specifying the triangle, use the invisible lines 1–4, 2–4 and 3–4 in the same
way as the line 7–10 in Figure 6.14. In other words, define each of the two sides of the triangle as a rather
complex polygon, specified as a sequence of ten numbers by visiting, for example, the vertices 1, 2, 4, 2,
3, 4, and so on, in that order, using minus signs for invisible lines.

6.3 See Section 6.4 for holes in polygons. Figure 6.27 was obtained by using a data file of the same structure
as the above one (see Exercise 6.1), but with 16 vertices and four faces. Based on Figure F.2, the first of
these faces was specified as follows:

 
Figure F.2: One of the four faces for the square rings of Figure 6.27

6.4 A simple solution to this problem is obtained by adding some code to draw all polygon edges (visible as
well as invisible) as dashed lines. In addition to this, the visible edges are drawn as solid lines without any
modification to the hidden-line algorithm. In other words, every visible edge is drawn as coinciding solid
and dashed lines, which gives the effect of a solid line. Although HP-GL provides the command LT (Line
Type) to draw dashed lines, we obtain better results if we draw our own, computed dashes, which are
required for screen output anyway. Note that every dashed line in Figure 6.28 begins and ends with a
dash of the same length as the other ones. To implement all this, modify the program file HLines.java
(see Appendix D) as follows:

a. Disable back-face culling by deleting the following program line in the method
buildLineSet.
if (n>2&& pol.h > 0) continue;

b. Insert the following method in the class CvHLines (see also Exercise 1.5):
void dashedLine(Graphics g, float xA, float yA,
      float xB, float yB, float dashLength)
{  float u1 = xB - xA, u2 = yB - yA,
      L = (float)Math.sqrt(u1 * u1 + u2 * u2);
   int n = Math.round((L/dashLength + 1)/2);
   float h1 = u1/(2 * n - 1), h2 = u2/(2*n-1);
   for (int i=0; i<n; i++)
   {  float x1 = xA + 2 * i * h1, y1 = yA + 2 * i * h2,
            x2 = x1 + h1, y2 = y1 + h2;
      drawLine(g, x1, y1, x2, y2);
   }
}

c. Just before the call to lineSegment in the paint method, almost at the end of the
program file, insert the following line:
dashedLine(g, P.x, P.y, Q.x, Q.y, 8);

6.5 A program to generate an open book is shown below. It was executed twice (with n = 4and n = 150) to
produce the two open books of Figure 6.29. Refer to the analysis of Exercise 6.6 below for the way we
design this type of program.
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// BookView.java: Generating a data file for an open book.
import java.io.*;

public class BookView
{  public static void main(String[] args)
      throws IOException
   {  if (args.length != 4)
      {  System.out.println(
         "Supply nr of sheets, width, height and file name\n"+
         "as program arguments.");
         System.exit(1);
       }
       int n;
       float w, h;
       FileWriter fw;
       n = Integer.valueOf(args[0]).intValue();
       w = Float.valueOf(args[1]).floatValue();
       h = Float.valueOf(args[2]).floatValue();
       fw = new FileWriter(args[3]);
       int spineTop = 1, spineBottom = 2, outerTop, outerBottom;
       float theta = (float)Math.PI/(n - 1);
       float xTop = 0, xBottom = h;
       fw.write(spineTop +""+xTop+"00\r\n");
       fw.write(spineBottom +""+ xBottom + " 0 0\r\n");
       for (int i=0; i<n; i++)
       {  float phi=i* theta,
             y = w * (float)Math.cos(phi),
             z = w * (float)Math.sin(phi);
          outerTop = 2 * i + 3; outerBottom = outerTop + 1;
          fw.write(outerTop + " " + xTop + " " +
             y + " " + z + "\r\n");
          fw.write(outerBottom + " " + xBottom + " " +
             y + " " + z + "\r\n");
       }
       fw.write("Faces:\r\n");
       for (int i=0; i<n; i++)
       {  outerTop =2*i+3; outerBottom = outerTop + 1;
          fw.write(spineTop + " " + spineBottom + " "
             + outerBottom + " " + outerTop + ".\r\n");
          fw.write(spineTop + " " + outerTop + " "
             + outerBottom + " " + spineBottom + ".\r\n");
       }
       fw.close();
   }
}

6.6 Before writing the program code we have to assign numbers to vertices and find mathematical
expressions for the x-, y-and z-coordinates of these vertices. We will now discuss how this can be done
for a sphere, but the same approach applies to any program that generates 3D data files.

The model of a sphere in question has two poles; let us assign vertex number 1 to the north pole. Since it
is given that there are n horizontal slices, there will be n −  1 horizontal planes between them, each
corresponding with a horizontal circle, or line of latitude, on the sphere. There will also be 2n vertical
circles, or lines of longitude. Every vertex (other than the two poles) of our sphere model is a point of
intersection of such a horizontal and a vertical circle. As for the faces, 2 × 2n of them are triangles at the
two poles. There are n −  2 remaining horizontal slices, so that the number of remaining faces is equal to
(n −  2) · (2n) = 2n(n −  2). Each of these is a parallelogram with two horizontal edges. Altogether, there
are 4n + 2n(n −  2) = 2n2 faces, and, as we will see below, 2(n2 −  n + 1) vertices. We will use two angles,
θ  and ϕ , as shown in Figure 5.3. Using a sphere radius 1, we can express the level of the n −  1
horizontal circles by their z-coordinate

Writing δ  = π /n, we will only use horizontal circles corresponding to the following angles:

On each of these circles we have to use 2n vertices, which correspond to the angles

Thus, each pair (i, j) is associated with a vertex, so that we can devise a means of associating a vertex
number with it. Since 1 has been used for the north pole, we start with vertex number 2 on circle i = 1.
With 2n vertices on each horizontal circle, the first vertex number available for circle i = 2 will be 2n + 2,
and for circle i = 3 it will be 4n + 2, and so on. In general, on circle i, we begin with number (i −  1) · 2n +
2. Since on each circle there are 2n vertices, identified as j = 0, …  ,2n −  1, we have

As we have seen in Section 5.2, the x-, y-and z-coordinates for this vertex (i, j) is computed as x = sin ϕ
cos θ , y = sinϕ  sin θ  and z = cos ϕ ,where θ  and ϕ  depend upon i and j as shown above.
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Finally, we have to assign a vertex number to the south pole. As we already have used 1 + (n −  1) · 2n
vertex numbers, the one for the south pole will be

which is also the total number of vertices.

6.7 Analyze this problem in the same way as was done for Exercise 6.6. Here each triangle (at the south
pole) and each parallelogram is to be specified both counter-clockwise and clockwise, since either side of
the curved surface can in principle be visible. Unlike Exercise 6.6, we had better use the variable n for the
number of slices of half the sphere in this problem, so that there are 4n instead of 2n vertices on every
horizontal circle that we use, giving altogether n · 4n + 1 = 4n2 + 1 vertices.

6.8 Use program arguments for the numbers of squares in each of the three directions x, y and z. Remember,
the word Faces can occur only once in the file, so we have to specify the vertices of all cubes before we
start specifying the faces.

6.9 Let us start with a torus such as the one in Section E.3, that is, a horizontal one with O as its center, and
let the second torus be a vertical one, with its center on the positive x-axis. We will make the sizes of the
tori and their numbers of vertices identical; only their positions are different. As in Section E.3, the size of
a torus (and its shape) is completely determined by the radii R and r, where r = 1. Since the hole in each
torus must be wide enough for the other to pass through, it is required that R ≥  2r, that is, R ≥  2.

For each vertex of the first torus, there is a corresponding one on the second. As we have seen in Section
E.3 there are n2 vertices for each torus, so we can use the numbers i and i + n2 for each pair of
corresponding vertices. To obtain the second torus, we have to shift the first one a distance R towards the
positive x-axis, after which we turn it through the x-axis though 90°. (Because of this special angle, no
complicated computations are required for this rotation, so it is not worthwhile to use the class Rota3D of
Section 3.9 in this case.) Writing (x, y, z) for vertex i and (x′, y′, z′) for the corresponding vertex i + n2, we
now have x′ = x + R, y′ = -z, z′ = y.

Although, in the first part of 3D data files, we usually supply the vertices in ascending order of the vertex
numbers, this is not required. It is therefore possible to write pairs of lines of the following form in the first
part of the data file:

Similarly, in the second part of the file, we can write faces in pairs, with vertex numbers in the second
face of each pair n2 higher than those of the first of that pair. In this way, the desired program for two tori
can be obtained from Torus.java by adding only a few statements.

6.10 If necessary, you might refer to the method genCylinder in program Cylinder.java of Section 6.6 for the
cylindrical pole in the middle of the staircase. If you do, bear in mind that the situation here is simpler
because this cylinder is solid (as is the case in program Cylinder.java with rInner = 0).

You can use program Beams.java of Section E.4 to see how the steps can be constructed, or you can
use the class Rota3D (see also Exercise 5.5), provided that you also perform a translation, adding a
constant to the z-coordinates of each new step. As for the railing, recall that the data file, after the word
Faces, can contain line segments specified as two vertex numbers followed by a period, as discussed in
Section 6.5.
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Chapter 7: Hidden-Face Elimination

In the previous two chapters we have discussed the wireframe model and how to remove hidden-lines of 3D objects. For
example, a realistic looking cube is displayed by simply drawing all the visible edges of the cube. Instead, we can construct a
polygon for each of the six faces. If we display only the visible faces, we obtain a more realistic image of a cube. In Exercise
5.2 this was done by displaying only the top, right and front faces, taking the chosen viewpoint into account. Recall that we
used θ  = 0.3 and ϕ  = 1.3 (both in radians) at the beginning of class Obj in program CubePers.java. The solution of Exercise
5.2 will fail, for example, if we use θ  = − 0.3 because then the left instead of the right face of the cube (see Figure 5.10)
should be displayed as a filled polygon. In this chapter, the viewpoint will be taken care of automatically, so that the invisible
faces of a cube, also known as back faces, are omitted regardless of the chosen viewpoint. Besides, a face may be only
partly visible, which is the case, for example, if we have two cubes, with the nearer one partly hiding the farther one. The
problem of displaying only the visible portions of faces will also be solved in this chapter. Finally, instead of taking just some
colors, we will assume that there is a source of light, such as the sun, to determine the brightness or darkness of a face.
Except for Section 7.1, we will display all faces of 3D objects in shades of yellow, against a blue background.

7.1 BACK-FACE CULLING
It is not difficult to determine which faces of a cube are invisible because they are at the back. Such faces, known as back faces,
can be detected by investigating the orientation of their vertices. To begin with, we specify each face counterclockwise, when
viewed from outside the object. For example, we denote the top face of the cube of Figure 5.11 as the counter-clockwise vertex
sequence 4, 5, 6, 7, or, for example, 6, 7, 4, 5, but not 6, 5, 4, 7, for that would be clockwise. In contrast, we can specify the
bottom face of the cube as the sequence 0, 3, 2, 1, which is counter-clockwise when this face is viewed from the outside but
clockwise in our perspective image. Here we see that the orientation of the bottom face in the image is different from that in 3D
space, when the object is viewed from the outside (that is, from below). This is because this bottom face is a back face. We use
this principle to tell back faces from visible faces. The method area2, discussed in Section 2.7, will now be very useful, so that we
will again use the class Tools2D, in which this method occurs. Recall that the complete version of class Tools2D can be found in
Section 2.13.

Note that we should use screen coordinates in the test we have just been discussing. If we used the xe-and ye-coordinates
instead (ignoring the ze- coordinate; see Figure 5.4), this test about the orientation of the vertices would be equivalent to testing
whether the normal vector, perpendicular to the face in question and pointing outward, would point more or less towards us or
away from us, that is, whether that vector would have a positive or a negative ze- component. This test would be correct with
orthographic (or parallel) projection but not necessarily with central projection, which we are using. Exercise 7.1 deals with this
subject in greater detail.

This time we will use the Graphics methods setColor and fillPolygon, to display each face, if it is visible, in a color that is unique for
that face. Just before we do this (in the paint method) we test whether the face we are dealing with is visible; if it is not, it is a back
face so that we can ignore it. To demonstrate that this really works, we will modify the viewpoint (by altering the angles θ  and ϕ )
each time the user presses a mouse button:
// Backface.java: A cube in perspective with back-face culling.
// Uses: Point2D (Section 1.5), Point3D (Section 3.9),
//       Tools2D (Section 2.13).

import java.awt.*;
import java.awt.event.*;

public class Backface extends Frame
{  public static void main(String[] args){new Backface();}

   Backface()
   {  super("Press mouse button ...");
      addWindowListener(new WindowAdapter()
         {public void windowClosing(WindowEvent e){System.exit(0);}});
      add("Center", new CvBackface());
      Dimension dim = getToolkit().getScreenSize();
      setSize(dim.width/2, dim.height/2);
      setLocation(dim.width/4, dim.height/4);
      show();
   }
}

class CvBackface extends Canvas
{  int centerX, centerY;
   ObjFaces obj = new ObjFaces();
   Color[] color = {Color.blue, Color.green, Color.cyan,
                    Color.magenta, Color.red, Color.yellow};
   float dPhi = 0.1F;
   CvBackface()
   {  addMouseListener(new MouseAdapter()
      {  public void mousePressed(MouseEvent evt)
         {  obj.theta += 0.1F;
            obj.phi += dPhi;
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            obj.phi += dPhi;
            if (obj.phi > 2 || obj.phi < 0.3) dPhi = -dPhi;
            repaint();
          }
      });
   }

   int iX(float x){return Math.round(centerX + x);}
   int iY(float y){return Math.round(centerY - y);}

   public void paint(Graphics g)
   {   Dimension dim = getSize();
    int maxX = dim.width - 1, maxY = dim.height - 1,
        minMaxXY = Math.min(maxX, maxY);
    centerX = maxX/2;
    centerY = maxY/2;
    obj.d = obj.rho * minMaxXY / obj.objSize;
    obj.eyeAndScreen();
    Point2D[] p = new Point2D[4];
    for (int j=0; j<6; j++)
    {  Polygon pol = new Polygon();
       Square sq = obj.f[j];
       for (int i=0; i<4; i++)
       {  int vertexNr = sq.nr[i];
          p[i] = obj.vScr[vertexNr];
          pol.addPoint(iX(p[i].x), iY(p[i].y));
       }
       g.setColor(color[j]);
       if (Tools2D.area2(p[0], p[1], p[2]) > 0)
          g.fillPolygon(pol);
    }
  }
}

class ObjFaces // Contains 3D object data of cube faces
{  float rho, theta=0.3F, phi=1.3F, d;
   Point3D[] w;    // World coordinates
   Point3D[] e;    // Eye coordinates
                   // (e = wV where V is  a 4 x 4  matrix)
   Point2D[] vScr; // Screen coordinates
   Square[] f;     // The six (square) faces of a cube.
   float v11, v12, v13, v21, v22, v23,
      v32, v33, v43, // Elements of viewing matrix V.
      xe, ye, ze, objSize;
ObjFaces()
{  w = new Point3D[8];
   e = new Point3D[8];
   vScr = new Point2D[8];
   f = new Square[6];
   // Bottom surface:
   w[0] = new Point3D( 1, -1, -1);
   w[1] = new Point3D( 1,  1, -1);
   w[2] = new Point3D(-1,  1, -1);
   w[3] = new Point3D(-1, -1, -1);
   // Top surface:
   w[4] = new Point3D( 1, -1,   1);
   w[5] = new Point3D( 1,  1,   1);
   w[6] = new Point3D(-1,  1,   1);
   w[7] = new Point3D(-1, -1,   1);
   f[0] = new Square (0, 1, 5,  4); // Front
   f[1] = new Square (1, 2, 6,  5); // Right
   f[2] = new Square (2, 3, 7,  6); // Back
   f[3] = new Square (3, 0, 4,  7); // Left
   f[4] = new Square (4, 5, 6,  7); // Top
   f[5] = new Square (0, 3, 2,  1); // Bottom
   objSize = (float)Math.sqrt (12F);
      // distance between two opposite vertices.
   rho = 3 *  objSize; // For reasonable perspective effect
}

void initPersp()
{  float
   costh = (float)Math.cos(theta), sinth = (float)Math.sin(theta),
   cosph = (float)Math.cos(phi), sinph = (float)Math.sin(phi);
   v11 = -sinth;     v12 = -cosph * costh;     v13 = sinph * costh;
   v21 = costh;      v22 = -cosph * sinth;     v23 = sinph * sinth;
                     v32 = sinph;              v33 = cosph;
                                               v43 = -rho;
}

void eyeAndScreen()
{  initPersp();
   for (int i=0; i<8; i++)
   {  Point3D p = w[i];
      float x = v11 * p.x + v21 * p.y;
      float y = v12 * p.x + v22 * p.y + v32 * p.z;
      float z = v13 * p.x + v23 * p.y + v33 * p.z + v43;
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      float z = v13 * p.x + v23 * p.y + v33 * p.z + v43;

         Point3D Pe = e[i] = new Point3D(x, y, z);
         vScr[i] = new Point2D(-d * Pe.x/Pe.z, -d * Pe
      }
   }
}

class Square
{  int nr[];
   Square(int iA, int iB, int iC, int iD)
   {  nr = new int[4];
      nr[0] = iA; nr[1] = iB; nr[2] = iC; nr[3] = iD;
   }
}

If you do not use the Java classpath variable, you should make sure that the files Point2D.class, Point3D.class and Tools2D.class
(or the corresponding .java files) are in the same directory as this program. We now obtain images of a cube in bright colors, so
the result on the screen looks much better than Figure 7.1. Initially, the top face of the cube is visible, but after we have clicked the
mouse button several times the cube shows its bottom face, as is the case in this illustration.

 
Figure 7.1: Result of back-face culling

We will use back-face culling in the programs that follow. This technique is worthwhile because it drastically reduces the number
of polygons that may be visible and it is inexpensive compared with some more time-consuming algorithms to be discussed later
in this chapter. However, using only backface culling is not sufficient, since it does not work for non-convex solids. As Figure 6.12
illustrates, the solid letter L is not convex, since the line that connects, for example, vertices 1 and 11 does not lie completely
inside the object. In that example, the rectangle 5-6-7-8 is not a back face, but it is only partly visible.
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7.2 COLORING INDIVIDUAL FACES
Let us now decide on the color to be used for each polygon (and for all triangles of which it consists) based on its orientation in
relation to the light source. For a polygon in a plane with equation

we can obtain a color code by calling the method colorCode of the class Obj3D as follows:
int cCode = obj.colorCode(a, b, c);

(Note that we use the name colorCode both for an array and for a method.) This color code, stored in the variable cCode, will later
be used as follows:
g.setColor(new Color(cCode, cCode, 0));

Using integers in the range 0–255 for cCode, we obtain shades of yellow in this way. For a given polygon, we will associate the
values in this range with the inner product (see Section 2.2) between the following two vectors:

s = (1/√ 3)
(− 1, 1, 1):
n = (a, b, c):

vector directed from the object to the sun; normal vector, perpendicular to the polygon and pointing away
from the object (more or less towards the viewpoint E).

Note that these vectors have length 1 and are expressed in eye coordinates xe, ye and ze. The signs of the triple elements − 1, 1,
1 imply that the light comes from the left, from above and from the front, as Figure 7.2 illustrates.

 
Figure 7.2: Vector s, pointing to the sun, and normal vector n of a face

Since we know the range of the color codes, we can convert inner-product values to color codes, if we also know the range of all
possible inner products that can occur. This range

is found in the method planeCoeff of the class Obj3D simply by computing all those inner products, as soon as a, b and c are
computed.

The following method of Obj3D.java shows how an inner product n · s, discussed above, is computed and how the above values
inprodMin and inpro- dRange are used to derive a color code in the range 0–255:
int colorCode(double a, double b, double c)
{  double inprod = a * sunX + b * sunY + c * sunZ;
   return (int)Math.round(((inprod - inprodMin)/inprodRange) * 255);
}

The method colorCode needs to be called for every polygon, or face, to be colored. It is usually placed in the method paint, along
with its color code and its distance, as demonstrated in the example program of the next section.
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7.3 PAINTER'S ALGORITHM
It is an attractive idea to solve the hidden-face problem by displaying all polygons in a specific order, namely first the most distant
one, then the second furthest, and so on, finishing with the one that is closest to the viewpoint. Painters sometimes follow the
same principle, particularly when working with oil paintings. They typically start with the background and paint a new layer for
objects on the foreground later, so that the overlapped parts of objects in the background, painted previously, are covered by the
current layer and thus become invisible. This algorithm is therefore known as the painter's algorithm. It is based on the assumption
that each triangle can be assigned a ze-coordinate, which we can use to sort all triangles. One way of obtaining such a ze-
coordinate for a triangle ABC is by computing the average of the three ze-coordinates of A, B and C. However, there is a problem,
which is clarified by Figure 7.3. For each of the three beams, a large rectangle is partly obscured by another, so we cannot
satisfactorily place them (or the triangles in which these rectangles are divided) in the desired order, that is, from back to front (see
also Figures 7.8 and 7.9). Consequently, the naïve approach just suggested will fail in this case. Surprisingly enough, it gives good
results in many other cases, such as the solid letter L in Figure 6.2 and the sphere and cone in Figure 7.5. It is also very fast.

 
Figure 7.3: Beams, each of which partly obscures another

 
Figure 7.4: Program Painter.java applied to file letterL.dat
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Figure 7.5: Sphere and cone

The program Painter.java is listed below. If you compile and run this program, all classes defined in the program files
Point2D.java, Point3D.java, Obj3D.java, etc., must be available, as the comment below indicates. Recall our discussion of this
subject at the end of Chapter 1.
// Painter.java: Perspective drawing using an input file that lists
//    vertices and faces. Based on the Painter's algorithm.
// Uses: Fr3D (Section 5.5) and CvPainter (Section 7.3),
//       Point2D (Section 1.5), Point3D (Section 3.9),
//       Obj3D, Polygon3D, Tria, Fr3D, Canvas3D (Section 5.5).
import java.awt.*;

public class Painter extends Frame
{ public static void main(String[] args)
  {  new Fr3D(args.length>0? args[0] : null, new CvPainter(),
        "Painter");
  }
}

In the above Fr3D constructor call, the first argument is a conditional expression to check if the user has used the option of
specifying an input file as a program argument in the command line. (This is not required, since the user can also use the File
menu to open input files). Recall that this is similar to what we did in Sections 5.6 and 6.8. The second argument of the
constructor call just mentioned creates an object of class CvPainter, which is listed below in the separate file CvPainter.java. The
third argument specifies the window title Painter that will appear.
// CvPainter.java: Used in the file Painter.java.
import java.awt.*;
import java.util.*;

class CvPainter extends Canvas3D
{  private int maxX, maxY, centerX, centerY;
   private Obj3D obj;
   private Point2D imgCenter;

   Obj3D getObj(){return obj;}
   void setObj(Obj3D obj){this.obj = obj;}
   int iX(float x){return Math.round(centerX + x - imgCenter.x);}
   int iY(float y){return Math.round(centerY - y + imgCenter.y);}

   void sort(Tria[] tr, int[] colorCode, float[] zTr, int l, int r)
   {  int i = l, j = r,  wInt;
      float x = zTr[(i + j)/2], w;
      Tria wTria;
      do
      {  while (zTr[i] < x) i++;
         while (zTr[j] > x) j--;
         if (i < j)
         {  w = zTr[i]; zTr[i] = zTr[j]; zTr[j] = w;
            wTria = tr[i]; tr[i] = tr[j]; tr[j] = wTria;
            wInt = colorCode[i]; colorCode[i] = colorCode[j];
            colorCode[j] = wInt;
            i++; j--;
         } else
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         } else
      if (i == j) {i++; j--;}
   } while (i <= j);
   if (l < j) sort(tr, colorCode, zTr, l, j);
   if (i < r) sort(tr, colorCode, zTr, i, r);
}

public void paint(Graphics g)
{  if (obj == null) return;
   Vector polyList = obj.getPolyList();
   if (polyList == null) return;
   int nFaces = polyList.size();
   if (nFaces == 0) return;

   Dimension dim = getSize();
   maxX = dim.width - 1; maxY = dim.height - 1;
   centerX = maxX/2; centerY = maxY/2;
   // ze-axis towards eye, so ze-coordinates of
   // object points are all negative.
   // obj is a java object that contains all data:
   // - Vector w       (world coordinates)
   // - Array e        (eye coordinates)
   // - Array vScr     (screen coordinates)
   // - Vector polyList (Polygon3D objects)

   // Every Polygon3D value contains:
   // - Array 'nrs' for vertex numbers
   // - Values a, b, c, h for the plane ax+by+cz=h.
   // - Array t (with nrs.length-2 elements of type Tria)

   // Every Tria value consists of the three vertex
   // numbers iA, iB and iC.
   obj.eyeAndScreen(dim);
         // Computation of eye and screen coordinates.

   imgCenter = obj.getImgCenter();
   obj.planeCoeff();    // Compute a, b, c and h.

   // Construct an array of triangles in
   // each polygon and count the total number
   // of triangles:
   int nTria = 0;
   for (int j=0; j<nFaces; j++)
   {   Polygon3D pol = (Polygon3D)(polyList.elementAt(j));
         if (pol.getNrs().length < 3 || pol.getH()
            continue;
         pol.triangulate(obj);
         nTria += pol.getT().length;
      }
      Tria[] tr = new Tria[nTria];
      int[] colorCode = new int[nTria];
      float[] zTr = new float[nTria];
      int iTria = 0;
      Point3D[] e = obj.getE();
      Point2D[] vScr = obj.getVScr();

      for (int j=0; j<nFaces; j++)
      {  Polygon3D pol = (Polygon3D)(polyList.elementAt(j));
         if (pol.getNrs().length < 3 || pol.getH() >= 0) continue;
         int cCode =
            obj.colorCode(pol.getA(), pol.getB(), pol.getC());
         Tria[] t = pol.getT();
         for (int i=0; i< t.length; i++)
         {  Tria tri = t[i];
            tr[iTria] = tri;
            colorCode[iTria] = cCode;
            float zA = e[tri.iA].z, zB = e[tri.iB].z,
               zC = e[tri.iC].z;
            zTr[iTria++] = zA + zB + zC;
         }
      }

      sort(tr, colorCode, zTr, 0, nTria - 1);

      for (iTria=0; iTria<nTria; iTria++)
      {  Tria tri = tr[iTria];
         Point2D a = vScr[tri.iA],
                 b = vScr[tri.iB],
                 c = vScr[tri.iC];
         int cCode = colorCode[iTria];
         g.setColor(new Color(cCode, cCode, 0));
         int[] x = {iX(a.x), iX(b.x), iX(c.x)};
         int[] y = {iY(a.y), iY(b.y), iY(c.y)};
         g.fillPolygon(x, y, 3);
      }
   }
}

We use a special method, sort, to sort the triangles; it is based on the well-known and efficient quicksort algorithm, discussed in
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We use a special method, sort, to sort the triangles; it is based on the well-known and efficient quicksort algorithm, discussed in
detail in Ammeraal (1996). Before calling sort, we build three arrays:

 Open table as spreadsheet

Array element Type Contains

tr[iTria] Tria the three vertex numbers of the triangle

colorCode[iTria] int value between 0 and 255

zTr[iTria] float value representing ze-coordinate of triangle

For a given subscript value iTria, the three array elements in the first column of this table belong to the same triangle. We may
regard them as members of the same record, of which zTr is the key. During sorting, whenever two elements zTr[i]and zTr[j] are
swapped, we swap tr[i]and tr[j] as well as colorCode[i] and colorCode[j] at the same time. It seems reasonable to use the average
of the three ze-coordinates of a triangle's vertices as the ze-coordinate of that triangle, but we may as well simply use the sum
instead of the average. Recall that the positive ze-axis points towards us, so that all ze values that we use are negative: the more
negative it is, the further away the triangle is. It follows that we have to paint the triangles in increasing order of their ze-
coordinates, or, equivalently, in decreasing order of their absolute values.

As the class CvPainter in the program Painter.java shows, there is a call to colorCode in the method paint for every polygon just
before entering the loop. Within the loop, all the triangles of that polygon, their color code, and each triangle's distance, are stored
in the three arrays tr, colorCode and zTr, discussed above. After this has been done for all polygons, the triangles are sorted on
the basis of their distances stored in zTr, and then displayed in order of decreasing distance.

Next, we demonstrate the application of the painter's algorithm to some simple 3D objects, with the implementation of user
operations. As Figure 7.4 shows, we will enable the user to change the viewpoint E, characterized by its spherical coordinates.
Immediately after an input file has been opened, these coordinates have the following (default) values:

If the user gives the menu command Viewpoint Down the value of ϕ  is increased by 0.1 radians (≈ 6°). Similarly, Viewpoint Up
decreases ϕ  by 0.1 radians, while Viewpoint Left and Viewpoint Right decrease and increase θ  by 0.1 radians, respectively. The
same effects can be achieved by using one of the four arrow keys, ↓ , ↑ , ←  and → , together with the Ctrl-key, as indicated in the
menu. Figure 7.4 shows the screen when the input file letterL.dat, discussed in Section 6.3, has been read by program
Painter.java and the user has used the Viewpoint Up command four times, so that we view the object from a higher viewpoint than
in the initial situation.

The File menu, not shown in Figure 7.4, consists of the following commands:
Open   Ctrl+O
Exit   Ctrl+Q

If several input files are available, the user can switch to another object by using the Open command (or Ctrl+O), as usual. The
simplicity of our file format makes it easy to generate such files by other programs, as we will discuss in the next two sections. In
particular, mathematically well-defined solids, such as the sphere and the cone of Figure 7.5, are very suitable for this.
Incidentally, this example demonstrates that what we call a ‘three-dimensional object’ may consist of several solids. Note,
however, that the input-file format requires that all vertices, in this example of both the sphere and the cone, must be defined in
the first part of the file and all faces in the second. In other words, the line with the word Faces must occur only once in the file.
This example also shows that curved surfaces can be approximated by a great many flat faces. In this example, there are
altogether 1804 vertices and 1920 faces. Here the command Viewpoint Down has been used four times and the command
Viewpoint Right twice.

An object will normally appear with a reasonable perspective effect, but the user will be able to increase or decrease the viewing
distance by using menu commands or their shortcuts, Ctrl+Insert and Ctrl+Delete, as Figure 7.4 shows.

Although we can see only shades of gray in Figures 7.4 and 7.5, the situation looks much more interesting on the screen: the
background is light blue like the sky and all faces of the object are yellow. The source of light is far away, at the top left, so that the
upper and the left faces are bright yellow, while those on the right and on the bottom are much darker.

To start the program, we can supply the (initial) input file as a program argument, if we like. For example, if the first 3D object to
be displayed is given by the file letterL.dat, we can start the program by entering
java Painter letterL.dat

Alternatively, we can enter
java Painter

and use the Open command in the File menu (or Ctrl+O) to specify the input file letterL.dat. With both ways of starting the
program, we can switch to another object by using this Open command.

As discussed at the beginning of this section, the painter's algorithm will fail in some cases, such as the three beams of Figure
7.3. We will therefore discuss another algorithm for hidden-face elimination in the next section.
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7.4 Z-BUFFER ALGORITHM
If the images of two faces F1 and F2 overlap, we may consider two questions with regard to the correct representation of these
faces:

1. Which pixels would be used for both F1 and F2 if each face were completely visible?

2. For each of these pixels, which of the corresponding points in F1 and F2 is nearer?

The Z-buffer algorithm deals with these questions in a general and elegant way. Recall that we are using an eye-coordinate
system, with z-coordinates denoting the distance we are interested in. We consider points P in 3D space and their corresponding
projections P′ in 2D space, where we use central projection with the viewpoint E as the center of projection. In other words, each
line PE is a ray of light, intersecting the screen in P′. We are especially interested in such points P′ that are the centers of pixels.

The Z-buffer algorithm is based on a large two-dimensional array in which we store numbers that represent z-coordinates. Using
the variable dim as the current canvas dimension, we define the following array, also known as a Z-buffer,for this purpose:
private float buf[][];
buf = new float[dim.width][dim.height];

We initialize array buf with values corresponding to points that are very far away. As before, we ignore back faces. For each of the
remaining faces we compute all pixels and the z-values that correspond with these. For each pixel P′(ix, iy), we test whether the
corresponding point P in 3D space is nearer than buf [ix][iy] indicates. If it is, we put this pixel on the screen, using the color for the
face in question, computed as in the previous section, while, at the same time, updating buf [ix][iy]:
    For each face F (and its image, consisting of a set of pixels):
      For each pixel P′(ix, iy), corresponding with a 3D point P of F:
        If P is nearer than the distance stored in buf [ix][iy],
        {    set pixel P′ to the color for face F
             update buf [ix][iy] so that it refers to the distance of P
        }

In this discussion, the words distance and near refer to the z-coordinates in the eye-coordinate system. (Since we use no other 3D
coordinates here, we simply write z instead of ze here.) There are two aspects that make the implementation of the above
algorithm a bit tricky:

1. Since the z-axis points towards us, the larger z is, the shorter the distance.

2. It is necessary to use 1/z instead of z for linear interpolation.

Let us take a look at this rather surprising point 2. Suppose we are given the ze-coordinates of two points A and B in 3D space
and the central projections A′ and B′ of these points on the screen. Besides, some point P′ on the screen, lying on A′B′, is given
and we have

where xP′, and so on, are screen coordinates. We are then interested in the point P (in 3D space) of which P′ is the central
projection. Since we want to know how far away P is, our goal is to compute zP. (After this, we can also compute the 3D
coordinates xP = − xP′zP/d and yP =− yP′zP/d, using Equations (5.7) and (5.8) of Section 5.3, where we wrote X and Y instead of
x′ and y′.) Curiously enough, to compute this eye coordinate zP by interpolation, we need to use the inverse values of the z-
coordinates:

We will simply use this result here; it is discussed in more detail in Appendix A. Let us write

which we write as zPi (equal to 1/zP) in the program. Using the same convention (zAi = 1/zA, etc.) for other variables and writing
xA, yA etc. for screen coordinates, we compute the centroid D(xD, yD) along with its inverse z-value zDi for each triangle ABC as
follows:
xD = (xA + xB + xC)/3;
yD = (yA + yB + yC)/3;
zDi = (zAi + zBi + zCi)/3;

This centroid will be the basis for computing zi-values for other points of the triangle by linear interpolation. To do this, we are
interested in how much zPi increases if P moves one pixel to the right. This quantity, which we may write as ∂zi/∂x or simply as
dzdx in the program, is constant for the whole triangle.

We will use this value, as well as its counterpart dzdy = ∂zi/∂y indicating how much zPi increases if P moves one pixel upward,
that is, if the screen coordinate yP is increased by 1. It is useful to think of the triples x, y and zi (where x and y are screen
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that is, if the screen coordinate yP is increased by 1. It is useful to think of the triples x, y and zi (where x and y are screen
coordinates and zi = 1/z) as points in a plane of an imaginary 3D space. We can then denote this plane as

Writing this in the form zi = (k −  ax −  by)/c and applying partial differentiation to zi, we obtain

To find a, b and c, remember that (a, b, c) in Equation (7.1) is the normal vector of the plane of triangle ABC (in the imaginary
space we are dealing with). We define the vectors

where

Then the vector product

(see Section 2.4) is also perpendicular to triangle ABC, so that we can compute the desired values a, b and c of (7.1), (7.2) and
(7.3) as the coefficients of i,j and k, respectively, finding

So much for the computation of dzdx = ∂zi/∂x and dzdy = ∂zi/∂y, which we will use to compute zPi for each point P of triangle
ABC, as we will see below.

To prepare for traversing all relevant scan lines for triangle ABC, such as LR in Figure 7.6, we compute the y-coordinates yTop
and yBottom of the vertices at the top and the bottom of this triangle. For all pixels that comprise triangle ABC on the screen, we
have to compute the z-coordinate of the corresponding point in 3D space. In view of the enormous number of those pixels, we
should do this as efficiently as possible. Working from the bottom of the triangle to the top, when dealing with a scan line, we
traverse all its pixels from left to right. Figure 7.6 shows a situation in which all pixels of triangle ABC below the scan line LR have
already been dealt with.
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Figure 7.6: Triangle ABC and scan line LR

For each scan line at level y (yBottom ≤  y ≤  yTop), we find the points of intersection L and R with triangle ABC as follows. We
introduce the points I, J and K, which are associated with the triangle edges BC, CA and AB, respectively. Initially, we set the
program variables xI, xJ and xK to 1030, and xI1, xJ1 and xK1 to − 1030. Then, if y lies between yB and yC or is equal to one of
these values, we compute the point of intersection of the scan line with BC, and we assign the x-coordinate of this point to both xI
and xI1. In the same way we possibly update xJ, xJ 1 for C A and xK and xK1 for AB. After this, each of the variables xI, xJ and
xK is equal either to its original value 1030 or to the x-coordinate of the scan line in question with BC, CA and AB, respectively.
The same applies to the other three variables, except that these may still have a different original value, − 1030. We can now
easily find xL and xR:

So far, we have been using floating-point, logical coordinates y, xL and xR. Since we have to deal with pixels, we convert these to
the (integer) device coordinates iY, iXL and iXR as follows:
int iy = iY(y), iXL = iX(xL+0.5), iXR = iX(xR-0.5);

By adding 0.5 to xL and subtracting 0.5 from xR, we avoid clashes between neighboring triangles of different colors: the pixel
(iXR, y) belonging to triangle ABC should preferably not also occur as a pixel (iXL, y) of the right-hand neighbor of this triangle,
because it would then not be clear which color to use for this pixel. Before entering the loop for all pixels iXL, iXL + 1, … , iXR for
the scan line on level y, we compute the inverse z value zi = zLi for the pixel (iXL, y). Theoretically, this value is

In the program we modify this a little, giving a little more weight to the centroid D of the triangle:
double zi = 1.01 * zDi + (y - yD) * dzdy + (xL - xD) * dzdx;

This modification is useful in some special cases of which we will give an example at the end of this section.

Starting at the left end (iXL, y) of a scan line with the above z value zi = zLi,we could now write the loop for this scan line as
follows:
for (int x=iXL; x<=iXR; x++)
{  if (zi < buf[x][iy]) // '<' means 'nearer'
   {  g.drawLine(x, iy, x, iy);
      buf[x][iy] = (float)zi;
   }
   zi += dzdx;
}

Along a horizontal line LR, shown in Figure 7.6, we compute the inverse z- coordinate, zi. If this is less than the contents of the
array element buf [x][y], we put a pixel on the screen and update that array element.

The above test zi < buf[x][y] may at first look confusing. Since the positive z-axis of the eye-coordinate system points towards us,
we have:

the larger the z-coordinate of a point, the nearer this point is to the eye.

However, we are using inverse values zi = 1/z, so that the above is equivalent to

the smaller the zi-value of a point, the nearer it is to the eye.

A complicating factor is that we are using negative z-coordinates, but the above also applies to negative numbers. The following
example for two points P and Q will make the situation clear:

Another curious aspect of the above fragment is that putting a pixel on the screen is done here by drawing a line of only one pixel.
It is strange that Java does not supply a more elementary routine, say, putPixel, for this purpose. However, we can do much better
by delaying this ‘putPixel’ operation until we know for how many adjacent pixels it is to be used; in other words, we build horizontal
line segments in memory, storing their leftmost x values and displaying these segments if we can no longer extend it on the right.
This implies that even if there were a putPixel method, we would not use it, but rather draw horizontal line segments, consisting of
some pixels we have recently been dealing with. Instead of the above for-loop we will actually use an ‘optimized’ fragment which is
equivalent to it, as we will discuss in a moment. The program ZBuf.java is listed below.
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// ZBuf.java: Perspective drawing using an input file that
//    lists vertices and faces.
//    Z-buffer algorithm used for hidden-face elimination.
// Uses: Point2D (Section 1.5), Point3D (Section 3.9) and
//       Obj3D, Polygon3D, Tria, Fr3D, Canvas3D (Section 5.5).
import java.awt.*;

public class ZBuf extends Frame
{  public static void main(String[] args)
   {  new Fr3D(args.length > 0 ? args[0] : null, new CvZBuf(),
         "ZBuf");
   }
}

The class CvZBuf is defined in the following separate file:
// CvZBuf.java: Canvas class for ZBuf.java.
import java.awt.*;
import java.util.*;

class CvZBuf extends Canvas3D 
{  private int maxX, maxY, centerX, centerY, maxX0 = -1, maxY0 = -1;
   private float buf[][];
   private Obj3D obj;
   private Point2D imgCenter;

   int iX(float x){return Math.round(centerX + x - imgCenter.x);}
   int iY(float y){return Math.round(centerY - y + imgCenter.y);}

   Obj3D getObj(){return obj;}
   void setObj(Obj3D obj){this.obj = obj;}

   public void paint(Graphics g)
   {  if (obj == null) return;
      Vector polyList = obj.getPolyList();
      if (polyList == null) return;
      int nFaces = polyList.size();
      if (nFaces == 0) return;
      float xe, ye, ze;

      Dimension dim = getSize();
      maxX = dim.width - 1; maxY = dim.height - 1;
      centerX = maxX/2; centerY = maxY/2;
      // ze-axis towards eye, so ze-coordinates of
      // object points are all negative. Since screen
      // coordinates x and y are used to interpolate for
      // the z-direction, we have to deal with 1/z instead
      // of z. With negative z, a small value of 1/z means
      // a small value of |z| for a nearby point. We there-
      // fore begin with large buffer values 1e30:
      if (maxX != maxX0 || maxY != maxY0)
      {  buf = new float[dim.width][dim.height];
         maxX0 = maxX; maxY0 = maxY;
      }
      for (int iy=0; iy<dim.height; iy++)
         for (int ix=0; ix<dim.width; ix++)buf[ix][iy] = 1e30F;

      obj.eyeAndScreen(dim);
      imgCenter = obj.getImgCenter();
      obj.planeCoeff(); // Compute a, b, c and h.
      Point3D[] e = obj.getE();
      Point2D[] vScr = obj.getVScr();

      for (int j=0; j<nFaces; j++) 
{  Polygon3D pol = (Polygon3D)(polyList.elementAt(j));
   if (pol.getNrs().length < 3 || pol.getH() >= 0)
      continue;
   int cCode =
       obj.colorCode(pol.getA(), pol.getB(), pol.getC());
   g.setColor(new Color(cCode, cCode, 0));

   pol.triangulate(obj);

   Tria[] t = pol.getT();
   for (int i=0; i<t.length; i++)
   {  Tria tri = t[i];
      int iA = tri.iA, iB = tri.iB, iC = tri.iC;
      Point2D a = vScr[iA], b = vScr[iB], c = vScr[iC];
      double zAi = 1/e[tri.iA].z, zBi = 1/e[tri.iB].z,
          zCi = 1/e[tri.iC].z;
      // We now compute the coefficients a, b and c
      // (written here as aa, bb and cc)
      // of the imaginary plane ax + by + czi = h,
      // where zi is 1/z (and x, y and z are
      // eye coordinates. Then we compute
      // the partial derivatives dzdx and dzdy:
      double u1 = b.x - a.x, v1 = c.x - a.x,
             u2 = b.y - a.y, v2 = c.y - a.y,
             cc=u1*v2-u2*v1;
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             cc=u1*v2-u2*v1;
      if (cc <= 0) continue;
      double xA = a.x, yA = a.y,
             xB = b.x, yB = b.y,
             xC = c.x, yC = c.y,
             xD = (xA + xB + xC)/3,
             yD = (yA + yB + yC)/3,
             zDi = (zAi + zBi + zCi)/3,
             u3 = zBi - zAi, v3 = zCi - zAi,
             aa=u2*v3-u3*v2,
             bb=u3*v1-u1*v3,
             dzdx = -aa/cc, dzdy = -bb/cc,
             yBottomR = Math.min(yA, Math.min(yB, yC)),
             yTopR = Math.max(yA, Math.max(yB, yC));
      int yBottom = (int)Math.ceil(yBottomR),
             yTop = (int)Math.floor(yTopR);

      for (int y=yBottom; y<=yTop; y++)
      {  // Compute horizontal line segment (xL, xR) 
         // for coordinate y:
         double xI, xJ, xK, xI1, xJ1, xK1, xL, xR;
         xI = xJ = xK = 1e30;
         xI1 = xJ1 = xK1 = -1e30;
         if((y-yB)*(y-yC)<=0&&yB!=yC)
           xI = xI1 = xC + (y - yC)/(yB - yC) * (xB - xC);
         if((y-yC)*(y-yA)<=0&&yC!=yA)
           xJ = xJ1 = xA + (y - yA)/(yC - yA) * (xC - xA);
         if((y-yA)*(y-yB)<=0&&yA!=yB)
           xK = xK1 = xB + (y - yB)/(yA - yB) * (xA - xB);
         // xL = xR = xI;
         xL = Math.min(xI, Math.min(xJ, xK));
         xR = Math.max(xI1, Math.max(xJ1, xK1));
         int iy = iY((float)y), iXL = iX((float)(xL+0.5)),
            iXR = iX((float)(xR-0.5));
         double zi = 1.01 * zDi + (y - yD) * dzdy +
                                 (xL - xD) * dzdx;
      /*
         for (int x=iXL; x<=iXR; x++)
         {  if (zi < buf[x][iy]) // < is nearer
            {  g.drawLine(x, iy, x, iy);
               buf[x][iy] = (float)zi;
            }
            zi += dzdx;
         }
      /*
     //  The above comment fragment is optimized below:
     //  ---
         boolean leftmostValid = false;
         int xLeftmost = 0;
         for (int ix=iXL; ix<=iXR; ix++)
         {  if (zi < buf[ix][iy]) // < means nearer
            {  if (!leftmostValid)
               {  xLeftmost = ix;
                  leftmostValid = true;
               }
               buf[ix][iy] = (float)zi;
            }
            else
            if (leftmostValid)
            {  g.drawLine(xLeftmost, iy, ix-1, iy);
               leftmostValid = false;
            } 
               zi += dzdx;
            }
            if (leftmostValid)
               g.drawLine(xLeftmost, iy, iXR, iy);
         // ---
         }
       }
     }
   }
}

Almost at the end of this program, the fragment between the two lines // - is a more efficient version than the for-loop in the
comment that precedes it. In that for-loop, each line LR is drawn pixel by pixel. In the more efficient version that follows, however,
the line LR is drawn by one or more line segments depending on how much the line LR is blocked by the triangles that are nearer.
In the best case, where no triangle is in front of the line, the line is drawn by a simple call to the drawLine method. Scanning
through each horizontal line from left to right, we use a Boolean variable leftmostValid to record if we have found a leftmost point
that is not blocked by any other triangle. If so, we keep scanning and updating the Z-buffer until we encounter the first point that is
further away than the corresponding Z-buffer value, such as I in Figure 7.7. We then draw the line up to the point just before that
blocked point (I). We meanwhile set leftmostValid to false, entering the line segment, such as IJ in Figure 7.7. Continuing
scanning through until the first visible point, such as J, is found, we record J as the new leftmost point and set leftmostValid to
true. This process continues to reach R, and the last line segment, such as JR, is drawn if it is not blocked.
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Figure 7.7: Illustration of more efficient version

Figure 7.8 demonstrates that the Z-buffer algorithm can also be used in cases in which the painter's algorithm fails. The latter is
illustrated by Figure 7.9. (We have also seen these three beams in Figures 6.25 and 7.3.)

 
Figure 7.8: Z-buffer algorithm applied to three beams

 
Figure 7.9: Painter's algorithm failing

In Appendix E (Section E.5) we will develop a program that enables us to display the surfaces of functions of two variables. Files
generated by this program are also accepted by the program ZBuf.java, as Figure 7.10 demonstrates.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 
Figure 7.10: Function of two variables

Here we are using faces with two sides, as discussed in Section 6.5. The way these are used here requires a correction in the
computation of zi. Recall that we have introduced the factor 1.01 in the following statement:
double zi = 1.01 * zDi + (y - yD) * dzdy + (xL - xD) * dzdx;

Without this factor, some incorrect dark pixels would appear on the boundary, also referred to as the silhouette, of the (yellow)
object and the (light blue) background. To understand this, we note that in Figure 7.11 point P lies on the boundary of the triangles
T1 and T2.

 
Figure 7.11: Point P belonging to triangles of very different colors

The nearer triangle, T1, is visible and its color is bright yellow because it lies on the upper side of the surface. Triangle T2 lies on
the lower side and would appear almost black on the screen if it were not obscured by T1. Point P, belonging to both triangles, is
used twice to determine the color of the corresponding pixel on the basis of the zi value of P. In both cases, this value is the same
or almost the same, so that it is not clear which color will be used for this pixel. To solve this problem, we use the factor 1.01
instead of 1 in the above computation of zi. Because of this, the zi value for P when taken as a point of T1 will now be slightly less
than when P is regarded as a point of T2. As a result, the light yellow color will be used for the pixel in question.

EXERCISES

7.1 The problem of back-face culling cannot generally be solved by testing whether the ze-component
of the normal vector of a face in question is positive or negative. Recall that we are using the
equation

for the plane of each face, in which n = (a, b, c) is the normal vector of that face, pointing outward.
Using also the vector x = (x, y, z), we can write the above equation as

Figure 7.12 shows the geometrical interpretation of n, x and h. For a visible face, the inner
product h is negative because n and x point in opposite directions. By contrast, h is positive for a
back face.
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Figure 7.12: Geometrical interpretation of x, n and h, where h is negative

Although in most cases c, the third component of the vector n, is positive for a visible face and
negative for a back face, there are situations in which this is not true. Give an example of such a
situation, with a detailed explanation. How does back-face culling based on the signs of h and
(incorrectly) of c relate to that based on the orientation of point sequences?

7.2 Apply animation with double buffering to a cube, as in Exercise 5.4, but use colored faces.

7.3 Apply animation to two colored cubes (see Exercises 5.5 and 7.2), but use colored faces. Even if
they partly hide each other, this problem can be solved by back-face culling, provided the farther
cube is drawn before the nearer one. This is demonstrated in Figure 7.13; here the Graphics
methods fillPolygon and drawPolygon are applied to each visible face. By drawing the edges of
such faces in black, we make sure that we can clearly distinguish the colored faces if shades of
gray are used in black-and-white reproductions, such as Figure 7.13.

 
Figure 7.13: Two rotating cubes, generated by back-face culling

7.4 In the program file Obj3D.java, the direction of the light vector (sunX, sunY, sunZ) pointing to the
source of light was arbitrarily chosen. Even without moving the object (by rotating it, for example),
we can obtain an exciting effect by using animation to change this vector, so that the source of
light rotates. Extend the program Painter.java to realize this. An easy way of doing this is by using
spherical coordinates sunTheta and sunPhi and radius 1 for a light vector of unit length, similar to
the spherical coordinates θ , ϕ  and ρ , shown in Figure 5.1, and increasing, say, sunTheta by 0.02
radians every 50 ms.

7.5 Write a 3D data file (using a text editor) for the steps shown in Figure 7.14. Apply the programs
Painter.java and ZBuf.java to it. Can you write a program to generate such data files? In such a
program, the number of steps and the dimensions should preferably be variables.
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Figure 7.14: Steps

Answers

7.1 In Figure F.3, the two outer faces on the left and right are parallel, but the corresponding inner faces are
not, as the distances 18 and 19 indicate. The latter faces, which are visible here, become invisible if we
view the object from very far away, as Figure F.4 shows.

 
Figure F.3: Object nearby: two inner faces visible

 
Figure F.4: The same object far away: two inner faces invisible

Recall that, with eye coordinates, the x-axis points to the right, the y-axis upwards and the z-axis towards
us. Let us focus on the inner face that is visible in Figure F.3 on the right but invisible in Figure F.4.
Estimating the normal vector n = (a, b, c) and the value h, as specified in the exercise and discussed in
Section 5.5, for this face, we find:

a is almost equal to − 1, because n almost points toward the negative x-axis;
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b is almost zero, but positive because we view the object slightly from above;

c is almost zero, but negative because n points a little to the back.

These values, and in particular c, are independent of the viewing distance. By contrast, the inner product h
= n · x,where x is a vector from the viewpoint E to any point of the face in question, depends on the
viewing distance. You should verify this by drawing a sketch similar to Figure 7.12 but applied to this
example. As a result, you will find that h is negative in Figure F.3 but positive in Figure F.4. This example
demonstrates that, to determine if a face is a back face, we should use the sign of h, not that of c. The
correct practice of using h for this purpose is equivalent to back-face culling based on the orientation of
three points: if this orientation on the screen is the same as when the object is viewed from outside, the
face is visible. Using c instead of h would be equivalent to using the eye coordinates x and y instead of the
screen coordinates in determining the orientation of image points. This would work correctly for most
situations, but it may result in wrongly deciding that faces are invisible, especially if the object is viewed
from nearby, as Figure F.3 illustrates. Recall that we also briefly discussed this in Section 7.1.

7.2 We can use back-face culling to decide which faces of the cube are visible. Refer to the solutions to
Exercises 5.4 and 5.5 for the implementation of animation and rotation, respectively.

7.3 In the previous exercise we could have realized the effect of a rotation about a vertical axis by changing
the angle θ  and leaving the cube unchanged. This is no longer the case here because we now want to use
two rotations. Figure 7.13 was obtained by rotating each cube about one of its vertical edges, with different
rotation speeds, the latter simply meaning that we use different angles in each step. As in the solution to
Exercise 5.5, you need to supply only one method run, in which only one infinite loop occurs.

7.4 Change the class CvPaint (in the program file Painter.java) as follows:
a. At the beginning of the class CvPaint, before {, add the line

implements Runnable

b. After {, add the following lines:
Image image;
Graphics gImage;
double sunTheta = 0;
Thread thr = new Thread(this);

c. Insert the method run, similar to the one given above for Exercise 5.4, but containing
statements to update the spherical coordinate sunTheta (see Section 5.2) and the
variables obj.sunX and obj.sunY;youcanuse a constant value for sunPhi, which makes
obj.sunZ also a constant. By using spherical coordinates, with radius ρ  = 1, the light
vector will have length 1.

d. Insert the program lines
int w, h;
CvPainter(){thr.start();}
public void update(Graphics g){paint(g);}

e. Modify the paint method, using the variables image and gImage as well as g, in about the
same way as was done in program Anim.java, listed above as help for Exercise 5.4.

7.5 For the format of the desired file see the file for Exercise 6.1. As for the program to generate 3D data files,
refer to Section 6.6 and Appendix E, if necessary.
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Chapter 8: Fractals

8.1 INTRODUCTION
There are many aspects in nature that are repeating and many cases of patterns similar at different scales. For example, when
observing a pine tree, one may notice that the shape of a branch is very similar to that of the entire tree, and the shapes of sub-
branches and the main branch are also similar. Such kind of self-similar structure that occurs at different levels of magnification
can be modeled by a branch of mathematics called Fractal geometry. The term fractal was coined by Benît Mandelbrot in 1975,
and means fractus or broken in Latin. Fractal geometry studies the properties and behavior of fractals. It describes many
situations which cannot be explained easily by classical geometry. Fractals can be used to model plants, weather, fluid flow,
geologic activity, planetary orbits, human body rhythms, socioeconomic patterns, and music, just to name a few. They have been
applied in science, technology, and computer generated art. For example, engineers use fractals to control fluid dynamics in order
to reduce process size and energy use.

A fractal, typically expressed as curves, can be generated by a computer recursively or iteratively with a repeating pattern.
Compared with human beings, computers are much better in processing long and repetitive information without complaint.
Fractals are therefore particularly suitable for computer processing. This chapter introduces the basic concepts and program
implementation of fractals. It starts with a simple type of fractal curves, then focuses on a grammar-based generic approach for
generating different types of fractal images, and finally discusses the well-known Mandelbrot set.
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8.2 KOCH CURVES
A simple example of self-similar curves is the Koch curve, discovered by the Swedish mathematician Helge von Koch in 1904. It
serves a useful introduction to the concepts of fractal curves.

In Figure 8.1, K0, K1, and K2 denote successive generations of the Koch curve. A straight line segment is called the zero-th
generation. We can construct Koch curve as follows:

Begin with a straight line and call it K0;

Divide each segment of Kn into three equal parts; and

Replace the middle part by the two sides of an equilateral triangle of the same length as the part being removed.

 
Figure 8.1: Three generations of the Koch curve

The last step ensures that every straight line segment of Kn becomes the shape of K1 in a smaller scale in Kn+ 1.

Koch curves have the following interesting characteristics:

Each segment is increased in length by a factor of 4/3. Therefore, Kn+ 1 is 4/3 as long as Kn, and Ki has the total
length of (4/3)i.

When n is getting large, the curve still appears to have the same shape and roughness.

When n becomes infinite, the curve has an infinite length, while occupying a finite region in the plane.

The Koch curve can be easily implemented using the turtle graphics method. Originated in the Logo programming language, turtle
graphics is a means of computer drawing using the concept of a turtle crawling over the drawing space with a pen attached to its
underside. The drawing is always relative to the current position and direction of the turtle. Considering each straight line of Kn−1

to be drawn as a K1 in Kn in the next generation, we can write a recursive program to draw Koch curves as in the following
pseudocode:

To draw Kn we proceed as follows:
If (n == 0) Draw a straight line;
Else
{  Draw Kn-1;
   Turn left by 60°;
   Draw Kn-1;
   Turn right by 120°;
   Draw Kn-1;
   Turn left by 60°;
   Draw Kn-1;
}

To implement the above pseudocode in a Java program, we need to keep track of the turtle's current position and direction. The
following program draws the Koch curve at the zero-th generation K0. With each mouse click, it draws a higher generation
replacing the previous generation. The program defines the origin of the coordinate system at the center of the screen. The turtle
starts pointing to the right, and locating at half of the initial length to the left of the origin, that is, (− 200, 0) for the initial length of
400. The turtle moves from the current position at (x, y) to the next position at (x1, y1) while changing its direction accordingly.
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// Koch.java: Koch curves.
import java.awt.*;
import java.awt.event.*;
public class Koch extends Frame
{  public static void main(String[] args){new Koch();}
   Koch()
   {  super("Koch. Click the mouse button to increase the level");
      addWindowListener(new WindowAdapter()
         {public void windowClosing(
                 WindowEvent e){System.exit(0);}});
      setSize (600, 500);
      add("Center", new CvKoch()); 
      show();
    }
}

class CvKoch extends Canvas
{  public float x, y;
   double dir;
   int midX, midY, level = 1;

   int iX(float x){return Math.round(midX+x);}
   int iY(float y){return Math.round(midY-y);}

   CvKoch()
   {  addMouseListener(new MouseAdapter()
      {  public void mousePressed(MouseEvent evt)
         {  level++; // each mouse click increases the level
            repaint();
         }
      });
   }
   public void paint(Graphics g)
   {  Dimension d = getSize();
      int maxX = d.width - 1, maxY = d.height - 1,
          length=3* maxX / 4;
      midX = maxX/2; midY = maxY/2;
      x = (float)(-length/2);          // Start point
      y = 0;
      dir = 0;
      drawKoch(g, length, level);
   }

   public void drawKoch(Graphics g, double len, int n)
   {  if (n==0)
      {  double dirRad, xInc, yInc;
         dirRad = dir * Math.PI/180;
         xInc = len * Math.cos(dirRad);    // x increment
         yInc = len * Math.sin(dirRad);    // y increment
         float x1=x+ (float)xInc,
               y1=y+ (float)yInc;
         g.drawLine(iX(x), iY(y), iX(x1), iY(y1));
         x = x1;
         y = y1; 
         }
         else
         {  drawKoch(g, len/=3, --n);
            dir += 60;
            drawKoch(g, len, n);
            dir-=120;
            drawKoch(g, len, n);
            dir += 60;
            drawKoch(g, len, n);
    }
  }
}

Joining three Koch curves together, we obtain the interesting Koch snowflake as shown in Figure 8.2. The length of a Koch
snowflake is 3*(4/3)i for the ith generation since the length of Ki is (4/3)i. It increases infinitely as does i. The area of the Koch
snowflake grows slowly and is indeed bounded. In fact, as i becomes very large, its shape and roughness appear to remain the
same. Koch snowflakes can be easily drawn by connecting three Koch curves using a modified version of the program above (see
Exercise 8.2).

 
Figure 8.2: Koch snowflakes of generations 3, 5 and 7
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8.3 STRING GRAMMARS
As discussed above, Koch curves are drawn through a set of commands specifically defined for Koch curves. Many interesting
curves could be drawn in a similar fashion but they would require a complete program for each different kind of curve. The
approach in the above section is apparently not general for generating different kinds of curves.

Consider again the Koch curve. The pattern of the first generation repeats itself in smaller scales at higher generations.

Such a common pattern distinguishes Koch curves from other curves. Therefore, an approach that can encode the common
pattern in a simple string of characters would be general enough to specify a variety of curves. Formally, the specification of a
common pattern is called a grammar, and the grammar-based systems for drawing fractal curves are called L-Systems (invented
by the Hungarian biologist Aristid Lindenmayer in 1968).

The string of characters defining a common pattern instructs the turtle to draw the pattern. Each character in the string serves as a
command to perform an atomic operation. Given the distance D and turning angle α  through which the turtle is supposed to move,
let us now introduce the three most common commands:

F - move forward the distance D while drawing in the current direction.

+ - turn right through the angle α .

−  - turn left through the angle α .

For example, given a string F−F++F−F and angle 60°, the turtle would draw the first generation of Koch curve K1 as shown in
Figure 8.1. It would however be tedious and error-prone to manually provide long strings for different curves. Fortunately,
computers are best at performing repeated, long and tedious tasks without making mistakes. Using the same Koch curve
example, to draw more generations, we define a string production rule

The rule means that every occurrence of F (that is, the left-hand side of ‘→ ’) should be replaced by F−F++F−F (that is, the right-
hand side). Starting from an initial string F which is called the axiom, recursively applying this production rule would produce
strings of increasing lengths. Interpreting any of the strings, the turtle would draw a corresponding generation of the Koch curve.
Let us make the axiom the zero-th generation K0 = F and the first generation K1 = F −  F ++ F−F, then K2 can be obtained by
substituting every F character in K1 by F−F++F−F, so that

By interpreting this string, the turtle would draw a curve exactly the same as K2 in Figure 8.1. This process can continue to
generate the Koch curve at any higher generation.

In summary, to draw a fractal curve, such as the Koch curve, at any generation, we need to know at least the following three
parameters:

1. The axiom from which the turtle starts.

2. The production rule for producing strings from the F character. We will call the right-hand side of this rule the F-
string, which is sufficient to represent the rule.

3. The angle at which the turtle should turn.

Denoting these parameters in a template form (axiom, F-string, angle), we call this the grammar of the curve, and we can specify
the Koch curve as (F, F−F++F−F, 60).

To define more complex and interesting curves, we introduce three more production rules, obtaining grammars of six elements
instead of three as above. We introduce an X-string, to be used to replace every occurrence of X when producing the next
generation string. Similarly, there will be a Y-string, used to replace every occurrence of Y. Their replacement process is
performed in the same fashion as for the F-string. In other words, all the three string types are treated equally during the string-
production process. The X and Y characters are, however, different from the F character as they are simply ignored by the turtle
when drawing the curve. The third new production rule, named f-string, will be discussed shortly. In the meantime, we reserve its
position, but substitute nil for it to indicate that we do not use it. It follows that there are six parameters in the extended grammar
template

The following grammars produce some more interesting curves:

Figures 8.3, 8.4 and 8.5 illustrate some selected generations of the Dragon, Hilbert and Sierpinski curves that are generated
based on their string grammars as defined above.
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Figure 8.3: Dragon curves: 1st, 2nd, 3rd, 4th, 5th and 11th generations

 
Figure 8.4: Dragon curve of 8th generation, rounded corners

 
Figure 8.5: Hilbert curve (5th generation) and Sierpinski arrowhead (7th generation)

It is remarkable that no Dragon curve intersects itself. There seems to be one such intersection in the 4th generation Dragon
curve of Figure 8.3 and many more in those of higher generations. However, that is not really the case, as demonstrated by using
rounded instead of sharp corners. Figure 8.4 illustrates this for an 8th generation Dragon curve.

It is interesting to note that all the curves we have seen so far share one common characteristic, that is, each curve reflects the
exact trace of the turtle's movement and is drawn essentially as one long and curved line. This is because the turtle always moves
forward and draws by executing the F character command.

8.3.1 Moving without drawing and f-strings

Sometimes, it is desirable to keep some of the curve components at proper distances from each other. This implies that such a
curve is not connected. We therefore need to define a forward moving action for the turtle without drawing:

f - move forward the distance D without drawing a line.

The f-string, for which we have already reserved a position (just after the F-string) indicates how each lower-case f is to be
expanded. By using an f-string other than nil, we are able to generate an image with a combination of islands and lakes as shown
in Figure 8.6, based on the following grammar:
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Figure 8.6: Second generation islands

Note that here the parameters X-string and Y-string are unused and therefore written as nil.

To summarize, we have introduced the following six parameters into our string grammar:
1. The axiom from which the turtle starts;

2. The F-string for producing strings from F that instructs the turtle to move forward while drawing;

3. The f-string for producing strings from f, that instructs the turtle to move forward without drawing;

4. The X-string for producing strings from X, that does not affect the turtle;

5. The Y-string for producing strings from Y, that does not affect the turtle; and

6. The angle at which the turtle should turn.

In principle, more parameters may be introduced if the above six parameters cannot express new types of curves. On the other
hand, a grammar does not have to use all the introduced parameters since, as we have seen, a nil can be used to represent an
unused parameter.

8.3.2 Branching

With all the curves we have seen so far, one may observe the following phenomenon. The turtle is always moving forward along a
curved line. It sometimes draws (seeing an F character) and sometimes does not draw (seeing an f character). The turtle never
turns back to where it has visited before, since it cannot remember its previous positions. This implies that the turtle is unable to
branch off from any of the previous curve positions and draw branching lines.

To make the turtle remember places that it has visited, we need to introduce the concept of the turtle's state. Let us call the turtle's
current position together with its direction the state of the turtle. In other words, a state is defined by the values of a location in the
drawing space and the angle at the location. To enhance the drawing power of string-production rules, we allow the turtle to keep
its states and return to any of them later by introducing two more character commands:

[- store the current state of the turtle

] - restore the turtle's previously stored state

These two characters, however, do not form strings of their own and thus do not require new production rules. They merely
participate in the F-, f-, X-, and Y-strings to instruct how the turtle should behave.

The most appropriate data structure to implement the store and restore operations is a stack. Upon meeting a [ character, the
turtle pushes its current state onto the stack. When encountering a ] character, the turtle pops its previous state from the stack
and starts from the previous position and direction to continues its journey. Having empowered the turtle with the capability of
returning and restarting from its previous states, we are able to draw curves with branches, such as trees defined in the following
string grammars:

These grammars were used to obtain the trees shown in Figure 8.7.
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Figure 8.7: Examples of fractal trees: Tree1 (4th generation), Tree2 (5th generation) and Tree3 (4th
generation)

If the line thickness of each branch is set in proportion to its distance from the root, and also a small fraction of randomness is
applied to the turning angle, more realistic looking trees would be produced.

Most of the figures in this section were produced by the program below, with input files to be discussed after this program:
// FractalGrammars.java
import java.awt.*;
import java.awt.event.*;

public class FractalGrammars extends Frame
{  public static void main(String[] args)
   {  if (args.length == 0)
         System.out.println("Use filename as program argument.");
      else
         new FractalGrammars(args[0]);
   }
   FractalGrammars(String fileName)
   {  super("Click left or right mouse button to change the level");
      addWindowListener(new WindowAdapter()
         {public void windowClosing(
                 WindowEvent e){System.exit(0);}});
      setSize (800, 600);
      add("Center", new CvFractalGrammars(fileName));
      show();
   }
}

class CvFractalGrammars extends Canvas
{  String fileName, axiom, strF, strf, strX, strY;
   int maxX, maxY, level = 1;
   double xLast, yLast, dir, rotation, dirStart, fxStart, fyStart,
      lengthFract, reductFact;

   void error(String str)
   {  System.out.println(str);
      System.exit(1);
   }

   CvFractalGrammars(String fileName)
   {  Input inp = new Input(fileName);
      if (inp.fails())
         error("Cannot open input file."); 
      axiom = inp.readString(); inp.skipRest();
      strF = inp.readString(); inp.skipRest();
      strf = inp.readString(); inp.skipRest();
      strX = inp.readString(); inp.skipRest();
      strY = inp.readString(); inp.skipRest();
      rotation = inp.readFloat(); inp.skipRest();
      dirStart = inp.readFloat(); inp.skipRest();
      fxStart = inp.readFloat(); inp.skipRest();
      fyStart = inp.readFloat(); inp.skipRest();
      lengthFract = inp.readFloat(); inp.skipRest();
      reductFact = inp.readFloat();
      if (inp.fails())
         error("Input file incorrect.");

      addMouseListener(new MouseAdapter()
      {  public void mousePressed(MouseEvent evt)
         {  if ((evt.getModifiers() & InputEvent.BUTTON3_MASK) != 0)
            {  level--;       // Right mouse button decreases level
               if (level < 1)
                  level = 1;
            }
            else
               level++;     // Left mouse button increases level
            repaint();
         }
      });
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}

Graphics g;
int iX(double x){return (int)Math.round(x);}
int iY(double y){return (int)Math.round(maxY-y);}

void drawTo(Graphics g, double x, double y)
{  g.drawLine(iX(xLast), iY(yLast), iX(x) ,iY(y));
   xLast = x;
   yLast = y;
}

void moveTo(Graphics g, double x, double y)
{  xLast = x;
   yLast = y;
} 
public void paint(Graphics g)
{  Dimension d = getSize();
   maxX = d.width - 1;
   maxY = d.height - 1;
   xLast = fxStart * maxX;
   yLast = fyStart * maxY;
   dir = dirStart; // Initial direction in degrees
   turtleGraphics(g, axiom, level, lengthFract * maxY);
}

public void turtleGraphics(Graphics g, String instruction,
   int depth, double len)
{  double xMark=0, yMark=0, dirMark=0;
   for (int i=0;i<instruction.length();i++)
   {  char ch = instruction.charAt(i);
      switch(ch)
      {
      case 'F': // Step forward and draw
         // Start: (xLast, yLast), direction: dir, steplength: len
         if (depth == 0)
         {  double rad = Math.PI/180 * dir, // Degrees -> radians
               dx = len * Math.cos(rad), dy = len * Math.sin(rad);
            drawTo(g, xLast + dx, yLast + dy);
         }
         else
            turtleGraphics(g, strF, depth - 1, reductFact * len);
         break;
      case 'f': // Step forward without drawing
         // Start: (xLast, yLast), direction: dir, steplength: len
         if (depth == 0)
         {  double rad = Math.PI/180 * dir, // Degrees -> radians
               dx = len * Math.cos(rad), dy = len * Math.sin(rad);
            moveTo(g, xLast + dx, yLast + dy);
         }
         else
            turtleGraphics(g, strf, depth - 1, reductFact * len);
         break;
      case 'X':
         if (depth > 0)
            turtleGraphics(g, strX, depth - 1, reductFact * len);
         break;
      case 'Y':
         if (depth > 0) 
            turtleGraphics(g, strY, depth - 1, reductFact * len);
         break;
      case '+': // Turn right
         dir -= rotation; break;
      case '-': // Turn left
         dir += rotation; break;
      case '[': // Save position and direction
         xMark = xLast; yMark = yLast; dirMark = dir; break;
      case ']': // Back to saved position and direction
         xLast = xMark; yLast = yMark; dir = dirMark; break;
      }
    }
  }
}

The most essential input data consist of the grammar, for example,

for the Dragon curve. In addition, the following five values would help in obtaining desirable results:

The direction in which the turtle starts, specified as the angle, in degrees, relative to the positive x-axis.

The distance between the left window boundary and the start point, expressed as a fraction of the window width.

The distance between the lower window boundary and the start point, expressed as a fraction of the window height.
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The length of a single line segment in the first generation, expressed as a fraction of the window height.

A factor to reduce the length in each next generation, to prevent the image from growing outside the window
boundaries.

Setting the last two values can be regarded as tuning, so they were found experimentally. We supply all these data, that is, five
strings and six real numbers, in a file, the name of which is supplied as a program argument. For example, to produce the Dragon
curve, we can enter this command to start the program:
java FractalGrammars Dragon.txt

where the file Dragon.txt is listed below, showing the grammar (X, F, X+YF +, −FX−Y, 90) followed by the five values just
discussed:
"X"      // Axiom
"F"      // strF
""       // strf 
"X+YF+"  // strX
"-FX-Y"  // strY
90       // Angle of rotation
0        // Initial direction of turtle (east)
0.5      // Start at x = 0.5 * width
0.5      // Start at y = 0.5 * height
0.6      // Initial line length is 0.6 * height
0.6      // Reduction factor for next generation

As you can see, strings are supplied between a pair of quotation marks, and comment is allowed at the end of each line. Instead
of nil, we write the empty string "". Although the initial direction of the turtle is specified as east, the first line is drawn in the
direction south. This is because of the axiom "X",which causes initially strX = "X+YF+" to be used, where X and Y are ignored. So
actually "+F+" is executed by the turtle. As we know, the initial + causes the turtle to turn right before the first line is drawn due to
F, so this line is drawn downward instead of from left to right.

The other curves were produced in a similar way. Both the grammars and the five additional parameter values, as discussed
above, for these curves are listed in the following table:

Dragon (X, F, nil, X+YF+, −FX−Y, 90) 0 0.5 0.5 0.6 0.6

Hilbert (X, F, nil,−YF+XFX+FY− ,+XF−YFY−FX+, 90) 0 0.25 0.25 0.8 0.47

Sier-
pinski

(YF, F, nil, YF+XF+Y, XF−YF−X, 60). 0 0.33 0.5 0.38 0.51

Islands (F+F+F+F, F+f −FF+F+FF+Ff +FF −  f + FF−F−FF−Ff −FFF, ffffff,
nil, nil, 90)

0 0.25 0.65 0.2 0.2

Tree1 (F, F[+F]F[-F]F, nil, nil, nil, 25.7) 90 0.5 0.05 0.7 0.34

Tree2 (X, FF, nil, F[+X]F[−X]+X, nil, 20.0) 90 0.5 0.05 0.45 0.5

Tree3 (F, FF− [−F+F+F]+[+F−F−F], nil, nil, nil, 22.5) 90 0.5 0.05 0.25 0.5

 Open table as spreadsheet

When discussing the Tree examples with branches, we suggested that a stack would be used to push and pop states, while there
seemed to be no stack structure in the program. However, there is a local variable xMark in the recursive method turtleGraphics,
and for each recursive call a version of this variable is stored on a system stack. In other words, the use of a stack is implicit in this
program.
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8.4 MANDELBROT AND JULIA SETS
The Mandelbrot set, named after Polish-born French mathematician Benît Mandelbrot, is a fractal. Recall that a fractal curve
reveals small-scale details similar to the large-scale characteristics. Although the Mandelbrot set is self- similar at different scales,
the small-scale details are not identical to the whole. Also, the Mandelbrot set is infinitely complex. Yet the process of generating it
is based on an extremely simple equation involving complex numbers. The left part of Figure 8.8 shows a view of the Mandelbrot
set. The outline is a fractal curve that can be zoomed in for ever on any part for a close-up view, as the right part of Figure 8.8
illustrates. Even parts of the image that appear quite smooth show a jagged outline consisting of many tiny copies of the
Mandelbrot set. For example, as displayed in Figure 8.8, there is a large black region like a cardioid near the center with a circle
joining its left-hand side. The region where the cardioid and the circle are joined together appears smooth. When the region is
magnified, however, the detailed structure becomes apparent and shows many fascinating details that were not visible in the
original picture. In theory, the zooming can be repeated for ever, since the border is ‘infinitely complex’.

 
Figure 8.8: Mandelbrot set and magnified detail

The Mandelbrot set is a set M of complex numbers defined in the following way:

where C is the set of all complex numbers and, for some constant c, the sequence z0, z1, …  is defined as follows:

That is, the Mandelbrot set is the set of all complex numbers which fulfill the condition described above. In other words, if the
sequence z0, z1, z2, …  does not approach infinity, then c belongs to the set. Given a value c, the system generates a sequence of
values called the orbit of the start value 0:

As soon as an element of the sequence {zn} is at a distance greater than 2 from the origin, it is certain that the sequence tends to
infinity. A proof of this goes beyond the scope of this book. If the sequence does not approach infinity and therefore remains at a
distance of at most 2 from the origin for ever, then the point c is in the Mandelbrot set. If any zn is farther than 2 from the origin,
then the point c is not in the set.

Now let us consider how to generate a Mandelbrot image. Since the Mandelbrot set is a set of complex numbers, first we have to
find these numbers that are part of the set. To do this we need a test that will determine if a given number is inside the set or
outside. The test is applied to complex numbers zn computed as zn+1 = z2n+c. The constant c does not change during the testing
process. As the number being tested, c is the point on the complex plane that will be plotted when the testing is complete. This
plotting will be done in a color that depends on the test result. For some value nMax, say 30, we start computing z1, z2, …  until
either we have computed zn for n = nMax, or we have found a point zn(n ≤  nMax) whose distance from the origin O is greater than
2. In the former case, having computed nMax elements of the sequence, none of which is farther than a distance 2 away from O,
we give up, consider the point c belonging to the Mandelbrot set, and plot it in black. In the latter case, the point zn going beyond
the distance 2, we plot the point c in a color that depends on the value of n.

Let us now briefly discuss complex arithmetic, as far as we need it here, for those who are unfamiliar with this subject. Complex
numbers are two-dimensional by nature. We may regard the complex number
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as the real number pair (x, y). It is customary to refer to x as the real part and to y as the imaginary part of z. We display z in the
usual way, with x drawn along the horizontal axis and y along the vertical axis. Addition of two complex numbers is the same as
that for vectors:

By contrast, multiplication of complex numbers is rather complicated:

It follows that for

we have

Although we do not need this for our purpose, we may as well note that by setting x = 0 and y = 1, giving 0 + 1 × i = i, we find

which explains why the symbol i is often referred to as the square root of − 1:

The distance of the complex number z = x + yi from the origin O is called the absolute value or modulus of z and is denoted as |z|.
It follows that

Remember, |z|2=x2 + y2, while z2 = (x2 −  y2) + 2xyi so, in general, |z|2 is unequal to z2. This very brief introduction to complex
numbers cannot replace a thorough treatment as found in mathematics textbooks, but it will be sufficient for our Mandelbrot
subject.

In the algorithm for Mandelbrot fractals, when computing each successive value of z, we want to know if its distance from the
origin exceeds 2. To calculate this distance, usually denoted as |z|, we add the square of its distance from the x-axis (the
horizontal real axis) to the square of its distance from the y-axis (the vertical imaginary axis) and then take the square root of the
result. The computation of the square root operation can be saved by just checking whether the sum of these squares is greater
than 4. In other words, for

we perform the test

which is expressed in terms of real numbers as

Now to compute each new value of z using zn+1 = z2n+c, let us write Re(c) and Im(c) for the real and imaginary parts of c. It then
follows from

that the real and imaginary parts of each element zn+1 are found as follows:
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As we increment n, the value of |zn|2 will either stay equal to or below 4 for ever, or eventually surpass 4. Once |zn|2 surpasses 4,
it will increase for ever. In 2 stays small, the number c being tested is part of the Mandelbrot set. In the latter case, when |zn|
number c is not part of the Mandelbrot set.

8.4.1 Implementation in Java

To display the whole Mandelbrot set image properly, we need some mapping

to convert the device coordinates (xPix, yPix) to the real and imaginary parts x and y of the complex number c = x + yi. In the
program, the variables xPix and yPix are of type int, while x and y are of type double. We will use the following ranges for the
device coordinates:

where we obtain the width w and height h of the drawing rectangle in the usual way:
w = getSize().width;
h = getSize().height;

For x and y we have

The user will be able to change these boundary variables minRe, maxRe, minIm and maxIm by dragging the left mouse button.
Their default values are minRe0 = − 2, maxRe0 = +1, minIm0 = − 1, maxIm0 = +1, which will at any time be restored when the
user clicks the right mouse button. Using the variable factor, computed in Java as
factor = Math.max((maxRe - minRe)/w, (maxIm - minIm)/h);

we can perform the above mapping from (xPix, yPix) to (x, y) by computing

For every device coordinate pair (xPix, yPix) of the window, the associated point c = x + iy in the complex plane is computed in this
way. Then, in up to nMax iterations, we determine whether this point belongs to the Mandelbrot set. If it does, we display the
original pixel (xPix, yPix) in black; otherwise, we plot this pixel in a shade of red that depends on n, the number of iterations
required to decide that the point is outside the Mandelbrot set. The expression 100 + 155 * n/nMax ensures that this color value will
not exceed its maximum value 255. If nMax is set larger than that in the program, program execution will take more time but the
quality of the image would improve. The implementation of this can by found in the paint method at the bottom of the following
program, after which we will discuss the implementation of cropping and zooming.
// MandelbrotZoom.java: Mandelbrot set, cropping and zooming in.
import java.awt.*;
import java.awt.event.*;

public class MandelbrotZoom extends Frame
{  public static void main(String[] args){new MandelbrotZoom();}
   MandelbrotZoom()
   {  super("Drag left mouse button to crop and zoom. " +
            "Click right mouse button to restore.");
      addWindowListener(new WindowAdapter()
         {public void windowClosing(
                 WindowEvent e){System.exit(0);}});
      setSize (800, 600);
      add("Center", new CvMandelbrotZoom());
      show();
   }
}
class CvMandelbrotZoom extends Canvas
{  final double minRe0 = -2.0, maxRe0 = 1.0,
                minIm0 = -1.0, maxIm0 = 1.0;
   double minRe = minRe0, maxRe = maxRe0,
                  minIm = minIm0, maxIm = maxIm0, factor, r;
   int n, xs, ys, xe, ye, w, h;

   void drawWhiteRectangle(Graphics g)
   { g.drawRect(Math.min(xs, xe), Math.min(ys, ye), 
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   { g.drawRect(Math.min(xs, xe), Math.min(ys, ye), 
                                  Math.abs(xe - xs), Math.abs(ye - ys));
}

boolean isLeftMouseButton(MouseEvent e)
{  return (e.getModifiers() & InputEvent.BUTTON3_MASK) == 0;
}

CvMandelbrotZoom()
{  addMouseListener(new MouseAdapter()
  {  public void mousePressed(MouseEvent e)
      {  if (isLeftMouseButton(e))
         { xs = xe = e.getX(); // Left button
           ys = ye = e.getY();
         }
         else
         { minRe = minRe0;     // Right button
           maxRe = maxRe0;
           minIm = minIm0;
           maxIm = maxIm0;
           repaint();
         }
       }

       public void mouseReleased(MouseEvent e)
       {  if (isLeftMouseButton(e))
          {  xe = e.getX(); // Left mouse button released
             ye = e.getY(); // Test if points are really distinct:
             if (xe != xs && ye != ys)
             { int xS = Math.min(xs, xe), xE = Math.max(xs, xe),
                   yS = Math.min(ys, ye), yE = Math.max(ys, ye),
                   w1 = xE - xS, h1 = yE - yS, a = w1 * h1,
                   h2 = (int)Math.sqrt(a/r), w2 = (int)(r * h2),
                   dx = (w2 - w1)/2, dy = (h2 - h1)/2;
               xS -= dx; xE += dx;
               yS -= dy; yE += dy; // aspect ration corrected
               maxRe = minRe + factor * xE;
               maxIm = minIm + factor * yE;
               minRe += factor * xS;
               minIm += factor * yS;
               repaint();
           }
        }
    } 
        });

        addMouseMotionListener(new MouseMotionAdapter()
        {  public void mouseDragged(MouseEvent e)
           {  if (isLeftMouseButton(e))
              {  Graphics g = getGraphics();
                 g.setXORMode(Color.black);
                 g.setColor(Color.white);
                 if (xe != xs || ye != ys)
                    drawWhiteRectangle(g); // Remove old rectangle:
                 xe = e.getX();
                 ye = e.getY();
                 drawWhiteRectangle(g);    // Draw new rectangle:
              }
            }
        });
      }

      public void paint(Graphics g)
      {  w = getSize().width;
         h = getSize().height;
         r = w/h; // Aspect ratio, used in mouseReleased
         factor = Math.max((maxRe - minRe)/w, (maxIm - minIm)/h);
         for(int yPix=0; yPix<h; ++yPix)
         {  double cIm = minIm + yPix * factor;
            for(int xPix=0; xPix<w; ++xPix)
            {  double cRe = minRe + xPix * factor,x=cRe,y=cIm;
               int nMax = 100, n;
               for (n=0; n<nMax; ++n)
               {  double x2 = x * x, y2 = y * y;
                  if (x2 + y2 > 4)
                     break;     //  Outside
                  y = 2 * x * y + cIm;
                  x = x2 - y2 + cRe;
               }
               g.setColor(n == nMax ? Color.black            // Inside
                   : new Color(100 + 155 * n / nMax, 0, 0)); // Outside
               g.drawLine(xPix, yPix, xPix, yPix);
            }
        }
    }
}

As indicated in the title bar (implemented by a call to super at the beginning of the MandelbrotZoom constructor), the user can
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As indicated in the title bar (implemented by a call to super at the beginning of the MandelbrotZoom constructor), the user can
zoom in by using the left mouse button. By dragging the mouse with the left button pressed down, a rectangle appears, as shown
in Figure 8.9, with one of its corners at the point first clicked and the opposite one denoting the current mouse position. This
process is sometimes referred to as rubber banding.

 
Figure 8.9: Cropping and zooming in

When the user releases the mouse button, the picture is cropped so that everything outside the rectangle is removed and the
contents inside are enlarged and displayed in the full window. This cropping is therefore combined with zooming in, as Figure 8.10
illustrates. The user can continue zooming in by cropping in the same way for ever. It would be awkward if there were no way of
either zooming out or returning to the original image. In program MandelbrotZoom.java the latter is possible by clicking the right
mouse button.

 
Figure 8.10: Result of cropping and zooming in

To implement this cropping rectangle, we use two opposite corner points of it. The start point (xs, ys) is where the user clicks the
mouse to start dragging, while the opposite corner is the endpoint (xe, ye). Three Java methods are involved:

mousePressed: to define both the start point (xs, ys) and initial position of the endpoint (xe, ye);

mouseDragged: to update the endpoint (xe, ye), removing the old rectangle and drawing the new one;

mouseReleased: to compute the logical boundary values minRe, maxRe, minIm and maxIm on the basis of (xs,
ys)and(xe, ye).

In mouseDragged, drawing and removing the cropping rectangle is done using the XOR mode which was briefly discussed at the
end of Section 4.3. Here we use two calls
g.setXORMode(Color.black);
g.setColor(Color.white);

after which we draw both the old and the new rectangles. In mouseReleased, some actions applied to the cropping rectangle
require explanation. As we want the zooming to be isotropic, we have to pay attention to the cropping rectangle having an aspect
ratio
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different from the aspect ratio

of the (large) drawing rectangle. For example, the cropping rectangle may be in ‘portrait’ format (with w1 < h1), while the drawing
rectangle has the ‘landscape’ characteristic (with w > h). The simplest way to deal with this case would be to cut off a portion of
the cropping rectangle at the top or the bottom. However, that would lead to a result that may be unexpected and undesirable for
the user. We will therefore replace the cropping rectangle with one that has the same center and the same area a = w1h1, but an
aspect ratio of r (mentioned above) instead of r1. The dimensions of this new rectangle will be w2 × h2 instead of w1 × h1. To find
w2 and h2 we solve

giving

Then we add the correction term Δ x = 1/2(w2 −  w1)to the x-coordinate xE of the right cropping-rectangle edge and subtract it from
the x-coordinate xS of the corresponding left edge. After performing similar operations on yS and yE, the resulting new rectangle
with top-left corner point (xS, yS) and bottom-right corner point (xE, yE) is about as large as the user-defined rectangle but in
shape similar to the large drawing rectangle. We then have to compute the corresponding coordinates in the complex plane, using
the mapping discussed earlier. Since the new logical right boundary values maxRe and maxIm should correspond to xE and yE,
we compute
maxRe = minRe + factor * xE;
maxIm = minIm + factor * yE;

Similarly, to obtain the new left boundary values, we have to add factor × xS and factor × yS to the old values minRe and minIm,
respectively, giving the slightly more cryptic statements
minRe += factor * xS;
minIm += factor * yS;

8.4.2 Julia sets

Associated with every point in the complex plane is a set somewhat similar to the Mandelbrot set called a Julia set, named after
the French mathematician Gaston Julia. To produce an image of a Julia set, we use the same iteration zn+1 =z2n + c, this time
with a constant value of c but with a starting value z0 derived from the coordinates (xPix, yPix) of the pixel displayed on the screen.
We obtain interesting Julia sets if we choose points near the boundaries of the Mandelbrot set as starting values z0. For example,
we obtained Figure 8.11 by taking c = − 0.76 + 0.084i, which in the Mandelbrot set (Figure 8.8) is the point near the top of the
circle on the left.

 
Figure 8.11: Julia set, obtained by using c = − 0.76 + 0.084i

Since the Mandelbrot set can be used to select c for the Julia set, it is said to form an index into the Julia set. Such an interesting
relationship is also evidenced by the following fact. A Julia set is either connected or disconnected. For values of z0 chosen from
within the Mandelbrot set, we obtain connected Julia sets. That is, all the black regions are connected. Conversely, those values
of z0 outside the Mandelbrot set give disconnected Julia sets. The disconnected sets are often called dust, consisting of individual
points no matter what resolution they are viewed at. If, in the program MandelbrotZoom.java,we replace the paint method with the
one below (preferably also replacing the name Mandelbrot with Julia throughout the program), and specify the dimensions w =
900 and h = 500 in the call to setSize, we obtain a program which initially produces Figure 8.11. Again, we can display all kinds of
fascinating details by cropping and zooming. Note, in this program, c is a constant and the starting value z of the sequence is
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fascinating details by cropping and zooming. Note, in this program, c is a constant and the starting value z of the sequence is
derived from the device coordinates (xPix, yPix).

public void paint(Graphics g)
{  Dimension d = getSize();
   w = getSize().width;
   h = getSize().height;
   r = w/h;
   double cRe = -0.76, cIm = 0.084;
   factor = Math.max((maxRe - minRe)/w, (maxIm - minIm)/h);
   for(int yPix=0; yPix<h; ++yPix)
   {  for(int xPix=0; xPix<w; ++xPix)
      {  double x = minRe + xPix * factor,
                y = minIm + yPix * factor;
         int nMax = 100, n;
         for (n=0; n<nMax; ++n)
         {  double x2=x*x,y2=y*y;
            if (x2 + y2 > 4)
               break;      // Outside
            y = 2 * x * y + cIm;
            x = x2 - y2 + cRe;
         }
         g.setColor(n == nMax ? Color.black             // Inside
              : new Color(100 + 155*n/nMax,0,0));       // Outside
         g.drawLine(xPix, yPix, xPix, yPix);
       }
    }
}

EXERCISES

8.1 Write a program to produce Dragon curves with rounded corners, as shown in Figure 8.4.

8.2 Write a program to connect Koch curves, as shown in Figure 8.2.

8.3 To make bush curves (trees) appear more natural and pleasing, add randomness to the angles
and lengths of the lines, and also draw lines with thickness. For example, the lower part of a tree
is thicker than its upper part.

8.4 Further to Exercise 8.3, add green leaves to the branches and make the leaves oriented toward
the same directions as the branches.

8.5 Apply the method of cropping and zooming used in Mandel- brotZoom.java to some other (non-
trivial) graphics program of your own choice.

8.6 Write a program to draw the Mandelbrot set, and when clicked on the Mandelbrot image, a Julia
set corresponding to the clicked point is drawn in a window beside the Mandelbrot window. The
clicked point in the form of z = x + yi should also be displayed in the side window.

Answers

8.1 In the program FractalGrammars.java, there is the following fragment, which draws a line from the current
point (xLast, yLast) to the new point (xLast + dx, yLast + dy), which, after the call to drawTo, will
automatically be the current point (xLast, yLast).
case 'F': // Step forward and draw
   // Start: (xLast, yLast), direction: dir, steplength: len
   if (depth == 0)
   {  double rad = Math.PI/180 * dir, // Degrees -> radians
      dx = len * Math.cos(rad), dy = len * Math.sin(rad);
      drawTo(g, xLast + dx, yLast + dy);
   }

Besides xLast and yLast, introduce the variables xCorner and yCorner, indicating the cornerpoints that we
will not really visit because of the rounded corners. Each time, instead of drawing a line as discussed
above, draw two lines. The first is one from the current point (xLast, yLast) to (xCorner + dx/4, yCorner +
dy/4) to approximate the rounded corner. After this, the point just mentioned is now automatically stored as
the new point (xLast, yLast) to enable you to used drawTo again. Then update the variables xCorner and
yCorner by increasing them by dx and dy, respectively, so they indicate the next cornerpoint. Then you
draw the second line, from the current point (xLast, yLast)to(xCorner −  dx/4, yCorner −  dy/4). Note that
this last line is half as long as the full line drawn in the above fragment, since a quarter of it at the
beginning and a quarter of it at the end are now replaced with the approximated rounded corners.

8.2 In the paint method of the program Koch.java in Section 8.2, there is only one call to drawKoch preceded
by setting dir = 0. All you have to do is add two other such calls, each preceded by assigning an
appropriate value to dir so that the turtle starts in the right direction.

8.3 You can generate a random number between 0 and 1 by calling Math. random(), and derive the thickness
of a branch from the height of that branch in the tree. A line of any thickness can be realized by using the
method fillPolygon.
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8.4 This hint is based on the program FractalGrammars.java and the string grammar Tree2 of Section 8.3. In
this example, we have

Each time the second F in this string is encountered a branch is drawn that should have a leaf at its end.
So in the switch statement you should add a fragment to draw a leaf in the case F part after the call to
drawTo, provided that the position counter i for strX is equal to 5. One way of drawing a closed figure that
approximates the shape of a leaf is to draw a sequence of filled circles (by means of drawOval) whose
centers lie on a line that has the same direction (dx, dy) as the branch in question.

8.5 Use methods iX and iY to convert logical to device coordinates and methods fx and fy for the inverse
conversions. Restricting this discussion to x-coordinates, we can use
int iX(float x)
{  return (int)(xDevCenter + (x - xLogCenter)/pixelSize);
}

float fx(int x)
{  return xLogCenter + (x - xDevCenter) * pixelSize;
}

As usual, we use d defined as
Dimension d = getSize();

Let us denote the current boundaries of the logical x-coordinates by xLeft and xRight. For example, we can
initially set these boundaries equal to those of the device coordinates, that is, to 0 and d.width(),
respectively. In the method mouseReleased, we obtain the device coordinates xs and xe for the left and
right boundaries of the cropping rectangle. We then apply the method fx to these to obtain the
corresponding logical coordinates, writing, for example,
xLeftNew = fx(xs);
xRightNew = fx(xe);

Then these new values are assigned to xLeft and xRight, and used to compute
pixelSize = Math.max((xRight - xLeft)/d.width,
                     (yTop - yBottom)/d.height);
xLogCenter = (xLeft + xRight)/2;

Let us now discuss the plausibility of these statements (rather than proving them rigorously). Normally,
mouseRelease provides us with a range (xs, xe) that is smaller than the width of the drawing rectangle.
Then after applying fx and fy, the new logical x-range (xLeft, xRight) will also decrease, and the same
applies to pixelSize. As a result of the latter, the value added to xDevCenter in the above method iX will be
larger than it was before, so that the figure will appear on a larger scale. As for panning, let us assume that
the new x-range selected by the user is on the left half of the screen. Then the new center xLogCenter of
the logical x-range will be smaller than it was before, which will increase the value computed by the
method iX. This should indeed be the case, since the part of the image displayed in the selected x-range
on the left half of the screen should be displayed in the center of the drawing rectangle, or, in other words,
it should shift to the right.

8.6 Modify the MandelbrotZoom.java program and the paint method for Julia sets. Combine the two programs
so that the latter will draw Julia sets in a side window.
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Appendix A: Linear Interpolation of 1/z
We will now discuss why, with central projection, we can use linear interpolation of 1/z, called zi in Chapter 7, and not simply z. For
example, with two points P1(x′1, y′1, zi′1) and P2(x′2, y′2, zi2), where x′1, y′1, x′2 and y′2 are logical screen coordinates, while zi1
= 1/z1 and zi2 = 1/z2, we can compute similar coordinates of the midpoint M(xM, yM, ziM) by using

In general we have

Figure A.1 shows the eye-coordinate axes x and z and the screen z = − d.For simplicity, we ignore the y-axis. Recall that the
position E of the eye is the origin of this coordinate system and that the negative z-axis points towards the center of the object.
Point P lies on line l, which has the following equation:

 
Figure A.1: Central projection of point P on screen

The ray of light PE intersects the screen in P′(x′, − d). Then all points (x, z)of this ray of light satisfy the equation

or

To compute the point of intersection of this ray of light and line l, we substitute this result in (A.1), finding

Dividing the left- and right-hand sides of this equation by z and swapping them, we obtain 1
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which shows that 1/z is a linear function of x′.

This is useful because it enables us to perform linear interpolation. This term is used to indicate that, with a linear function

and three values xA, xB and xI satisfying

we can express f (xI) in f (xA) and f (xB) in the same way as xI is expressed in xA and xB, that is,

Although this sounds very plausible, here is a proof for the sake of completeness:

As we have seen in Equation (A.2) that 1/z is a linear function of x′, it follows that we can find the z-coordinate of a point I on a line
AB in 3D space by using 1

where λ  indicates the position of the projection I′ relative to A′ and B′ :

We have used Equation (A.3) in Chapters 6 and 7 to compute the z-coordinate of an unknown 3D point that is the original of a
given 2D image point.

A different notation

In the preceding discussion we have written equations of the form

in which the variable xA′ occurs twice. We can instead use a different equation, in which each of the variables xA′ and xB′ occurs
only once, at the price of using two occurrences of the parameter λ :

An example

Using λ  = 0.5 in the above formulas, we obtain
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Figure A.2 illustrates this. The object shown in (a) is a wire-frame model of a cube, containing an extra square between the front
and back faces and passing through point I. The viewpoint indicated in (c) as Eye is used to obtain the perspective view (b). Here
the projection I is the midpoint of A′ B′, so that the first and second of the above three equations clearly apply. In 3D space, I is
not the midpoint of AB, but BI = 2AI, as (a) and (c) show. Since the negative ze-axis points from the eye to the center of the object,
the distances shown in (c) imply that

 
Figure A.2: Linear interpolation applied to inverse values

These values satisfy the third of the above three equations.
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Appendix B: A Note on Event Handling
A brief discussion of event handling in Java will be helpful to understand some related, rather cryptic program fragments in this
book.

An event listener

For some component, say, a button bt, we can write
bt.addActionListener(x);

where x is an object of a class that implements the interface ActionListener. Since this implies that there is a method
actionPerformed in this class, the above statement is in fact a means to provide the button bt with information about how to
respond to the user clicking this button. For example, the above statement might be preceded by
ButtonAction x = new ButtonAction();

with ButtonAction defined as
class ButtonAction implements ActionListener
{ public void actionPerformed(ActionEvent ae)
  { System.out.println("Button bt clicked.");
  }
}

The object x in the above example is referred to as an event listener.

Using this as an event listener

Instead of writing a special class, such as ButtonAction, for the event in question, we may as well use a class that also contains
methods that are unrelated to it, provided that this class implements the interface ActionListener. In particular, we can use the very
class in which we create the button and call the method addActionListener, writing
class MyFrame extends Frame implements ActionListener
{ MyFrame()
  { ...
    bt.addActionListener(this);
    ...
  }
  public void actionPerformed(ActionEvent ae){ ... }
  ...
}

In contrast to our previous example, this method actionPerformed has access to all fields and methods of the class (MyFrame) in
which the call to addAction-Listener occurs.

Inner classes

Instead of the previous, somewhat contrived solution, we can use a special class ButtonAction and yet have access to the fields
and methods of another class. We simply define ButtonAction in that class. For example, in the following fragment the method
actionPerformed has access to the fields and methods of MyFrame:
class MyFrame extends Frame
{ MyFrame()
  { ...
    bt.addActionListener(new ButtonClass());
    ...
  }
  class ButtonClass implements ActionListener
  { public void actionPerformed(ActionEvent ae){ ... }
  }
  ...
}

Anonymous classes

It is possible to define a class at the place where we need it, without giving it a name. For example, to create an object of such an
anonymous subclass of, say, Superclass, we canwrite
Superclass y = new Superclass(){...};

Recall that a variable of type Superclass can also refer to objects of subclasses of Superclass. In the above statement, the part
{… } can be identical to that which we would otherwise use in the more familiar form
class Subclass extends Superclass {...}
Superclass y = new Subclass();

Instead of a normal class Superclass, we can also use an interface here. This explains the following usage of an anonymous
class for event handling:
class MyFrame extends Frame
{ MyFrame()
  { ...
    bt.addActionListener(new ActionListener(){...});
    ...
  }
  ...
}
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}

Since the anonymous class, defined on the program line in the middle of this fragment, implements ActionListener, the part {… }
must contain the method actionPerformed. This very compact form is used, for example, in program Cylinder.java of Section 6.6.

Adapter classes

As you will know, an interface promises that a set of methods will be defined. For the ActionListener interface, this set consists of
only one method, action-Performed. However, many more methods have to be defined for other event interfaces, such as
WindowListener and MouseListener. For every frame, a call to addWindowListener is required to enable the user to close this
frame. Unfortunately, the interface WindowListener requires as many as seven methods to be defined, even if we are interested in
only one, windowClosing.The fragment below lists these seven methods, six of which are defined as do-nothing functions:

class MyFrame extends Frame
{ MyFrame()
  { ...
    addWindowListener(new WindowListener()
    { public void windowClosing(WindowEvent e){System.exit(0);}
      public void windowOpened(WindowEvent e){}
      public void windowIconified(WindowEvent e){}
      public void windowDeiconified(WindowEvent e){}
      public void windowClosed(WindowEvent e){}
      public void windowActivated(WindowEvent e){}
      public void windowDeactivated(WindowEvent e){}
   });
   ...
  }
  ...
}

To enable us to avoid such tedious program code, the designers of JDK1.1 have introduced a class WindowAdapter, which
implements the interface WindowListener by providing seven do-nothing methods, so we can override only those we like.
Therefore, instead of the above fragment, we will actually write
class MyFrame extends Frame
{ MyFrame()
  { ...
    addWindowListener(new WindowAdapter()
      {public void windowClosing(WindowEvent e){System.exit(0);}});
    ...
  }
  ...
}

The two lines in the middle of this fragment occur in most programs in this book. Mouse events are similar: here we can use the
class MouseAdapter, which implements the interface MouseListener. It is used, for example, in the following fragment, copied
from program Anisotr.java of Section 1.4:
CvAnisotr()
{ addMouseListener(new MouseAdapter()
  { public void mousePressed(MouseEvent evt)
    { xP = fx(evt.getX()); yP = fy(evt.getY());
        repaint();
     }
  });
}

Note that the method addMouseListener is used here for a canvas, not for aframe.
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Appendix C: File Obj3D.java
The following file is not a complete program. It is the code for a single class, Obj3D, which is discussed in Section 5.5 and used in
the programs Wire- frame.java of Chapter 5, HLines.java of Chapter 6, Painter.java of Section 7.3, and ZBuf.java of Section 7.4.
// Obj3D.java: A 3D object and its 2D representation.
// Uses: Point2D (Section 1.5), Point3D (Section 3.9),
//       Polygon3D, Input (Section 5.5).
import java.awt.*;
import java.util.*;

class Obj3D
{  private float rho, d, theta=0.30F, phi=1.3F, rhoMin, rhoMax,
      xMin, xMax, yMin, yMax, zMin, zMax, v11, v12, v13, v21,
      v22, v23, v32, v33, v43, xe, ye, ze, objSize;
   private Point2D imgCenter;
   private double sunZ = 1/Math.sqrt (3), sunY = sunZ, sunX = -sunZ,
      inprodMin = 1e30, inprodMax = -1e30, inprodRange;
   private Vector w = new Vector();         // World coordinates
   private Point3D[] e;                     // Eye coordinates
   private Point2D[] vScr;                  // Screen coordinates
   private Vector polyList = new Vector();  // Polygon3D objects 
   private String fName = " ";              // File name

   boolean read(String fName)
   {  Input inp = new Input(fName);
      if (inp.fails())return failing();
      this.fName = fName;
      xMin = yMin = zMin = +1e30F;
      xMax = yMax = zMax = -1e30F;
      return readObject(inp); // Read from inp into obj
   }

   Vector getPolyList(){return polyList;}
   String getFName(){return fName;}
   Point3D[] getE(){return e;}
   Point2D[] getVScr(){return vScr;}
   Point2D getImgCenter(){return imgCenter;}
   float getRho(){return rho;}
   float getD(){return d;}

   private boolean failing()
   {  Toolkit.getDefaultToolkit().beep();
      return false;
   }

   private boolean readObject(Input inp)
   {  for (;;)
      {  int i = inp.readInt();
         if (inp.fails()){inp.clear(); break;}
         if (i > 0)
         {  System.out.println(
               "Negative vertex number in first part of input file");
            return failing();
         }
         w.ensureCapacity(i + 1);
         float x = inp.readFloat(), y = inp.readFloat(),
               z = inp.readFloat();
         addVertex(i, x, y, z);
      }
      shiftToOrigin(); // Origin in center of object.
      char ch;
      int count = 0;
      do   // Skip the line "Faces:"
      {  ch = inp.readChar(); count++; 
      }  while (!inp.eof() && ch != '\n');
      if (count < 6 || count > 8)
      {  System.out.println("Invalid input file"); return failing();
      }
     //  Build polygon list:
     for (;;)
     {   Vector vnrs = new Vector();
         for (;;)
         {  int i = inp.readInt();
            if (inp.fails()){inp.clear(); break;}
            int absi = Math.abs(i);
            if (i == 0 || absi >= w.size() ||
               w.elementAt(absi) == null)
            {  System.out.println("Invalid vertex number: " + absi +
               " must be defined, nonzero and less than " + w.size());
               return failing();
            }
            vnrs.addElement(new Integer(i));
         }
         ch = inp.readChar();
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         ch = inp.readChar();
         if (ch != '.' && ch != '#') break;
         // Ignore input lines with only one vertex number:
         if (vnrs.size() >= 2)
            polyList.addElement(new Polygon3D(vnrs));
      }
      inp.close();
      return true;
   }

   private void addVertex(int i, float x, float y, float z)
   {  if (x < xMin) xMin = x; if (x > xMax) xMax = x;
      if (y < yMin) yMin = y; if (y > yMax) yMax = y;
      if (z < zMin) zMin = z; if (z > zMax) zMax = z;
      if (i >= w.size()) w.setSize(i + 1);
      w.setElementAt(new Point3D(x, y, z), i);
   }

   private void shiftToOrigin()
   {  float xwC = 0.5F * (xMin + xMax),
            ywC = 0.5F * (yMin + yMax),
            zwC = 0.5F * (zMin + zMax);
      int n = w.size();
      for (int i=1; i<n; i++) 
            if (w.elementAt(i) != null)
            {  ((Point3D)w.elementAt(i)).x -= xwC;
               ((Point3D)w.elementAt(i)).y -= ywC;
               ((Point3D)w.elementAt(i)).z -= zwC;
            }
         float dx = xMax - xMin, dy = yMax - yMin, dz = zMax - zMin;
         rhoMin = 0.6F * (float) Math.sqrt(dx * dx + dy * dy + dz * dz);
         rhoMax = 1000 * rhoMin;
         rho = 3 * rhoMin;
      }

      private void initPersp()
      {  float costh = (float)Math.cos(theta),
               sinth = (float)Math.sin(theta),
               cosph = (float)Math.cos(phi),
               sinph = (float)Math.sin(phi);
         v11 = -sinth; v12 = -cosph * costh; v13 = sinph * costh;
         v21 = costh;  v22 = -cosph * sinth; v23 = sinph * sinth;
                       v32 = sinph;          v33 = cosph;
                                             v43 = -rho;
      }

      float eyeAndScreen(Dimension dim)
         // Called in paint method of Canvas class
      {  initPersp();
         int n = w.size();
         e = new Point3D[n];
         vScr = new Point2D[n];
         float xScrMin=1e30F, xScrMax=-1e30F,
               yScrMin=1e30F, yScrMax=-1e30F;
         for (int i=1; i<n; i++)
         {  Point3D P = (Point3D)(w.elementAt(i));
            if (P == null)
         {  e[i] = null; vScr[i] = null;
         }
         else
         {  float x = v11 * P.x + v21 * P.y;
            float y = v12 * P.x + v22 * P.y + v32 * P.z;
            float z = v13 * P.x + v23 * P.y + v33 * P.z + v43;
            Point3D Pe = e[i] = new Point3D(x, y, z);
            float xScr = -Pe.x/Pe.z, yScr = -Pe.y/Pe.z;
            vScr[i] = new Point2D(xScr, yScr);
            if (xScr < xScrMin) xScrMin = xScr; 
            if (xScr > xScrMax) xScrMax = xScr;
            if (yScr < yScrMin) yScrMin = yScr;
            if (yScr > yScrMax) yScrMax = yScr;
         }
      }
      float rangeX = xScrMax - xScrMin, rangeY = yScrMax - yScrMin;
      d = 0.95F * Math.min(dim.width/rangeX, dim.height/rangeY);
      imgCenter = new Point2D(d * (xScrMin + xScrMax)/2,
                              d * (yScrMin + yScrMax)/2);
      for (int i=1; i<n; i++)
      {  if (vScr[i] != null){vScr[i].x *= d; vScr[i].y *= d;}
      }
      return d * Math.max(rangeX, rangeY);
      // Maximum screen-coordinate range used in CvHLines for HP-GL
   }

   void planeCoeff()
   {  int nFaces = polyList.size();

      for (int j=0; j<nFaces; j++)
      {  Polygon3D pol = (Polygon3D)(polyList.elementAt(j));
         int[] nrs = pol.getNrs();
         if (nrs.length < 3) continue;
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         if (nrs.length < 3) continue;
         int iA = Math.abs(nrs[0]), // Possibly negative
             iB = Math.abs(nrs[1]), // for HLines.
             iC = Math.abs(nrs[2]);
         Point3D A = e[iA], B = e[iB], C = e[iC];
         double
            u1 = B.x - A.x, u2 = B.y - A.y, u3 = B.z - A.z,
            v1 = C.x - A.x, v2 = C.y - A.y, v3 = C.z - A.z,
            a = u2 * v3 - u3 * v2,
            b = u3 * v1 - u1 * v3,
            c = u1 * v2 - u2 * v1,
            len = Math.sqrt(a * a + b * b + c * c), h;
            a /= len; b /= len; c /= len;
            h = a * A.x + b * A.y + c * A.z;
         pol.setAbch(a, b, c, h);
         Point2D A1 = vScr[iA], B1 = vScr[iB], C1 = vScr[iC];
         u1 = B1.x - A1.x; u2 = B1.y - A1.y;
         v1 = C1.x - A1.x; v2 = C1.y - A1.y;
         if (u1 * v2 - u2 * v1 <= 0) continue; // backface
         double inprod = a * sunX + b * sunY + c * sunZ;
         if (inprod < inprodMin) inprodMin = inprod; 
         if (inprod > inprodMax) inprodMax = inprod;
       }
       inprodRange = inprodMax - inprodMin;
     }

     boolean vp(Canvas cv, float dTheta, float dPhi, float fRho)
     {  theta += dTheta;
        phi += dPhi;
        float rhoNew = fRho * rho;
        if (rhoNew >= rhoMin && rhoNew <= rhoMax)
           rho = rhoNew;
        else
           return false;
        cv.repaint();
        return true;
    }
    int colorCode(double a, double b, double c)
    {  double inprod = a * sunX + b * sunY + c * sunZ;
       return (int)Math.round(
          ((inprod - inprodMin)/inprodRange) * 255);
    }
}
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Appendix D: Class CvHLines.java
The following class is used in program HLines.java, listed in Section 6.8:
// CvHLines.java: Used in the file HLines.java.
import java.awt.*;
import java.util.*;

class CvHLines extends Canvas3D
{  private int maxX, maxY, centerX, centerY, nTria, nVertices;
   private Obj3D obj;
   private Point2D imgCenter;
   private Tria[] tr;
   private HPGL hpgl;
   private int[] refPol;
   private int[][] connect;
   private int[] nConnect;
   private int chunkSize = 4;
   private double hLimit;
   private Vector polyList;
   private float maxScreenRange;

   Obj3D getObj(){return obj;}
   void setObj(Obj3D obj){this.obj = obj;} 
   void setHPGL(HPGL hpgl){this.hpgl = hpgl;}

   public void paint(Graphics g)
   {  if (obj == null) return;
      Vector polyList = obj.getPolyList();
      if (polyList == null) return;
      int nFaces = polyList.size();
      if (nFaces == 0) return;
      float xe, ye, ze;
      Dimension dim = getSize();
      maxX = dim.width - 1; maxY = dim.height - 1;
      centerX = maxX/2; centerY = maxY/2;
      // ze-axis towards eye, so ze-coordinates of
      // object points are all negative. Since screen
      // coordinates x and y are used to interpolate for
      // the z-direction, we have to deal with 1/z instead
      // of z. With negative z, a small value of 1/z means
      // a small value of |z| for a nearby point.

      // obj is a java object that contains all data,
      // with w, e and vScr parallel (with vertex numbers
      // as index values):
      // - Vector w (with Point3D elements)
      // - Array e (with Point3D elements)
      // - Array vScr (with Point2D elements)
      // - Vector polyList (with Polygon3D elements)

      // Every Polygon3D value contains:
      // - Array 'nrs' for vertex numbers (n elements)
      // - Values a, b, c, h for the plane ax+by+cz=h.
      // - Array t (with n-2 elements of type Tria)

      // Every Tria value consists of the three vertex
      // numbers A, B and C.
      maxScreenRange = obj.eyeAndScreen(dim);
      imgCenter = obj.getImgCenter();
      obj.planeCoeff(); // Compute a, b, c and h.

      hLimit = -1e-6 * obj.getRho();
      buildLineSet();

      // Construct an array of triangles in
      // each polygon and count the total number 
      // of triangles.
      nTria = 0;
      for (int j=0; j<nFaces; j++)
      {  Polygon3D pol = (Polygon3D)(polyList.elementAt(j));
         if (pol.getNrs().length > 2 && pol.getH() <= hLimit)
         {  pol.triangulate(obj);
            nTria += pol.getT().length;
         }
      }
      tr = new Tria[nTria]; // Triangles of all polygons
      refPol = new int[nTria]; // tr[i] belongs to refPol[i]
      int iTria = 0;

      for (int j=0; j<nFaces; j++)
      {  Polygon3D pol = (Polygon3D)(polyList.elementAt(j));
         Tria[] t = pol.getT(); // Triangles of one polygon
         if (pol.getNrs().length > 2 && pol.getH() <= hLimit)
         {  for (int i=0; i<t.length; i++)
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         {  for (int i=0; i<t.length; i++)
            {  Tria tri = t[i];
               tr[iTria] = tri;
               refPol[iTria++] = j;
            }
         }
      }
      Point3D[] e = obj.getE();
      Point2D[] vScr = obj.getVScr();
      for (int i=0; i<nVertices; i++)
      {  for (int j=0; j<nConnect[i]; j++)
         {  int jj = connect[i][j];
            lineSegment(g, e[i], e[jj], vScr[i], vScr[jj],
                 i, jj, 0);
         }
      }
      hpgl = null;
   }
   private void buildLineSet()
   {  // Build the array
      // 'connect' of int arrays, where
      // connect[i] is the array of all
      // vertex numbers j, such that connect[i][j] is
      // an edge of the 3D object.
      polyList = obj.getPolyList(); 
      nVertices = obj.getVScr().length;
      connect = new int[nVertices][];
      nConnect = new int[nVertices];
      for (int i=0; i<nVertices; i++)
      nConnect[i] = 0;
      int nFaces = polyList.size();

      for (int j=0; j<nFaces; j++)
      {  Polygon3D pol = (Polygon3D)(polyList.elementAt(j));
         int[] nrs = pol.getNrs();
         int n = nrs.length;
         if (n > 2 && pol.getH() > 0) continue;
         int ii = Math.abs(nrs[n-1]);
         for (int k=0; k<n; k++)
         { int jj = nrs[k];
           if (jj < 0)
            jj = -jj; // abs
           else
           {  int i1 = Math.min(ii, jj), j1 = Math.max(ii, jj),
                  nCon = nConnect[i1];
              // Look if j1 is already present:
              int l;
              for (l=0; l<nCon; l++) if (connect[i1][l] == j1) break;
              if (l == nCon) // Not found:
              {  if (nCon % chunkSize == 0)
                 {  int[] temp = new int[nCon + chunkSize];
                    for (l=0; l<nCon; l++) temp[l] = connect[i1][l];
                    connect[i1] = temp;
                 }
                 connect[i1][nConnect[i1]++] = j1;
              }
            }
            ii = jj;
          }
        }
    }
    int iX(float x){return Math.round(centerX + x - imgCenter.x);}
    int iY(float y){return Math.round(centerY - y + imgCenter.y);}

    private String toString(float t)
    // From screen device units (pixels) to HP-GL units (0-10000) :
    {  int i = Math.round(5000 + t * 9000/maxScreenRange); 
       String s = "";
       int n = 1000;
       for (int j=3; j>=0; j--)
       {  s += i/n;
          i %= n;
          n /= 10;
       }
       return s;
    }
    private String hpx(float x){return toString(x - imgCenter.x);}
    private String hpy(float y){return toString(y - imgCenter.y);}

    private void drawLine(Graphics g, float x1, float y1,
       float x2, float y2)
    {  if (x1 != x2 || y1 != y2)
       {  g.drawLine(iX(x1), iY(y1), iX(x2), iY(y2));
          if (hpgl != null)
          {  hpgl.write("PU;PA" + hpx(x1) + "," + hpy(y1));
             hpgl.write("PD;PA" + hpx(x2) + "," + hpy(y2) + "\n");
          }
       }
    }
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    private void lineSegment(Graphics g, Point3D p, Point3D q,
       Point2D pScr, Point2D qScr, int iP, int iQ, int iStart)
    {  double u1 = qScr.x - pScr.x, u2 = qScr.y - pScr.y;
       double minPQx = Math.min(pScr.x, qScr.x);
       double maxPQx = Math.max(pScr.x, qScr.x);
       double minPQy = Math.min(pScr.y, qScr.y);
       double maxPQy = Math.max(pScr.y, qScr.y);
       double zP = p.z, zQ = q.z;    // p and q give eye-coordinates
       double minPQz = Math.min(zP, zQ);
       Point3D[] e = obj.getE();
       Point2D[] vScr = obj.getVScr();
       for (int i=iStart; i<nTria; i++)
       {  Tria t = tr[i];
          int iA = t.iA, iB = t.iB, iC = t.iC;
          Point2D aScr = vScr[iA], bScr = vScr[iB], cScr = vScr[iC];

          // 1. Minimax test for x and y screen coordinates:
          if (maxPQx <= aScr.x && maxPQx <= bScr.x && maxPQx <= cScr.x
           || minPQx >= aScr.x && minPQx >= bScr.x && minPQx >= cScr.x 
           || maxPQy <= aScr.y && maxPQy <= bScr.y && maxPQy <= cScr.y
           || minPQy >= aScr.y && minPQy >= bScr.y && minPQy >= cScr.y)
              continue; // This triangle does not obscure PQ.

           // 2. Test if PQ is an edge of ABC:
           if ((iP == iA || iP == iB || iP == iC) &&
               (iQ == iA || iQ == iB || iQ == iC))
              continue;  // This triangle does not obscure PQ.

           // 3. Test if PQ is clearly nearer than ABC:
           double zA = e[iA].z, zB = e[iB].z, zC = e[iC].z;
           if (minPQz >= zA && minPQz >= zB && minPQz >= zC)
              continue; // This triangle does not obscure PQ.

           // 4. Do P and Q (in 2D) lie in a half plane defined
           //    by line AB, on the side other than that of C?
           //    Similar for the edges BC and CA.
           double eps = 0.1; // Relative to numbers of pixels
           if (Tools2D.area2(aScr, bScr, pScr) < eps &&
               Tools2D.area2(aScr, bScr, qScr) < eps ||
               Tools2D.area2(bScr, cScr, pScr) < eps &&
               Tools2D.area2(bScr, cScr, qScr) < eps ||
               Tools2D.area2(cScr, aScr, pScr) < eps &&
               Tools2D.area2(cScr, aScr, qScr) < eps)
              continue;   // This triangle does not obscure PQ.

           // 5. Test (2D) if A, B and C lie on the same side
           //    of the infinite line through P and Q:
           double pqa = Tools2D.area2(pScr, qScr, aScr);
           double pqb = Tools2D.area2(pScr, qScr, bScr);
           double pqc = Tools2D.area2(pScr, qScr, cScr);

           if (pqa < +eps && pqb < +eps && pqc < +eps ||
               pqa > -eps && pqb > -eps && pqc > -eps)
              continue; // This triangle does not obscure PQ.

           // 6. Test if neither P nor Q lies behind the
           //    infinite plane through A, B and C:
           int iPol = refPol[i];
           Polygon3D pol = (Polygon3D)polyList.elementAt(iPol);
           double a = pol.getA(), b = pol.getB(), c = pol.getC(),
              h = pol.getH(), eps1 = 1e-5 * Math.abs(h),
              hP = a * p.x + b * p.y + c * p.z, 
              hQ = a * q.x + b * q.y + c * q.z;
           if (hP > h - eps1 && hQ > h - eps1)
              continue; // This triangle does not obscure PQ.

           // 7. Test if both P and Q behind triangle ABC:
           boolean pInside =
              Tools2D.insideTriangle(aScr, bScr, cScr, pScr);
           boolean qInside =
              Tools2D.insideTriangle(aScr, bScr, cScr, qScr);
           if (pInside && qInside)
              return; // This triangle obscures PQ.

           // 8. If P nearer than ABC and inside, PQ visible;
           //    the same for Q:
           double h1 = h + eps1;
           if (hP > h1 && pInside || hQ > h1 && qInside)
              continue; // This triangle does not obscure PQ.

           // 9. Compute the intersections I and J of PQ
           // with ABC in 2D.
           // If, in 3D, such an intersection lies in front of
           // ABC, this triangle does not obscure PQ.
           // Otherwise, the intersections lie behind ABC and
           // this triangle obscures part of PQ:
           double lambdaMin = 1.0, lambdaMax = 0.0;
           for (int ii=0; ii<3; ii++)
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           for (int ii=0; ii<3; ii++)
           {  double v1 = bScr.x - aScr.x, v2 = bScr.y - aScr.y,
                     w1 = aScr.x - pScr.x, w2 = aScr.y - pScr.y,
                     denom = u2 * v1 - u1 * v2;
              if (denom != 0)
              {  double mu = (u1 * w2 - u2 * w1)/denom;
                 // mu = 0 gives A and mu = 1 gives B.
                 if (mu > -0.0001 && mu < 1.0001)
                 {  double lambda = (v1 * w2 - v2 * w1)/denom;
                    // lambda = PI/PQ
                    // (I is point of intersection)
                    if (lambda > -0.0001 && lambda < 1.0001)
                    {  if (pInside != qInside &&
                       lambda > 0.0001 && lambda < 0.9999)
                       {  lambdaMin = lambdaMax = lambda;
                          break;
                          // Only one point of intersection
                       } 
                    if (lambda < lambdaMin) lambdaMin = lambda;
                    if (lambda > lambdaMax) lambdaMax = lambda;
                  }
                }
              }
              Point2D temp = aScr; aScr = bScr;
              bScr = cScr; cScr = temp;

            }
            float d = obj.getD();
            if (!pInside && lambdaMin > 0.001)
            {  double iScrx = pScr.x + lambdaMin * u1,
                      iScry = pScr.y + lambdaMin * u2;
               // Back from screen to eye coordinates:
               double zI = 1/(lambdaMin/zQ + (1 - lambdaMin)/zP),
                      xI = -zI * iScrx / d, yI = -zI * iScry / d;
               if (a * xI + b * yI + c * zI > h1)
                  continue; // This triangle does not obscure PQ.

               Point2D iScr = new Point2D((float)iScrx, (float)iScry);
               if (Tools2D.distance2(iScr, pScr) >= 1.0)
                  lineSegment(g, p, new Point3D(xI, yI, zI), pScr,
                       iScr, iP, -1, i + 1);

            }
            if (!qInside && lambdaMax < 0.999)
            {  double jScrx = pScr.x + lambdaMax * u1,
                      jScry = pScr.y + lambdaMax * u2;
               double zJ =
                  1/(lambdaMax/zQ + (1 - lambdaMax)/zP),
                     xJ = -zJ * jScrx / d, yJ = -zJ * jScry / d;
               if (a * xJ + b * yJ + c * zJ > h1)
                  continue; // This triangle does not obscure PQ.
               Point2D jScr = new Point2D((float)jScrx, (float)jScry);
               if (Tools2D.distance2(jScr, qScr) >= 1.0)
                  lineSegment(g, q, new Point3D(xJ, yJ, zJ),
                     qScr, jScr, iQ, -1, i + 1);
            }
            return;
                // if no continue-statement has been executed
          }
          drawLine(g, pScr.x, pScr.y, qScr.x, qScr.y);
             // No triangle obscures PQ.
    }
}
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Appendix E: Some Applications
This appendix demonstrates how to generate data files for other interesting 3D objects by special programs, in a similar fashion to
the cylinder example in Section 6.6. The generated files are accepted by the programs HLines.java (see Chapter 6), Painter.java
and ZBuf.java (see Chapter 7).

E.1 PLATONIC SOLIDS
We will first discuss the generation of 3D files for five well-known objects. Let us begin with two definitions.

If all edges of a polygon have the same length and any two edges meeting at a vertex include the same angle, the polygon is said
to be regular. I fall bounding faces of a polyhedron are regular polygons, which are congruent (that is, which have exactly the
same shape), that polyhedron is referred to as a regular polyhedron or platonic solid. There are only five essentially different
platonic solids; their names and their numbers of faces, edges and vertices are listed below:

 Open table as spreadsheet

Platonic solid Faces Edges Vertices

Tetrahedron 4 6 4

Cube (= hexahedron) 6 12 8

Octahedron 8 12 6

Dodecahedron 12 30 20

Icosahedron 20 30 12

Note that what we call a tetrahedron, a hexahedron, and so on, should actually be referred to as regular tetrahedron, regular
hexahedron, etc., but since in this section we are only dealing with regular polyhedra, we omit the word regular here.

The above numbers of faces, edges and vertices satisfy Euler's theorem, which also applies to non-regular polyhedra:

E.1.1 Tetrahedron

An elegant way of constructing a tetrahedron is by using the diagonals of the six faces of a cube as the edges of the tetrahedron,
as Figure E.1(a) shows.

 
Figure E.1: A tetrahedron: (a) inside a cube; (b) cube omitted; (c) after rotation

Using a cube with edges of length 2 and with its center as the origin of the coordinate system, we can easily write down the
contents of the data file, say, tetra.dat, for the tetrahedron proper (without the surrounding cube):
1   1  -1  -1
2  -1   1  -1 
3   1   1   1
4  -1  -1   1
Faces:
1 2 3.
2 4 3.
1 4 2.
1 3 4.

Supplying this file to program HLines.java results in a poor representation of a tetrahedron, identical to what we obtain if we omit
the dashed line (and the vertex numbers) in Figure E.1(b). Most people would fail to recognize the result as a 3D object, unless
Figure E.1(a) was also given. The surrounding cube in the latter figure can be obtained by adding vertices 5, 6, 7 and 8 to the first
part of the above input file and twelve lines of vertex-pair numbers, for the cube edges, to the second part.

A much better representation is Figure E.1(c), in which the tetrahedron has been rotated about the edge 1–2, in such a way that
the face 1-2-3 becomes horizontal. The angle of this rotation is equal to
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As Figure E.1(a) shows, α  is the angle included by the edges P-5 and P-3 in the right-angled triangle P-5-3, where P is the point
of intersection of the lines 1–2 and 5–6. Since the cube edge 3–5 has length 2 and the line segment P-5, being half the diagonal
6-5 of the bottom plane, has the length √ 2, we have tan α  = 2/√ 2 = √ 2, which explains the above value of α .

Fortunately, we have already developed a general and useful class, Rota3D, for 3D rotations. We used it in Section 3.9 in the
program Rota3DTest.java to rotate a cube about a given axis AB through an angle of 180°. This time, vertices 1 and 2 will act as
points A and B, while rotation will take place through the angle α  we have just discussed. We will use the file tetra.dat, listed
above, as input, to derive the file tetra1.dat, describing the rotated tetrahedron, from it. Note that the classes Point3D and Rota3D,
both defined in Section 3.9, and the class Input of Section 5.5 must be available (in the form of .class files) in the current directory.
// Rota3DTetra.java: Rotating a tetrahedron that
//   has horizontal top and bottom edges, in such
//   a way that it obtains a horizontal bottom face.
//   Uses: Point3D, Rota3D (Section 3.9), Input (Section 5.5).
import java.io.*; 
     public class Rota3DTetra
     {  public static void main(String[] args)
           throws IOException
        {  // Specify AB as directed axis of rotation
           // and alpha as the rotation angle:
           Point3D A = new Point3D(1, -1, -1),
                   B = new Point3D(-1, 1, -1);
           double alpha = Math.atan(Math.sqrt (2);
           Rota3D.initRotate(A, B, alpha);
           Point3D P = new Point3D (0, 0, 0);
           Input inp = new Input("tetra.dat");
           if (inp.fails())
           {  System.out.println("Supply file tetra.dat, see Section E.1");
              System.exit(0);
           }
           FileWriter fw = new FileWriter("tetra1.dat");
           for (;;)
           {  int i = inp.readInt();
              if (inp.fails()) break;
              P.x = inp.readFloat();
              P.y = inp.readFloat();
              P.z = inp.readFloat();
              Point3D P1 = Rota3D.rotate(P);
              fw.write(i + " " + P1.x + " " +
                 P1.y + " " + P1.z + "\r\n");
           }
           inp.clear();
           // Copy the rest of file tetra.dat to tetra1.dat:
           for (;;)
           {  char ch = inp.readChar();
              if (inp.fails()) break;
              fw.write(ch);
           }
           fw.close();
     }
}

This program changes only the coordinates of the four vertices. With the above input file, tetra.dat, the resulting output file,
tetra1.dat, is listed below:
1  1.0 -1.0 -1.0
2  -1.0 1.0 -1.0
3  1.7320508 1.7320508 -1.0 
4  0.57735026 0.57735026 1.309401
Faces:
1 2 3.
2 4 3.
1 4 2.
1 3 4.

Since we now have z = − 1.0 for vertices 1, 2 and 3, we see that triangle 1-2-3 is now horizontal. This is illustrated by Figure
E.1(c), which, except for the text and the dashed edge, is the result of applying the program HLines.java to the above file
tetra1.dat.

E.1.2 Cube or hexahedron

The cube, also known as a hexahedron, is perhaps the most common 3D object because of its simplicity. With the rather unusual
vertex numbering of Figure E.1(a), this cube (with edges of length 2 and with the origin as its center) is described by the following
file:
1  1 -1 -1
2 -1  1 -1
3  1  1  1
4 -1 -1  1
5  1  1 -1
6 -1 -1 -1
7  1 -1  1
8 -1  1  1
Faces:
1  5  3  7.
5  2  8  3.
2  6  4  8.
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2  6  4  8.
6  1  7  4.
7  3  8  4.
1  6  2  5.

E.1.3 Octahedron

An octahedron has eight faces, which are equilateral triangles. One way of constructing this platonic solid is by starting with a
cube and using the principle of duality or reciprocity. The numbers of faces and vertices shown in the table:

 Open table as spreadsheet

Platonic solid Faces Edges Vertices

Cube (= hexahedron) 6 12 8

Octahedron 8 12 6

suggest that each face of a cube might be related to a vertex of an octahedron and vice versa. This is indeed the case: a cube
and an octahedron are said to be dual or reciprocal, which implies that the centers of the faces of one can be used as the vertices
of the other. Starting with a cube, we can simply use the centers of its six faces as the vertices of an octahedron. The following
data file for an octahedron is based on such a cube with edges of length 2 and with O as its center:
1  1  0  0
2  0  1  0
3 -1  0  0
4  0 -1  0
5  0  0 -1
6  0  0  1
Faces:
1 2 6.
2 3 6.
3 4 6.
4 1 6.
2 1 5.
3 2 5.
4 3 5.
1 4 5.

If we use this file as input for program HLines.java, we obtain the octahedron shown in Figure E.2 on the right. On the left we see
the way the vertices are numbered and the surrounding cube.

 
Figure E.2: Octahedron

E.1.4 Icosahedron and dodecahedron

Let us again take a look at the following numbers of faces and vertices:

 Open table as spreadsheet

Platonic solid Faces Edges Vertices

Dodecahedron 12 30 20

Icosahedron 20 30 12

Since the number of faces of one of the two polyhedra is equal to the number of vertices of the other, a dodecahedron and an
icosahedron are reciprocal polyhedra. Figure E.3 illustrates this. For example, vertex 1 of the dodecahedron has been constructed
as the center of the face 1-2-3 of the icosahedron, vertex 2 of the dodecahedron as that of face 1-3-4 of the icosahedron, and so
on. Since showing this dodecahedron in Figure E.3 in its original position would have been confusing, the dodecahedron has been
shifted to the right after its construction.
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Figure E.3: Icosahedron and dodecahedron as reciprocal polyhedra

It follows that constructing an icosahedron is the only remaining problem: once the coordinates of its vertices are known, we can
derive the dodecahedron from it.

Both polyhedra are based on regular pentagons, as you can see in Figure E.3. In the icosahedron shown here, there are two
horizontal pentagons: 2-3-4-5-6 and 7-8-9-10-11. They have both been constructed with their vertices on (horizontal) circles with
radius 1. Curiously enough, these two horizontal pentagons lie a distance 1 apart, while the ‘north pole’ 1 and the ‘south pole’ 12
lie a distance √ 5 apart. A proof of these facts is omitted here, because it would be rather lengthy and only very loosely related to
computer graphics. Interested readers are referred to books about geometry, such as Coxeter (1961).

With O as the center of the icosahedron, we can now define the coordinates of all twelve vertices of an icosahedron as follows:

 Open table as spreadsheet

i xi yi zi

1
2, 3, 4, 5, 6

7, 8, 9, 10, 11
12

0
cos {(i −  2) × 72°}

cos {36° + (i −  7) × 72°}
0

0
sin {(i −  2) × 72°}

sin {36° + (i −  7) × 72°}
0

½√ 5
0.5

− 0.5
½√ 5

We can easily program the above formulas to obtain the numerical values of the vertex coordinate in question, as we will see
shortly. These values are listed in the following 3D data file, in which the faces of the icosahedron are displayed on five text lines,
instead of on 20 lines as generated by the program. Also, the layout of the first part of the file has been improved for the sake of
readability:
 1   0.0       0.0         1.118034
 2   1.0       0.0         0.5
 3   0.309017  0.95105654  0.5
 4  -0.809017  0.58778524  0.5
 5  -0.809017 -0.58778524  0.5
 6   0.309017 -0.95105654  0.5
 7   0.809017  0.58778524 -0.5
 8  -0.309017  0.95105654 -0.5
 9  -1.0       0.0        -0.5
10  -0.309017 -0.95105654 -0.5
11   0.809017 -0.58778524 -0.5
12   0.0       0.0        -1.118034
Faces: 
 1  2  3.  1  3  4.  1  4  5.  1  5  6.
 1  6  2.  2  7  3.  3  7  8.  3  8  4.
 4  8  9.  4  9  5.  5  9 10.  5 10  6.
 6 10 11.  6 11  2.  2 11  7. 12  8  7.
12  9  8. 12 10  9. 12 11 10. 12  7 11.

E.1.5 Dodecahedron

As mentioned above, we use the center of the first face, 1-2-3, of the icosahedron as vertex 1 of the dodecahedron. For example,
we have

The faces in the above icosahedron file are to be read line by line, so that the center of face 1-3-4 provides vertex 2 of the
dodecahedron, that of face 1-4-5 provides vertex 3, and so on. The second part of the dodecahedron file is more difficult. You can
check it by comparing both polyhedra of Figure E.3. For example, the vertices of the dodecahedron's face 1-6-7-8-2, in that order,
are the centers of face 1 (1-2-3), face 6 (2-7-3), face 7 (3-8-7), face 8 (3-8-4) and face 2 (1-3-4) of the icosahedron. In the data file
for the dodecahedron below, you can find this face 1-6-7-8-2 as the second one after the word Faces:
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 1   0.436339    0.31701884   0.7060113
 2  -0.16666667  0.51294726   0.7060113
 3  -0.53934467  0.0          0.7060113
 4  -0.16666667 -0.51294726   0.7060113
 5   0.436339   -0.31701884   0.7060113
 6   0.7060113   0.51294726   0.16666667
 7   0.26967233  0.82996607  -0.16666667
 8  -0.26967233  0.82996607   0.16666667
 9  -0.7060113   0.51294726  -0.16666667
10  -0.872678    0.0          0.16666667
11  -0.7060113  -0.51294726  -0.16666667
12  -0.26967233 -0.82996607   0.16666667
13   0.26967233 -0.82996607  -0.16666667
14   0.7060113  -0.51294726   0.16666667
15   0.872678    0.0         -0.16666667
16   0.16666667  0.51294726  -0.7060113
17  -0.436339    0.31701884  -0.7060113
18  -0.436339   -0.31701884  -0.7060113
19   0.16666667 -0.51294726  -0.7060113
20   0.53934467  0.0         -0.7060113
Faces: 
 1  2  3  4  5.  1  6  7  8  2.  2  8  9  10  3.
 3 10 11 12  4.  4 12 13 14  5.  5 14 15   6  1.
20 19 18 17 16. 20 15 14 13 19. 19 13 12  11 18.
18 11 10  9 17. 17  9  8  7 16. 16  7  6  15 20.

Since this book is about programming aspects of graphics, a Java program to generate both above files (in a slightly different
format) is listed below:
// IcoDode.java: Generating input files for
//    both an icosahedron and a dodecahedron.
//    Uses: Point3D (Section 3.9), Tria (Section 5.5).

import java.io.*;

public class IcoDode
{  public static void main(String[] args)throws IOException
   {  new Both();
   }
}

class Both
{  Point3D[] icoV;
   Tria[] icoF;

   Both()throws IOException
   {  outIcosahedron();
      outDodecahedron();
   }

   void outIcosahedron()throws IOException
   {  double zTop = 0.5 * Math.sqrt (5);
      // Vertices (icoV[1], ..., icoV[12]):
      icoV = new Point3D[13];
      icoV[1] = new Point3D(0, 0, zTop); // North pole
      double angle36 = Math.PI/5, angle72 = 2 * angle36;
      for (int i=2; i<=6; i++)
      {  double alpha = (i - 2) * angle72;
         icoV[i] = new Point3D(Math.cos(alpha),
            Math.sin(alpha), 0.5);
      }
      for (int i=7; i<=11; i++)
      {  double alpha = angle36 + (i - 7) * angle72;
         icoV[i] = new Point3D(Math.cos(alpha), 
         Math.sin(alpha), -0.5);
      }
      icoV[12] = new Point3D(0, 0, -zTop);
      // Faces (icoF[1], ..., icoF[20]):
      icoF = new Tria[21]; //
      icoF[ 1] = new Tria (1, 2, 3);
      icoF[ 2] = new Tria (1, 3, 4);
      icoF[ 3] = new Tria (1, 4, 5);
      icoF[ 4] = new Tria (1, 5, 6);
      icoF[ 5] = new Tria (1, 6, 2);
      icoF[ 6] = new Tria (2, 7, 3);
      icoF[ 7] = new Tria (3, 7, 8);
      icoF[ 8] = new Tria (3, 8, 4);
      icoF[ 9] = new Tria (4, 8, 9);
      icoF[10] = new Tria (4, 9, 5);
      icoF[11] = new Tria (5, 9, 10);
      icoF[12] = new Tria (5, 10, 6);
      icoF[13] = new Tria (6, 10, 11);
      icoF[14] = new Tria (6, 11, 2);
      icoF[15] = new Tria (2, 11, 7);

      icoF[16] = new Tria (12, 8, 7);
      icoF[17] = new Tria (12, 9, 8);
      icoF[18] = new Tria (12, 10, 9);
      icoF[19] = new Tria (12, 11, 10);
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      icoF[19] = new Tria (12, 11, 10);
      icoF[20] = new Tria (12, 7, 11);
      FileWriter fwI = new FileWriter("icosa.dat");
      for (int i=1; i<=12; i++)
      {  Point3D P = icoV[i];
         fwI.write(i +""+P.x+""+P.y+""+P.z+"\r\n");
      }
      fwI.write("Faces:\r\n");
      for (int j=1; j<=20; j++)
      {  Tria t = icoF[j];
         fwI.write(t.iA +""+t.iB+""+t.iC+".\r\n");
      }
      fwI.close();
}

   void outDodecahedron()throws IOException
   {  FileWriter fwD = new FileWriter("dodeca.dat");
      for (int j=1; j<=20; j++) writeVertexInCenter(fwD, j);
      fwD.write("Faces:\r\n"); 
      // Horizontal, at the top:
      writeFace(fwD, 1, 2, 3, 4, 5);
      // Slightly facing upward:
      writeFace(fwD, 1, 6, 7, 8, 2);
      writeFace(fwD, 2, 8, 9, 10, 3);
      writeFace(fwD, 3, 10, 11, 12, 4);
      writeFace(fwD, 4, 12, 13, 14, 5);
      writeFace(fwD, 5, 14, 15, 6, 1);
      // Horizontal, at the bottom:
      writeFace(fwD, 20, 19, 18, 17, 16);
      // Slightly facing downward:
      writeFace(fwD, 20, 15, 14, 13, 19);
      writeFace(fwD, 19, 13, 12, 11, 18);
      writeFace(fwD, 18, 11, 10, 9, 17);
      writeFace(fwD, 17, 9, 8, 7, 16);
      writeFace(fwD, 16, 7, 6, 15, 20);
      fwD.close();
    }

    void writeVertexInCenter(FileWriter fwD, int j)throws IOException
    {  Tria t = icoF[j];
       Point3D A = icoV[t.iA],B=icoV[t.iB], C = icoV[t.iC];
       float x = (float)((A.x + B.x + C.x)/3),
             y = (float)((A.y + B.y + C.y)/3),
             z = (float)((A.z + B.z + C.z)/3);
       fwD.write(j +" " + x + " " + y + " " + z + "\r\n");
    }

    void writeFace(FileWriter fwD, int a, int b, int c, int d, int e)
       throws IOException
    {  fwD.write(a +""+b+""+c+""+d+""+e+".\r\n");
    }
}

An icosahedron, as generated by this program, will be useful to generate (better) approximations of spheres, as we will see in the
next section.
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E.2 SPHERE REPRESENTATIONS
There are several ways of approximating a sphere by a polyhedron. A very popular one is the globe model with north and south
poles at the top and the bottom, horizontal circles called lines of latitude, and circles called lines of longitude in vertical planes
through the poles, as shown in Figure E.4. A program to generate such a globe should preferably be based on a single integer n,
indicating both the number of horizontal slices and half the number of lines of longitude. In other words, angles of 180°/n play an
essential role, both in horizontal and vertical planes. In Figures E.4(a) and (b) we have n = 6 and n = 30, respectively.
Programming this is left as an exercise (see Exercise 6.6).

 
Figure E.4: Approximations of a sphere: (a) n = 6;(b) n = 30

The above way of approximating a sphere has two drawbacks:
1. The faces are unequal in size and have different shapes: except for the triangles at the poles, each face is a

trapezium, whose size depends on its distance from its nearest pole.

2. These spheres have an ‘anisotropic’ appearance: which may be undesirable. For example, a view from above
looks much different from a view from the front. We may prefer all faces to look alike, so that the image should
not significantly change if we turn the sphere a little.

We will therefore discuss different models of a sphere, in such a way that we cannot easily tell the poles and the other vertices
apart.

E.2.1 Spheres based on an icosahedron

As Figure E.3 illustrates, an icosahedron and a dodecahedron are very poor approximations of a sphere. However, we can use
the former as a basis to generate a much better one. The idea is to divide each triangular face of an icosahedron into four
triangles, as shown in Figure E.5, and to use the sphere to which all vertices of the icosahedron belong. For the icosahedron we
have constructed, the center of this sphere is O and its radius is ½√ 5.

 
Figure E.5: Dividing a triangle into four smaller ones

With O as the center of the icosahedron and D, E and F as the midpoints of three triangle edges BC, CA and AB, we have to
extend the lines OD, OE and OF, such that the new vertices D, E and F (like A, B and C) lie on the sphere just mentioned.
Actually, we may as well change the lengths of all six lines OA, OB, … , OF, such that the new points A, B, … , F lie on a sphere
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Actually, we may as well change the lengths of all six lines OA, OB, … , OF, such that the new points A, B, … , F lie on a sphere
with center O and radius 1. Doing this for all 20 faces of an icosahedron, we obtain a polyhedron that has 20 × 4 = 80 triangles.
Since each of the 30 original edges gives a new vertex (its midpoint), and there were already 12 vertices, this new polyhedron has
12 + 30 = 42 vertices. It follows from Equation E.1 that it has 80 + 42 −  2 = 120 edges. Note that the four triangles of Figure E.5
are equilateral (that is, they have three edges of the same length), but this is the case only as long as the six points A, B, … , F lie
in the same plane. Consequently, the 80 faces of our new polyhedron are not equilateral triangles.

Instead of writing a program just to generate this polyhedron, we will make the program much more general. It will accept the
names of an input file and an output file. The input file can be any file (in our 3D format) for a convex polyhedron that has only
triangular faces and whose center is the origin O of the coordinate system (provided the vertex numbers 1, 2, 3, …  are used and
appear in that order in the first part of the file). In the output file we obtain a polyhedron that has four times as many (triangular)
faces as the given one, and whose vertices lie on a sphere with center O and radius 1. This will enable us to use the program
several times, starting with the file icosa.dat, generated by program IcoDode.java, and each following time to use the previous
output file as input. Using names of the form sphx.dat, where x is the number of faces, we can proceed as follows:

Figure E.6 shows the results of applying program HLines.java to these four files, of which the last three have been generated by
the program we are discussing.

 
Figure E.6: Icosahedron and three other polyhedra derived from it by program SphTria.java: (a) 20 faces (see Section E.1);
(b) 80 faces; (c) 320 faces; (d) 1280 faces

Program SphTria.java takes the names of its input and output files as program arguments. After generating the file icosa.dat by
using program IcoDode.java of Section E.1, we obtain the files for the other three sphere approximations above as follows:
java SphTria icosa.dat sph80.dat
java SphTria sph80.dat sph320.dat
java SphTria sph320.dat sph1280.dat

Like some other programs in this book, SphTria.java, listed below, uses the classes Point3D, Tria and Input, discussed in Sections
3.9 and 5.5:
// SphTria.java: Generating a 3D object file for a sphere
//    approximation consisting of triangles. In the output file there
//    are four times as many triangles as in the input file. Suitable
//    input files are icosa.dat, produced by program IcoDode.java, and
//    the output files produced by this program (SphTria.java) itself!
//    To run this program, enter, for example,
//       java SphTria icosa.dat sph80.dat.
//    Uses: Tria, Input (Section 5.5), Point3D (Section 3.9).

import java.io.*;
import java.util.*;
public class SphTria
{  public static void main(String[] args)throws IOException
   {  if (args.length < 2)
      {  System.out.println("Command:\n"
         + "java SphTria InputFile OutputFile"); 
      }
      else
         new SphTriaObj(args[0], args[1]);
    }
}

class SphTriaObj
{  Vector v = new Vector(); // Vertices
   Vector t = new Vector(); // Triangular faces
   int nV, codeRadix;
   Hashtable ht = new Hashtable();
   String inputFile, outputFile;

   SphTriaObj(String inputFile, String outputFile)throws IOException
   {  this.inputFile = inputFile;
      this.outputFile = outputFile;
      readFile();
      computeMidpoints();
      toUnitCircle();
      writeFile();
   }

   void readFile()throws IOException
   {  Input inp = new Input(inputFile);
      if (inp.fails()) error();
      v.addElement(new Integer (0) ); // Start at position 1
      for (;;)
      {  int nr = inp.readInt();
         if (inp.fails()) break;
         nV = nr;
         float x = inp.readFloat(), y = inp.readFloat(),
               z = inp.readFloat();
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               z = inp.readFloat();
         v.addElement(new Point3D(x, y, z));
      }
      inp.clear();
      codeRadix = nV + 1;
      inp.clear();
      while (inp.readChar() != '\n' && !inp.fails());
      // Rest of line 'Faces:' has now been skipped.
      for (;;)
      {  int a = inp.readInt(), b = inp.readInt(), c = inp.readInt();
         if (inp.fails()) break;
         t.addElement(new Tria(a, b, c)); 
         inp.readChar(); // Skip '.'
      }
      inp.clear();
    }

    void error()
    {  System.out.println("Problem with file input file"+inputFile);
       System.exit(1);
    }
    void computeMidpoints()
    {  for (int j=0; j<t.size(); j++)
       {  Tria tr = (Tria)t.elementAt(j);
          int a = tr.iA, b = tr.iB, c = tr.iC;
          addMidpoint(a, b); addMidpoint(b, c); addMidpoint(c, a);
       }
    }

    void addMidpoint(int p, int q)
    {  if (p<q)
       {  ht.put(new Integer(codeRadix*p+q),newInteger(++nV));
          Point3D P = (Point3D)v.elementAt(p),
                  Q = (Point3D)v.elementAt(q);
          v.addElement(new Point3D( // at position nV
          (P.x + Q.x)/2, (P.y + Q.y)/2, (P.z + Q.z)/2));
       }
    }

    int getMidpoint(int p, int q)
    {  int key = p < q ? (codeRadix*p+q): (codeRadix *q+p);
       Integer iObj = (Integer)ht.get(new Integer(key));
       return iObj.intValue();
    }
    void toUnitCircle()
    {  for (int i=1; i<=nV; i++) // nV = v.size() - 1
       {  Point3D P = (Point3D)v.elementAt(i);
          float r = (float)Math.sqrt(
             P.x * P.x + P.y * P.y + P.z * P.z);
           P.x /= r; P.y /= r; P.z /= r;
       }
    }

    void writeFile()throws IOException 
    {  FileWriter fw = new FileWriter(outputFile);
       for (int i=1; i<v.size(); i++)
       {  Point3D P = (Point3D)v.elementAt(i);
          fw.write(i + " " + P.x + " " +
             P.y + " " + P.z + "\r\n");
       }
       fw.write("Faces\r\n");
       for (int j=0; j<t.size(); j++)
       {  Tria tr = (Tria)t.elementAt(j);
          int a = tr.iA, b = tr.iB, c = tr.iC;
          int mab = getMidpoint(a, b),
              mbc = getMidpoint(b, c),
              mca = getMidpoint(c, a);
          fw.write(a + " " + mab + " " + mca + ".\r\n");
          fw.write(b + " " + mbc + " " + mab + ".\r\n");
          fw.write(c + " " + mca + " " + mbc + ".\r\n");
          fw.write(mab + " " + mbc + " " + mca + ".\r\n");
       }
       fw.close();
   }
}

Each edge of a triangle of the given polyhedron is also an edge of a neighboring triangle. Since for each triangle its vertices are
specified in counter-clockwise order, the ordered vertex number pair p, q representing an edge of one of these two triangles will
appear as q, p for the other triangle. To avoid adding the midpoint of this edge twice, we accept the pair p, q only if p is less than
q, as the test at the beginning of the method addMidpoint shows. Note that we process all given triangles twice, first, in
computeMidpoints, to add the midpoint of every edge (exactly once) to the list of vertices v, and later, in writeFaces, to construct
the new, smaller triangles. In the first of these two actions, we associate a new midpoint, say, vertex number m, with a certain
edge p, q. This must be stored in such a way that later, in writeFaces, when we encounter this edge p, q again, we can use this
pair to find this same vertex number m. We can do this efficiently and conveniently by using a hash table, writing
Hashtable ht = new Hashtable();

The pair p, q, or rather, a large integer codeRadix * p + q, where codeRadix is a large constant and p < q, is used as a key. By
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The pair p, q, or rather, a large integer codeRadix * p + q, where codeRadix is a large constant and p < q, is used as a key. By
storing the pair (key, m)in the hash table ht, we can later retrieve the midpoint vertex number m using the same key. This explains
both the statement
ht.put(new Integer(codeRadix*p+q),newInteger(++nV));

in addMidpoint (called in computeMidpoints)and
Integer iObj = (Integer)ht.get(new Integer(key));

in getMidpoint (called in writeFile).

The sphere that program SphTria.java produces obviously depends upon its input file. The file tetra.dat of Section E.1, like
iscosa.dat, describes a polyhedron consisting of equilateral triangles and has O as its center. Note that the latter is not the case
with the file tetra1.dat, obtained by the program Rota3DTetra.java because this program rotates the tetrahedron about the edge
1–2. Another polyhedron satisfying the conditions just mentioned is the octahedron, also discussed in Section E.1. This gives a
better, though rather peculiar, result. If we start with the file octa.dat, describing the octahedron shown in Figure E.7(a), we obtain

 
Figure E.7: Octahedron and three other polyhedra derived from it by program SphTria.java: (a) 8 faces (see Section E.1);
(b) 32 faces; (c) 128 faces; (d) 512 faces
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E.3 A TORUS
We will now discuss a program to construct a torus, as shown in Figure E.8. The input data of this program will consist of three
program arguments:

n, the number of small vertical circles; on each of these, n points are used as vertices to approximate the torus;

R, the radius of a large horizontal circle containing the centers of the n smaller circles;

the name of the output file.

 
Figure E.8: Torus (n = 30 and R = 2.5)

All small circles will have the same radius, r = 1. You can see the large horizontal circle (with radius R) and one of the small
vertical ones in Figure E.9. Since the smaller circles must not intersect each other, we require that

 
Figure E.9: Basic circles of a torus

A parametric representation of the large circle is

If we take α  = 0 in these equations, we obtain the center of the small vertical circle shown in Figure E.9, which has the following
parametric representation (where r = 1):

This small circle belongs to i = 0. By rotating it about the z-axis through angles α  = i δ , where i = 1, … , n −  1 and δ  = 2 π / n, we
obtain the remaining n −  1 small circles. As for the vertex numbers of the torus, we select n points on the first small circle
(corresponding to i = 0) and assign the integers 1, 2, … , n to them: the point obtained by using parameter β  = j δ  is assigned
vertex number j + 1 (j = 0, 1, … , n −  1). The next n vertices, numbered n + 1, n + 2, …  ,2n, lie on the neighboring circle,
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vertex number j + 1 (j = 0, 1, … , n −  1). The next n vertices, numbered n + 1, n + 2, …  ,2n, lie on the neighboring circle,
corresponding to i = 1, and so on. In general, we use the n2 vertex numbers i · n + j + 1(i = 0, 1, … , n −  1; j = 0, 1, … , n −  1).

We will now rotate the small vertical circle drawn in Figure E.9 about the z-axis through the angle α  = iδ . As follows from Section
3.2, this rotation can be written

In our case the basic small circle lies in the xz-plane, so that y = 0, which reduces this matrix product to

(which we could also have derived directly from Figure E.9, without using the above matrix multiplication).

As you can see in the following program, we use most of the above formulas in the inner loop, in which the variable x denotes the
x-coordinate of a point of the small circle in the xz-plane (see Figure E.9), while x1 denotes the x-coordinate of that point after
rotation through α  about the z-axis:
// Torus.java: Generating a data file for a torus. R is the radius of
//    a large horizontal circle, on which n equidistant points will be
//    the centers of small vertical circles with radius 1. The values
//    of n and R as well as the output file name are to be supplied as
//    program arguments.

import java.io.*; 
public class Torus
{  public static void main(String[] args)throws IOException
   {  if (args.length != 3)
      {  System.out.println("Supply n (> 2), R (>= 1) "
           + "and a filename as program arguments.\n");
         System.exit(1);
      }
      int n = 0;
      double R = 0;
      try
      {  n = Integer.valueOf(args[0]).intValue();
         R = Double.valueOf(args[1]).doubleValue();
         if (n<=2 || R<1)
            throw new NumberFormatException();
      }
      catch (NumberFormatException e)
      {  System.out.println("n must be an integer > 2");
         System.out.println("R must be a real number >= 1");
         System.exit(1);
      }
      new TorusObj(n, R, args[2]);
    }
}

class TorusObj
{  TorusObj(int n, double R, String fileName)throws IOException
   {  FileWriter fw = new FileWriter(fileName);
      double delta=2* Math.PI / n;
      for (int i=0; i<n; i++)
      {  double alpha=i* delta,
            cosa = Math.cos(alpha), sina = Math.sin(alpha);
         for (int j=0; j<n; j++)
         {  double beta = j * delta, x = R + Math.cos(beta);
             float x1 = (float)(cosa * x),
                   y1 = (float)(sina * x),
                   z1 = (float)Math.sin(beta);
             fw.write((i * n + j + 1) + " " +
                x1 + " " + y1 + " " + z1 + "\r\n");
         }
    }
    fw.write("Faces:\r\n");
    for (int i=0; i<n; i++) 
      { for (int j=0; j<n; j++)
        {  int i1 = (i + 1) %  n, j1 = (j + 1) % n,
               a = i  * n + j  + 1,
               b = i1 * n + j  +1,
               c = i1 * n + j1 +1,
               d = i  * n + j1 +1;
           fw.write(a + " " + b + " " + c + " " + d + ".\r\n");
        }
    }
    fw.close();
  }
}
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E.4 BEAMS IN A SPIRAL
Our next example is a spiral built from horizontal beams with length 2a (a ≥ 0.5), width 1 and height 1. The bottom of the lowest
beam lies in the xy-plane; this beam is parallel to the y-axis and its maximum x-coordinate is equal to a (see Figure E.10). Each
next beam can be obtained by lifting the previous one a distance 1, and by rotating it about the z-axis though a given angle
α .Thereare n beams. The integer n, the two real numbers a and α  (the latter in degrees) and the output file name, in that order,
are supplied as program arguments.

 
Figure E.10: Vertex numbers of first beam

The beams in Figures E.11(a), (b) and (c) have lengths (2a =) 2, 8 and 1, respectively, which implies that the beams are actually
cubes in Figure E.11(c).

 
Figure E.11: Spirals of beams

The data files for program HLines.java to produce the three spiral images of Figure E.11 were generated by running program
Beams.java three times as follows:
java Beams 4 1 90 FigE11a.dat
java Beams 18 4 20 FigE11b.dat
java Beams 18 0.5 10 FigE11c.dat

Although we could have used the class Rota3D, discussed in Section 3.9, the rotation about the z-axis is as simple as a 2D
rotation about O (see Section 3.2), so that we may as well program it directly, as is done in the nested for-loop in program
Beams.java, listed below:
// Beams.java: Generating input files for a spiral of beams. The
//    values of n, a and alpha (in degrees) as well as the output
//    file name are to be supplied as program arguments.
//    Uses: Point3D (Section 3.9).
import java.io.*;

public class Beams
{  public static void main(String[] args)throws IOException
   {  if (args.length != 4)
      {  System.out.println(
         "Supply n (> 0), a (>= 0.5), alpha (in degrees)\n" +
         "and a filename as program arguments.\n"); 
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         "and a filename as program arguments.\n"); 
         System.exit(1);
      }
      int n = 0;
      double a = 0, alphaDeg = 0;
      try
      {  n = Integer.valueOf(args[0]).intValue();
         a = Double.valueOf(args[1]).doubleValue();
         alphaDeg = Double.valueOf(args[2]).doubleValue();
         if (n <= 0 || a < 0.5)throw new NumberFormatException();
      }
      catch (NumberFormatException e)
      {  System.out.println("n must be an integer > 0");
         System.out.println("a must be a real number >= 0.5");
         System.out.println("alpha must be a real number");
         System.exit(1);
      }
      new BeamsObj(n, a, alphaDeg * Math.PI / 180, args[3]);
    }
}

class BeamsObj
{  FileWriter fw;

   BeamsObj(int n, double a, double alpha, String fileName)
      throws IOException
   {  fw = new FileWriter(fileName);
      Point3D[] P = new Point3D[9];
      double b = a - 1;
      P[1] = new Point3D(a, -a, 0);
      P[2] = new Point3D(a,  a, 0);
      P[3] = new Point3D(b,  a, 0);
      P[4] = new Point3D(b, -a, 0);
      P[5] = new Point3D(a, -a, 1);
      P[6] = new Point3D(a,  a, 1);
      P[7] = new Point3D(b,  a, 1);
      P[8] = new Point3D(b, -a, 1);
      for (int k=0; k<n; k++)
      {  // Beam k:
         double phi = k * alpha,
            cosPhi = Math.cos(phi), sinPhi = Math.sin(phi);
         int m = 8 * k;
         for (int i=1; i<=8; i++)
         {  double x = P[i].x, y = P[i].y; 
         float x1 = (float)(x * cosPhi - y * sinPhi),
               y1 = (float)(x * sinPhi + y * cosPhi),
               z1 = (float)(P[i].z + k);
         fw.write((m + i) + " " + x1 + " " + y1 + " " + z1 +
            "\r\n");
      }
    }
    fw.write("Faces:\r\n");
    for (int k=0; k<n; k++)
    {  // Beam k again:
       int m = 8 * k;
       face(m, 1, 2, 6, 5);
       face(m, 4, 8, 7, 3);
       face(m, 5, 6, 7, 8);
       face(m, 1, 4, 3, 2);
       face(m, 2, 3, 7, 6);
       face(m, 1, 5, 8, 4);
    }
    fw.close();
  }
  void face(int m, int a, int b, int c, int d)throws IOException
  {  a += m; b += m; c += m; d += m;
     fw.write(a + " " + b + " " + c + " " + d + ".\r\n");
  }
}
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E.5 FUNCTIONS OF TWO VARIABLES
Although the programs Painter.java, ZBuf.java and HLines.java were primarily intended to represent solid objects, they can also
be used for other purposes, such as displaying surfaces that correspond to functions of the form

For example, Figure E.12 shows such a surface for the function

 
Figure E.12: Surface of a function z = f (x, y) as specified by (E.2) and (E.3)

As usual, the x-axis points towards us, the y-axis points to the right and the z-axis points upwards. Note that each of the three
coordinate axes is partly visible and partly hidden. The lines on the surface connect points (x, y, z), where

Instead of dealing only with this particular function, we will discuss a very general program, based on an expression evaluator.
Using a graphical user interface (as we also did in Section 6.6), we will enable the user to enter both an expression for the
function in question and the intervals and step sizes for x and y. Such expressions are similar to what we write in our programs,
although the set of available operators and standard functions is very limited:

1. An expression consist of one or more terms, separated by + and − .

2. A term consists of one or more factors, separated by * and /.

3. A factor can be
a. a real number (such as 12.3, 4 or − 25; number representations such as 1e7 are not allowed),

b. a variable x or a variable y (and no other variables),

c. an expression, as defined in point 1, written between parentheses, such as the one occurring
in 3 * (x + y),

d. a function call of one of the following three forms (and no others):
sin(expression)

cos(expression)

pow(expression, expression).

The last three standard functions are the same as those in the Math class of Java. For example, we write pow(x, 0.5) for x0.5.
There is no special sqrt function. As usual, blank spaces are allowed in expressions.

For example, the function given by Equation E.2 can be written as the following expression:
10 * cos(pow(x*x + y*y, 0.5))/(2 + pow(x*x + y*y, 0.5))

As for the intervals and step sizes for x and y, we write, for example,
-6 (0.25) 6

indicating that the variable in question ranges from − 6 to 6, with step size 0.25. The dialog box to be used to enter expressions,
intervals and step sizes is shown in Figure E.13.
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Figure E.13: Dialog box for program Func.java

There is also a text field in which the user has to enter the name of the output file. After filling in all text fields, the user can click
the button Write file to generate the desired file. Since this does not terminate the program, there is also an Exit button. Although
the program Func.java produces only a file, such as cospow.dat in this example, we can quickly see the 3D surface in question by
executing the two programs Func.java and HLines.java at the same time. After pressing the button Write file, in the former
program, we use File |Open in the latter to see the result. If we want to change any data, such as shown in Figure E.13, we go
back to Func.java, which is still running; after doing this, we click the Write file button and switch to HLines.java again, and so on.

If the expression entered for z = f (x, y) cannot be interpreted because it is syntactically incorrect, the computer gives an audible
signal. Such a beep also occurs if an interval or a step size is incorrect; this happens, for example, if xMin is greater than xMax –
deltaX. It follows from this that error handling is not the strongest point of the program we will discuss, and neither is its speed.
However, although the given expression is not converted into more efficient intermediate code (such as postfix), it is much faster
than the hidden- line program that follows; improvements with regard to error handling and efficiency were deliberately omitted
because many readers will find the program already complex enough in its current form. After having a look at the program listed
below, we will discuss some of its internal aspects.
// Func.java: A function of two variables x and y.
import java.awt.*;
import java.awt.event.*;
import java.io.*;

public class Func extends Frame
{  public static void main(String[] args){new Func();}
   Func(){new FuncDialog(this);}
}

class FuncDialog extends Dialog
{  TextField tfFun = new TextField (50),
   tfX = new TextField (10), tfY = new TextField (10),
   tfFileName = new TextField (15);
   Button buttonWriteFile = new Button("Write file"),
          buttonExit = new Button(" Exit ");

   FuncDialog(Frame fr)
   {  super(fr, "Function of two variables", true);

      addWindowListener(new WindowAdapter()
      {  public void windowClosing(WindowEvent e)
         {  dispose();
            System.exit(0);
         }
      });

      Panel p1 = new Panel(), p2 = new Panel(), p3 = new Panel();
      p1.add(new Label("z = f(x, y) = "));
      p1.add(tfFun);
      p2.add(new Label("xMin (deltaX) xMax"));
      p2.add(tfX);
      p2.add(new Label(" yMin (deltaY) yMax"));
      p2.add(tfY);
      p3.add(new Label("Output file name: "));
      p3.add(tfFileName);
      p3.add(buttonWriteFile); 
      p3.add(buttonExit);
      setLayout(new BorderLayout());
      add("North", p1);
      add("Center", p2);
      add("South", p3);

      buttonWriteFile.addActionListener(new ActionListener()
      {  public void actionPerformed(ActionEvent ae)
         {  float xa=0, dx=0, xb=0,
                  ya=0, dy=0, yb=0;
            String sX = tfX.getText();

            xa = (new xyExpression(sX)).factor();
            sX = sX.substring(sX.indexOf('(')+1);
            dx = (new xyExpression(sX)).factor();
            sX = sX.substring(sX.indexOf(')')+1);
            xb = (new xyExpression(sX)).factor();

            String sY = tfY.getText();
            ya = (new xyExpression(sY)).factor();
            sY = sY.substring(sY.indexOf('(')+1);
            dy = (new xyExpression(sY)).factor();
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            dy = (new xyExpression(sY)).factor();
            sY = sY.substring(sY.indexOf(')')+1);
            yb = (new xyExpression(sY)).factor();

            if (xa + dx > xb || dx <= 0||
                ya + dy > yb || dy <= 0)
            {   Toolkit.getDefaultToolkit().beep();
                return;
            }
            String s = tfFun.getText(),
               fileName = tfFileName.getText();

            xyExpression xyE = new xyExpression(s);
            try
            {  xyE.generate(xa, dx, xb, ya, dy, yb, fileName);
            }
            catch (IOException ioe){}
      }
   });
   buttonExit.addActionListener(new ActionListener()
   {  public void actionPerformed(ActionEvent ae)
      {  dispose();System.exit(0); 
      }
   });

   Dimension dim = getToolkit().getScreenSize();
   setSize(6 * dim.width/10, dim.height/4);
   setLocation(dim.width/5, dim.height/2);
   show();
  }
}
class xyExpression
{  String buf;
   float x, y, lastNum;
   char lastChar;
   int pos;
   boolean OK;

   xyExpression(String s){buf = s; OK = true;}

   void generate(float xa, float dx, float xb,
      float ya, float dy, float yb, String fileName)
      throws IOException
   {  FileWriter fw = new FileWriter(fileName);
      int nx = Math.round((xb - xa)/dx),
          ny = Math.round((yb - ya)/dy), nr = 0;
      float za = 1e30F, zb = -1e30F;
   outer:
      for (int j=0; j<=ny; j++)
      {  float y = ya + j * dy;
         for (int i=0; i<=nx; i++)
         {  float x = xa + i * dx;
            nr = j * (nx + 1) + i + 1;
            float z = eval(x, y);
            if (!OK)
            {  Toolkit.getDefaultToolkit().beep();
               break outer;

            }
            if (z < za) za = z;
            if (z > zb) zb = z;
            fw.write(nr + " " + x + " " + y + " " + z + "\r\n");
         }
      }
     // x, y and z axes:
     float dz = (zb - za)/10, 
     xa1 = Math.min(xa - 2 * dx, 0), xb1 = Math.max(xb + 2 * dx, 0),
     ya1 = Math.min(ya - 2 * dy, 0), yb1 = Math.max(yb + 2 * dy, 0),
     za1 = Math.min(za - 2 * dz, 0), zb1 = Math.max(zb + 2 * dz, 0);
     fw.write(++nr + " " + xa1 + " 0 0\r\n");
     fw.write(++nr + " " + xb1 + " 0 0\r\n");
     fw.write(++nr + " 0 " + ya1 + " 0\r\n");
     fw.write(++nr + " 0 " + yb1 + " 0\r\n");
     fw.write(++nr + " 0 0 " + za1 + "\r\n");
     fw.write(++nr + " 0 0 " + zb1 + "\r\n");
     fw.write("Faces:\r\n");
     for (int i=0; i<nx; i++)
     {  for (int j=0; j<ny; j++)
        {  int k = j * (nx + 1) + i + 1,
               m = k + nx + 1, k1 = k + 1, m1 = m + 1;
           fw.write(k + " " + -m1 + " " + k1 + ".\r\n");
           fw.write(k1 + " " + m1 + " " + -k + ".\r\n");
           fw.write(k + " " + - m1 + " " + m + ".\r\n");
           fw.write(m + " " + m1 + " " + - k + ".\r\n");
        }
     }
     int k = (nx + 1) * (ny + 1);
     fw.write(++k + " " + ++k + ".\r\n"); // x-axis
     fw.write(++k + " " + ++k + ".\r\n"); // y-axis
     fw.write(++k + " " + ++k + ".\r\n"); // z-axis
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     fw.write(++k + " " + ++k + ".\r\n"); // z-axis
     fw.close();
     System.out.println("Ready!");
   }

   boolean readChar()
   {  char ch;
      do
      {  if (pos == buf.length())return false;
         ch = buf.charAt(pos++);
      }  while (ch == ' ');
      lastChar = ch;
      return true;
   }

   boolean nextIs(char ch)
   {  char ch0 = lastChar;
      if (readChar())
      {  if (ch == lastChar) return true;
         pos--; 
      }
      lastChar = ch0;
      return false;
   }

   float eval(float x, float y)
   {  this.x = x; this.y = y;
      pos = 0;
      OK = true;
      return expression();
   }

   float expression()
   {  float x = term();
      for (;;)
      {  if (nextIs('+')) x += term(); else
         if (nextIs('-')) x -= term(); else break;
      }
      return x;
   }

   float term()
   {  float x = factor();
      for (;;)
      {  if (nextIs('*')) x *= factor(); else
         if (nextIs('/')) x /= factor(); else break;
      }
      return x;
   }

   float factor()
   {  float v = 0;
      if (!readChar()) return 0;
      if (lastChar == 'x') return x;
      if (lastChar == 'y') return y;
      if (lastChar == '(')
      {  v = expression();
         if (!nextIs(')')){OK = false; return 0;}
         return v;
      }
      char ch = lastChar;
      if (ch == 'c'     // cos(expression)
         || ch == 's'   // sin(expression) 
         || ch == 'p') //  pow(expression, expression)
       { while ((OK = readChar()) && lastChar != '(');
         if (!OK) return 0;
         float arg = expression();
         if (ch == 'p')
         {  if (!nextIs(',')){OK = false; return 0;}
            double exponent = expression();
            v = (float)Math.pow(arg, exponent);
         }
         else
            v = (float)(ch == 'c' ? Math.cos(arg) : Math.sin(arg));
         if (!nextIs(')')){OK = false; return 0;}
         return v;
       }
       pos--;
       if (number()) return lastNum;
       OK = false;
       return 0;
    }

    boolean number()
    {  float x=0;
       int nDec = -1;
       boolean neg = false;
       do
       {  if (!readChar()) return false;
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       {  if (!readChar()) return false;
          if (lastChar == '-')
          {  neg = true;
             if (!readChar()) return false;
             break;
          }
       }  while (Character.isWhitespace(lastChar));
       if (lastChar == '.')
       {  if (!readChar()) return false;
          nDec = 0;
       }
       if (!Character.isDigit(lastChar)){OK = false; return false;}
       for (;;)
       {  if (lastChar == '.' "" nDec < 0) nDec = 0; else
          if (Character.isDigit(lastChar))
          {  x = 10 * x + (lastChar - '0');
             if (nDec >= 0) nDec++;
          }  else 
          {  pos--;
             break;
          }
          if (!readChar()) break;
        }
        while (nDec > 0){x *= 0.1; nDec--;}
        lastNum = (neg ? -x : x);
        return true;
    }
}

The given expression is evaluated when the first part of the output file is generated. In the class xyExpression we find the method
generate, in which, five lines after the label outer, the following call to eval occurs:
float z = eval(x, y);

This method eval calls the method expression, who set ask is to scan an expression, stored in the array buf, and to return its
value. According to our above definition of expression, defining an expression as a sequence of terms separated by + and −
operators, the method expression calls the method term, which scans a term and returns its value, and so on. This way of parsing,
that is, analyzing expressions that satisfy a given grammar, is referred to as recursive descent. This adjective recursive will be
clear if we note that our above syntactic definition of expression and the corresponding method are recursive. An expression
cancontaina factor that again contains an expression. Accordingly, in the program, expression calls term, which calls factor, which
may again call expression. We immediately evaluate the syntactic entities we are dealing with, or, as we normally say, we interpret
the source code. Instead, we might have generated intermediate code. More information about recursive descent parsing can be
found in Ammeraal (1996).

In the program, parsing is done by using two simple methods, readChar and nextIs, as well as the variable lastChar, all belonging
to the class xyExpression:
boolean readChar()

This method scans the next character, if possible, places this in the variable lastChar and returns true. If this is not possible
because the end of the expression is encountered, it returns false. This methods skips any blank spaces.
boolean nextIs(char ch)

This method tests if the next character to be scanned is equal to the argument ch. If so, it scans this character and returns true; if
not, it leaves the scan position unaltered and returns false.

After this discussion of parsing (which is unusual in a book on computer graphics) let us now turn to the graphics aspects of this
program. It goes without saying that the vertices of a polygon, as specified in our 3D data files after the word Faces, should lie in
the same plane. This is obviously the case for rectangles (or squares) such as 7-8-12-11 in Figure E.14(a) if we regard these as
lying in the plane z = 0.

 
Figure E.14: Two triangles with an invisible common edge forming a rectangle

However, the corresponding four points on the surface may or may not lie in the same plane. We therefore prefer triangles to
rectangles in this case. Remember, the three points of a triangle always lie in the same plane. Instead of the rectangle 7-8-12-11,
we can specify the two triangles 7-8-12 and 7-12-11. However, we must pay attention to these two aspects:

1. Diagonals, such as 7–12, must not be drawn; we solve this problem by using minus signs, as discussed in
Section 6.4.

2. Each triangle has two sides; since we do not know in advance which will be visible, we have to specify both.
Recall that we have discussed this subject of ‘individual faces’ in Section 6.5.
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According to this second point, the vertices of each triangle in Figure E.14(b) will occur twice in the data file: clockwise and
counter-clockwise. Using minus signs, as discussed in the first point, we use four lines in the data file for the ‘rectangle’ k, k + 1, m
+ 1, m of Figure E.14(b), as shown below:

k − (m + 1) k + 1. (lower-right, clockwise)

k + 1 m + 1 −  k. (lower-right, counter-clockwise)

k − (m + 1) m. (upper-left, counter-clockwise)

m m + 1 − k. (upper-left, clockwise)

You can find the code that writes these four triangles to a file in the method generate.
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Appendix F: Hints and Solutions to Exercises
1.1  Numbers of pixels:

g.drawLine (10, 20, 100, 50); // 100 - 10 + 1 = 91 pixels
g.drawRect (10, 10, 8, 5);    // 2 * 8 + 2 * 5 = 26 pixels
g.fillRect (10, 10, 8, 5);    // 8 * 5 = 40 pixels

 
1.2  Program to draw many squares:

// ManySq.java: This program drawsnxnsets, each
//   consisting of k squares, arranged as on a chessboard.
//   Each edge is divided into two parts with ratio
//   (1 - q)  : q. The values of n, k and q are program
              arguments.

import java.awt.*;
import java.awt.event.*;

public class ManySq extends Frame
{  public static void main(String[] args)
   {  if (args.length != 3)
      {  System.out.println("Supply n, k and q as arguments");
         System.exit(1);
      }
      int n = Integer.valueOf(args[0]).intValue(),
          k = Integer.valueOf(args[1]).intValue();
      float q = Float.valueOf(args[2]).floatValue();
      new ManySq(n, k, q);
    }
    ManySq(int n, int k, float q)
    {  super("ManySq: Many squares");
       addWindowListener(new WindowAdapter()
        {public void windowClosing(
                WindowEvent e){System.exit(0);}});
       add("Center", new CvManySq(n, k, q));
       setSize (600, 400);
       show();
    }
  }

  class CvManySq extends Canvas
  {  int centerX, centerY, n, k;
     float p0, q0;

     CvManySq(int nn, int kk, float qq){n=nn; k=kk; q0=qq; p0 =
                    1-q0;}

     int iX(float x){return Math.round(centerX + x);}
     int iY(float y){return Math.round(centerY - y);}

     public void paint(Graphics g)
     {  Dimension d = getSize();
        int maxX = d.width - 1, maxY = d.height - 1,
           minMaxXY = Math.min(maxX, maxY);
        centerX = maxX/2; centerY = maxY/2;

        float r = 0.45F * minMaxXY / n;
        for (int x=0; x<n; x++)
        for (int y=0; y<n; y++)
        {  float xCnew = (2 * x - n + 1) * r,
                 yCnew = (2 * y - n + 1) * r,
              xA, yA, xB, yB, xC, yC, xD, yD,
              xA1, yA1, xB1, yB1, xC1, yC1, xD1, yD1, p=p0, q=q0;
           if (x % 2 + y % 2 == 1){p = q0; q = p0;}
           xA = xD = xCnew - r; xB = xC = xCnew + r;
           yA = yB = yCnew - r; yC = yD = yCnew + r;
           for (int i=0; i<k; i++)
           {  g.drawLine(iX(xA), iY(yA), iX(xB), iY(yB));
              g.drawLine(iX(xB), iY(yB), iX(xC), iY(yC));
              g.drawLine(iX(xC), iY(yC), iX(xD), iY(yD));
              g.drawLine(iX(xD), iY(yD), iX(xA), iY(yA));
              xA1 = p * xA+q * xB; yA1 = p * yA+q * yB;
              xB1 = p * xB+q * xC; yB1 = p * yB+q * yC;
              xC1 = p * xC+q * xD; yC1 = p * yC+q * yD;
              xD1 = p * xD+q * xA; yD1 = p * yD+q * yA;
              xA = xA1; xB = xB1; xC = xC1; xD = xD1;
              yA = yA1; yB = yB1; yC = yC1; yD = yD1;
           }
        }
    }
}

 
1.3  To draw all edges as exactly straight lines and to make the vertices of inner squares lie exactly on the edges of their

surrounding squares, use device coordinates, starting with a pair of very small squares (⋄  and □ ), and making the squares
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surrounding squares, use device coordinates, starting with a pair of very small squares (⋄  and □ ), and making the squares
of each next pair exactly twice as large as those of the preceding pair.

 
1.4  The radius r of the circumscribed circles for the hexagons is supplied by the user. Based on this radius r, the following

fragment (in which the variable names are self-explanatory) may be helpful:
int iX(float x){return Math.round(centerX + x/pixelSize);}
int iY(float y){return Math.round(centerY - y/pixelSize);}

void drawLine(Graphics g, float xA, float yA, float xB, float yB)
{  g.drawLine(iX(xA), iY(yA), iX(xB), iY(yB));
}
...

float halfr = r/2, horpitch = 1.5F * r,
  w = r * (float)Math.sqrt (3),h=w/2, marginleft,
                marginbottom;
int nhor = (int)Math.floor((rWidth - 2 * r) / horpitch) + 1,
    nvert = (int)Math.floor(rHeight/w);
marginleft = -rWidth/2 + 0.5F * (rWidth - halfr - nhor *
              horpitch);
marginbottom = -rHeight/2 + 0.5F * (rHeight - nvert * w);
for (int i=0; i<nhor; i++)
{  float x = marginleft + r + i * horpitch,
    y0 = marginbottom + (1 + i % 2)* h; // center of lowest
              hexagon
    int m = nvert - i % 2;
// There will be nvert hexagons in each column for i = 0, 2,4,
              ...
// while there will be nvert - 1 in each column for i = 1, 3, 5,
              ...
// Special case: if nvert = 1 and nhor > 1, then x is increased
              by
// horpitch/2 because otherwise there will be an empty column on
              the
// right.
   if (nvert == 1 && nhor > 1)
      x += horpitch/2;
   for (int j=0; j<m; j++)
   {  float y = y0+j*w;
      drawLine(g, x + halfr,y+h,x-halfr,y+h);
      drawLine(g, x - halfr, y + h, x - r, y);
      drawLine(g, x - r, y, x - halfr, y - h);
      ...

 
1.5  We begin by computing the length

where

Since there should be a dash, not a gap, at each endpoint, and we use gap widths that are about equal to dashLength, we
use the equality

to compute n, the number of dashes. Writing h1 = u1//(2n −  1) and h2 = u2/ (2n −  1), and denoting the dashes by i = 0, 1,
… , n −  1, we draw dash i as a straight line with endpoints (xA + 2ih1, yA + 2ih2) and ((xA + (2i + 1)h1, yA + (2i + 1)h2).

2.1  After rotating the vector v = (v1, v2) through 90° counter-clockwise, we obtain the vector (− v2, v1). Setting v = (v1, v2) =
(xB −  xA, yB −  yA), we can therefore find the points D and C by adding (− v2, v1) to the coordinates of A and B,
respectively.

 
2.2  To determine the position of P relative to the triangle ABC, we first test whether P lies on one of the three sides of the

triangle, using the method onSegment, discussed in Section 2.10. If this is not the case, we test whether P lies inside
ABC, using the method insideTriangle of Section 2.8. To do this properly, we need to know the orientation of A, B and C,
for which we can use the method ccw of Section 2.6. If this orientation is clockwise, we use C, B and A, in that order, as
the first three arguments of insideTriangle, so that the orientation of these arguments is counter- clockwise, as required. If
P lies neither on a triangle side nor inside the triangle, it lies outside it.

 
2.3  Section 2.11 shows how to compute the distance between a point and a line. We perform this computation three times to

determine which of the three triangle sides AB, BC and CA (or rather the infinite lines through these sides) lies closest to
point P. We then use the method projection of Section 2.12 to compute the projection P′ of P on the triangle side in
question (or on an extension of it). We draw both the triangle and the line segment PP′. If the projection point P′ lies on
an extension of a side, we also connect this point to the side (AB, BC or CA), to indicate clearly which of the three lines
has been used. For example, if P′ lies on an extension of BC (not between B and C), we can draw P′B.
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2.4  Using the vector AB = u = (u1, u2) = (xB −  xA, yB −  yA) and the parameter λ , we can represent the line through A and B

by the following vector form:

Similarly, with CD = v = (v1, v2) = (xD −  xC, yD −  yC) and parameter μ , the line through C and D is represented by

We find the intersection point S by solving

for λ  (rewriting this vector equation as a system of two linear equations, using the x-and y- coordinates of A and C as well
as u1, u2, v1 and v2). We then use the value of λ  computed in this way to find

When deriving the desired value of λ , we will have to perform a division by the expression u2v1 −  u1v2 (which is a
determinant). If this determinant is zero, the lines AB and CD do not have a unique intersection point because these lines
are parallel or coincide. Since the points A, B, C and D are obtained by clicking and there are (very small) rounding-off
errors, we had better replace the condition

with this one:

where epsilon is some very small positive value. To make this independent of the units of length and in view of the way
the determinant is computed, a reasonable value is

 
2.5  To construct the bisector of angle B, we can compute the two vectors u = BA/|BA| and v = BC/|BC|. We can view these

vectors as arrows starting at B and pointing to A and C, respectively. Since both u and v have length 1, the sum vector

can then be regarded as another arrow starting at B but lying on the desired bisector, so that, with parameter α , the
vector form

denotes the bisector of angle B. The intersection point D of this bisector and triangle side AC can then be found in the
same way as in Exercise 2.4.

 
2.6  Using AB=u=(u1, u2)=(xB −  xA, yB −  yA) and v =(v1, v2) = (− u2, u1), we can write the following vector form for the

perpendicular bisector of AB:

To find the circumcenter D of triangle ABC, write a similar vector form, say,

for the perpendicular bisector of BC. You can then find the intersection of these two lines by solving the vector equation

for λ  (or μ ). Then the circumcenter D is found as the point of intersection by using this value λ  in Equation (F.1). After
computing the radius r =|AD|, and using the methods iX and iY to convert real logical coordinates into integer device
coordinates, you can draw the circle through A, B and C by writing:

int xLeft = iX(xD - r), xRight = iX(xD + r),
    yTop = iY(yD + r), yBottom = iY(yD - r);
g.drawOval(xLeft, yTop, xRight - xLeft, yBottom - yTop);
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2.7  Compute the center C and the radius r of the circle through P, Q and R (see Exercise 2.6). Although there is a method

drawArc in Java, this is not suitable for our present purpose because it requires angles to be specified (in degrees) as
integers; especially if r is large, this may cause too large rounding-off errors with regard to both endpoints of the arc. We
therefore simply use a great many straight line segments. We can do this by using Point2D objects for C, P, Q and R (see
Section 1.5). Taking the orientation of P, Q and R into account by means of the method area2 of class Tools2D (see
Section 2.13), we can write:
double alpha = Math.atan2(P.y - C.y, P.x - C.x),
       beta  = Math.atan2(R.y - C.y, R.x - C.x);
if (Tools2D.area2(P, Q, R) > 0)
   arcCcw(g, C, r, alpha, beta);
else
   arcCcw(g, C, r, beta, alpha);

The method arcCcw, used here, is listed below. Working counter- clockwise, it draws the arc with start and end angles
alpha and beta and belonging to the circle with center C and radius r:
void arcCcw(Graphics g, Point2D C, double r,
   double alpha, double beta)
{  double pi2=2* Math.PI, delta = beta - alpha;
   // Reduce delta to the interval [0, 2pi):
   delta = (delta + pi2) % pi2;
   int X0=0, Y0=0,                     // Arc length = r * delta
      n = (int)Math.ceil(r * delta / 0.02); // 0.02 = rWidth/500
   double theta = delta / n;
   for (int i=0; i<=n; i++)
   {  double phi = alpha + i * theta,
         x = C.x + r * Math.cos(phi),
         y = C.y + r * Math.sin(phi);
      int X = iX((float)x), Y = iY((float)y );
      if (i > 0) g.drawLine(X0, Y0, X, Y);
      X0 = X; Y0 = Y;
   }
}

 
2.8  We can use the first of the two methods projection of Section 2.12 to find the projection D' of D on AB. Since the center M

of the circular arc lies on the bisector of the angle ABC, we compute the unit vectors u = BA/|BA| and v = BC/|BC| and w
= (u + v)/|u + v|, which start at B and point to A, C and M, respectively. We now have to find a scale factor λ , so that BM
= λ  w. Since the cosine of the angle D′ BM is equal to w · v and using μ  =|BD′|, we can compute λ  = µ/(w · v). We then
find the endpoint E of the arc on BC and the center M as follows: E = B + μv, M = B + λw. Obviously, the radius of the
arc is r =|MD′|. We can now compute the start and end angles α  and β  and draw the arc by choosing between two calls
to the method arcCcw, depending on the orientation of the points A, B and C (see Exercise 2.7).

 
2.9  Refer to Exercise 2.8 for bisectors of angles and to Exercise 2.1 for the intersection of two lines. This will provide you with

the centers of the four circles. You can use the radius of each circle as the distance of its center to one of its tangents.
Recall that we have discussed the distance of points to lines in Section 2.11.

 
2.10  Use vector AB = (u1, u2) to find the points D = A + (− u2, u1), C = D + (u1, u2)and E = D + 0.5 {(u1, u2) + (− u2, u1)}.

3.1  

 
3.2  Similar to Exercise 3.1.

 
3.3  For shearing a set of points with reference to point C, we replace the shearing equations at the end of Section 3.2 with the

similar ones

which reduces to x′ = x + a(y −  yC), y ′ = y.

The sharing operation will transform the circle into an ellipse with a non-horizontal axis, so that we cannot use the Java
method drawOval. Therefore, for some large value of n, we approximate a circle with center C(xC, yC) and radius r by
computing the following n points (xi, yi) of this circle:

where θ  = 2 π / n and i = 0, 1, … , n −  1. Instead of immediately connecting these points by straight lines, which would
produce the circle, we first subject each xi to the above shearing formula.

 
3.4  Just compute the product AA − 1 to obtain the identity matrix I. For example, the upper-left element of this product is equal
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3.4  Just compute the product AA − 1 to obtain the identity matrix I. For example, the upper-left element of this product is equal
to the inner product of the first row of A and the first column of A− 1, which is a11(a22/D) + a12(− a21/D) = D/D = 1.

 
3.5  If there are many points for which we have to check whether they lie within a single triangle (or on an edge of it), the

method insideTriangle of the following class is more efficient than the one discussed in Section 2.8, since most of the work
is done here by the constructor, which need be called only once for that triangle:
class TriaTest
{  private Point2D C;
   private double a1, a2, b1, b2, c1, c2, d1, d2, det;

   TriaTest(Point2D A, Point2D B, Point2D C)
   {  this.C = C;
      a1 = A.x - C.x; a2 = A.y - C.y;
      b1 = B.x - C.x; b2 = B.y - C.y;
      det= a1 * b2 - b1 * a2;
      if (det != 0)
      {  c1 = b2/det; c2 = -a2/det;
         d1 = -b1/det; d2 = a1/det;
      }
   }

   double area2(){return det;}

   boolean insideTriangle(Point2D P)
   {  double p1 = P.x - C.x, p2 = P.y - C.y,
         lambda, mu;
      return (lambda = p1 * c1 + p2 * d1) >= 0 &&
          (mu = p1 * c2 + p2 * d2) >= 0 &&
          lambda + mu <= 1;
   }
}

4.1  Adapt the Java program for Bresenham's algorithm by drawing pixels from both of the endpoints towards the middle of the
line. Either calculate where the middle point is beforehand or check on-the-fly (that is, within the loop) when the two pixels
merge in the middle. There may be one or two middle points depending on whether the line consists of an odd or even
number of pixels. If there is only one, it is a good idea to draw this pixel after exiting the loop. Check if your solution also
works correctly for very short lines, consisting of one or two pixels. You solution should be very general in that it works for
any two endpoints P and Q.

 
4.2  You should add a second for-loop in which the roles of x and y are interchanged. For example, the calls to putPixel should

have ++y as their third argument instead of ++x as their second. If |yQ −  yP|≤ |xQ −  xP|, the first loop should be executed;
otherwise the second.

 
4.3  The following program produces only Figure 4.19. You should extend it, enabling the user to specify the two endpoints of a

line segment and both the center and the radius of a circle.
// Bresenham.java: Bresenham algorithms for lines and circles
//                 demonstrated by using superpixels.
import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class Bresenham extends Frame
{  public static void main(String[] args){new Bresenham();}

   Bresenham()
   {  super("Bresenham");
      addWindowListener(new WindowAdapter()
       {public void windowClosing(WindowEvent e)
               {System.exit(0);}});
       setSize (340, 230);
       add("Center", new CvBresenham());
       show();
   }
}
class CvBresenham extends Canvas
{  float rWidth = 10.0F, rHeight = 7.5F, pixelSize;
   int centerX, centerY, dGrid = 10, maxX, maxY;

   void initgr()
   {  Dimension d;
      d = getSize();
      maxX = d.width - 1;
      maxY = d.height - 1;
      pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
      centerX = maxX/2; centerY = maxY/2;
   }
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   }
      int iX(float x){return Math.round(centerX + x/pixelSize);}
      int iY(float y){return Math.round(centerY - y/pixelSize);}

      void putPixel(Graphics g, int x, int y)
      {  int x1 = x * dGrid, y1 = y * dGrid, h = dGrid/2;
         g.drawOval(x1 - h, y1 - h, dGrid, dGrid);
      }

      void drawLine(Graphics g, int xP, int yP, int xQ, int yQ)
      {  int x = xP, y = yP, D = 0, HX = xQ - xP, HY = yQ - yP,
            c, M, xInc = 1, yInc = 1;
         if (HX < 0){xInc = -1; HX = -HX;}
         if (HY < 0){yInc = -1; HY = -HY;}
         if (HY <= HX)
         {  c = 2 * HX; M = 2 * HY;
            for (;;)
            {  putPixel(g, x, y);
               if (x == xQ) break;
               x += xInc;
               D += M;
               if (D > HX){y += yInc; D -= c;}
            }
         }
         else
         {  c = 2 * HY; M = 2 * HX;
            for (;;)
            {  putPixel(g, x, y);
               if (y == yQ) break;
               y += yInc;
               D += M;
               if (D > HY){x += xInc; D -= c;}
            }
         }
}

void drawCircle(Graphics g, int xC, int yC, int r)
{  int x = 0, y = r, u = 1, v = 2 * r - 1, E = 0;
   while (x < y)
   {  putPixel(g, xC + x, yC + y); // NNE
      putPixel(g, xC + y, yC - x); // ESE
      putPixel(g, xC - x, yC - y); // SSW
      putPixel(g, xC - y, yC + x); // WNW
      x++; E += u; u += 2;
      if (v < 2 * E){y--; E -= v; v -= 2;}
      if (x > y) break;
      putPixel(g, xC + y, yC + x); // ENE
      putPixel(g, xC + x, yC - y); // SSE
      putPixel(g, xC - y, yC - x); // WSW
      putPixel(g, xC - x, yC + y); // NNW
     }
   }

   void showGrid(Graphics g)
   {  for (int x=dGrid; x<=maxX; x+=dGrid)
         for (int y=dGrid; y<=maxY; y+=dGrid)
            g.drawLine(x, y, x, y);
   }

   public void paint(Graphics g)
   {  initgr();
      showGrid(g);
      drawLine(g, 1, 1, 12, 5);
      drawCircle(g, 23, 10, 8);
   }
}

 
4.4  Since an unknown number of curve segments are to be dealt with, we can use the Java concept of Vector, as we have

also done in Section 1.5 and elsewhere to store Point2D objects representing the vertices of a polygon. In this case it
makes sense to define a class CurveSegment andtousea Vector of CurveSegment objects, as this fragment shows:
class CurveSegment
{  Point2D[] P;
   CurveSegment(Point2D[] P){this.P = P;}
   ...
}
Writing

Vector curves = new Vector();

and using the array P, declared as

Point2D[] P = new Point2D[4];

containing the most recent four points, as we did in program Bezier.java in Section 4.6, we can add a new curve segment
to curves by writing
curves.addElement(new CurveSegment(P));

The object curves can store several curves, each consisting of some consecutive elements.
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4.5  In program Bspline.java of Section 4.7, pressing a key is interpreted as a signal to terminate the process of extending the

curve. Insert the line
char ch = evt.getKeyChar();

in the method keyTyped so that you can use the character ch to differentiate between different characters entered by the
user and to use them as commands.

Use a Vector element for each array representing a curve. Recall that we have used the statement
V.copyInto(P);

in the paint method of program Bspline.java, to copy the Vector object V into the array P. Using a different Vector object,
say, curves, we can now add the array P to curves. The deletion of the last curve, as required by the d command, is then
implemented as
curves.setSize(curves.size()-1);

 
4.6  Represent the grid on the screen by drawing ten equidistant horizontal lines that intersect ten equidistant vertical lines. If

the user clicks on (or near) a point of intersection of these lines, transform the device coordinates to gridpoint coordinates,
ranging from 0 through 9, and use these gridpoint coordinates to select P and Q. Draw the line PQ after Q has been
defined. On the right of all these horizontal and vertical lines, display the strings

below each other, where the array algorithm is defined and initialized as follows:
String[] algorithm = {
   "int x=xP,y=yP,d=0,dx=xQ-xP,c=2*dx,", // 0
   "    m=2*(yQ-yP);",                   // 1
   "for (;;)",                           // 2
   "{ putPixel(g, x, y);",               // 3
   " if (x == xQ) break;",               // 4
   " x++; d += m;",                      // 5
   " if (d > dx){y++; d -= c;}",      // 6
   "}"};                                 // 7

As soon as the user has defined point Q, the line stored as algorithm[3] should be highlighted, indicating that the call to
putPixel is about to be executed. You can realize this by using a variable, say i, indicating which of the above eight
program lines (if any) should be displayed in red (or equal to, say, − 1 if all program lines are to appear in black). All lines
algorithm[j] with j ≠  i are displayed in black. You can use a switch statement to test the value of i in a method stepPressed.
For example, you can write a fragment of the following form in the constructor of your canvas class:
addMouseListener(new MouseAdapter()
{  public void mousePressed(MouseEvent evt)
   {  // When the mouse is clicked, determine where
      // it is on the screen and do the appropriate
      // action, if any.
      int xClick = 0, yClick = 0;
      // Get the coordinates
      xClick = evt.getX();
      yClick = evt.getY();
      // Check to see if STEP button was pressed
      if (xClick, yClick lies within the rectangle representing
                                                 the Step button)
         stepPressed();
      else
      if (xClick, yClick) lies within grid area
      {  ...
      }
      repaint();
   }
});

In the switch statement just mentioned, you should execute actions defined in the program line (stored in the algorithm
array) that was previously highlighted and update the variable i mentioned above. Your method paint will use this variable i
to display the correct program line in red and the others in black.

5.1  As Figure 5.11 shows, nine cube edges are visible and three are invisible. In the paint method of program CubePers.java,
replace the calls to the method line with this fragment:

// Visible edges:
line(g, 0, 1); line(g, 1, 5); line(g, 5, 4); line(g, 4, 0);
line(g, 1, 2); line(g, 2, 6); line(g, 6, 7); line(g, 7, 4);
line(g, 5, 6);

// Invisible edges:
g.setColor(Color.blue);
line(g, 0, 3); line(g, 3, 2); line(g, 3, 7);

If you did Exercise 1.5 and have a class Lines, containing the method dashedLine, available, you may be able to replace
the last two of the above lines with
dash(g, 0, 3); dash(g, 3, 2); dash(g, 3, 7);

while adding the following method to the class CvCubePers:
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void dash(Graphics g, int i, int j)
{  Point2D P = obj.vScr[i], Q = obj.vScr[j];
   Lines.dashedLine(g, iX(P.x), iY(P.y), iX(Q.x), iY(Q.y), 8);
}

Figure F.1 shows the result of this solution with dashed lines.

 
Figure F.1: Dashed lines representing invisible edges

 
5.2  There are two fillPolygon methods: one taking a Polygon object as an argument and the other taking two arrays x and y

instead. In either case, do not forget to convert logical to device coordinates, using the methods iX and iY.Use setColor,
with different colors before each of the three calls to fillPolygon.

 
5.3  To replace Figure 5.11, begin by sketching two cubes, say, one on either side of the xz-plane, and by assigning the

numbers 0–7 to the vertices of the first and 8–15 to those of second cube. With this sketch, and using arrays w and vScr
with length 16 instead of 8, you can easily update the program as requested. Remember to increase the value of objSize,
which is used to compute both the object distance ρ  and the screen distance d.

 
5.4  The following program demonstrates the principle of animation (with double buffering) for a simple case: a line segment is

rotated about one of its endpoints, which is the center of the canvas. Every 20 ms, the angle α  is increased by 0.01
radians and the line from the origin O (in the center of the canvas) to point (r cos α , r sin α ) is drawn. The effect is that of a
running clock with only one hand:
// Anim.java: Animation with double buffering.
import java.awt.*;
import java.awt.event.*;
public class Anim extends Frame
{  public static void main(String[] args){new Anim();}

   Anim()
   {  super("Animation (double buffering)");
      addWindowListener(new WindowAdapter()
       {public void windowClosing(WindowEvent e)
               {System.exit(0);}});
      add("Center", new CvAnim());
      Dimension dim = getToolkit().getScreenSize();
      setSize(dim.width/2, dim.height/2);
      setLocation(dim.width/4, dim.height/4);
      show();
   }
}
class CvAnim extends Canvas
   implements Runnable
{  float rWidth = 10.0F, rHeight = 10.0F, xC, yC, pixelSize;
   int centerX, centerY, w, h;
   Dimension d;
   Image image;
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   Image image;
   Graphics gImage;

   float alpha = 0;
   Thread thr = new Thread(this);

   public void run()
   {  try
      { for (;;)
        {  alpha += 0.01;
           repaint();
           Thread.sleep (20);
        }
      }
      catch (InterruptedException e){}
   }

   CvAnim(){thr.start();}

   void initgr()
   {  d = getSize();
      int maxX = d.width - 1, maxY = d.height - 1;
      pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
      centerX = maxX/2; centerY = maxY/2;
      xC = rWidth/2; yC = rHeight/2;
   }

   int iX(float x){return Math.round(centerX + x/pixelSize);}
   int iY(float y){return Math.round(centerY - y/pixelSize);}
   public void update(Graphics g){paint(g);}
   public void paint(Graphics g)
   {  initgr();
      if (w != d.width || h != d.height)
      {   w = d.width; h = d.height;
          image = createImage(w, h);
          gImage = image.getGraphics();
      }
      float r = 0.8F * Math.min(xC, yC),
         x = r * (float)Math.cos(alpha),
         y = r * (float)Math.sin(alpha);
      gImage.clearRect (0, 0, w, h);
      // Every 20 ms, the following line is drawn.
      // Each time, its endpoint (x, y) is a
      // different point on a circle:
         gImage.drawLine(iX (0), iY (0), iX(x), iY(y));
         g.drawImage(image, 0, 0, null);
    }
}

 
5.5  The following program produces two rotating cubes, illustrated by Figure 5.15. Remember, this program works only if the

class file Rota3D. class (see Section 3.9) is available in the current directory:
// CubRot2.java: Two rotating cubes with double buffering.
//   Uses: Point2D (Section 1.5),
//         Point3D, Rota3D (Section 3.9)
import java.awt.*;
import java.awt.event.*;

public class CubRot2 extends Frame
{  public static void main(String[] args){new CubRot2();}

   CubRot2()
   {  super("Rotating cubes (double buffering)");
      addWindowListener(new WindowAdapter()
       {public void windowClosing(WindowEvent e)
               {System.exit(0);}});
      add("Center", new CvCubRot2());
      Dimension dim = getToolkit().getScreenSize();
      setSize(3 * dim.width/4, dim.height/2);
      setLocation(dim.width/8, dim.height/4);
      show();
   }
}

class CvCubRot2 extends Canvas
   implements Runnable
{  int centerX, centerY, w, h;
   Obj2 obj = new Obj2();
   Image image;
   Graphics gImage;

   double alpha = 0;
   Thread thr = new Thread(this);

   public void run()

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   public void run()
{  try
   {  for (;;)
      {  alpha += 0.01;
         repaint();
         Thread.sleep (20);
      }
   }
   catch (InterruptedException e){}
}

CvCubRot2(){thr.start();}
public void update(Graphics g){paint(g);}

int iX(float x){return Math.round(centerX + x);}
int iY(float y){return Math.round(centerY - y);}

void line(int i, int j)
{  Point2D P = obj.vScr[i], Q = obj.vScr[j];
   gImage.drawLine(iX(P.x), iY(P.y), iX(Q.x), iY(Q.y));
}
public void paint(Graphics g)
{  Dimension dim = getSize();
   int maxX = dim.width - 1, maxY = dim.height - 1;
   centerX = maxX/2; centerY = maxY/2;
   int minMaxXY = Math.min(maxX, maxY);
   obj.d = obj.rho * minMaxXY / obj.objSize;
   obj.rotateCube(alpha);
   obj.eyeAndScreen();
   if (w != dim.width || h != dim.height)
   {  w = dim.width; h = dim.height;
      image = createImage(w, h);
      gImage = image.getGraphics();
   }
   gImage.clearRect (0, 0, w, h);
   // Horizontal edges at the bottom:
   line (0, 1); line (1, 2); line (2, 3); line (3, 0);
   // Horizontal edges at the top:
   line (4, 5); line (5, 6); line (6, 7); line (7, 4);
   // Vertical edges:
   line (0, 4); line (1, 5); line (2, 6); line (3, 7);
   // Same for second cube:
   line (8, 9); line (9, 10); line (10, 11); line (11, 8);
   // Horizontal edges at the top:
      line (12, 13); line (13, 14); line (14, 15); line (15, 12);
      // Vertical edges:
      line (8, 12); line (9, 13); line (10, 14); line (11, 15);
      g.drawImage(image, 0, 0, null);
   }
}

class Obj2 // Contains 3D object data for two cubes
{   float rho, theta=0F, phi=1.3F, d;
    Point3D[] s, w; // World coordinates
    Point2D[] vScr; // Screen coordinates
    float v11, v12, v13, v21, v22, v23,
      v32, v33, v43, // Elements of viewing matrix V.
      xe, ye, ze, objSize = 8;

    Obj2()
    {  s = new Point3D[16]; // Start situation
       w = new Point3D[16]; // After rotation
       vScr = new Point2D[16];
       // Bottom surface:
       s[0] = new Point3D( 1, -3, -1);
       s[1] = new Point3D( 1, -1, -1);
       s[2] = new Point3D(-1, -1, -1);
       s[3] = new Point3D(-1, -3, -1);
       // Top surface:
       s[4] = new Point3D( 1, -3, 1);
       s[5] = new Point3D( 1, -1, 1);
       s[6] = new Point3D(-1, -1, 1);
       s[7] = new Point3D(-1, -3, 1);
       // Bottom surface:
       s[8] = new Point3D( 1, 1, -1);
       s[9] = new Point3D( 1, 3, -1);
       s[10] = new Point3D(-1, 3, -1);
       s[11] = new Point3D(-1, 1, -1);
       // Top surface:
       s[12] = new Point3D( 1, 1, 1);
       s[13] = new Point3D( 1, 3, 1);
       s[14] = new Point3D(-1, 3, 1);
       s[15] = new Point3D(-1, 1, 1);
       rho = 15; // For reasonable perspective effect
   }

void rotateCube(double alpha)
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void rotateCube(double alpha)
   {   Rota3D.initRotate(s[0], s[4], alpha);
       for (int i=0; i<8; i++)
          w[i] = Rota3D.rotate(s[i]);
       Rota3D.initRotate(s[13], s[9], 2 * alpha);
       for (int i=8; i<16; i++)
          w[i] = Rota3D.rotate(s[i]);
   }

   void initPersp()
   {  float costh = (float)Math.cos(theta),
            sinth = (float)Math.sin(theta),
            cosph = (float)Math.cos(phi),
            sinph = (float)Math.sin(phi);
      v11 = -sinth;
      v12 = -cosph * costh;
      v13 = sinph * costh;
      v21 = costh;
      v22 = -cosph * sinth;
      v23 = sinph * sinth;
      v32 = sinph;
      v33 = cosph;
      v43 = -rho;
   }

   void eyeAndScreen()
   {  initPersp();
      for (int i=0; i<16; i++)
      {  Point3D P = w[i];
         float x = v11 * P.x + v21 * P.y;
         float y = v12 * P.x + v22 * P.y + v32 * P.z;
         float z = v13 * P.x + v23 * P.y + v33 * P.z + v43;
         Point3D Pe = new Point3D(x, y, z);
         vScr[i] = new
            Point2D(-d * Pe.x/Pe.z, -d * Pe.y/Pe.z);
       }
    }
}

6.1  The desired input file is listed below:
1   1-1  0
2   1 1  0
3  -1 1  0
4  -1-1  0
5  0 0   -2
6  0 0   2
Faces:
1 2 3 4.
4 3 2 1.
5 6.

 
6.2  Use the vertices 1, 2 and 3 as triangle vertices in the plane z = 0, such that the origin O lies inside the triangle. Let vertex

4 be the origin and vertices 5 and 6 the same line endpoints as in the above solution to Exercise 6.1. Then, when
specifying the triangle, use the invisible lines 1–4, 2–4 and 3–4 in the same way as the line 7–10 in Figure 6.14. In other
words, define each of the two sides of the triangle as a rather complex polygon, specified as a sequence of ten numbers
by visiting, for example, the vertices 1, 2, 4, 2, 3, 4, and so on, in that order, using minus signs for invisible lines.

 
6.3  See Section 6.4 for holes in polygons. Figure 6.27 was obtained by using a data file of the same structure as the above

one (see Exercise 6.1), but with 16 vertices and four faces. Based on Figure F.2, the first of these faces was specified as
follows:

 
Figure F.2: One of the four faces for the square rings of Figure 6.27

1 2 3 -7 6 5 8 7 -3 4.
 
6.4  A simple solution to this problem is obtained by adding some code to draw all polygon edges (visible as well as invisible)
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6.4  A simple solution to this problem is obtained by adding some code to draw all polygon edges (visible as well as invisible)
as dashed lines. In addition to this, the visible edges are drawn as solid lines without any modification to the hidden-line
algorithm. In other words, every visible edge is drawn as coinciding solid and dashed lines, which gives the effect of a
solid line. Although HP-GL provides the command LT (Line Type) to draw dashed lines, we obtain better results if we
draw our own, computed dashes, which are required for screen output anyway. Note that every dashed line in Figure 6.28
begins and ends with a dash of the same length as the other ones. To implement all this, modify the program file
HLines.java (see Appendix D) as follows:

a. Disable back-face culling by deleting the following program line in the method buildLineSet.
if (n>2&& pol.h > 0) continue;

b. Insert the following method in the class CvHLines (see also Exercise 1.5):
void dashedLine(Graphics g, float xA, float yA,
      float xB, float yB, float dashLength)
{  float u1 = xB - xA, u2 = yB - yA,
      L = (float)Math.sqrt(u1 * u1 + u2 * u2);
   int n = Math.round((L/dashLength + 1)/2);
   float h1 = u1/(2 * n - 1), h2 = u2/(2*n-1);
   for (int i=0; i<n; i++)
   {  float x1 = xA + 2 * i * h1, y1 = yA + 2 * i * h2,
            x2 = x1 + h1, y2 = y1 + h2;
      drawLine(g, x1, y1, x2, y2);
   }
}

c. Just before the call to lineSegment in the paint method, almost at the end of the program file, insert the
following line:
dashedLine(g, P.x, P.y, Q.x, Q.y, 8);

 
6.5  A program to generate an open book is shown below. It was executed twice (with n = 4and n = 150) to produce the two

open books of Figure 6.29. Refer to the analysis of Exercise 6.6 below for the way we design this type of program.
// BookView.java: Generating a data file for an open book.
import java.io.*;

public class BookView
{  public static void main(String[] args)
      throws IOException
   {  if (args.length != 4)
      {  System.out.println(
         "Supply nr of sheets, width, height and file name\n"+
         "as program arguments.");
         System.exit(1);
       }
       int n;
       float w, h;
       FileWriter fw;
       n = Integer.valueOf(args[0]).intValue();
       w = Float.valueOf(args[1]).floatValue();
       h = Float.valueOf(args[2]).floatValue();
       fw = new FileWriter(args[3]);
       int spineTop = 1, spineBottom = 2, outerTop, outerBottom;
       float theta = (float)Math.PI/(n - 1);
       float xTop = 0, xBottom = h;
       fw.write(spineTop +""+xTop+"00\r\n");
       fw.write(spineBottom +""+ xBottom + " 0 0\r\n");
       for (int i=0; i<n; i++)
       {  float phi=i* theta,
             y = w * (float)Math.cos(phi),
             z = w * (float)Math.sin(phi);
          outerTop = 2 * i + 3; outerBottom = outerTop + 1;
          fw.write(outerTop + " " + xTop + " " +
             y + " " + z + "\r\n");
          fw.write(outerBottom + " " + xBottom + " " +
             y + " " + z + "\r\n");
       }
       fw.write("Faces:\r\n");
       for (int i=0; i<n; i++)
       {  outerTop =2*i+3; outerBottom = outerTop + 1;
          fw.write(spineTop + " " + spineBottom + " "
             + outerBottom + " " + outerTop + ".\r\n");
          fw.write(spineTop + " " + outerTop + " "
             + outerBottom + " " + spineBottom + ".\r\n");
       }
       fw.close();
   }
}

 
6.6  Before writing the program code we have to assign numbers to vertices and find mathematical expressions for the x-, y-

and z-coordinates of these vertices. We will now discuss how this can be done for a sphere, but the same approach
applies to any program that generates 3D data files.

The model of a sphere in question has two poles; let us assign vertex number 1 to the north pole. Since it is given that
there are n horizontal slices, there will be n −  1 horizontal planes between them, each corresponding with a horizontal
circle, or line of latitude, on the sphere. There will also be 2n vertical circles, or lines of longitude. Every vertex (other than
the two poles) of our sphere model is a point of intersection of such a horizontal and a vertical circle. As for the faces, 2 ×
2n of them are triangles at the two poles. There are n −  2 remaining horizontal slices, so that the number of remaining
faces is equal to (n −  2) · (2n) = 2n(n −  2). Each of these is a parallelogram with two horizontal edges. Altogether, there
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faces is equal to (n −  2) · (2n) = 2n(n −  2). Each of these is a parallelogram with two horizontal edges. Altogether, there
are 4n + 2n(n −  2) = 2n2 faces, and, as we will see below, 2(n2 −  n + 1) vertices. We will use two angles, θ  and ϕ , as
shown in Figure 5.3. Using a sphere radius 1, we can express the level of the n −  1 horizontal circles by their z-
coordinate

Writing δ  = π /n, we will only use horizontal circles corresponding to the following angles:

On each of these circles we have to use 2n vertices, which correspond to the angles

Thus, each pair (i, j) is associated with a vertex, so that we can devise a means of associating a vertex number with it.
Since 1 has been used for the north pole, we start with vertex number 2 on circle i = 1. With 2n vertices on each
horizontal circle, the first vertex number available for circle i = 2 will be 2n + 2, and for circle i = 3 it will be 4n + 2, and so
on. In general, on circle i, we begin with number (i −  1) · 2n + 2. Since on each circle there are 2n vertices, identified as j
= 0, …  ,2n −  1, we have

As we have seen in Section 5.2, the x-, y-and z-coordinates for this vertex (i, j) is computed as x = sin ϕ  cos θ , y = sinϕ
sin θ  and z = cos ϕ , where θ  and ϕ  depend upon i and j as shown above.

Finally, we have to assign a vertex number to the south pole. As we already have used 1 + (n −  1) · 2n vertex numbers,
the one for the south pole will be

which is also the total number of vertices.
 
6.7  Analyze this problem in the same way as was done for Exercise 6.6. Here each triangle (at the south pole) and each

parallelogram is to be specified both counter-clockwise and clockwise, since either side of the curved surface can in
principle be visible. Unlike Exercise 6.6, we had better use the variable n for the number of slices of half the sphere in this
problem, so that there are 4n instead of 2n vertices on every horizontal circle that we use, giving altogether n · 4n + 1 =
4n2 + 1 vertices.

 
6.8  Use program arguments for the numbers of squares in each of the three directions x, y and z. Remember, the word

Faces can occur only once in the file, so we have to specify the vertices of all cubes before we start specifying the faces.
 
6.9  Let us start with a torus such as the one in Section E.3, that is, a horizontal one with O as its center, and let the second

torus be a vertical one, with its center on the positive x-axis. We will make the sizes of the tori and their numbers of
vertices identical; only their positions are different. As in Section E.3, the size of a torus (and its shape) is completely
determined by the radii R and r, where r = 1. Since the hole in each torus must be wide enough for the other to pass
through, it is required that R ≥  2r, that is, R ≥  2.

For each vertex of the first torus, there is a corresponding one on the second. As we have seen in Section E.3 there are
n2 vertices for each torus, so we can use the numbers i and i + n2 for each pair of corresponding vertices. To obtain the
second torus, we have to shift the first one a distance R towards the positive x-axis, after which we turn it through the x-
axis though 90°. (Because of this special angle, no complicated computations are required for this rotation, so it is not
worthwhile to use the class Rota3D of Section 3.9 in this case.) Writing (x, y, z) for vertex i and (x′, y′, z′) for the
corresponding vertex i + n2, we now have x′ = x + R, y′ = -z, z′ = y.

Although, in the first part of 3D data files, we usually supply the vertices in ascending order of the vertex numbers, this is
not required. It is therefore possible to write pairs of lines of the following form in the first part of the data file:

Similarly, in the second part of the file, we can write faces in pairs, with vertex numbers in the second face of each pair n2

higher than those of the first of that pair. In this way, the desired program for two tori can be obtained from Torus.java by
adding only a few statements.

 
6.10  If necessary, you might refer to the method genCylinder in program Cylinder.java of Section 6.6 for the cylindrical pole in

the middle of the staircase. If you do, bear in mind that the situation here is simpler because this cylinder is solid (as is
the case in program Cylinder.java with rInner = 0).

You can use program Beams.java of Section E.4 to see how the steps can be constructed, or you can use the class
Rota3D (see also Exercise 5.5), provided that you also perform a translation, adding a constant to the z-coordinates of
each new step. As for the railing, recall that the data file, after the word Faces, can contain line segments specified as two
vertex numbers followed by a period, as discussed in Section 6.5.

7.1  In Figure F.3, the two outer faces on the left and right are parallel, but the corresponding inner faces are not, as the
distances 18 and 19 indicate. The latter faces, which are visible here, become invisible if we view the object from very far
away, as Figure F.4 shows.
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Figure F.3: Object nearby: two inner faces visible

 
Figure F.4: The same object far away: two inner faces invisible

Recall that, with eye coordinates, the x-axis points to the right, the y-axis upwards and the z-axis towards us. Let us focus
on the inner face that is visible in Figure F.3 on the right but invisible in Figure F.4. Estimating the normal vector n = (a, b,
c) and the value h, as specified in the exercise and discussed in Section 5.5, for this face, we find:

a. is almost equal to − 1, because n almost points toward the negative x-axis;

b. is almost zero, but positive because we view the object slightly from above;

c. is almost zero, but negative because n points a little to the back.

These values, and in particular c, are independent of the viewing distance. By contrast, the inner product h = n · x, where x
is a vector from the viewpoint E to any point of the face in question, depends on the viewing distance. You should verify
this by drawing a sketch similar to Figure 7.12 but applied to this example. As a result, you will find that h is negative in
Figure F.3 but positive in Figure F.4. This example demonstrates that, to determine if a face is a back face, we should use
the sign of h, not that of c. The correct practice of using h for this purpose is equivalent to back-face culling based on the
orientation of three points: if this orientation on the screen is the same as when the object is viewed from outside, the face
is visible. Using c instead of h would be equivalent to using the eye coordinates x and y instead of the screen coordinates
in determining the orientation of image points. This would work correctly for most situations, but it may result in wrongly
deciding that faces are invisible, especially if the object is viewed from nearby, as Figure F.3 illustrates. Recall that we also
briefly discussed this in Section 7.1.

 
7.2  We can use back-face culling to decide which faces of the cube are visible. Refer to the solutions to Exercises 5.4 and 5.5

for the implementation of animation and rotation, respectively.
 
7.3  In the previous exercise we could have realized the effect of a rotation about a vertical axis by changing the angle θ  and

leaving the cube unchanged. This is no longer the case here because we now want to use two rotations. Figure 7.13 was
obtained by rotating each cube about one of its vertical edges, with different rotation speeds, the latter simply meaning that
we use different angles in each step. As in the solution to Exercise 5.5, you need to supply only one method run, in which
only one infinite loop occurs.

 
7.4  Change the class CvPaint (in the program file Painter.java) as follows:

a. At the beginning of the class CvPaint, before {, add the line
implements Runnable

b. After {, add the following lines:
Image image;
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Image image;
Graphics gImage;
double sunTheta = 0;
Thread thr = new Thread(this);

c. Insert the method run, similar to the one given above for Exercise 5.4, but containing statements to
update the spherical coordinate sunTheta (see Section 5.2) and the variables obj.sunX and
obj.sunY;youcanuse a constant value for sunPhi, which makes obj.sunZ also a constant. By using
spherical coordinates, with radius ρ  = 1, the light vector will have length 1.

d. Insert the program lines
int w, h;
CvPainter(){thr.start();}
public void update(Graphics g){paint(g);}

e. Modify the paint method, using the variables image and gImage as well as g, in about the same way as
was done in program Anim.java, listed above as help for Exercise 5.4.

 
7.5  For the format of the desired file see the file for Exercise 6.1. As for the program to generate 3D data files, refer to Section

6.6 and Appendix E, if necessary.

8.1  In the program FractalGrammars.java, there is the following fragment, which draws a line from the current point (xLast,
yLast) to the new point (xLast + dx, yLast + dy), which, after the call to drawTo, will automatically be the current point
(xLast, yLast).
case 'F': // Step forward and draw
   // Start: (xLast, yLast), direction: dir, steplength: len
   if (depth == 0)
   {  double rad = Math.PI/180 * dir, // Degrees -> radians
      dx = len * Math.cos(rad), dy = len * Math.sin(rad);
      drawTo(g, xLast + dx, yLast + dy);
   }

Besides xLast and yLast, introduce the variables xCorner and yCorner, indicating the cornerpoints that we will not really
visit because of the rounded corners. Each time, instead of drawing a line as discussed above, draw two lines. The first is
one from the current point (xLast, yLast)to (xCorner + dx/4, yCorner + dy/4) to approximate the rounded corner. After this,
the point just mentioned is now automatically stored as the new point (xLast, yLast) to enable you to used drawTo again.
Then update the variables xCorner and yCorner by increasing them by dx and dy, respectively, so they indicate the next
cornerpoint. Then you draw the second line, from the current point (xLast, yLast)to(xCorner −  dx/4, yCorner −  dy/4). Note
that this last line is half as long as the full line drawn in the above fragment, since a quarter of it at the beginning and a
quarter of it at the end are now replaced with the approximated rounded corners.

 
8.2  In the paint method of the program Koch.java in Section 8.2, there is only one call to drawKoch preceded by setting dir = 0.

All you have to do is add two other such calls, each preceded by assigning an appropriate value to dir so that the turtle
starts in the right direction.

 
8.3  You can generate a random number between 0 and 1 by calling Math. random(), and derive the thickness of a branch from

the height of that branch in the tree. A line of any thickness can be realized by using the method fillPolygon.
 
8.4  This hint is based on the program FractalGrammars.java and the string grammar Tree2 of Section 8.3. In this example, we

have

Each time the second F in this string is encountered a branch is drawn that should have a leaf at its end. So in the switch
statement you should add a fragment to draw a leaf in the case F part after the call to drawTo, provided that the position
counter i for strX is equal to 5. One way of drawing a closed figure that approximates the shape of a leaf is to draw a
sequence of filled circles (by means of drawOval) whose centers lie on a line that has the same direction (dx, dy) as the
branch in question.

 
8.5  Use methods iX and iY to convert logical to device coordinates and methods fx and fy for the inverse conversions.

Restricting this discussion to x-coordinates, we can use
int iX(float x)
{  return (int)(xDevCenter + (x - xLogCenter)/pixelSize);
}

float fx(int x)
{  return xLogCenter + (x - xDevCenter) * pixelSize;
}

As usual, we use d defined as
Dimension d = getSize();

Let us denote the current boundaries of the logical x-coordinates by xLeft and xRight. For example, we can initially set
these boundaries equal to those of the device coordinates, that is, to 0 and d.width(), respectively. In the method
mouseReleased, we obtain the device coordinates xs and xe for the left and right boundaries of the cropping rectangle.
We then apply the method fx to these to obtain the corresponding logical coordinates, writing, for example,
xLeftNew = fx(xs);
xRightNew = fx(xe);

Then these new values are assigned to xLeft and xRight, and used to compute
pixelSize = Math.max((xRight - xLeft)/d.width,
                     (yTop - yBottom)/d.height);
xLogCenter = (xLeft + xRight)/2;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


xLogCenter = (xLeft + xRight)/2;

Let us now discuss the plausibility of these statements (rather than proving them rigorously). Normally, mouseRelease
provides us with a range (xs, xe) that is smaller than the width of the drawing rectangle. Then after applying fx and fy, the
new logical x-range (xLeft, xRight) will also decrease, and the same applies to pixelSize. As a result of the latter, the value
added to xDevCenter in the above method iX will be larger than it was before, so that the figure will appear on a larger
scale. As for panning, let us assume that the new x-range selected by the user is on the left half of the screen. Then the
new center xLogCenter of the logical x-range will be smaller than it was before, which will increase the value computed by
the method iX. This should indeed be the case, since the part of the image displayed in the selected x-range on the left
half of the screen should be displayed in the center of the drawing rectangle, or, in other words, it should shift to the right.

 
8.6  Modify the MandelbrotZoom.java program and the paint method for Julia sets. Combine the two programs so that the latter

will draw Julia sets in a side window.
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Colour Plates

 
Plate 1: Fillet or rounded corner, Exercise 2.8

 
Plate 2: Inscribed circle and three excircles of triangle, Exercise 2.9
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Plate 3: Tree of Pythagoras, Exercise 2.10

 
Plate 4: Demonstration of Bresenham's algorithm, Exercise 4.6

 
Plate 5: Two colored cubes, captured when rotating independently, Exercise 7.3
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Plate 6: Three beams partly hiding each other, see Sections 6.7, 7.3 and 7.4

 
Plate 7: Beams in a spiral, see Section E4, Appendix E

 
Plate 8: An open book, see Exercise 6.5
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Plate 9: Solid letter A as an object with a hole, see Section 6.4

 
Plate 10: A cube of cubes, Exercise 6.8
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Plate 11: Dodecahedron, see Section E1, Appendix E

 
Plate 12: Two tori, Exercise 6.9

 
Plate 13: A function of two variables, see Section E.5, Appendix E. The expression 10. sin(pow(x*x + y*y, 0.5))/(1 + pow(x*x
+ y*y, 0.2)) was supplied to program Func.java, with ranges and step sizes for x and y specified as
.15(0.25)15
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Plate 14: Tree with green leaves, Exercise 8.4

 
Plate 15: Sample output of program MandelbrotZoom.java, see Section 8.4
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Plate 16: Julia set, as discussed at the end of Section 8.4
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BorderLayout 202
Bresenham's algorithm for circles 103
Bresenham's algorithm for lines 92
B-spline curve fitting 130

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Index

C
camera 140
canvas 3
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color 225
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coordinate system 33
coordinate system (changing) 78
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cropping 271
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data files for 3D objects 190
determinant 35
device coordinates 5, 8
distance between point and line 50
distance256
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double buffering 175, 354
double-step line-drawing 97
Dragon curve 255
drawArc 345
drawLine 2
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Faces (in 3D data files) 232
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