This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Java 1.4 Game Programming
by Andrew Mulholland and Glen Murphy ISBN:1556229631
Wordware Publishing © 2003 (647 pages)

This text covers all of the key elements in Java which are required for creating games,
as well as significant new features which have become available with the release of the
latest version 1.4 from Sun.

Table of Contents

Java 1.4 Game Programming
Chapter 1 - Introduction to Java 1.4
Chapter 2 - Basics of Java Programming

Chapter 3 - Arrays and Strings

Chapter 4 - Multiple Classes

Chapter 5 - Packages, Utilities, and Error Handling
Chapter 6 - Stream I/0

Chapter 7 - Threads

Chapter 8 - Applications and Applets

Chapter 9 - Graphics

Chapter 10 - Using the Mouse and Keyboard
Chapter 11 - Using Sound and Music

Chapter 12 - Game Programming Techniques
Chapter 13 - Introduction to GUI

Chapter 14 - Introduction to Databases

Chapter 15 - Using SQL with MySQL

Chapter 16 - Using the JDBC

Chapter 17 - Introduction to Networking

Chapter 18 - Introduction to NIO Networking
Bonus Chapter - A Tour of the Swing GUI

Index

List of Figures

(a1]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Back Cover

[+ervvious [t

With the release of Java 1.4, it is now possible to develop more advanced computer games using the Java
language than ever before. Java 1.4 Game Programming focuses on the technical aspects of game
programming using the latest release of Java, beginning with an introduction to the Java programming
language and building upon that knowledge by exploring the key elements required to develop games,
such as graphics, input, sound, and networking. Features new in Java 1.4, including full-screen exclusive
mode, new graphics features, and NIO networking, are also covered.

e Gain a solid foundation in the Java 1.4 language.

e Learn key issues associated with graphics programming in Java.

e Understand the importance of threads throughout all related topics.

* Find out how to handle mouse and keyboard input correctly in a game environment.
e Develop a reusable sound manager for your games.

e Learn about animation, collision detection, and high-resolution timing.

e See how to create your own in-game GUI system.

» Create a solid game framework for use in your own game projects.

e Learn how to develop multiplayer games in Java.

About the Authors

Andrew Mullholland and Glenn Murphy have each been programming games for more than six years and
have several years of experience with Java. They are both in the final year of the Computer Games
Technology program at the University of Abertay in Dundee, Scotland. Andrew is also a co-author of
Developer’s Guide to Multiplayer Games from Wordware Publishing.

[Team LiB |
[puivisus fir=t o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB | [wawvinua i ¥
Java 1.4 Game Programming

Andrew Mulholland and Glenn Murphy
Library of Congress Cataloging-in-Publication Data

Mulholland, Andrew.
Java 1.4 game programming / by Andrew Mulholland and Glenn Murphy.
p. cm.
ISBN 1-55622-963-1

1. Java (Computer program language) 2. Computer games—Programming.
I. Murphy, Glenn, 1908- II. Title.
QA76.73.J38 M849 2003

794.8'152762—dc21 2002155485
CIP

© 2003, Wordware Publishing, Inc.

All Rights Reserved
2320 Los Rios Boulevard
Plano, Texas 75074

No part of this book may be reproduced in any form or by any means without permission in writing from Wordware Publishing, Inc.
ISBN 1-55622-963-1

10987654321
0301

Java is a trademark of Sun Microsystems, Inc.

All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any
omission or misuse (of any kind) of service marks or trademarks should not be regarded as intent to infringe on the property of
others. The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to
distinguish their products.

All inquiries for volume purchases of this book should be addressed to Wordware Publishing, Inc., at the above address.
Telephone inquiries may be made by calling:

(972) 423-0090
About the Authors

This for me is probably the easiest part of the book to write. | really have a liking for writing about myself as | always feel it will
sound boastful and conceited, which | am.

Well, | started life as a baby and I'm afraid that's where it all began. | started programming at around 16 years of age while
attending college in my hometown of Manchester, England. | use the term "attended" loosely, however, because as soon as the
programming began, | was hooked, and ducked out of many a lecture to create a variety of games, albeit on an 80x25 ASCII
character resolution and a useful gotoxy(x, y) method. In the second year of college, a friend and programming buddy, Nick
Kitson, and | co-wrote a 16,000-line soccer management game in Pascal called ESM European Soccer Manager, where you could
actually watch the matches in an overhead view. Working on this taught me more than anything about programming. My advice—
pick a goal and go for it.

After college, | made it into the Computer Games Technology program at the University of Abertay Dundee and am now midway
through the (honours) 4th year. While "attending" university | have furthered my knowledge from Pascal to C/C++ and then on to
Java. The ability to make web games playable in a browser (applets) was what originally made Java so appealing to me, and had
been a mystery to me for long enough. There began my introduction to Java. Before Java, | was mainly a procedural programmer,
and not that well tuned to object-oriented programming (OOP). The good thing about Java, in this sense, is that it is completely
OOP, so there was no choice but to program in this style. For this | think learning Java is the best guide to OOP you can get. And
then came the book.

After working on a Java game over the summer of 2000, | teamed up with my now co-author Andrew, who has been my flatmate
and friend since the first year of university. The university's random accommodation allocation for freshers can take the credit for
us meeting in the student halls. We began work on the book in late 2001, while both juggling our honours degree courses at the
same time. Besides losing my virginity and trying to complete Jet Set Willy, this book has been the most grueling experience of my
life, but it was all worth it in the end. (I hope this last sentence makes it to publication.)

My primary hope for this book is that it makes me as much money as possible. My secondary hope, besides programming games
in Java, is that the book indicates the difficulties that we came across when researching Java for games programming in a clear
manner, especially those surrounding threads, input, and graphics that we put a lot of work into. | think to become a good
programmer you have to enjoy it; otherwise it's little use. Most of the enjoyment | find is in showing off what | have done, which
there is no harm in now and again (and again and again ©). One thing | am aware of is that in actually challenging yourself to do
something, and believing that you can do it, there seems to be a fear factor where you often do not even attempt to code
something, because you have never done it before. In buying this book, you have made a solid move in conquering this fear.

My interests mostly revolve around playing pool, watching films, and occasionally programming the night away, and there is still no
better feeling than "7-balling" someone in a crowded club. | also collect Star Wars costumes and wear them out clubbing regularly.

As a final word, | hope this book is as useful to you as it was for me in writing it, and wish you luck in your quest of knowledge.

Glenn Murphy

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

This for me is probably one of the hardest parts of the book to write. | really have a dislike for writing about myself as | always feel
it will sound boastful or conceited. Nevertheless, here goes...

Well, I am currently 21 years old and halfway through my 4th (honours) year of university studying BSc (Hons) Computer Games
Technology at the University of Abertay in Dundee, Scotland. | would say | have been coding for around six years now and have
obtained quite a broad range of skills within this time.

My first real stab at game programming was about a year and a half before | left home to go to university when | downloaded the
DJGPP DOS compiler (http://www.delorie.com/djgpp) and the Allegro game library (http://www.talula.demon.co.uk/allegro)
originally started by Shawn Hargreaves. After starting and never finishing a few projects, the next logical step was to move onto
looking at OpenGL and DirectX. As well as looking at the 3D side of games programming however, | also invested time in learning
Perl and MySQL, although | have recently switched to using PHP4 as it is sooo much nicer than Perl. ;)

From there, | then progressed onto Java and to be honest it is probably the best thing | have ever done. Java really is such a great
language. Don't get me wrong—it does have some issues, but the structure of the language and also the documentation is really
excellent (ever tried using MSDN? Urgh.).

One thing that deceived me, however, when | started to use Java was the simplicity. When you start looking into Java properly,
you think—ah great, all the libraries have been written for me. However, as you will see as you progress through the book, these
libraries are excellent for business application development, but there are some pitfalls and serious issues to consider when
looking at the language and libraries (packages) from a game development point of view.

Probably now is a good time for a plug. Previously to this book, | coauthored Developer's Guide to Multiplayer Games, which
focuses in detail on using sockets in C/C++ to create client-server games. That book has a large tutorial section that takes you
through the process of writing a reusable network library and a multiplayer game, which also includes a signup/login and lobby
system. What the book does not cover, however, is DirectPlay as we remain platform independent throughout the book, so your
game server will compile as easily on the Linux platform as it will on the Windows platform. If you are interested, you can find out

more information (and buy it ©) at the following Amazon.com link: http://www.amazon.com/exec/obidos/tg/detail/-/1556228686

On a final note, | hope you enjoy reading this book and find the information within it useful. If you have any questions or problems
with anything in the book, do not hesitate to e-mail either myself or Glenn and we will try to help you as best we can!

Andrew Mulholland
@hfplimi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Back Cover

[+ervvious [t

With the release of Java 1.4, it is now possible to develop more advanced computer games using the Java
language than ever before. Java 1.4 Game Programming focuses on the technical aspects of game
programming using the latest release of Java, beginning with an introduction to the Java programming
language and building upon that knowledge by exploring the key elements required to develop games,
such as graphics, input, sound, and networking. Features new in Java 1.4, including full-screen exclusive
mode, new graphics features, and NIO networking, are also covered.

e Gain a solid foundation in the Java 1.4 language.

e Learn key issues associated with graphics programming in Java.

e Understand the importance of threads throughout all related topics.

* Find out how to handle mouse and keyboard input correctly in a game environment.
e Develop a reusable sound manager for your games.

e Learn about animation, collision detection, and high-resolution timing.

e See how to create your own in-game GUI system.

» Create a solid game framework for use in your own game projects.

e Learn how to develop multiplayer games in Java.

About the Authors

Andrew Mullholland and Glenn Murphy have each been programming games for more than six years and
have several years of experience with Java. They are both in the final year of the Computer Games
Technology program at the University of Abertay in Dundee, Scotland. Andrew is also a co-author of
Developer’s Guide to Multiplayer Games from Wordware Publishing.

[Team LiB |
[puivisus fir=t o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB | [wawvinua i ¥
Java 1.4 Game Programming

Andrew Mulholland and Glenn Murphy
Library of Congress Cataloging-in-Publication Data

Mulholland, Andrew.
Java 1.4 game programming / by Andrew Mulholland and Glenn Murphy.
p. cm.
ISBN 1-55622-963-1

1. Java (Computer program language) 2. Computer games—Programming.
I. Murphy, Glenn, 1908- II. Title.
QA76.73.J38 M849 2003

794.8'152762—dc21 2002155485
CIP

© 2003, Wordware Publishing, Inc.

All Rights Reserved
2320 Los Rios Boulevard
Plano, Texas 75074

No part of this book may be reproduced in any form or by any means without permission in writing from Wordware Publishing, Inc.
ISBN 1-55622-963-1

10987654321
0301

Java is a trademark of Sun Microsystems, Inc.

All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any
omission or misuse (of any kind) of service marks or trademarks should not be regarded as intent to infringe on the property of
others. The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to
distinguish their products.

All inquiries for volume purchases of this book should be addressed to Wordware Publishing, Inc., at the above address.
Telephone inquiries may be made by calling:

(972) 423-0090
About the Authors

This for me is probably the easiest part of the book to write. | really have a liking for writing about myself as | always feel it will
sound boastful and conceited, which | am.

Well, | started life as a baby and I'm afraid that's where it all began. | started programming at around 16 years of age while
attending college in my hometown of Manchester, England. | use the term "attended" loosely, however, because as soon as the
programming began, | was hooked, and ducked out of many a lecture to create a variety of games, albeit on an 80x25 ASCII
character resolution and a useful gotoxy(x, y) method. In the second year of college, a friend and programming buddy, Nick
Kitson, and | co-wrote a 16,000-line soccer management game in Pascal called ESM European Soccer Manager, where you could
actually watch the matches in an overhead view. Working on this taught me more than anything about programming. My advice—
pick a goal and go for it.

After college, | made it into the Computer Games Technology program at the University of Abertay Dundee and am now midway
through the (honours) 4th year. While "attending" university | have furthered my knowledge from Pascal to C/C++ and then on to
Java. The ability to make web games playable in a browser (applets) was what originally made Java so appealing to me, and had
been a mystery to me for long enough. There began my introduction to Java. Before Java, | was mainly a procedural programmer,
and not that well tuned to object-oriented programming (OOP). The good thing about Java, in this sense, is that it is completely
OOP, so there was no choice but to program in this style. For this | think learning Java is the best guide to OOP you can get. And
then came the book.

After working on a Java game over the summer of 2000, | teamed up with my now co-author Andrew, who has been my flatmate
and friend since the first year of university. The university's random accommodation allocation for freshers can take the credit for
us meeting in the student halls. We began work on the book in late 2001, while both juggling our honours degree courses at the
same time. Besides losing my virginity and trying to complete Jet Set Willy, this book has been the most grueling experience of my
life, but it was all worth it in the end. (I hope this last sentence makes it to publication.)

My primary hope for this book is that it makes me as much money as possible. My secondary hope, besides programming games
in Java, is that the book indicates the difficulties that we came across when researching Java for games programming in a clear
manner, especially those surrounding threads, input, and graphics that we put a lot of work into. | think to become a good
programmer you have to enjoy it; otherwise it's little use. Most of the enjoyment | find is in showing off what | have done, which
there is no harm in now and again (and again and again ©). One thing | am aware of is that in actually challenging yourself to do
something, and believing that you can do it, there seems to be a fear factor where you often do not even attempt to code
something, because you have never done it before. In buying this book, you have made a solid move in conquering this fear.

My interests mostly revolve around playing pool, watching films, and occasionally programming the night away, and there is still no
better feeling than "7-balling" someone in a crowded club. | also collect Star Wars costumes and wear them out clubbing regularly.

As a final word, | hope this book is as useful to you as it was for me in writing it, and wish you luck in your quest of knowledge.

Glenn Murphy

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

This for me is probably one of the hardest parts of the book to write. | really have a dislike for writing about myself as | always feel
it will sound boastful or conceited. Nevertheless, here goes...

Well, I am currently 21 years old and halfway through my 4th (honours) year of university studying BSc (Hons) Computer Games
Technology at the University of Abertay in Dundee, Scotland. | would say | have been coding for around six years now and have
obtained quite a broad range of skills within this time.

My first real stab at game programming was about a year and a half before | left home to go to university when | downloaded the
DJGPP DOS compiler (http://www.delorie.com/djgpp) and the Allegro game library (http://www.talula.demon.co.uk/allegro)
originally started by Shawn Hargreaves. After starting and never finishing a few projects, the next logical step was to move onto
looking at OpenGL and DirectX. As well as looking at the 3D side of games programming however, | also invested time in learning
Perl and MySQL, although | have recently switched to using PHP4 as it is sooo much nicer than Perl. ;)

From there, | then progressed onto Java and to be honest it is probably the best thing | have ever done. Java really is such a great
language. Don't get me wrong—it does have some issues, but the structure of the language and also the documentation is really
excellent (ever tried using MSDN? Urgh.).

One thing that deceived me, however, when | started to use Java was the simplicity. When you start looking into Java properly,
you think—ah great, all the libraries have been written for me. However, as you will see as you progress through the book, these
libraries are excellent for business application development, but there are some pitfalls and serious issues to consider when
looking at the language and libraries (packages) from a game development point of view.

Probably now is a good time for a plug. Previously to this book, | coauthored Developer's Guide to Multiplayer Games, which
focuses in detail on using sockets in C/C++ to create client-server games. That book has a large tutorial section that takes you
through the process of writing a reusable network library and a multiplayer game, which also includes a signup/login and lobby
system. What the book does not cover, however, is DirectPlay as we remain platform independent throughout the book, so your
game server will compile as easily on the Linux platform as it will on the Windows platform. If you are interested, you can find out

more information (and buy it ©) at the following Amazon.com link: http://www.amazon.com/exec/obidos/tg/detail/-/1556228686

On a final note, | hope you enjoy reading this book and find the information within it useful. If you have any questions or problems
with anything in the book, do not hesitate to e-mail either myself or Glenn and we will try to help you as best we can!

Andrew Mulholland
@hfplimi

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Taknles LI [« rrnvisus]flveixt ¥
Chapter 1: Introduction to Java 1.4

"Everywhere is walking distance if you have the time."
—Steven Wright

Introduction

In this chapter we will get started with Java 2 Standard Edition 1.4 by getting it set up and ready to enter the world of Java game
programming. We will also look at what you can expect from this book and learn a little about Java as a whole.

T

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Tean L [o]

Introduction to the Java Platform

The Java platform consists of the Java language, Java bytecodes, and the Java Virtual Machine (generally termed the JVM). The
analogy behind the Java platform is that when you compile your Java code, it is translated into Java bytecodes, which can then be
interpreted by the Java Virtual Machine. In practical terms you may enter your source code into a ".java" file (the Java language),
which will then be compiled into a ".class" file (the Java bytecodes). The class file can then be run on the Java Virtual Machine,
which runs on your computer. This means that your single compilation will run on many platforms, at least in theory, as each has
its own version of the JVM interpreting the bytecodes on the particular platform. There are many implementations of the JVM on
various operating systems, such as Windows, Mac OS, Solaris, Linux, etc.

In addition to having platform independence, Java can seriously reduce coding time because it is a very well-structured language.
If you do not understand object-oriented programming, do not worry about this for now, as we will explain OOP in the following
chapters.

Note All the individual parts of Java, such as the Java language, the Java Virtual Machine, and the Java bytecodes, are
collectively known as the Java platform.

Another key element to Java is the ability to create small programs known as applets that run within a web browser, which run
independently by means of the Java Virtual Machine (yes, web games that run inside a browser). What's more, it is easy to
include an applet in a web page using the <APPLET> tag (we will learn about this in Chapter 8, "Applications and Applets"). There
is also little difference between creating games as traditional stand-alone applications or as applets, as we will see later in the
book.

= [o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[eam L | [ravioos
Introduction to Java 2 Standard Edition 1.4

The Java 2 Standard Edition has seen many positive moves for creating professional games with the release of J2SE 1.4. The
ability of full-screen exclusivity means that you can now make full-screen games, whereas in earlier editions programmers were
forced to fake full-screen mode. This simply entailed removing a window's decorations and sizing it to the dimensions of the
screen. This technique obviously has none of the real advantages of full-screen exclusivity. With the new full-screen mode, you
can take advantage of such things as page flipping and switching display modes, just like DirectX can do. Another important new
feature to J2SE 1.4 is hardware-accelerated graphics, making your graphics processing run at great speed. There has also been

an improvement on the networking side of things with the introduction of NIO (New 10), as is discussed in Chapter 18 (in a galaxy
far, far away).

It is important to note that throughout the lifetime of the Java Standard Edition, the aspect of backward compatibility is maintained
to ensure that programs compiled using older versions of Java (e.g., 1.1, 1.2, 1.3) will still run on the latest JVM. However, the
internal implementations can change, become defunct, and are said to be deprecated, which means that they are still in existence
to support older code but should not be used for whatever reason; in general they have been found to be unsafe. Don't worry
though; when compiling your code, you will be alerted if you are using something that is deprecated.

[« Fxsvisus]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toam Lib [« rxsviour]
What the Future Holds

The future of the Java language for professional games programming has great potential with its platform independence and ease
of use. In the best-case scenario, the future could see versions of the Java Virtual Machine running on the latest game consoles,
with code being compiled to work on each of the machines with little or no major portability issues involved. This advantage could
see developers switching to Java as their language of choice for game programming in the future.

Toan LD [+ervvious Lt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

[eam L | [ravioos
What This Book Covers

The aim of this book is to first introduce you to the Java programming language and then build upon that knowledge by looking at
the key elements required to make games, such as graphics, input, sound, and networking. This book discusses the following

three topics:

= Introduction to the Java language—The book provides a complete guide to getting started using Java 2 Standard
Edition 1.4 and looks at all of the major elements that make up the language. No previous knowledge of Java or
programming in general is required, as we start from the very beginning. A simple text-based game of tic-tac-toe
demonstrates these concepts.

= Game programming in Java—We look at the major areas associated with game programming in Java. In this tome
you will find all of the important technical information for creating games in Java, including the newest features of
Java 1.4, such as full-screen exclusive mode. The development of a game framework merges all your knowledge
into a powerful, reusable base for making your own games in Java.

= Programming network games in Java—We discuss programming networked games in Java, covering topics such
as client-server and database connectivity (for high-score lists and storing data on an online server) in Java. This
book also covers the "new to J2SE 1.4" networking package NIO (New I/O). Key elements are building a solid
network frame and a sample network game ("game" used loosely here :)).

[1eam L | [+erivious Pt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[eam L | [ravioos
Who Is This Book For?

This book is aimed at people who are new to programming and also programmers new to the Java language as a whole who want
to learn how to make games using Java 1.4. The aim of this book is to teach you the technical aspects of programming games
using Java 1.4. Although we cover the basics of game programming theory in this book, we do not delve into the theory at an
advanced level, as this book is designed to teach games programming using Java 1.4 and not specifically general games
programming theory. For example, we look at the basics of collision detection, such as sphere and bounding box collisions, but do
not delve into advanced techniques such as pixel perfect collision testing. However, we do look into important technical features of
Java for game programming, such as full-screen mode, thread synchronization issues, and using the JNI (Java Native Interface)
to implement a high-resolution timer in Java, to name but a few. Don't worry, all this will be explained as you progress through the
book...
if (purchasedBook == false)

System.out.println("should you choose to purchase it,

please and thank you.");

[rivioos L]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lia [« rrsvisus]
Installing the J2SE 1.4 SDK

In this section we will look at installing J2SE 1.4 for Microsoft Windows as an example; however, the installation process should
be similar on other platforms, as the concepts remain the same.

To install the Java 2 Standard Edition, you can either use the companion CD-ROM that comes with this book or download it from
the Sun Microsystems, Inc. web site. Here is the direct link to download the Java 1.4 SDK for all applicable platforms:

http://java.sun.com/j2se/1.4.1/index.html.

For Microsoft Windows, once you have obtained the file (which will be called j2sdk-1_4_1_01-windows-i586.exe) you can then
simply double-click it to begin the installation process.

Once you have accepted the Java software license agreement, you will be asked in which directory it should be installed. We will
assume that you have installed to the default directory. After clicking Next, you will be presented with a list of options and, as with
the directory, we recommend that you leave the options as they stand.

If you then continue by clicking Next, you will be asked on which browsers you wish to make the Java plug-in default. The most
common browser for the plug-in is Microsoft Internet Explorer; however, if you also wish to use the plug-in with Netscape, check
the Netscape 6 box also. Note that these options are only for using Java applets within a browser, not for Java applications (see
Chapter 8, "Applications and Applets" for more details on the differences).

After clicking Next, the Java SDK will install, and you will be ready to begin making your first simple Java applications and applets.

Note Although as a developer you need the rather large Java SDK to create Java applications and applets, the end user
only requires the JRE 1.4 (Java Runtime Environment). If this is required, perhaps for your mates to be able to play
your latest applet games on the web, the Java 1.4 Runtime Environment is available on the companion CD and from

the Sun Microsystems, Inc. web site (http://java.sun.com).

You should be aware that the tools, such as the Java compiler javac.exe and the interpreter java.exe, are contained within the bin/
directory of the installation directory of the SDK. We will look at using these features in the next chapter when we begin

programming.
[« rxvvions foaxi o)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Tean L [o]

A Word on Integrated Development Environments (IDEs)

Although it is possible to compile Java applications and applets from the command line (which is the method we have chosen for
this book), it is a good idea to use an integrated development environment (IDE). The main reason for this is that it gives you

everything in one place (i.e., a text editor, compiler/interpreter linkage, help system, and sometimes even more useful features
such as code auto-complete).

Our development tool of choice is JCreator, as it provides a reasonably simple IDE that maintains some great features. The
freeware version is available on the companion CD; however, we highly recommend upgrading to the professional version. More

information can be found on the web site http://www.jcreator.com.

Note The IDE that our technical editor Mika likes is IntelliJ IDE. It is quite easy to use and has many very powerful features in
it: http://www.intellij.com/idea/.

Note (From technical editor Joel) If you have a few extra megabytes of RAM, definitely give Eclipse a try. This free open-
source Java editor built by IBM is better than many professional level IDEs and is gaining a large contributing user
community, as well as industry support (including Borland, Rational, Togethersoft, and Webgain). It allows for clean,
straightforward navigation and advanced debugging of code, with tools and wizards to build and refactor your code.
Incremental compiling allows you to modify your program while it is running. It is useful for writing game servers for a
network: http://www.eclipse.org.

[1eam Lo | [+erivious Pt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[eam L2 | [cervviou st]
Useful Web Sites

= http://java.sun.com—This site is the home of the Java platform and provides all of the latest news and updates
about Java. Among its vast amount of features, this site includes the latest releases of the J2SDK for downloading,
a large developer's community (which you may sign up to), and many useful online tutorials.

= http://www.javagaming.org—This site is supported by Sun Microsystems and is designed to support the making of
games using Java technology for any range of programmer. This site includes tutorials and maintains a large
community of forums full of experienced Java programmers who will answer your questions in no time. In saying
that, the current forums are so vast that they should cover a lot of your questions already. (We won't give you our
usernames on this site to save us from embarrassment, in case you happen to notice some of the questions that
we might have posted to the boards.)

= http://www.javaworld.com—This site includes many tutorials and columns covering a wide range of topics with
contributions from programmers all around the world; it also contains many forums for you to post questions. You
could one day post a useful column on this site, if you become good enough.

= http://www.mysgl.com—This is the home site for the MySQL open source database. This site includes important
downloads that we will discuss in Chapter 15 when we look at using databases for storing online information and
connecting to it via JDBC (Java Database Connectivity).

[1eam L | [+erivious Pt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toan Lo [+ervvious Lt]

Summary

In this chapter, we found out about Java and then followed that by setting up the Java SDK. In the next chapter we will take a look
at the basics of Java programming. Now that Java has become more games oriented, we can only presume that it will get better
and better. As more developers use it, there will be more demand for new features, which will strengthen this already great
language even more in the future.

[+ervvious Lt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Taum L} [PRwvisuE]
Chapter 2: Basics of Java Programming

"All the world will be your enemy, prince of a thousand enemies."
—Watership Down

Introduction

Hopefully you are all set up now and ready to execute some code of your own. In this chapter you will learn about the structure of
the Java language with a variety of simple console programs. A console program is a program that is text based and looks similar
to text entered in a command prompt window. The example programs in the early chapters of this book are console programs and
are not visually attractive windowed applications or applets. We will keep it simple to start off with until you understand the nuts
and bolts of the Java language.

Toan LD [+ervvious Lt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam LiB | [Faivisus] fimxt]
Introduction to Object-Oriented Programming (OOP)

The transition from a procedural programming (non-OOP) language to an object-oriented programming language is a large step
for many programmers. It is true that both methods of programming can ultimately achieve the same goals, but you will find OOP
is a neater and faster way to program, it is more suitable for teamwork, and programs are usually easier to design using the
object-oriented approach. With OOP in Java, you will find that programming is challenging to begin with, yet very easy and very
rewarding once you master it.

What Is an Object?

Objects are the building blocks that make up a program. It is difficult to explain exactly what an object is because an object can be
anything you want. For example, you can create an object that represents an alien that can hold all information related to the alien
and also contain functionality associated with it. You can include data such as the number of lives the alien has and also the
functionality to affect the data, such as code to kill the alien, which could remove one of the lives.

The essential elements that make up an object are variables and methods. Variables are data members, or attributes, that contain
data relating to the object, such as a text string or numeric value. Methods provide the functionality of the object and can be used
to interact with the attributes. Methods are also known as functions or procedures in various other programming languages.

Object-Oriented Programming in Java

The Java language is completely object oriented. This means that there are no global statements whatsoever (although static
members can be conceived as being somewhat global—we will discuss static members later). Any attributes or methods must be
defined as part of a class or interface. We will discuss interfaces in Chapter 4, "Multiple Classes," so do not worry about them for
the time being.

A class in Java is used to define the structure of an object. A class can be broken down into three main parts: constructors,
attributes (properties), and methods.

Let's now look at an example of a very simple class structure containing these three parts before we go any further. An example of
a class could be a person, which could describe the attributes and methods that a person could have associated with them. An
object can then be created from the person class, like you or me, or even your partner (if you do not have a partner, then well
done; you are a true programmer).

In order to create an object, we must first create a class. Do not worry about compiling any of the code right now; just sit back,
grab a coffee, and try to understand some basics.

Here is the beginning of our "Person" class:

class Person
{

}

Now, at the moment, we have the outline code for a Person class. First we should add some attributes. Let's add a numeric
attribute to the class to store the age of a person.

class Person
{

int age;
}

The keyword int stands for integer, representing a numeric data type, which is explained in more detail later on in the chapter. At
this point, the person class is all attributes and no functionality (clearly pointing to a career in politics). We can add a method to
the class as follows, which can be used to change the value in age:

class Person
{
public void setAge (int newAge)
{
// set the age to the value stored in newAge
age = newAge;

}

int age;

}

Now we have a class called person, containing one method called setAge and one attribute called age. The method setage
can be used to assign a new value to the age of the person. Again, do not worry too much about how methods work for the time
being; your coffee should just be cool enough to drink about now.

In order to create an object (or an instance, as it is also known) from the Person class, a constructor must be invoked. All classes
contain a default constructor, which does nothing and can be overloaded with many constructor types, as we shall see.

Constructors

The constructor is a method that is called when the object is created and used to initialize the state of the object. The constructor
must be declared with the same name as the class in which it is contained and cannot have a return value (we will look at return
values in the "Methods" section toward the end of this chapter). We will now add two constructors to the Person class:

class Person
{
public Person()
{
// basic constructor age is set to 0 by default

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

}

public Person(int newAge)

{
// contructor that sets the age to a specified value
setAge (newAge) ;

}

public void setAge (int newAge)

{
// set the age to the value stored in newAge
age = newAge;

}

int age;

}

You can declare a reference to a Person object as follows:
Person billyGate;

At the moment, you have a reference to an object of type Person, which currently does not reference any object. The members
of the object cannot be accessed, like the attribute age, because no object has been created. Note that the reference variable
billyGate is actually equal to null at this point; the keyword nul1 is discussed in the next chapter.

A call to a constructor must be made to create a new object of type Person, assigning the variable bil1lyGate to reference the
new object.

If no constructors are declared for a class, a default constructor is available that takes no parameters and simply creates a default
object of the class when invoked. In our code snippet we have created our own default constructor Person (), which contains no
code, and a second constructor also called Person (int newAge), which contains code that sets the value age in the Person
object to a new age specified by a parameter value. We will look at parameters in the "Methods" section near the end of this
chapter, so do not worry if you do not fully understand them.

Note Had we only declared the second constructor and omitted the first constructor, there would no longer be a default
constructor available that takes no parameters, as the default constructor only exists if the class doesn't contain any
user-defined constructors.

To create an object from the Person class, we could use the following line of code:

// using second constructor, set age value to 21
Person billyGate = new Person(21);

This line of code declares an identifier called bil1lyGate of type Person and creates a "new" Person object using the second
constructor in the Person class to initialize the object, setting the age value in the new pPerson objectto 21.

We could also use the following code instead, this time using the first (default) constructor to initialize the object and then set the
value of age using the setage method, which is a member of the newly created object.

// use first constructor
Person billyGate = new Person();

// use setAge member to set age to 21
billyGate.setAge (21); // set the value of age to 21

We can also access the age variable and set its value directly, as follows:
billyGate.age = 21;

Note You cannot have two constructors with the same signature. We will see about method signatures in the "Methods"
section toward the end of this chapter.

So far we have seen instantiation, which is the term used to describe the creation of an object or instance of a class. The following
diagram will hopefully help you understand this a little better, as it shows the relationship between the person class and objects
created from it.

Figure 2-1:
Class Members and Object Members—The static Keyword

| promise that this is the last bit before we start making some code that we can actually run, but it does need explaining. An object
member is a member that is created when the object is created. This means it can only be accessed once the object has been
created because otherwise it does not exist. The example we have just seen creates an instance of the class person referenced
by billyGate. We could have also created many more instances of the Person class. Suppose we said that the bi1lyGate
object was the only person that we would ever need or want to create; then we could scrap the person class altogether and
simply create a new class called Bi11yGate instead.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

class BillyGate
{
public static void setAge (int newAge)
{
// set the age to the value stored in newAge
age = newAge;

}

int static age;

}

Notice that we have removed the constructors and added the static keyword to the two defined members. This is because we
no longer need to create an instance of this class. We can just access the static members using the class name. For example:

BillyGate.setAge (21);
These static members are known as class members, whereas before we had object members.

The examples that we have used so far only contain either object members or class members; you can of course use both. Let's
return to our Person class now and add a static attribute. The static attribute must be something that is going to be the same for
all person objects that we create. So we could add an integer variable called daysInAYear.

class Person

{

// code as before

static int daysInAYear;

}

We can access the attribute daysInayear before we create any objects from the person class. For example:
Person.daysInAYear = 365;

If we create new instances of Person, then they too can access the static variable daysInavear.
Person glennMurphy = new Person(21);

Person andrewMulholland = new Person(20);

glennMurphy.daysInAYear = 366; // it is a leap year
System.out.println (andrewMullholland.daysInAYear);

This code will create two new instances of person, referenced by glennMurphy and andrewMulholland. The glennMurphy
object then sets the static variable daysInAvear to 366, and the andrewMulholland object will access daysInAYear, printing
its value to the console window (this printing code will be explained later in the chapter). The number that will be printed to the
console window is 366, which means that daysInAYear does not belong to any of the objects alone; it belongs to all of them,
and changes made from one affect the other. There is only one part of memory containing the value 366 to which they all refer. In
short, it is the same attribute however it is accessed. Figure 2-2 illustrates the relationship between the person class containing
class members and object members and the objects created from it.

Figure 2-2:
References

To access objects (remember they are instances of classes) in Java, we use what are known as references. We have used three
references so far in our code examples: billyGate, glennMurphy, and andrewMulholland. These were not the actual
objects that we created but merely references (also known as handles) to the objects created. Take the following code for
example:

andrewMulholland = glennMurphy; // he'll never be my equal

This code simply makes andrewMulholland reference the same object that glennMurphy references; hence you could then
access the same object using either of the two references. This is best illustrated in Figure 2-3 by seeing what Figure 2-2 would
look like after the above code is implemented.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 2-3:
The object with the age equal to 20 that andrewMulholland once referenced is now lost, but do not worry about freeing the
memory; this is taken care of by Java's garbage collector (see the "Garbage Collection and Creating Objects" section in Chapter
12 for more detail).

Now let's get something compiling, finally!

[+ erevious P v

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

HelloJavaWorld—A Simple Console Program

Well, you should have finished that cup of coffee by now, so let's get cracking with our first example program,
HelloJavaWorld.java. You must first create a source file called Hel11loJavaWorld. java and then enter the following source
code into it:
public class HelloJavaWorld
{

public static void main(String args[])

{

System.out.println("Hello Java World");

}

}

Now compile your source code by going to the command prompt and entering the following command (ensuring that you are in
the same directory as your code):

C:\Jj2sdkl.4.0\bin\javac HelloJavaWorld.java

Note that you may need to change the C:\j2sdk1.4.0\bin part if you have installed Java to a directory other than the default
suggested.

Once you have compiled the source code without any errors, you will notice that a new file called HelloJavaWorld.class has
been created in the source directory. This file is the program file that is used with the Java . exe interpreter to run your program.
Here is the command that you need to execute the .class file that was created:

C:\j2sdkl.4.0\bin\java HelloJavaWorld

When you run this program, the words "Hello Java World" should be displayed in a console window. This can be seen in the
following screen shot:

£ e eyl s o

Figure 2-4:

All Java application programs begin executing code in the method called main, as shown in the HelloJavaWorld example. Inside
the main method is a line of code that prints our chosen text to the screen. The program is basically a class containing one
method, ma in, which is static and contains one line of code to print some text to the console window. To contain a block of code,
you simply use curly brackets to begin and end the block. In this example, the first opened curly bracket and the last closed curly
bracket specify the code segment for the class HelloJavawWorld, whereas the middle two curly brackets specify the code
segment for the method main. Most of you know the phrase "what goes up must come down"; well there is another phrase, which
is not so popular, that goes "for every opened curly bracket, there must be a closed curly bracket.”

Do not worry about the keyword pub1ic for the time being; this keyword concerns the control of attribute and method access,
which is explained in more detail in Chapter 4, "Multiple Classes," where its usage becomes more topical along with the private
and protected keywords and package level access.

We will gradually learn about all of the bits of code that go into making this simple example as the book progresses. It is important
to realize that all aspects of the code are there for a reason, and all of these reasons will be explained one step at a time.

Printing Text to the Console Screen

In our first example, HelloJavaWorld. java, we used one line of code to print a text string to the console window.

System.out.println("Some text here");

The text string is entered between double quotation characters. The actual method that is invoked is print1ln, which is a member
of a static object called out, which in turn is a member of the class system. The system class provides facilities for standard
input and output, among other things, and is included by default in all of your programs as part of the java.lang package. We
will look in detail at packages in Chapter 5.

Whenever we require output to the console window, we will use this command with which we can also print the value of variables.
In this chapter, you will occasionally see variable values specified with a text string separated by the "+" operator as follows:

System.out.println ("The value = " + value);

As well as being an arithmetic operator, which we will look at very soon, the + operator is also used in Java for string
concatenation (joining a string onto the end of another one). The value of the variable value, in the case of the previous line of
code, is converted by Java into a string value and appended to the end of the specified string. Do not concern yourself with this
too much for the time being; we will discuss this in more detail in the next chapter when we start using strings.

Comments

Adding comments to your code is very important. Comments allow you to add sentences among your code that will be ignored by
the compiler. This is important in many ways, like for setting reminders, reporting bug errors, and describing what the code
actually does. You can add comments to your code using two basic methods: by line or by block. The following is an example of a
comment in a line of code:

// none of my code is working, ARRRGGHH!!!

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Any text entered on a line of code after the two forward slashes (/ /) is a comment and will not interfere with the functionality of
your program. You can also use this method on the same line that you have code, but this type of comment must be entered to
the right-hand side of any code.

Do some code; // this is on the right-hand side

The other method for adding comments to your code is to specify a block area. This is implemented by specifying the beginning
and end of the comment, using / * to begin the block and */ to end it. The following are examples of using the comment blocks:

/* You can enter text information here */

/*
This is some text to describe what my program does.
You can use as many lines as the statements enclose.

*/

Some code /* they can be added between code */ More Code;
// Although this makes your code messy/less readable

[+ rrinsus [omsi]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lia_ [irrisos foeer]
Primitive Data Types
Java supports a variety of primitive data types, from numeric to character based. These data types allow the storage of data in

many different forms that use different amounts of memory. You will use these different data types to store many different values
(such as someone's age, as we have already seen).

Numeric Data Types
The numeric data types can be split up into two areas: integers and floating-point.

Integers

Integers are data values used for explicitly storing whole numbers, such as 3, 7022, or —99. The value 3.14, for example, is not an
integer value but is known as a floating-point value, as we shall see a little later in this chapter. The following table shows the four
integer type variables available in Java, their range, and the amount of memory they use.

| Integer Type H Range H Memory (bytes) I
[byte || 128 t0 127 IE |
[short || 32768 to 32767 |2 |
I int || —2147483648 to 2147483647 || 4 |
I long || —9223372036854775808 to 9223372036854775807 || 8 I

Note There are no unsigned types available explicitly in Java. In many other programming languages, the use of unsigned
numeric data types indicates that the value stored will only be positive, meaning the positive value range is doubled.
For instance, an unsigned byte would have the range 0 to 255 instead of -128 to 127.

In order to use a variable, it must be declared, which simply states that you are creating the variable of a specified data type.
There are a number of ways in which you can declare a variable. The simplest way is as follows:

int numberA;

This is the standard way in which all variables are declared—by entering the type of data followed by a name that you must
specify. Java is a case-sensitive language. This means that if we have just declared the variable numbera, trying to access this
variable by typing NUMBERA will not work. In other languages, such as Pascal, this would be okay.

Note Variable names must begin with a letter or an underscore (_) character (not a number). Also, you cannot use any of the
reserved keywords as variable names.

The previous code creates a variable of type int called numberA. If you want to declare another variable, you can repeat this
code, specifying a different name instead of numbera, as follows:

int numberA;
int numberB;

Conveniently, you can also do this in one line using a comma (,) to separate the variables.

int numberA, numberB;

The value of a variable can also be assigned when the variable is declared.

int numberA = 128, numberB = -64;

You do not have to set values for both if you do not want to.

// set numberA's value only
int numberA = 128, numberB;

// or set numberB's value only
int numberA, numberB = -64;

Then you can assign values later on in the code now that the variables have been declared.

// set numberA to 77
numberA = 77;

// set the value of numberB to the value of numberA.
numberB = numberA;

We talked before about objects and references to objects, and that the primitive data types are not references; if you set numbers
equal to numbera, the value of numberB will be set equal to that of the value of numbera. They will not reference the same
memory, so changes made to one will not affect the other later on in the code.

numberA = 77;

numberB = numberA;

numberA = 101;

// numberB remains equal to 77

Converting between Integer Data Types

Integer values are of type int by default. That is, any number that you hard-code, like the value 77 that we just assigned to the
variable numbera, will have the range of the data type int, as shown in the integer range table on the previous page. This means
that when declaring values to variables of type 1ong, you must specify in the code that the number entered is also of type 1ong
and not of type int. For example, an attempt to set a variable of type 1ong to a value exceeding the limit of an int (either less

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

than —2147483648 or greater than 2147483647) will cause a compiler error.
long myNumber = 3000000000; // this will not compile

In order to tell the compiler that you want the value 3000000000 (that is, 3 with nine zeros) to be of type 1ong, you must add the
letter L (or the unadvisable lowercase |, as this looks like the number 1) onto the end of the number.

long myNumber = 3000000000L; // this will compile

Another problem is setting the value of one integer data type from the value of another integer data type that is larger in range.
Let's say we have the following four variables:

byte numberByte = 27;

short numberShort = 2001;

int numberInt = 55000;

long numberLong = 30000000000L;

The following statements will be fine:

numberShort = numberByte; // short has greater range than byte
numberLong = numberShort; // long has greater range than short

The variable being assigned a value must be of a data type smaller than or equal to the data type of the variable from which it is
being assigned; otherwise, a method called typecasting must be used to tell the compiler to convert the assigned value to that of
an acceptable data type. In actual fact, when we converted the previous valid data type values, this was known as implicit casting,
where we know that the data can be validly assigned. The real typecasting that we refer to is known as explicit casting. This is
where the cast must be defined in the code itself to alert you of the dangers involved in the cast (e.g., possible loss of data),
allowing you to make sure you are prepared to lose data if that is the case.

numberShort = numberLong; // this will not compile

// using typecasting
numberShort = (short)numberLong; // this will compile

// byte is acceptable for a short value too
numberShort = (byte)numberLong; // this will compile also

To typecast a value, simply specify the type enclosed in parentheses, writing it to the left of the value in question.

It is important that you choose the correct data types when programming; otherwise you could lose values because the size of the
value may be too large to be stored in the specified data type.

short numberShort = 2001;

byte numberByte = (byte)numberShort;

// byte cannot store a positive integer value larger than 127

This code typecasts the value of numbershort to type byte, which will set the value of numberByte to a seemingly random
number because 2001 is out of its storage range. The value of numberByte will actually set the value of the lowest 8 bits of
numberShort. The value of numberShort is unaffected by the typecasting code; it remains equal to 2001.

So when assigning a variable from a variable with a larger data type, be sure that the value is within the assigned variable's
storage range; otherwise, use a larger data type in the first place. Sometimes it is simply more convenient to always use the int
data type and not have to worry about typecasting and possible data loss.

Let's look at an example for you to play around with: UsingIntegers.java.

public class UsinglIntegers
{
public static void main(String args/[])
{
byte numberByte = 27;
short numberShort = 2001;
int numberInt = 50000;
long numberLong = 3000000000L;

// typecasting not needed as a long is larger than an int
numberLong = numberInt;

System.out.println ("numberLong should equal " + numberLong);
System.out.println ("numberLong actually equals "+numberLong);

// typecast numberShort's short value to a byte value
numberByte = (byte)numberShort;

System.out.println ("numberByte should equal "+numberShort);
System.out.println ("numberByte actually equals "+numberByte);

}

This basic example makes two assignments as examples of converting values between integer data types. The first assignment
works fine, but the second requires typecasting. Run the code and see what values are actually assigned from the conversions.
The output from the program should look similar to this screen shot.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 2-5:

As you can see, the value of 50000 was assigned successfully from an int data type to a 1ong data type, but the value of 2001
was not assigned successfully from a short data type to a byte data type. The actual answer of —-47 was assigned because of
the methods used to convert between the data types, which in this case involved ignoring relative information on storage bits that
a byte value cannot contain. If the value was not 2001 but a value within the range that a byte could store, the assignment
would have been successful.

Floating-Point Data Types

You should now understand how to declare and assign variables with specified data types. We can now look at two new data
types, float and double, which are known as floating-point data types. Floating-point data types allow for more accurate
storage than integers and store values with decimal places (for example, 0.25, 3.99, or —12.55555).

| F-Point Type H Range H Memory (bytes) ‘
| float || +3.4E+38 (Approx 7 significant figures) || 4 |
ldoub1e || +1.7E+308 (15 significant figures) IE |

Declaring floating-point type variables is the same as declaring integer type variables.

float floatNumber;
double doubleNumber;

Assigning values for floating-point variables is the same also, but the value you assign can contain a decimal point.
double Pi = 3.141592653589793;

The assigned values do not require a decimal place, but if they are whole numbers, it sometimes makes your code clearer.

double flatPi = 3; // this will work
double flatPi = 3.0; // or this will work too

As we already know, the default value for a whole number is of type int. The default value for a floating-point value is of type
double, which means that numeric values assigned to variables of type f1oat must be castto a f1oat value. This can be done
either by adding the letter F (or preferred lowercase f) to the end of the value or by using the typecasting method that we saw
earlier.

float floatNumber = 3.1415; // this will not compile

// add the 'f' letter to the end of the number
float floatNumber = 3.1415f; // this will compile

// using typecasting
float floatNumber = (float)3.1414; // this will compile also

Converting between Floating-Point Data Types

You can also use the typecasting method to convert from a double to a £1oat variable, and there is no danger of getting
drastically wrong conversions like with integers when converting from a double to a f1loat data type, though some of the
accuracy of the original double number could be lost when it is converted into a less accurate £1o0at value. There is no point
typecasting a f1oat value to a double because a double can store any value that a f1oat can anyway. The following
example, s1ice0fPi.java, illustrates this perfectly, declaring and setting the value of bigPi, a variable of type double, and
then declaring a f1oat variable, smal1Ppi, and assigning its value to the value of pi, typecasting the value to a float.

public class SliceOfPi
{
public static void main(String args([])
{
double bigPi = 3.141592653589793;

float smallPi = (float)bigPi; // using typecasting
System.out.println("bigPi = " + bigPi);
System.out.println("smallPi = " + smallPi);

}

When you compile this code, you should get output similar to this screen shot.

Figure 2-6:

As you can see from Figure 2-6, the accuracy of bigPi's value when converted to a f1oat value and assigned to the f1oat
variable smal1Pi is considerably less than its original double value. You may find it better to just use the double data type if
you require very accurate floating-point data storage and are not overly concerned with memory usage.

Converting between Integers and Floating-Point Data Types

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

This is not as bad as it might sound; you just have to look at it logically. An integer cannot contain any values after a decimal
place, so it will represent the value 3.14 as 3 and it will also represent the value 3.9 as 3, rounding the value down to the highest
integer that is less than or equal to its f1oat value by standard conversions. A floating-point variable can be assigned the value of
an integer without any typecasting required.

int intNumber = 50000;

float floatNumber = intNumber;

Remember that you need to add the letter "f" to floating-point values in order to assign them to a f1o0at variable. However, this is
not required if the value you specify is an integer value.

// no 'f' is required as integers convert straight to floating-point
float floatNumber = 50000;

To convert from floating-point values to integer values, simply use typecasting.
float floatNumber = 50000.6f;

// using typecasting
int intNumber = (int)floatNumber;

The value of the variable intNumber will be set to 50000, and the 0.6 will be chopped off; the original value is still stored in the

floating-point variable £1ocatNumber of course.
[« rxvvions oot

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Tarawim LB
Simple Arithmetic Operators

[+ervvious Lt]

Now that we know how to declare and assign values to integer and floating-point data types, we can now take a look at
manipulating these values using numeric operators. The standard numeric operators are shown in the table below, along with a

description.

| Operator ” Description I
* ” Multiplication |

| / ” Division |

[+ || Addition |

| - ” Subtraction |

A simple example of a numeric expression is an operator, like the ones in the operator table above, with an operand on either side
of the operator (for example, 5 + 2).

The value of a variable can be assigned a numeric expression using the same assignment methods that we have already seen
simply using the "=" assignment operator.

int singleNumber =
int doubleNumber
int trebleNumber =

4;
4

4;
4 +
4 + + 4;

The variables doubleNumber and trebleNumber could also have been assigned using the already declared variable
singleNumber with the multiplication operator.

int singleNumber = 4;
int doubleNumber = singleNumber * 2; // 4 * 2 =8
int trebleNumber = singleNumber * 3; // 4 * 3 =12

You could even define the value of t rebleNumber using the variables singleNumber and doubleNumber with the addition
operator.
// 4 + 8 = 12

int trebleNumber = singleNumber + doubleNumber;

Subtraction is the same as addition.

int positiveNumber = 7;

int negativeNumber = 0 - 7; // or just use = -7

Or, you could make negativeNumber the negative value of the value stored in the variable positiveNumber.

int negative = -positive; // equals -7 also
Dividing two integer values will give the answer as an integer value (that is, the actual value rounded down to the highest integer

that is less than or equal to the actual value—basically cutting off anything after the decimal place).
9/ 2; // equals 4,

int number = it does not equal 4.5

Floating-point variables use these operators in exactly the same way as integers.

double doubleNumber = 9.0 / 2.0; // equals 4.5
float floatNumber = 9.0f / 2.0f; // equals 4.5

If you are assigning the value from an integer calculation to a floating-point variable, you must typecast the integer calculation to a
floating-point calculation. For example, the following line of code will set the variable doubleNumber to 4 when the actual answer
should be 4.5, but the calculation is an integer calculation.

double doubleNumber = 9 / 2; integer calculation equals 4

The following three lines of code all assign a value of 4.5 to the variable doubleNumber.
*/

/* divide two double values

double doubleNumber =

/* divide two integer
double, then dividing
answer of type double
double doubleNumber =

/* divide two integer

9.0 / 2.0;

values casting the integer value 9 to a

a double by the integer value 2 giving an
*/

(double)9 / 2;

values casting the integer value 2 to a double,

then dividing the integer 9 by this double value giving the answer
of type double */

double doubleNumber = 9 / (double)2;

Parentheses can be used to specify the order in which the values of an expression are to be calculated; this is mostly useful when
you have a numeric expression that contains more than one operator (for example, 3 + 4 * ¢) allowing you to choose the order
in which the calculations occur. Let's now take a quick look at operator precedence.

KR [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toan Liz [+ erevious Pt v

Operator Precedence

Operator precedence deciphers the order in which calculations in an expression occur. Looking at the calculation example 3 + 4 *
6, the answer could be calculated by adding 3 and 4, which gives 7, and then multiplying 7 by 6, giving the answer of 42.
However, we could also multiply 4 and 6 first, which gives 24, and then add on the 3, giving an answer of 27. The multiplication
operator (*) actually has a higher precedence than the addition operator (+). This means that the numeric expression 3 + 4 * ¢
would actually give the answer 27 and not 42, executing the multiplication first and then the addition. In order to specify the order
in which calculations occur you can simply use parentheses. If we want the addition calculation to be executed before the
multiplication, we can enclose the addition calculation in parentheses (e.g., (3 + 4) * 6, which will give us the answer 42). When
in doubt, it is recommended that you use parentheses to specify the order of operations. It is often best to use parentheses
anyway to make your code more understandable.

The following table shows an operator list containing operators with a higher precedence at the top and thoses with a lower
precedence at the bottom. The table also shows the associativity of grouped operators that are of equal precedence. The
associativity deciphers the order of operators of equal precedence. For example, division has a "left" associativity, which you may
look upon as being left to right. This means that the expression 24 / 4 / 2 would be the same as (24 / 4) / 2, equaling 3, and would
not be the same as the expression 24 / (4 /2), which gives a result of 12. Here is the operator precedence table and the
associativity of operators of equal precedence.

| Operator Group “ Associativity I
[0, 11, ., postfix++, postfix— |[Left |
| + unary, — unary, ++prefix, —prefix, ~, ! “ Right |
| new, (cast) “ Left |
[*,1, % || Left |
+.- [Lett |
| <<, >> >>> || Left |
|<, <=, > >= instanceof || Left |
[==,1= || Left |
[& || Left |
|I\ || Left I
| | || Left I
| &s || Lett I
L || Lett |
[2: || Left |
|=, *= 1=, %=, +=, ==, <<=, >>= >>>= &=, |=, M= “ Right I

Thinking back to the two examples that we have looked at so far, we can first see that the multiplication operator is higher up the
table than the addition operator, meaning it has a higher precedence. We can also see that the division operator has a left (left to
right) associativity, as we previously discussed.

Don't worry about this amass of operators; we will cover them all throughout the book.

Toam Lia ET

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toam Li [« rxsviour]
Unary, Binary, and Ternary Operators

Quite simply, a unary operator is one that is used with one operand. For example, in the operator precedence table we see the
second row contains the + and — unary operators, which may, for the unary minus operator, be used as follows:

10;
-a;

int a =
int b =
Hence, the minus sign preceding the variable a in the second line is a unary operator, used with one operator—the variable a.

Binary operators are used to perform an operation on two operands, such as the * operator for multiplying two numbers together.

There is only one ternary operator, which is the ?: conditional operator that uses three operands and is discussed a little later in
this chapter.

Toan Lo [+erivious Lt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Team LiB m b T B
Oh No, More Operators!

Yes there are many more operators, but they are all very useful. Here is a table of three more operators.

| Operator ” Description

| -- ” Decrement operator

| ++ ” Increment operator |

| % ” Modulus — This is the remainder from a division calculation

The increment and decrement operators will add or subtract a value of one from a variable of a numeric data type. They can be
used with both integers and floating-point variables.

The increment and decrement operators are simply neater implementations of the following code:
int counter = 0;

counter = counter + 1;

int countdown = 10.0;

countdown = countdown - 1;

Instead, we can use this code:
int counter = 0;
counter++;

double countdown = 10.0;
countdown--;

This method of using these operators is the postfix method, which means they are entered on the right-hand side of their
associated operand. You can use the increment and decrement operators in a postfix or prefix form, giving different results each
time.

Take the following segments of code as an example:

int numberA = 10;
int numberB = numberA++;

This code assigns the current value in numberA to numberB and then increments the value of numbera after that. So the result
of this code leaves numbera equal to 11 and numberB equal to 10.

If we wanted the increment code to execute first and then the assignment of numbe rB afterwards, we would use the prefix
increment operator instead. The code would now be as follows:

int numberA = 10;
int numberB = ++numberA;

As you can see, the increment (++) operator is now entered on the left-hand side of its associated operand. This code first
increments the value of numbera by 1 and then assigns the new value of numbera to numberB. The result is that both variables
are equalto 11.

The modulus operator ¢ is used to calculate the remainder value of a division calculation. We can see the use of the modulus
operator in the following example: Eggsample.java.

public class Eggsample
{
public static void main(String args([])
{
int totalEggs = 15;
int eggsPerBox = 6;
int filledBoxes = totalEggs / eggsPerBox;

int remainingEggs totalEggs % eggsPerBox;

System.out.println ("Number Of Eggs = " + totalEggs);
System.out.println("Eggs Per Box = " + eggsPerBox);
System.out.println("Filled Boxes = " + filledBoxes);
System.out.println("Remaining Eggs = " + remainingEggs) ;

}

When you compile and run Eggsample. java, you should get output similar to the following screen shot.

Figure 2-7:

As you can see from the console output, there are two filled boxes of eggs, calculated using integer division, which will ignore any
remainder values. The amount of remaining eggs is given using the modulus operator.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toan Liz [+ erevious Pt v

Arithmetic Assignment Operators

The following assignment operators are similar to the increment and decrement operators that we have just seen. They are used
so that you do not need to enter the source variable twice when assigning a value to a variable based on its current value. The
following table shows a list of arithmetic assignment operators for the arithmetic operators that we have used so far in this chapter.

” Subtraction assignment

| Operator ” Description |
*= ” Multiplication assignment |
/= ” Division assignment |
+= ” Addition assignment |
|

|

g= ” Remainder assignment

So we can set a value to a variable and then double its current value as follows:

int number = 22;
number *= 2; // all the fours, 44

In fact, it is possible to assign values to variables using the assignment operators wherever the value type is valid, even in mid-
code, so to speak.

int numberA = 30;
int numberB = 7;
numberA /= numberB -= 4;

The last line of code first subtracts 4 from numberB, setting it to the value of 3. Then numbera, which equals 30, is divided by the
new value of numberB, which now equals 3, giving numbera the value of 10, which is the result of 30 divided by 3. This conforms
to the operator precedence table shown earlier.

[+erevious Pt s

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toam LB [« exsvious [t s
The boolean Data Type

A variable of type boolean can contain one of only two values, true or false. These values are also generally known as 1 and 0,
with 1 representing true and 0 representing false. However, in Java the value of a boolean type variable is either true or false
only; they are not numeric and therefore cannot be assigned from numeric values. The default value for a boolean type variable
is false. The keywords true and false can be used to assign values to boolean type variables. For example:

boolean bookIsOnFire = false; // hopefully

boolean thisBookIsGreat = true; // hopefully you agree

Toan L3 [+erevious P v

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Bitwise Operators

The following table shows the standard bitwise operators in Java and a description of them.

| Operator H Description

P || Bitwise AND

I
| ~ || Bitwise exclusive-OR (generally known as XOR)

|
|| Bitwise inclusive-OR (generally known as OR) |
|
|

[~ || Bitwise NOT

To illustrate the function of these bitwise operators, we can use two byte values, A and B, which in java could be represented by a
variable of type byte. The following table shows the binary notation of 2 and B (as there are 8 bits in a byte).

| Byte ” Binary Value |
|A ”01101010 |
[= [11110000 |

The AND (&) operator tests two bits and returns the resulting bit true if both test bits are true; otherwise, the return bit is false. The
following table shows the result of A AND B.

| Byte ” Bits |
E o | R | N P EN I L1 o |
E [E bl i o fo o o |
|2 AND & o it Jlo Jlo o lo Lo |

The OR (|) operator tests two bits and returns the resulting bit true if any or both of the test bits are true; if they are both false, the
return bit is also false. The following table shows the result of A OR B.

[Byte [its |
B lo IE IE ol o IE lo |
E IE IE IE 1 o o Lo lo |
|2 AND 5 IE | K E £ Lo IE Lo |

The XOR () operator tests two bits and returns the resulting bit true if one, and only one, of the bits is true; otherwise, if the two
values are equal, the return bit is false. The following table shows the result of 2 XOR B.

| Byte ” Bits |
[2 Lo | E E P Lo IE Lo |
E IE e Lo Lo Lo |
[» AND & IE o o+ 4 o IE Lo

The NOT (~) operator will invert all of the bits, where ones becomes zeros and zeros become ones, and is therefore a unary
operator used with only one operand, whereas the other bitwise operators we have just seen were tested against two operands
(binary operators), A and 8. The following table shows the result of a NOT operation on byte a.

| Byte ” Bits |
B Lo | NN NN | ET Lo |
[NoT IE o o Jlr Jlo 1 Lo lo

The bitwise AND, OR, and XOR operators can also be used with boolean expressions, as Boolean values effectively only
contain one bit that is either true or false. This can be implemented in Java as follows:

boolean musicOn = true;

boolean televisionOn = true;

boolean areBothOn = musicOn & televisionOn; // true
boolean areAnyOn = musicOn | televisionOn; // true
boolean isOnlyOneOn = musicOn ”~ televisionOn; // false

There are also assignment operators for these three bitwise operators, as shown in the following table.

|| Operator ” Description ||

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

= ” Bitwise AND assignment |

” Bitwise inclusive-OR assignment |

[s
L
|A

= ” Bitwise exclusive-XOR assignment |

These assignment operators can be used in the same way that we used the previous set of assignment operators.

K B

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Bit Manipulation

In order to understand how to manipulate bits, you must first understand how numbers of the decimal notation, those numbers
that we are used to using, are stored in the binary notation. The following table shows a list of decimal numbers and their binary

representations.

|Decima| ” Binary |
Lo o |
E 1 |
|2 110 |
3 11 |
l4 [100 |
E [101 |
[11 1011 |
[15 1111 |
[212 [11010100 |

Decimal numbers are base 10 numbers, whereas binary numbers are base 2. If we look at how we perceive the value of a
decimal number, we can then understand how to convert these numbers to their binary notation. So imagine the following number:
574. We know what this number is because it is familiar to us, but we can also look upon its value in the following way.

|Base10“ ||1o2 ||1o1 ||100 |
[Value 100 [10 1 |

Note that just in case you don't understand the term 102, it translates as 10 * 10, equaling 100. So, for example, 105 would be 10 *
10 *10 * 10 * 10, equaling 100000, and 43 would be 4 * 4 * 4, equaling 64.

We can then look at the value of 574 in the following way as a decimal notation:
(102 * 5) + (10Y * 7) + (10° * 4) = 500 + 70 + 4 = 574

This is a bit pointless but only because our perception of the value in the decimal notation is immediately understandable. Now
take the following table:

|Base on ||22 ||21 ”20 |
[Value |4 |[2 IE |

Now the binary base is 2 and the decimal base is 10. This means that decimal values range from 0 to 9 and binary values range
from 0 to 1. So the binary value 101 can be worked out in the following way, similar to the way we looked at the decimal notation:

(22 % 1) + (2 »0) + (29 % 1) =4 +0+1=25

If we look back to the decimal/binary table on the previous page, we can now work out the larger bit value of 11010100 as follows:

(27 % 1) + (2% % 1) + (2% % 0) + (2% * 1) + (23 * 0) + (22 * 1) +
21 * 0) + (20 * 0) =

128 + 64 + 0 + 16 + 0 + 4 + 0 + 0 =

212

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toan Li3 [+ erevious Pt v
Bit Shifting

Bit shifting allows you to shift the bits of an integer value to the left or right. The following is a table of bit shifting operators and a
description of what they do.

| Operator H Description ‘
<<		Shifts bits to the left, adding zeros from the right
>>		Shifts bits to the right, copying the sign bit (leftmost bit) from the left
>>>		Shifts bits to the right, adding zeros from the left

These operators are binary and take two operands. The left operand is the integer value on which to perform the shift, and the
right operand is the number of bits to shift. Left-shifting by powers of two will perform an integer division, and right-shifting by
powers of two will multiply the value. For example, let's say we had the decimal value 2, which would be represented in binary by
the value 00000010 in a byte. An alternative to directly multiplying this value by 8 would be to bit shift the value three places to the
left.

byte number = 2; // binary 00000010

We could then left-shift the bits three places, as follows:

number = number << 3;

When shifting the bits three places to the left and filling in zeros from the right, our binary notation would be 00010000, which is
the decimal value of 24, equaling 16. This is the same as multiplying 2 by 23.

Note The previous code of bit shifting the value of the variable number could have also been performed using the
assignment left-shift operator, as follows:

number <<= 3;

Toan L3 [+erevious P v

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[ream Lo | [cervviou st]
Bit Flags

It is possible to store many boolean states in a single integer value and test the values quickly using bit testing. For example, we
could have a variable of type byte, which can then be used to represent eight states for the eight bits it contains. First of all, we
can declare our eight mask values. We would first need to specify the values for the masks to represent the position of the bits
that we want to test.

byte ROCKETS = 1;

byte LASERS = 2;

byte SHIELDS = 4;

byte INVINCIBLE = 8;

byte AUTO PILOT = 16;

byte AIR CONDITIONING = 32;

byte TRACTOR_BEAM = 64;

byte WINDOW WIPERS ON = 128;

The values are all powers of two to represent each bit in the 8-bit value. For example, the AuTO P1ILOT mask has a value of 16,
which in binary form is the value 10000, to which we can then test the fifth bit in our state variable to see whether it is true or false
and also set this value. So for example, let's say we have a variable, state, and we want to initialize this value to represent data
indicating that the ship's rockets are on, the shields are active, and the air conditioning is on too, as it can get awfully hot in there.
We can set these flags as follows:

byte state = ROCKETS | SHIELDS | AIR_CONDITIONING;

As you can see it is a neat and easy-to-read system, saves memory, and is fast too. Here we have effectively set the variable
state to the binary value 00100101. You can see that these bits correspond to the masks that we have used. We may then
want to turn off the air conditioning, which we would perform as follows:

state &= ~AIR_CONDITIONING;

You can set the state, say, of invincibility of the ship to true/on, as follows:
state |= INVINCIBLE;

You can test the individual states as follows:

if ((state & ROCKETS) > 0)
System.out.println("Fire when ready");

You can also combine the masks and create new masks for given scenarios. For instance, we could say that if we have rockets
and window wipers on at the same time, we are unbeatable. We would then create a new mask for the unbeatable scenario.

byte UNBEATABLE = ROCKETS | WINDOW_WIPERS_ON;

if ((state & UNBEATABLE) > 0)
System.out.println("We can see the danger, lemony fresh");

Well, that's enough playing with my bits, as my mother used to say.

[+erevious Lt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[team L2 | [ravioos
The char Data Type

The char data type is used to represent a single character. In Java, characters are stored using 2 bytes of memory. The reason
for this is that Java allows for the storage of many more characters than just the ASCII character set, which only contains 256
individual characters. Java uses a 16-bit character set called Unicode, which is the worldwide character encoding standard.
Ideally, the low-order byte of the Unicode representation can be used to store the ASCII representation of characters, which
means that a character with a value from 0 to 255 will be an ASCII character. The following line of code shows the declaration of
char variables.

char firstLowercaselLetter = 'a';
char firstUppercaseletter = 'A';
char ampersand = '&';

As you can see, the character must be specified between single quotation characters. A char is effectively the same as a short
in that it is the same size and can be assigned its value numerically, which can then be altered with an arithmetic expression. For
example, the ASCII numeric value of the letter "a" is 65, which means that the following line of code will also assign the character
value "A" to a char variable and then increment the value by one, giving the variable the value of 66, which is the value of the
letter "B" character.

char letter = 65; // value equals 'A'

letter++; // next value is 'B'

[oam Lo [+ rrinsus [omsi]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Character Escape Sequences

Character escape sequences allow for a character to be interpreted differently than its literal value. Character escape sequences
are defined using the backslash (\) character, followed by the escape sequence code. The following table shows a list of
character escape sequences with a description of what they do.

| Character Escape Sequence ” Description |
| \b ” Backspace |
| \f ” Form feed |
| \n ” New line |
| \r ” Carriage return |
[[Tab |
| \u{hex} ” Unicode escape sequence (see the next section for details) |
AR Backslash character. This is how a backslash can be treated as just an actual
backslash character.
A Single quote. Define a single quote character so it is not treated as a character
delimiter.
A" Double quote. Define a double quote character so it is not treated as a string
delimiter.

The aforementioned escape sequences are used with string notations and will be discussed in more detail in the "Strings" section
of Chapter 3.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toan Liz [+ erevious Pt v

Defining Unicode Characters

Unicode characters can be defined using the "\u" character escape sequence, followed by the hexadecimal notation of that
character. For example, the hexadecimal notation for the number 65 is 0041, which is (4*16) + 1. So the following code would
assign the letter A to the character variable 1etter.

char letter = '\u0041';

[+erevious Pt s

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Tean L [o]

Constants

Constants are values that are declared with an initial value and cannot be altered thereafter. The standard naming convention for
constants is for the variable name to be all in capital letters with multiple words being separated by an underscore character (_).
Declaring constants is very simple. Here we use a new keyword, final, to create a constant variable.

static final byte MAX DAILY HOURS = 24;

The static keyword is used with the final keyword because you may not require multiple instances of a constant variable
when you create multiple objects of the class to which the constant attribute belongs, as they will only share the same
unchangeable value anyway. However, you can declare a constant with the keyword final alone (omitting the keyword static).
The advantage of this lies in not specifying the value of the constant immediately.

final byte MAX DAILY HOURS;

The value of MAX_DAILY HOURS must now be assigned a value in every constructor that is defined in the class to which it
belongs; the value must be assigned once and only once and will then stay and cannot be changed from then on. This is useful if
you want each object to have its own copy of a constant variable, with each constant being set to its own unique value in the
constructor(s).

Note A final value cannot be initialized in any other method; it must be initialized either at the declaration point or in all of
the constructors of the class to which it belongs. It must be implemented in all of the constructors because any one, but
only one, of them could be used when creating the object where the constant must be initialized.

(e rivious Lt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Tean L2 [o]

Conditional Statements and Loops

So far, we have looked at storing values in our programs, which isn't the most exciting thing in the world. We will now look at how
to manipulate the data using conditional statements and loops, the key ingredients to adding functionality to your games and
spicing them up a little. Conditional statements are used to test values and execute different sections of code based on the result
of the test. Loops are used to repeatedly execute a section of code, meaning you can use the same piece of code to perform a
task multiple times, an essential implementation for many circumstances.

Conditional Statements

The ability to choose the path that your program takes, based on any given data, is the key to all functionality in programming. In
order to create conditional statements, we must first learn about the relational operators that we will use with these statements.
The following table is a list of the relational operators in Java.

| Operator H Returns true if...
< || Left operand is less than the right operand
<= || Left operand is less than or equal to the right operand

>= || Left operand is greater than or equal to right operand

> “ Left operand is greater than right operand

|
| |
| |
I == || Operands are equal I
| |
| |
| |

= “ Operands are not equal

The equality operator (==) is different from the other relational operators in that it can be used to test the value of any similar data
types, such as two integer expressions, two Boolean expressions, or even two objects.

Note When testing the value of two objects, we are not actually testing the data within the objects, but rather we are testing
to see if both references refer to the same object. For example, remember back when we created two Person objects
referenced by glennMurphy and andrewMulholland. A test between these two references using the equality
operator (==) would simply return true if they both referred to the same object, like they do in Figure 2-3 but do not in
Figure 2-2. We will look at comparing objects in more detail later in the book.

Simple if Statements

An if statement is rather self explanatory; it contains a Boolean expression and is followed by a line or block of code that it will
execute if the Boolean expression returns t rue. The following code shows an example of an i £ statement with one line that it will
execute if the Boolean expression returns t rue.
boolean televisionOn = true;
if (televisionOn == true)

System.out.println("The TV is on");

This i f statement will execute the one line of code that is immediately after it, provided the Boolean expression returns t rue. If
there was another statement after the screen printing code, it would execute regardless of the result of the i £ statement. You
must specify a code block for the i f statement if you wish to have more than one line of code executed when its test is true.

if (televisionOn)
{
System.out.println("The TV is on");
System.out.println("Turn it off and get back to work");
}

Notice that the Boolean expression merely specifies the boolean data type televisionOn on its own. This is another way to
test if the Boolean value is true just without the "== true" part, which is a neater way to do it, although it is also less readable
and less like pseudocode. You may implement this test in whatever way you feel the most comfortable. Similarly, you can also
write the test like this:

// not false is the same as equal to true
if (televisionOn != false)
System.out.println ("I said turn it off!");

Using the other relational operators is the same as using the == and ! = operators, although you cannot use them with Boolean
expressions, as you cannot say that one Boolean value is, for example, greater than or equal to another. The other relational
operators must be used with values with a comparable scope that exceeds just equality testing, such as numeric values.

int numberOfLions = 5;

int numberOfWildebeest = 2;

if (numberOfLions > numberOfWildebeest)
numberOfWildebeest--;

Those poor wildebeest; they have a heck of a time! You can also have i £ statements nested inside one another quite simply.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

if (numberOfLions > numberOfWildebeest)
{
numberOfWildebeest--;
if (numberOfWildebeest == 1)
{
System.out.println("Oh no, there is only one left");
}
}

This code will first check to see if there are a greater number of lions than wildebeests. If this is false, none of the nested code
will be executed at all. If it is true, the value of numberOfWildebeest is decremented by one and followed by another i £
statement, which tests to see if there is only one wildebeest left. If this is t rue, some text is printed to the console screen stating
this unfortunate fact.

The if with else Statements

Suppose we wanted to execute some code for either of the two possible results of a Boolean expression, true or false. We can
perform this task easily using an e1se statement along with an it statement, basically giving the option of performing one task if
a test is satisfied or else perform another task.

int personsAge = 21;
if (personsAge == 0)

System.out.println("Get me one of those cool door swings");
else

System.out.println("Old enough to start programming :)");

This code simply says that if the value of the personsage variable is equal to 0, then perform the first task; otherwise, if this is
false, perform the e1se task. The problem with this code, and in many other situations, is that we may need to check more than
just two possible outcomes. In this code, we do not check to see if the value of personsage is less than zero, presuming that any
value other than zero is a positive integer. To test more than two different outcomes, we can use an else if statement. An initial
else if statement needs to appear after an i £ statement and can then be followed by more e1se i f statements, each
performed in the same way as i £ statements with a Boolean test.
if (personsAge == 0)

System.out.println("Get me one of those cool door swings");
else if (personsAge > 0)

System.out.println("Old enough to start programming :)");
else // must be negative

System.out.println("On the way, perhaps");

You can have as many else if branches after an initial i £ statement as you require but only one e1se statement at the end.
Note the e1se statement is optional and not required after using else if statements.

Logical Operators

Logical operators are used to test Boolean expressions, similar to the bit-wise operators that we saw earlier. The following table
shows the full list of logical operators:

| Operator ” Description

I ! ” Logical NOT (also known as logical-negation)

|
I && ” Logical AND |
| I ” Logical OR I

These operators can be used in conjunction with i f statements to add more complex tests.

if (houseOnFire && haveNoWater)
System.out.println("Call the fire brigade");

These operators are not only used with conditional statements. They can be used wherever a Boolean expression is required,
such as assigning a value to a Boolean variable or specifying a condition for terminating a loop, which we shall see later in this
chapter.

The Conditional Operator

The conditional operator is used to return one of two possible values, based on a Boolean test, using the question mark (?) and
colon (:) characters. As we mentioned earlier, this is a ternary operator involving three operand arguments. The following shows
the conditional operator in action:

int number = 4;

boolean isEven = (number % 2 == 0) ? true : false;

This statement will return the value of t rue to the variable i sEven because the remainder of numbe r, which is equal to 4, from 2
is 0. If the Boolean expression before the question mark is true, the first value after the question mark is returned; otherwise the
value specified after the colon character is returned instead. You can return any value in this statement, not just Boolean values,
and you can even return object references. We will look in detail at objects in the next two chapters.

The code that we have just seen would be performed similarly using i £ statements in the following way:

int number = 4;

boolean isEven = false;

if (number % 2 == 0)
isEven = true;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

As you can see, the conditional statement can make your code neater, but an it statement makes it more obvious as to what the
code does.

Switch Statements

If you have one value that you need to test for equality with a variety of different outcomes (known as cases), you can use a
switch statement. A switch statement introduces us to four new keywords: switch, case, break, and default. A basic switch
statement would look as follows:
int number = 1;
switch (number)
{
case O:
System.out.println ("Number is zero");
break;

case 1:
System.out.println ("Number is one");
break;

default:
System.out.println ("Number not found");
break;

}

The value that you are testing is enclosed in brackets after the switch keyword is entered. To specify a case statement, you
must enter the case keyword followed by a constant value that it will be compared with, followed by a colon character (:). From
here, any lines of code after the colon will be executed until a break statement is reached, which will then exit out of the whole
switch statement block.

The default keyword is used to specify an area of code that can be executed if none of the case values match the switch
statement test value. A default statement does not need to be included in a switch statement if it is not required, but it is
useful for debugging.

Note You can only use values that are compatible with the data type int as the test and case values for switch
statements; that is, the compiler will look for an int value. This means that you can test characters, as they are also
numeric values. Finally, the case values must be constant values, as in hard-coded numbers (e.g., 17, 2288, etc.) or
constant variable values.

The example DaysOfTheMonth.java uses a switch statement to assign the number of days to a variable based on the current
month and year. Here is the code:

public class DaysOfTheMonth
{
public static void main(String args/[])
{
int month = 7;
int year = 2002;
int totalDays = 0;

switch (month)
{

case 1l: case 3: case 5: case 7:

case 8: case 10: case 12: // 31 days
totalDays = 31;
break;
case 4: case 6: case 9: case 11: // 30 days
totalDays = 30;
break;
case 2: // 28 or 29 days
if (year % 4 != 0)
totalDays = 28;
else if(year % 400 == 0)
totalDays = 29;
else if(year % 100 == 0)
totalDays = 28;
else

totalDays = 29;

default:
System.out.println("Error, Invalid month index =
" + month) ;
break;
}
if (totalDays != 0)
{
System.out.println ("Month = " + month);
System.out.println("Year = " + year);
System.out.println ("There are " + totalDays + "

days in this month");

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

When you run this program, you should get output similar to this console screen shot:

Figure 2-8:

This example shows us a new feature of using case statements inside the switch statement, which is using many case
statements that all lead to the same code segment. This example is ideal for showing this feature because there are multiple
months that share the same amount of days. So, for example, the months of April, June, September, and November all contain 30
days and are represented in the DaysOfTheMonth.java example as month numbers 4, 6, 9, and 11, respectively. The case
statements and values can therefore simply be written one after another, separated by a colon after each value. This is
functionally the same as the following code.
if (month == 4 || month == 6 || month == 9 || month == 11

totalDays = 30;

The case 2: statement represents the month of February. Here we need to test if it is a leap year or not in order to accurately
assign the number of days for the month of February. The definition of a leap year can be worked out with four steps.

1. If the year is not divisible by 4 (that is, the remainder of the year divided by 4 is not zero, e.g., 1997, 2002), then
it is definitely not a leap year. Assign totalDays the value of 28. Otherwise go to step 2.

2. If the year is divisible by 400 (that is, the remainder of the year divided by 400 is zero, e.g., 1600, 2000), then it
is a leap year. Assign totalDays the value of 29. Otherwise go to step 3.

3. If the year is divisible by 100 (that is, the remainder of the year divided by 100 is zero, e.g., 1900, 2100), then it
is not a leap year. Assign totalDays the value of 28. Otherwise, go to step 4.

4. 1t must be a leap year, so assign totalDays the value of 29.

The code for these four steps is simple; we can use the modulus operator (%) to find the remainder values and the i f, else if,
and else statements to test the values.

if(year $ 4 != 0)

totalDays = 28; // not leap year
else if (year % 400 == 0)

totalDays = 29; // leap year
else if (year % 100 == 0)

totalDays = 28; // not leap year
else

totalDays = 29; // leap year

Note It is a common mistake with switch statements to forget to add a break statement at the end of your case block. If
this is omitted, the code will simply continue to execute the next line of code. For example, the following code will print
all three words to the console window regardless of the fact that only the first case is true.

switch (1)
{
case 1:
System.out.println ("Forgot") ;
case 2:
System.out.println ("the");
case 3:

System.out.println ("breaks");

}

The first case statement will be executed because the switch test value is equal to 1 also, but then the other case
statements will also be executed because there are no break statements to tell your program to exit from the switch
block altogether. Sometimes, you may actually wish to execute the code from one case block and then continue to
execute the code in the next case block also, although this can lead to unseen errors later on.

Loops

Loops are used to execute code repeatedly, meaning that you only need to enter code once and then execute it a specified
number of times. In order for a loop to stop, at least one condition for termination should go with it; otherwise, the loop could be
infinite, running forever (that is, until you find some way of crashing out of it, like pressing Ctrl+Alt+Del or buying a shotgun, but it
won't come to that).

Let's say we want to write the value of all of the positive integers that are less than 10 to the console window, which is 0 to 9. A
loop can be used to perform this task in just a few lines of code instead of manually coding ten system.out.println..
statements, which would be too tedious a task for someone of your intelligence. The basic loops are the while loop, the do
while loop, and the for loop.

Using the while Loop

A while loop is implemented in exactly the same way as an i f statement. It must specify a Boolean expression test for itself and
be followed by a line or block of code that it will execute if the Boolean expression test is true. The following example,
WhileCounter.java, will perform the task of printing the numbers 0 to 9 to the console window using a while loop. Here is the
code:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public class WhileCounter
{
public static void main(String args[])
{
int counter = 0;
while (counter < 10)

{
System.out.println("Value = " + counter);
counter++;

}

The screen output in a console window should be similar to the following:

Figure 2-9:

Inside the code block of the while loop is a line of code to increment the value of the variable counter by 1, which eventually
causes the loop to terminate. When the while loop begins, and every time the code block of the while loop completes its
execution after that, there is a test to see if the condition counter < 10 is true. The while loop will continue to execute while
the conditional statement test returns t rue and terminate when it returns false, which in this case is when the variable counter
is equal to 10.

Using the do while Loop

A do while loop is very similar to a while loop. The difference is thata do while loop will execute its code block at least once
and then test for termination, whereas the while loop tests for termination at the beginning before entering its code block.
int counter = 11;
do
{
System.out.println("Value = " + counter);
counter++;
} while (counter < 10);

Here, the code block of the do while loop is entered, first of all, where the value of counter is printed to the console screen
and then incremented by 1 to the value 12. The loop is then terminated, as 12 is not less than 10. This code will only print the
value of 11 to the console, a wrongly written program if you wanted to print only numbers that are less than 10 to the console
screen. So be aware of the fact that there is no condition for entering the do while loop for the first time. They are advantageous
for situations where you want to execute code at least once and maybe more times.

Using the for Loop

The for loop is the most convenient of the loops. The standard implementation for a for loop is to specify a start value, a
termination condition, and an action to be performed. A standard for loop looks like this:

for (int counter=0; counter<l0; counter++)
System.out.println("Value = " + counter);

This will do the same as the previous whileCounter.java example, only in a neater fashion. For the for loop an integer
counter is declared and initialized to 0. This is done once at the start of the for loop. The next statement is the termination
condition for the loop, which in this case is if the value of counter is less than 10. The last statement is an action that will be
performed per loop, which is to increment counter by one.

The following MultiTable.java example shows a multiplication table of values from 1 to 5 using two for loops.

public class MultiTable
{
public static void main(String args[])
{
final int TABLE_SIZE = 5;

for(int j=1; Jj<=TABLE_SIZE; j++)

{
for (int i=1; i<=TABLE_SIZE; i++)
{

int value = i * j;
if (value < 10)
System.out.print (" ");

System.out.print (value + " ");

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

System.out.println () ; // move to new line

}

The output for this program should look like the following screen shot.

Figure 2-10:

This example contains two for loops, one nested inside the other. After the first for loop is entered, the second for loop is
executed straight away. The code block for the second for loop is where the important code is implemented; this block of code
prints a value to the console window, which is the multiplication of the current values of the variables i and 5. The first time that
the code block for the second for loop is entered, j is equal to 1. From here, the value of i will run from 1 to 5, with 5§ always
equal to 1. This gives us the first output line of 1, 2, 3, 4, and 5. These are the calculations of (1*1), (1*2), (1*3), (1*4), and
(1*5), where 7 is the first operand (always 1) and the second operand is i (incremented by one each time). After this, there is a
call to the system.out.println () method to move the console carat position onto the next line. This procedure is then
repeated with the value of j incremented each time until it is equal to 5.

Note The printing method that was used to print the multiplication values was system.out.print (). This method leaves
the cursor position at the point where the last character was output, not moving it onto the next line, whereas
System.out.println () will move the cursor to the start of the next line.

The purpose of the £inal int variable TABLE SIZE is to define the limit of the for loop counter variables i and j and is a good
technique for making reusable code. It means that changes made to the value of this variable at a later time will influence the
outcome of the table sufficiently, so you only need to make the change once. If you change the value of TABLE S1ZzE from 5 to
the value 10, for example, you will get output similar to the following screen shot:

Figure 2-11:

Here the dimension of the table is now 10, where the last calculated value is 10 multiplied by 10, giving the value 100 in the
bottom-right corner of the table. You could specify the width and the height of the table as two separate variables, giving you a
table of any dimension, such as 5 by 9 or 200 by 310 (although the latter dimension would not fit in the console window properly).

Note Notice that when declaring the constant variable TABLE SIZE, itis only declared as £inal and not static and
final. This is simply because the method main that it belongs to is already static, which means that variables
declared inside it are static also.

An Advanced Look at the for Loop

The first statement in a for loop is most often used to declare a variable and assign it a value. It is also possible to declare more
than one variable of the same specified data type in the same declaration. For example, the following code declares two variables,
iandq:
for(int i=0, j; i<10; i++)

System.out.println("i = " + 1i);

We can also add more actions to the third statement of the for loop separated by commas, as follows.
for(int i = 0, j = 0; 1i<10; i++, j=i*i)
{
System.out.println("i = " + 1i);
System.out.println("i squared = " + j);
}

This code will add one to the variable i per loop cycle and assign to the variable j the value of i * i, printing the value each time.

The statements in a for loop do not need to be implemented if it is unnecessary to do so. Suppose you have a previously
declared variable that you want to use as the counter in the for loop. This means that you do not need to implement a declaration
statement for the for loop at all, as you want to use a previously declared variable instead.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

int counter = 0;
// later on in code (within scope of variable counter)

for(; counter<l1l0; counter++)
System.out.println("Value = " + counter);

Note that you must still add a semicolon (;) where the statement should be. You may still initialize an existing variable ina for
loop.

int counter = 0;
// later on in code

// Counts down from 10 to 0
for (counter = 10; counter>=0; counter--)
System.out.println("Value = " + counter);

Similar to removing the first statement, you may remove the last statement and simply implement the code inside the code block
for the for loop, as follows:

int counter = 0;
// later on in code

for(; counter<10;)
{
counter++;
System.out.println("Value = " + counter);

}

You can omit the second conditional statement also, which would leave you with the following code:

for(;;)
System.out.println ("This loops infinitely");

The loop statement for (; ;) performs the same way as while (true) as aloop declaration, looping continuously. You can exit
out of an infinite loop (or a loop that already has a condition to terminate early) using break statements, which we will now discuss.

Using break and continue

We have already seen the break statement, using it to exit out of case statements inside a switch statement. Similarly, the
break statement can also be used to exit from loops; this can replace or supplement existing termination conditions, which
means that you can have multiple termination conditions for loops at different stages in the code block.

int number = 0;

while (true)

{
number++;
if (number > 9)
break;
}

This slice of code again will count from 0 to 9, "breaking" out of the whi1e loop when the value of the variable number is greater
than 9. Notice that we have replaced the condition statement with the Boolean value of t rue; this will simply make the loop
repeat forever, which means you must add code to jump out of the loop yourself using a break statement.

The continue statement is very useful with loops. It allows you to jump through the loop's code block, basically jumping from the
current position and past the rest of the code block to start off the next loop stage. A good example of this is shown in
OddNumbers.java. This example uses the continue statement to jump past the remaining code in the loop's code block when
the value of the loop counter is found to be even. The result is that only odd numbers are printed to the console screen.

public class OddNumbers
{
public static void main(String args[])
{
for (int counter=0; counter<l0; counter++)

{

System.out.print ("Value of counter = " + counter);

o

if (counter % 2 == 0) // counter is even

{
System.out.println (", counter is even so continue");
continue; // jump to next loop step

}

System.out.println (", odd number found, hurray"):;

}

When you run this code, the output should be similar to the following screen shot.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 2-12:

The previous example was structured merely to illustrate the use of the continue statement. In order to get a list of odd
numbers, the following code is a simpler and more suitable implementation.
for (int counter=1; counter<10; counter+=2)

{

System.out.println("Odd number = " + counter);

}

Instead of testing to see if the value of counter is an even or odd number, we can simply ensure that all of the numbers are odd.
To do this, the value of counter is initialized to 1 and is incremented by 2 every loop cycle. This means that by continually adding
values of 2 per loop cycle, the value of counter is always the next odd number, as it started as an odd number.

Jumping to Labels

The ability to jump to labels can be a very useful tool when using nested loops. Let's consider the following section of code:

for (int i=0; i<5; i++) // first loop
{
for (int j=0; j<5; Jj++) // second/nested loop
{
break;

}
}

Here we have two loops, one nested inside another. If you are in the second/nested loop, there is no instant way that you can
break out of both loops altogether. The break statement will only "break out" of the nested loop but continue performing the first
loop until it terminates when the value of i is not less than 5.

We can give the first loop a label and then break out of both loops entirely by specifying the label with the break statement, as

follows.
firstLoop:
for (int i=0; i<5; i++) // first loop
{
for (int j=0; j<5; j++) // second/nested loop

{
break firstLoop;
}
}
// breaking from firstLoopLabel will go to here

Here we specify the first loop with the label £irstLoop, followed by a colon. It is almost like giving the first loop an identifier or
variable name so that you can differentiate between it and the nested loop from within the nested loop. You can then specify
which one of the loops that you want the break statement to affect by adding the label after the break keyword.

Now that we are able to choose the loop that we want the break statement to "break,"” we can look at using the continue
statement in exactly the same way.

The following example code illustrates the use of the break and continue statements using labels with two loops, one nested
inside the other. They are manipulated from within the second/nested loop.

firstLoop:
for(int i=0; i<10; i++)
{
for (int j=0; 3<10; j++)
{
if(i!=7)
continue firstLoop; // or just break this loop
else if (j!=7)
continue; // continue this loop

// 1f this is reached both i and j equal 7

System.out.println("i = " + 1i);
System.out.println("j = " + 3);
break firstLoop; // this will exit both loops

}

This code only prints to the console the values of the variables i and 3 when they are both equal to 7, using the label firstLoop
to manipulate the first loop from inside the second/nested loop.

= [eiviovs [o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| Toam LiB | [« Fruvisus [wxr o]
Methods

Methods are used as the building blocks of your program, performing tasks that can be called again and again and using the
same code to perform the task each time. The basic but fundamental parts of a method's declaration are its name, its return type,
parameter signature, and code segment curly brackets. The following lines of code are an example of a method declaration.
static void doSomething ()
{

// add code here
}

This method is called dosomething and has a return type of void, which simply indicates that the method does not return a
value. We have seen the keyword void already, which is the return type of the method main. If the method doSomething were
added to your main program class, then in the main method of the class you would call the method doSomething by entering the
following code:

doSomething () ;

Note The method doSomething needs to be static at the moment because the method main, from which we are assuming
the method doSomething is going to be called, is also static. The method dosomething would not need to be static if
we created an instance of the class to which doSomething would belong. We will ook at this in more detail in Chapter
4, "Multiple Classes."

If you want a method that returns a value, you must specify the return type of the method, and then you must use the keyword
return in the method code block to specify the returned value.

static int getFiveDoubled()
{
return 10;

}

The following method will simply return the value of 10 to wherever it was called from. The following line of code could be added,
for example, in your main method to assign this value to a variable:

int myNumber = getFiveDoubled() ;
This line of code will assign the value of 10 to the variable myNumber.

Note Just because the method getFiveDoubled now has a return type, it does not mean that it cannot be called on its
own.

getFiveDoubled() ;

This method will essentially do nothing, but you may have a method that performs a required task and then returns a
value, which you want to ignore.

A method that has a return value (not void) must have a return statement at every possible exit point from the method. The
compiler will pick up if a path without a return value is possible. On the other hand, if you have a method with return type void and
then want to exit out of the method early, you can use the keyword return on its own. For example, take the following code:

public void doSomething ()
{

if (leaveEarly == true)
return;

// else continue with the rest of the code

}

This is similar to how the break statement is used to exit out of certain code blocks, such as switch cases and loops, as we saw
earlier. The example we have just seen is a very basic example, but the use of the keyword return in this instance can be very
useful for immediately exiting out of complicated code clusters in a given method.

Parameter Passing

The previous method, getFiveDoubled, is pretty pointless and very inconvenient because it will only return one value, 10.
However, we could create a method that will take in any number, double it, and then return the doubled value. This can be
achieved using parameter passing. Parameter passing allows you to pass values to a method that the method can then
manipulate. The following method contains one parameter, which is doubled and the new value is returned.
int doubleNumber (int number)
{

number *= 2;

return number;

}

As you can see, the parameter is a variable called number of type int and is specified between the brackets that follow the name
of the method. To call this method, you could, for example, use the following code:

// double of 2 equals 4
int myNumber = doubleNumber (2);

// then double its current number of 4 equals 8
myNumber = doubleNumber (myNumber) ;

// then quadruple its current number to equal 32
myNumber = doubleNumber (doubleNumber (myNumber)) ;

This last line of code will call the method doubleNumber twice, first returning a value that is double the value of myNumbe r, which

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

in turn is then passed as a parameter to the second call to doubleNumber that eventually returns the final value of 32, assigning
it to the variable myNumber.

To reiterate what we mentioned earlier, if the value that you pass as a parameter is of a primitive data type variable, the variable
itself is not passed to the method. A new variable with that value is created in the method and then used. This means that
changes made to this value inside the called method will not affect the value of the original variable. (This is not the case for
objects, however, which can also be passed as parameters. This is discussed in Chapter 4.)

You can also have more than one parameter, using a comma to separate consecutive parameters. The following simple example,
SpidersEyes.java, contains the method multiply, which contains two parameters that are both of type int and returns the
value of the two parameters multiplied together. Here is the code:

public class SpidersEyes
{

public static int multiply(int valueA, int valueB)

{

return valueA * valueB;

}

public static void main(String args/[])
{
int numberOfSpiders = 10;
int eyesPerSpider = 8;
int totalEyes = multiply(numberOfSpiders, eyesPerSpider);

System.out.println("Total Eyes = " + totalEyes);

}

When you run this code, the output should look similar to the following screen shot.

Figure 2-13:

There are two things to note from this example. First, we have used the keyword static for the method multiply. Thisis
because there is no instance of the class spidersEyes currently created, so in order for ma in, which is static, to be able to
access the method multiply, it must be static also. (If this is confusing, do not worry about it for the time being. It will all become
clear in Chapter 4 when we start looking at using classes fully.) The second thing to notice is that the method main also takes a
parameter, which is an array of st rings. We will learn about these in the next chapter.

Method Signatures

It is possible to have two methods that share the same name. However, they must have different signatures because otherwise
when you wish to call one of the methods, the compiler has no way of differentiating one from the other, as the invocation of the
method is based on the compiler recognizing the signature. Having methods of the same name but with different signatures is
known as overloading the method.

The name of the method and the parameter signature of that method determine a method's signature. The return type of a
method does not influence its signature. Hence you cannot have two methods with the same name with two different return values
with the same parameter signature.

In the previous example, SpidersEyes.java, we had a method called multiply, which took two parameter values of type
int, returning the value of the parameter values multiplied together. If we also included a method that did the same thing but
used values of type double instead, we could create another method with the same name but with a different parameter
signature.

public static int multiply(int a, int b)

{

return a * b;

}

public static double multiply(double a, double b)
{
return a * b;

}

The parameter signature is determined by the data types of the parameters and therefore the number of parameters also. Let's
say that we now added the following method together with the previous two methods:

public static long multiply(int a, int b)

{

return (long) (a * b);

}

The program would no longer compile because this method and the original multiply method share the same signature. They
have the same name and also the same parameter signature—two parameters both of type int. The most obvious solution is to
change the parameter signature of the latter method to take two parameters of type 1ong.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public static long multiply(long a, long b)
{
return a * b;

}

This will now work because the parameter signatures are different. If you are unable to alter the parameter signature in a
reasonable manner, do not bother; just give the methods different names (e.g., multiplyInt, multiplyDouble,
multiplyLong, etc.).

[+ erevious P v

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Tean L2 [o]

Variable Scope

So far in this chapter we have used variables as soon as they have been declared, without really encountering problems with the
scope of the variables. The scope of a variable is the area in which a variable belongs, specified by the area in which it is
declared. The following example code contains two declared variables, one inside a code block and one outside of that code block
(imagine that the code is entered into a method, like main for example).

int outside = 10;

{
int inside = 5;
// outside is valid inside this code block
inside = outside;

}

outside = 5;
// inside cannot be accessed here

The variable inside cannot be accessed anywhere outside the code block in which it was declared because it is out of the
variable's scope. The variable inside simply does not exist outside of the code block. Therefore, this is true of all code blocks,
like the ones belonging to while and for loops and if and else statements and methods.

For example, look at this for loop:

for (int counter=0; counter<5; counter++)
{
System.out.println ("counter = " + counter);

}

The variable counter is declared in the scope of the for loop code block; it only exists inside this code block and cannot be
accessed further on in the code outside of the code block. If you want to access the counter variable later in the code,
implement your code like this:

int counter;

for (counter=0; counter<5; counter++)
{
System.out.println ("counter = " + counter);

}
System.out.println("counter final value = " + counter);

Here we simply declare the variable counter before the for loop and then use it with the for loop in the same way but this time
we do not declare it at the first stage of the for loop. Later, outside of the for loop code block, we can still access the variable
counter because it has been declared within the scope of this area.

A variable declared inside a method is known as a local variable to that method and does not exist outside of the method. So far,
we have only declared variables inside methods. In the next chapter, we will start declaring class variables declared within the
class code block only and not local to any method, meaning you will be able to access and manipulate these variables from any

method. We will see this notably in Chapter 4.
EEIEET [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[+ervvious Lt]

Summary

In this chapter we delved into the basics of programming in Java. We can now create simple console applications using primitive
data types in combination with logical decision making and loops. These aspects provide us with the fundamentals for making a
class structure for defining objects, data, and functionality. At the start of this chapter, we briefly looked at classes and objects. In
the next chapter, we will look at arrays and strings, two very important aspects of the Java language that will provide us with a
good introduction to objects in preparation for Chapter 4.

[+ervvious Lt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Takatat L) [« FrEvinu]
Chapter 3: Arrays and Strings

"First things first, but not necessarily in that order."
—Doctor Who

Introduction

Hopefully, you now have a reasonably good understanding of the basics of Java programming and are fairly comfortable using
primitive data types, conditional statements, loops, and methods. In this chapter we first take a look at arrays, their importance in
programming, and how they are used in Java. We then delve into strings, where you will learn about the string class and other
useful string-related classes, such as the stringBuffer and StringTokenizer. We have already looked very briefly at
objects at the beginning of the previous chapter with the person class but have yet to use objects properly in any code examples.
In Java, arrays and strings are objects, which means we are now about to start using objects for the first time. This should also
provide us with a solid introduction in preparation for Chapter 4, "Multiple Classes."

XTSI R

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam LiE | [raivisus]fiie +]
Arrays

An array is a list of variables (or elements, as they are generally known). Every element in an array is of the same specified type
(this statement is not entirely true, as objects can be cast to different types, but do not worry about this for now; we will discuss
this in detail in the next chapter). You can have an array of int variables, just as you can have an array of boolean variables or
you can have an array of objects—like an array of string objects, as we shall see later on in this chapter. Arrays are generally
used for creating lists of a finite length (finite meaning the array has a specific number of elements or length, hence it is not
infinite). So for example, we may want to create ten variables of type int to store ten numeric values. What we would not want to
do is declare ten variable names, such as:

int firstValue, secondValue; // and so on, tedious, doh

Of course, what we would do is create an array of length 10 and of type int. We can declare an array as follows:
int[] myArray;

We can also declare the same array with the following code:
int myArrayl[];

The square brackets can be placed either after the data type or after the variable identifier name; it is up to you, as they both do
the same thing, which is declare an array. However, you may have a number of arrays that you want to declare of the same type
in the same line of code, so the brackets next to the data type may be preferred.

int[] listA, 1listB;

Or you may prefer to declare an array and also a single data type in the same line of code that are both of the same data type.

int list[], number;

This will declare an array reference 1ist and a single variable called number that are both of type int. Referring back to the
original task of creating 10 variables of type int, the following code will do just that:

int[] myArray = new int[10];

We now have ten individual int variables that each have their individual memory places to store individual values. We use the
keyword new to specify that we are creating a new array object. You will use the keyword new to explicitly create all objects in
Java, so get used to it. If you want to create the array object at a later point and not when it is declared, you can do so by using
single variables, as follows.

int[] myArray; // Jjust declare for now

// later in the code
myArray = new int[10];

When you declare an array variable but do not assign it to an array, such as myarray, its value is null. We shall see about this in
a moment when discussing arrays as objects.

Note Just in case this concerns you at this time, if you declare the array with the square brackets after the identifier, like int
myArray[];, then assigning myaArray later on is done the same way, as myArray = new int[10];, without the
square brackets.

Accessing Array Elements

So how do we access these variables? Well, we access one of the variables in the array using a positive integer regarding its
position in the array, known as the index. We can print the value of the first element in myarray, as follows.

int myArray = new int[10];

// print the value of the first element

System.out.println("Element 0 = " + myArray[0]);

When an array is first initialized, the values of its elements are set to the default value for the type of the array. So for myarray,
which is an array of type int, its elements are all equal to 0. We can assign desired values to the individual element, as follows.

myArray[0] = 369;

Notice that the index number used to access the first element in the array is zero. In computing in general, you might have heard
that the first number to a computer is zero, not one ("one" is the obvious equivalent to the word "first"). This is something that you
should be aware of from the beginning and at the end for that matter, with the end of an array being where the most common
array error occurs. At first you might try to access the last element in the array of length 10 with the following code:
myArray[10] = 911; // hmmm, alert the police

// this variable does not exist

// there is no variable at index 10

The array may be of length 10, but the index of the last element is not; it is 9, as the first element was 0. Just imagine that you
have an array of size 2 ; the first element is accessed using the index value 0, so the second element, which is also the last, must
therefore be accessed using the index value 1. So the index value of the last variable in an array is the length of the array minus
1. You should stamp this fact in your mind if you are new to arrays, as this is a common misconception.

So far, we have initialized the array using the keyword new specifying the size of the array numerically. You may want to specify
values to be stored in an array at the point of declaration. The following code shows how this can be done:

int[] myArray = {71, 76, 69, 78, 78, 73, 83, 71, 79, 68};
// ASCII codes?
Instead of explicitly specifying the length of the array and using the keyword new, defining this list of values assigns these values

to the individual array elements and also defines the size of the array, which is the number of values in the list and in this case is
10.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Note This assignment technique can only be implemented when the array is declared.

So you could have a list that states whether three lights are switched on or off. If you knew this information when the array was
declared, then you originally would have entered the following code.

boolean[] lightOn = new boolean([3];
lightOn[0] = true;

lightOn[1l] = false;

lightOn[2] = true;

A less tedious way to program this when the variable is declared is as follows:
boolean[] lightOn = {true, false, true};

Arrays Are Objects

We should backtrack a little at this time and return to when we first declared an array—remember when we declared the array
myArray of type int without initializing it?
int[] myArray;

At the moment, we actually have a reference to an int array object called myArray which is currently equal to null because it
has not been assigned to reference an array object, which first needs to be created.

if (myArray == null)

System.out.println("myArray refers to no object");
else

System.out.println ("myArray refers to an object");

At the very beginning of Chapter 2, we looked at the Person class and objects derived from it with references such as
glennMurphy and andrewMulholland. Similarly, myArray is used to reference an array object of type int. We can set
myArray to reference one array object at one time and then another at a later place in the code.

int[] myArray = new int[10];

// later on in the code
myArray = new int[5];

The array reference value is declared and initialized to reference an array object of length 10, and somewhere later on, myaArray
is set to reference a new array object of length 5. The originally created array object of length 10 is no longer referenced and the
data is lost (though the Java Virtual Machine will handle deallocating this memory with the garbage collector (see Chapter 12) for
you).

Setting Values from Array to Array

Imagine we have two arrays, 1ista and 1istB, both of type int and length 5.

int[] listA = {1, 1, 2, 3, 5};
int[] 1listB = {0, 1, 4, 9, 16};

The following diagram represents this code with 1ista and 1istB referring to separate array objects.

Figure 3-1:

If we want to set all of the values from one array object to the other, the obvious choice may be the following code:
listA = listB; // warning, warning!!!
We have already realized that arrays are objects in Java and that 1ista and 1istB are references. This means that this method

will actually make 1ista reference the same object that 11 stB references, meaning from now on using either reference will
affect the same object. The following diagram is an updated illustration of Figure 3-1 after the above code is added.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 3-2:

If youwant 1ista and 1istB to continue to reference individual objects and just make the value of one set of elements equal to
another, you can cycle through each element of both arrays assigning the values one at a time. The following code will perform

this task:
for (int counter=0; counter<listA.length; counter++)
listA[counter] = listB[counter];

Note This code assumes that both 1ista and 1istB are of equal length.

We will now take a closer look at using for loops to access array elements and find out what the Length member of an array
object is.

Arrays with for Loops

The best way of "cycling" through all of the elements of an array is using a for loop using the loop's counter variable as the
index value to access each of the array elements. For example, imagine that we wanted to set the value of all of the elements in
the aforementioned array 1ighton to false. We would use a for loop to perform this operation as follows.

boolean[] lightOn = {true, false, true};

// turn out the lights, turn out the lights
for (int counter=0; counter<lightOn.length; counter++)
lightOn[counter] = false;

This code introduces us to a new area, the 1ength member of the array. This variable is a member of all array objects and
contains the value that is the length of the array, which is 3 for the array object that 1ighton references. Using the length
member in the termination condition for the for loop means that later alterations to the size of the array object that 1ighton
references will not affect the code that sets all of the elements to false. The only thing that may be different is the number of
elements in the array that are to be set to false, which the £or loop will adapt to accordingly with the new array length.

The following example called FreelanceProgrammer.java imagines that you are a freelance programmer who wants to work
out the average amount of money earned per month in a single year. In it we create an array of type double of length 12. Each
array element (of 12) represents the amount of money earned in that respective month. This example is used not only to highlight
the use of arrays but also to show some new implementation techniques when using classes, as we shall see. Let's first take a
look at the code.

public class FreelanceProgrammer
{
public static void printEarnings ()
{
for(int i=0; i<earnings.length; i++)
System.out.println(earnings([i]);

}

public static void printAverageMonthlyEarnings (
{
double totalEarnings = 0.0;

for (int i=0; i<earnings.length; i++)
totalEarnings += earnings[i];

double average = totalEarnings / earnings.length;

System.out.println ("Average Monthly Earnings = " + average);
}

public static void main(String argv([])
{
printEarnings () ;
printAverageMonthlyEarnings () ;
}

static final double earnings[] = { 20, 80, 640, 1200,
300, 900, 800, 680,
1200, 480, 2000, 1300
i

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

When you run the program, you should get an output similar to the screen shot on the following page.

The immediate thing to note from this example is that the array variable earnings has been declared as a class member and is
not local to any methods. This means that the three defined methods (main, printEarnings, and
printAverageMonthlyEarnings) have access to this variable. The remainder of the code is quite self-explanatory.

Figure 3-3:

The method main is entered where the method printEarnings is invoked, which simply prints all of the values in the array to
the console screen. Then the method printaverageMonthlyEarnings is invoked. This method first cycles through the array,
adding up all of the earnings per month to get the total earned for the year. Then the average monthly earnings are printed to the
console screen, which is the total earnings (9600) divided by the number of months (12), giving the answer (800).

Note Accessing an element that does not exist, such as array element number 12 in the previous example, would cause an
ArrayIndexOutOfBoundsException exception to be thrown. Exceptions are objects that are "thrown" by the Java
Virtual Machine when an "undesired" event occurs in your program. Exceptions are discussed in detail in Chapter 5, so
try not to throw any as best you can for now, and we'll try not to as well.

Passing Arrays as Parameters

Passing arrays as parameters can sometimes be a stumbling block and needs to be pointed out. As we have seen when we
assign one array reference to another using the = operator, we do not copy the element values themselves but just reference the
new object instead. Passing arrays as parameters works similarly. For example, set up a method to take an array parameter, as
follows.

public void gimmeSomeNumbers (int[] list)
{
// affects the original array
for (int i=0; i<list.length; i++)
list[i] = O;

// does not affect the original array
list = null;
}

Then we can declare an array, passing it to this method as follows.

int[] myArray = {3, 1, 4, 1, 5, 9, 2, 6};
gimmeSomeNumbers (myArray) ;

Now, the reason for the strange code in the gimme SomeNumbers method was to illustrate an important part of passing the object
to the array. In the first bit of code, we set all of the array elements to 0. As you have merely passed a reference to the method
gimmeSomeNumbers, the variable parameter 1ist will now access the same array object that myArray refers to. This basically
means that changes made to 1ist will affect the same object that myarray refers to. The second thing to note is that by setting
list tonull at the end of the method gimmeSomeNumbers, we do not affect the original variable myarray, which still
references the array object. We are merely stating that 1i st itself no longer refers to the array object, so myArray is safe.

These highlighted facts are true for any objects passed as parameters. It is always important to be aware of whether you are
altering your original values when using parameters. When passing primitive data values to a method, a new value is created in
the method; this was discussed at the end of the previous chapter.

Another thing you may stumble across when using arrays is when you have a group of numbers that you want to pass as an array
object to a method, but the numbers are not currently in an array. A neat way to implement this is by using the previous method,
gimmeSomeNumbers, as the example method to call.

int numA = 1;

int numB = 14;

int numC = 147;

gimmeSomeNumbers (new int[] {numA, numB, numC}) ;

That's just one of those freakish-looking anomalies that works, but it is probably most useful when you have just a single variable
value and you want to pass the value as an array argument with just the one element.

Multi-dimensional Arrays

It is often the case that you will require arrays of more than one dimension—not just a list of elements but a table of elements with
two dimensions, or as many dimensions as you require. The game board for the game tic-tac-toe is ideal for illustrating a two-
dimensional array, storing the data (which is 3x3 squares, nine in total, for the players to place their "O" or "X") and using a two-
dimensional array where both dimensions are three elements in length. This can be implemented as follows.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

char board[][] = new char[3][3];

You now have nine elements of type char (3 x 3 = 9), which can be accessed by defining the position of the array element with
two index values. The following table illustrates graphically the two-dimensional array for the tic-tac-toe game board and the
indices of the array elements ("indices" is simply the plural for index). This should give you a good insight into how arrays are

structured.

| Board Indices ” 0 ” 1 ” 2 I
lo || Element [0][0] || Element [1][0] || Element [2][0] |
| 1 ” Element [0][1] ” Element [1][1] ” Element [2][1] |
| 2 ” Element [0][2] “ Element [1][2] “ Element [2][2] |

You could then place an X character value in the middle square on the game board, setting the value of the element at indices (1,
1) for the respective dimensions, as follows.

board[1][1] = 'X';

So let's draw a game board for tic-tac-toe using this two-dimensional array and make some pretend moves for the game, showing
Os winning the game with a diagonal line of three. Here is the source code for PretendTicTacToe. java.

public class PretendTicTacToe
{
public static void drawBoard ()

{
System.out.println(); // new line
System.out.print (" "y ;

for (int i=0; i<BOARD_SIZE; i++)
System.out.print (" " + 1i);

System.out.println(); // new line

for (int j=0; Jj<BOARD SIZE; j++)
{
System.out.print(j + " |");

for (int i=0; i<BOARD_SIZE; i++)
System.out.print (board[i] [j] + "|");

System.out.println(); // new line
}
System.out.println(); // new line

}

public static void main(String args[])

{

board[0] [0] 'o'; // move 1
board[1][0] 'X'; // move 2
board([1][1] '0'; // move 3
board[2][2] = 'X'; // move 4
board([0][2] = 'O'; // move 5
board([0][1] = 'X'; // move 6
board[2][0] = 'O0'; // move 7
drawBoard () ;

System.out.println("O's have won the game");

}

static int BOARD_SIZE = 3;
static char[][] board = new char[BOARD_SIZE] [BOARD_SIZE];
}

Here is a screen shot of the output that you should expect when you compile this source code:

Figure 3-4:

At the beginning of main, seven char values are assigned to elements of the two-dimensional array board, representing moves
made in a game of tic-tac-toe at specified board positions. Then the method drawBoard is invoked. This method draws the data
stored in the array board to the console screen by using two for loops to cycle through the array, with one for loop nested
inside the other.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

for (int i=0; 1<3; i++)
for (int j=0; j<3; Jj++)
System.out.println(board([i][]j]):

This code is a basic example of how two for loops work together, cycling through all of the elements in the two-dimensional array
board

In Chapter 6, "Stream 1/0," we will learn about reading input from the keyboard, where we will make a complete working game of
tic-tac-toe.

Multi-dimensional Multi-length Arrays

There may come a time when you do not want to create a completely rectangular two-dimensional array, like the game board for
the tic-tac-toe game. For instance, you may want the second array to contain only two elements and the third array to contain only
one. Using a 3x3 array for this would therefore allocate memory for three more elements than you require.

It is possible in Java to declare a two-dimensional array by specifying only the length of the first dimension and omitting the length
of the second.

char[][] board = new char([3][];

We now have a two-dimensional array with three elements defined in the first dimension. Each of these three elements is a
reference to a single-dimensional array object, and each of these references does not currently reference a single-dimensional
array object. So we can therefore create new single-dimensional array objects of varying lengths and assign these references to
them, as follows:

board[0] = new char[3];

board[1] new char([2];

board[2] new char([1l];

The table we used earlier to illustrate the two-dimensional array for the tic-tac-toe game board would now look like this for the new

game board:

| Board Indices ” 0 “ 1 ” 2 I
I 0 ” Element [0][0] “ Element [1][0] ” Element [2][0] |
I 1 ” Element [0][1] “ Element [1][1] ” No element |
| 2 ” Element [0][2] “ No element ” No element |

So how do we get the length of these individual arrays by accessing the 1ength attribute? The length of the first dimension of the
array is accessed as usual using board. length. The length of the arrays of the second dimension can be accessed similarly.

for (int counter=0; counter<board.length; counter++)
System.out.println (board[counter].length);

The point to note is that board[0], board[1], and board[2] all reference array objects, just like board does. The difference is
that board is a reference to a two-dimensional array object whereas board[0], board[1], and board[2] are references to
one-dimensional array objects (you can see that board represents the table and board[01, board[1], and board[2]
represent the columns of the table).

A good example of where you may require arrays of varying lengths is if you wanted to create a variable for every day of the year.
Maybe each element, say of type int, could store the number of hours you have spent on your computer for a day in that year
(what's 365 multiplied by 24 again?). You could just create an array as follows.

int[] hoursOnComputer = new int[365];

The problem with this would be if you wanted to access the days of the year based on what month it was. You would need to
accumulate all of the days in the months up until the target month and then add to this figure the day of the target month,
eventually giving you the index value for the element representing the day that you require. Preferably, you would implement each
day as a two-dimensional array.

int[][] hoursOnComputer = new int[12][31];

Here we specify the maximum possible days in any of the months, which is 31. However, there are some months with less than 31
days in them, which means we allocate memory that is not required for the months with 30 days and February (which has 28 or 29
days, depending on whether it is a leap year).

The example ComputerHours. java creates a two-dimensional array, allocating the correct number of elements for each month
in the year specified. Here we can use the switch statement that we created in Chapter 2, which returns the number of days in a
given month and year.

public class ComputerHours
{
public static int getTotalDays (int month, int year)
{
switch (month)
{
case 0: case 2: case 4: case 6:
case 7: case 9: case 11: // 31 days
return 31;

case 3: case 5: case 8: case 10: // 30 days
return 30;

case 1: // 28 or 29 days

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

return 28;

else if(year % 400 == 0)
return 29;

else if(year % 100 == 0)
return 28;

else
return 29;

default:

System.out.println ("Error, Invalid month

index = " + month);

return -1;
}

public static void main(String args([])
{

int year = 2002;

int totalElements = 0;

int[][] hours = new int[12][];

System.out.println("The year is " + year);

for (int i=0; i<hours.length; i++)
hours[i] = new int[getTotalDays (i, year)];

for(int i=0; i<hours.length; i++)
{
System.out.println("Month "+i+" contains
"+hours[i].length+" days");
for(int j=0; j<hours[i].length; J++)
{

hours([i][J] = 24;
totalElements++;
}
}
System.out.println("Total elements allocated = " +

totalElements) ;
}
When you run this program, the output should be similar to the screen shot on the following page.

First, we declare and initialize a two-dimensional array, only specifying that it contains 12 elements that are empty references to
undefined array objects of one dimension.

int[][] hours = new int[12][];

Figure 3-5:

Then we can initialize these 12 array elements to reference one-dimensional array objects of a specified length on the fly. These
lengths are retrieved from the method getTotalDays (int month, int year). This method returns the number of days in the
month and year, defined as arguments to the method.
for (int i=0; i<hours.length; i++)

hours[i] = new int[getTotalDays (i, year)];

Finally, all of the array data elements are assigned the value of 24, and each time the variable totalElements is incremented
by 1.
for (int i=0; i<hours.length; i++)
{
System.out.println("Month "+i+" contains
"+hours[i].length+" days");
for (int j=0; j<hours[i].length; J++)
{
hours[1i][j] = 24;
totalElements++;

}

The total number of elements assigned a value is printed to the console screen. In this case it is 365 (as you will see when

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

compiling and running the program), which is the correct number of days for the year 2002. Try setting the year to a leap year, like
the year 2004. The total elements allocated should change to 366.

As we have seen, arrays are very useful for listing data of a finite length; that is, you know what the length is going to be when the
array object is created. Arrays are not always ideal for listing though. In Chapter 5 we will look at more dynamic means of data
storage with classes such as LinkedList and ArrayList.

oo i [o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam LiB | [raivisus]fiie +]
Strings

A string is simply a collection of characters. In other programming languages, a string is often implemented manually by the
programmer using an array of characters. It also often requires a great deal of time writing code to support an array of characters,
like allocating memory for them, searching for sub-strings, etc. Arrays of characters can still be programmed in Java.
char[] myCharArray = {'U', 's', 'e', ' ', 'a', "', '¢', '1',

Tar, s, 's');
However, the Java language includes a string class as the standard for storing string data. This String class is a member of
the java.lang package and is readily available for you to use in your Java code. We will look at packages in detail in Chapter 5,

so don't worry about them for now; all you need to know now is that you may start using the st ring class in your code right away,
like this:

String myString;
Here we have a reference to a st ring object that is currently equal to nul1, ready to be assigned to a st ring object. There are

two ways in which you can create a string object. The simplest way is to specify a character string enclosed in double quotation
marks; this is known as a string literal.

myString = "String literal";

// you may create a string with no text also
myString = "";

We have been using string literals so far in this book as parameters to the method system.out.print1n to print text to the
console screen. All string literals are implemented as instances of the string class.

The other method for creating a st ring object is the method used to create most other objects in Java: calling a constructor.
// constructor that takes a string literal argument

myString = new String("String literal");

// or create a string object with no text
myString = new String("");

// or the default constructor does the same
myString = new String();

There is also a constructor that takes an array of characters as a parameter, creating a st ring object with the value of the
characters stored in the array.

char[] myCharArray = {'c', 'h', a', 'r', 's'};

myString = new String(myCharArray);

1

The character string data held in a string object is constant; its value cannot be changed once it has been defined. String
objects are therefore known as being immutable. The stringBuffer class is used for defining character strings that are mutable
—the character string data in the object can be changed. We will discuss the stringBuffer class a little later in this chapter.

String Concatenation

In Java the + operator, as well as being used for numeric addition, is also used for string concatenation (i.e., joining two string
values to create one combined value). In fact, when using the + operator for string concatenation in Java, the append method of
the stringBuf fer class is actually used to create a new string object with the value of the operands combined.

String sentence = "Hello" + " World";
Here the two string values are joined together, creating a new st ring object containing the data "Hello wWorld".

You can also use the assignment operator (+=) for string concatenation. The following SimpleStrings.java example is a very
simple example to get you started using strings.

public class SimpleStrings
{

public static void main(String args([])

{
String sentence = "Hello ";
String word = "World";
sentence += word;
System.out.println (sentence);

}

When compiling and running this example, you should get output like the following screen shot.

Figure 3-6:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

When the string concatenation takes place, a new string object is created containing the text "Hello World" to which the
variable sentence references. The string object with the text "wor1d" is still referenced by the variable word, and the
String object with the text "He11o0" is no longer referenced by sentence and is lost.

Strings with Character Escape Sequences

In Chapter 2 we mentioned character escape sequences (please return to that chapter to view a table showing the list of character
escape sequences). These character escape sequences are used with strings to perform special printing tasks at the point in
which they appear in the text. Let's take for example the newline character escape sequence \n. This escape sequence moves
the print caret onto a new line; it is not two characters like \ and n but one.

System.out.println("Move to a new line");

System.out.print ("Also move to a new line\n");

The first line of code here uses the method print1n, which is a member of the object out that in turn is a static member of the
class system.

This method prints whatever value is passed to it to the console screen and moves the caret position to the beginning of the next
line. The method print in the second line of code only prints text to the console screen, leaving the caret position where it is after
the given text is printed without moving onto the next line. However, we include the newline \n character escape sequence onto
the end of the printed string. This will move the caret position to a new line similarly to the first line of code.

The character escape sequences are actually characters themselves, in case you have not yet realized. This means they all have
numeric values, just like the letter 2 has the numeric value 65 and \n has the value 10.

System.out.print ("New line here too" + (char)10);

Here we typecast the value 10 to a type char, which, when appended to the string literal "New line here too", createsa
new string object with the newline character escape sequence as the end character.

You can therefore set any character in the string as a character escape sequence.

String quote = "Well I've had a wonderful time,\n but
this wasn't it";

System.out.println (quote);

This code will print all of the text up until the character escape sequence \n, and at this point, the caret position is moved onto the
new line, where the remaining (hopefully untrue) text is printed.

There may be a time where you need to print out the text that makes up a character escape sequence; we may try the following
code.

System.out.println("You use \n to go to a new line");

This text will move the caret onto a new line after the text "vyou use " has been printed to the console and then only the text
after the \n is printed. What you need to do is include another preceding backslash character (\) with the escape sequence text as
follows.

System.out.println("You use \\n to go to a new line");

This code will print the text that we initially intended. It's quite ironic actually that we change the text by adding a backslash
character (\) in order to ensure that the text is printed as it was before we changed it (by doing this, we are actually escaping the \
character). Anyway, you may add the backslash character to any of the character escape sequences if you want to print the actual
text.

Printing special characters is also implemented using character escape sequences such as single and double quotation marks.
For example, the double quotation marks in Java are used to delimit the text for a string literal. What if we want to enclose a quote
in double quotation marks followed by the person who said the quote? We could not just type out the text as it is read. We would
need to add a backslash character (\) to any special characters in the text that we just wanted to be treated as normal characters.
String quote = "\"I find television very educating. Every time

somebody turns on the set, I go into the other room and read

a book.\", Groucho Marx";

You may want to set the value of a character variable to the single quotation character (') . To do this, you must precede the
character symbol with a backslash character (\) as follows.

A

L} \ L} ;

char normalCharacter
char singleQuotation

You should take a break from programming now and go in search of Groucho Marx's most famous quotes, which are very funny.
Arrays of Strings

So far we have looked at arrays of primitive data types, like int and boolean. Here we look at arrays of strings, which are
objects. The code is mostly the same; the problem is adapting your mind to understanding that st rings are different because
they are objects, and therefore the array elements reference other objects of type string; they are not actually the data itself,
like they are for primitive data types. We can declare an array of strings, as follows.

String[] names;

We can initialize the array similar to the way we learned in the "Arrays" section earlier.

names = new Stringl[5];

This code creates an array of length 5 and of type string. Each element in the array is a reference to a st ring object, each of
which currently is equal to nu11; hence, they do not currently reference a st ring object.

We can then create string objects and assign them to be referenced by elements in the array.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

names [0]
names[1]

"Glenn"; // string literal
new String("Andrew"); // constructor

Remember, there are two ways to create st ring objects, defining a st ring as a string literal or by using a constructor of the
String class. Here, the first two elements in the array reference objects, whereas the other three elements (with indices 2, 3, and
4, respectively) remain equal to nul1 (not referencing a string object).

As the elements in the array are just references, we could swap the references of the first two elements, as follows.

String saveString = names[0];
names[0] = names[1l];
names[l] = saveString;

Now the first element references the st ring object containing the text "andrew" and the second element references the
String containing the text "Glenn". No new string objects are created in these three lines of code; the references are simply
swapped.

We can also use the alternate method for initializing the string array.

names = {"Glenn", "Andrew", "Jim", "Wes", "Leeloo"};
// who is the fifth element?

Or more importantly, you can create a St ring object using constructors also.
names = {new String("Glenn"), new String("Andrew"),

new String("Jim"), new String("Wes"),

new String("Leeloo")

}i

This technique is more important to note because most other objects are created using their constructors like we have used
above, whereas string objects can also be created specially using string literals.

Program Arguments

In case you haven't realized it thus far, we have already been declaring an array of string objects, from the first example until
now, as a parameter to the method main.

public static void main(String[] args)
{
// code here

}

The parameter args is a parameter variable just like we used before when declaring our own methods with parameters, like in
Chapter 2. You can call this parameter whatever you like, as it is just an identifier like any other variable you declare, although the
type, an array of st ring objects, must remain the same.

public static void main(String[] programArguments)
{
// code here

}

A program argument is a text value (of which there may be many) that is passed to the program at run time. In Java, program
arguments are defined as string objects that are passed to the method main in the aforementioned string array. We must
first define program arguments and then write a program to take a look at the arguments. We can create what is known as an
echo program, echoing the program arguments to the console screen.

Defining program arguments is very simple. Append text separated by spaces onto the original command line that you have been
using to run your programs. Each section of text separated by a space represents one element in the string array argument of
main. We have already looked at the command line used to run Java programs in Chapter 2 and have been using them since,
perhaps in the batch file .bat that you created for convenience. Let's imagine that we have a program called Echo. java, which
has been compiled to create a class file called Echo.class. This command line assumes also that the program is situated in the
directory c: \java\Echoapp\ and that the java.exe program is situated in the directory c:\j2sdk1.4.1 01\bin\. The
following command line would be entered in order to run the program Echo.class.

c:\j2sdkl.4.1 0Ol\bin\java.exe c:\java\Echoapp\Echo
You can enter this text in the command prompt or in a batch file and then run the batch file. Ideally, if all of your paths were set,
this command would be entered as follows.

java Echo
For more details on this, please refer back to Chapter 2.

Now you need to add some text onto the end of the command, like so.

java Echo who what where when why

Note If you are using an integrated development environment (IDE) to execute your Java programs, there should be an
option somewhere to specify program arguments for your program. Try the Project menu item and then settings
or options. There should be a text dialog somewhere for you to enter the arguments. Otherwise, you will just have to
run the program manually using the command line.

Now we need to create an echo program to test that the program arguments are working. Here is the code for the example
Echo.java.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public class Echo
{
public static void main(String args[])
{
System.out.println("There are " + args.length +
" arguments:");

for(int i=0; i<args.length; i++)
System.out.println(args([i]);

}

When specifying the program arguments who, what, where, when, and why when running the program Echo. java, you should
get output similar to the following screen shot.

Figure 3-7:

The 1ength member of the array object is used to control which array elements are accessed. In other programming languages,
the number of program arguments needs to be specified as a separate variable using a second parameter of main; in Java it
does not, as the array object itself stores this information.

Toan LD [+ervvious Lt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team Li | [raivisus]fiie +]
A Tour of the String Class

The string class provides a variety of useful methods for manipulating st ring objects. Remember that the text of a sString
object cannot be changed, which means that many of its methods are read-oriented or return a new string object of the required
changes.

Comparing Two String Values

In order to compare the text values of one string object to another, you cannot just use the equality operator (==) because this
will test if two variables reference the same object. The method equals, a member of the string class, can be used to compare
two string values, where you may specify a st ring object as a parameter to test against, returning t rue if the text values of the
two strings are equal and false if they are not.

String a = "hello";
String b = "hello";
if (a.equals(b) == true)

System.out.println("The string values are equal");

Note You may actually specify any object as an argument to the method equals, not just string objects, as all objects
contain the method tostring, which returns a st ring object representation of that object. We will look at this in
Chapter 4 when we start creating our own classes/objects and can take a proper look at the method tostring().

Note As you can see in the previous example, we have added "== true" after the method call, but this is really not
essential; we could equally have the following i £ statement.
if (a.equals (b))

If we were checking if "a" was not equal to "b", we may have...
if (a.equals(b) == false)
In our shortened form, we can use the ! operator to create the following i f statement, which would also check if the
statement was false.
if(!la.equals (b))
This if statement would return the value true, as both of the text values of strings a and b are equal. However, the method

equals is case sensitive. If you want to ignore case sensitivity when testing if two strings are equal in value, you can use the
method equalsIgnoreCase

String a = "hELLo";
String b = "Hello";
if (a.equalsIgnoreCase (b) == true)

System.out.println("Ignoring case, they are equal");

The equals methods are used to test if two string values are equal or not equal, with the return type being boolean, true or
false. You may want to compare two string values lexicographically, testing if one string is greater than or less than the other.
This can be seen as similar to an alphabetical test, but instead of comparing letters in the alphabet, the letters to compare are the
Unicode values of the characters in each string, which is fine for alphabetical letters since their Unicode/ASCII values are
sequentially ordered anyway.

The method compareTo returns an int value after comparing two string values lexicographically. The method returns o if the
characters in the string object are equal to those in the argument parameter, a negative number if the characters in the string
object are less than the string argument parameter, and a positive number if the characters in the st ring object are greater than
the string argument parameter.

Similar to the method equals, the method compareTo is case sensitive. There is another method called
compareToIgnoreCase thatis not case sensitive. The following example, stringSorter. java, arranges a list of names into
alphabetical order using the method compareTo to compare the string values, implementing a well-known sorting algorithm called
bubble sort.

public class StringSorter
{
public static void main(String args[])
{
String list[] = {"Glenn", "Andrew", "Jim", "Wes", "Brendan"};
String saveString;

for(int i=0; i<list.length-1; i++)
{
for(int j=0; j<list.length-1-1i; J++)
{
if(list[j].compareTo(list[j+1]) > 0)
{
saveString = list[j];
list[j] = list[J+1];
list[j+1] = saveString;

}

System.out.println("In Alphabetical Order...");

for (int i=0; i<list.length; i++)
System.out.println(list[i]);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

}

When you compile and run this code, you should get output displaying the list of names in alphabetical order, similar to the
following screen shot.

Figure 3-8:

The bubble-sort algorithm is one of the simplest and therefore one of the slowest sorting algorithms. For future reference, the
quick-sort algorithm is a much faster sorting algorithm, yet more difficult to implement.

Retrieving String Data

The simplest data to retrieve from a string value is a single character at a specified location or index in the string. The following
code will run through the string st r, printing each character individually, one per line.

String str = "Super String";

for(int i=0; i<str.length(); i++)
System.out.print (str.charAt(i));

This code introduces us to two new methods. The first is the method 1ength, which simply returns the number of characters in
the string. The second method is charat, which takes an index parameter of type int and returns the char value of the
character in the string at the index position specified.

You can also retrieve a sub-string of a string using the method substring. The method has two forms, one taking the beginning
index as a parameter of type int and the other taking two parameters: the beginning and end indices, both of type int. Both
methods do not change the current string to which they belong, as string values cannot be changed, but they return a newly
created string object.

String str = "This is interesting";

String sub = str.substring(8);

// sub value is "interesting";

sub = str.substring(8,11);
// sub value is "int";

You may want to search an array for characters and sub-strings. The method index0f can be used to check if a sub-string exists
inside of a string value at a given index position. For example, you would say that the sub-string "1o0 wor" exists in the string
"Hello World" atindex position 3 in the source string. This is because the character 1 is at index 3 in the source string just as
the first character H is at index 0 in the source string. The code to check for this sub-string is as follows:

String str = "Hello World";

String sub = "lo Wor";

int returnValue = str.indexOf (sub);

if (returnvalue != -1)

System.out.println("sub-string found at index " + returnValue);
else

System.out.println ("sub-string not found");

The method indexOf returns an int value that is the index position in the string where the sub-string closest to the start of the
string is found. If no sub-string is found, the method returns the value -1. It is possible that you may want to find the index position
of further sub-strings inside a string. For example, the string "she sells sea shells on the sea shore" contains two
instances of the sub-string "she." Another method called index0f takes two parameters; the first is again the sub-string to test,
and the second is the index position to begin searching from. Therefore, we can test for many instances of a sub-string in a string,
as follows:

String str = "she sells sea shells on the sea shore";

String sub = "she";

int index = 0;

do
{
index = str.indexOf (sub, index);
if (index !=-1)
{
System.out.println ("sub-string found at index " + index);
index++;
}
} while(index !=-1);

In the do while loop, the value of the variable index is assigned the return value from the method index0f. This method is
passed the sub-string value she to search for and also the current value of index, which is the index position to start searching
from. Each time we find a sub-string, the value of index is incremented by 1. This is because we don't want to find the same sub-
string over and over again; we want to search from the position in the string after the last position where a sub-string was found.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The following example, LetterCounter. java, checks every letter in a string, calculates how many of each letter exists in the
string, and prints the amounts to the console screen.

public class LetterCounter
{
public static void main(String args[])
{
String str = "making games requires knowledge of boring
things too";
int index;
int totalChars;

System.out.println(str + "\n");

for(int i=(int)'a'; i<(int)'z'+1l; i++)
{
index = 0;
totalChars = 0;
do
{
index = str.indexOf ((char)i, index);
if (index !=-1)
{
totalChars++;
index++;
}
} while(index != -1);
if (totalChars != 0)
System.out.println(totalChars + " letter " +
(char)i + "'s found");

}

When running this code, you should get output similar to the following screen shot.

Figure 3-9:

Here we use another alternative to the method index0f, where the first parameter is a char value instead of a String sub-
string value. There is also a method called 1astIndex0f that will find the last instance of a sub-string or character inside a given
string. It has all of the parameter variations of the method index0f. The difference between the methods indexof and
lastIndexOf is that lastIndex0Of searches from the end of the string to the beginning, whereas index0f searches from
beginning to end. Instead of specifying a second parameter as the start index to begin searching from, specify the end index to
begin searching from. For example, finding the index of the last o in the string "He11o0 World," you would use the following code.

String str = "Hello World";
int lastIndex = str.lastIndexOf('o');

To find the index position of the second to last o in the string "He11o World," which is also the first, you would add the following
code:

int nextLastIndex = str.lastIndexOf('o', lastIndex - 1);

This search will find the next o character from the index position where the last o character was found, less one, searching from
the letter w to the beginning of the string.

Manipulating String Data

There are several useful methods that can be used to create new string objects that are modified versions of the original string in
some way. The methods toLowerCase and toUpperCase Will return newly created string objects containing text with
characters all in lowercase and uppercase, respectively.

String str = "Hello World";
String lowerCase = str.toLowerCase();
String upperCase = str.toUpperCase();

The method toLowerCase does not change the characters in the st ring object that st r references to all lowercase characters,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

but returns a new string object containing this value. If you wanted st r to reference a string object that was a version of itself
but with all its characters changed to lowercase, you could implement the code as follows.

String str = "Hello World";
str = str.toLowerCase();

The methods index0Of and lastIndexOf are case sensitive when searching for characters and sub-strings of a string. This is
where the methods toLowerCase and toUpperCase come in handy. If you want to ignore the case of characters, it is often
useful to create versions of the source string and test strings that are all of equal case, either all lowercase or all uppercase. You
can then perform the search without worrying about case sensitivity, as you have (maybe just temporarily) fixed all characters to
the same case anyway.

Another useful method is trim. This method will simply remove any spaces from the start and end of a string.

String str = " Hello World "
str = str.trim(); // str now equals "Hello World";

Again, this method does not change the st ring object it belongs to but returns a new st ring object with the changes.

The method valueOf is used to convert a data value into its st ring representation. This method is overloaded to accept all of
the data types, namely values of primitive data types. All of the primitive data types can be passed as parameters to the method
valueOf in its various overloaded forms.

int number = 1234567;

String str = String.valueOf (number) ;

This code creates a new st ring object with the value 1234567 converting the numeric value into a string value where the
numbers in the string are now represented as characters. Furthermore, the method valueof, which takes a parameter of type
int, is static and can therefore be accessed without a st ring object being created, using the name of the class to access it:
String.valueOf. Here are a few examples of the overloaded method value0f accepting different data types.

char character = '&';

String str = String.valueOf (character);

double Pi = 3.141592653589793;
str = String.valueOf (Pi);

boolean isCorrect = true;
str = String.valueOf (isCorrect); // str equals "true"

String empty = null;
str = String.valueOf (empty) ; // str equals "null"

There is also a valueOf method that takes an array of characters as a parameter and returns the string object representation
of the characters.

char[] characters = {'S', 'e', 't', ' ', ‘'t', 'o', ' ', 's', 't',
"r', 'i', 'n', 'g'};
String str = String.valueOf (characters);

Converting from strings to primitive data types (for example, converting a string representation of a number to an actual number
stored in, say, a variable of type int) is discussed in Chapter 5.

The method replace is another useful method that replaces all of a specified character with a new character, returning a new
String object with the desired changes.

String str = "thi% do&% maké& %$&n%& r&ally";
str = str.replace('$', 's');
str = str.replace('&', 'e');

// str equals "this does make sense really"

This code simply replaces all instances of the character ¢ with the character s and all instances of the character s with the
character e, with each call to the method replace returning a newly created string object.

[Toam Lo | [revvious e o)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam 1o | [eiviovs [o]

A Word on Regular Expressions

In order to gain a complete understanding of regular expressions, it would take many pages which we sadly cannot spare in this
book, as they are not overly essential to games programming. What we can do, however, is tell you what they are and give you
some simple examples from which you can investigate further if you so wish. If, when you read this small subsection, you are
completely baffled as to how they work or even what they are, worry not. It is quite likely you may never need to use them, but
they can be useful in certain circumstances.

A regular expression is a code that is used to match a pattern in a given string and is new to Java 1.4. Regular expressions are
made up of normal characters and metacharacters. Normal characters are like letters, numbers, underscores, etc., whereas
metacharacters are characters that have a special function and are used in conjunction with normal characters in order to define a
type of pattern to match to string data. In the string class, you can use the method matches to match a regular expression
passed as a parameter of type string to the characters in a string object, returning t rue if the match was found and false if
it was not.

One of the simplest metacharacters is the full-stop (.), which is treated as any character when attempting to match a pattern. So
let's say you had the regular expression "b. t ter" and wanted to test this against a string.

String strl = new String("better");
String str2 = new String("butter");
String regex = "b.tter";

strl.matches (regex) ; // returns true
str2.matches (regex) ; // returns true

In this case, matches on both string values will be found as the "." metacharacter simply matches the character at that index no
matter what (for example, the string "ozt ter" would match also).

You can use a regular expression to check if a string only contains alphabetical characters and spaces as follows:

String strl = new String("Only letters and spaces");
String str2 = new String("Other chars :@%#5365");
String regex = "[A-Za-z]{1,}";

strl.matches (regex) ; // returns true
str2.matches (regex) ; // returns false

The square brackets ([]) indicate that you want to match one of the characters specified between them. The A-za-z means that
the character can be any of the characters from a to z or a to z, hence ignoring the case. Notice that there is a space after the
lowercase z, which actually indicates that a space is included as one of the possible characters to match also. The {1, } code
indicates that you want to match one or more instances of any of the characters between the square brackets. Thus, this regular
expression finds matches of strings containing one or more characters, where any of the characters contained are either
alphabetical or space characters, meaning a match on str1 is found but a match on str2 is not found.

There are many more features to regular expressions, which can be useful for searching and manipulating textual data, which is
beyond the scope of this book. An example of its use could be to validate that an e-mail address is of a valid nature, perhaps for
an online gaming site account setup. For more on using regular expressions in Java, you should take a look at the method split
in the string class and also the classes Pattern and Matcher, which are members of the package java.util.regex.
Packages are discussed later in the book in Chapter 5.

We will now take a look at the stringBuffer class, which gives us the ability to store and change the string data itself without
having to create new string objects every time a different string value is needed.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Tean L [o]

Invocation Chaining

Invocation chaining means that you are not limited to merely accessing one class/object member in a given statement with the .
operator but may continue to access further members in a given statement. For example, let's say that we wanted to convert an
integer value to a string object representation and then retrieve the first digit from the string as a character. We might perform
this task as follows:

int i = 72;

String str = String.valueOf (i) ;
char firstChar = str.charAt(0);

)

System.out.println(firstChar // prints 7

This code is perfectly fine, but we could have also implemented this code in a neater fashion using invocation chaining as follows.
int 1 = 72;

char firstChar = String.valueOf (i) .charAt(0);

System.out.println(firstChar); // prints 7 also

It's quite easy to see how this works. The . operator has a left (left to right) precedence, as seen in the operator precedence table
in Chapter 2. With this in mind, we can see that the following statement is evaluated first of all:

String.valueOf (i)

This will return a new st ring object representation of the integer variable i passed to it. Then the method charat is invoked on
the new string object, returning the first character in the string to the variable £irstchar. You should look at the statement
String.valueOf (i) as areference to the string object itself, which it is, as this is what the method returns. You can then
access members of the st ring object like charat that we accessed.

If we said that we had a Person object inside a P1anet object that in turn was inside a Solarsystem object, and the
SolarSystem object was inside a Universe object, we may access the person object from a reference to the Universe object
as follows.

Person bob = myUniverse.mySolarSystem.myPlanet.myPerson;

[+erivious Pt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team Li | [raivisus]fiie +]
A Tour of the StringBuffer Class

Using the string class to represent string data is all very well. However, if you have a program that needs to run at a desired
speed, like a game, then preferably all of the memory required would be allocated before the main game loop begins, as
allocating new memory and deallocating old memory can use up processor time/power. This can affect the speed of your
programs. In many circumstances you cannot help but create new objects on the fly that are required for a dynamically running
program, but sometimes there are alternatives. Creating new instances of objects is something that you will come across when
programming in Java. The key is to know when to create a new object and when it is more efficient to keep the one you have and
simply change the data inside it, which is important for processor-intensive programs, such as games.

When using a string object, any changes to the data mean creating a new st ring object containing the required changes. The
StringBuffer is mutable (the data can be modified), which means that you can use the same object and simply change its
contents; you can also handle the amount of memory set aside for the data, as we shall see in due course. The stringBuffer
class is a member of the package java.lang similar to the string class and is therefore also readily available for you to use in
your code.

StringBuffer Constructors

There are three constructors for the stringBuffer class: StringBuffer (), StringBuffer (int length), and
StringBuffer (String str)

The first constructor, stringBuffer (), takes no parameters, creating a new stringBuf fer object with no string value and a
buffer capacity of 16 characters. The string buffer is preallocated memory for the character data of the string to be stored. The
buffer capacity is therefore the number of characters that memory is currently allocated to store.

StringBuffer myStrBuf = new StringBuffer();

The second constructor, StringBuffer (int length), creates a new stringBuffer object containing no characters and
allocates a buffer of the capacity equal to the value of the argument 1ength.

StringBuffer myStrBuf = new StringBuffer (50);
This code creates a new StringBuf fer object with a buffer capacity of 50.

The third constructor, StringBuffer (String str), creates a new stringBuf fer object containing the character values
equal to those in the String argument str.

StringBuffer myStrBuf = new StringBuffer ("Hello World");

System.out.println("Length = " + myStrBuf.length()):;
// length equals 11

System.out.println("Capacity = " + myStrBuf.capacity()):
// capacity equals 11 + 16 = 27

This code first creates a new StringBuffer containing the character sequence "Hello World." Here the capacity of the string
buffer is initialized to the length of the string argument str, plus 16.

The second line of code simply prints the length of the string data currently contained in the newly created stringBuffer object
to the console screen. For this, the method 1ength, a member of the stringBuf fer object, is invoked with the value returned,
as we saw for String objects that contain a similar method.

The last line of code prints out the current capacity of the string buffer by invoking the method capacity; we will look at the
length and capacity of StringBuf fer objects a little later in this section.

A Brief Look at the Method toString

The method tostring returns a string object representing the data contained in the object to which it belongs. The method
toString is a member of all classes in Java, as all classes are derived from the class object from which the method
toString belongs. Even the string class contains the method tostring, which simply returns itself. Do not worry about this
fact for now, as it will be fully explained in Chapter 4. For the time being, all you need to know is that the method tostringisa
member of the stringBuffer class, which returns a newly created st ring object containing the text equal to that which is
contained in the stringBuf fer object.

StringBuffer myStrBuf = new StringBuffer ("Hello World");

String myStr = myStrBuf.toString();

By creating a st ring object representation of a StringBuffer object, you can manipulate the data as a string object using
String object methods.
String anotherString = "Hello World";
if (myStr.equals (anotherString))
System.out.println("string values are equal");

This code illustrates a solution if you have a stringBuf fer object and you want to test if its string data is equal to that of a
String object. A method that is new to Java 1.4 is the method contentEquals, a member of the st ring class, which returns
true if the characters in the st ring object are equal to those contained in the stringBuf fer argument. So the previous code
could also be implemented as follows:
StringBuffer myStrBuf = new StringBuffer ("Hello World");
String anotherString = "Hello World";
if (anotherString.contentEquals (myStrBuf)

System.out.println("string values are equal");

If you are looking to perform certain string operations on a st ringBuf fer object and cannot find the method to perform this task

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

in the stringBuffer class, chances are you will need to create a string object representation of the data and use a suitable
method found in the st ring class instead.

Manipulating StringBuffer Data

We will now look at altering the character values of a stringBuf fer object. The simplest method for this is the method
setCharAt. This method takes two parameters. The first is the index position of the character to be replaced and the second is
the new replacement character.

StringBuffer myStrBuf = new StringBuffer ("Beware of the beast");

myStrBuf.setCharAt (15, '1"');

// myStrBuf now equals "Beware of the blast"

The stringBuffer class contains the method charat similar to the st ring class for retrieving the character at a given index
position that is passed as a parameter to the method.

The method append is used to add a value onto the end of the current value contained in the st ringBuffer object and is
overloaded to accept all of the different data types.

StringBuffer myStrBuf = new StringBuffer ("I hate");

myStrBuf.append (" broccoli");

myStrBuf.append (" a lot");

The value of the text contained in the st ringBuf fer object referenced by mystrBuf will now equal "I hate broccoli a
lot." Variables of any data type can be added too.

int value = 22;

StringBuffer myStrBuf = new StringBuffer ("Value = ");

myStrBuf.append(value) ;

The method insert will insert, at a specified position in the string buffer, a string representation of a specified value. Again, this
method is overloaded to accept all of the different data types.

StringBuffer myStrBuf = new StringBuffer ("I ate broccoli");
myStrBuf.insert (2, 'h');

This code inserts the character h into the string buffer at index position 2, giving the st ringBuf fer object the string value "1
hate broccoli." The insertion does not replace characters but simply moves the remaining characters along. The methods
append and insert both increase the capacity of the string buffer by the length, in characters, of the argument.

In order to replace characters, you can use the method replace, which takes three parameters: the start index of the region that
is to be replaced, the end index of the region that is to be replaced (both of type int), and the replacement string of type String.

StringBuffer myStrBuf = new StringBuffer ("I adore broccoli");
myStrBuf.replace (2, 7, "hate");

This code will replace the word "adore" with the word "hate." The words are of different lengths to illustrate that you may replace
larger sections of text with smaller sections and vice versa.

If you just want to remove a section of characters from the string buffer, the methods delete and deleteCharat can be used.
The delete method simply takes two parameters: a start index and end index for the section of the string buffer that you wish to
be removed.

StringBuffer myStrBuf = new StringBuffer ("I do not hate broccoli");
myStrBuf.delete(2,9);

This code removes the characters "do not " (removing a space on the end also) from the string buffer, leaving the string value
"I hate broccoli"once again. The method deleteCharAt takes one parameter, which is simply the index position in the
string buffer of the character that you wish to remove.

The Broccoli.java example continues to remove the first character from a stringBuf fer object initially containing the text "1
hate broccoli", each time printing the remaining characters in the string buffer to the console screen. Here is the code:

public class Broccoli
{
public static void main(String args[])
{
StringBuffer myStrBuf = new StringBuffer ("I hate broccoli");
while (myStrBuf.length() > 0)

{
System.out.println (myStrBuf) ;
myStrBuf.deleteCharAt (0) ;

}

When you compile and run this code, you should get output similar to the following screen shot.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 3-10:

As you can see, each time the code block for the while loop is executed, the first character in the string buffer is removed. When
printed each time on a new line, the original text "I hate broccoli" eventually reads down, as well as across.

Length and Capacity of the StringBuffer

Just to differentiate, the length of a stringBuf fer object refers to the number of characters, whereas the capacity refers to the
size of the string buffer (the allocated memory slots where characters can be placed) in the StringBuf fer object. The method
setLength can be used to set the length of the character string in the st ringBuf fer object, taking a parameter of type int as
the new length.

StringBuffer myStrBuf = new StringBuffer ("Hello World");

myStrBuf.setLength(5) ; // now equal to "Hello"

If the new length is less than the current length, the value is truncated to the specified size. If the length is increased, then for
every new character, a null character (in Unicode, \u0000) is appended to the string.

The method ensurecCapacity will set the capacity of the string buffer to a minimum capacity to which it will not fall under, taking
a parameter of type int as the minimum capacity. This means that you can set up your stringBuf fer object so that it will not
need to allocate any more memory if you know the maximum amount of memory that you will require. Suppose you know that
your string data will never exceed 100 characters; you can simply ensure that the capacity of the string buffer is always a minimum
of 100 from the beginning.

Note When calling ensureCapacity, the capacity is actually set to the greater of either the argument value or the current

capacity of the string buffer multiplied by 2, plus 2.
[« Fasviour]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

A Tour of the StringTokenizer Class

The stringTokenizer class is used to store and handle groups of strings, known as tokens, that are combined into one long
string. An example of its advantage is when reading in data from a file. Let's say you store a high-score list in a file for a game that
you have made; each line in the file consists of three data strings used to store information about the username, e-mail address,
and high score, respectively, with any two of these strings being separated by a comma character. For example:

String linel =

new String("Glenn,glenn@chopsewage.com,12000") ;
String line2 =

new String("Andrew,andrew@dreamcircle.co.uk,9000");

The individual data strings, such as the username, can then be treated as tokens of the full string, and the comma can be treated
as the delimiter of the tokens. The delimiter is simply a character used to separate tokens. The stringTokenizer class belongs
to the package java.util (which we will look at in detail in Chapter 5). For the time being, we will use the class by specifying its
complete path name, including the package to which it belongs. (Again, we will learn about packages in Chapter 5, so do not

worry about them for now.)

In the following example, SimpleTokens. java, we cycle through an array of strings. Each string is imagined to be a line of text
read in from a file containing a username, e-mail address, and high score gained, with each value separated by a comma
character. (We are not actually reading in from a file in this example but just creating an array of strings that may have been data
read in from a file. We will look at reading in files for real in Chapter 6.) For each line of text, a new stringTokenizer object is
created to handle extracting the individual string tokens and printing their values to the console screen. Here is the code:

public class SimpleTokens
{ public static void main(String args([])
{ String[] data =
{ "Glenn,glenn@chopsewage.com, 12000",
"Andrew, andrew@dreamcircle.co.uk, 9000"

}i

String[] tokenType = {"username", "email", "high score"};

for(int i=0; i<data.length; i++)
{
int tokenIndex = 0;
System.out.println("New line of data...");
java.util.StringTokenizer tokenizer = new
java.util.StringTokenizer (datali]l,",");
while (tokenizer.hasMoreTokens ())

{

String token = tokenizer.nextToken();

System.out.println ("\t"+tokenType[tokenIndex]+"
"+token) ;

tokenIndex++;

}

When you compile and run this example code, you should get output similar to the following screen shot.

Figure 3-11:

In this example code, we use the most common constructor of the stringTokenizer class that takes two arguments.

java.util.StringTokenizer tokenizer =
new java.util.StringTokenizer (datali],",");

The first argument is the string object containing the data that we wish to "tokenize." The second is a string representing the
delimiter of the tokens. The delimiter does not need to be one character but may be a number of characters in the string where
each character acts as a delimiter. You should note if the delimiter consists of multiple characters; then the string value itself is not
a delimiter, but its characters are all individual delimiters. Once the stringTokenizer object is created, we then extract the
tokens using the methods hasMoreTokens and nextToken. StringTokenizer contains an index position, which moves along
the string each time a token is found. The method hasMoreTokens returns t rue if there is at least one more token available
from the index position onward. From here, we use the method nextToken to get this next available token from the index

position, which nextToken returns as a St ring object, moving the index position forward in the process.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

To find out how many more tokens are left to get in the StringTokenizer as a numeric value, you can use the method
countTokens if necessary, which returns the number of tokens left from the index position to the end.

Toan LD [+ervvious Lt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toan Lo [+ervvious Lt]

Summary

Thank goodness that's all over. I'm sure it wasn't that bad after all. Anyway, in this chapter you have cemented your learning of the
basics of Java programming. From here on, it is not so basic, which does not mean that it is overly difficult, but some bits can get

a bit tricky. In the next chapter we will start creating multiple classes and objects of our very own and try to learn what the heck
polymorphism is all about.

[+ervvious Lt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

T L&) [PRwvisuE]
Chapter 4: Multiple Classes

"There are too many people and too few human beings."
—Robert Zend

Introduction

In order to truly understand object-oriented programming, we must define our own classes and derive objects from them. In the
previous chapter you created objects from a variety of string-related classes, accessing their methods and attributes. In this
chapter you will learn the fundamentals of making your own classes, using inheritance and interfaces, and you will learn about the
structure of classes in the Java language.

Note If you are not sure about classes in general, you may want to refresh your memory by returning to the beginning of
Chapter 2 where we discussed some important aspects of classes in relation to their members and constructors and
objects in general.

[+erevons Lt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lis | [raivisus]fiie +]
Creating Main Class Objects

The only part of your code in an application that is required to be static is the method main, as this is invoked from the start. The
method main is defined in the main class of your project. So far in this book, all of the examples have simply consisted of one
solitary main class defining static members. For those of you who are not used to object-oriented programming, this may seem
quite normal. Just start in main, declare global methods and variables in the main file, and then go from there, but this is merely
escaping the point of OOP in general—using objects.

So let's say we want to make a class to represent a creature, like a human or alien or some other intelligent life form ("intelligent"
used loosely). We could make an 21ien class containing a string value for greeting us in its native language. The following class
is an example of how we would implement this class, as we have been doing so far in this book.

public class Alien

{

public static void main(String args([])

{
greeting = "Dak-Dak-DaDakDakDak";

System.out.println("Alien says: "+greeting);

}

static String greeting;

}
Just enter this basic code for now into a source file Alien.java, and we will adapt it accordingly throughout this section.

The class Alien contains the sString member greeting, which is static. The problem is that our A1ien class basically
represents one alien because greeting is static. We can still create objects of the A1ien class at the moment, however, similar
to when we created objects of the st ring class in the previous chapter. For example, we could add the following code
somewhere in main.

Alien martian = new Alien();

This code declares a reference to an Alien object called martian and then assigns it to reference a newly created Alien
object. The constructor invoked is a default constructor for the object, as the object does not define one of its own (this was
discussed in detail in the constructor section at the beginning of Chapter 2).

However, we want to make many instances of the A1ien class, each having its own copy of the variable greeting. So we need
to make the variable greeting non-static. This simply entails removing the keyword static from the declaration of greeting.
We can also create our own constructor for the A1ien class that takes a St ring argument value to assign to greeting.

So in the example Alien.java, we can adapt the Alien class so that it is suitable for creating individual A11ien objects, as
follows.

public class Alien
{
// constructor
public Alien(String greeting)
{
this.greeting = greeting;

}

public static void main(String args([])
{

// create two new aliens

Alien martian = new Alien ("Dak-Dak-DaDakDakDak") ;
System.out.println("First alien says: " + martian.greeting);
Alien plutonian = new Alien("Hi, erm... I'm from Pluto");
System.out.println("Second alien says: " +

plutonian.greeting);

}

String greeting;
}

When you run this code, you should get output similar to the following screen shot.

Figure 4-1:

Here we create two new A1ien objects from the entry point of the program in the method main. You should treat main as almost
a separate method from the main class; it may seem strange that main is inside the main class and not separate, but in Java all
code must be contained within the code block of a class or interface, even main (we shall see about interfaces toward the end of
this chapter). The code for this example is quite straightforward apart from one new keyword, this, which we have used in the
constructor.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[team Lo | [cervviou st]
The Keyword this

The keyword this is used inside non-static/object methods as a reference to the object to which the method belongs from within
the object itself—a reference to itself. For example, take a look at the constructor for the Alien class that we have just declared
where we used the keyword this.
public Alien(String greeting)
{

this.greeting = greeting;

}

We have given the st ring parameter of the constructor the same name as one of the members of the class, calling both
variables greeting. This is possible in Java and means that any use of the identifier will be in reference to the local variable
greeting that is a parameter of the constructor. In this case, we need some way to access the greeting member of the class and
not the parameter value, so we can use the keyword this, which will act as a reference to the current object to which the
constructor belongs. The keyword this can be used in non-static methods in the same way as in the constructor of the Alien
class.

Note Just in case this has misled you slightly, the name of the parameter variable did not need to be called greeting. Itis
called greeting to illustrate a situation where you would need to use the keyword this, but it can be any name you
like. Some people prefer to give parameters the same name as members of the class and then use the keyword this
as appropriate, whereas others will give the parameter a different name altogether, maybe by using a naming
convention, such as starting all parameter names with an underscore (_). The latter is obviously the least error-prone.
public Alien(String greeting)

{
greeting = greeting;

}
Because there is no local variable called greeting, the keyword this is not required, though it can still be used
anyway.

The keyword can be used in many areas. Another notable area is passing a reference for the current object you are in as a

parameter to a method. For example, you may have a static method somewhere for printing to the console window the greeting of
an Alien object, as follows.

public static void printGreeting(Alien alien)

{
System.out.println(alien.greeting);
}

From inside an object method (an object method being a non-static method) of the a1 ien class, we could call this method as
follows.

printGreeting(this);

Basically, we are in a method that belongs to the A1ien object, and we need to send a reference to the method printGreeting
of the object that we are currently in, which of course is of type A1ien, so we use the keyword this, passing it as a parameter as

shown.
[+ rrvvons o)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team L8 [« errvions |wai o]
Using Multiple Classes

In this section we will start off explaining nested classes before moving on to creating separate classes altogether. In our opinion,
you should sit back and glance over the "Nested Classes" section and not get too involved with the code. Of much more interest
and importance is creating individual classes and objects, which will come later in this chapter.

Nested Classes

A nested class is simply a class that is defined inside of another class, meaning that a nested class is a class that is a member of
another class. A class that contains a nested class is known as the enclosing class of the nested class. Nested classes are used
when their existence is dependent on another class to which there is a solid parent-child relationship. The use of nested classes
can be split into two important areas: inner classes (non-static) and static nested classes.

Inner Classes

An inner class is a nested class that only exists within an instance of the enclosing class, which means by definition an inner class
is a non-static nested class. To explain this effectively, we shall look at a case example. Let's say we wanted to make a program
in which you created objects of type Human as well as objects of type A1ien that were members of an instance of an enclosing
class called creatures. The idea is that an instance of the Creatures class is created, and in turn it will create instances of
each of its nested classes. The following example, Creatures. java, is how we may implement this:

public class Creatures
{
public Creatures ()
{
myAlien = new Alien ("Dak-Dak-DaDakDakDak") ;
myHuman = new Human ("Hello, Bonjour, Hola");

}

public class Alien

{
public Alien(String greeting)
{
this.greeting = greeting;

}

String greeting;
}

public class Human
{
public Human (String greeting)
{
this.greeting = greeting;

}

String greeting;

public static void main(String[] args)
{

Creatures myCreatures = new Creatures();

System.out.println("Alien says: " +
myCreatures.myAlien.greeting);

System.out.println ("Human says: " +
myCreatures.myHuman.greeting) ;

}
Alien myAlien;
Human myHuman;

}

When you compile and run this code, you should get output similar to the following screen shot.

Figure 4-2:

In this example, we have created two inner classes: Alien and Human. These inner classes are non-static members of the
Creatures class, which means that instances of these inner classes can only be created in association with an instance of
Creatures. We create instances of the inner classes Alien and Human in the constructor of Creatures.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public Creatures(

{
myAlien = new Alien ("Dak-Dak-DaDakDakDak") ;
myHuman = new Human ("Hello, Bonjour, Hola");

}

This is perfectly valid because we are inside the object (an instance of the creatures class) in its constructor and are therefore
able to access non-static instance members of Creatures, like myAlien and myHuman. The inner classes have complete
access to other non-static members of the enclosing class creatures. For example, in the inner class Human, you could make a
method to check if the variable mya1ien references an instance of the inner class Alien, as follows:

public class Human

{
public Human (String greeting)
{
this.greeting = greeting;

}

public boolean hasFriend ()
{
if (myAlien==null)
return false;
else
return true;

}

String greeting;
}

Then in main, the following code could be added to check if myalien references an object.

if (myCreatures.myHuman.hasFriend())
System.out.println("We have visitors, set your weapons to stun");
else
System.out.println("Of course, earth is the center of the
universe");

Note we could also just use the following i f statement in main to achieve the same result.

if (myCreatures.myAlien==null)

If we wanted to create an instance of, say, the Alien class from outside an instance of Creatures (for example, in the main
method), it would need to be created in association with an instance of Creatures. We could do this, as follows, in main:

public static void main(String[] args)
{
Creatures myCreatures = new Creatures|();
Creatures.Alien martian =
myCreatures.new Alien ("DakDakDak") ;

}

The code myCreatures.new Alien isthe same as using the code new Alien from inside an instance of Creatures like
myCreatures, so we need to do this when we are in the static method main. However, the new A1ien object referenced by
martian still maintains a reference to its enclosing class (i.e., the object referenced by myCreatures, as it can still access non-
static members of its enclosing class). This means that if we later set myCreatures to null, hence losing this reference to that
object, the inner class instance referenced by martian will still maintain a reference to it, meaning the garbage collector cannot
yet destroy this data, and the data still exists in memory for the inner class to access. Garbage collection is discussed in Chapter
12.

If we want to create instances of the A1ien and Human classes from outside an instance of Creatures irrespective of the
existence of a Creatures object, declare the nested classes to be static.

Static Nested Classes

Nested classes are generally made static when they have a strong relationship with the enclosing class, but their existence is
independent of an instance of the enclosing class. Note that this means static nested classes cannot access non-static members
of their enclosing class. Note that a static nested class does not mean that the members of the class are all static.

We might say that, for example, the A1ien and Human classes are strongly related to the creatures class, but it should also be
possible to treat them independently from the Creatures class. This would mean that, from outside the Creatures class when

using the Alien and Human classes, the word Creatures would act almost as a namespace for the Alien and Human classes.

A namespace is simply a keyword that is used for grouping data, although in Java the best technique for grouping classes is using
packages, which we will discuss in the next chapter.

The following code is an adapted version of the previous example, Creatures. java, where we define the nested classes
Alien and Human as static. This means that we are able to create instances of these classes irrespective of an existing
instance of the Creatures class.

public class Creatures

{

public static class Alien

{
public Alien(String greeting)
{
this.greeting = greeting;

}

String greeting;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public static class Human
{
public Human (String greeting)
{
this.greeting = greeting;

}

String greeting;

public static void main(String[] args)
{
Alien myAlien = new Alien ("Dak-Dak-DaDakDakDak") ;

Human myHuman = new Human ("Hello, Bonjour, Hola");
System.out.println("Alien says: " + myAlien.greeting);
System.out.println ("Human says: " + myHuman.greeting);

}
This code will create the same output as the previous example seen in Figure 4-2.

Here we create a new instance of each of the nested classes, A1ien and Human, which are now static and accessible without
creating an instance of creatures. However, it is important to note that we are creating instances of these nested classes from
main, which is still a member of Creatures, static or not. If the creatures class were a separate class from the main class of
which main is @ member, we would access the nested classes as members of the Creatures class, as follows.

// when inside the Creatures class
Alien myAlien = new Alien ("Dak-Dak-DaDakDakDak") ;

// when outside the creatures class
Creatures.Alien myAlien =
new Creatures.Alien ("Dak-Dak-DaDakDakDak") ;

The use of nested classes is a design issue for the structure and reusability of your code, which is not that important if you are just
making a simple game but is important if you are building up a games library of related classes.

You should also be aware that a nested class could itself contain a nested class.

class TopLevelClass
{
class NestedClass
{
class NestedNestedClass
{
}

}

A class that contains a nested class but itself is not nested inside another class is known as the top-level class. We're getting a
littte complex now and should move on, as you will no doubt want to make classes that are independent of the main class.

Multiple Classes

When programming in Java, all completely independent classes should be entered into separate source files similar to how we
have been entering the main class's source code so far in this book—into files of the same name as the class itself witha". java"
file extension. If you are a procedural programmer, this may seem quite strange, but give it time, you will soon see how neat and
tidy it makes your code. Gone are the days of bunging up one main file with relatively unrelated methods that would be better
placed in libraries for further use.

Using separate files for classes makes your project easier to design, as with object-oriented programming in general. Splitting a
project up into smaller modules and then dealing with these modules is more efficient, especially for larger projects, and it is also
easier for handling the code in a programming team.

So let's take the Alien class and put it into its own source file. We will remove the Human class completely for the time being to
keep it as simple as possible, although we will bring it back when we look at inheritance later. In the upcoming example we will
also change the name of our main class to Mainapp and include another class named Universe as a more appropriate
container for storing references to instances of Alien than creatures in order to save confusion later when we look at
inheritance and polymorphism with a Creature class. You should add all of the source files into the same directory as the main
class.

The following example contains three classes—MainApp, Universe, and Alien—to be entered into the source files
MainApp.java, Universe.java,and Alien.java, respectively. Simply copy these, compile, and run the main application,
just like you have been doing. You need to compile the main file MainApp.java and then the compiler will compile the rest of the
files that are used in the project automatically and produce a . class file for each of your classes used from there. You can then
run the main class as you have been doing so far with the single class projects so far in the book. The other . class files used
should also be loaded. Here is the code.

Code Listing 4-1: Alien. java

public class Alien

{
public Alien(String greeting)
{

setGreeting (greeting);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

}

public void setGreeting (String greeting)
{
this.greeting = greeting;

}

public String getGreeting()
{

return greeting;

}

public String toString/()
{

return greeting;

}

private String greeting;

The alien class represents an 21ien object and is used to store a string value for a greeting from an A1ien object. Here we are
introduced to two important aspects of OOP in Java: the keyword private and the tostring method. We will discuss these
new features after the rest of the code listings for this example.

Code Listing 4-2: Universe. java

public class Universe
{
public Universe(int alienTotal)
{
alienList = new Alien[alienTotal];

}

public boolean setAlien(int index, Alien alien)
{
if (index>=0 && index < alienList.length)
{
alienList[index] = alien;
return true;
}
else return false;

}

public Alien getAlien(int index)
{
if(index >=0 && index < alienList.length)
return alienList[index];
else return null;

public String toString()
{

String str = "Total aliens: " + alienList.length + "\n";
for(int i=0; i< alienList.length; i++)
str += "Alien " + 1 + ": " + alienList[i] + "\n";

return str;

}

private Alien[] alienList;

An instance of the Universe class is used to store an array of a specified number of a1ien objects. This number is passed as
an argument to the constructor where a new array of type Alien is created of the specified length. Again, this class includes the
keyword private and also the tostring method, which will be discussed in a moment.

Code Listing 4-3: MainApp. java

public class MainApp
{
public static void main(String[] args)
{
Universe universe = new Universe (4);
universe.setAlien (0, new Alien ("Dak-Dak-DaDakDakDak")) ;
universe.setAlien(l, new Alien("Hi I'm from Pluto"));
universe.setAlien (2, new Alien("But I'm from Pluto, I've
never seen you there"));
universe.setAlien (3, new Alien("Well I'm from Jupiter, I'll
eat you all :)"));

System.out.println (universe);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

When you compile MainApp.java and then run MainApp.class, you should get output similar to the following screen shot.

Figure 4-3:

The main class MainApp first creates an instance of Universe, referenced by universe, passing the value 4 to the Universe
constructor, which will in turn create an array of type A1ien and length 4 inside the universe object, as you can see in the
Universe class. We then create four new A1ien objects, setting each of them to a specific array element index using the
method setAlien of the universe object, which takes the index and 21ien object reference as its parameters. This is an
example of using the A1ien class completely separated from the Universe class; we could simply make Alien objects in
MainApp that have nothing to do with the Universe class whatsoever if we desired. We could have a solarsystem class
instead of a Universe class and create more than one solarSystem object, to which A1lien objects could be moved from one
to another, make some Planet objects inside each solarSystem object, and so on.

Anyway, the last bit of code in MainApp may seem quite strange, where we pass the reference universe to
System.out.println, and then all of the relative information about the data in our program is printed to the screen. This will be
explained in due time after we first look at the importance of the keyword private.

Controlling Data Access (Public, Protected, Private)

In the previous example, we used the keyword private for the very first time, both in the Uuniverse class for the array variable
alienList andinthe alien class for the variable greeting. The keyword private in this instance was used to restrict
access from outside the respective classes. This allows you to add security to members of your classes, with any access to the
data being handled using public methods in the class, which you make yourself. We have been using the keyword public
throughout the book so far, which specifies that access be allowed from any other classes. On the other end of the scale, the
keyword private restricts access from any other classes to that specific data, even from subclasses (subclasses are explained
later in the "Inheritance" section). The keyword protected is somewhere between public and private access attributes.

There are actually four access attributes in Java: public, private, protected, and the default access attribute that is used
when no access attribute keyword is specified. The default access attribute is very similar to being pub1ic but not identical, as we
shall see below.

The following diagram shows the members of class a in package a that are accessible from a variety of other classes in various
situations in respect to class 2, based on the access attribute of a member of class A. You may not yet be familiar with some of
these circumstances, such as packages and subclasses, but do not worry about this for now, as these will become familiar later in
this chapter and in the next chapter. This diagram can act as a reference in the future when choosing your access attributes.

Figure 4-4:

This diagram shows that the pub1ic access attribute means that public data is accessible from any class, anywhere. The
protected access attribute means that access is allowed from any class inside the same package as class A and any
subclasses of class A anywhere. The private access attribute means that access is restricted from anywhere outside of class a.
"No attribute" simply means that an access attribute is not specified, which means that access is only allowed from classes in the
same package as class 2. Note that this diagram shows access levels from various classes in respect to class 2 members. For
example, class A might contain the method dosomething, which has the access attribute protected, as follows:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public class A

{
protected void doSomething ()
{
}

}

This simply means that only classes in the same package as class A can access the method doSomething; any attempts from
classes outside of package A where class a is in your code will cause a compiler error.

Why Use Access Attributes?

Access attributes are important for controlling access to data, which is important in many respects, not only for the security of your
code but for preserving the efficiency too. An example of where you may want to prevent access to members of your classes is so
that someone else using your class cannot manipulate the internal variables that make your class what it is. If you make these
variables inaccessible, they can only influence changes in those variables via accessible methods that are safe because you have
created them yourself, which means you can control what is done with your classes. This is not only suitable for other people
using your classes but for you too. If you use methods to manipulate variables of a class, this is already efficient because it is easy
to see where access is coming from, meaning it is easy to update code and chase bugs. It is perfectly fine to ignore the access
attributes when you are knuckling down hacking away at your code, but it can vastly neaten your code and make it efficient and
friendly.

The Static Block

Imagine the scenario: You declare a static variable member of a class, which needs to be assigned its value straight away when
the class is loaded, but the code to create this assignment value cannot be made in an assignment statement alone. For example,
the assignment value may require repetitive calculations, or it just might be neater on multiple lines. In this case, you can use a
static block, which can be added to your code as follows:

public class MyClass
{

public static int[] squares = new int[10];
static
{
// values assigned
for (int i=0; i<squares.length; i++)
squares([i] = 1i*i;

Note The reason we have declared the static block after the variable declaration of squares is because they are dealt with
on a line-by-line basis when the class is first loaded to the Java Virtual Machine. If they were the other way around, the
static block would not recognize the variable squares yet.

Here we have a static array of type int and length 10. The array is initialized when the class is loaded. In order to actually define
specified values for the elements of this array, we could have used the initialization block using curly brackets as follows:

public static int[] squares = {0, 1, 4, 9, 16, 25};

As you can see, entering many values is unsuitable when a simple algorithm could equally enter the code. This is why we can use
a static block to perform this code. We could also have initialized the array in the static block and not at the declaration point.

public class MyClass
{

public static int[] squares;

static

{
// initialized
squares = new int[10];

// values assigned
for (int i=0; i<squares.length; i++)
squares[i] = 1i*i;

Note Remember when we discussed the use of final variables in Chapter 2, where we mentioned declaring final
variables without a value and then assigning the value in one of the class constructors later on? Well, similarly, a
static final value does not need to be assigned immediately at the declaration point but can also be assigned in a

static block.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Inheritance

Inheritance is a very important part of object-oriented programming. It is often a worry for many programmers new to the subject.
But fear not, as it is easy to understand in Java. Inheritance is the ability to derive a new class from an existing class. In this case,
the existing class is known as the base class, or super class, and the new class is known as the subclass, or derived class of the
base class. The subclass then inherits variables and methods from its base class that it can use as if they had been defined in the
subclass. However, constructors of the base class are not inherited by its subclasses and neither are certain access attributes,
depending on the circumstances. We will look at what is inherited and what isn't later in this section; for now we should
understand the fundamentals of inheritance.

The Object Class

Before we begin making our own subclasses, we should understand an essential part of the Java language, the object class,
which should help us to understand inheritance a little better. What if | told you that you have been using inheritance all along in all
of the classes that we have created so far? In Java, as we might have mentioned in passing before now, all classes are derived
from the object class by default, though this is hidden from you in your code. The object class is a member of the java.lang
package and is a super class of all classes. This means that all of your classes have inherited members of the object class. All
of the members inherited from 0bject are methods, and furthermore they are instance methods, which means they only exist
when you create an object of your class. At this point, we should look at the most straightforward method inherited from the
Object class by all classes in Java: the tostring method.

The toString Method

The tostring method is used to get a string representation of an object, returning this string representation value of type
String. Remember back when we used the tostring method in both the Universe class and the Alien class to return what
was considered an ideal textual representation for the data stored in objects of those classes. So, for example, the Alien class's
tosString method returned the alien string value greeting, as this was all that basically made our 21 ien objects different
from any other A1ien object.

The key thing to realize is that this method is initially inherited from the object class, butin the Universe class and the Alien
class we override the toString method, creating our own version of it. Then, when a string representation of an object of these
types is required, the overriding tostring method that we created is used instead of the tostring method in 0bject. The
string representation of the object is required when printing to the screen, where we appeared to be able to print the object.

System.out.println (universe);

This code simply invoked the tostring method that we overrode in the Universe class, printing the return value from that
method; otherwise it would have printed the value returned from the tostring method of the object class instead, which is a
default textual representation of an object that actually consists of the class's name, followed by the hash code of the object,
which we do not need to worry about.

We could similarly have printed this data as follows:

System.out.println(universe.toString());

The tostring method is a method similar to any other method, but it is also handled as the default string representation of the
object.

The following diagram shows the structure of the source code in Listings 4-1 through 4-3, which, in case you've forgotten,
contained the classes MainApp, Universe, and Alien.

Figure 4-5:

All classes inherit these methods from Obsject, as this is always the root class in any class's hierarchy. The following is a list of
methods in the object class with a description of what they do.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

protected Object
clone ()

This method is used to create a copy of an object and returns it as type object. Only
classes that implement the interface Cloneable can be cloned. We will discuss
interfaces later on in the chapter.

public boolean
equals (Object)

This method returns t rue if this object is equal to one passed as a parameter. Hence,
if this object is the same as that which the parameter currently references, then it
returns true.

protected void
finalize ()

This method is called by the garbage collector when you are finished with your object,
that is, when you no longer hold any references to it. Note that the garbage collector is
likely not to call this method right away but when it's ready to, which can be some time
after any references to this object no longer exist in your program and it is ready to be
collected/removed. So if you override this method and provide code that needs to be

handled in real time, it is recommended that you realize when your object is lost and

handle this code then, instead of when this method is invoked by the JVM. For further
information, see the "Garbage Collection and Creating Objects" section in Chapter 12.

public final Class
getClass ()

Returns a c1ass object of this object. An object of type class can be used for such
things as finding if an object is an instance of a given class.

public int hashCode ()

|| This method returns a hash code value for the object.

public string
toString ()

As we mentioned earlier, this method is designed so that each object has a string
representation of itself. In most cases this method is overridden in a class to return a

desired value.

The methods notify, notifyall, and the various overloaded wait methods concern the use of threads. These methods are
discussed in Chapters 7 and 9, where we utilize these methods to help us make our passive rendering as active as possible. That
is some way off, but it'll be worth the wait, so keep reading.

Inheriting Your Own Classes

To derive one of your own classes from another class, use the keyword extends, as in your class extends another class.
Returning to our Al1ien and Human example, we could create a base class Creature and create Alien and Human classes that
both extend the creature class; that is, they are subclasses of the Creature class. In this case the base class must contain
members that are true for both A1ien and Human objects, as they will inherit these members and then the Alien and Human
classes would include extra members that are specific to them and not to other creature types. The following example (Listings
4-4 through 4-7) contains four classes: Beings (main class), Creature, Alien, and Human. Let's take a look at the code for this
example.

Note There is no multiple inheritance in Java. Any class can only extend one other class. A means of working around this
issue is using interfaces, as we shall see toward the end of this chapter.

Code Listing 4-4: Creatures. java

public class Creature
{
public Creature(String greeting)
{
setGreeting (greeting) ;

}

public void setGreeting(String greeting)
{
this.greeting = greeting;

}

public String getGreeting()
{
return greeting;

}

public void speak()
{
System.out.println("Creature says: " + greeting);

}

private String greeting;

This class is the base class for a creature in our program, as we assume that all varieties of creatures will require a greeting
variable. In this class we require the public methods setGreeting and getGreeting, as the greeting variable is set to
private, meaning that it is not itself inherited by any subclasses of creature but those public methods are inherited and can be
used to access greeting, which still exists but is just not inherited. We will discuss this a little later also.

Code Listing 4-5: Alien. java

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public class Alien extends Creature
{
public Alien(String greeting)
{
super (greeting) ;

}

public void speak()

{
System.out.println("Alien says: " + getGreeting());

}

As you can see, the Alien class uses the keyword extends after its name declaration followed by the base class Creature that
it extends. The Alien class therefore inherits the public methods setGreeting and getGreeting from the Creature class. It
does not inherit any constructors from the Creature class; constructors are never inherited.

The alien class also overrides the method speak in the Creature class to use its own version of this method implementing its
own specific code to speak as an a1ien object.

We also use the keyword super in the Alien constructor. The keyword super indicates that we are accessing a member of the
direct super class. In this case we are calling the constructor of the creature class using the keyword super in a direct subclass
of Creature —Alien. The keyword super is explained in detail a little later in the chapter.

Note The constructor call of the base class Creature in the Alien class constructor using super (greeting) is not
required to actually create the inherited data. If this was not called, the data in cCreature would still exist, where by
default the value of the variable greeting would merely be set to nul1 (unassigned to a string object). Call the
constructor of the super class to initialize the state of the data defined in the creature class from the constructor of
the Alien object that we are creating, where we are basically calling the constructor of the super class as if it were
simply a method to initialize the data. It is a common practice in a subclass constructor to make a call to the super
class constructor to initialize the state of variables defined in the super class. It is a very useful technique. We will look
at the keyword super a little later in the chapter. Furthermore, a call to the super class constructor using super () can
only be called first in the constructor before any other code; otherwise, the code will not compile.

Code Listing 4-6: Human . java

public class Human extends Creature
{
public Human (String greeting)
{
super (greeting) ;

}

public void speak()
{
System.out.println("Human says: " + getGreeting());

}

The Human class is almost identical to the A1ien class, except for its implementation of the speak method, which is specific to a
Human object with the text "Human says: ", whereas an Alien object would have "Alien says: " before its greeting text. A
Creature object would have "creature says: " before its text greeting also, so we can distinguish which is which.

Code Listing 4-7: Beings. java

public class Beings
{
public static void main(String args[])
{
Creature myCreature = new Creature ("blub-blub, what
the heck am I then");
Alien myAlien = new Alien ("Dak-DakDakDak") ;
Human myHuman = new Human ("Hello there");

myCreature.speak () ;
myAlien.speak () ;
myHuman. speak () ;

In the main class Beings, create three objects. Each is an object of a different creature class. We have a Creature, an Alien,
and a Human object. In the case of each, make a call to their respective speak methods. When you run this example, you should
get output similar to the following figure.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 4-6:

If this is a little confusing, added to the mix are any concerns about how the object class is dealt with. Take a look at a
hierarchical representation of the previous example in the following figure.

Figure 4-7:

In terms of a class that extends another class (or a class that is extended by another class), the relationship between them is
known as being direct. So in our example, you would say that the creature class is a direct super class of the Alien and Human
classes, and that object is a direct super class of the Beings and Creature classes. Equally, you would also say that the
Alien and Human classes are direct subclasses of the cCreature class and Beings and Creature are direct subclasses of the
Object class. Therefore, the Object class is an indirect super class of the A1ien and Human classes, and they are indirect
subclasses of the object class.

In conclusion, any class that does not extend another is a direct subclass of the object class by default. A class that does extend
another class is part of a hierarchy of inherited classes, which will always lead to the root object class.

Inheritance Depending on Access Attribute

When we create an A1ien object, an object of type Creature and an object of type object that go into making the Alien
object what it is also exist. The members that are inherited from the super class depend on the access attribute of this member
when defined in the super class. For example, look at the relationship between the Creature class and its subclass Alien. The
Alien class inherits the public members of its super class Creature, but it does not inherit the private member greeting of the
Creature class. This does not mean that this variable does not exist; it simply means that this variable is inaccessible from an
Alien class. If you go back to Figure 4-4, a diagram of access attributes, you can see the accessibility relationship between a
class and one of its subclasses from within the same package and also from a separate package. These access attributes are
true for inheritance as well. Based on the diagram, we can see that private members are never inherited by any subclass and
members with no access attribute are not inherited if the super class is in a different package to the subclass.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[team Lo | [cervviou st]
The Keyword super

The keyword super is used similarly to the keyword this. The keyword this, if you remember from the description earlier,
provides us with a reference to the object we are currently in, which is useful for things such as accessing an instance variable
instead of a local variable when they share the same identifier name. The keyword super is used to access the super class of the
object that you are currently in. There are two ways that we can use the keyword super, one for calling a constructor of the super
class and the other for accessing methods and attributes of the super class. As we saw in the previous example, we called the
constructor of the Creature class from within the constructor of the Alien class.

// default call to the super class constructor
super () ;
// if a super class constructor took two parameters of type String

super ("Thank you", "for all your support");

This is general practice, as it is most often the case that you need to initialize super class members also, as they form the base of
your object. You may also need to access members of the super class, which you cannot access from the current object because
there exists an overriding version of that member in the current object. For example, in the Alien class there is a speak method,
but there is also a speak method in its super class Creature. The speak method in the Alien class replaces the speak
method in the creature class, but it does not remove it. What if we wanted to access this method instead? You would use the
keyword super in the Alien object to access the speak method in the super class Creature instead of the speak method in

its own class.
// Inside an Alien object, use the speak method defined in
// the Creature class instead

super.speak();

As you can see, we use the keyword super similarly to how we used the keyword this earlier. Note that you can only use the
keyword super to access the immediate super class object of an object, and this access does not allow you to view inaccessible
members of the super class, such as private members of the super class, under any circumstances. So using
super.greeting in an Alien object will not work, and you will get a compiler error. The keyword super is for accessing
constructors and overridden members of the super class of an object.

Note It is not possible to chain super keywords to access above one hierarchical class level. Calling
super.super.toString () in the last defined A1ien class would not call 0bject.toString () ; it would not even

compile.
[« exsvious Joasis

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[« Fravisus |
The Keyword final with Classes and Methods

In Chapter 2 we looked at the keyword fina1l for declaring constant variables, ones that could not be changed once initialized.
The use of the keyword £inal also translates to use with classes and methods. Include the keyword £inal in the declaration of
a class (for example, in the Alien class):

public final class Alien extends Creature
{

// Code here
}

This means that no other class can be derived from the A1ien class. For example, the following class would not compile if our
Alien class were declared as final.

public class Martian extends Alien

{
// Alien is final and that's final!
// No code here :(- will not compile

}

The keyword final when used with methods means that the method cannot be overridden in any subclass. For example, we
could declare the speak method of the Creature class as final.

public class Creature

{
public final void speak(String greeting)
{

System.out.println("Creature says: " + greeting);
}
}

This means that the A1ien and Human subclasses of Creature would not be able to implement their own versions of the speak
method.

IECTSImT R

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Polymorphism

Polymorphism by definition means the ability to take many forms. "Poly" means many, and "morph" means form. Now in terms of
classes and objects in Java, this means the ability to use an object in a more general form. We can first look at this in terms of
casting objects.

Casting Objects

We have already looked at casting in Chapter 2, where, for example, we cast a variable of type int to a variable of type short.
We also mentioned implicit and explicit casting, where implicit casting means that the destination variable could safely hold the
source value and explicit casting means the use of typecasting code explicitly.

int myInt = 10;

long myLong = myInt; // implicit cast

short myShort = (short)myInt // explicit cast

With the integer data types, there is a hierarchical relationship between them in terms of their storage sizes. Whether a cast
needs to be explicit relies on this relationship. The same can be applied for casting objects. Casting an object to a super class
type can be seen as an implicit cast, known generally as "casting up" through the class hierarchy, whereas casting an object to a
subclass, known generally as "casting down" through the class hierarchy, can be seen as an explicit cast. For example, regarding
the previous example, we can cast an a1ien object implicitly to a reference of type Creature, as follows.

Alien myAlien = new Alien ("Dak-DakDakDak") ;

Creature myCreature = myAlien; // implicit cast 'up'

Here we create an object of type Alien. This is the true type of the object. We then declare a reference of type Creature, called
myCreature, and assign it to the new alien object. We could also have simply entered the following code.

Creature myCreature = new Alien ("Dak-DakDakDak");

This is an implicit cast because Creature is a super class of Alien. We know that the A1ien object can be safely cast to a
Creature object because Alien is derived from Creature, so any members of a Creature object exist as part of the Alien
object also.

However, the casting of an object does not change the object itself; the object always remains exactly how it is. The only thing that
changes is the reference to the object. For example, view the following line of code:

myCreature.speak();

The speak method that is invoked would be the one defined in the A1ien class, not the one defined in the Creature class, as
the true type of the object still remains of type A1ien. Casting the object to any type does not alter the object; it doesn't even alter
the type of object it is. It changes the way your program sees the object, as if it were a different type. When you access a member
of the object, the member that is accessed is the member closest to the true type of the object, which is why the speak method in
the Alien class is invoked and not that of the Creature class (even when we cast the object to type Creature).

Casting an object to a subclass type requires explicit casting. For example:

Creature myCreature = new Alien ("Dak-DakDakDak");

// Explicit cast back to type Alien
Alien myAlien = (Alien)myCreature;

You will need to cast down the class hierarchy when you need to access a member that is specific to the subclass type. For
example, the Alien class may contain a method like destroyPlanet, which does not belong to the creature class like the
speak method does and therefore cannot be invoked from a reference of type Creature, like myCreature. It must be invoked
from a reference of type Alien, like myAlien. You will more than likely need to cast objects down when using many of the
classes in the package java.util. This package provides many classes that can be used for storing lists of objects. These lists
contain objects of type Object, which any object can be cast to, casting up to the top of the class hierarchy. When you need to
retrieve objects that you've added to these lists, you will need to explicitly cast your objects back to a more descriptive type, back
down the class hierarchy, in order to use them properly. In Chapter 5 we will look at packages in general and pay particular
attention to the java.util package.

Polymorphism in Action

In the previous example we had four classes: Beings (main class), Creature, Alien, and Human. In this example we are simply
going to change the main class to PolymorphicBeings. The classes Creature, Alien, and Human remain exactly the same
as they were defined in the previous example, so you will need to get the code for them from the previous example. The main
class in this example is the important one, where we will take advantage of polymorphism. Here is the code for
PolymorphicBeings.java:
class PolymorphicBeings
{
public static void main(String args([])
{
Creature creaturelist[] =
{
new Creature("I'm a creature you know"),
new Alien("Well I'm an alien, a more specific
creature"),
new Creature ("Ohh, he thinks he's special"),
new Human ("I'm a human and I know I'm special")
new Alien("Again I'm from Jupiter, and I'll eat
you all™)
}i

for (int i=0; i<creaturelList.length; i++)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

creaturelList[i].speak();
}

When you run this code along with the classes Creature, Alien, and Human that we defined earlier, you should get output
similar to the following figure.

Figure 4-8:

Here we have a list of many different types of objects, which are derived in some way by the Creature class. Two of the objects
are instances of the Creature class themselves, whereas the other objects that are created are instances of subclasses of the
Creature class. This means that it is safe to call the method speak on any of the objects, as this method belongs to the
Creature class. The key is that this method can then be invoked specifically to its object, even though all of the objects are
believed to be merely of type creature. This is a great advantage for listing objects of varied types that you want to treat
collectively. Imagine in a game that we had a list of many creatures of various subtypes of Creature, like A1ien and Human, and
in every game loop we wanted to call a move function on every object in the list. If the move method for an a1ien differed from a
Human, like the speak methods do, we could simply use a list like this and call the move method specific to the object
automatically without needing to find out the exact type of the object that we are dealing with at the time.

Abstract Classes

Abstract: Considered apart from any application to a particular object; separated from matter; existing in the mind
only.
—Webster's Revised Unabridged Dictionary, © 1996, 1998 MICRA, Inc.

That's a beautiful quote, as I'm sure you'll agree. In object-oriented programming there is often a time when a class is needed
solely as the basis for being derived by another class, where it in itself should not be instantiated. In Java this would be an
abstract class. An abstract class cannot be instantiated. In order to use an abstract class you must create another class, which
extends the abstract class that can then be instantiated. For example, we could say that our Creature class may be declared as
abstract if we wanted to prevent any instantiation of it. We would do this by entering the keyword abstract before the keyword
class in the class declaration, as follows.

public abstract class Creature
{
// code as normal here

}

The code encapsulated by the creature class can stay the same. Making a class abstract simply means that it cannot be
instantiated. It must be subclassed with an object derived from the subclass that inherited members of the abstract class from
which it is derived. If in our previous example we did make the Creature class abstract, the code would not compile because we
were trying to create objects of type Creature inside the main class PolymorphicBeings. If we removed these instantiations,
the code would work fine. Polymorphism in that example would not be affected by the fact that the creature class was abstract.

In the case of the creature class, it is perfectly feasible that we should have made it an abstract class. This is because there is
likely to be no actual object that would be defined as just a cCreature but always detailed in a more specific subclass of
Creature, like Alien or Human or Insect or whatever we wanted.

Abstract Methods

Abstract methods can only be defined within a class that has itself been declared as abstract. An abstract class does not need
to contain an abstract method. However, a class with an abstract method is abstract, regardless of the class declaration. An
abstract method is one that is defined but does not contain a code body, basically meaning that it is declared but not defined. So
for example, if we are working on the premise of the Creature class being abstract, we could also declare a method in the class
as abstract and omit the code body of the method. In the case of the example PolymorphicBeings, we could make the speak
method of the creature class abstract, as follows:

public abstract class Creature
{
public Creature(String greeting)
{
setGreeting (greeting) ;

}

public void setGreeting(String greeting)
{
this.greeting = greeting;

}

public String getGreeting()
{
return greeting;

}

public abstract void speak();

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

private String greeting;
}

As you can see, the method speak has been declared as abstract using the keyword abstract before the return type of the
method. Also notice the semicolon at the end of the method signature, and the method does not define a code body.

Not only does the creature class need to be extended in order to be instantiated, but any subclass of the Creature class must
define the method speak with a supporting code body in place. Ideally the A1ien and Human classes we have seen in previous
examples do just this so it would be easy to plug this abstract version of the Creature class into these examples. Don't forget
that a class defining an abstract method can call that method also, like the new creature class can still call the abstract method
speak polymorphically, provided that the actual type of the object that speak is invoked upon is of a subclass of Creature, such
as Alien.

If you use an abstract class, you should be sure that you will never need an instance of that class. An abstract class can define
normal methods to which it can provide suitable functionality, and should define abstract methods if it does not know how to
handle those methods itself. Furthermore, a subclass of this class should be able to provide appropriate code for these abstract
methods. If a class cannot provide a suitable implementation for a method, either the class should be abstract along with that
method or the method does not belong in the class in the first place.

Note that one abstract class can be extended by another abstract class, where it too can choose whether or not to provide code
bodies for inherited abstract methods, if any are inherited of course.

The use of abstract classes and methods is more of a design issue for well thought-out projects, and design issues for games
often go out the window when you just want to get the thing working and then tweak the game code from there. This is perfectly
normal, especially for programming games in Java. Awareness of all parts of the Java language is important in the long run,
especially when you use the standard libraries provided in the Java SDK, which are full of abstract classes and interfaces, classes
using those interfaces, and so forth. We're not saying designing games isn't extremely important, but we still like the idea of
hacking away at things to learn and then tweaking the code, like the good old days.

The much-preferred alternative to using abstract classes in many respects is the use of interfaces, as we shall discuss now.

R

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

Interfaces
Interface: a surface forming a common boundary between two things.

A crap quote, as I'm sure you'll agree :). As you should have realized, there is no multiple inheritance in Java. In Java, multiple
inheritance would mean that one class could extend more than another class, giving it multiple super classes. This is not possible
in Java. Interfaces provide a solid workaround for multiple inheritance without the overhead involved with multiple inheritance and
the added capabilities of using polymorphism with them, allowing you to add multiple identities to your classes.

The source code for an interface must be added to a file with the same name similar to classes. For example:

public interface MyInterface
{

}

This would be entered into the source file MyInterface.java.
Defining Interfaces

Interfaces can contain two different types of data, static final variables (constants) or method declarations, which are abstract
methods without the need for the keyword abstract (interfaces can only contain methods that do not supply a code body
anyway, so the need for the keyword abstract is, well, not needed).

public interface GameData

{
public static final int SCREEN WIDTH = 640;
public static final int SCREEN_HEIGHT = 480;
public static final int TOTAL PLAYERS = 4;

}

We use the keyword interface for defining interfaces, just as we have used the keyword c1ass to define our classes, followed
by its namef/identifier. The interface GameData simply defines three constant variables: SCREEN_WIDTH, SCREEN HEIGHT, and
TOTAL_ PLAYERS. Interfaces can also define methods, as follows.

public interface Moveable
{
public void move () ;

}

The Moveable |nterface declares one method move, which as you can see does not actually |mp|ement code for the method

can also declare one |nten‘ace that |nher|ts one or more other interfaces. For example we could have the following two interfaces:

public interface LandMover
{

public void walk();
}

public interface WaterMover

{
public void swim() ;

}

We may also want to combine these interfaces to make an interface that supports both wa1k and swim methods. We could define
this interface as follows.
public interface AmphibiousMover extends LandMover, WaterMover

{
}

The interface AmphibiousMover inherits all of the members defined in the interfaces L.andMover and waterMover, which in
this example are the methods walk and swim from their respective interfaces.

Note Any of the overheads that are normally problematic when using multiple inheritance will be picked up by the compiler
when inheriting multiple interfaces. For example, the interfaces LandMover and WwaterMover could both contain a
static final variable with the same name but different values. If you then implemented the AmphibiousMover interface
and tried to access this constant variable, the compiler will pick up the error because it cannot possibly decipher which
of the two variables you wish to use. This doesn't necessarily mean that these interfaces could not still be used. They
would themselves still compile because you can cast your object to an interface type and then access the appropriate
constant variable that way. The compiler will then know what interface to access the constant from. We will see about
casting objects to interface types shortly.

Using Interfaces
In order for a class to implement an interface, you need to use the keyword implements. For example, if we have a class,

Alien, that needs to know the resolution of the displayable screen area, which is provided by constant variables in the GameData
interface that we defined earlier, our A1ien class could implement the GameData interface as follows.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

public class Alien implements GameData
{
public void printResolution ()
{
System.out.println (SCREEN WIDTH + ", "+ SCREEN_HEIGHT) ;
}
}

The advantage in this case is that classes are not restricted to merely implementing one interface like they are restricted to only
extending one other class. A class may still extend another class and implement multiple interfaces also. For example, we may
declare the alien class, which we could say extends the Creature class, like in previous examples, and implements the
GameData and LandMover interfaces, as follows:

public class Alien extends Creature
implements GameData, LandMover
{
public Alien(String greeting)
{
super (greeting) ;

}

public void printResolution ()
{

System.out.println(SCREEN7WIDTH + ", "+ SCREEN_HEIGHT) ;
}

public void walk()
{

// must supply code body for walk method
}

public void speak ()
{

System.out.println("Alien says: " + getGreeting());
}

}

As you can see, we have declared and implemented the method walk in the Alien class. Because the aAlien class has
implemented the LandMover interface, it must implement this method complete with code body. This is our first glimpse at the
real advantages of using interfaces; we have the ability to give our classes different labels and are assured that the class
implements the methods associated with that label.

Interface Objects (well, sort of!)

It is not possible to make an interface object. For starters, they do not provide an implementation for any methods that they
declare, so to instantiate them would be completely unreasonable. You can, however, create an object of a class that implements
an interface and then cast the object to a variable of the interface type. For example, take the A1ien class that we have just
defined. We can create an instance of the Alien class (the Alien class version that is implementing the LandMover interface
previously defined), and then we can cast the A1ien object to type LandMover.

public class MainClass
{
public static void main(String[] args)

{

Alien myAlien new Alien ("DakDakDak-Dak");
moveOnLand (myAlien) ;

}

public static void moveOnLand (LandMover landMover)
{
landMover.walk () ;
}
}

As you can see, this gives us a great advantage; we are no longer just restricted to casting an object to a type that is within its
acceptable class hierarchy where polymorphism could be used, but we are also now able to cast our objects to a type of an
interface that its class implements, where we may also use polymorphism with the methods defined in the interface type to which
we are casting. In the previous example, we passed the reference myalien to the method moveOnLand, where it was received
and cast to type LandMover. The method walk is then invoked from an object of type LandMover. This means we can use the
method moveoOnLand for any objects of classes that implement the LandMover interface. We are no longer restricted to objects
that are subclasses of Creature. For example:

public class Submarine implements WaterMover
{
public void swim()
{
// handle swimming
}
}

If we had a method to handle a swimming object:

public void moveInWater (WaterMover waterMover)
{
waterMover.swim() ;

}

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

...we could pass a submarine object to this method, as well as a Human object or any object that also implemented the interface
WaterMover.

Going back to what was initially discussed, we can now give our objects multiple identities, casting them within their class
hierarchy or to any interface type they implement. But remember, the object is never changed when casting; it will always be the
same. Access to members of the object is what actually changes, as it takes a different identity, be it a class or interface
implementation.

Does My Object Implement that Interface?

There may be a time when you want to know if an object implements an interface or not. It's quite likely that you may have a list of
related types, such as Alien and Human, that are all creature derivatives, and you want to run through the list invoking
methods on the object defined by an interface. Only certain objects in the list implement that interface and therefore contain that
method, and others do not. For an array of Creature types, which could be Alien or Human objects, the Alien class may
implement the LandMover interface, whereas the Human class may implement both the LandMover and WaterMover
interfaces. You want to run through this array only invoking the swim method on any objects that implement this method. We all
know aliens cannot swim (well, | think they can't), but the list does not know which objects can swim and which cannot.

The simplest way to perform this task is to use the keyword instanceof to check if an object is an "instance of" a class or
interface. For example, let's say we have the Alien class that only implements the LandMover interface and not the
WaterMover interface. Then we have an object of either type Alien or Human cast to a reference of type Creature, and we no
longer know whether the true type of the object is an Alien or a Human. Or more to the point, we do not know which of the
interfaces our object implements to which we want to invoke the appropriate method.

Using the instanceof operator, we could perform this check in two different ways. First, we could check to see if the object
implements the appropriate interfaces and then implement its respective method, as follows:

Creature myCreature = new Alien ("DakDakDak-Dak");

if (myCreature instanceof LandMover)
((LandMover)myCreature) .walk () ;

The implementation of invoking the wa1k method is quite logical when you think about it. First, the reference myCreature is of
type Creature. The Creature class does not implement any walk method, so any such method cannot be invoked in terms of
a Creature type object. We also cannot cast the object back down to its true type, as we do not know its true type at this stage.
What we can do, however, is cast the object to type LandMover, as we know it is an object of this type, implementing the
LandMover interface as we just checked. We can then invoke the wa1k method in terms of a LandMover cast object.

Alternatively, also using the instanceof operator, we can check if our object is of a class type Alien and then work from there.

Creature myCreature = new Alien ("DakDakDak-Dak");

if (myCreature instanceof Alien)
((Alien)myCreature) .walk() ;

Both methods have their advantages. If you have a list of many different unknown objects all cast as type creature and many
implement the LandMover interface, the interface checking would be better because it would be one check, whereas the class
check would mean checking all different types of creature subclass types. The class method would be better simply because of
the control it gives back to you in knowing the true type of the object again, accessing other members specific to it, etc.

You should take note that using instanceof checks if an object is not only an instance of the true type class but also if the
object is an instance of any super classes of its true type. For example, testing i f (myAlien instanceof Creature) Will
return t rue also. A better example is that i f (anyObject instanceof Object) will always return true, as all objects are
ultimately derived from the object class at the very top of the class hierarchy.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team Lo | [ravioos
Defining on the Fly

Although this aspect of programming is not completely conventional, it can make code neater for one-off defining implementations
of members of a class. Okay, perhaps we should explain a little. Perhaps you want to have just a special type of alien that simply
contains its own version of the speak method but only require one that might not be worth creating a whole new class for. In Java,
you can create this new type of Alien object as follows.

Alien newAlien = new Alien ("Dak-DakDakDak")

{
public void speak()

{

System.out.println ("No comment") ;
}
}i

This method is most notably used for supplying your own methods for event handling, which we will look at in Chapters 9 and 10.
You should note that this method is just another way to define members of a class "on the fly" as opposed to perhaps declaring a
nested class that would, in this example, extend the A1ien class and then provide the defining method in there. This technique
should simply be seen as an alternative way of doing this. Note that this can also be applied to defining interface methods on the
fly for interface objects, though all interface methods would have to be defined in this case.

[« rrvvions frosr

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toan Lo [+ervvious Lt]

Summary

In this chapter we looked at nested classes and creating multiple classes in an application along with inheritance, polymorphism,
interfaces, and a whole range of new keywords. In the next chapter you will learn about packages and the many useful supporting
classes included in the Java SDK. You will also learn about error handling in Java, especially exceptions and assertions.

[+ erivious [t

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

R L} [« rrnvisus]flveixt ¥
Chapter 5: Packages, Utilities, and Error Handling

"To err is human, but to really foul things up requires a computer."
—Farmers' Almanac, 1978

Introduction

In this chapter you will learn about the important packages that are included in Java to assist you, as well as how to create your
own, reusable packages. We will delve into the way you handle errors in Java, and we will also take a look at assertions, which
are new to the 1.4 release of the Java SDK.

[+ erevious P v

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toam Li [« rxvvions fooi o)
What is a Package?

A Java package is a collection of related classes that can be imported into your program to support your software. They also
provide namespace management, as well as access protection.

Note A namespace is the scope of the name of a variable.

The following table shows some of the main packages that are included in the recent Java 1.4 SDK (Software Development Kit)
release along with a brief description of what they include.

Package “ Description

java.lang This is the fundamental Java package containing classes essential to the Java
language. This package is included in your program by default and contains many
useful classes, such as string, Thread, and the primitive data type support
classes.

java.io The I/0O package contains classes that allow support for input and output operations.
You can learn more about input/output in Chapter 6.

java.awt This is the Abstract Window Toolkit package and contains all the necessary classes
to create a GUI within your Java applications and applets.

java.awt.event This package is used to support the Abstract Window Toolkit by containing classes
for event handling.

java.awt.image This package provides important classes for storing and manipulating images, most
notably the BufferedImage and VolatileImage classes, which we will look at in

Chapter 9, "Graphics."

javax.swing The Swing package, as with the AWT package, is used to create a GUI. However,
Swing is the newer of the two and, in our opinion, the best one to use (see Chapter 8,
"Applications and Applets" for information on the differences regarding lightweight
and heavyweight components).

javax.swing.event As with the java.awt.event package, this includes extra event handling
functionality to support the javax.swing package.

java.util The utility package contains many useful classes, including storage classes such as
ArrayList and LinkedList. We will look more into this package later in this
chapter, as it is very important.

java.net This package contains everything you need to handle basic networking in Java. You
can find out more about how to use this package in Chapter 17, "Introduction to
Networking."

java.nio This is a new package to the 1.4 release and contains classes used to implement NIO

(New 1/O). More can be read about this subject in Chapter 18.

java.sql Finally, we have the SQL package, which gives us database support within Java. We
will use this when we take a look into databases in Chapter 14.

Although there are many other packages within the Java language, the above list is probably the most common that you will come
across. Let's now take a look at how we can use and import these standard packages into our Java applications and applets.

[+ erevions Lot

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[eam L2 | [cervviou st]
Importing Packages

To use a package within our Java application or applet, we need to import it. We do this by means of the import keyword. So, for
example, if we wish to include the I/O package, which is called java. io, we would have the following statement at the top of our
code (before we define any classes):

import java.io.*;

Note how we have appended an extra decimal point and star to the end of the package name. This means that it will include all of
the classes within the package (i.e., the asterisk is used as a wildcard).

Another example of this would be if we wished to include the utility package, which is called java.util. This would be done with
the following statement:

import java.util.*;

Again, note the use of the asterisk to include all the classes from the package. However, if we only wished to include a single
class from the package, we could do this too.

Within the utility package, there is an ArrayList class. If we simply wish to use the ArrayList class from the utility package
and no others, we could import just the ArrayList class using the following statement at the top of our code.

import java.util.ArrayList;

Of course, if we used the asterisk, the ArrayList package would be included automatically. So once we do this, we could then
create a reference to an ArrayList object within a class or method using the following statement:

ArrayList myArrayList;

Also, it is good to know that it is possible to access the ArrayList class (or any other class out of a package) by using its fully
qualified name. For example, without any import statements, we could create the myArrayList object as we did before with
the following line of code.

java.util.ArrayList myArraylList;

As we mentioned in the introduction, packages provide namespace management, so it is therefore possible that two packages
could both have a class with the same name in it. Obviously, this could cause problems if both the packages were imported, so in
this case it would make sense to use the fully qualified package name:

packagel.MyClass firstReference;

package2.MyClass secondReference;

[+ reinous P

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Creating Your Own Packages

Okay, so now you know how to include the standard packages. Let's look at how we can create our own packages.

By creating your own packages, it is possible for you to create collections of reusable classes, which is excellent from a game
programmer's point of view, as many algorithms can be packaged and reused in many projects.

Let's now look at how to create a very simple mathematics package, which will contain two classes. One class will contain a static
method for adding two integers, whereas the other class will contain a static method for subtracting two integers.

To create a package, we must first store it in its own directory, which must be named the same as the package. In this case, we
will call our package simpleMaths and the directory will be:

C:\MyPackages\simplemaths

To make a class part of a package, we need to use the package keyword, followed by the name of the package that we wish to
make it a part of at the top of each of the source files in the package. We will need to include the following line of code at the top

of any source (.java) files we wish to make part of our simplemaths package. (Also note that we need to ensure the files are all
contained within the simplemaths directory.)

package simplemaths;
Note It is convention to keep package names in lowercase.

Okay, now let's look at the source code for the two classes, Addition and Subtraction, we are going to make part of the
package.

Code Listing 5-1: Addition. java

package simplemaths;

public class Addition
{
public static int add(int numberl, int number2)
{
int result = numberl + number2;
return result;

Code Listing 5-2: Subtraction.java

package simplemaths;

public class Subtraction
{
public static int substract (int numberl, int number2)
{
int result = numberl - number2;
return result;

As we mentioned before, both of these files should be placed within our simplemaths directory. The next step would be to
compile the classes, which we can do by means of a batch file. Here is the listing of the batch file, which we have named
compile.bat; it should be stored in the same directory as the source files.

Code Listing 5-3: compile.bat

C:\j2sdkl.4.1_0Ol\bin\javac Addition.java
C:\j2sdkl.4.1 0l\bin\javac Subtraction.java
pause

Obviously, if you have installed the 1.4 SDK to a different directory, you would need to change the paths in the compile.bat file.

When we execute the batch file, it will compile both the source files into the .class counterparts, which will then also be in the
simplemaths directory.

That is our created package. Let's now create a simple console application to test the package out. We will first look at the
complete source for the test application and then go into more detail as to how we compiled it.

Code Listing 5-4: The test application (TestApp. java)

import simplemaths.*;

public class TestApp
{
public static void main(String args([])

{

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

int numl = 10;

int num2 = 20;

int res = 0;

res = Addition.add (numl, num2);
System.out.println(numl + " 4+ " 4+ num2 + " = " + res);
res = Subtraction.substract (num2, numl);
System.out.println(num2 + " - " + numl + " = " + res);

When we run the example, the following output can be expected in the console.

Figure 5-1: Testing our own package

As you can see by using the import statement at the start of the code, we imported our own package simplemaths. This can
be seen in the following line of code:

import simplemaths.*;
Note how we used the asterisk so both the Addition and subtraction classes were included from the package.

However, to include the package, we need to specify the classpath that the compiler should look in to find the package we are
trying to include (as it will not be registered in the global environment). To do this, we use the -classpath parameter of both the
compiler and interpreter when compiling and running the test application. The command line to compile the application can be
seen here:

javac -classpath "c:\MyPackages" TestApp.java
For the above command to work, the simplemaths folder would need to be placed within the c: \MyPackages folder.

To run the test application, you would use the following command:
java -classpath "c:\MyPackages" TestApp

[+ervvious Lt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lis | [raivisus]fiie +]
Using JARs

A JAR is an archive that uses the ZIP file format to compress files stored within it. The great thing about using JARs is that it is
possible to package up your applications and applets into a single JAR file and execute them directly from the compressed JAR
archive. This is an excellent feature where applets are concerned, as the JAR is downloaded, decompressed, and executed from
the browser (making the download smaller).

Running an Application from a JAR
Let's first look at how we can create an application that we can execute directly from the JAR archive. We will use a simple
console application to output a line of text to the console for this example. The complete code listing for this application can be

seen here:

Code Listing 5-5: MyApp . java

public class MyApp
{
public static void main(String args([])
{
System.out.println("\n\nI was executed from the JAR!\n\n");

}

Once we have our basic application in the file, we need to compile it in the usual way, leaving us with a Myapp.class file.
Normally from here we would use the Java interpreter to execute the bytecode contained within the class file, but this time we wish
to make it into a JAR archive.

To do this, we need to use the JAR tool, which comes with the Java SDK. The JAR tool is called jar .exe and can be found
within the /bin/ directory of the SDK.

Creating an actual JAR is a simple process. However, to make our application execute from the JAR, we also require a manifest

file, which simply specifies the name of the main class that should be used when the JAR is executed. In this example we will call
the manifest file theManifest.txt and it will only contain a single line of text (followed by a carriage return). The following line

should be placed within this file:

Main-Class: MyApp
Now that we have the manifest file and our byte code contained within our My2App . class file, we can proceed to create our JAR

archive, which we will call Myapp . jar. Note that the JAR archive does not need to share the same name as its main class. The
command used to create the archive can be seen here:

jar cmf theManifest.txt MyApp.jar MyApp.class
First we have the "jar" executable and we specify cmf as a parameter, where "c" stands for "create," "m" means we wish to modify
the manifest, and "f" means we wish to output the archive to a file rather than the standard output (i.e., the screen). Next we

specify the name of the file our manifest is stored in, which in this case is theManifest.txt. Then we state the name of the
archive that we wish to create (i.e., Myapp . jar), and finally we specify the files and/or directories to include within the archive.

Note Along with .class files, it is also possible to store any other type of media within a JAR file, including images and
sounds. A useful thing to remember is that you can specify a directory name as a parameter and the JAR tool will then
recursively add all the files within that directory and maintain the directory structure within the JAR archive.

When the command is executed, a file called Myapp . jar should then be visible in the same directory as your source and class
file.

Now that we have the executable JAR file, we still need to use the Java interpreter to run it, but since we are using an archive, we
need to specify the —-jar parameter. The full command can be seen here:

java -jar MyApp.jar

Here is a screen shot of the output that we can expect when we execute the JAR archive that we have created.

Figure 5-2: Running an application from a JAR archive

Running an Applet from a JAR

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Executing an applet from a JAR archive is equally as easy as running an application. First we will create a simple applet that we
can use to package into a JAR file. Here is the complete code listing for the applet that we are going to archive into a JAR:

Code Listing 5-6: MyApplet. java

import java.awt.*;
import javax.swing.*;

public class MyApplet extends JApplet
{
public void init ()
{
setSize (400, 300);
}

public void start ()
{

}
public void paint (Graphics g)
{
g.drawString ("I was executed from a JAR!"™, 20, 20);
}

public void stop ()
{

}

public void destroy(
{

}

Once we compile the applet in the usual way, we can then archive it using the JAR tool, as we did in the previous application
example. However, this time we do not require the manifest file, as we will specify the main class in the applet tag in the HTML
page that we will look at soon. Here is the command we require to archive our applet into an archive called MyApplet.jar:

jar cf MyApplet.jar MyApplet.class
All that is different here is that we have excluded the m and manifest flename parameters.

So we now have our applet in a JAR archive. We can then display the applet from the JAR in an HTML page by using the
<APPLET> tag but this time add an extra parameter called archive in which we will specify the JAR file to load (note that the
code parameter is then used to define the main class from within the JAR archive). Here is the complete HTML code listing for
displaying the applet from the JAR file:

Code Listing 5-7: view.html

<HTML>

<HEAD>
<TITLE>Applet JAR Example</TITLE>
</HEAD>

<BODY>
<CENTER>Applet JAR Example

<APPLET CODE="MyApplet.class" ARCHIVE="MyApplet.jar" WIDTH=400
HEIGHT=300>
</APPLET>
</CENTER>
</BODY>

</HTML>

So when we load the view.html file into a web browser (such as Internet Explorer or Opera), we can see that it will load from the
archive and look like this:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 5-3: Running an applet from a JAR archive
Note that we will look at applets in more detail in the chapters to follow.

The following table is a list of parameters that can be supplied to the JAR tool to perform various actions.

| Action Parameters ” Description |
| c ” Used to create a JAR file, as we have seen in the previous examples |
| t ” Used to list the contents of a JAR file |
| u “ Used to alter an existing JAR by adding or replacing files |
| X “ Used to extract files from the JAR |

The following table is a list of optional parameters that can be used to affect the actions that you specify.

| Optional Parameters “ Description |

v Gives more detailed information output to the screen, such as file sizes. Note that the v
stands for verbose.

£ Used to indicate that you will specify the name of the JAR file as the second command-
line argument. Note that without specifying this option, it will be assumed that the input
will come in from the standard input (the keyboard), and the output will be the standard
output (the console screen).

m Used to declare that a manifest file should be added and that you will specify the
manifest filename as the third command-line parameter after the filename parameter
|M || Tells the JAR file not to include a default manifest file |
| 0 (zero) || Specifies that the JAR archive should not compress the data |

For example, we could extract the archive that we created in the applet example with the following command-line argument:
jar xf MyApplet.jar

The x action indicates that we wish to extract files, and the £ option indicates that we wish to do this from the JAR file
MyApplet.jar.

[+erevious Pt s

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toan Liz [+ erevious Pt v

Exploring Useful Classes

Useful java.lang Classes

Note Remember that java.lang is imported by default and therefore does not need to be imported by your classes.
However, note that it does not do any harm to import it anyway.

Primitive Data Type Wrappers

We learned in Chapter 2 that Java has many primitive data types, such as int, float, double, etc. In the java.lang package,
there are wrapper classes for each of the primitive data types that include important functionality support, such as allowing them to
be manipulated and converted to other formats easily.

The wrapper classes are named as follows:

| Primitive Data Type ” Wrapper Class |
[byte [Byte |
| short ” Short |
| int ” Integer |
[iong [Long |
| float ” Float |
[double || Double |
| boolean ” Boolean |
| character ” Character |

These wrapper classes all contain a very useful method called parsex, where X is relative to the wrapper class. Here is a table
showing the parse methods of each of the wrapper classes.

| Wrapper Class ” Parse Method |
| Byte ” Byte.parseByte(String s) |
| Short ” Short.parseShort(String s) |
| Integer ” Integer.parselnteger(String s) |
| Long ” Long.parseLong(String s) |
| Float ” Float.parseFloat(String s) |
| Double ” Double.parseDouble(String s) |
| Boolean ” Boolean.getBoolean(String s) |
| Character ” Character.toString(String s) |

The parse method takes a string as a parameter and attempts to convert the string into the appropriate format. For example, let's
say we have a string declared as follows:

String myString = "34.5";

If we then created a double variable and use the parseDouble method of the Double class, we could get the value as follows:
double myDouble = Double.parseDouble (myString) ;

The value of the myDoub1le variable would then be the floating-point value 34.5.

A special case, however, is the Boolean class, which has the getBoolean method that looks for the string t rue or false and
then assigns it appropriately to the Boolean variable (i.e., the method returns a Boolean value).

Note that if the conversion is illegal from, say, the string notation to the primitive data type, then an exception will be thrown (e.g.,
NumberFormatException). We will discuss exceptions in detail toward the end of this chapter.

The Math Class

The Math class contains excellent static methods for performing useful mathematical functions. Here is a table of some of the
most useful methods in the Math class, although you can find a complete overview within the Java 1.4 documentation.

| Method Name ” Use |
abs (float), abs(double), abs(int), Finds the absolute value of a number (i.e., the positive representation)
abs (long)

| ceil (double) ” Rounds the number up to the nearest integer |

| floor (double) ” Rounds the number down to the nearest integer |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

min(float, float), min(double, Finds the smaller of two specified values
double), min(int, int), min(long,
long)
max (float, float), max(double, Finds the larger of two specified values
double), max(int, int), max(long,
long)
pow (double, double) Returns the value of the first parameter raised to the power of the
second parameter
sin(double), cos(double), Finds the trigonometric sine, cosine, and tangent of the specified angle.
tan (double) (Note that the angle is in radians.)
asin(double), acos(double), Finds the arc tangent (sine, cosine, and tangent, respectively)
atan (double)
| toDegrees (double) ” Converts radians to degrees |
| toRadians (double) ” Converts degrees to radians |
random () Returns a positive random double within the range of 0.0 (inclusive) to
1.0 (exclusive)
| sqrt (double) ” Returns the square root of the specified number I
The System Class

The main use for the system class is data output and input from the console window (shown in Chapter 6, "Stream 1/O"). It also
contains a useful method for getting the current system time called System.currentTimeMillis, which returns the current
system time in milliseconds and can be used to limit the frame rate of your application/applet. Note that we will discuss timing in

Chapter 12 in much more detail.
Useful java.util Classes

The java.util package contains many excellent classes for storing data in a variety of different formats—such as linked lists
and array lists. Let's look at the most useful of these classes now.

The ArrayList Class

The arrayList class is used to store object references and is not dissimilar to an array. However, there are many advantages to
using an ArrayList class over an array, depending on the situation of course.

The main advantage of using an ArrayList is that it is dynamic, whereas arrays are of a fixed length. This is useful in many
circumstances for listing data where you do not know the exact size of the list and especially where the size of the list changes at
run time.

An ArrayList manages its capacity automatically (i.e., if you add more object references than the ArrayList can hold, it will
automatically double its size to accommodate the new reference(s)). It is also easy to cycle (iterate) through the list of object
references by means of an iterator, which we will look at soon. Finally, it is also very easy to add, find, and remove objects within
an ArrayList.

Let's see how we can use an ArrayList to store a list of names in this small example program. Here is the complete code listing.

Code Listing 5-8: ArrayListExample. java

import java.util.*;

public class ArraylListExample
{
public static void main(String args[])
{
// Create an ArrayList...
ArrayList myArraylList = new ArrayList();

// Add three 'String' objects to the ArrayList...
myArrayList.add ("Bob") ;

myArrayList.add("Harry");

myArrayList.add ("Fred") ;

// Print two blank lines...
System.out.println("\n");

// Iterate through the ArrayList to print its contents...
Iterator i = myArraylList.iterator();

while (i.hasNext ())

{

String currentObject = (String) i.next();

System.out.println(currentObject);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

When we run this example, we can expect the following output in the console window:

Figure 5-4: Using the ArrayList class

In the example, we first create an ArrayList object with the following line of code:

ArraylList myArraylList = new ArrayList();

Note as well that you can specify a parameter to state how many items you wish the arrayList to initially be able to hold
(remember that it will automatically increase to accommodate more objects though). Here is how we would have declared it to
initially hold 25 object references.

ArraylList myArrayList = new ArrayList(25);

The advantage of preallocating required memory is that it is done first, and then no more memory needs allocating, provided you
stay under the allocated limit, as allocating memory is relatively expensive and should be limited as much as possible when the
game is in its playing stage.

Next, call the add method, which adds object references to the ArrayList. As all classes within Java are inherited from the
Object class, it is safe to cast up to the object class, so in this case the casting is done implicitly. Here is the add method
where we add the string "Bob" to the ArrayList object:

myArrayList.add("Bob") ;

Now we want to print out all of the names from the list, so we need to create an I1terator object, which allows us to cycle
through the ArrayList efficiently. Create the 1terator object and obtain the iterator from our instance of the ArrayList class
by calling the iterator () method. This can be seen in the following line of code:

Iterator i1 = myArraylist.iterator();

Next, create a while loop, which checks for the condition of the iterator having more references in it. This is done by calling the
hasNext method of our Iterator object and can be seen in the following line of code:

while (i.hasNext ())

So if there are references still available in the ArrayList, we need to get the next one and cast it to the appropriate type
(remember all references within an ArrayList are of type 0bject). To get the next reference, call the next () method of the
iterator and simply typecast it to a string. This can be seen in the following line of code:

String currentObject = (String) i.next();

Then from there, we can simply output the string object to the console using the following line of code:

System.out.println(currentObject) ;

Note that using an iterator at run time during a game involves creating an Iterator object each time that you wish to traverse a
list in this way. The creation of many objects during the running of a game in Java can cause many problems involving garbage
collection, notably pauses when the garbage collector takes processor time to handle memory that can cause pauses in other
processing threads (e.g., your main loop). We will discuss garbage collection in detail in Chapter 12. Instead of using an iterator to
traverse a list, the alternative is to use the get method of the ArrayList class (though this is not as efficient as using an iterator
for traversal, but it does not require the creation of Iterator objects—say, for example, per frame in the main game loop). The
get method takes one parameter of type int, specifying the index (position in the list) of the object that you are requesting, which
is returned of type object ready for you to cast down to whatever object you know it is. In the case of the current example, type
"String".

So instead of using the iterator technique, we can traverse the list with the get method as follows.

for (int i=0; i<myArrayList.size(); i++)
{
String currentObject = (String)myArrayList.get(i);

System.out.println (currentObject) ;

}

Note the use of the size method of the ArrayList class that simply returns the number of elements that it contains. If you try to
access an index that is negative or greater than or equal to the size of the list, an ArrayIndexOutOfBoundsException
exception will be thrown. Exceptions are discussed toward the end of this chapter.

Searching and Removing from an ArrayList

As well as adding and cycling through the references contained within an ArrayList, it is also possible to search for an object
and remove objects. Let's now look at an extended version of the previous example where we search for a name and then remove
it. Here is the complete code listing for this example.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Code Listing 5-9: ArrayListSearchRemove. java

import java.util.x*;

public class ArrayListSearchRemove
{
public static void main(String args([])
{
// Create a ArrayList...
ArraylList myArrayList = new ArrayList();

// Add three 'String' objects to the ArrayList...
myArrayList.add("Bob") ;

myArrayList.add ("Harry") ;

myArrayList.add ("Fred");

// Find the position of the 'Harry' object..

int position = myArrayList.indexOf ("Harry");

System.out.println("Harry was found at position
"+position) ;

// Now remove the object at that position...
myArrayList.remove (position) ;

// Print two blank lines...
System.out.println("\n");

// Iterate through the ArrayList to print its contents...
Iterator 1 = myArraylList.iterator();

while (i.hasNext ())

{

String currentObject = (String) i.next();

System.out.println (currentObject) ;

So when we run the example this time, we can expect the following output in the console window.

Figure 5-5: Finding and removing from an ArrayList

So in this example, we created the ArrayList and added the string, as in the previous example, but this time we searched the
ArrayList to find the "Harry" string. We did this by calling the index0£ method to find the position of the object within the
ArrayList. This can be seen in the following line of code:

int position = my ArrayList.indexOf ("Harry");

The index0f method looks through the ArrayList using the specified objects equals method to make a comparison to
each element in the ArrayList. You will note that the equals method is defined in the object method and is therefore
inherited by all classes (all classes being derived from the object class). Therefore, in this example you can see that we have
actually created two different Harry string objects. The reason that our code works, even though these are effectively two different
String objects (one being the testing "Harry" string and the other the original "Harry" string that we passed to the
ArrayList), is because the string class contains its own version of the equals method, overriding what would have been
inherited from the object class. Now, the equals method of the string class tests whether the string character representation
of one string is equal to another object, thus our example still found a match, matching the data instead of whether they were the
same object. We felt that the structure of this example may have been a bit misleading to begin with but decided to leave it in to
illustrate this fact. If we were testing the equality of an actual object (that is, if the actual object parameter is the same as the one
stored in the list and not its data values), we would need to both pass in the same object and provide a reference to it in the
index0Of method also. For example, the following code shows us adding a Person object to the ArrayList and then searching
for it.

Person peterWalsh = new Person();

myArrayList.add (peterWalsh);

int position = myArrayList.indexOf (peterWalsh);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Here we add and retrieve the same object, whereas before they were different. So as a final note, you should realize that the
equality test is based on how the equals method of the parameter object is defined. For example, in the java.awt package
there is a class named point that simply represents an x and y coordinate. This method also overrides the equals method and
defines that it will return true if the argument object is of type Point and also contains the same values for its x and y
coordinates.

When it finds the object, it returns the index of the object that you may then pass to the get method for retrieving the object. Note
that if the object could not be found, the method will return -1.

In our example, once we have the position of the object, we can then pass this position into the remove method of the
ArrayList object, and the reference will be removed from the ArrayList. Also note that the remove method returns a
reference to the object as well as removing it from the list. This method can be seen in the following line of code:

myArrayList.remove (position) ;

Note as well that we could have also just specified the object in the remove method that takes an object parameter for the
same effect:

myArrayList.remove ("Harry");

Note There is also a very similar class to ArrayList called vector. It has the same functionality as the ArrayList class.
However, all of its methods are synchronized—see Chapter 7, "Threads" for a good explanation of synchronization. If
synchronization is not an issue for your code, the best choice is the ArrayList, basically because it has faster access
times.

The LinkedList Class

The LinkedList class is very valuable to us. You will especially like this class if you are familiar with the C programming
language, as it makes linked lists very easy to implement and they are highly useful.

The LinkedList class is in fact very similar to the ArrayList class; however, it gives us optimized methods for adding
elements to the beginning and end of the list. Let's look at a simple code example where we add the numbers 1 through 5 to a
linked list and display them to the console using an iterator. We will define the integer values by creating instances of the integer
wrapper class to store the values as an object so that they can be added to the linked list, as a primitive data type alone cannot
be.

Code Listing 5-10: LinkedListExample.java

import java.util.*;

public class LinkedListExample
{
public static void main(String args[])
{
// Create a LinkedList...
LinkedList myLinkedList = new LinkedList () ;

// Add five 'Integer' objects to the LinkedList...
Integer tempInt = new Integer (3);
myLinkedList.add (tempInt) ;

tempInt = new Integer(2);
myLinkedList.addFirst (tempInt) ;

tempInt = new Integer(1l);
myLinkedList.addFirst (tempInt) ;

tempInt = new Integer (4);
myLinkedList.addLast (tempInt) ;

tempInt = new Integer (5);
myLinkedList.addLast (tempInt) ;

// Print two blank lines...
System.out.println("\n");

// Iterate through the LinkedList to print its contents...
Iterator i = myLinkedList.iterator();

while (i.hasNext ())

{

Integer currentObject = (Integer) i.next();

System.out.println (currentObject) ;

When you compile and execute the example, you should see the following output in the console:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 5-6: Using the LinkedList class

As you can see, using the LinkedList class is very similar to using the ArrayList class. The point of the example was to show
how you can add elements to both the beginning and end of the list using the addFirst and addLast methods. In the example
we do not add the numbers in order. However, by using the addFirst and addLast methods, we have added them to the list so
they are in order in the list.

As well as addFirst and addLast, there is also removeFirst and removeLast to remove the first and last elements from the
linked list.

The Stack Class

The stack class allows you to maintain a stack (pile) of references, where the last reference to be added is taken off first by a
technique called pushing and popping. Object references are "pushed" onto the top of the stack. Then you can "pop" the top
reference off the top of the stack and regain the reference. Let's look at an example of this in action.

Code Listing 5-11: StackExample. java

import java.util.x*;

public class StackExample
{
public static void main(String args([])
{
// Create a Stack..
Stack myStack = new Stack();

// Push three strings onto the stack...
myStack.push ("First");

myStack.push ("Second") ;

myStack.push ("Third") ;

// Print two blank lines...
System.out.println ("\n");

while (myStack.empty () == false)
{
String currentObject = (String) myStack.pop();

System.out.println(currentObject);

When you run the stack example, the following should be visible in the console:

Figure 5-7: Using the Stack class

We "push" them onto the First, Second, and Third, and they are "popped" off in the reverse order of Third, Second, then finally
First.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Okay, so we first create the stack object called myStack using the following line of code:
Stack myStack = new Stack();

Then we call the push method of the stack class to add three st ring objects. This can be seen here:

myStack.push ("First");
myStack.push ("Second") ;
myStack.push ("Third") ;

Next, we create a while loop with the condition that the stack is not empty simply by calling the empty method of the stack
class, which returns t rue if the stack is empty and £alse otherwise. Here is the line of code that this can be seen in:

while (myStack.empty () == false)

Then within the while loop, we call the pop method of the stack class, which returns the top reference from the stack and then

removes it. As with the ArrayList and LinkedList classes, they store references of type object, so we need to cast the
reference back to begin a string. This can be seen in the following line of code:

String currentObject = (String) myStack.pop();

As well as pushing into and popping from the stack, it is possible to use the peek method, which allows you to examine the top
reference on the stack without actually popping it off the stack.

The Random Class

Although the rRandom class does not help with data storage, it provides a very useful means of generating random numbers (this
class is far more flexible than the random method in the Math class). Let's look at a table of some of the useful methods that this
class contains. (Note that the methods are not static, so you need to create an object from the class to use them.)

Method Name H Description

nextInt () This method returns a random integer within the full range of the integer data type
(negative and positive).

nextInt (int) This method returns a random integer in the range of zero (inclusive) to a maximum of
the integer parameter specified (exclusive).

nextLong () This method returns a long value within the complete range of the long data type (positive
and negative).

nextFloat () This method returns a floating-point value within the range of 0.0 (inclusive) and 1.0
(exclusive).

nextDouble () This method is the same as nextFloat, but with more accuracy due to being a double
instead of a float.

nextBoolean () “ This method returns either t rue or false randomly.

setSeed (long) This method allows you to "seed" the random number. See below for an explanation of
seeding.

Seeding Random Numbers

To generate a truly random sequence, a good idea is to seed a random number with the current system time, which you can get
by calling the currentTimeMillis static method of the system class in Java, for example. However, there may be a time when
you want to seed a random number to replicate random sequences of numbers. A good example of this is using a client-server
system where you may have, for example, two clients and a server. If the server were to select a random seed, it could then send
this seed to both clients to which they can then create the same random number sequence to perform calculations themselves,
giving the same results yet still based on the initial random seed, provided you want to calculate the same random results on both
clients, the result being that you reduce the server's workload.

= [+erivious Pt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Error Handling

"Insanity: doing the same thing over and over again and expecting different results."
—Albert Einstein (1879-1955)

The worst thing about programming has to be having bugs in your code. In most cases the bug is a simple error, which you spend
ages looking for only to realize that you commented out the call to the method that you're attempting to debug about half an hour
earlier. We will now look at exceptions and assertions and how they are used for handling errors in Java.

Exceptions

In Java, run-time errors are handled using exceptions. Exceptions are objects that are created when your program does
something that is deemed to be irregular. When an exception occurs, it is said that an exception has been "thrown." When this
happens, the exception must be handled, and it is said that the exception must be "caught." A common exception is the exception
ArrayIndexOutOfBoundsException, which is thrown by the Java Virtual Machine when an attempt is made to access an
illegal index in an array (where no element exists at the specified index).

So let's make a program that causes this exception to be thrown and then run it and see what happens. If you have not already
seen what happens when an exception is thrown, you have either been very careful or very lucky. In any case, the following
BrokenArray.java example is designed to cause an exception to be thrown. In it we create an array of type int of length 10.
We will then attempt to continually assign values to the elements of the array using a for loop without a termination condition.
This means that the value of the counter variable in the for loop, which we will use as the array index value, will continue to
increment until its value becomes the value of an invalid index in the array, causing an exception to be thrown. Here is the code
for BrokenArray.java

Code Listing 5-12: BrokenArray. java

public class BrokenArray

{
public static void main(String args[])
{

int[] value = new int[10];

for(int i=0;; i++)

{
System.out.println("index = " + 1i);
value[i] = 1i;

When you compile and run this code, you should get output similar to the following figure.

Figure 5-8: The exception is not caught

As you can see, when the example application attempts to access the tenth element of the array value, which does not exist, an
ArrayIndexOutOfBoundsException exception was thrown and the application was terminated. So how do we handle this sort
of thing? We need to "catch" the exceptions that are "thrown" by the virtual machine.

Using try/catch and finally

Now that we have seen an exception being thrown by the JVM (Java Virtual Machine), let's make a maodification to the previous
array example so we can catch the exception. We catch the exception by using a try/ catch block, which first tries to execute a
section of code and, if an exception is thrown within the t ry statement, the interpreter then checks the catch statements to see if
the exception has been caught. Let's look at the modified code listing for the previous example, where we now catch the
ArrayIndexOutOfBounds exception.

Code Listing 5-13: BrokenArrayHandled. java

public class BrokenArrayHandled

{
public static void main(String args/[])
{

int[] value = new int[10];

try

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

for (int 1=0;; i++)
{
System.out.println("index = " + 1i);
value[i] = 1;
}
}
catch (ArrayIndexOutOfBoundsException e)
{
System.out.println ("Caught: "+e);
}

When we execute the example now with the try/catch block in it, we can expect the following output.

Figure 5-9: The exception is now caught by the try/catch block

So in this example, we placed our for loop within the t ry block, meaning that if any exceptions are thrown within this block, they
will be caught in the catch block, provided that the catch block actually handles the exception. Note that it is also possible to
have multiple catch blocks in case it is possible for more than one type of exception to be thrown within the t ry block. For
example:

try

{

}
catch (Exceptionl e)

{
}

catch (Exception2 e)

{
}

When an exception is thrown, it is then passed into the catch block as a parameter. The base class of all exceptions is the
java.lang.Exception (readily available) class to which all other exceptions are derived.

catch (Exception e)

{

System.out.println ("Exception caught: "+ e);

}

In this code, when an exception is thrown, the Exception object referenced by "e" will then contain information about the
exception, and calling the tostring method of the Exception class (or by simply printing the object, which will call its
toString method automatically) will give more detailed information about the exception and is a good technique for adding to
catch blocks that are not expected to be reached.

As all exceptions are derived from the Exception class, it is sometimes useful when a number of classes can be thrown to just
have one catch block, catching an exception of type Exception as we have just seen (all types of exceptions will be caught by
this catch block). Note the following example:

int myArray[] = null;

try
{

myArray[7] = 77;
}
catch (Exception el)
{

System.out.println ("Caught 1: "+ el);
}
catch (ArrayIndexOutOfBoundsException e2)
{

System.out.println ("Caught 2: "+ e2);
}

This code will not compile because the first catch block will catch any exceptions, including the
ArrayIndexOutOfBoundsException thatis derived from Exception. However, if we swap these catch blocks around, we

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

can first attempt to catch the more specific ArrayIndexOutOfBoundsException and then attempt to catch any other types of
exceptions that may have been thrown. The following code will now compile:
try
{
myArray[7] = 77;
}
catch (ArrayIndexOutOfBoundsException e2)
{
System.out.println ("Caught 2: "+ e2);
}
catch (Exception el)
{
System.out.println("Caught 1: "+ el);
}

An important distinction that you need to be aware of is that exceptions that are derived from the RuntimeException exception
(which is itself a direct subclass of the Exception class) do not need to be caught if "declared to be thrown" by a given method.
We will look at throwing exceptions in a moment.

For example, the ArrayIndexOutOfBoundsException exception is in fact derived from the Runt imeException class and
does not need to be caught or "declared to be thrown" (we will see about this in a moment also).

When catching an exception, a very useful method that belongs to the Exception object passed to the catch block is the
printStackTrace method, which prints out a back-trace of the error that can indicate the paths through the code where the
exception came from. This obviously helps the debugging process. For example, we could use the following code in our catch
block to print the stack trace:

catch (Exception e)
{

e.printStackTrace () ;
}

If this code is invoked, it will print out information on the classes, methods, and error-causing lines in those methods, tracing the
error through its invocation path, which is a great help for debugging when you can see the line of code where the error occurred.

Using the finally Block

There is also the finally block that we can add after the catch block(s). Regardless of whether the t ry block throws an
exception or not, the finally block is always executed at the end, even if a return statement is present in either of the try or
catch blocks.

A good example of a use for the finally block would be if you were to open and manipulate a file within the try block. It would
then be possible for the t ry block to throw an exception at any time and miss the rest of the code within the t ry block, meaning
the file could be left open. So in this case it would be a good idea to close the file within a final1y block. Here is the pseudocode
for this:

try
{
// open and manipulate the file
}
catch (Exception e)
{
// print an error message to the user
}
finally
{
// close the file handle and perform any other cleanup
// operations

}

Another thing to note regards the use of the keyword return where the £inally block is involved. If we say that in the try
block there is a scenario that can lead to a return being made, where the method we are in is exited, then in this case the method
will not exit right away. Instead, before the return statement is executed, the final1y block is first invoked and then the method
returns. This is also the same for making a return call in a catch block with the final1y block.

Another possible avenue to be aware of, as we are being ultra picky, is if you were to have not only a return call in the try block,
but also a return call in the final1y block. In this case the return call in the t ry block is never executed because when it is
reached, the finally block is first executed and then the method returns from there before it is able to return to the original
return statement within the try block.

Throwing Exceptions

Another useful piece of information is that you can throw an exception back from a method so that the method it was called from
can handle it. Let's look at another modified version of the Brokenarray example where we created a new static method to print
the array. The full code listing for this example can be seen here:

Code Listing 5-14: BrokenArrayThrow. java

public class BrokenArrayThrow
{
public static void printArray() throws
ArrayIndexOutOfBoundsException
{

int[] value = new int[10];

for (int i=0;; 1i++)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

System.out.println("index = " + 1);
value[i] = 1i;

}

public static void main(String args([])

{

try
{
printArray();
}
catch (ArrayIndexOutOfBoundsException e)
{
System.out.println ("Caught: "+e);
}

As you can see from the code, we have appended throws ArrayIndexOutOfBoundsException to the declaration of our new
static method printaArray, meaning that if that exception is thrown within the method, it will throw it back to the method that
called it. In this case it is the main method, where we handle the exception as we did before.

Throwing Your Own Exceptions

As well as catching the standard Java exceptions, you can also make and throw your own exceptions. Keep in mind, though, that
throwing exceptions has many overheads and is best kept to a minimum.

First we need to create our exception class called MyException, which will extend the Exception class that is part of the
java.lang package. The full source listing for the MyException class can be seen here:

Code Listing 5-15: MyException. java

public class MyException extends Exception
{
public MyException(String theProblem)
{
super (theProblem) ;
}

As you can see, all we do here is create a public class called MyException, which extends the Exception class. Then we
create a constructor, which accepts a string as a parameter. We then pass this parameter to the constructor of the super class
(Exception).

Next we need to create a small program to test our exception by throwing it using the throw keyword, and then we will attempt to
catch it. The complete listing for this application can be seen here:

Code Listing 5-16: TestApp.java

public class TestApp
{
public static void main(String args([])
{
try
{
MyException myException = new MyException ("My Error
Message") ;
throw myException;
}
catch (MyException e)
{
System.out.println ("Caught: "+e);
}

When we run the code, we see the following output in the console window:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 5-10: Catching our own exception

So within the t ry block, we first create an instance of our exception class using the following line of code.

MyException myException = new MyException("My Error Message");

Once we have that, we can then "throw" the exception using the throw keyword, as can be seen in the following line of code.

throw myException;

After it is thrown, the execution will then go to the catch statements and look for one that can handle a MyException exception.
So we declare our catch block as follows:

catch (MyException e)
{

System.out.println ("Caught: "+e);
}

This means that it will catch a MyException exception and reference it with the e object.

Note When creating your own exception, the printStackTrace method will work similarly with your exception objects as
with the standard exceptions, as we discussed earlier.

Errors

Errors are similar to exceptions; however, you should not attempt to catch them. All errors are derived from the
java.lang.Error class. The following table shows three of the most common types of error classes:

Error H When it occurs:

LinkageError A LinkageError is caused by serious problems occurring within your application, such as
trying to create an instance of a class that does not exist. It is pretty much impossible to
recover from a LinkageError being thrown.

VirtualMachineError ||As with the LinkageError, a VirtualMachineError is very serious and occurs in such events as
running out of memory and resources.

ThreadDeath A ThreadDeath error is the least important and is thrown on the termination of an executing
thread, whether intentional or accidental.

It is possible to attempt to catch these errors, but there is really little point, as it will be very difficult if not impossible to recover
from them. Your best bet is to read what the error was and go back to the code to try and work out what the problem was.

Assertions

Assertions are new to Java 1.4 and are an excellent tool to assist you in debugging your application and applet games. Assertions
are simply a way to test situations where you would normally make assumptions as to the values of variables. For example, you
could test that an age is not a negative number.

Let's look at a very simple example where we use the assert keyword to test if a Boolean variable called testvalue is true or
not.

Here is the complete code listing for this example:

Code Listing 5-17: TestApp. java

public class SimpleAssert
{
public static void main(String args([])

{
boolean testValue = true;
assert testValue;

testValue = false;

assert testValue;

As the assert keyword is new to the Java language since the 1.4 release of the SDK, we need to compile the code using the -
source parameter, where we specify 1.4. Here is the complete command we use to compile the code:

javac -source 1.4 SimpleAssert.java

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Then when we execute the application, we need to enable assertions by using either the -enableassertions parameter or the
-ea parameter. The complete command for executing the example is as follows:

java -enableassertions SimpleAssert

So when we run the application, we should expect to see the following output:

Figure 5-11: Simple assertion

As you can see from the screen shot, the java.lang.AssertionError error was thrown on line 11, which happens to be the
line where we assert the testvalue variable when it is false.

So an assertion will only throw an error if the test case turns out to be false. Let's look at some situations where using assertions is
useful.

Assertions in Control Flow

Assertions can be used to detect if the execution is reaching areas that it should not be. For example, let's look at this simple
method:

public int returnNumber (int myNumber)
{
if (myNumber > 0)
{
return myNumber;

}

else

{

return 0;

}

assert false;

}

In the example above, you can see that the assert should never be reached, as the method returns from both the i £ statement
and the else statement.

Think of assert as a sort of security blanket for you. In the previous example the execution would never reach the assert, butin
more complex code there would be no reason not to put one there, just in case.

Assertions in Internal Invariants

Impressive section heading, eh? It is really nothing complicated. Basically, it is about using assertions to test assumptions, which
are made within the e1se statements of i £/e1se blocks and also within the default case of switch statements.

Let's say you have, for example, an i f statement to test a condition like the following:
if (i > 0)
{
// true statement code here..
}

Then if you append an else block to the end, you are making the assumption that the i variable will be less than or equal to zero.
if (i > 0)
{

// true statement code here..

}

else

{

// you assume that 'i' is equal or less than zero here
}

So, you could place an assertion in the e1se statement to ensure that i is equal to or less than zero. Our statement would then
look as follows.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

if(i > 0)
{
// true statement code here..

}
else

{

assert 1 <= 0;

}

Another useful part of assertions is that you can also store a numeric value within the assertion. If we use the previous example
and store the i variable, the assert line would then look as follows:

assert 1 <= 0 : i;

Therefore, if the AssertionError is thrown, the value of i will also be printed. Also, note that where we add the i after the
colon (:), we can also add other data types, such as string values for more informative error reporting.

Other Useful Notes

By default, assertions are turned off. If you remember in the previous assertion example that we compiled and ran, you were
required to add the -enableassertions parameter so that the assertions would be used. If this parameter is omitted from the
command line when running your program, the assertions will not be enabled. When assertions are not enabled, any assertion
statements in your code will be ignored, so you need to be careful that you do not actually place any important code in the
assertion statement. Here is an example of some bad assertion code:

assert i++ > 0; // bad

If assertions were switched on, the assertion would test if i were greater than zero and increment i's value by one. Of course, if
assertions were off, the line would not be executed; therefore, i would not be incremented, which could have other implications
within your program.

The best way around this is to create a Boolean variable to store the result and test the Boolean variable with the assertion. Here
is a better way to perform the previous assertion:

boolean result = i++ > 0;
assert result; // good

[Toam 1o | [revvious e o)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[+ervvious Lt]

Summary

In this chapter we learned how to use packages in Java as well as create our own packages. Then we looked over some of the
useful classes within the standard packages. Finally we covered how to handle errors within your applications and applets. In the
next chapter you will learn how streams and files work in Java. We will look at retrieving keyboard entries in the console window,
allowing us to take a look at making a simple console game of tic-tac-toe.

[+ervvious Lt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Takatat L) [« FrEvinu]
Chapter 6: Stream 1/O

"What goes in, must come out."
—Glenn and Andrew

Introduction

In this chapter, you will learn how to utilize streams and files in your games. Files are especially useful if you do not have access
or simply do not wish to use a database for storing your data. In fact, for single-player games, it really makes more sense to use
files to save (for example, players' saved games or high scores). An important use of files is for loading in specific game data,
such as a file storing level data. The key aspects of this chapter cover writing data to a file, reading data in from a file, and then
finally how to save and retrieve entire objects (classes) to and from a file by using serialization.

[+erevons Lt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toam Liz [+ erevious Pt v

Introduction to Streams

A stream is simply an abstract representation of a physical input or output device. A stream can be thought of as a pipe that bytes
of data flow through, and therefore data can be both read to and written from a stream.

As you have probably guessed, there are two forms of streams: input streams and output streams. Examples of input streams are
a keyboard, disk file, or remote network application that is sending data. Examples of an output stream are a disk file, a console
window, or even a printer.

[+erivious Pt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam 1o | [eiviovs [o]

Console Input

Now that we have a basic understanding of streams, let's see how we can get user input from the console window. In this example
we will be using System. in, which is an instance of the Inputstream class and is normally connected to the keyboard.
However, to make use of the InputStream, we need to create a Buf feredReader so that we can read lines of input from the
console window. Let's now look at a complete example to see how we can get console input from the user.

Code Listing 6-1: Console input

import java.io.*;

public class ConsoleInputExample
{
public ConsoleInputExample ()
{
BufferedReader keyboard = new BufferedReader (new
InputStreamReader (System.in)) ;

String inputStr = new String();

System.out.println("Type something and press enter...");
System.out.println("Type \"quit\" to exit");

try
{
while (! (inputStr=keyboard.readLine ()) .equalsIgnoreCase
("quit™))
{
System.out.println("You typed in: "+inputStr);
}
}
catch (IOException e)
{
System.out.println (e) ;
}
}

public static void main(String args([])

{

ConsoleInputExample mainApp = new ConsoleInputExample();

}

When we execute the example console application and then type in some sample data (each followed by the Enter key), we can
see that it will look like the following figure.

Figure 6-1: Console input example

Our console application basically takes a line of input from the user, stores it in a string, and finally outputs it back to the console.
The only special case is if the user types in "quit," in which case the application terminates.

Let's now look at the code and see how it works. First we include the java.io.* package so we have access to all the input
classes (such as the Buf feredReader).

Next we create a Buf feredReader object, which we create by first creating an InputStreamReader, passing in our
System.in stream as a parameter to its constructor. This can be seen in the following code:

BufferedReader keyboard = new BufferedReader (new
InputStreamReader (System.in)) ;

Once we have our Buf feredReader object, which we have called keyboard, we then create a string called inputstr so we
can store the data we read in.

Next, we create a while loop and then attempt to read a line of input from our keyboard object. Basically, this will wait until the
user presses the Enter key, and then it will get all the characters that were pressed before the Enter key and store them in the
inputstr string. Notice also how we check if the string is equal to the string quit (ignoring case). This is simply to allow the

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

code to quit out of the program.

while (! (inputStr=keyboard.readLine()) .equalsIgnoreCase ("quit"))

This code might look a little strange, but it is quite straightforward. We first call the readLine method of the keyboard object,
which blocks (waits) until the user enters the data and presses the Enter key. Once this is done, the entered string is assigned to
inputStr, which is then the value used to compare with the string literal quit for testing if the while loop terminates or not.

If the user did not enter quit, simply output what the user entered.

All we are left to do now is catch the possible I/O exception and finish the while loop. Catching the exception can be seen here:

catch (IOException e)
{

System.out.println(e);
}

The 10Exception exception is the base of all exceptions relating to problems with input and output. You will encounter this
exception a lot, notably later on in the book when we utilize streams for networking in Chapter 17, "Introduction to Networking."

Console Game Example—Tic-Tac-Toe

Now that we know how to get input from the user via the console window, we are all set to produce some kind of logical game with
user interaction and game logic, albeit from the perils of doom that is the ASCII console window. Let's look at a very simple
console game called tic-tac-toe. In case you don't know how to play tic-tac-toe, the idea of the game is to get a line of three O's or
X's (depending on which player you are) on a board consisting of 3x3 squares. Let's first look at the complete source code for this
example, and then we will take a look at how the code works.

Code Listing 6-2: Tic-tac-toe example

import java.io.*;

public class TicTacToe
{
public void start()
{
char inputChar = ' ';
String inputLine = null;
initializeGame () ;
drawGameState () ;

BufferedReader reader =
new BufferedReader (
new InputStreamReader (System.in));

// wait for input from player
inputLine = reader.readLine();
if (inputLine.length() == 1)
inputChar = inputLine.charAt (0);
else
inputChar = (char)-1;
}
catch (IOException e)
{
System.out.println (e);
}

// handle the input
handleInput (inputChar) ;

// print output
drawGameState () ;
} while (programRunning) ;
}

public void initializeGame ()
{
// clear the board
for (int i=0; i1<BOARD_SIZE; i++)
for (int j=0; J<BOARD SIZE; j++)
board[i][3] = " ';

// initialize move variables
moveCounter = 0;

turn = 0;

moveType = COLUMN;

System.out.println ("Start playing Tic-Tac-Toe");
}
public boolean checkForWin ()
{

char symbol = SYMBOL[turn];

// check vertical win

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Labell:
for (int i=0; i<BOARD_SIZE; i++)
{
for (int j=0; J<BOARD SIZE; j++)
if (board[i] [j] != symbol)
continue Labell;

// if reached, winning line found
return true;

}

// check horizontal win
Label2:
for (int j=0; J<BOARD_SIZE; j++)
{
for (int i=0; i<BOARD SIZE; i++)
if (board[i] []j] != symbol)
continue Label2;

// if reached, winning line found
return true;

}

// check back slash diagonal win
for (int i=0; i<BOARD_SIZE; i++)

if (board[i] [i] != symbol)
break;
else if (i == BOARD_SIZE-1)
return true; // winning line found

// check forward slash diagonal win
for (int i=0; i<BOARD SIZE; i++)

if (board[i] [BOARD SIZE - i - 1] != symbol)
break;

else if (i == BOARD_SIZE-1)
return true; // winning line found

// 1f reach here then no win found
return false;

}

public void makeMove ()
{
// is board position available
if (board[moveCoords [COLUMN]] [moveCoords [ROW]] == ' ')
{
// make move
board[moveCoords [COLUMN]] [moveCoords [ROW]] = SYMBOL[turn];
moveCounter++;

if (checkForWin () == true)
{
// player has won
drawBoard () ;
System.out.println ("Congratulations, " + SYMBOL[turn]
+ "'s win the game");

// start new game
initializeGame () ;

}

else if (moveCounter == (BOARD_SIZE * BOARD_SIZE))

{
// no win and board is full, so the game has been drawn
System.out.println ("Game drawn");
drawBoard () ;

// start new game
initializeGame () ;
}
else // else continue playing game, change turn
turn = (turn + 1) % 2;
}
else
System.out.println("Illegal move, board position already
filled");
}

public void handleInput (char key)
{

switch (key)

{

case 'q': case 'Q':
// quit the game
programRunning = false;
break;

case '0': case 'l': case '2':

// move coordinate entered

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

moveCoords [moveType] = Integer.valueOf (String.valueOf
(key)) .intValue () ;
if (moveType == ROW)
{
makeMove () ;

moveType = COLUMN;
}

else // moveType is curently COLUMN coordinate
moveType = ROW;
break;
default:

// invalid input to game

System.out.println ("ERROR: Invalid entry, this input
has no function");

moveType = COLUMN;

}

public void drawGameState ()
{
if (moveType == COLUMN)
{
drawBoard () ;
System.out.println("Type 'g' to quit program");
System.out.println (SYMBOL[turn] + "'s move...");
System.out.print ("Enter column number ->> ");
}
else
System.out.print ("Enter row number ->> ");

}

public void drawBoard()

{
System.out.println(); // new line
System.out.print (" ");

for (int i=0; i<BOARD SIZE; i++)
System.out.print (" " + 1i);

System.out.println(); // new line
for (int j=0; j<BOARD SIZE; j++)
{

System.out.print(j + " [");

for (int i=0; i<BOARD_SIZE; i++)

System.out.print (board[i] [j] + "[|");
System.out.println(); // new line
}
System.out.println(); // new line

}

public static void main(String args/[])
{
TicTacToe game = new TicTacToe() ;
game.start () ;
}

private final int BOARD_SIZE = 3;

private final int COLUMN = 0;

private final int ROW = 1;

private final char SYMBOL[] = {'O', 'X'};

private boolean programRunning = true;
private char board[][] = new char[BOARD SIZE] [BOARD SIZE];
private int moveCoords[] = new int[2];

private int moveCounter;
private int turn;
private int moveType;

When we run the console example, we can see that it draws the board and then awaits input from the user. This can be seen
here:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 6-2: The tic-tac-toe game

When a move is given, it then redraws the board showing the move that was made or it displays an error message if the move
was invalid. Between moves, we work out the consequences of the move (i.e., who's won or if there is a tie). Let's look at the code
that we used to create this simple (yet fun) game.

The first method that is called is of course the main method, so let's take a look at this method first:

public static void main(String args[])
{
TicTacToe game = new TicTacToe();
game.start () ;

}
All we do in the main method is create an instance of our TicTacToe class and then call its start method.

The start method is used to first set up the game and then goes into a do/while loop, known generally as the game loop, until
the user requests that the game terminates. Let's look at the code we have used in the initialization part of the start method
now.

First we create a variable called inputChar to hold the character that was entered by the player, which we will extract from the
line the player inputs that will be held in a variable called inputLine. We create these two variables with the following two lines
of code:

char inputChar = ' ';
String inputLine = null;

Next, we call the initializeGame method, which looks like the following:

public void initializeGame ()
{
// clear the board
for (int i=0; i<BOARD SIZE; i++)
for (int j=0; J<BOARD_SIZE; Jj++)
board([i][]j] = " ';
// initialize move variables
moveCounter = 0;
turn = 0;
moveType = COLUMN;

System.out.println("Start playing Tic-Tac-Toe");
}

In this method, we first create an empty board array to store the positions where the players will place their Os or Xs, and then
we initialize three variables that we will use to control the actual flow of the game, which will be discussed later.

After we have initialized the game, we call the drawGamestate method to display the board and prompt the user for input. Note
though that this function does not actually request any input from the user. It simply displays the board data and shows text on the
screen asking the player for the input. This method can be seen in the following block of code:

public void drawGameState ()
{
if (moveType == COLUMN)
{
drawBoard () ;
System.out.println("Type 'q' to quit program");

System.out.println (SYMBOL[turn] + "'s move...");
System.out.print ("Enter column number ->> ");

}

else

System.out.print ("Enter row number ->> ");

}

Notice that we only draw the board if the player is entering the column value to make a move, as this is the first of two entries per
move, so we only need to refresh the board at the beginning of the two required inputs: the column and the row moves.

After the game state has been written out to the console, we then initialize a Buf feredrReader, as we did in the previous console
input example, so we are able to take input in from the user for retrieving the given column or row value. We create our
BufferedReader object with the following line of code.
BufferedReader reader =
new BufferedReader (
new InputStreamReader (System.in));

Next, start the main game loop, which will execute until our program is terminated. Once in this loop, we attempt to get input from
the user by reading a line from the console. This is accomplished with the following code segment.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

try

// wait for input from player
inputLine = reader.readLine();

Once we have the input string, extract the first character from it with the following code segment:

if (inputlLine.length() == 1)
inputChar = inputLine.charAt (0);
else
inputChar = (char)-1;

Note that we also check if the text input from the user was of length 1, hence one single character, as our input mechanism works
with single characters. If it was not 1, set the input character to -1, which will represent an invalid character later on when we
analyze this input value. Otherwise, assign the character to our inputChar variable.

Now that we have the character, pass it to the handleInput method with the following line of code:
handleInput (inputChar) ;

Let's look at how this method deals with the input now. Switch the character and check if it was either q, 0, 1, or 2 (or some other
character). If the letter g was entered, we know that the user wishes to terminate the game, so we set the programRunning
variable to false, which is used as the condition for termination for the main game loop.

If the user entered 0, 1, or 2, first get the integer value of the character that was entered with the following line of code:

moveCoords [moveType] = Integer.valueOf (String.valueOf
(key)) .intValue () ;

As you can see, we set the given moveCoords array element to the integer value of the character entered, using the moveType
variable to determine whether this number relates to the column or row (0 and 1, respectively, in the moveCoords array). As we
get the column from the user first and then the row, we need to make a check to see if the input type is the second coordinate
(i.e., the row), meaning that the complete move has been entered. If it has, we can then make the move by calling the aptly
named method makeMove and then set the moveType back to column. We will look at the all-important makeMove method in a
moment. If the move entered was the first input (column), simply set the next input type to row. Note that if the input was not valid
(i.e., it did not match any of the cases), the switch will jump to the default statement, which prints an error message to the
screen and resets the moveType variable to be the column to restart the move. This can be seen in the following code:
default:

// invalid input to game

System.out.println ("ERROR: Invalid entry, this input has no

function");
moveType = COLUMN;

Now that we know how the input is handled, let's look at what happens when we call the makeMove method.

First check if the board at the select position is empty. This is done with the following i £ statement:

if (board[moveCoords [COLUMN]] [moveCoords [ROW]] == "' ")
{

If the space on the board is free, set the position of the board to the player's symbol and increment the moveCounter, which
records the number of moves that have been made in the current game. Here are the two lines of code we use to do this:

board[moveCoords [COLUMN]] [moveCoords [ROW]] = SYMBOL[turn];
moveCounter++;

Next check if the player has won the game by calling our checkForWin method. We will look at this method in a moment. If the
player has won, draw the board by calling the drawBoard method to show the victorious board and then display a line of text
informing the player that he/she has won. After this, call the initializeGame method to set up the application for the next
game. This can be seen in the following block of code:

if (checkForWin () == true)
{
// player has won
drawBoard () ;
System.out.println ("Congratulations, " + SYMBOL[turn]
+ "'s win the game");

// start new game
initializeGame ()

}

If the player has not won, we need to check if there are still moves available on the board to check for a tie. To check for this,
simply compare the area of the board (i.e., the width multiplied by the height) with the current moveCounter. If the moveCounter
is equal to the total area of the board, the game is drawn and we need to tell the players and once again initialize a new game.
This can be seen in the following block of code:

else if (moveCounter == (BOARD SIZE * BOARD SIZE))

{
// no win and board is full, so the game has been drawn
System.out.println ("Game drawn");
drawBoard () ;

// start new game
initializeGame () ;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

So if the player has not won and the game is not drawn, we simply need to change the current turn to the other player, which is
accomplished with the following code:

else // else continue playing game, change turn
turn = (turn + 1) % 2;

The code (turn + 1) % 2 simply turns an odd value into "0" and an even value into "1", hence we swap turns either from 0 to 1
or vice versa.

Finally, we need to add an e1se statement for our initial i £ statement, which will catch if the player has tried to place their counter
on a board position that is already taken. This is done with the following two lines of code:
else
System.out.println("Illegal move, board position already
filled");

Now the important part of this game is the checkForwin method. This method simply needs to check the conditions for a win in
the game of tic-tac-toe. The possible wins consist of three horizontal checks, three vertical checks, and two diagonal checks for
three matching symbols in a line. This is quite straightforward. For example, look at the code to check for a vertical win:
// check vertical win
Labell:
for (int i=0; i<BOARD SIZE; i++)
{
for (int j=0; Jj<BOARD SIZE; j++)
if (board[i][j] != symbol)
continue Labell;

// if reached, winning line found
return true;

}

This code simply iterates across the three column coordinates, each time checking if all three of the row elements are equal to the
given symbol. If one symbol does not match the move symbol in the nested loop, we continue the first loop using a continue
label statement (these were discussed in detail in Chapter 2). The other checks in this method work in the same way.

= (e rvvions Lt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team L8 | [« Frrviou]
Writing Data to a File

Let's now look at a working example of how we could easily write a player's name and high score to a file in the same directory as
we executed the code. Note that the player's name will be a string value and the score will be an integer.

Code Listing 6-3: Writing data to a file

import java.io.*;

public class SimpleWrite
{
public SimpleWrite ()
{
// Hard code the players name and score...
String playerName = "George";
int playerScore = 125;

// Create out file object...
File theFile = new File("output.txt");

try
{
// Create a data output stream for the file...
DataOutputStream outputStream = new DataOutputStream(new
FileOutputStream(theFile)) ;

// Write the data to the output stream...

// ->> the name...
outputStream.writeUTF (playerName) ;

// =>> the score
outputStream.writelInt (playerScore);

// Close the output stream...
outputStream.flush () ;
outputStream.close();

}

catch (IOException e)

{
System.out.println(e);

}

public static void main(String args([])
{
SimpleWrite mainApp = new SimpleWrite();

}

When we run this console application, we can see that it has written a file called output . txt to the same directory from which
the application was run. Here is how the file we write looks when we open it in Notepad:

Figure 6-3: How our output file looks

As you can see from the above image, the file we have written is not just plain text but is instead in binary format. Because of this,
it makes it much easier to read information back from the file into Java, as we will see in the next example.

For now though, let's look at how the code works to allow us to write the file. Start by creating two variables with information that
we wish to write to the file: one a string value and the other just an integer value. This is done with the following two lines of code:
String playerName = "George";

int playerScore = 125;

Next we need to create a file object, which will create an empty file on the hard drive (or wherever you are trying to create it). In
this example, we will create it in the same directory the application was executed from. We have called the file output . txt.
(Remember that the file isn't actually a text file, but we have called it this so it is easy to look at in a text editor). To create our file
object, use the following line of code:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

File theFile = new File ("output.txt");
The path that this file object relates to is the path where your main class is executed.

Now that we have a file object, we can attempt to create a DataOutputStream using the FileOutputStream, to which we
pass in our file. A DataOutputStream allows us to output data to wherever we have specified, which in this case is a file. Here is
the line of code that we require to do this:
try
{
DataOutputStream outputStream = new DataOutputStream(new
FileOutputStream (theFile)) ;

Note that an 10Exception can be thrown when trying to create the DataOutputStream, so we have encapsulated the whole
next segment of code in a try/catch statement to catch the T10Exception.

Next, write the player's name to the output stream. This is done by means of the writeUTF method, which writes the string in
Unicode format. This can be seen in the following line of code:

outputStream.writeUTF (playerName) ;

Once we have our name output to the stream, we then output the player's score by utilizing the writeInt method of the output
stream. This can be seen in the following code:

outputStream.writeInt (playerScore);

Note that there are variations of the write method for each of the different basic data types, as well as a method simply called
write, which can be used to output an array of bytes to an output stream. We will look at some of these different methods in
more examples later in this chapter.

Once the data is written to the output stream, call the £1ush method of the output stream to ensure that all the data has been
written. Then we finally call the c1o0se method to close our output stream. This can be seen in the following two lines of code:

outputStream.flush () ;
outputStream.close();

= [+ rriisus [oesr]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lis | [« rrsvions foosi o)
Reading Data from a File

In this next example, we will use the file that we created in the previous example and attempt to load it in and display the values
that were retrieved from the file in the console window. First let's look at the complete code listing for this example console
application. Then we will look into how the code works.

Code Listing 6-4: Reading data from a file

import java.io.*;

public class SimpleRead
{
public SimpleRead ()
{
// Reset players name and score...
String playerName = "";
int playerScore = 0;

// Create our in file object...
File theFile = new File("output.txt");

try
{
// Create a data input stream for the file...
DataInputStream inputStream = new DatalnputStream(new
FileInputStream(theFile));

// Read the data from the input stream...

// =>> The name...
playerName = inputStream.readUTF();

// =>> The score...
playerScore = inputStream.readInt();

// Close the input stream...
inputStream.close () ;

}

catch (IOException e)

{
System.out.println (e);

}

System.out.println ("The Players Name was: "+ playerName) ;
System.out.println("And there score was: "+ playerScore);

public static void main(String args[])
{

SimpleRead mainApp = new SimpleRead();
}

When we execute this example with the output. txt file in the same directory that we are running it from, we can see the
following output in the console window.

Figure 6-4: The data has been loaded back in

As you can see from this figure, the data has been loaded back in correctly from the file into our application. Let's now look at the
code that we have used to make this work.

First create the two variables in which we are going to eventually store the data that we retrieved from the file. We declare these
two variables with the following two lines of code:

String playerName = "";

int playerScore = 0;

Next create a file object, as we did in the last example, to load in our output . txt file. This is accomplished with the following line
of code:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

File theFile = new File ("output.txt");

Once we have this, attempt to create a bataInputStream object by creating a FileInputStream with our file object passed
into the constructor. As with the DataOutputStream, the input stream can also throw an T0Exception, so as with the last
example, encase all of the stream manipulation code within a try/catch block. Here is the code we use to create our
DataInputStream object:
try
{

DatalnputStream inputStream = new DatalnputStream(new

FileInputStream(theFile)) ;

Now that we have an input stream, we need to read the data back in the same order as we wrote it to the file. So the first thing we
wish to read from the file is the string containing the player's name. This is done using the readUTF method, which reads a string
that has been written in Unicode format (i.e., by the writeUTF method). This can be seen in the following line of code:

playerName = inputStream.readUTF () ;
So now we have the player's name back as a string. Finally, we need to retrieve the player's score, which can be done by simply

using the readInt method, as the input stream maintains its current position in the file after previous reads. This can be seen in
the following line of code:

playerScore = inputStream.readInt();

[+ervvious Lt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Object Serialization

Up until now, we have been looking at quite a low-level way of dealing with writing to and reading from files. In this section you will
learn how it is possible to write and read objects to files using serialization, which makes saving and retrieving data far simpler for
objects, so we don't need to concern ourselves with saving its data members individually.

Serialization is a method of storing all the instance data (see the note at the end of the chapter about the transient keyword to
see how to avoid saving certain data) of a class in a single string automatically that can then be sent (for example, via a network
or saved to a file). When the data is then read, it is deserialized and returned to its original object form.

The best way to see how this works is to look at a simple example. First we need to create a class to describe the object for
storing a player's details. So let's make a class called P1ayerData, which will store the player's name, score, and username and
password for accessing a game. This class can be seen below:

Code Listing 6-5: The PlayerData class

import java.io.*;

public class PlayerData implements Serializable
{
public PlayerData (String name, int score, String username,
String password)
{
this.name = name;
this.score = score;
this.username = username;
this.password = password;

}

public String name;
public int score;
public String username;
public String password;

Let's look at how we have made this class serializable. First we need to import the java.io.* package, as it contains the
Serializable interface, which we need to make this class implement. This can be seen here:

public class PlayerData implements Serializable

Note that if the class does not implement the serializable interface, it is not possible to use serialization. The great news is
that we do not actually have to do anything else to make serialization work; all we need to do is ensure that we abide by the
following three rules:

1. The serializable interface must be implemented.
2. The class must be declared as public.

3. If the class extends another class, the class it is extending must contain a default constructor (a constructor with
no parameters), and the super class must also handle saving its own objects to the stream if data from the super
class is to be serialized also. (The super class would need to implement serializable; otherwise its data
would not be recorded but the subclass data would be.)

Now that we have our basic player class, let's look at the main code listing, which will save an instance of this class to a file called
output.txt and load it back into a new instance of the class and display what was read into the console. Here is the complete
code listing for this example:

Code Listing 6-6: Object serialization

import java.io.*;

public class SerializationExample
{
public SerializationExample ()
{
// Create an instance of our PlayerData class...
PlayerData playerData = new PlayerData("John", 400,
"jsmith", "qwerty");

// Create out file object...
File theFile = new File ("output.txt");

// Create the file output stream...
FileOutputStream fileOutputStream = null;
try
{
fileOutputStream = new FileOutputStream(theFile);

}
catch (FileNotFoundException e)
{

System.out.println(e);

}

// Create the object output stream...
ObjectOutputStream objectOutputStream = null;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

try
{
objectOutputStream = new ObjectOutputStream
(fileOutputStream) ;

// Write the object to the object output stream...
objectOutputStream.writeObject (playerData);

}

catch (IOException e)

{
System.out.println (e) ;

}

// Read the object back into a new instance of our
// 'PlayerData' class
PlayerData newPlayerData = null;

// Create the file input stream...
FileInputStream fileInputStream = null;
try
{
fileInputStream = new FileInputStream(theFile);
}
catch (FileNotFoundException e)
{
System.out.println(e);
}

// Create the object input stream...
ObjectInputStream objectInputStream = null;

try
{
objectInputStream = new ObjectInputStream(fileInputStream) ;

// Read the object from the object input stream...
newPlayerData = (PlayerData) objectInputStream
.readObject () ;
}
catch(ClassNotFoundException e)
{
System.out.println(e);
}
catch (IOException e)
{
System.out.println(e);
}

// Print what was read in...
System.out.println ("The player's name was:
"+newPlayerData.name) ;
System.out.println ("The player's score was:
"+newPlayerData.score);
System.out.println("The player's username was:
"+newPlayerData.username) ;
System.out.println("The player's password was:
"+newPlayerData.password) ;

public static void main(String args([])

{

SerializationExample mainApp = new SerializationExample();

}

When we execute this console application, we will see that the following is visible in the console window:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 6-5: Using serialization

As you can see from this figure, the application has successfully written the data to the file and then read the data back from the
file into the application. Let's now look at the main code that we have used to create this.

First, we create a P1layerData object called playerData with the following line of code.

PlayerData playerData = new PlayerData("John", 400,
"jsmith", "gqwerty");

We pass the details into the constructor, which are the name, score, username, and password. Now that we have our object, we
next create a File object so we can specify where we wish our output (and input) file to be in this example. This is accomplished
with the following line of code:

File theFile = new File ("output.txt");

Once we have our File object, we then need to create a FileOuputStream. This is done by passing our theFile object into
the FileOutputStream constructor, as can be seen in the following block of code:
FileOutputStream fileOutputStream = null;
try
{
fileOutputStream = new FileOutputStream(theFile);
}
catch (FileNotFoundException e)
{
System.out.println(e);

}

Note that we need to catch the FileNotFoundException. Once we have our fileOutputStream object, we then use this to
create an ObjectOutputStream, which is used to write objects to a stream (in this case, our FileOutputStream). So to
create our ObjectOutputStream, We pass our £ileOutputStream into the constructor, as can be seen in the following block
of code:

// Create the object output stream...
ObjectOutputStream objectOutputStream = null;

try
{
objectOutputStream = new ObjectOutputStream
(fileOutputStream) ;

Once our objectOutputStream object is created, we can then easily write our playerData object to the file with the following
line of code:

objectOutputStream.writeObject (playerData) ;

Notice how we use the writeObject method, which is a member of the objectoutputStream class and takes any serializable
object as a parameter.

Now that the data is stored in the file, create a new PlayerData object called newPlayerData and setitto null. This is done
with the following line of code:

PlayerData newPlayerData = null;

Next, we need to create a FileInputStream that we can use to load the file back in. We create the FileInputStream using
the same theFile object as we did with the Fileoutputstream. We will be accessing the same file that we just wrote. This is
done with the following lines of code:
FileInputStream fileInputStream = null;
try
{
fileInputStream = new FileInputStream(theFile);
}
catch(FileNotFoundException e)

{

System.out.println(e);

}

Again, notice that we need to catch the FileNotFoundException exception. Once we have our fileInputStream object, we
then need to create an ObjectInputStream, which can be used to read our PlayerData object back in from the file. Here is
the code we require to create our ObjectInputStream.

ObjectInputStream objectInputStream = null;

try
{
objectInputStream = new ObjectInputStream(fileInputStream);

Notice how we use our fileInputStream objectin the constructor to create the ObjectInputStream so it will use the file as
the stream when attempting to read the data.

We now need to read the object back in, which is done by using the readobject method of the object Inputstream object.
Note that we also need to typecast the data that we read in to the correct class type (which in our example is PlayerData). This
can be seen in the following line of code:

newPlayerData = (PlayerData) objectInputStream.readObject();
The final part of the reading is to catch both a C1lassNotFoundException exception and an I0Exception exception. We need

to catch a ClassNotFoundException as a security measure, as we cannot be assured of the type of object being read in, at
least Java cannot be assured of us writing correct code for this.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Now that we have read in our player information, all that is left is to simply display it to the console to show that the data has been
read back in correctly.

Note If the class you wish to serialize contains a member that you do not actually wish to save to a file (or send across a
network), you can declare the variable as transient. For example, if we had a password stored as a string in a class and
we did not wish to serialize it, we would declare it as follows:

transient private String password;

[team Lo | [+ervvious Lt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toam Li [+ rriisus [oesr]

Summary

In this chapter you learned the basics of using streams and files in your games. In addition, you also created a simple console

game, which got some interactivity from the user and gave us a first glance at the inner workings of a game. In the next chapter
we will delve into the exciting world of threads.

[+ rrisos e]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Taum L} [PRwvisuE]
Chapter 7: Threads

"The wise man can pick up a grain of sand and envision a whole universe. But the stupid man will just lie down
on some seaweed and roll around until he's completely draped in it. Then he'll stand up and say 'Hey, I'm Vine
Man.™

—Jack Handey

Introduction

When programming in Java, you must learn to command and conquer threads. In Java, threads are important for things such as
handling input and network programming. Before you read any further, you will need to understand the underlying characteristics
of threads, how to use them, and how to handle them safely with one another.

[+erevons Lt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lia [« exsvious [t s
What Is a Thread?

A thread is simply a running process of execution. The simplest way to explain a thread is to tell you that when an application
begins by invoking the main method, the code that is executed is running in a thread. This thread is started by the Java Virtual
Machine and enters the main method to begin flowing through your code. Tracing the path of what we might call the main thread
is relatively simple, as code is executed line by line starting in main; although invoking methods and making loops can complicate
the path of execution, we are still in relative control of the flow of the program. However, | use the term "program" loosely because
the main thread may not be the only thread running in our program. Yes, that is correct; along with our main thread, there can be
other threads running at the same time (although they cannot actually run at the exact same time as one another, except perhaps
on a multiprocessor machine, when they can take equal processor time slices), which can complicate things immensely and slow
down the code if handled badly. For games programming, you should use as few threads as possible (using one main thread to
handle the running of the game). In Java we don't quite have that luxury, as some important aspects of games programming in
Java rely on handling multiple threads. The most important "other thread" is called the Event Dispatch Thread.

The Event Dispatch Thread is what gives a programmer his power. It's an energy field created by all living things. It surrounds us
and penetrates us. It binds the galaxy together.

Let me rephrase that a little. The Event Dispatch Thread is a thread that handles events in your application. An event in the case
of the Event Dispatch Thread could be from the mouse (e.g., mouse pressed), the keyboard (e.g., key pressed), or even a window
event (e.g., a window closing event). The basic idea of the Event Dispatch Thread is that it will receive events from other, hidden
threads, such as window, mouse, and keyboard events and then dispatch those events to your application, provided you specify
that you want to listen for those events. We will look at the Event Dispatch Thread in much more detail in Chapters 9 and 10. For
now, it is important to understand how to create and use our own threads before we get caught up in someone else's threads;

besides, we haven't mentioned synchronization yet.
[« exsviou]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toam Li [« rxvvions fooi o)
Creating a Thread

There are two ways to create a thread. One is by extending the java .lang.Thread, and the other is by implementing the
java.lang .Runnable interface. As the java.lang package is included by default, we don't need to define their package
path, so from now on we will refer to them as "Thread" and "Runnable." In order to handle code in our thread, we must define a
run method. The Runnable interface defines this very run method as follows.

public interface Runnable
{
public void run();

}

The thread class itself implements the Runnable interface and therefore defines its own version of the run method, which does
nothing and exits immediately, beautifully placed for us to override with our own implementation. In order to terminate a thread,
simply let the run method exit. Similarly, as the main method is called itself from a thread, that thread will stop shortly after the
main